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1 Technical Summary of Research Accomplished

We will first briefly describe the research results that have already been published in the
scientific literature, and then we will provide some details of the remaining publications that
resulted from the research effort and are still in preparation or have been submitted.

1.1 Summary of Published Research Accomplishments

Paper [1] was listed in the report for Grant F49620-99-1-0072 as "to appear" and the
work presented there was described previously.

In paper [2] we presented an analysis of the perfectly matched layer in cylindrical co-
ordinates discretized with a staggered second-order accurate finite difference time domain
method. For fixed discretization parameters, layer width, and a quadratic loss function, we
found that the numerical reflection produced by the discrete layer is accurately predicted
by the infinite resolution reflection coefficient for cUmax C [0, amax], where amax is the maxi-
mum value of the absorption parameter in the layer. We also find that the finite resolution
reflection coefficient achieves its minimum value at a arm > ul•. Numerical experiments
validated the analysis. Figure 1 below shows that the reflection produced by the discrete
cylindrical PML converges to zero with increasing Umax, again in accordance with the exact
reflection coefficient (labelled as Equation (15) on the graph)=. We also see that, for a fixed
spatial mesh size, Ap, the reflection converges to zero with increasing layer depth dp, again
in accordance with (15). The most important observation is the fact that (15) is a good
predictor of the numerical reflection as a function of crmax when that parameter is in a range

(0, acax]. We expect to have obtained similar behavior had we used dp as the variable param-
eter. A x 2 mesh refinement (with all other parameters fixed) indicates an enlargement of
the range of Umax that allows (15) to be an accurate predictor of performance. Significantly,
Figure 1 shows that Equation 22, the main result of [2], is an extremely accurate predictor
of discrete PML reflection.

In paper [3] we conclusively addressed the long standing issue of the long-time stability

of the unsplit Perfectly Matched Layer. Research groups at Brown University and elsewhere
had in the past noticed linear instabilities in long-time simulations with th unsplit PML
and had proposed remedies. Such remedies, however, always resulted in the layer not being
perfectly matched. In [3] we showed how to eliminate the undesirable long-time linear growth
of the electromagnetic field in a class of unsplit Perfectly Matched Layers (PML) typically
used as Absorbing Boundary Conditions in Computational Electromagnetics codes. For
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Figure 1: The maximum of the actual numerical error over the time interval [0, 15] as a
function of amax; The dashed line corresponds to a x2 mesh refinement of the npml = 10
case. The straight line segments represent the corresponding IRnPmI .

the resulting new PML equations we gave energy arguments that showed the fields in the
new layer are bounded by a time-independent constant hence the layer is long-time stable.
Numerical experiments confirmed the elimination of the linear growth, and the long-time
boundedness of the fields. For example, Figure 2-(a) illustrates the late-time response of the
axial Magnetic field, Hz, in the usual unsplit PML; it is observed that it exhibits a linear
growth in time while the remaining field components tend to zero in full accordance with our
analysis in [3]. This simulation was repeated with -y= 0.08. The late-time fields are shown in
Figure 2-(b). Now, all field components remain bounded by a time-independent constant in
full agreement with our energy proofs in [3]. Further, Figure 2-(b) shows that when -y = 0.08
only the axial magnetic field tends to a constant while the other field components decay to
zero. Again, this is in agreement with our energy considerations given in Section 4 of [3].
Significantly, and in contrast to previous work on this topic by others, our modification of the
standard Unsplit PML eliminates the long-time instability while maintaining the perfectly
matched property of the resulting layer.

A small amount of time was invested by the PI during the academic years covered by
this report on a collaboration with colleagues which aims to control fluid interfaces with
electric fields. Papers [7]-[8] investigate the stability of a thin two-dimensional liquid film
when a uniform electric field is applied in a direction parallel to the initially fiat bounding
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Figure 2: a) The late-time linear growth of the axial PML field, H,(31,59,t). The
H.(31, 59,t) field behaves exactly like the graphed electric field Ey(31, 59, t). This case,
-7 = 0, represents the standard unsplit PML. b) 'y = 0.08; the late-time linear growth of H,
has been removed.
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fluid interfaces. We considered the distinct physical effects of surface tension and electrically
induced forces for inviscid and viscous, incompressible, nonconducting and conducting, fluids.

1.2 Summary of Research Results to be Published

In paper [4] we examine the short- and long-time response of a Cole-Cole dielectric half-
space subjected to a delta-function incident pulse. Our purpose is to contrast the short- and
long-time impulse response of the Cole-Cole dielectric model to that obtained previously by
the PI for the Debye model. The purpose for this is to determine whether the time-domain
waveforms obtained in a Time-Domain Reflectometry (TDR) experiment could serve as a
means to determine the most appropriate frequency-domain model for the data at hand.
Time-domain waveforms in TDR experiments are routinely measured and analyzed. The
modeled short- and long-time response of the experimentally examined dielectric subjected
to any physically realizable pulse (hence measurable in a TDR experiment) will be obtained
by convolution with the appropriate impulse response function. We find that the Cole-Cole
impulse response is infinitely smooth at the wavefront (short-time) in contrast to the case of
the Debye impulse response that is discontinuous at the wavefront. Also, we find that the
location of the peak of the main (late-time) response in the Cole-Cole dielectric occurs at an
earlier space-time location than that found for the Debye dielectric main response.

In [4] we formulate the time-domain problem for the impulse response of the Cole-Cole
medium and reduce to a signaling problem in a dielectric half space (x > 0) for the electric
field which is given by the following Bromwich integral

1 C(+io+ s[t- -- x
E(xt) V e'+""ds, t > -) (1)27ri J-ioo -co"'

where -Tr < arg(s) < 7r, Re/ > 0, P and T is a time scale

characterizing the any other signaling data which whill be convolved with E(x, t) above
to obtain the measured response. Closing the Bromwich contour with a semi-circle to the
right of s = ( we obtain E(x, t) = 0, t < c-I, as the integrand exhibits no singularities in
that region. For the branch chosen, the square root in (1) does not introduce additional
singularities (recall 0 < a < 1) since the argument of the roots of the numerator and
denominator is arg(s) = (7r + 2kir)/a; k = 0, -1, ... , i.e., these roots are outside the chosen
principal branch. In the wavefront region (t + x+--) a large-s expansion of the bracketed
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expression in (1)

S2 + -(I (2)Coo c,, SC, +,y C,, c ",Co 2

results in E(x, t) 27i 1__f-imeAlOS )ds, (3)

where A - > 0. Due to 0 < 1 - a < 1, we determine thatcoo 2

limr- E(x,t) = 0, n > O, since liMSn ne-Asl' -0, n > 0. (4)
dtn __0

Thus, in contrast to the Debye medium model wavefront response, the response is infinitely
smooth at the wavefront. For the special case a = 1/2, standard Laplace transform tables
allow us to invert (3) via

(1--Y)_ 81/_• 2 . X -;1 7 02 - -• 2

2e x " I = 4-VT c, t3/2 I6cot , t > 0, (5)

and obtain the short-time response for an arbitrary pulse f incident on the half-space at
x=0

1 31y t 1 - •L -2/o2•(- 7 fY ) e d6. (6)
E(x, t) p4/ C Ao t -/) - C.) 3 e1

In fact, by collapsing the Bromwich contour in (3) onto the branch cut defined earlier we
can write I'(t) = {e-'-}, t > 0, where

f "(t) = 1 tret•e1- cos fr(l_)l sin(rlasin[7r(1 - a)])dr. (7)
7r

Then, (7) and the translation theorem allows us to write an integral expression for E(x, t)
for any 0 < a < 1 as a convolution of f(t) with

f'-l e-Asl-• = A-- 1ýI(A-I-(t - x )), t > x (8)

For demonstration purposes we employed Mathematica to evaluate the integral in (7) for
0 <t - I- <2; we present in Figures 3 and 4 the wavefront response for the case A = 1 and
various values of a; as a -- 1- the right hand side of (7) approaches a delta function in time
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Figure 3: Wavefront response for 5(t) signaling data; T =t co

and the numerical evaluation of the integral fails. We verified the results shown in Figures
3-4 by using Mathematica to evaluate the following alternative representation of 'Ic (t),

'IJ-(t- Z)1-k

k=1

Finally, we note that in the case of unit step-function signaling data (F(s) = 1/s) the electric

field response exhibits self-similarity, i.e, E(x, t) = Q(D), where = A-T- (t - -L-) is the

similarity variable and 4),(ý) = fo A-1-- (A--t)dt (using TIJL(0) = 0 and the integration

property of the Laplace transform).
In the t > x region we evaluate (1) using the saddle point (steepest descent) method.

We first rewrite (1) as

E(x, t) = iJ-i Q(s')ds, (10)

where 0- Q, Q(s,0) = s /[0 - j 1, and A = x/ccc is a large parameter. We obtain the

location of the saddle points, s = 9, by setting ' - 0 and solving for s. The following

equation holds for the saddle points:

01 -r/ _])/ [. 
( 1 1 )
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By rationalizing (11) we obtain a fourth order polynomial in s' which we solve for a repre-
sentative set of parameters using Matlab. The roots are shown in Figure 5. As 0 increases
from 1, the positive root sa decreases from cc. When 0 1/=/- = c./co, s' = 0. For

0 > c,/co all real roots of (11) are negative. The complex roots of (11) always lie in the
second and third quadrants. Consequently, on the principal sheet defined by the branch
cut introduced earlier by sc, only the positive real roots of (11) survive as saddle points.
Therefore, for each value of 1 < 0 < c,/co there corresponds one saddle point cc > 9 > 0
on the real axis. For 0 > ccc/co the saddle point first coalesces with the branch point at
the origin and then moves into the branch cut, hence the Bromwich contour is no longer
equivalent to a steepest descent contour. In the region 1 < 0 < c"/co we apply the saddle
point method using A = x/c, as our large parameter. A small-s expansion of Q(s, 0),

Q(s,o) :(0- + (12)

allows us to obtain an approximation to the saddle point, i.e.,

11 1

•= •(--i '
9 Bal 0 -e), (13)

where B = We find that a2) c -a)i-• > 0 hence the local steepest
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Figure 5: Motion of the roots of (11) for 1 < O< 5 and a = 0.7.
V7

descent directions at 9 are arg(s - 3 We obtain the result

[1 (1-a)(1+ 2a)eE•Qxe t)x [1 + 2 -- -- . -_ -1+ ].(14)
tA2rrQ, (.,0) 24aAB1/a(- - 0)1+

In Figure 6 we plot the leading order term of (14) as a function of a. We determine that the
peak of the long-time response does not occur on the sub-characteristic ray, x = cot, as in
the case of the Debye medium. Also, we notice that the leading-order result breaks down,
i.e., E(x, t) = 0, for 0 = coI/co and a < 1. This can be explained by noticing that the second
term in (14), the correction, diverges at 0 = coo/co. This is expected as the derivation of
(14) does not take into account the coalescence of the saddle point with the branch point at
s = 0. However the result is useful; Figures 7-8 show a comparison between the leading order
sadle point method result and an evaluation of (10) for x/co = 100 using Mathematica.

In paper [5] we incorporate the Cole-Cole model in the FD-TD scheme. As a first step in
that direction we developed a numerical method to solve the following fractional differential
equation initial value problem for the polarization P

dtP

where d'•P _ 1_ f p'(e)

dta r(1 -- oe)f0 (t -- f) dg
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Figure 6: Leading order asymptotic response at x/c..= 100 as a function of a.

is the Caputo fractional derivative of order a G (0, 1). We use

F(a) = F e-zza-ldz and I(ajf(1 -a) 7

J sin ira

and a simple change of variables, z = ý2(t - t), in the Caputo derivative to show:

d 'P _ 2 siin r o, 00 ,t) d ý, t > 0

dtc 0t

where 0(ý, t) satisfies a non-homogeneous ODE IVP

d + •2 2-1 dP > 10 ý ) =0 0 < < 0 .

dt dt

For accurate results we decompose f~o dý = fl d<+ff' and use the small-ý behavior 4(•, t)
y2

o- P(t) and the large-i behavior 0(ý, t) _ y2a- 3P'(t), determined from the above ODE,
along with Gaussian and Laguerre integration. The discretization in ý is then followed by
a discretization in t using the trapezoidal rule; the result is an O(At 2) accurate system
of Ng + N, + 1 equations that must be solved along with the FD-TD scheme. Typically,
Ng = N, = 10 - 15. We show tests of our algorithm for the problem

dctP + P = 0, P(0+) =1

dta

9
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Figure 7: Comparison of Equation (14) and (10) for x/c -- 100.

The exact solution of the above equation is

P(t) = E,,(-t-), t > 0.

Figures 9-10 show very accurate results. We also tested the algorithm with the following
problem

dtP + P = H(t) - H(t - 1), P(0+) = 0,

dta
where H(t) is the Heaviside step-function. The picture is identical to that in Caputo (Rend.
Phys. Acc. Lincei, v. 4, pp. 89-98, 1993) where the inverse Laplace transform of is

computed. a = 1 corresponds to the Debye model. Presently [5], a second-order accurate
code is being tested that solves the scaled 1D signaling problem, where u(0, t) = (t),
(x,t) > 0, and u = v = w = 0 at t = 0

Ut + Wt - Vx, Vt = UX

2 sin4r (x, ý, t)dc + nw(x, t) = Ku(x, t)
Ir

Ot(X, ý, t) + - 2 p(X, t) = -2a- 1 Wt(X, t); (6 0) = 0; 0 < ý < oc,

where 77 = (Tp/r)' and r, = 1(•- - 1).

Finally, a numerical implementation within a fourth-order accurate FD-TD scheme is
given in paper [6] for the the impedance boundary condition at a planar interface, separating

10
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a homogeneous lossy half-space (of conductivity a and permittivity c) from free-space, which
relates tangential Electric and Magnetic field components as follows:

r70
Etan. ( 6(t) + ((t)) * Htan, (15)

where 77o is the impedance of free-space, e, is the relative permittivity of the lossy half-space,
6(t) is the delta function, and C(t) is the time-domain impedance function. Previously [1]
we have derived approximations with an error bound of Z(t) = (-6(t) + ((t)) so the

convolution can be performed accurately and quickly since the approximants are damped
exponentials. Therefore, the remaining obstacle to discretizing (15) to the order of accuracy
of the fourth-order scheme is to correctly extrapolate the tangential magnetic field to the
boundary node which is an electric field node. For this purpose we derived a fifth-order
accurate extrapolation formula which we are now testing against a fourth-order extrapolation
of the form (node 0 is the boundary node where (15) is to be implemented)

E + E 105 35 21 152 ++E -z= *(- -o* H1 /2- _H 3/ 2 +--H 5/2 -- H7/2)

where the r.h.s. convolution is time-centered at tn, + At

11
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Figure 10: Detail of Figure 9 for a = 0.7.
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Figure 11: The polarization response of a Cole-Cole dielectric subjected to a rectangular-

pulse Electric field.

2 Conference Papers and Technical Reports

The following conference paper was not reported before to AFOSR, we include it here for

accuracy: "Subgridding a Fourth-Order FD-TD Scheme for Maxwell's Equations," (with A.
Yefet), Fourth International Workshop Proceedings on Computational Electromagnetics in

the Time-Domain: TLM, FDTD and Related Techniques, pp. 39-45, Nottingham, UK, 2001.

"Long-Time Behavior of the Unsplit PML, (with E. Becache and S. D. Gedney), Mathemati-

cal and Numerical Aspects of Wave Propagation WAVES 2003, pp. 120-124, Springer-Verlag
(July 2003).

3 Presentations

January 2002: AFOSR Annual Electromagnetics Workshop, San Antonio, TX. Title: "A

numerical and analytical study of the perfectly matched layer for Maxwell's equations in

cylindrical coordinates."

February 2002: NJIT Applied Mathematics Colloquium, Newark, NJ. Title: Absorbing

boundary conditions for the time-dependent Maxwell equations."
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June 2002: NSF-CBMS Regional Conference in the Mathematical Sciences, Numerical Meth-
ods in Forward and Inverse Electromagnetic Scattering, Golden, CO. Title: "A review of the
perfectly matched layer ABC and some new results."

August 2002: NASA Langley Research Center (ICASE), Hampton, VA. Title: "On the
long-time behavior of unsplit perfectly matched layers."

August 2002: Projets Estime Ondes Otto, INRIA-Rocquencourt, France. Title: "Some
recent results on unsplit PML for electromagnetics."

January 2003: AFOSR Annual Electromagnetics Workshop, San Antonio, TX. Title: "On
the long-time behavior of unsplit perfectly matched layers."

April 2003: "Analytical and Computational Methods in Electromagnetics," Spring East-
ern Sectional Meeting of the American Mathematical Society, Courant Institute of Mathe-
matical Sciences, NY. Title: "On the long-time behavior of unsplit perfectly matched layers."

June 2003: Department of Mathematics, University of Crete, Heraklion, Greece. Title:
"Absorbing Layer Boundary Conditions for the Numerical Solution of the Time-Dependent
Maxwell Equations in Open Domains."

July 2003: Sixth International Conference on Mathematical and Numerical Aspects of Wave
Propagation, Jyvaskyla, Finland. Title: "Long-Time Behavior of the Unsplit PML."

July 2003: Department of Mathematical Sciences, Summer Faculty Seminar Series, New
Jersey Institute of Technology, Newark, NJ. Title: "Absorbing Boundary Conditions for
Numerical Solution of the Time-Dependent Maxwell Equations in Open Domains."

October 2003: Program in Applied Mathematics Colloquia Series, University of Arizona,
Tucson, AZ. Title: Absorbing Boundary Conditions for Numerical Solution of the Time-
Dependent Maxwell Equations in Open Domains."

January 2004: AFOSR Annual Electromagnetics Workshop, San Antonio, TX. Title: "Mod-
eling Propagation of Time-Domain Pulses in Cole-Cole Dielectrics."

April 2004: Department of Mathematics Colloquia Series, University of New Mexico, Al-
buquerque, NM. Title: "Two Problems in Computational Electromagnetics."

14



June 2004: Department of Mathematical Sciences, Summer Faculty Seminar Series, New
Jersey Institute of Technology, Newark, NJ. Title: "Modeling Propagation of Time-Domain
Pulses in Cole-Cole Dielectrics."

July 2004: EUROEM 2004 International Conference, Magdeburg, Germany. Title: "Mod-
eling Propagation of Time-Domain Pulses in Cole-Cole Dielectrics." Invited Presentation
in Special Session titled "Time-Domain Techniques for the Transient Analysis of Complex
Problems."

4 Consultative, Advisory Functions To Other Labora-
tories And Agencies, and Other Achievements

1. Throughout the period covered by this report the PI continued his interaction with
Dr. T. M. Roberts of AFRL/SNHA on computational issues that arise in transient
electromagnetic wave propagation. Particularly, I have been in communication with
Dr. T. Roberts for the purpose of explaining/understanding a discrepancy between an
asymptotic (large-depth) result, which predicts decay of peaks to be , (depth) 1/3 , and
an observed decay of peaks (• (depth)- 2/5 ) obtained in experiments of electromagnetic
pulse propagation in concrete whose dielectric properties are fitted to the Lorentz
model of dispersion. For this collaboration I have been examining the wave hierarchies
in Lorentz dielectrics exhibited by the partial differential equation for the electric field

f[,(Eu - Ezz) + aOt(EtE - Ez)] + (E. - _2Ezz) = 0
1 Tp n l-

where a = 12 2 , a P an 0 are non-dimensional parameters, Tp the

incident pulse duration, and r, wo, wp, 6, are the Lorentz medium parameters fitted to
experimental dielectric data for concrete with c,, = 1. For the particular experimental
setup, f c.• 4.5 x 10-4 (small), and a ; 3.3 (large) and f Zz 0.6. Using the method of
singular perturbations I have derived the following partial differential equation (valid

for »> 1 and a - E-1/3)
Et + f3Eý = -y. - J_

where -y and 6 depend on the parameters described above.
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2. After being presented with problems of interest to Dr. R. E. Peterkin, High Power Mi-
crowave Division, Air Force Research Laboratory, Kirtland AFB I completed (Novem-
ber 2001) and forwarded to him a small manuscript titled "Artificial Dissipation for
Damping High-Frequency Numerical Noise in FD-TD Simulations."

3. Visiting Scientist (no-cost consultant), ICASE, NASA Langley Research Center, Hamp-
ton, VA. July-August 2002.

4. Organized a mini-symposium at the May 2004 Frontiers in Applied and Computational
Mathematics Conference, entitled: Computational Wave Propagation, New Jersey In-
stitute of Technology, Newark, NJ

5. Visiting Scientist, Projet Ondes, INRIA INRIA-Rocquencourt. Visit funded by a US-
France Cooperative Research Grant to Prof. Jan Hesthaven (Brown University). July
2004.
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