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Abstract- Within the field of Neuro Robotics we are humanoid robot platform: The first stage involves learning
driven primarily by the desire to understand how humans a body-image or body-schema [2] [3]. Having learned to
and animals live and grow and solve every day's problems. To distinguish its body from the rest of the world the robot
this aim we adopted a "learn by doing" approach by building
artificial systems, e.g. robots that not only look like human can move on to the second stage, which is interaction
beings but also represent a model of some brain process. with external objects. The third and final stage involves
They should, ideally, behave and interact like human beings interpreting object-object interactions. An essential feature
(being situated). The main emphasis in robotics has been on of this developmental program is that each stage strictly
systems that act as a reaction to an external stimulus (e.g. requires and layers upon the previous stages. In this paper
tracking, reaching), rather than as a result of an internal
drive to explore or "understand" the environment. We think we present results for the second and third stages in this
it is now appropriate to try to move from acting, in the sense developmental schema.
explained above, to "understanding". As a starting point we Results from neuroscience suggest that action and ma-
addressed the problem of learning about the effects and con- nipulation are fundamental for acquiring knowledge about
sequences of self-generated actions. How does the robot learn objects [41 [5] [6]. These results point out that action
how to pull an object toward itself or to push it away? How
does the robot learn that spherical objects roll while a cube and perception are possibly much more intertwined than
only slides if pushed? Interacting with objects is important what was once believed. It would be difficult to draw a
because it implicitly explores object representation, event separation for where perception ends and action starts.
understanding, and can provide definition of objecthood that Even the distinction between motor and sensory areas
could not be grasped with a mere passive observation of the tends to be very blurred.
world. Further, learning to understand what one's own body
can do is an essential step toward learning by imitation. In Drawing more from the neural science literature, we
this view two actions are similar not only if their kinematics now know that areas active when reaching and/or grasping
and dynamics are similar but rather if the effects on the present a mixed structure containing action and sensory
external world are the same. Along this line of research related neurons. Arbib and colleagues [6] interpreted these
we discuss some recent experiments performed at the AI- responses as the neural analogue of the affordances of
Lab at MIT and at the LIRA-Lab at the University Of
Genova on COG and Babybot respectively. We show how the Gibson [7]. In Gibson's theory an affordance is a visual
humanoid robots can learn how to poke and prod objects to characteristic of an object which can elicit an action
obtain a consistently repeatable effect (e.g. sliding in a given without necessarily involving an object recognition stage.
direction), to help visual segmentation, and to interpret a It seems that areas AIP (parietal) and F5 (premotor/frontal)
poking action performed by a human manipulator. are active in such a way to provide the individual with

a mechanism to detect affordances. F5 projects to FI
1. INTRODUCTION: LEARNING To ACT ON OBJECTS (primary motor cortex) and can therefore control behavior.In particular area AIP contains neurons that respond

In order to explore the role of sensory information and both when generating a grasping movement and when
motor skills in cognition, we are pursuing a developmental observing the object being grasped [5] [8]. Responses
approach. The basic idea is that assembling something are congruent: e.g. a precision grip responsive neuron
as complex as a cognitive system from scratch as a would also fire during the observation of a small object
collection of modules is virtually impossible. Rather, as (for which the precision grip is a likely action). Similar
in humans, cognitive abilities develop over time layering neurons with slightly different temporal characteristics
over previous stages of development. Development may have been observed in F5.
therefore not be just an artifact of biological systems, Rizzolatti and coworkers [51 extensively probed area
but a necessary way to manage complexity [1]. To this F5. They found another class of grasping neurons that
end we see three broad stages in the development of our also responded during observation of somebody else's
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J M 2and 2 cameras whose Cartesian images are mapped to a
log-polar format [9]. The robot also has a force sensitive
wrist, and a metal stub for a hand. The target is placed
directly in front of the robot on the play-table. Babybot
starts from any of four different initial positions (shown

X3a in the figure) at the beginning of a trial run.
4In a typical trial run the robot continuously tracks the

target while reaching for it. The target (even if it is
(a) initial arm- (b) At the (c) At the end of moving) is thus ideally always centered on the fovea,
positions for beginning of the movement while the moving hand is tracked in peripheral vision.
target approach a pushing Figure 1 (B) shows the arm at one of its initial positions

movement and (C) shows the end of the trial with the target having

Fig. I. The experimental setup been pushed to one side.
During each such trial run, the time evolution of two

event variables are continuously monitored: the initial
action. They called this newly discovered cells mirror proprioceptive hand-position, and then at the moment
neurons. This activation of F5 is coherent with the idea of contact (when the hand first touches the object) the
that the brain internally reproduces/simulates the observed direction of the retinal displacement of the target.
actions. This can possibly form the basis for recognition
of complicated biological motion and for mimicry of A. The Target Representation and Results of Learning
observed behaviors. The purpose of the training phase is to learn a mapping

Taken together, these results suggest that the ability from initial hand position to direction of target movement.
to visually interpret the motor-goal or behavioral/purpose Therefore, associated with each initial hand position is a
of the action may be helped by the monkey's ability to direction map (a circular histogram) that summarizes the
perform that action (and achieve a similar motor goal) directions that the target moved in when approached from
itself. Therefore, active exploration of the environment that position. After each trial the appropriate direction map
may be critical not only to subsequent performance of is updated with the target motion for that particular trial.
an action, but also for the interpretation of the actions of Approximately 70 trials, distributed evenly across the
others. We argued at the beginning of this section that four initial starting positions, were conducted. Figure 2
this "probing/exploring activity" is the second stage of shows the four direction maps learned, one for each initial
a developmental sequence. It is at this stage when the arm position considered. The maps plot the frequency with
ability to interact with object is formed, and includes the which the target moved in a particular direction at the
detection of affordances and the manipulation of objects. moment of impact. Therefore longer radial lines in the plot
In the following sections we present an implementation of point towards the most common direction of movement.
this stage. We will show how a humanoid robot As we can see, the maps are sharply tuned towards a

"• Learns the effect of pushing/pulling actions on ob- dominant direction.
jects and uses this to drive goal-directed behavior.

"* Acquires a particular affordance and behaviorally B. Testing the Learned Maps
demonstrates this form of "understanding" about ob- The learned maps are used to drive motor planning in
jects. a straightforward manner as shown in Figure 3. The robot

", Uses the knowledge of affordances, gained through is presented with the usual target as before, but this time
exploration, to interpret human action and mimic the also with another toy nearby (Figure 3 a). The goal is to
last observed action. push the target towards the new toy. The robot first extracts

the desired displacement vector from the scene, finds the
II. LEARNING TO PUSH/PULL/POKE OBJECTS direction map which is most tuned in that direction. The

The goal of this experiment is to learn the effect of a set initial-hand position corresponding to that map, is used
of simple pushing/pulling actions from different directions and the dynamics takes care of the rest, resulting in the
on a toy object, and then use the learned knowledge to motion of the target towards the desired direction, (Figure
move a new object in a desired goal-direction. 3b,c).

Figure 1 A Shows the experimental platform "Baby- A quantitative measure of the performance before and
bot",an upper torso humanoid robot at the LIRA Lab, Univ after learning is to look at the error angle between the



(a) Map for hand- (b) Map for hand-
position I position 2 (a) The round (b) The learned (c) At the end of

toy is the new maps are used the movement
desired target to re-position
position the arm in

preparation for
pushing

Fig. 3. The learned direction maps are used to drive goal-directed action

(c) Map for hand- (d) Map for hand- j
position 3 position 4

Fig. 2. The learned target-motion direction maps, one for each initial c7. D.7,0

hand-position

(a) Error distribution before learn- (b) Error distribution after learn-
ing ing

desired direction of motion (of the target towards the goal)
and the actual direction that the target moved in when Fig. 4. Improvement in performance: Plots of the distribution of the
pushed. First, as a baseline control case, 54 trials were angle between the desired direction and actual direction, before and after

learning. Zero degrees indicates no error, while 180 degrees indicatesrun with the goal position (round toy) being varied ran- maximum error.
domly and the initial hand-position being chosen randomly
among the four positions (i.e learned maps are not used to
pick the appropriate hand position). Figure 4(a) shows the uniqueness of the motion-signature of the object can
error plot. The distribution of errors is not completely flat used to identity the object itself, and can be associated
as one would expect because the initial hand-positions are with the visual appearance of the object. We describe an
not uniformly distributed around the circle. Nevertheless, experiment where a robot acts on a small set of objects
the histogram is not far from uniform. Doing the same using a small motor repertoire consisting of four actions
experiment, but using the learned map to position the indicated for convenience as pull in, side tap, push away,
hand, yields the error plot shown in 4(b). As we can see and back slap.
the histogram is significantly skewed towards an error of During a training/exploration stage the robot performs
0, as a result of picking the correct initial-hand position several trials for each (object, action) pair and learns the
from the learned map. motion signature of the behavior of the object for that

action. We show how, in a more goal-directed mode, the
III. LEARNING OBJECT AFFORDANCES robot uses it's knowledge of the object affordances to

In the previous section, we ignored both the identity of choose the appropriate action to make a given object roll.
the object, and the gross shape (elongation) of the object, Finally we show how the robot is able to interpret the
and learned possibly the simplest property of the behavior effect of a human action on an object, and respond with
of the object; namely the instantaneous direction of motion it's own action that produces a similar effect, i.e. mimicry.
as a result of a push/pull action. The robot used for this experiment was "Cog", an upper

In this section we take both identity, and some shape torso humanoid robot [10] at the MIT A.I. Lab. Figure 5
properties of the object into account and thereby have shows the robot, Cog has two arms, each of which has six
a more detailed characterization of the behavior. The degrees of freedom. The joints are driven by series elastic
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Fig. 6. Cog poking a cube. The top row shows the flipper poking
the object from the side, turning it slightly. The second row shows CogFig. 5. Degrees of freedom of the robot Cog. The artms terminate in a batting an object away. The images in the fi rst column are frames at the

primitive flipper. The head, torso, and anms together contain 22 degrees moment of tmpact. The second colutsn shows the the motion signal at
of freedom, the point of contact. The bright regions in the images in the fi nal column

show fth segmentation produced for the object.

actuators - essentially a motor connected to its load via -o---'-- 0 _ --

a spring. Cog's head has seven degrees of freedom and *

mounts four cameras and a gyroscope simulating part of Bote B0UinýO 13 CM 0
the human vestibular system. .

111 :

A. Characterizing Object Behavior ,

During the training phase, each of the four objects . 6 o up w
in this experiment (an orange juice bottle, a toy car, a r Bel, m w s Cog02
cube, and a colored ball) is "poked" about a 100 times, imn
it.e. roughly 25 repetitions of each action for each object. d

The visual feature of the resulting object behavior that isomt p
extracted is the instantaneous direction of motion of theo
object (as in the previous section) but this time the angle Fig. 7. Probability of observing a roll along a particular direction for
is relative to the principle axis of inertia of the object. the set of four objects used in Cog's experiments. Abscissas represent
The direction of motion of the object and principle axis the difference between the principal axis of the object and the observed
of inertia are extracted as follows, direction of movement. Ordinates are the estimated probability.

During a single poking operation, the arm is identified
as the first object to move in the scene. Once the arm is 7.
identified, a sudden spread of motion in the image (spa-
tially correlated with the end-effector) identifies a contact.
Whatever was moving before this instant is considered B. Results and Demonstration of Learning
background (the arm, other disturbances). Thereafter, the For each (object, action) pair the representation of the
newly moving "blob" can be identified as the object. A object affordances or movement signature is in terms of
further refinement is needed to fill in the gaps since motion a histogram of probabilities for each relative angle of
detection is in general sparse and depends on the visual motion. In other words the probabilities represent the
appearancettexture of the object. Two examples of poking likelihood of observing each of the objecta rolling along
and segmentations are shown in Ftgure 6. a particular direction with respect to thetr principal axis.

Having segmented the object the principle axis of inertia Figure 7 shows one set of such estimated probability maps
is easily extracted, and its instantaneous direction of learned from the exploration/training stage.
motion is gathered from the optical flow information of To provide a behavioral demonstration of the learned
the pixels belonging to the object. Then the difference affordances, one of the known objects was placed in front
between these two angles is used to update a "motion- of Cog, with Cog's task being to choose the action that
signature probability map" of the kind shown in Figure would most likely make that particular object roll.



Initial position Initial position Final position
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Fig. 8. An example of observed sequence. Frames around the instant of
impact are shown. Initial and fi nal position after 12 frames is indicated.

The object is recognized, localized and its orientation Example 2

estimated (principal axis). Recognition and localization Fig. 9. Two examples of mimicry following the observation of Figure

are based on the same color information collected during 8.Cog mimics the goal of the action (poking along the principal axis)

learning. Cog then uses its understanding of the affordance rather than the trajectory followed by the toy car.

of the object (Figure 7) and of the geometry of poking
to choose the action that is most likely to make the The robot can also mimic the observed behavior if
object roll. The object localization procedure has an error it happens to see the same object again. This requires
between 10i and 250 which proved to be tolerable for another bit of information. The angle between the affor-
our experiment. We performed a simple qualitative test dance of the object (preferred direction of motion) and
of the overall performance of the robot. Out of 100 trials the observed displacement is measured. During mimicry
the robot made 15 mistakes. Twelve of them were due to the object is localized as in section II-A and the action
imprecise control: e.g. the end point touched the object which is more likely to produce the same observed angle
earlier than expected moving the car outside the field of (relative to the object) is generated. If, for example, the
view. The remainders (3) were genuine mistakes due to car was poked at right angle with respect to its principal
misinterpretation of the object position/orientation, axis Cog would mimic the action by poking the car at right

This experiment represents an analogue to the response angle. In spite of the fact that the car preferred behavior is
of F5/AIP as explained in Arbib's model [6] in that a to move along its principal axis. Examples of observation
specific structure of the robot detects the affordance of of poking and generation of mimicry actions are shown
the object and links it to the generation of behavior. This in Figure 8 and 9.
is also the first stage of the development of more complex
behaviors which relies on the understanding of objects as IV. CONCLUSION
physical entities with specific properties. All biological systems are embodied systems, and an

important way they have for recognizing and differentiat-

C. Understanding the actions of others ing between objects in the environment is by simply acting
on them. Only repeated interactions (play!) with objects

An interesting question then is whether the system can reveal how they behave when acted upon (e.g. sliding
could extract useful information from seeing an object vs rolling when poked). We have shown two experiments
manipulated by someone else. where, in a discovery mode, the visual system learns about

In fact, the same visual processing used for analyzing the consequences of motor acts in terms of such features,
an active poking has been used to detect a contact and and in a goal-directed mode the mapping may be inverted
segment the object from the manipulator. The first obvious to select the motor act that causes a particular visual
thing the robot can do is identify the action just observed change. These two modes of learning; the consequences
with respect to its motor vocabulary. It is easily done by of a motor act, and selecting a motor act to achieve a
comparing the displacement of the object with the four certain result, are obviously intertwined, and together are
possible actions and by choosing the action whose effects what we mean by "learning to act". Furthermore, the same
are closer to the observed displacement. This procedure information can also be used to interpret the effect of a
is orders of magnitude simpler than trying to completely human-action on an object (as seen in mirror neurons),
characterize the action in terms of the observed kinematics and thereafter select an appropriate action to mimic the
of the movement. Here the complexity of the data we need effect on the object. The experiments together underline
to obtain is somewhat proportional to the complexity of the central theme that learning to act on objects is very
the goal rather than that of the structure/skill of the foreign important, not only to get better at interacting with future
manipulator. objects, but also to interpret the actions of others.
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