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Abstract in the causal chain, and the temporal nature of the

For the purposes of manipulation, we would response may be delayed since initiating a reaching

like to know what parts of the environment movement doesn't immediately elicit consequences in
the environment.

are physically coherent ensembles - that is,

which parts will move together, and which are Finally we argue that extending this causal chain

more or less independent. It takes a great further will allow us to approach the representational

deal of experience before this judgement can power of "mirror neurons" (Fadiga et al., 2000),

be made from purely visual information. This where a connection is made between our own actions

paper develops active strategies for acquir- and the actions of another.

ing that experience through experimental ma-
nipulation, using tight correlations between 2. The elusive object
arm motion and optic flow to detect both the Sensory information is intrinsically ambiguous, and
arm itself and the boundaries of objects with very distant from the world of well-defined objects
which it comes into contact. We argue that in which humans believe they live. What criterion
following causal chains of events out from the should be applied to distinguish one object fron
robot's body into the environment allows for another? How can perception support such a phe-
a very natural developmental progression of nomenon as figure-ground segmentation? Consider
visual competence, and relate this idea to re- the example in Figure 1. It is immediately clear that
suits in neuroscience. the drawing on the left is a cross, perhaps because

1. Introduction we already have a criterion, which allows segmenting
on the basis of the intensity difference. It is slightly

A robot is an actor in its environment and not simply less clear that the zeros and ones on the middle panel
a passive observer. This gives it the potential to ex- are still a cross. What can we say about the array
amine the world using causality, by performing prob- on the right? If we are not told, and we do not have
ing actions and learning from the response. Tracing the criterion to perform the figure-ground segmenta-
chains of causality from motor action to perception tion, we might think this is just a random collection
(and back again) is important both to understand of numbers. But if we are told that the criterion is
how the brain deals with sensorimotor coordination "prime numbers vs. non-prime" then a cross can still
and to implement those same functions in an artifi- be identified.
cial system, such as a humanoid robot. While we have to be inventive to come up with a

In this paper, we propose that such causal probing segmentation problem that tests a human, we don't
can be arranged in a developmental sequence leading have to go far at all to find something that baffles our
to a manipulation-driven representation of objects. robots. Figure 2 shows a robot's-eye view of a cube
We present results for two important steps along the sitting on a table. Simple enough, but many rules
way, and describe how we plan to proceed. of thumb used in segmentation fail in this particular

Table 1 shows three levels of causal complexity. case. And even an experienced human observer, di-
The simplest causal chain that the robot experiences agnosing the cube as a separate object based on its
is the perception of its own actions. The temporal as- shadow and subtle differences in the surface texture
pect is immediate: visual information is tightly syn- of the cube and table, could in fact be mistaken
chronized to motor commands. We use this strong perhaps some malicious researcher is up to mischief.
correlation to identify parts of the robot body - The only way to find out for sure is to take action,
specifically, the end-point of the arm. and start poking and prodding. As early as 1734,

Once this causal connection is established, we can Berkeley observed that:
go further and use it to active explore the bound-
aries of objects. In this case, there is one more step ... objects can only be known by touch. Vision
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type nature of causation time profile
sensorimotor coordination direct causal chain strict synchrony
object probing one level of indirection fast onset upon contact, poten-

tial for delayed effects
mirror representation complex causation involving arbitrarily delayed onset and ef-

multiple causal chains fects

'fable 1: Degrees of causal indirection. There is a natural trend from simpler to more complicated tasks. The more
time-delayed an effect, the more difficult it is to model.

0 0 1 0 0 4 12 17 4 5s neural science. For example Kovacs (Kovacs, 2000)
0 0 1 0 0 9 21 3 10 25 has shown that perceptual grouping is slow to de-
1 1 1 1 1 5 23 11 37 13 velop and continues to improve well beyond early
Loo 0 0 0 8 18 7 42 6 childhood (14 years). Long-range contour integra-

[+0 ] 00 j 132 s tion was tested and this work elucidated how this
a cross a binary cross ? ability develops to enable extended spatial grouping.

Key to understanding how such capabilities could
Figure 1: Three examples of crosses, follow- develop is the well-known result by Ungerleider
ing (Manzotti and Tagliasco, 2001). The human and Mishkin (Ungerleider and Mishkin, 1982) who
ability to segment objects is not general-purpose, and first formulated the hypothesis that objects are rep-
improves with experience, resented differently during action than they are

for a purely perceptual task. Briefly, they ar-
gue that the brain's visual pathways split into
two main streams: the dorsal and the ven-
tral (Milner and Goodale, 1995). The dorsal deals
with the information required for action, while the
ventral is important for more cognitive tasks such as
maintaining an object's identity and constancy. Al-
though the dorsal/ventral segregation is emphasized
by many commentators, it is significant that there is
a great deal of cross talk between the streams. Obser-
vation of agnosic patients (Jeannerod, 1997) shows a
much more complicated relationship than the simple

Figure 2: A cube on a table. The edges of the table and dorsal/ventral dichotomy would suggest. For exam-
cube happen to be aligned (dashed line), the colors of the ple, although some patients could not grasp generic
cube and table are not well separated, and the cube has objects (e.g. cylinders), they could correctly pre-
a potentially confusing surface pattern, shape the hand to grasp known objects (e.g. a lip-

stick): interpreted in terms of the two pathways, this
implies that the ventral representation of the object

is subject to illusions, which arise from the can supply the dorsal stream with size information.
distance-size problem... (Berkeley, 1972) The dorsal stream goes through the parietal lobe

In this paper, we provide support for a more nuanced and premotor cortex, which project heavily onto the
proposition: that in the presence of touch, vision be- primary motor cortex to eventually control move-
comes more powerful, and many of its illusions fade ments. For many years the premotor cortex was
away. considered just another big motor area. Recent stud-

ies (Jeannerod, 1997) have demonstrated that this is
Objects and actions not the case. Visually responsive neurons have been

found: some are purely visual, but many have sig-
The example of the cross composed of prime num- nificant visuo-motor characteristics. In area F5 in
bers is a novel (albeit unlikely) type of segmentation the monkey, neurons responding to object manipula-
in our experience as adult humans. We might imag- tion gestures are found. They can be classified in at
me that when we were very young, we had to ini- least two different types: canonical and mirror. The
tially form a set of such criteria to solve the object canonical type is active in two situations: i) when
identification/segmentation problem in more mun- grasping an object and ii) when fixating that same
dane circumstances. That such abilities develop and object. For example, a neuron active when grasping
are not completely innate is suggested by results in a ring also fires when the monkey simply looks at the
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ring. This could be thought of as a neural analogue 3. The experimental platform
of the "affordances" of Gibson (Gibson, 1977). This work is implemented on the robot Cog, an

The second type of neuron, the mirror neuron(Fadiga et ad., 2000), becomes active under two con- upper torso humanoid (Brooks et ad., 1999). Tihe
(Fadga t a., 000, bcoms ativ uner wo on- robot has previously been applied to tasks such as

ditions: i) when manipulating an object (e.g. grasp- roouas previo ed to tasks 1uch)aing it), and ui) when watching someone eise perform- visually-guided pointing (Marjanovi6 et ad., 1996),
ing ithe same i tion on watcheg sameobject Te p - and rhythmic operations such as turning a crank ora more subtle representation of objects, which ad- driving a slinky (Williamson, 1998). Cog has twolows and supports, at least in theory, mimicry be- arms, each of which has six degrees of freedom --lowsandsuports atleat intheryimincrybe- two per shoulder, elbow, and wrist. The joints are
haviors. In human, area F5 is thought to correspond two pe ser, elb st . The jont ar5
to Broca's area: there is an intriguing link between driven by series elastic actuators (Willamson, 1995)
gesture understanding, language, imitation, and mir- essentially a motor comnected to its load via a
ror neurons (Rizzolatti and Mrbib, 1998). spring (think strong and torsional rather than loosely

coiled). The arm is not designed to enact trajectoriesAnother important class of neurons in premo- with high fidelity. For that a very stiff arm is prefer-
tor cortex is found in area F4 (Fogassi et aL., 1996). able. Rather, it is designied to perform well when

While F5 is more concerned with the distal muscles inteRating it a poorly chrcerized eliirnen
(Le.thehan), 4 cotros mre roxial usees; interacting with a poorly characterized environment,(i.e. the hand), F4 controls more proximal muscles where collisions are frequent and informative events.

(i.e. reaching). A subset of neurons in F4 has a so-

matosensory, visual, and motor receptive field. The
visual receptive field (RF) extends in 3D from a given (7 OFS)
body part, for example, the forearm. The somatosen- a

sory RF is usually in register with the visual one. Fi-
nally, motor information is integrated into the repre- " (

sentation by maintaining the receptive field anchored
to the correspondent body part (the forearm in this
example) irrespective of the relative position of the

head and arm.

A working hypothesis (¢OOFS)

Taken together this results from neuroscience sug-
gest a very basic role for motor action. Certainly
vision and action are intertwined at a very basiclevel. While an experienced adult can interpret vi- Figure 3: Degrees of freedom (DOE's) of the robot Cog.
level. Whileane exerfctwedl w oult cating nterpret , v The arms terminate either in a primitive "flipper" or a
sual scenes perfectly well without acting upon them, fu-igrdhn.Tehatro n rstgte
linking action and perception seems crucial to the de- four-fingered hand. The head, torso, and arms together
velopmental process that leads to that competence.
We can construct a working hypothesis: that action
is required to object recognition in cases where an 4. Perceiving direct effects of action
agent has to develop categorization autonomously.
Of course in standard supervised learning action is Motion of the arm may generate optic flow directly
not required since the trainer does the job of pre- through the changing projection of the arm itself,
segmenting the data by hand. In an ecological con- or indirectly through an object that the arm is in
text, some other mechanism has to be provided, contact with. While the relationship between the
Ultimately this mechanism is the body itself that optic flow and the physical motion is likely to be ex-
through action (under some suitable developmental trenmely complex, the correlation in time of the two
rule) generates informative percepts. events will generally be exceedingly precise. This

Neurons in area F4 are thought to provide a body time-correlation can be used as a "signature" to iden-
map useful for generating arm, head, and trunk tify parts of the scene that are being influenced by
movements. Our robot learns autonomously a crude the robot's motion, even in the presence of other dis-
version of this body map by fusing vision and pro- tracting motion sources. In this section, we show
prioception. As a step towards establishing the kind how this tight correlation can be used to localize
of visuomotor representations seen in F5, we then the arm in the image without any prior information
develop a mechanism for using reaching actions to about visual appearance. In the next section we will
visually probe the connectivity and physical extent show that once the arm has been localized we can go
of objects without any prior knowledge of the ap- further, and identify the boundaries of objects with
pearance of the objects (or indeed of the arm itself). which the arm comes into contact.
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Figure 4: An example of the correlation between optic
flow and arm movement. The traces show the movement
of the wrist joint (upper plot) and optic flow sampled on
the arm (middle plot) and away from it (lower plot). As
the arm generates a repetitive movement, the oscillation Figure 5: Detecting the arm/gripper through motion cor-
is clearly visible in the middle plot and absent in the relation. The robot's point of view and the optic flow
lower. Before and after the movement the head is free generated are shown on the left. On the right are the
to saccade, generating the other spikes seen in the optic results of correlation. Large circles represent the results

flow. of applying a region growing procedure to the optic flow.
Here the flow corresponds to the robot's arm and the ex-
perimenter's hand in the background. The small circle
marks the point of maximum correlation, identifying the

Reaching out regions that correspond to the robot's own arm.

The first step towards manipulation is to reach ob-
jects within the workspace. If we assume targets are
chosen visually, then ideally we need to also locate Localizing the arm visually
the end-effector visually to generate an error signal
for closed-loop control. Some element of open-loop The robot is not a passive observer of its arm,
control is necessary since the end-point may not al- but rather the initiator of its movement. This
ways be in the field of view (for example, when it can be used to distinguish the arm from parts of
is in its the resting position), and the overall reach- the environment that are more weakly affected by
ing operation can be made faster with a feed-forward the robot. The arm of a robot was detected in
contribution to the control. (Marjanovih et al., 1996) by simply waving it and as-

The simplest possible open loop control suming it was the only moving object in the scene.
would map directly from a fixation point to We take a similar approach here, but use a more
the arm motor commands needed to reach that stringent, test of looking for optic flow that is corre-
point (Metta et al., 1999) using a stereotyped lated with the motor commands to the arm. This
trajectory, perhaps using postural primitives allows unrelated movement to be ignored. Even if
(Mussa-Ivaldi and Giszter, 1992). If we can fix- a capricious engineer where to replace the robot's
ate the end-effector, then it is possible to to arm with one of a very different appearance, and
learn this map by exploring different combi- then stand around waving the old arm, this detec-
nations of direction of gaze vs. arm position tion method will not be fooled.
(Marjanovi6 et al., 1996, Metta et al., 1999). So The actual relationship between arm movements
locating the end-effector visually is key both to and the optic flow they generate is complex. Since
closed-loop control, and to training up a feed- the robot is in control of the arm, it can choose to
forward path. We shall demonstrate that this move it in a way that bypasses this complexity. In
localization can be performed without knowledge of particular, if the arm rapidly reverses direction, the
the arm's appearance, and without assuming that optic flow at that instant will change in sign, giving
the arm is the only moving object in the scene. a tight, clean temporal correlation. Since our op-
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Figure 6: Mapping from proprioceptive input to a visual
prediction. Head and arm joint positions are used to
estimate the position of the projection of the hand in the
image plane. Redundant configurations of the (7 DOF)
head are mapped to a simpler (2D) representation, and Figure 7: Predicting the location of the arm in the im-
the wrist-related DOFs of the arm are ignored.. age as the head and arm change position. The rectangle

represents the predicted position of the arm using the
map learned during a twenty-minute training run. The

tic flow processing is coarse (a 16 x 16 grid over a predicted position just needs to be sufficiently accurate
128 x 128 image at 15 Hz), we simply repeat this to initialize a visual search for the exact position of the
reversal a number of times to get a strong correla- end-effector.
tion signal during training. With each reversal the
probability of correlating with unrelated motion in
the environment goes down. This probability could not expect a target selected in this way to be a cor-
also be reduced by higher resolution (particularly in rectly segmented. For the example scene in Figure 2
time) visual processing. (a cube sitting on a table), the small inner square

Figure 4 shows an example of this procedure in on the cube's surface pattern might be selected as a
operation, comparing the velocity of the arm's wrist target. The robot can certainly reach towards this
with the optic flow at two positions in the image target, but grasping it would prove difficult without
plane. A trace taken from a position away from the a correct estimate of the object's physical extent. In
arm shows no correlation, while conversely the flow this section, we develop a procedure for refining the
at a position on the wrist is strongly different from segmentation using the same idea of correlated mo-
zero over the same period of time. Figure 5 shows tion used earlier to detect the arm.
examples of detection of the arm and rejection of a When the arm enters into contact with an object,
distractor. one of several outcomes are possible. If the object

is large, heavy, or otherwise unyielding, motion of
the arm may simply be resisted without any visi-

Localizing the arm using propr'ioception ble effect. Such objects can simply be ignored, since

The localization method for the arm described so the robot will not be able to manipulate them. But

far relies on a relatively long "signature" movement, if the object is smaller, it is likely to move a little
that would slow down reaching. This can be over- in response to the nudge of the arm. This move-

come by training up a function to estimate the loca- ment will be temporally correlated with the time of

tion of the arm in the image plane from propriocep- impact, and will be connected spatially to the end-

tive information (joint angles) during an exploratory effector - constraints that are not available in passive

phase, and using that to constrain arm localization scenarios (Birchfield, 1999). If the object is reason-

during actual operation. As a function approxima- ably rigid, and the movement has some component in

tor we simply fill a look-up table, reducing the 11- parallel to the image plane, the result is likely to be

dimensional input space of joint angles based on the a flow field whose extent coincides with the physical
much lower number of degrees of freedom used in boundaries of the object.

controlling them (see Figure 6). Figure 7 shows the Figure 8 shows how a "poking" movement can be
resulting behavior after about twenty minutes of real- used to refine a target. During a poke operation,

time learning, the arm begins by extending outwards from the rest-
ing position. The end-effector (or "flipper") is lo-

5. Perceiving indirect effects of action calized as the arm sweeps rapidly outwards, using
the heuristic that it lies at the highest point of the

We have assumed that the target of a reaching opera- region of optic flow swept out by the arm in the im-
tion is chosen visually. As discussed in the introduc- age (the head orientation and reaching trajectory are
tion, visual segmentation is not easy, so we should controlled so that this is true). The arm is driven
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Begin Find end-effector Sweep Contact! Withdraw

Figure 8: The upper sequence shows an arm extending into a workspace, tapping an object, and retracting. This is an
exploratory mechanism for finding the boundaries of objects, and essentially requires the arm to collide with objects
under normal operation, rather than as an occasional accident. The lower sequence shows the shape identified from
the tap using simple image differencing and flipper tracking.

outward into the neighborhood of the target which
we wish to define, stopping if an unexpected obstruc-
tion is reached. If no obstruction is met, the flipper
makes a gentle sweep of the area around the target.
This minimizes the opportunity for the motion of the
arm itself to cause confusion; the motion of the flip-
per is bounded around the endpoint whose location
we know from tracking during the extension phase,
and can be subtracted easily. Flow not connected to
the end-effector can be ignored as a distractor.

For simplicity, the head is kept steady throughout
the poking operation, so that simple image differenc-
ing can be used to detect motion at a higher reso-
lution than optic flow. Because a poking operation
currently always starts from the same location, the
arm is localized using a simple heuristic rather than
the procedure described in the previous section - the
first region of optic flow appearing in the lower part
of the robot's view when the reach begins is assumed Figure 9: Poking can reveal a diffence in the shape of

two objects without any prior knowledge of their appear-
The poking operation gives clear results for a rigid ance.

object that is free to move. What happens for non-
rigid objects and objects that are attached to other
objects? Here the results of poking are likely to be
more complicated to interpret - but in a sense this is
a good sign, since it is in just such cases that the idea may well be task-dependent. Poking allows us to
of an object becomes less well-defined. Poking has determine the boundary around a mass that moves
the potential to offer an operational theory of "oh- together when disturbed, which is exactly what we
jecthood" that is more tractable than a vision-only need to know for manipulation. As an operational
approach might give, and which cleaves better to the definition of object, this has the attractive property
true nature of physical assemblages. The idea of a of breaking down into ambiguity in the right circum-
physical object is rarely completely coherent, since stances - such as for large interconnected messes,
it depends on where you draw its boundary and that floppy formless ones, liquids, and so on.
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d.

called canonical neurons that have a very specific
response when an object is being either manipu-
lated or fixated. Grossly simplifying, we might
think of canonical neurons as an association table of
grasp/manipulation (action) types with object (vi-
sion) types. Another class of neurons called "mirror

within A's brain..,. neurons" can then be thought of as a second-level as-

- ) ,B doing sociation map which links together the observation
object of a manipulative action performed by somebody elseS goal with the neural representation of one's own action.

A doing objet Figure 10 shows this causal chain in action. There
are a series of interesting behaviors that can be re-
alized based on mirror neurons. Mimicry is an ob-
vious application, since it requires just this type of

Figure 10: Mirror neurons and causality: from the oh- mapping between other and self in terms of motor

server's point of view (A), understanding B's action diction of future behavior from current actions, or

means mapping it onto the observer's own motor reper- even inverting the causal relation to find the action

toire. If the causal chain leading to the goal is already tnat i t he wisl ret io t o find thequenion

in place (lower branch of the graph) then the acquisition that most likely will get to the desired consequence.

of a mirror neuron for this particular action/object is a
matter of building and linking the upper part of the chain
to the lower one. There are various opportunities to rein-
force this link either at the object level, at the goal level
or both.

6. Developing mirror neurons?

Poking moves us one step outwards on a causal chain
away from the robot and into the world, and gives
a simple experimental procedure for segmenting ob-
jects. There are many possible elaborations of this
method (some are mentioned in the conclusions), all
of which lead to a vision system that is tuned to Figure 11: The ultimate goal of this work is for our robot
acquiring data about an object by seeing it manipu- to follow chains of causation outwards from its own sim-
lated by the robot. An interesting question then is pie body into the complex world.
whether the system could extract useful information
from seeing an object manipulated by someone else.
In the case of poking, the robot needs to be able to 7. Discussion and Conclusions
estimate the moment of contact and to track the arm
sufficiently well to distinguish it from the object be- In this paper, we showed how causality can be probed
ing poked. We are interested in how the robot might at different levels by the robot. Initially the environ-
learn to do this. One approach is to chain outwards ment was the body of the robot itself, then later
from an object the robot has poked. If someone else a carefully circumscribed interaction with the out-
moves the object, we can reverse the logic used in side world. This is reminiscent of Piaget's distinc-
poking where the motion of the manipulator iden- tion between primary and secondary circular reac.-
tified the object - and identify a foreign manipulator tions (Ginsburg and Opper, 1978). Objects are cen-
through its effect on the object. Poking is an ideal tral to interacting with the ouside world. We raised
testbed for future work on this, since it is much sir- the issue of how an agent can autonomously acquire
pier than full-blown object manipulation and would a working definition of objects.
only require a very simple model of the foreign ma- In computer vision there is much to be gained by
nipulator to work. bringing a manipulator into the equation. Many vari-

There is considerable precedent in the litera- ants and extensions to the experimental "poking"
ture for a strong connection between viewing oh- strategy explored here are possible. For example, a
ject manipulation performed by either oneself or robot might try to move an arm around behind the
another (Wohlscltger and Bekkering, 2002). As we object. As the arm moves behind the object, it re-
already mentioned F5 contains a class of neurons veals its occluding boundary. This is a precursor to
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visually extracting shape information while actually Jeannerod, M. (1997). The Cognitive Neuroscience
manipulating an object, which is more complex since of Action. Blackwell Publishers Inc., Cambridge
the object is also being moved and partially occluded Massachusetts and Oxford UK.
by the manipulator. Another possible strategy that
could be adopted as a last resort for a confusing ob- Kovacs, I. (2000). Human development of per-
ject might be to simply hit it firmly, in the hopes ceptual organization. Vision Research, 40(10-

of moving it some distance and potentially overcom- 12): 1301 1310.

ing local, accidental visual ambiguity. Obviously this Manzotti, R. and Tagliasco, V. (2001). Coscienza e
strategy cannot always be used! But there is plenty realta: una teoria della coscienza per costruttori
of room to be creative here. di menti e cervelli. il Mulino.
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