
  

AFRL-IF-RS-TR-2005-151  

Final Technical Report 
April 2005 
 
 
 
 
 
 
A PARAMETRIC MODEL FOR LARGE SCALE 
AGENT SYSTEMS 
  
University of Illinois at Urbana-Champaign 
 
  
Sponsored by 
Defense Advanced Research Projects Agency 
DARPA Order No. K545 
  
 
 
 
 
 
 
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 
 

The views and conclusions contained in this document are those of the authors and should not be 
interpreted as necessarily representing the official policies, either expressed or implied, of the 
Defense Advanced Research Projects Agency or the U.S. Government. 
 
 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

ROME RESEARCH SITE 
ROME, NEW YORK 



  

STINFO FINAL REPORT 
 
 
 This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS).  At NTIS it will be releasable to the general public, 
including foreign nations. 
 
 
 AFRL-IF-RS-TR-2005-151 has been reviewed and is approved for publication 
 
 
 
 
 
 
 
APPROVED:             /s/ 
 

JAMES M. NAGY 
Project Engineer 

 
 
 
 
 
 
 FOR THE DIRECTOR:                    /s/ 
 

JOSEPH CAMERA, Chief  
Information & Intelligence Exploitation Division 
Information Directorate 

 
 
 
 
 
 
 
 



  

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 074-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302, 
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 
1. AGENCY USE ONLY (Leave blank)
 

2. REPORT DATE
APRIL 2005

3. REPORT TYPE AND DATES COVERED 
Final  Jun 00 – Jan 05 

4. TITLE AND SUBTITLE 
A PARAMETRIC MODEL FOR LARGE SCALE AGENT SYSTEMS 
 

6. AUTHOR(S) 
Gul Agha 
 
  

5.  FUNDING NUMBERS 
C     - F30602-00-2-0586 
PE   - 62301E  
PR   - TASK 
TA   -  00 
WU  -  08 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Illinois at Urbana-Champaign 
109 Coble Hall 
801 South Wright Street 
Champaign Illinois 61829-6200 
 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
 

N/A 

9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Defense Advanced Research Projects Agency   AFRL/IFED 
3701 North Fairfax Drive                                     525 Brooks Road 
Arlington Virginia 22203-1714                             Rome New York 13441-4505 

10. SPONSORING / MONITORING 
      AGENCY REPORT NUMBER 
 

AFRL-IF-RS-TR-2005-151 
 

11. SUPPLEMENTARY NOTES 
 
AFRL Project Engineer:  James M. Nagy/IFED/(315) 330-3173/ James.Nagy@rl.af.mil 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 

12b. DISTRIBUTION CODE 
 
 

13. ABSTRACT (Maximum 200 Words)
The goal of this project was to develop new techniques for the construction, description, and analysis of multi-agent 
systems.  The characteristics of systems being addressed include a high degree of non-determinism (resulting form a 
large number of interactions) and unpredictability of the environment in which the agents operate.  Specifically, we 
implemented tools for building robust and dependable large-scale multi-agent systems and studied methods for 
predicting and analyzing the behaviors of such systems.  The project developed coordination methods for systems 
consisting of large numbers of agents.  
 

15. NUMBER OF PAGES
422

14. SUBJECT TERMS  
Autonomous Agent, MAS, Multi-Agent System, Large Scale Agent System, Coordination Model, 
Cooperation, Actor Framework, Formal Theory, Stochastic, Cellular Automa, Auctioning Scheme, 
Dynamic Environment, Distributed Task

16. PRICE CODE

17. SECURITY CLASSIFICATION 
     OF REPORT 
 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
     OF THIS PAGE 
 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
     OF ABSTRACT 
 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 
 
 

UL
NSN 7540-01-280-5500   Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18 
298-102 



Table of Contents 
 

1. Objective………………………………………………………………………….1 
2. Approach…………………………………………………………………………2 
3. Accomplishments…………………………………………………………….......4 
 3.1 Formal Analysis of Agent Systems……………………………………...4 
  3.1.1 Reasoning about Agent Specifications using Probabilistic  
   Rewrite Theory………………………………………………...…4 
  3.1.2 Monitoring and Verification of Deployed Agent Systems……..5 
 3.2 Multi-agent Modeling………………………………………………...….6 
  3.2.1 The Constraint Optimization Framework……………………...6 
  3.2.2 The Dynamic Distributed Task Assignment Framework……..7 
  3.2.3 Cellular Automata-based Modeling…………………………….7 
 3.3 Coordination Framework: the Dynamic Forward/Reverse Auction- 
  ing Scheme………………………………………………………………..8 
 3.4 Large-Scale Multi-Agent Simulation: the Adaptive Actor …………...9 
  3.4.1 Adaptive Agent Distribution………………………….…………9 
  3.4.2 Application Agent-Oriented Middle Agent Services……….….9 
  3.4.3 Message Passing for Mobile Agents…………………………...10 
  3.4.4 AAA for UAV Simulation……………………………………...10 
  3.4.5 Experimental Results……………………………………….…..11 
 3.5 Hardware Realization: The August 2004 Demo……………………...14 
4. Publications……………………………………………………………………..16 
 4.1 2005………………………………………………………………………16 
 4.2 2004………………………………………………………………………17 
 4.3 2003………………………………………………………………………20 
 4.4 2002………………………………………………………………………21 
 
Appendix A: Scalable Agent Distribution Mechanisms for Large-Scale UAV 
  Simulation……………………………………………………………….22 
Appendix B: Efficient Agent Communication in Multi-Agent Systems…………….28 
Appendix C: Online Efficient Predictive Safety Analysis of Multi-Threaded……...46 
Appendix D: An Instrumentation Technique for Online Analysis of Multi-Thread 
            Program………………………………………………………………….60 
Appendix E: On Parallel vs. Sequential Threshold Cellular Automat…….………..71 
Appendix F: Online Efficient Predictive Safety Analysis of Multithreaded  
           Programs……………………………………………………………….…91 
Appendix G: A Flexible Coordination Framework For Application Oriented 
  Matchmaking and Brokering Services……………………………….106 
Appendix H: A Perspective on the Future of Massively Parallel Computing: Fine 
            Grain vs. Coarse-Grain Parallel Models……………………………..130 
Appendix I: Concurrency vs. Sequential Interleavings in l-D Threshold Cellular 
           Automata………………………………………………………………..145 
Appendix J: An Instrumentation Techniques for Online Analysis of Multi- 
           Threaded Programs……………………………………….……………153 
 

 i



Appendix K: Efficient Decentralized Monitoring of Safety in Distributed 
            Systems…………………………………………………………….……161 
Appendix L: On Efficient Communication and Service Agent Discovery in Multi- 
            Agent Systems…………………………………………………………..171 
Appendix M: On Specifying and Monitoring Epistemic Properties of Distributed 
  Systems…………………………………………………………………178 
Appendix N: Statistical and Monitoring Epistemic Properties of Distributed  
  Systems…………………………………………………………………182 
Appendix O: Maximal Clique Based Distributed Group Formations for 
  Autonomous Agent…………………………………………………....195 
Appendix P: ATSpace: A Middle Agent to Support Application Oriented  
           Matchmaking & Brokering Services…………………………….…….203 
Appendix Q: Learning Continuous Time Markov Chains from Sample 
  Executions…………………………………………………….………..207 
Appendix R: Towards Hierarchical Taxonomy of Autonomous Agents……….….217 
Appendix S: Characterizing Configuration Spaces of Simple Threshold 
            Cellular Automata……………………………………………………..223 
Appendix T: On Challenges on Modelling and Designing Resource Bounded 
  Autonomous Agents Acting in Complex Dynamic Environments…233 
Appendix U: Some Modeling for Autonomous Agents Action Selection in  
            Dynamic Partially Observable Environments…………………….….239 
Appendix V: Task Assignment for a Physical Agent Team via a Dynamic  
  Forward/Reverse Auction Mechanism………………………………245 
Appendix W: Dynamic Agent Allocation for Large-Scale Multi-Agent  
             Applications……………………………………………………………252 
Appendix X: Maximal Clique Based Distributed Group Formation for Task 
            Allocation in Large-Scale Multi-Agent Systems……………………..267 
Appendix Y: Generating Optimal Monitors for Extended Regular Expressions…282 
Appendix Z: Modeling A System of UAV’s On a Mission………………………….302 
Appendix AA: Runtime Safety Analysis of Multi-threaded Programs……………309 
Appendix AB: Simple Genetic Algorithms for Pattern Learning the Role of  
   Crossovers………………………………………………………….….319 
Appendix AC: An Actor-Based Simulation for Studying UAC Coordination….…323 
Appendix AD: A Rewriting Based Model for Probabilistic Distributed Object 
   Systems………………………………………………………………...332 
Appendix AE: An Executable Specification of Asynchronous Pi-Calculus 
   Semantics and May Testing in Maude 2.0…………………………..347 
Appendix AF: Generating Optimal Linear Temporal Logic Monitors by 
   Coinduction……………………………………………………….…..368 
Appendix AG: An Executable Specification of Asynchronous Pi-Calculus  
                          Semantics in May Testing in Maude 2.0……………………….…...383 
Appendix AH: Thin Middleware for Ubiquitous Computing……………….……..404 
 
 
 
 

 ii



List of Figures 
 

Figure 1: Inter-roles Interaction in the Forward/Reverse Auction Protocol………………8 
Figure 2: Three-Layered Architecture for UAV Simulations……………………………11 
Figure 3: ASC of UAVs for Performing a Given Mission………………………………12 
Figure 4: Runtimes for Static and Dynamic Agent Distribution………………………...13 
Figure 5: Experimental Environment…………………………………………………….14 
  

 iii



1 OBJECTIVE 
The goal of this project was to develop new techniques for the construction, description, 
and analysis of multi-agent systems. The characteristics of systems being addressed include 
a high degree of non-determinism (resulting from a large number of interactions) and 
unpredictability of the environment in which the agents operate. Specifically, we 
implemented tools for building robust and dependable large-scale multi-agent systems and 
studied methods for predicting and analyzing the behaviors of such systems. The project 
developed coordination methods for systems consisting of large numbers of agents.  

 1



2 APPROACH 
In order to effectively model large-scale systems, it is necessary to focus on properties of 
interest at a macroscopic level. Therefore, we used a divide and conquer approach in 
addressing the construction and analysis of large-scale agent systems and we modeled agent 
systems at two levels of abstractions: the system level and the application level.  

Our goal at the system or implementation level was to ease the construction and analysis of 
dependable large-scale agent systems. At this level, we modeled agents as autonomous 
entities that interact via message passing schemes. Therefore, the actor framework provided 
a good starting point because it does not make any assumptions or stipulations about the 
logic of the application for which the actors are developed. The actor framework also has a 
rich formal theory that we extended and used to study high level specifications of agent 
systems. The formalisms we developed abstract irrelevant details and focus directly on the 
desired macroscopic properties. Furthermore, methods for modular and compositional 
specifications were considered so that simple specifications of specific properties or 
components can be composed to derive more complex specifications of larger systems.  

Moreover, large-scale agent systems are inherently stochastic. The asynchrony and 
autonomy of widely distributed agents inevitably leads to non-determinism. This may be 
the case irrespective of the nature individual agent behaviors which might be deterministic 
or stochastic. The methods we developed accounted for this uncertainty by allowing 
stochastic descriptions of agent systems and providing techniques to reason about the 
likelihoods of possible evolutions of the systems.  

In spite of the advantages of formal analysis, it has serious limitations when applied to 
large-scale agent systems. Typically, in order to keep the analysis tractable, one chooses 
only a few relevant abstractions to describe and reason about the system. While this is 
effective for certain purposes, formal analysis is not feasible for problems involving too 
many parameters. To address this problem, we developed the Adaptive Actor Architecture 
(AAA) which utilized various optimizing techniques to simulate large-scale agent system 
and derive empirical estimations of the desired properties. 

We viewed our work at the system level as an enabling technique that facilitates the 
construction and testing of various multi-agent coordination models. These models focus 
only on the application logic at high levels of abstractions and are not concerned with the 
architecture used to implement the agents. Moreover, the work at the application level 
stimulated and motivated our work at the system level to cope with the scalability 
requirement of the application needs. Therefore, we used an evolutionary approach in 
which each level bootstrapped progress at the other one. 

Our goal at the application or coordination level was to develop models and techniques that 
facilitate multi-agent teamwork or how to allow a group of agents to cooperate in order to 

 2



accomplish a high level team goal. To achieve this, we developed theoretical models that 
help us to understand the difficulty of multi-agent teamwork and provide a framework to 
parametrically analyze the tension between different aspects of the teamwork coordination 
problems. Specifically, we developed the distributed constraint optimization framework 
and we also used cellular automata to mathematically model multi-agent systems. We 
studied the role of agent autonomy in teamwork and developed natural epistemological and 
hierarchical taxonomy of different types of autonomous agents, strictly based on an agent's 
critical capabilities as seen by an outside observer. 

While the above models were geared toward fostering our understanding of the teamwork 
problem, they were not suitable to serve as an executable model that enables each agent to 
decide about what action to do. Nevertheless, these efforts helped us to arrive at the proper 
level of abstraction to attack the teamwork problem. We represented the multi-agent 
teamwork problems as a distributed task assignment problem in which a group of agents is 
required to accomplish a set of tasks while maximizing a certain performance measures. 
We developed the dynamic forward/reverse auctioning scheme as a generic method for 
solving the distributed task assignment problem in dynamic environments.  

To measure our progress at both the system and application levels, we used the TASK 
shared domain, viz, Unmanned Aerial Vehicle (UAV). Using our AAA, we developed large 
simulations agents modeling up to 10,000 UAVs in a surveillance task, contrasting different 
coordination approaches for this task. We also modeled the problem of a team of UAVs in 
a search and rescue mission using our dynamic distributed task assignment framework and 
our dynamic auctioning scheme to derive agents' behavior in this domain. We evaluated 
this approach using physical agents, i.e., robots. The robot-based simulation consisted of up 
to 20 robots forming dynamic teams to carry out the surveillance task.  

 3



3 ACCOMPLISHMENTS 
3.1 Formal Analysis of Agent Systems 

In order to facilitate the analysis of the behavior of agent systems, it was necessary to 
develop techniques for specifying and reasoning about such systems. We have shown that 
these techniques can make use of three fundamental properties of agent systems: 

• Asynchrony: Autonomous agents operate and communicate asynchronously.  
• Modularity: Agent systems can be decomposed into concurrent components, each 

consisting of an ensemble of agents.  
• Locality and Non-interference: Messages between agents are the only means of 

information flow, e.g., there are no shared variables.  

We leveraged these properties in achieving significant progress in two main areas: rewrite 
theory and distributed monitoring of multi-agent systems. 

3.1.1 Reasoning about Agent Specifications Using Probabilistic 
Rewrite Theory 

We decided to extend the rewrite framework and use it for specification and reasoning 
about large-scale agent systems. The rewrite theory is an appealing formalism because of 
its support for abstraction by providing the ability to group several agent states into a single 
state, and several low level transitions into a big step transition. For example, a rule could 
abstractly state in a single step the transition of a group of agents from before a leader 
election procedure to after. Specifically, the final state of the group is specified without 
furnishing the details of how the transition is implemented. Therefore it results in a 
compact specification. 

Nondeterminism exhibits itself in the system when two or more rules may be 
simultaneously applicable to a certain state. When such rules do not conflict they are 
allowed to proceed either concurrently or in an interleaving fashion. On the other hand, if 
the rules conflict, the system decides which rule to apply according to customizable 
probabilistic tactics. To enable such probabilistic tactics, we extended this rich formalism 
with probabilistic transitions which results in the Probabilistic Rewrite Theory formalism. 
We made significant progress in providing a precise formulation and semantic for this 
formalism. 

We demonstrated how to use the Probabilistic Rewrite Theory to express systems with 
nondeterminism and probabilities, thus providing a way to reason about distributed 
systems, randomized algorithms, as well as systems where we have probabilistic models of 
communication delays, failures, etc. Moreover, we showed that Continuous Time Markov 

 4



Chains and Generalized Semi-Markov Processes can be naturally expressed in our 
rewriting model. We implemented a simulator for finitary probabilistic rewrite theories 
called PMaude. PMaude provides a tool to formally study agent systems, for example, to 
do performance modeling and studies of agent systems involving continuous variables. 

3.1.2 Monitoring and Verification of Deployed Agent Systems 

We used the actor properties (asynchrony, modularity, and locality) to develop a rich theory 
of agents. In particular, significant improvement can be made with respect to the efficiency 
of verification algorithms. We were able to show that instead of testing configurations 
under all possible execution environments -- an expensive and generally infeasible process 
because of the nondeterminism in agent systems -- it is possible to use an exponentially 
smaller set of traces which represents a canonical set of execution orders in such systems.  

We also developed techniques for distributed monitoring of multi-agent systems. These 
techniques allow automatic generation of local monitoring code from a specification of a 
distributed property. The code is weaved with execution code to enable seamless 
monitoring of the specification. Finally, we developed methods for statistical black-box 
testing of probabilistic properties in a system 

Finally, we developed techniques for the scalable statistical analysis of multi-agent 
systems. Specifically, we developed a new statistical approach for analyzing stochastic 
agent systems against specifications given in a sublogic of continuous stochastic logic 
(CSL). Unlike past numerical and statistical analysis methods, we assume that the system 
under investigation is an unknown, deployed black-box that can be passively observed to 
obtain sample traces, but cannot be controlled. Given a set of executions (obtained by 
Monte Carlo simulation) and a property, our techniques check, based on statistical 
hypothesis testing, whether the sample provides evidence to conclude the satisfaction or 
violation of a property, and computes a quantitative measure (p-value of the tests) of 
confidence in its answer; if the sample does not provide statistical evidence to conclude the 
satisfaction or violation of the property, the algorithm may respond with a “don't know” 
answer. 

 5



3.2 Multi-agent Modeling 

We have made significant progress in modeling multi-agent systems at the application 
level. Some of these models strive to provide a theoretical foundation to understand the 
difficulty of multi-agent coordination. They make use of rigorous mathematical 
optimization and models based on cellular-automata. Motivated by this analysis we also 
defined the dynamic distributed task assignment problem that enables us to use economic 
models to provide near optimal solutions under resource constraints. 

3.2.1 The Constraint Optimization Framework 

The goal of the constraint optimization framework is to mathematically provide a 
parametric model of a system of agents working as a team to accomplish a set of tasks 
while satisfying a heterogeneous set of physical and communication constraints. We used 
this framework to model a team of UAVs in a surveillance task. Specifically, we applied 
the framework to UAVs, where we model each UAV as an autonomous agent. Each agent 
has an individual utility and the goal of the system is to maximize a joint utility function. 
The application requires each UAV to plan its path in cooperation with other UAVs in 
order to accomplish an aerial survey of dynamically evolving targets. In this framework, we 
assumed the existence of a common clock and the ability of agents to communicate with 
each other in a given communication range by means of multi-cast messages. We also 
assumed that a certain number of geographical locations were of interest, and their value 
was dynamically changing over time.  

Guided by the above formulation, and using our simulation environment (see Section 4), 
we simulated a number of agent strategies to understand the tension between variables in 
our parametric model. The simulation modeled UAV's intrinsic kinematics such as velocity 
and acceleration, constraints on each UAV's trajectory (e.g., collision avoidance), and 
constraints on resources such as fuel, available air corridors, and bounded communication 
radii. Each UAV's utility function was dependent on its position and the expected value of a 
target by the time the UAV would arrive there. In our model the value of the target declines 
with time. These set of simulations suggested two tentative conclusions: 

There is an optimal number of UAVs for a given problem which can be established through 
our simulation engine. Beyond this number, more UAVs have a marginal negative impact 
on pay-offs. As we scale up, locality becomes more important than the utility of a target.  

Moreover, we devised special algorithms to efficiently solve a certain instance of the 
constraint optimization problem were the goal is to form coalition among agents under the 
constraint of achieving maximal cliques in the underlying communication topology. This 
problem was directly motivated by multi-agent environments and applications where both 
node and link failures are to be expected, and where group and coalition robustness with 
respect to such failures is a highly desirable quality. These cliques, however, are restricted 

 6



to be of smaller than a given maximum ceiling size. This restriction allows computational 
tractability despite the fact that the general MAX-CLIQUE problem is NP-complete. 

3.2.2 The Dynamic Distributed Task Assignment Framework 

Using the constraint optimization framework we arrived at the proper level of abstraction to 
attack the teamwork problem. We realized, among other researchers albeit using a different 
formulation, that many multi-agent teamwork problems can be modeled as a Dynamic 
Distrusted Task Assignment (DDTA) problem. In the DDTA problem, a group of agents is 
required to accomplish a set of tasks while maximizing a certain performance measure. We 
identified that an effective solution to the DDTA problem needs to address two closely 
related questions:  

1. How to find a near-optimal assignment from agents to tasks under resource 
constraints?  

2. How to efficiently maintain the optimality of the assignment over time?  

Guided by this formulation, we developed our solution to the DDTA problem, the Dynamic 
Forward/Reverse Auctioning scheme, described in Section 3. We applied this scheme to a 
UAV search and rescue scenario with promising results (see Section 5).  

3.2.3 Cellular Automata-based Modeling 

We made progress in developing a "starting point" mathematical model for agent systems 
using the classical cellular automata (CA). We intensely studied some extensions and 
modifications of the classical CA, so that the resulting graph or network automata are more 
faithful abstractions of a broad variety of large-scale multi-agent systems. We also 
developed natural epistemological and hierarchical taxonomy of different types of 
autonomous agents, strictly based on an agent's critical capabilities as seen by an outside 
observer. 

 7



3.3 Coordination Framework: The Dynamic Forward/ 
Reverse Auctioning Scheme 

The goal of the dynamic forward/reverse auction mechanism is to solve the dynamic 
distributed task assignment problem as posed in Section 2.2. A solution to the DDTA 
problem should ensure that task-agent assignment is always optimal with respect to the 
performance measure. Our approach can be characterized as a divide and conquer method 
that separately deals with combinatorial complexity and dynamicity – the two aspects of the 
DDTA problem. We addressed the first issue by extending an existing forward/reverse 
auction algorithm which was designed for bipartite maximal matching to find an initial 
near-optimal assignment. The extension makes it suitable for the distributed, asynchronous, 
multi-requirement aspects of the DDTA problem. However, the dynamicity of the 
environment compromises the optimality of the initial solution obtained via this modified 
algorithm. We address the dynamicity problem by using swapping to locally move agents 
between tasks. By linking these local swaps, the current assignment is morphed into one 
which is closer to what would have been obtained if we had re-executed the 
computationally more expensive auction algorithm.  

We applied this dynamic auctioning scheme in the context of UAVs (Unmanned Aerial 
Vehicles) search and rescue mission and developed experiments using physical agents to 
show the feasibility of the proposed approach in the TASK August demo which featured 
twenty robots (targets and pursuers). Besides the experimental results, we conducted a 
theoretical analysis about the performance of swapping. 

 

Biddin
g 

Auction 
Start 

Collecting 
Bids 

Round 
End 

Reverse 
Step 

Auction 
End 

Announce 

Task Auctioneer 

No Target 

New 
Target 

Servicing 
Target 

Won 
Auction 

Bidding

No Target

New 
Target 

Servicing 
Target 

Won 
Auction 

New  

Target 

Announce  Announce 

Not Enough Bids

Enough Bids

Bidder Agent Bidder Agent 

Figure 1: Inter-roles Interaction in the Forward/Reverse Auction Protocol 

 8



3.4 Large-scale Multi-agent Simulation: The Adaptive 
Actor Architecture 

The Adaptive Actor Architecture (AAA) was one of the major accomplishments of this 
TASK project. The AAA is designed to support the construction of large-scale multi-agent 
applications by exploiting distributed computing techniques to efficiently distribute agents 
across a distributed network of computers. Distributing agents across nodes introduces 
inter-node communication that might eliminate any improvement in the runtime of large-
scale multi-agent applications. The AAA uses several optimizing techniques to address 
three fundamental problems related to agent communication between nodes : agent 
distribution, service agent discovery and message passing for mobile agents. We will first 
discuss how these problems have been addressed in the AAA and then describe how the 
AAA was used in the UAV domain. 

3.4.1 Adaptive Agent Distribution 

Unless an agent requires some specific devices or services belonging to a certain computer 
node, the location of an agent does not affect the result of computation. However, the 
performance of agent applications may vary considerably according to the distribution 
pattern of agents, because agent distribution changes the inter-node communication pattern 
of agents, and the amount of inter-node communication considerably affects the overall 
performance. Therefore, if we could co-locate agents that intensively communicate with 
each other, the communication cost among agents could be minimized. Moreover, since the 
communication pattern of agents is continuously changing, agent distribution should be 
adaptive and dynamic .

If agents are dynamically distributed according to only their communication localities, 
some computer nodes could be overloaded with too many agents. Therefore, we distributed 
agents according to both their communication localities and the workload of computer 
nodes. The novel features of our approach are that this mechanism is based on the 
communication locality of agent groups as well as individual agents, and that the 
negotiation between computer nodes for agent migration occurs at the agent group level, 
but not at the individual agent level .

3.4.2 Application Agent-oriented Middle Agent Services 

In open multi-agent systems where agents can enter and leave at any time, middle agent 
services such as brokering and matchmaking are very effective at finding service agents. 
Since brokering services can remove one message that may be very large , they may be 
more efficient than matchmaking services. However, because of the difficulty in expressing 
all search algorithms to a middle agent, in some cases we must use a matchmaking service 

 9



instead of brokering service. Previous solutions modify the search mechanism of the middle 
agent. But any change to the search mechanism in a middle agent affects other agents .

To handle the different interests of agents, we developed and implemented an active 
interaction model for middle agent services. In these services , the middle agent manages 
data, and search algorithms are given by application agents. With this separation of search 
algorithms from data, the middle agent can support the different interests of application 
agents at the same time without affecting other agents. Although application agents are 
located on different computer nodes, because their search algorithms are executed on the 
same computer node where data exist, the search algorithm can be performed efficiently, 
and the delivery overhead of search algorithms can be compensated with the performance 
benefit .

3.4.3 Message Passing for Mobile Agents 

Message passing is the most fundamental service in multi-agent frameworks. Regardless of 
the locations of receiver agents, agent frameworks should provide reliable message passing. 
With dynamic agent distribution, agents may often change their locations . Sending a 
message to a mobile agent that has moved from its original computer node may require 
more than one message hop. If the sending node can directly deliver the message to the 
mobile agent, it will reduce communication time .

For this purpose, we developed a location-based message passing mechanism and a delayed 
message passing mechanism. The location-based message passing mechanism uses location 
information in the name of a receiver agent, and the name of an agent is updated by its 
current computer node whenever the agent changes its location. The delayed message 
passing mechanism allows a computer node to hold messages for a moving agent until the 
agent finishes its migration .

3.4.4 AAA for UAV Simulation 

We used the AAA to build ActorSim with which we used to conduct several simulation 
runs to compare different coordination strategies for a UAV surveillance task. This 
simulation package provides simulation time management, environment-based agent 
interaction, kinematics of UAVs and targets, etc. We used this simulator to study the 
effectiveness of applying a number of multi-agent coordination mechanisms to the problem 
of cooperative surveillance in scenarios of up to 10,000 agents (5,000 UAVs and 5,000 
targets). Moreover, we have designed a graphical simulation viewer for ActorSim in 
OpenGL. Good visualization is important not only for the spectators, but also for the 
designers of the higher-level system capabilities, such as, the agent capabilities of effective 
collaborative coordination and collision avoidance. 

 10



We have transferred a preliminary version of the ActorSim simulator and UAV simulation 
package to the Information Director of Air Force Research Laboratory (AFRL/IF) in Rome, 
NY. Rome Labs plans to customize the simulation toolkit for use by research teams at 
AFRL/IF. 

 

Adaptive Actor Architecture 
    - Adaptive Agent Distribution 
    - Application Agent-oriented Middle Agent Services 
    - Message Passing for Mobile Agents 

Simulation Control Manager 

Environment Simulator 

Task-oriented Agents:

Simulation-oriented Agents:

UAVUAVUAVUAV 

TargetTargetTargetTarget

ABS: Air Base System 

GCS: Ground Control System 

ActorSim 

UAV Simulation Viewer 
    - OpenGL based graphic viewer 

Figure 2: Three-Layered Architecture for UAV Simulations 

3.4.5 Experimental Results 

To investigate how a cooperation strategy influences the performance of a joint mission, we 
use Average Service Cost (ASC) as our metric. ASC is interpreted as additional navigation 
time to serve given targets, and is defined as follows: 

n

MNTNT
ASC

n

i
i∑ −

=
)(

 

 11



where n is the number of UAVs, NTi means navigation time of UAV i, MNT (Minimum 
Navigation Time) means average navigation time of all UAVs required for a mission when 
there are no targets.  

Figure 3 depicts ASC for a team-based coordination strategy and a self-interest strategy. 
When the number of UAVs is increased, ASC is decreased in every case. This result 
explains that communication of UAVs is useful to handle targets, even though UAVs in the 
self-interest UAV strategy consumes quickly the value of a target when they handle the 
target together. 

0

2

4

6

8

10

12

14

16

1000 2000 3000 4000 5000
Number of UAVs

(Number of Targets: 5000)

A
S

C
 (M

in
ut

es
)

Self-Interest

Team-based
Coordintion

 

Figure 3: ASC of UAVs for Performing a Given Mission 

To evaluate the potential benefit of adaptive agent distribution of AAA, we conducted the 
same simulations with two different agent distribution strategies: dynamic agent 
distribution and static agent distribution. Figure 4 depicts the difference of runtimes of 
simulations in two cases. Even though the dynamic agent distribution in our simulations 
includes the overhead for monitoring and decision making, the overall performance of 
dynamic agent distribution overwhelms that of static agent distribution. As the number of 
agents is increased, the ratio also generally increases. With 10,000 agents, the simulation 
using the dynamic agent allocation is more than five times faster than the simulation with a 
static agent allocation. 

 12



0

10

20

30

40

50

60

2000 4000 6000 8000 10000

Number of Actors (UAVs + Targets)

R
un

tim
e 

(H
ou

rs
)

Static
Agent
Distribution
Dynamic
Agent
Distribution

 

Figure 4: Runtimes for Static and Dynamic Agent Distribution 

 

 13



3.5 Hardware Realization: The August 2004 Demo 

The goal of our August hardware demo was to demonstrate our techniques in a realistic 
environment. For this purpose, we created a search and rescue mission. In this domain, a 
collection of UAVs roam a rectangle mission area looking for targets (downed pilots, 
injured civilians, etc.). These targets move according to a pre-determined path not known to 
the UAVs. Each target has a step utility function and requires a minimum number of UAVs 
to be serviced. This step utility function means that before the target gets its required 
number of UAVs, none of its utility can be consumed by the team. Once a requisite number 
of UAVs arrive near the target, it is deemed to have been serviced. UAVs monitor targets 
and coordinate the groups that service them subject to maximizing the total team benefit. 
We have modeled the above scenario using the DDTA formulation as mentioned in Section 
2.2 and applied our dynamic forward/reverse auction mechanism to derive agent behaviors 
in this domain. 

 

Figure 5: Experimental Environment 

We modeled UAVs and targets as robot cars. Each car was controlled by an iPAQ PDA 
running Microsoft Pocket PC and receives localization information from a leader vision 
server collaborating data from four vision servers, each of which is connected to an 
overhead video camera. A vision server takes images from a camera, searches for unique 
color plates mounted on each robot car, and calculates the corresponding robot’s 
identification and heading. A leader vision server takes localization information from each 
vision server, and sends filtered and regulated localization information to the iPAQs. The 
iPAQs use an internal WiFi interface for inter-agent communication. Different cars are 
used to represent UAVs and targets. It is quite clear that this hardware setting makes 
discovering logical errors in the software implementation and tracing the agents’ behavior 
very hard. To deal with these issues, we developed a hardware/software shared agent code 

 14



architecture that allows us to simulate this hardware setting in software while at the same 
time guaranteeing interoperability when porting this code to the hardware setting. The main 
design philosophy of the system was to ease parallel development and testing of the code. 
The agent’s (UAV/Target) implementation is isolated from the architecture on which the 
system is running. The system was developed to run in one of two modes: a simulated 
mode or a real node. This architecture helped us accelerate the development cycle when 
preparing for the hardware final demo.  

Another technical issue we faced during this hardware demo, which was not apparent in 
software simulations, was collision avoidance. While collisions can be abstracted away in a 
large-scale software simulation of a multi-agent system, the issue is critical in the context 
of real vehicles. With up to twenty robots in our hardware demo, operating in a relatively 
small area (8 m × 6 m), collision avoidance poses significant challenges. To address this 
problem, we developed online path planning and re-planning heuristics for collision 
avoidance as well as group coordination behavior when pursuing the assigned target. All of 
these techniques were demonstrated successfully during a demonstration for DARPA in 
August 2004. 

 15



4 PUBLICATIONS  
4.1 2005 
 
Myeong-Wuk Jang and Gul Agha, "Scalable Agent Distribution Mechanisms for Large-
Scale UAV Simulations," The International Conference of Integration of Knowledge 
Intensive Multi-Agent Systems KIMAS '05, Scalable Agents Session, Waltham, 
Massachusetts, April 18-21, 2005. 
 
Myeong-Wuk Jang, Amr Ahmed and Gul Agha, "Efficient Communication in Multi-Agent 
Systems," LNCS Special Issue on Software Engineering for Large Scale Multi-Agent 
Systems, to be published 2005.  
 
Koushik Sen, Grigore Rosu and Gul Agha, “Online Efficient Predictive Safety Analysis of 
Multithreaded Programs”, International Journal on Software Technology and Tools 
Transfer STTT, to appear 2005.  
 
Grigore Rosu and Koushik Sen, “An Instrumentation Technique for Online Analysis of 
Multithreaded Programs”, Special Issue of Concurrency and Computation: Practice and 
Experience (CC:PE), to appear 2005. 
 
Predrag Tosic and Gul Agha, "On Parallel vs. Sequential Threshold Cellular Automata," 
Technical Report, Department of Computer Science, University of Illinois at Urbana-
Champaign, to appear 2005. 
 

 16



4.2 2004 
 
Koushik Sen, Grigore Rosu and Gul Agha, “Online Efficient Predictive Safety Analysis of 
Multithreaded Programs,” In Proceedings of 10th International Conference on Tools and 
Algorithms for the Construction and Analysis of Systems TACAS ’04, Springer-Verlag 
Lecture Notes in Computer Science, volume 2988, Barcelona, Spain, March 29-April 2, 
2004, pages 123-138.   
 
Myeong-Wuk Jang, Amr Ahmed and Gul Agha, "A Flexible Coordination Framework for 
Application-Oriented Matchmaking and Brokering Services," Technical Report UIUCDCS-
R-2004-2430, Department of Computer Science, University of Illinois at Urbana-
Champaign, April 2004.  
 
Predrag Tosic, "A Perspective on the Future of Massively Parallel Computing: Fine Grain 
vs. Coarse-Grain Parallel Models," Proceedings of the First ACM Conference on 
Computing Frontiers (CF '04), Ischia, Italy, April 14-16, 2004, pages 488-502. 
 
Predrag Tosic and Gul Agha, "Concurrency vs. Sequential Interleavings in 1-D Threshold 
Cellular Automata," Proceedings of The 18th International Parallel and Distributed 
Processing Symposium IPDPS '04, Advances in Parallel and Distributed Computing 
Models Workshop, Santa Fe, New Mexico, USA, April 26-30, 2004, page 179b. 
 
Grigore Rosu and Koushik Sen, “An Instrumentation Technique for Online Analysis of 
Multithreaded Programs,” Workshop on Parallel and Distributed Systems: Testing and 
Debugging PADTAD ’04, Santa Fe, New Mexico, USA, April 30, 2004, page 268. 
 
Koushik Sen, Abhay Vardhan, Gul Agha and Grigore Rosu, “Efficient Decentralized 
Monitoring of Safety in Distributed Systems,” In Proceedings of 26th International 
Conference on Software Engineering ICSE ’04, Edinburgh, Scotland, United Kingdom, 
May 23-28, 2004, pages 418-427.  
 
Myeong-Wuk Jang and Gul Agha, "On Efficient Communication and Service Agent 
Discovery in Multi-agent Systems," Third International Workshop on Software Engineering 
for Large-Scale Multi-Agent Systems (SELMAS '04), Edinburgh, Scotland, May 24-25, 
2004, pages 27-33. 
 
Koushik Sen, Abhay Vardhan, Gul Agha and Grigore Rosu, “On Specifying and Monitoring 
Epistemic Properties of Distributed Systems,” Second International Workshop on Dynamic 
Analysis, WODA ’04, pages 32-35, Edinburgh, Scotland, United Kingdom, May 25, 2004, 
pages 32-35.  

 17



 
Koushik Sen, Mahesh Viswanathan and Gul Agha, “Statistical Model Checking of Black-
Box Probabilistic Systems,” Proceedings from the 16th International Conference on 
Computer Aided Verification CAV ’04, Springer-Verlag, Lecture Notes in Computer 
Science, volume 3114, Boston, MA, USA, July 13-17, 2004, pages 202-215. 
 
Predrag Tosic and Gul Agha, "Maximal Clique Based Distributed Group Formation for 
Autonomous Agent Coalitions," Third International Joint Conference on Agents & Multi 
Agent Systems AAMAS '04, Coalitions and Teams Workshop, New York, New York, USA, 
July 19-23, 2004. 
 
Myeong-Wuk Jang, Amr Ahmed and Gul Agha, "ATSpace: A Middle Agent to Support 
Application-Oriented Matchmaking and Brokering Services," Proceedings of 
IEEE/WIC/ACM Intelligent Agent Technology 2004 (IAT ’04), Beijing, China, September 
20-24, 2004, pages 393-396. 
 
Koushik Sen, Mahesh Viswanathan and Gul Agha, “Learning Continuous Time Markov 
Chains from Sample Executions,” First International Conference on Quantitative 
Evaluation of Systems QEST ’04, Enschede, The Netherlands, September 27-30, 2004, 
pages 146-155.  
 
Predrag Tosic and Gul Agha, "Towards a Hierarchical Taxonomy of Autonomous Agents," 
Proceedings from the. IEEE  International Conference on Systems, Man and Cybernetics 
SMC '04, The Hague, The Netherlands, October 10-13, 2004. 
 
Predrag Tosic and Gul Agha, "Characterizing Configuration Spaces of Simple Threshold 
Cellular Automata," Sixth International Conference on Cellular Automata for Research and 
Industry, Amsterdam, The Netherlands, October 25-27, 2004, Springer-Verlag, Lecture 
Notes in Computer Science, volume 3305, 2004, pages 861-870.  
 
Predrag Tosic and Gul Agha, "On Challenges in Modeling and Designing Resource-
Bounded Autonomous Agents Acting in Complex Dynamic Environments," Proceedings of 
the IASTED International Conference on Knowledge Sharing and Collaborative 
Engineering KSCE '04, St. Thomas, US Virgin Islands, November 22-24, 2004. 
 
Predrag Tosic and Gul Agha, "Some Models for Autonomous Agents' Action Selection in 
Dynamic Partially Observable Environments," Proceedings from the IASTED International 
Conference on Knowledge Sharing and Collaborative Engineering KSCE '04, St. Thomas, 
US Virgin Islands, November 22-24, 2004. 
 
Amr Ahmed, Abhilash Patel, Tom Brown, MyungJoo Ham, Myeong-Wuk Jang and Gul 
Agha, "Task Assignment for a Physical Agent Team via a Dynamic Forward/Reverse 
Auction Mechanism," Technical Report UIUCDCS-R-2004-2507, Department of Computer 
Science, University of Illinois at Urbana-Champaign, December 2004.  

 18



 
Myeong-Wuk Jang and Gul Agha, "Dynamic Agent Allocation for Large-Scale Multi-Agent 
Applications," International Workshop on Massively Multi-Agent Systems, Kyoto, Japan, 
December 10-11, 2004, pages 19-33. 
 
Predrag Tosic and Gul Agha, "Maximal Clique Based Distributed Group Formation for 
Task Allocation in Large-Scale Multi-Agent Systems," Proceedings from the Workshop on 
Massively Multi-Agent Systems, Kyoto, Japan, December 10-11, 2004.  
 

 19



4.3 2003 
 
Koushik Sen and Grigore Rosu, "Generating Optimal Monitors for Extended Regular 
Expressions," Proceedings of 3rd Workshop on Runtime Verification RV ’03, Elsevier 
Science Electronic Notes in Theoretical Computer Science, volume 89, issue 2, Boulder, 
Colorado, USA, July 13, 2003.  
 
Predrag Tosic, Myeong-Wuk Jang, Smitha Reddy, Joshua Chia, Liping Chen and Gul Agha, 
"Modeling a System of UAVs on a Mission," Proceedings of the. 7th World 
Multiconference on Systemics, Cybernetics, and Informatics SCI '03, July 27-30, 2003, 
pages 508-514.  
 
Koushik Sen, Grigore Rosu and Gul Agha, “Runtime Safety Analysis of Multithreaded 
Programs,” Proceedings of the 10th European Software Engineering Conference and the 
11th ACM SIGSOFT Symposium on the Foundations of Software Engineering FSE/ESEC 
’03, Helsinki, Finland, September 3-5, 2003, pages 337-346. 
 
Predrag Tosic and Gul Agha, "Simple Genetic Algorithms for Pattern Learning: The Role of 
Crossovers," 5th  International Workshop on Frontiers in Evolutionary Algorithms FEA '03 
Proceedings from the 7th Joint Conference on Information Sciences, Carey, North Carolina, 
USA, September 26-30, 2003. 
 
Myeong-Wuk Jang, Smitha Reddy, Predrag Tosic, Liping Chen and Gul Agha, "An Actor-
based Simulation for Studying UAV Coordination," 15th European Simulation Symposium 
ESS 2003, Delft, The Netherlands, October 26-29, 2003, pages 593-601. 
 
Nirman Kumar, Koushik Sen, Jose Meseguer and Gul Agha, “A Rewriting Based Model for 
Probabilistic Distributed Object Systems,” In Proceedings of 6th IFIP International 
Conference on Formal Methods for Open Object-based Distributed Systems FMOODS ’03, 
Springer-Verlag Lecture Notes in Computer Science, volume 2884, Paris, France, 
November 19-21, 2003, pages 32-46. 
 
Koushik Sen, Grigore Rosu and Gul Agha, “Generating Optimal Linear Temporal Logic 
Monitors by Coinduction,” In Proceedings of 8th Asian Computing Science Conference 
ASIAN ‘03, Springer-Verlag Lecture Notes in Computer Science, volume 2896, Mumbai, 
India, December 10-12, 2003, pages 260-275.  
 
Predrag Tosic and Gul Agha, "Understanding and Modeling Agent Autonomy in Dynamic 
Multi-Agent, Multi-Task Environments," Proceedings of the First European Workshop on 
Multi-Agent Systems EUMAS '03, Oxford, England, UK, December 18-19, 2003.  
 

 20



4.4 2002 
 
Koushik Sen, Gul Agha in Dan C. Marinescu and Craig Lee, "Thin Middleware for 
Ubiquitous Computing," Process Coordination and Ubiquitous Computing, CRC Press, 
September 2002, pages 201-213.  
 
Prasanna V. Thati, Koushik Sen and Narciso Marti Oliet, “An Executable Specification of 
Asynchronous Pi-calculus and May-testing in Maude 2.0,” International Workshop on 
Rewriting Logic and its Applications WRLA ’02, Elsevier Science Electronic Notes in 
Theoretical Computer Science, volume 71, Pisa, Italy, September 13-21, 2002. 
 

 21



Scalable Agent Distribution Mechanisms for 
Large-Scale UAV Simulations 

 
Myeong-Wuk Jang and Gul Agha 
Department of Computer Science 

University of Illinois at Urbana-Champaign 
Urbana, IL 61801, USA 

{mjang, agha}@uiuc.edu 
 
 

Abstract ⎯ A cluster of computers is required to execute 
large-scale multi-agent. However, such execution incurs an 
inter-node communication overhead because agents 
intensively communicate with other agents to achieve 
common goals. Although a number of dynamic load 
balancing mechanisms have been developed, these 
mechanisms are not scalable in multi-agent applications 
because of the overhead involved in analyzing the 
communication patterns of agents. This paper proposes two 
scalable dynamic agent distribution mechanisms; one 
mechanism aims at minimizing agent communication cost, 
and the other mechanism attempts to move agents from 
overloaded agent platforms to lightly loaded platforms. Our 
mechanisms are fully distributed algorithms and analyze 
only coarse-grain communication dependencies of agents, 
thus providing scalability. We describe the results of 
applying these mechanisms to large-scale micro UAV 
(Unmanned Aerial Vehicle) simulations involving up to 
10,000 agents. 
 

1.  INTRODUCTION 

As the number of agents in large-scale multi-agent 
applications increases by orders of magnitude (e.g. see [7, 9, 
10]), distributed execution is required to improve the overall 
performance of applications. However, parallelizing the 
execution on a cluster may lead to inefficiency; a few 
computer nodes may be idle while others are overloaded. 
Many dynamic load balancing mechanisms have been 
developed to enable efficient parallelization [1, 3, 6]. 
However, these mechanisms may not be applicable to 
multi-agent applications because of the different 
computation and communication behavior of agents [4, 9]. 

Some load balancing mechanisms have been developed for 
multi-agent applications [4, 5], but these mechanisms 
require a significant overhead to gather information about 
the communication patterns of agents and analyze the 

information. Therefore, we believe these mechanisms may 
not be scalable. In this paper, we propose two scalable agent 
distribution mechanisms; one mechanism aims at 
minimizing agent communication cost, and the other 
mechanism attempts to move agents from an overloaded 
agent platform to lightly loaded agent platforms. These two 
mechanisms are developed as fully distributed algorithms 
and analyze only coarse-grain communication dependencies 
of agents instead of their fine-grain communication 
dependencies.  

Although the scalability of multi-agent systems is an 
important concern in the design and implementation of 
multi-agent platforms, we believe such scalability cannot be 
achieved without customizing agent platforms for a specific 
multi-agent application. In our agent systems, each 
computer node has one agent platform, which manages 
scheduling, communication, and other middleware services 
for agents executing on the computer node. Our multi-agent 
platform is adaptive to improve the scalability of the entire 
system. Specifically, large-scale micro UAV (Unmanned 
Aerial Vehicle) simulations involving up to 10,000 agents 
are studied using our agent distribution mechanisms. 

The paper is organized as follows: Section 2 discusses the 
scalability issues of multi-agent systems. Section 3 
describes two agent distribution mechanisms implemented 
in our agent platform. Section 4 explains our UAV 
simulations and their interaction with our agent distribution 
mechanisms. Section 5 shows the preliminary experimental 
results to evaluate the performance gain resulting from the 
use of these mechanisms. The last section concludes this 
paper with a discussion of our future work. 

2.  SCALABILITY OF MULTI-AGENT SYSTEMS 

The scalability of multi-agent systems depends on the 
structure of an agent application as well as the multi-agent 
platform. For example, when a distributed multi-agent 
application includes centralized components, these 
components can become a bottleneck of parallel execution, 
and the application may not be scalable. Even when an 
application has no centralized components, agents may use 
middle agent services, such as brokering or matchmaking 
services, supported by agent platforms, and the agent 
platform-level component that supports these services may 

22

goodelle
Text Box
Appendix A:



become a bottleneck for the entire system. 

The goal of executing a cluster of computers for a single 
multi-agent application is to improve performance by taking 
advantage of parallel execution. However, balancing the 
workload on computer nodes requires a significant overhead 
from gathering the global state information, analyzing the 
information, and transferring agents very often among 
computer nodes. When the number of computer nodes 
and/or that of agents are very large, achieving optimal load 
balancing is not feasible. Therefore, we use a load sharing 
approach which move agents from an overloaded computer 
node, but the workload balance between different computer 
nodes is not required to be optimal. 

Another important factor in the performance of large-scale 
multi-agent applications is agent communication cost. This 
cost may significantly affect the performance of multi-agent 
systems, when agents distributed on separate computer 
nodes communicate intensively with each other. Even 
though the speed of local networks has considerably 
increased, the intra-node communication for message 
passing is much faster than inter-node communication. 
Therefore, if we can collocate agents which communicate 
intensively with each other, communication time may 
significantly decrease. Distributing agents statically by a 
programmer is not generally feasible, because the 
communication patterns among agents may change over 
time. Thus agents should be dynamically reallocated 
according to their communication localities of agents, and 
this procedure should be managed by a multi-agent 
platform.  

Because of a large number of agents in a single multi-agent 
application, the overhead from gathering the communication 
patterns of agents and analyzing such patterns would 
significantly affect the overall performance of the entire 
system. For example, when there are n agents and 
unidirectional communication channels between agents are 
used, the maximum number of possible communication 
connections among agents is n×(n-1). If the communication 
patterns between agents and agent platforms are considered 
for dynamic agent distribution, the maximum number of 
communication connections becomes n×m where m is the 
number of agent platforms. Usually, m is much less than n.  

Another important concern for the scalability is the location 
of agent distributor that performs dynamic agent distribution. 
If a centralized component handles this task, the 
communication between this component and agent 
platforms may be significantly increased and the component 
may be the bottleneck of the entire system. Therefore, when 
multi-agent systems are large-scale, more simplified 
information for decision making and distributed algorithms 
would be more applicable for the scalability of dynamic 
agent distribution mechanisms. 

For the purpose of dynamic agent distribution, each agent 
platform may monitor the status of its computer node and 
the communication patterns of agents on it, and distribute 

agents according to their communication localities and the 
workload of its computer node. However, with the 
interaction with multi-agent applications, the quality of this 
service may be improved. For example, multi-agent 
applications may initialize or change parameters of dynamic 
agent distribution during execution for the better 
performance of the entire system. For the interaction 
between agent applications and platforms, we use a 
reflective mechanism [11]; agents in applications are 
supported by agent platforms, and the services of agent 
platforms may be controlled by agents in applications. This 
paper shows how our multi-agent applications (e.g., UAV 
simulations) interact with our dynamic agent distribution 
mechanisms. 

3.  DYNAMIC AGENT DISTRIBUTION 

This section describes two mechanisms for dynamic agent 
distribution: a communication localization mechanism 
collocates agents which communicate intensively with each 
other, and a load sharing mechanism moves agent groups 
from overloaded agent platforms to lightly loaded agent 
platforms. Although the purpose of these two mechanisms is 
different, the mechanisms consist of similar process phases 
and share the same components in an agent platform. Both 
these two mechanisms are also designed as fully distributed 
algorithms. Figure 1 shows the state transition diagram for 
these two agent distribution mechanisms. 

For these dynamic agent distribution services, four system 
components in our agent platform are mainly used. A 
detailed explanation of system components is described in 
[9]. 

1. Message Manager takes charge of message passing 
between agents. 

Monitoring 

Agent / Group Distribution 

Agent Migration 

Negotiation 

Agent Grouping

Figure 1 - State Transition Diagram for Dynamic 
Agent Distribution. The solid lines are used for both 
mechanisms, the dashed line is used only for the 
communication localization mechanism, and the 
dotted lines are used only for the load sharing 
mechanism.

23



2. System Monitor periodically checks the workload of 
its computer node.  

3. Actor Allocation Manager is responsible for dynamic 
agent distribution. 

4. Actor Migration Manager moves agents to other 
agent platforms.  

3.1. Agent Distribution for Communication Locality 

The communication localization mechanism handles the 
dynamic change of the communication patterns of agents. 
As time passes, the communication localities of agents may 
change according to the changes of agents’ interests. By 
analyzing messages delivered between agents, agent 
platforms may decide what agent platform an agent should 
be located on. Because an agent platform can neither 
estimate the future communication patterns of agents nor 
know how agents on other platforms may migrate, local 
decision of an agent platform cannot be perfect. However, 
our experiments show that in case of our applications, 
reasonable performance can be achieved. The 
communication localization mechanism consists of four 
phases: monitoring, agent distribution, negotiation, and 
agent migration (see Figure 1). 

Monitoring Phase ⎯ The Actor Allocation Manager checks 
the communication patterns of agents with the assistance 
from the Message Manager. Specifically, the Actor 
Allocation Manager uses information about both the sender 
agent and the agent platform of the receiver agent of each 
message. This information is maintained with a variable M 
representing all agent platforms communicating with each 
agent on the Manager’s platform. 

The Actor Allocation Manager periodically computes the 
communication dependencies Cij(t) at time t between agent i 
and agent platform j using equation 1. 

 )1()1(
)(

)(
)( −−+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

∑
tC

tM
tM

tC ij

k
ik

ij
ij αα  (1) 

where Mij(t) is the number of messages sent from agent i to 
agent platform j during the t-th time step, and α is a 
coefficient representing the relative importance between 
recent information and old information. 

Agent Distribution Phase ⎯ After a certain number of 
repeated monitoring phases, the Actor Allocation Manager 
computes the communication dependency ratio of an agent 
between its current agent platform n and all other agent 
platforms, where the communication dependency ratio Rij 
between agent i and platform j is defined using equation 2. 

 nj
C
C

R
in

ij
ij ≠= ,  (2) 

When the maximum value of the communication 

dependency ratio of an agent is larger than a predefined 
threshold θ, the Actor Allocation Manager assigns the agent 
to a virtual agent group that represents a remote agent 
platform. 

 kiikij
j

GaRandRk ∈→>= θ)max(arg  (3) 

where ai represents agent i, and Gk means virtual agent 
group k. 

After the Actor Allocation Manager checks all agents, and 
assigns some of them to virtual agent groups, it starts the 
negotiation phase, and information about the 
communication dependencies of agents is reset. 

Negotiation Phase ⎯ Before the agent platform P1 moves 
the agents assigned to a given virtual agent group to 
destination agent platform P2, the Actor Allocation Manager 
of P1 communicates with that of P2 to check the current 
status of P2. Only if P2 has enough space and the percentage 
of its CPU usage is not continuously high, the Actor 
Allocation Manager of P2 accepts the request. Otherwise, 
the Manager of P2 responds with the number of agents that 
it can accept. In this case, the P1 moves only a subset of the 
virtual agent group. 

Agent Migration Phase ⎯ Based on the response of a 
destination agent platform, the Actor Allocation Manager of 
the sender agent platform initiates migration of entire or part 
of agents in the selected virtual agent group. When the 
destination agent platform has accepted part of agents in the 
virtual agent group, agents to be moved are selected 
according to their communication dependency ratios. After 
the current operation of a selected agent finishes, the Actor 
Migration Manager moves the agent to its destination agent 
platform. After the agent is migrated, it carries out its 
remaining operations. 

3.2. Agent Distribution for Load Sharing 

The agent distribution mechanism for communication 
locality handles the dynamic change of the communication 
patterns of agents, but this mechanism may overload a 
platform once more agents are added to this platform. 
Therefore, we provide a load sharing mechanism to 
redistribute agents from overloaded agent platforms to 
lightly loaded agent platforms. When an agent platform is 
overloaded, the System Monitor detects this condition and 
activates the agent redistribution procedure. Since agents 
had been assigned to their current agent platforms according 
to their recent communication localities, choosing agents 
randomly for migration to lightly loaded agent platforms 
may result in cyclical migration. The moved agents may still 
have high communication rate with agents on their previous 
agent platform. Our load sharing mechanism consists of five 
phases: monitoring, agent grouping, group distribution, 
negotiation, and agent migration (see Figure 1).  

Monitoring Phase ⎯ The System Monitor periodically 

24



checks the state of its agent platform; the System Monitor 
gets information about the current processor usage and the 
memory usage of its computer node by accessing system 
call functions and maintains the number of agents on its 
agent platform. When the System Monitor decides that its 
agent platform is overloaded, it activates an agent 
distribution procedure. When the Actor Allocation Manager 
is notified by the System Monitor, it starts monitoring the 
local communication patterns of agents in order to partition 
them into local agent groups. For this purpose, an agent 
which was not previously assigned to an agent group is 
randomly assigned to some agent group. 

To check the local communication patterns of agents, the 
Actor Allocation Manager uses information about the sender 
agent, the agent platform of the receiver agent, and the agent 
group of the receiver agent of each message. After a 
predetermined time interval the Actor Allocation Manager 
updates the communication dependencies between agents 
and local agent groups on the same agent platform using 
equation 1 using cij(t) and mij(t) instead of Cij(t) and Mij(t). 
In the modified equation 1, j represents a local agent group 
instate of an agent platform, cij(t) represents the 
communication dependency between agent i and agent 
group j at the time step t, and mij(t) is the number of 
messages sent from agent i to agents in local agent group j 
during the t-th time step. Note that in this case ∑

k
ik tm )(  

represents the number of messages sent by the agent i to all 
agents in its current agent platform, and in general the value 
of the parameter α will be different. 

Agent Grouping Phase ⎯ After a certain number of 
repeated monitoring phases, each agent i is re-assigned to a 
local agent group whose index is decided by 

. Since the initial group assignment of agents 

may not be well organized, the monitoring and agent 
grouping phases are repeated several times. After each agent 
grouping phase, information about the communication 
dependencies of agents is reset.  

))(max(arg tcij
j

Group Distribution Phase ⎯ After a certain number of 
repeated monitoring and agent grouping phases, the Actor 
Allocation Manager makes a decision to move an agent 
group to another agent platform. The group selection is 
based on the communication dependencies between agent 
groups and agent platforms. Specifically the communication 
dependency Dij between local agent group i and agent 
platform j is decided by summing the communication 
dependencies between all agents in the local agent group 
and the agent platform. Let Ai be the set of indexes of all 
agents in the agent group i. 

  (4) ∑=
∈ iAk

kjij tCD )(

where Ckj(t) is the communication dependency between 
agent k and agent platform j at time t.  

The agent group which has the least dependency to the 
current agent platform is selected using equation 5. 

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ ∑
≠

in

njj
ij

i D

D
,maxarg  (5) 

where n is the index of the current agent platform.  

The destination agent platform of the selected agent group i 
is decided by the communication dependency between the 
agent group and agent platforms using equation 6. 

  (6) njwhereDij
j

≠)max(arg

Negotiation Phase ⎯ If one agent group and its destination 
agent platform are decided, the Actor Allocation Manager 
communicates with that of the destination agent platform. If 
the destination agent platform accepts all agents in the group, 
the Actor Allocation Manager of the sender agent platform 
starts the migration phase. Otherwise, this Actor Allocation 
Manager communicates with that of the second best 
destination platform until it finds an available destination 
agent platform or checks the feasibility of all other agent 
platforms. 

This phase of our load sharing mechanism is similar to that 
of the communication localization mechanism. However, 
the granularity of negotiation for these two mechanisms is 
different: the communication localization mechanism is at 
the level of an agent while the load sharing mechanism is at 
the level of an agent group. If the destination agent platform 
has enough space and available computation resource for all 
agents in the selected local agent group, the Actor 
Allocation Manager of the destination agent platform can 
accept the request for the agent group migration. Otherwise, 
the destination agent platform refuses the request; the 
destination agent platform cannot accept part of a local 
agent group. 

Agent Migration Phase ⎯ When the sender agent platform 
receives the acceptance reply from the receiver agent 
platform, the Actor Allocation Manager of the sender agent 
platform initiates migration of entire agents in the selected 
local agent group. The following procedure for this phase in 
the agent distribution mechanism for load sharing is the 
same as that in the agent distribution mechanism for 
communication locality. 

4.  UAV SIMULATIONS 

Our dynamic agent distribution mechanisms have been 
applied to large-scale UAV (Unmanned Aerial Vehicle) 
simulations. The purpose of these simulations is to analyze 
the cooperative behavior of micro UAVs under given 
situations. Several coordination schemes have been 
simulated and compared to the performance of a selfish 
UAV scheme. These UAV simulations are based on the 

25



agent-environment interaction model [2]; all UAVs and 
targets are implemented as intelligent agents, and the 
navigation space and radar censors of all UAVs are 
simulated by environment agents. To remove centralized 
components in distributed computing, each environment 
agent on a single computer node is responsible for a certain 
navigation area. In addition to direct communication of 
UAVs with their names, UAVs may communicate indirectly 
with other agents through environment agents without agent 
names. Environment agents use the ATSpace model to 
provide application agent-oriented brokering services [8]. 
During simulation time, UAVs and targets move from one 
divided area to another, and they communicate intensively 
either directly or indirectly.  

Figure 2 depicts the components for our UAV simulations. 
These simulations consist of two types of agents: 
task-oriented agents and simulation-oriented agents.  
Task-oriented agents simulate objects in a real situation. For 
example, a UAV agent represents a physical micro UAV, 
while a target represents an injured civilian or solider to be 
searched and rescued. For simulations, we also need 
simulation-oriented agents: Simulation Control Manager 
and Environment Simulator. Simulation Control Manager 
synchronizes local virtual times of components, while 
Environment Simulator simulates both the navigation space 
and the local broadcasting and radar sensing behavior of all 
UAVs. 

 

When a simulation starts, Simulation Control Manager 
initializes the parameters of dynamic agent distribution. 
These parameters include the coefficients for two types of 
communication dependencies (i.e. agent platform level and 
agent group level), the migration threshold, the number of 
local agent groups, and the relative frequency of monitoring 
and agent grouping phases. During execution, the size of 
each time step t in dynamic agent distribution is also 
controlled by Simulation Control Manager; this size is the 
same as the size of a simulation time step. Thus, the size of 
time steps varies according to the workload of each 
simulation step and the processor power. Moreover, the 
parameters of dynamic agent distribution may be changed 
by Simulation Control Manager during execution. 

5.  EXPERIMENTAL RESULTS 

We have conducted experiments with micro UAV 
simulations. These simulations include from 2,000 to 10,000 
agents; half of them are UAVs, and the others are targets. 
Micro UAVs perform a surveillance mission on a mission 
area to detect and serve moving targets. During the mission 
time, these UAVs communicate with their neighboring 
UAVs to perform the mission together. The size of a 
simulation time step is one half second, and the total 
simulation time is around 37 minutes. The runtime of each 
simulation depends on the number of agents and the selected 
agent distribution mechanism. For these experiments, we 
use four computers (3.4 GHz Intel CPU and 2 GB main 
memory) connected by a Giga-bit switch.  

Figure 3 and Figure 4 depict the performance benefit of 
dynamic agent distribution in our experiments comparing 
with static agent distribution. Even though the dynamic 
agent distribution mechanisms in our simulations include 
the overhead from monitoring and decision making, the 
overall performance of simulations with dynamic agent 
distribution is much better than that with static agent 

2000 4000 6000 8000 10000
0

10

20

30

40

50

60

Number of Agents (UAVs + Targets)

R
un

tim
e 

(H
ou

rs
)

Static Agent Distribution
Dynamic Agent Distribution

Simulation 
Control 

Manager 

Environment Simulator
- Local Broadcasting

- Radar Sensors 

UAV Target

Task-oriented Agents: 

Simulation-oriented Agents: 

UAV Target UAV Target UAV Target 

Figure 2 – Architecture of UAV Simulator

Figure 3 - Runtime of Simulations using Static and 
Dynamic Agent Distribution 

2000 4000 6000 8000 10000
0

1

2

3

4

5

6

Number of Agents (UAVs + Targets)

R
un

tim
e 

R
at

io

Figure 4 - Runtime Ratio of Static-to-Dynamic Agent 
Distribution

26



distribution. In our particular example, as the number of 
agents is increased, the ratio also generally increases. The 
simulations using dynamic agent distribution is more than 
five times faster than those using static agent distribution 
when the number of agents is large. 

6.  CONCLUSION 

This paper has explained two scalable agent distribution 
mechanisms used for UAV simulations; these mechanisms 
distribute agents according to their communication localities 
and the workload of computer nodes. The main 
contributions of this research are that our agent distribution 
mechanisms are based on the dynamic changes of 
communication localities of agents, that these mechanisms 
focus on the communication dependencies between agents 
and agent platforms and the dependencies between agent 
groups and agent platforms, instead of the communication 
dependencies among individual agents, and that our 
mechanisms continuously interact with agent applications to 
adapt dynamic behaviors of an agent application. In addition, 
these agent distribution mechanisms are fully distributed 
mechanisms, are transparent to agent applications, and are 
concurrently executed with them. 

The proposed mechanisms introduce an additional overhead 
for monitoring and decision making for agent distribution. 
However, our experiments suggest that this overhead are 
more than compensated when multi-agent applications have 
the following attributes: first, an application includes a large 
number of agents so that the performance on a single 
computer node is not acceptable; second, some agents 
communicate more intensively with each other than with 
other agents, and thus the communication locality of each 
agent is an important factor in the overall performance of 
the application; third, the communication patterns of agents 
are continuously changing, and hence, static agent 
distribution mechanisms are not sufficient.  

In our multi-agent systems, the UAV simulator modifies the 
parameters of dynamic agent distribution to improve its 
quality. However, some parameters are currently given by 
application developers, and finding these values requires 
developers’ skill. We plan to develop learning algorithms to 
automatically adjust these values during execution of 
applications. 

ACKNOWLEDGEMENTS 

The authors would like to thank Sandeep Uttamchandani for 
his helpful comments and suggestions. This research is 
sponsored by the Defense Advanced Research Projects 
Agency under contract number F30602-00-2-0586. 

REFERENCES 

[1] K. Barker, A. Chernikov, N. Chrisochoides, and K. 
Pingali, “A Load Balancing Framework for Adaptive and 
Asynchronous Applications,” IEEE Transactions on 

Parallel and Distributed Systems, 15(2):183-192, February 
2004. 

[2] M. Bouzid, V. Chevrier, S. Vialle, and F. Charpillet, 
“Parallel Simulation of a Stochastic Agent/Environment 
Interaction,” Integrated Computer-Aided Engineering, 
8(3):189-203, 2001. 

[3] R.K. Brunner and L.V. Kalé, “Adaptive to Load on 
Workstation Clusters,” The Seventh Symposium on the 
Frontiers of Massively Parallel Computations, pages 
106-112, February 1999. 

[4] K. Chow and Y. Kwok, “On Load Balancing for 
Distributed Multiagent Computing,” IEEE Transactions on 
Parallel and Distributed Systems, 13(8):787-801, August 
2002. 

[5] T. Desell, K. El Maghraoui, and C. Varela, “Load 
Balancing of Autonomous Actors over Dynamics 
Networks,” Hawaii International Conference on System 
Sciences HICSS-37 Software Technology Track, Hawaii, 
January 2004. 

[6] K. Devine, B. Hendrickson, E. Boman, M.St. John, C. 
Vaughan, “Design of Dynamic Load-Balancing Tools for 
Parallel Applications,” Proceedings of the International 
Conference on Supercom0puting, pages 110-118, Santa Fe, 
200l 

[7] L. Gasser and K. Kakugawa, “MACE3J: Fast Flexible 
Distributed Simulation of Large, Large-Grain Multi-Agent 
Systems,” Proceedings of the First International Conference 
on Autonomous Agents & Multiagent Systems (AAMAS), 
pages 745-752, Bologna, Italy, July 2002. 

[8] M. Jang, A. Abdel Momen, and G. Agha, “ATSpace: A 
Middle Agent to Support Application-Oriented 
Matchmaking and Brokering Services,” IEEE/WIC/ACM 
IAT(Intelligent Agent Technology)-2004, pages 393-396, 
Beijing, China, September 2004. 

[9] M. Jang and G. Agha, Dynamic Agent Allocation for 
Large-Scale Multi-Agent Applications, Proceedings of 
International Workshop on Massively Multi-Agent Systems, 
Kyoto, Japan, December 2004. 

[10] K. Popov, V. Vlassov, M. Rafea, F. Holmgren, P. Brand, 
and S. Haridi, “Parallel Agent-based Simulation on Cluster 
of Workstations,” Parallel Processing Letters, 
13(4):629-641, 2003. 

[11] D. Sturman, Modular Specification of Interaction 
Policies in Distributed Computing, PhD thesis, University 
of Illinois at Urbana-Champaign, May 1996. 

[12] C. Walshaw, M. Cross, and M. Everett, “Parallel 
Dynamic Graph Partitioning for Adaptive Unstructured 
Meshes,” Journal of Parallel and Distributed Computing, 
47:102-108, 1997. 

27



Efficient Agent Communication
in Multi-agent Systems

Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

Department of Computer Science
University of Illinois at Urbana-Champaign,

Urbana IL 61801, USA
{mjang,amrmomen,agha}@uiuc.edu

Abstract. In open multi-agent systems, agents are mobile and may
leave or enter the system. This dynamicity results in two closely re-
lated agent communication problems, namely, efficient message passing
and service agent discovery. This paper describes how these problems are
addressed in the Actor Architecture (AA). Agents in AA obey the oper-
ational semantics of actors, and the architecture is designed to support
large-scale open multi-agent systems. Efficient message passing is facil-
itated by the use of dynamic names: a part of the mobile agent name
is a function of the platform that currently hosts the agent. To facil-
itate service agent discovery, middle agents support application agent-
oriented matchmaking and brokering services. The middle agents may
accept search objects to enable customization of searches; this reduces
communication overhead in discovering service agents when the matching
criteria are complex. The use of mobile search objects creates a security
threat, as codes developed by different groups may be moved to the same
middle agent. This threat is mitigated by restricting which operations a
migrated object is allowed to perform. We describes an empirical eval-
uation of these ideas using a large scale multi-agent UAV (Unmanned
Aerial Vehicle) simulation that was developed using AA.

1 Introduction

In open agent systems, new agents may be created and agents may move from
one computer node to another. With the growth of computational power and
network bandwidth, large-scale open agent systems are a promising technology
to support coordinated computing. For example, agent mobility can facilitate
efficient collaboration with agents on a particular node. A number of multi-agent
systems, such as EMAF [3], JADE [4], InfoSleuth [16], and OAA [8], support
open agent systems. However, before the vision of scalable open agent systems
can be realized, two closely related problems must be addressed:

– Message Passing Problem: In mobile agent systems, efficiently sending mes-
sages to an agent is not simple because they move continuously from one
agent platform to another. For example, the original agent platform on which
an agent is created should manage the location information about the agent.

R. Choren et al. (Eds.): SELMAS 2004, LNCS 3390, pp. 236–253, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

28

goodelle
Text Box
Appendix B: 



Efficient Agent Communication in Multi-agent Systems 237

However, doing so not only increases the message passing overhead, but it
slows down the agent’s migration: before migrating, the agent’s current host
platform must inform the the original platform of the move and may wait
for an acknowledgement before enabling the agent.

– Service Agent Discovery Problem: In an open agent system, the mail ad-
dresses or names of all agents are not globally known. Thus an agent may
not have the addresses of other agents with whom it needs to communi-
cate. To address this difficulty, middle agent services, such as brokering and
matchmaking services [25], need to be supported. However, current middle
agent systems suffer from two problems: lack of expressiveness–not all search
queries can be expressed using the middle agent supported primitives; and
incomplete information–a middle agent does not possess the necessary in-
formation to answer a user query.

We address the message passing problem for mobile agents in part by provid-
ing a richer name structure: the names of agents include information about their
current location. When an agent moves, the location information in its name is
updated by the platform that currently hosts the agent. When the new name
is transmitted, the location information is used by other platforms to find the
current location of that agent if it is the receiver of a message. We address the
service agent discovery problem in large-scale open agent systems by allowing
client agents to send search objects to be executed in the middle agent address
space. By allowing agents to send their own search algorithms, this mitigates
both the lack of expressiveness and incomplete information.

We have implemented these ideas in a Java-based agent system called the
Actor Architecture (or AA). AA supports the actor semantics for agents: each
agent is an autonomous object with a unique name (address), message pass-
ing between agents is asynchronous, new agents may be dynamically created,
and agent names may be communicated [1]. AA has been designed with a
modular, extensible, and application-independent structure. While AA is be-
ing used to develop tools to facilitate large-scale simulations, it may also be
used for other large-scale open agent applications. The primary features of AA
are: a light-weight implementation of agents, reduced communication overhead
between agents, and improved expressiveness of middle agents.

This paper is organized as follows. Section 2 introduces the overall structure
and functions of AA as well as the agent life cycle model in AA. Section 3
explains our solutions to reduce the message passing overhead for mobile agents
in AA, while Section 4 shows how the search object of AA extends the basic
middle agent model. Section 5 descries the experimental setting and presents an
evaluation of our approaches. Related work is explained in Section 6, and finally,
Section 7 concludes this paper with future research directions.

2 The Actor Architecture

AA provides a light-weight implementation of agents as active objects or ac-
tors [1]. Agents in AA are implemented as threads instead of processes. They

29



238 Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

use object-based messages instead of string-based messages, and hence, they do
not need to parse or interpret a given string message, and may use the type
information of each field in a delivered message. The actor model provides the
infrastructure for a variety of agent systems; actors are social and reactive, but
they are not explicitly required to be “autonomous” in the sense of being proac-
tive [28]. However, autonomous actors may be implemented in AA, and many
of our experimental studies require proactive actors. Although the term agent
has been used to mean proactive actors, for our purposes the distinction is not
critical. In this paper, we use the terms ‘agent’ and ‘actor’ as synonyms.

The Actor Architecture consists of two main components:

– AA platforms which provide the system environment in which actors exist
and interact with other actors. In order to execute actors, each computer
node must have one AA platform. AA platforms provide actor state man-
agement, actor communication, actor migration, and middle agent services.

– Actor library which is a set of APIs that facilitate the development of agents
on the AA platforms by providing the user with a high level abstraction of
service primitives. At execution time, the actor library works as the interface
between actors and their respective AA platforms.

An AA platform consists of eight components (see Fig. 1): Message Manager,
Transport Manager, Transport Sender, Transport Receiver, Delayed Message
Manager, Actor Manager, Actor Migration Manager, and ATSpace.

AA Platform

AA Platform

Message Manager

Actor Manager Actor Migration Manager

Delayed Message Manager

Transport Receiver

Transport Receiver Transport Sender

Transport Sender

ATSpace

Transport Manager

Transport Manager

Actor

Fig. 1. Architecture of an AA Platform.

30



Efficient Agent Communication in Multi-agent Systems 239

The Message Manager handles message passing between actors. Every mes-
sage passes through at least one Message Manager. If the receiver actor of a
message exists on the same AA platform, the Message Manager of that platform
directly delivers the message to the receiver actor. However, if the receiver actor
is not on the same AA platform, this Message Manager delivers the message to
the Message Manager of the platform where the receiver currently resides, and
finally that Message Manager delivers the message to the receiver actor. The
Transport Manager maintains a public port for message passing between differ-
ent AA platforms. When a sender actor sends a message to another actor on a
different AA platform, the Transport Sender residing on the same platform as
the sender receives the message from the Message Manager of that platform and
delivers it to the Transport Receiver on the AA platform of the receiver. If there
is no built-in connection between these two AA platforms, the Transport Sender
contacts the Transport Manager of the AA platform of the receiver actor to open
a connection so that the Transport Manager can create a Transport Receiver for
the new connection. Finally, the Transport Receiver receives the message and
delivers it to the Message Manager on the same platform.

The Delayed Message Manager temporarily holds messages for mobile actors
while they are moving from one AA platform to another. The Actor Manager of
an AA platform manages the state of actors that are currently executing as well
as the locations of mobile actors created on this platform. The Actor Migration
Manager manages actor migration.

The ATSpace provides middle agent services, such as matchmaking and bro-
kering services. Unlike other system components, an ATSpace is implemented
as an actor. Therefore, any actor may create an ATSpace, and hence, an AA
platform may have more than one ATSpaces. The ATSpace created by an AA
platform is called the default ATSpace of the platform, and all actors can obtain
the names of default ATSpaces. Once an actor has the name of an ATSpace,
the actor may send the ATSpace messages in order to use its services for finding
other actors that match a given criteria.

In AA, actors are implemented as active objects and are executed as threads;
actors on an AA platform are executed with that AA platform as part of one
process. Each actor has one actor life cycle state on one AA platform at any
time (see Fig. 2). When an actor exists on its original AA platform, its state
information appears within only its original AA platform. However, the state
of an actor migrated from its original AA platform appears both on its original
AA platform and on its current AA platform. When an actor is ready to process
a message its state becomes Active and stays so while the actor is processing
the message. When an actor initiates migration, its state is changed to Transit.
Once the migration ends and the actor restarts, its state becomes Active on
the new AA platform and Remote on the original AA platform. Following a user
request, an actor in the Active state may move to the Suspended state.

In contrast to other agent life cycle models (e.g. [10, 18]), the AA life cycle
model uses the Remote state to indicate that an actor that was created on the
current AA platform is working on another AA platform.

31



240 Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

Move Start

Suspend

Move Start

Resume
Destroy

Create or
Execute

Unknown

Execute

Remote

Transit Active

Suspended

End
Move

Fig. 2. Actor Life Cycle Model.

3 Optimized Message Delivery

We describe the message delivery mechanisms used to support inter-actor com-
munications. Specifically, AA uses two approaches to reduce the communication
overhead for mobile actors that are not on their original AA platforms: location-
based message passing and delayed message passing.

3.1 Location-Based Message Passing

Before an actor can send messages to other actors, it should know the names
of the intended receiver actors. In AA, each actor has its own unique name
called UAN (Universal Actor Name). The UAN of an actor includes the location
information and the unique identification number of the actor as follows:

uan://128.174.245.49:37

From the above name, we can infer that the actor exists on the host whose IP
address is 128.174.245.49, and that the actor is distinguished from other actors
on the same platform with its unique identification number 37.

When the Message Manager of a sender actor receives a message whose re-
ceiver actor has the above name, it checks whether the receiver actor exists
on the same AA platform. If they are on the same AA platform, the Message
Manager finds the receiver actor on this AA platform and directly delivers the
message. Otherwise, the Message Manager of the sender actor delivers the mes-
sage to the Message Manager of the receiver actor. In order to find the AA
platform where the Message Manager of the receiver actor exists, the location
information 128.174.245.49 in the UAN of the receiver actor is used. When the
Message Manager on the AA platform with IP address 128.174.245.49 receives
the message, it finds the receiver actor there and delivers the message.

The above actor naming and message delivery scheme works correctly when
all actors are on their original AA platforms. However, because an actor may

32



Efficient Agent Communication in Multi-agent Systems 241

migrate from one AA platform to another, we extend the basic behavior of the
Message Manager with a forwarding service: when a Message Manager receives
a message for an actor that has migrated, it delivers the message to the current
AA platform of the mobile actor. To facilitate this service, each AA platform
maintains the current locations of actors that were created on it, and updates
the location information of actors that have come from other AA platforms on
their original AA platforms.

The problem with using only universal actor names for message delivery is
that every message for a migrated actor still has to pass through the original AA
platform in which the actor was created (Fig. 3.a). This kind of blind indirection
may happen even in situations where the receiver actor is currently on an AA
platform that is near the AA platform of the sender actor. Since message passing
between actor platforms is relatively expensive, AA uses Location-based Actor
Name (LAN ) for mobile actors in order to generally eliminate the need for
this kind of indirection. Specifically, the LAN of an actor consists of its current
location and its UAN as follows:

lan://128.174.244.147//128.174.245.49:37

The current location of a mobile actor is set by an AA platform when the
actor arrives on the AA platform. If the current location is the same as the
location where an actor was created, the LAN of the actor does not have any
special information beyond its UAN.

Under the location-based message passing scheme, when the Message Man-
ager of a sender actor receives a message for a remote actor, it extracts the
current location of the receiver actor from its LAN and delivers the message to
the AA platform where the receiver actor exists. The rest of the procedure for
message passing is similar to that in the UAN-based message passing scheme.
Fig. 3.b shows how the location-based message passing scheme works. Actor one
with ual://C//A:15 sends its first message to actor two through the original
AA platform of actor two because actor one does not know the location of ac-
tor two. This message includes the location information about actor one as the
sender actor. Therefore, when actor two receives the message, it knows the loca-
tion of actor one, and it can now directly send a message to actor one. Similarly,
when actor one receives a message from actor two, it learns the location of actor
two. Finally, the two actors can directly communicate with each other without
mediation by their original AA platforms.

In order to use the LAN address scheme, the location information in a LAN
should be recent. However, mobile actors may move repeatedly, and a sender
actor may have old LANs of mobile actors. Thus a message for a mobile actor
may be delivered to its previous AA platform from where the actor left. This
problem is addressed by having the old AA platform deliver the message to the
original AA platform where the actor was created; the original platform always
manages the current addresses of its actors. When the receiver actor receives the
message delivered through its original AA platform, the actor may send a null

33



242 Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

b. Location−based Message Passing

Platform A Platform B Platform C

a. UAN−based Message Passing

Platform A Platform B Platform C

Actor one (uan://A:15) 
migrates to Platform C.

Agent two (uan://A:16) 
migrates to Platform B.

Agent one sends 
a message to actor two.

Agent two replies to
actor one.

a message to actor one.
Agent two sends 

Agent one replies to
actor two.

Actor one (uan://A:15) 
migrates to Platform C.

Agent two (uan://A:16) 
migrates to Platform B.

Agent one sends 
a message to actor two.

Agent two replies to
actor one.

a message to actor one.
Agent two sends 

Agent one replies to
actor two.

Fig. 3. Message Passing between Mobile Actors.

34



Efficient Agent Communication in Multi-agent Systems 243

message with its LAN to update its location at the sender actor. Therefore, the
sender actor can use the updated information for subsequent messages.

3.2 Delayed Message Passing

While a mobile actor is moving from one AA platform to another, the current AA
platform of the actor is not well defined. In AA, because the location information
of a mobile actor is updated after it finishes migration, its original AA platform
thinks the actor still exists on its old AA platform during migration. Therefore,
when the Message Manager of the original AA platform receives a message for
a mobile actor, it sends the message to the Message Manager of the old AA
platform thinking that it is still there. After the Message Manager of the old AA
platform receives the message, it forwards the message to the Message Manager
of the original AA platform. Thus, a message is continuously passed between
these two AA platforms until the mobile actor updates the Actor Manager of its
original AA platform with its new location.

In order to avoid unnecessary message thrashing, we use the Delayed Message
Manager in each AA platform. After the actor starts its migration, the Actor
Manager of the old AA platform changes its state to be Transit. From this
moment, the Delayed Message Manager of this platform holds messages for this
mobile actor until the actor reports that its migration has ended. After the mobile
actor finishes its migration, its new AA platform sends its old AA platform and
its original AA platform a message to inform them that the migration process
has ended. When these two AA platforms receive this message, the original AA
platform changes the state of the mobile actor from Transit to Remote while
the old AA platform removes all information about the mobile actor, and the
Delayed Message Manager of the old AA platform forwards the delayed messages
to the Message Manager of the new AA platform of the actor.

4 Active Brokering Service

An ATSpace supports active brokering services by allowing agents to send their
own search algorithms to be executed in the ATSpace address space [14]. We
compare this service to current middle agent services.

Many middle agents are based on attribute-based communication. Service
agents register themselves with the middle agent by sending a tuple whose at-
tributes describe the service they advertise. To find the desired service agents, a
client agent supplies a tuple template with constraints on attributes. The middle
agent then tries to find service agents whose registered attributes match the sup-
plied constraints. Systems vary more or less according to the types of constraints
(primitives) they support. Typically, a middle agent provides exact matching or
regular expression matching [2, 11, 17]. As we mentioned earlier, this solution
suffers from a lack of expressiveness and incomplete information.

For example, consider a middle agent with information about seller agents.
Each service agent (seller) advertises itself with the following attributes <actor

35



244 Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

name, seller city, product name, product price>. A client agent with the
following query is stuck:

Q1: What are the best two (in terms of price) sellers that offer computers and
whose locations are roughly within 50 miles of me?

Considering the current tuple space technology, the operator “best two” is
clearly not supported (expressiveness problem). Morever, the tuple space does
not include distance information between cities (incomplete information prob-
lem). Faced with these difficulties, a user with this complex query Q1 has to
transform it into a simpler one that is accepted by the middle agent which re-
trieves a superset of the data to be retrieved by Q1. In our example, a simpler
query could be:

Q2: Find all tuples about sellers that sell computers.

An apparent disadvantage of the above approach is the movement of a large
amount of data from the middle agent space to the buyer agent, especially if Q2
is semantically distant from Q1. In order to reduce communication overhead,
ATSpace allows a sender agent to send its own search algorithm to find service
agents, and the algorithm is executed in the ATSpace. In our example, the buyer
agent would send a search object that would inspect tuples in the middle agent
and select the best two sellers that satisfy the buyer criteria.

4.1 Security Issues

Although active brokering services mitigate the limitations of middle agents, such
as brokers or matchmakers, they also introduce the following security problems
in ATSpaces:

– Data Integrity: A search object may not modify tuples owned by other actors.
– Denial of Service: A search object may not consume too much processing

time or space of an ATSpace, and a client actor may not repeatedly send
search objects to overload an ATSpace.

– Illegal Access : A search object may not carry out unauthorized accesses or
illegal operations.

We address the first problem by preventing the search object from modifying
tuple data of other actors. This is done by supplying methods of the search object
with a copy of the data in the ATSpace. However, when the number of tuples
in the ATSpace is large, this solution requires extra memory and computation
resources. Thus the ATSpace supports the option of delivering a shallow copy
of the original tuples to the search object at the risk of data being changed by
search objects as such scheme may compromise the data integrity.

To prevent malicious objects from exhausting the ATSpace computational
resource, we deploy user-level thread scheduling as depicted in Fig. 4. When
a search object arrives, the object is executed as a thread and its priority is

36



Efficient Agent Communication in Multi-agent Systems 245

job queues

priority

priority
high

priority

low

middle

Tuple Space Tuple Space Manager

ATSpace
Manager

ATSpace

tuple

tuple

tuple

obj.obj.

obj.obj.

obj.obj.

tuple

Fig. 4. Architecture of an ATSpace.

set to high. If the thread executes for a long time, its priority is continuously
downgraded. Moreover, if the running time of a search object exceeds a certain
limit, it may be destroyed by the tuple space manager.

To prevent unauthorized accesses, if the ATSpace is created with an access
key, then this key must accompany every message sent from client actors. In this
case, actors are allowed only to modify their own tuples. This prevents removal
or modification of tuples by unauthorized actors.

5 Experiments and Evaluation

The AA platforms and actors have been implemented in Java language to sup-
port operating system independent actor mobility. The Actor Architecture is
being used for large-scale UAV (Unmanned Aerial Vehicle) simulations. These
simulations investigate the effects of different collaborative behaviors among a
large number of micro UAVs during their surveillance missions over a large num-
ber of moving targets [15]. For our experiments, we have tested more than 1,000
actors on four computers: 500 micro UAVs, 500 targets, and other simulation
purpose actors are executed. The following two sections evaluate our solutions.

5.1 Optimized Message Delivery

According to our experiments, the location-based message passing scheme in AA
reduces the number of hops (over AA platforms) that a message for a mobile
actor goes through. Since an agent has the location information about its col-
laborating agents, the agent can carry this information when it moves from one
AA platform to another. With location-based message passing, the system is
more fault-tolerant; since messages for a mobile actor need not pass through the
original AA platform of the actor, the messages may be correctly delivered to
the actor even when the actor’s original AA platform is not working correctly.

37



246 Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

Moreover, delayed message passing removes unnecessary message thrashing
for moving agents. When delayed message passing is used, the old AA platform
of a mobile actor needs to manage its state information until the actor finishes
its migration, and the new platform of the mobile actor needs to report the
migration state of the actor to its old AA platforms. In our experiments, this
overhead is more than compensated; without delayed message passing the same
message may get delivered seven or eight times between the original AA platform
and the old AA platform while a mobile actor is moving. If a mobile actor takes
more time for its migration, this number may be even greater.

5.2 Active Brokering Service

The performance benefit of ATSpace can be measured by comparing its active
brokering services with the data retrieval services of a template-based general
middle agent supporting the same service along four different dimensions: the
number of messages, the total size of messages, the total size of memory space
on the client and middle agent AA platforms, and the computation time for the
whole operation. To analytically evaluate ATSpaces, we will use the scenario
mentioned in section 4 where a service requesting agent has a complex query
that is not supported by the template-based model.

First, with the template-based service, the number of messages is n+2 where
n is the number of service agents that satisfy a complex query. This is because the
service requesting agent has to first send a message to the middle agent to bring a
superset of its final result. This costs two messages: a service request message to
the middle agent (Service Requesttemplate) that contains Q2 and a reply mes-
sage that contains agent information satisfying Q2 (Service Replytemplate).
Finally, the service requesting agent sends n messages to the service agents that
match its original criteria. With the active brokering service, the total number
of messages is n+1. This is because the service requesting agent need not worry
about the complexity of his query and only sends a service request message
(Service RequestATSpace) to the ATSpace. This message contains the code
that represents its criteria along with the message that should be sent to the
agents which satisfy these criteria. The last n messages have the same explana-
tion as in the template-based service.

While the number of messages in the two approaches does not differ that
much, the total size of these messages may have a huge difference. In both
approaches, a set of n messages needs to be sent to the agents that satisfy the
final matching criteria. Therefore, the question of whether or not active brokering
services result in bandwidth saving depends on the relative size of the other
messages. Specifically the difference in bandwidth consumption (DBC ) between
the template-based middle agent and the ATSpace is given by the following
equation:

DBC = [size(Service Requesttemplate) −
size(Service RequestATSpace)] +

size(Service Replytemplate)

38



Efficient Agent Communication in Multi-agent Systems 247

In general, since the service request message in active brokering services is
larger as it has the search object, the first component is negative. Therefore,
active brokering services will only result in a bandwidth saving if the increase in
the size of its service request message is smaller than the size of the service reply
message in the template-based service. This is likely to be true if the original
query (Q1) is complex such that turning it into a simpler one (Q2) to retrieve
a superset of the result would incur a great semantic loss and as such would
retrieve much extra agent information from the middle agent.

Third, the two approaches put a conflicting requirement on the amount of
space needed on both the client and middle agent machines. In the template-
based approach the client agent needs to provide extra space to store the tuples
returned by Q2. On the hand, the ATSpace needs to provide extra space to store
copies of tuples given to search objects. However, a compromise can be made
here as the creator of the ATSpace can choose to use the shallow copy of tuples.

Fourth, the difference in computation times of the whole operation in the two
approaches depends on two factors: the time for sending messages and the time
for evaluating queries on tuples. The tuples in the ATSpace are only inspected
once by the search object sent by the service requesting agent. However, in the
template-based middle agent, some tuples are inspected twice. First, in order
to evaluate Q2, the middle agent needs to inspect all the tuples that it has.
Second, these tuples that satisfy Q2 are sent back to the service requesting
agent to inspect them again and retain only those tuples that satisfy Q1. If Q1
is complex then Q2 will be semantically distant from Q1, which in turns has two
ramifications. First, the time to evaluate Q2 against all the tuples in the middle
agent is small relative to the time needed to evaluate the search object over them.
Second, most of the tuples on the middle agent would pass Q2 and be sent back
to be re-evaluated by the service requesting agent. This reevaluation has nearly
the same complexity as running the search object code. Thus we conclude that
when the original query is complex and external communication cost is high, the
active brokering service will result in time saving.

Apart from the above analytical evaluation, we have run a series of experi-
ments on the UAV simulation to substantiate our claims. (Interested readers may
refer to [13] for more details.) Fig. 5 demonstrates the saving in computational
time of an ATSpace compared to a template-based middle agent that provides
data retrieval services with the same semantic. Fig. 6 shows the wall clock time
ratio of a template-based middle agent to an ATSpace. In these experiments,
UAVs use either active brokering services or data retrieval services to find their
neighboring UAVs. In both cases, the middle agent includes information about
locations of UAVs and targets. In case of the active brokering service, UAVs send
search objects to an ATSpace while the UAVs using data retrieval service send
tuple templates. The simulation time for each run is around 35 minutes, and the
wall clock time depends on the number of agents. When the number of agents
is small, the difference between the two approaches is not significant. However,
as the number of agents is increased, the difference becomes large.

39



248 Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

200 400 600 800 1000
0

100

200

300

400

500

600

Number of Agents

W
al

l C
lo

ck
 T

im
e 

(M
in

)

ATSpace
Template−based Middle Agent

Fig. 5. Wall Clock Time (Min) for
ATSpace and Template-based Middle
Agent.

200 400 600 800 1000
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

Number of Agents

W
al

l C
lo

ck
 T

im
e 

R
at

io

Fig. 6. Wall Clock Time Ratio
of Template-based Middle Agent-to-
ATSpace.

Fig. 7 depicts the number of messages required in both cases. The number
of messages in the two approaches is quite similar but the difference is slightly
increased according to the number of agents. Note that the messages increase
almost linearly with the number of agents, and that the difference in the number
of messages for a template-based middle agent and an ATSpace is small; it is in
fact less than 0.01% in our simulations.

200 400 600 800 1000
0

2

4

6

8

10

12

14

16

18

20

22

Number of Agents

N
um

be
r 

of
 M

es
sa

ge
s 

(M
)

ATSpace
Template−based Middle Agent

Fig. 7. The Number of Messages for ATSpace and Template-based Middle Agent.

Fig. 8 shows the total message size required in the two approaches, and Fig. 9
shows the total message size ratio. When the search queries are complex, the total
message size in the ATSpace approach is much less than that in the template-
based middle agent approach. In our UAV simulation, search queries are rather
complex and require heavy mathematical calculations, and hence, the ATSpace
approach results in a considerable bandwidth saving. It is also interesting to
note the relationship between the whole operation time (as shown in Fig. 5) and
the bandwidth saving (as shown in Fig. 8). This relationship supports our claim

40



Efficient Agent Communication in Multi-agent Systems 249

200 400 600 800 1000
0

5

10

15

20

25

30

35

Number of Agents

T
ot

al
 S

iz
e 

of
 M

es
sa

ge
s 

(G
B

yt
es

)

ATSpace
Template−based Middle Agent

Fig. 8. Total Message Size (GBytes)
for ATSpace and Template-based
Middle Agent.

200 400 600 800 1000
1.2

1.3

1.4

1.5

1.6

1.7

1.8

Number of Agents

T
ot

al
 S

iz
e 

of
 M

es
sa

ge
 R

at
io

Fig. 9. Total Message Size Ratio
for Template-based Middle Agent-
to-ATSpace.

that the saving in the total operation time by the ATSpace is largely due to its
superiority in efficiently utilizing the bandwidth.

6 Related Work

The basic mechanism of location-based message passing is similar to the mes-
sage passing in Mobile IP [20], although its application domain is different. The
original and current AA platforms of a mobile actor correspond to the home and
foreign agents of a mobile client in Mobile IP, and the UAN and LAN of a mo-
bile actor are similar to the home address and care-of address of a mobile client
in Mobile IP. However, while the sender node in Mobile IP manages a binding
cache to map home addresses to care-of addresses, the sender AA platform in
AA does not have a mapping table. Another difference is that in mobile IP, the
home agent communicates with the sender node to update the binding cache.
However, in AA this update can be done by the agent itself when it sends a
message that contains its address.

The LAN (Location-based Actor Name) may also be compared to UAL (Uni-
versal Actor Locator) in SALSA [27]. In SALSA, UAL represents the location of
an actor. However, SALSA uses a middle agent called Universal Actor Naming
Server to locate the receiver actor. SALSA’s approach requires the receiver ac-
tor to register its location at a certain middle agent, and the middle agent must
manage the mapping table.

The ATSpace approach, which is based on the tuple space model, is related
to Linda [6]. In the Linda model, processes communicate with other processes
through a shared common space called a blackboard or a tuple space without
considering references or names of other processes [6, 21]. This approach was used
in several agent frameworks, for example EMAF [3] and OAA [8]. However, these
models support only primitive features for pattern-based communication among
processes or agents. From the middle agent perspective, Directory Facilitator in

41



250 Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

the FIPA platform [10], ActorSpace [2], and Broker Agent in InfoSleuth [16] are
related to our research. However, these systems do not support customizable
matching algorithms.

From the expressiveness perspective, some work has been done to extend
the matching capability of the basic tuple space model. Berlinda [26] allows a
concrete entry class to extend the matching function, and TS [12] uses policy
closures in a Scheme-like language to customize the behavior of tuple spaces.
However, these approaches do not allow the matching function to be changed
during execution time. At the other hand, OpenSpaces [9] provides a mechanism
to change matching polices during the execution time. OpenSpaces groups en-
tries in its space into classes and allows each class to have its individual matching
algorithm. A manager for each class of entries can change the matching algo-
rithm during execution time. All agents that use entries under a given class are
affected by any change to its matching algorithm. This is in contrast to the
ATSpace where each agent can supply its own matching algorithm without af-
fecting other agents. Another difference between OpenSpaces and ATSpaces is
that the former requires a registration step before putting the new matching
algorithm into action, but ATSpace has no such requirement.

Object Space [22] allows distributed applications implemented in the C++
programming language to use a matching function in its template. This matching
function is used to check whether an object tuple in the space is matched with the
tuple template given in rd and in operators. However, in the ATSpace the client
agent supplied search objects can have a global overview of the tuples stored
in the shared space and hence can support global search behavior rather than
the one tuple based matching behavior supported in Object Space. For example,
using the ATSpace a client agent can find the best ten service agents according
to its criteria whereas this behavior cannot be achieved in Object Space.

TuCSoN [19] and MARS [5] provide programmable coordination mechanisms
for agents through Linda-like tuple spaces to extend the expressive power of tu-
ple spaces. However, they differ in the way they approach the expressiveness
problem; while TuCSoN and MARS use reactive tuples to extend the expres-
sive power of tuple spaces, the ATSpace uses search objects to support search
algorithms defined by client agents. A reactive tuple handles a certain type of
tuples and affects various clients, whereas a search object handles various types
of tuples and affects only its creator agent. Therefore, while TuCSoN and MARS
extend the general search ability of middle agents, ATSpace supports application
agent-oriented searching on middle agents.

Mobile Co-ordination [23] allows agents to move a set of multiple tuple space
access primitives to a tuple space for fault tolerance. In Jada [7], one primitive
may use multiple matching templates. In ObjectPlaces [24], dynamic objects are
used to change their state whenever corresponding objecplace operations are
being called. Although these approaches improve the searching ability of tuple
spaces with a set of search templates or dynamic objects, ATSpace provides
more flexibility to application agents with their own search code.

42



Efficient Agent Communication in Multi-agent Systems 251

7 Conclusion and Future Work

In this papers we addressed two closely related agent communication issues: effi-
cient message delivery and service agent discovery. Efficient message delivery has
been addressed using two techniques. First, the agent naming scheme has been
extended to include the location information of mobile agents. Second, messages
whose destination agent is moving are postponed by the Delayed Message Man-
ager until the agent finishes its migration. For efficient service agent discovery,
we have addressed the ATSpace, Active Tuple Space. By allowing application
agents to send their customized search algorithms to the ATSpace, application
agents may efficiently find service agents. We have synthesized our solutions to
the mobile agent addressing and service agent discovery problems in a multi-
agent framework.

The long term goal of our research is to build an environment that allows for
experimental study of various issues that pertains to message passing and ser-
vice agent discovery in open multi-agent systems and provide a principled way
of studying possible tensions that arise when trying to simultaneously optimize
each service. Other future directions include the followings: for efficient message
passing, we plan to investigate various trade-offs in using different message pass-
ing schemes for different situations. We also plan to extend the Delayed Message
Manager to support mobile agents who are contiguously moving between nodes.
For service agent discovery, we plan to elaborate on our solutions to the security
issues introduced with active brokering services.

Acknowledgements

The authors would like to thank the anonymous reviewers and Naqeeb Abbasi
for their helpful comments and suggestions. This research is sponsored by the
Defense Advanced Research Projects Agency under contract number F30602-00-
2-0586.

References

1. G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, 1986.

2. G. Agha and C.J. Callsen. ActorSpaces: An Open Distributed Programming
Paradigm. In Proceedings of the 4th ACM Symposium on Principles and Prac-
tice of Parallel Programming, pages 23–32, May 1993.

3. S. Baeg, S. Park, J. Choi, M. Jang, and Y. Lim. Cooperation in Multiagent
Systems. In Intelligent Computer Communications (ICC ’95), pages 1–12, Cluj-
Napoca, Romania, June 1995.

4. F. Bellifemine, A. Poggi, and G. Rimassa. JADE - A FIPA-compliant Agent
Framework. In Proceedings of Practical Application of Intelligent Agents and Multi-
Agents (PAAM ’99), pages 97–108, London, UK, April 1999.

5. G. Cabri, L. Leonardi, and F. Zambonelli. MARS: a Programmable Coordination
Architecture for Mobile Agents. IEEE Computing, 4(4):26–35, 2000.

43



252 Myeong-Wuk Jang, Amr Ahmed, and Gul Agha

6. N. Carreiro and D. Gelernter. Linda in Context. Communications of the ACM,
32(4):444–458, 1989.

7. P. Ciancarini and D. Rossi. Coordinating Java Agents over the WWW. World
Wide Web, 1(2):87–99, 1998.

8. P.R. Cohen, A.J. Cheyer, M. Wang, and S. Baeg. An Open Agent Architecture.
In AAAI Spring Symposium, pages 1–8, March 1994.

9. S. Ducasse, T. Hofmann, and O. Nierstrasz. OpenSpaces: An Object-Oriented
Framework for Reconfigurable Coordination Spaces. In A. Porto and G.C. Roman,
editors, Coordination Languages and Models, LNCS 1906, pages 1–19, Limassol,
Cyprus, September 2000.

10. Foundation for Intelligent Physical Agents. SC00023J: FIPA Agent Management
Specification, December 2002. http://www.fipa.org/specs/fipa00023/.

11. N. Jacobs and R. Shea. The Role of Java in InfoSleuth: Agent-based Exploita-
tion of Heterogeneous Information Resources. In Proceedings of Intranet-96 Java
Developers Conference, April 1996.

12. S. Jagannathan. Customization of First-Class Tuple-Spaces in a Higher-Order Lan-
guage. In Proceedings of the Conference on Parallel Architectures and Languages
- Vol. 2, LNCS 506, pages 254–276. Springer-Verlag, 1991.

13. M. Jang, A. Ahmed, and G. Agha. A Flexible Coordination Framework for
Application-Oriented Matchmaking and Brokering Services. Technical Report
UIUCDCS-R-2004-2430, Department of Computer Science, University of Illinois
at Urbana-Champaign, 2004.

14. M. Jang, A. Abdel Momen, and G. Agha. ATSpace: A Middle Agent to Support
Application-Oriented Matchmaking and Brokering Services. In IEEE/WIC/ACM
IAT(Intelligent Agent Technology)-2004, pages 393–396, Beijing, China, September
20-24 2004.

15. M. Jang, S. Reddy, P. Tosic, L. Chen, and G. Agha. An Actor-based Simulation
for Studying UAV Coordination. In 15th European Simulation Symposium (ESS
2003), pages 593–601, Delft, The Netherlnds, October 26-29 2003.

16. R.J. Bayardo Jr., W. Bohrer, R. Brice, A. Cichocki, J. Fowler, A. Helal,
V. Kashyap, T. Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz,
R. Shea, C. Unnikrishnan, A. Unruh, and D. Woelk. InfoSleuth: Agent-Based
Semantic Integration of Information in Open and Dynamic Environments. ACM
SIGMOD Record, 26(2):195–206, June 1997.

17. D.L. Martin, H. Oohama, D. Moran, and A. Cheyer. Information Brokering in
an Agent Architecture. In Proceedings of the Second International Conference on
the Practical Application of Intelligent Agents and Multi-Agent Technology, pages
467–489, London, April 1997.

18. D.G.A. Mobach, B.J. Overeinder, N.J.E. Wijngaards, and F.M.T. Brazier. Man-
aging Agent Life Cycles in Open Distributed Systems. In Proceedings of the 2003
ACM symposium on Applied Computing, pages 61–65, Melbourne, Florida, 2003.

19. A. Omicini and F. Zambonelli. TuCSoN: a Coordination Model for Mobile In-
formation Agents. In Proceedings of the 1st Workshop on Innovative Internet
Information Systems, Pisa, Italy, June 1998.

20. C.E. Perkins. Mobile IP. IEEE Communications Magazine, 35:84–99, May 1997.
21. K. Pfleger and B. Hayes-Roth. An Introduction to Blackboard-Style Systems Orga-

nization. Technical Report KSL-98-03, Stanford Knowledge Systems Laboratory,
January 1998.

22. A. Polze. Using the Object Space: a Distributed Parallel make. In Proceedings
of the 4th IEEE Workshop on Future Trends of Distributed Computing Systems,
pages 234–239, Lisbon, September 1993.

44



Efficient Agent Communication in Multi-agent Systems 253

23. A. Rowstron. Mobile Co-ordination: Providing Fault Tolerance in Tuple Space
Based Co-ordination Languages. In Proceedings of the Third International Con-
ference on Coordination Languages and Models, pages 196–210, 1999.

24. K. Schelfthout and T. Holvoet. ObjectPlaces: An Environment for Situated Multi-
Agent Systems. In Third International Joint Conference on Autonomous Agents
and Multiagent Systems - Volume 3 (AAMAS’04), pages 1500–1501, New York
City, New York, July 2004.

25. K. Sycara, K. Decker, and M. Williamson. Middle-Agents for the Internet. In
Proceedings of the 15th Joint Conference on Artificial Intelligences (IJCAI-97),
pages 578–583, 1997.

26. R. Tolksdorf. Berlinda: An Object-oriented Platform for Implementing Coordi-
nation Language in Java. In Proceedings of COORDINATION ’97 (Coordination
Languages and Models), LNCS 1282, pages 430–433. Pringer-Verlag, 1997.

27. C.A. Varela and G. Agha. Programming Dynamically Reconfigurable Open Sys-
tems with SALSA. ACM SIGPLAN Notices: OOPSLA 2001 Intriguing Technology
Track, 36(12):20–34, December 2001.

28. M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons, Ltd,
2002.

45



Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Online Efficient Predictive Safety Analysis of Multithreaded
Programs

Koushik Sen and Grigore Roşu and Gul Agha
Department of Computer Science,
University of Illinois at Urbana-Champaign.
{ksen,grosu,agha}@cs.uiuc.edu

Received: date / Revised version: date

Abstract. We present an automated and configurable
technique for runtime safety analysis of multithreaded
programs which is able to predict safety violations from
successful executions. Based on a formal specification of
safety properties that is provided by a user, our tech-
nique enables us to automatically instrument a given
program and create an observer so that the program
emits relevant state update events to the observer and
the observer checks these updates against the safety
specification. The events are stamped with dynamic vec-
tor clocks, enabling the observer to infer a causal partial
order on the state updates. All event traces that are
consistent with this partial order, including the actual
execution trace, are then analyzed online and in para-
llel. A warning is issued whenever one of these potential
trace violates the specification. Our technique is scal-
able and can provide better coverage than conventional
testing but its coverage need not be exhaustive. In fact,
one can trade-off scalability and comprehensiveness: a
window in the state space may be specified allowing the
observer to infer some of the more likely runs; if the size
of the window is 1 then only the actual execution trace
is analyzed, as is the case in conventional testing; if the
size of the window is ∞ then all the execution traces
consistent with the actual execution trace are analyzed.

1 Introduction

In multithreaded systems, threads can execute concur-
rently communicating with each other through a set of
shared variables, yielding an inherent potential for sub-
tle errors due to unexpected interleavings. Both rigor-
ous and light-weight techniques to detect errors in mul-
tithreaded systems have been extensively investigated.
Rigorous techniques include formal methods, such as

model checking and theorem proving, which by exploring
–directly or indirectly– all possible thread interleavings,
guarantee that a formal model of the system satisfies its
safety requirements. Unfortunately, despite impressive
recent advances, the size of systems for which model
checking or automatic theorem proving is feasible re-
mains rather limited. As a result, most system builders
continue to use light-weight techniques such as testing
to identify bugs in their implementations.

There are two problems with software testing. First,
testing is generally done in an ad hoc manner: the soft-
ware developer must hand-translate the requirements
into specific dynamic checks on the program state. Sec-
ond, test coverage is often rather limited, covering only
some execution paths: if an error is not exposed by a par-
ticular test case then that error is not detected. To mit-
igate the first problem, software often includes dynamic
checks on a system’s state in order to identify problems
at run-time. To ameliorate the second problem, many
techniques increase test coverage by developing test-case
generation methods that generate test cases which may
reveal potential errors with high probability [6,15,26].

Based on experience with related techniques and
tools, namely Java PathExplorer (JPaX) [12] and
its sub-system Eagle [2], we have proposed in [22,23]
an alternative approach, called predictive runtime anal-
ysis. The essential idea of this analysis technique is as
follows. Suppose that a multithreaded program has a
safety error, such as a violation of a temporal property,
a deadlock, or a data-race. As in testing, we execute the
program on some carefully chosen input (a test case).
Suppose that the error is not revealed during a par-
ticular execution, i.e., the execution is successful with
respect to that bug. If one regards the execution of a
program as a flat, sequential trace of events or states,
as in NASA’s JPaX system [12], University of Pennsyl-
vania’s Java-MaC [14], Bell Labs’ PET [11], Nokia’s
Third Eye framework [16] inspired by Logic Assurance

46

goodelle
Text Box
Appendix C: 



2 K. Sen and G. Roşu and G. Agha: Online Efficient Predictive Safety Analysis of Multithreaded Programs

system [24], or the commercial analysis systems Tempo-
ral Rover and DBRover [7–9], then there is not much left
to do to find the error except to run another, hopefully
better, test case. However, by observing the execution
trace in a smarter way, namely as a causal dependency
partial order on state updates, we can predict errors that
may potentially occur in other possible runs of the mul-
tithreaded program.

Our technique merges testing and formal methods
to obtain some of the advantages of both while avoid-
ing the pitfalls of ad hoc testing and the complexity of
full-blown formal verification. Specifically, we develop a
runtime verification technique for safety analysis of mul-
tithreaded systems that can be tuned to analyze a num-
ber of traces that are consistent with an actual execution
of the program. Two extreme instances of our technique
involve checking all or one of the variant traces:

– If all traces are checked then it becomes equivalent
to online model checking of an abstract model of the
program, called the multithreaded computation lat-
tice, extracted from the actual execution trace of the
program, like in POTA [19] or JMPaX [22].

– If only one trace is considered, then our technique
becomes equivalent to checking just the actual exe-
cution of the multithreaded program, as is done in
testing or like in other runtime analysis tools like
MaC [14] and PaX [12,2].

In general, depending on the application, one can
configure a window within the state space to be explored
which, intuitively speaking, provides a causal distance
from the observed execution within which all traces are
exhaustively verified. We call such a window a causality
cone. An appealing aspect of our technique is that all
these traces can be analyzed online, as the events are
received from the running program, and in parallel. The
worst case cost of such an analysis is proportional to
both the size of the window and the size of the state
space of the monitor.

There are three important interrelated components
in our runtime verification technique. Our algorithm syn-
thesizes these components automatically from the safety
specification:

Instrumentor. The code instrumentor, based on the
safety specification, entirely automatically adds code
to emit events when relevant state updates occur.

Observer. The observer receives the events from the in-
strumented program as they are generated, enqueues
them and then builds a configurable abstract model
of the system, known as a computation lattice, on a
layer-by-layer basis.

Monitor. As layers are completed, the monitor checks
them against the safety specification and then dis-
cards them.

The concepts and notions presented in this paper
have been experimented and tested on JMPaX 2.0, a

prototype monitoring system for Java programs that we
have built. JMPaX 2.0 extends its predecessor JMPaX
in at least four non-trivial novel ways:

– The technical notion of dynamic vector clock is in-
troduced, which allows us to properly deal with the
dynamic creation and destruction of threads.

– The variables that are shared between threads need
not be static: an automatic instrumentation tech-
nique has been devised that detects automatically
when a variable is shared.

– The notion of cone heuristic, or global state window,
is introduced. The cone heuristic enables us to in-
crease the runtime efficiency by analyzing the most
likely states in the computation lattice and tune how
comprehensive we wish to be.

– The runtime prediction paradigm used is indepen-
dent of the safety formalism, in the sense that it al-
lows the user to specify any safety property whose
bad prefixes can be expressed as a non-deterministic
finite automaton (NFA).

Part of this work was presented at the 10th International
Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’04) [23].

2 Monitors for Safety Properties

Safety properties are a very important, if not the most
important, class of properties that one should consider
in monitoring. This is because once a system violates
a safety property, there is no way to continue its exe-
cution to satisfy the safety property later. Therefore, a
monitor for a safety property can precisely say at run-
time when the property has been violated, so that an
external recovery action can be taken. From a monitor-
ing perspective, what is needed from a safety formula is
a succinct representation of its bad prefixes, which are
finite sequences of states leading to a violation of the
property. Therefore, one can abstract away safety prop-
erties by languages over finite words.

Automata are a standard means to succinctly rep-
resent languages over finite words. In what follows we
define a suitable version of automata, called monitor,
with the property that it has a “bad” state from which
it never gets out:

Definition 1. Let S be a finite or infinite set, that can
be thought of as the set of states of the program to be
monitored. Then an S-monitor or simply a monitor, is
a tuple Mon = 〈M,m0, b, ρ〉, where

– M is the set of states of the monitor;
– m0 ∈M is the initial state of the monitor;
– b ∈ M is the final state of the monitor, also called

bad state; and

47



K. Sen and G. Roşu and G. Agha: Online Efficient Predictive Safety Analysis of Multithreaded Programs 3

– ρ : M × S → 2M is a non-deterministic transition
relation with the property that ρ(b,Σ) = {b} for any
Σ ∈ S.

Sequences in S?, where ε is the empty one, are called
(execution) traces. A trace π is said to be a bad prefix
in Mon iff b ∈ ρ({m0}, π), where ρ : 2M × S? → 2M

is recursively defined as ρ(M, ε) = M and ρ(M, πΣ) =
ρ(ρ(M,π), Σ), where ρ : 2M × S → 2M is defined as
ρ({m} ∪ M, Σ) = ρ(m,Σ) ∪ ρ(M, Σ) and ρ(∅, Σ) = ∅,
for all finite M ⊆M and Σ ∈ S.

M is not required to be finite in the above definition,
but 2M represents the set of finite subsets of M. In
practical situations it is often the case that the monitor is
not explicitly provided in a mathematical form as above.
For example, a monitor can be a specific type of program
whose execution is triggered by receiving events from
the monitored program; its state can be given by the
values of its local variables, and the bad state is a fixed
unique state which once reached cannot be changed by
any further events.

There are fortunate situations in which monitors can
be automatically generated from formal specifications,
thus requiring the user to focus on system’s formal safety
requirements rather than on low level implementation
details. In fact, this was the case in all the experiments
that we have performed so far. We have so far experi-
mented with requirements expressed either in extended
regular expressions (ERE) or various variants of tempo-
ral logics, with both future and past time. For example,
[20,21] show coinductive techniques to generate mini-
mal static monitors from EREs and from future time
linear temporal logics, respectively, and [13,2] show how
to generate dynamic monitors, i.e., monitors that gen-
erate their states on-the-fly, as they receive the events,
for the safety segment of temporal logic. Note, however,
that there may be situations in which the generation of
a monitor may not be feasible, even for simple require-
ments languages. For example, it is well-known that the
equivalent automaton of an ERE may be non-elementary
larger in the worst case [25]; therefore, there exist rela-
tively small EREs whose monitors cannot even be stored.

Example 1. Consider a reactive controller that main-
tains the water level of a reservoir within safe bounds. It
consists of a water level reader and a valve controller.
The water level reader reads the current level of the
water, calculates the quantity of water in the reservoir
and stores it in a shared variable w. The valve controller
controls the opening of a valve by looking at the cur-
rent quantity of water in the reservoir. A very simple
and naive implementation of this system contains two
threads: T1, the valve controller, and T2, the water level
reader. The code snippet is given in Fig. 1.

Here w is in some proper units such as mega gallons
and v is in percentage. The implementation is poorly
synchronized and it relies on ideal thread scheduling.

Thread T1: Thread T2:

while(true) { while(true) {
if(w > 18) delta = 10; l = readLevel();

else delta = -10; w = calcVolume(l);

for(i=0; i<2; i++) { sleep(100);

v = v + delta; }
setValveOpening(v);

sleep(100);

}
}

5

0 {}

1

{~p}

2

{p,~q}

{q,~r}

{p,~q}

3

{p,~q,~r}

4

{q}

{q}

{p,~q}

{q,~r}

{q}

Fig. 1. Two threads (T1 controls the valve and T2 reads the water
level) and a monitor.

A sample run of the system can be {w = 20, v =
40}, {w = 24}, {v = 50}, {w = 27}, {v = 60}, {w =
31}, {v = 70}. As we will see later in the paper, by a
run we here mean a sequence of relevant variable writes.
Suppose we are interested in a safety property that says
“If the water quantity is more than 30 mega gallons, then
it is the case that sometime in the past water quantity
exceeded 26 mega gallons and since then the valve is
open by more than 55% and the water quantity never
went down below 26 mega gallon”. We can express this
safety property in two different formalisms: linear tem-
poral logic (LTL) with both past-time and future-time
operators, or extended regular expressions (EREs) for
bad prefixes. The atomic propositions that we will con-
sider are p : (w > 26), q : (w > 30), r : (v > 55). The
properties can be written as follows:

F1 = ¤(q → ((r ∧ p)S ↑p))
F2 = {}∗{¬p}{p,¬q}+

({p,¬q,¬r}{p,¬q}∗{q}+ {q}∗{q,¬r}){}∗

The formula F1 in LTL (↑ p is a shorthand for “p
and previously not p”) states that “It is always the case
that if (w > 30) then at some time in the past (w > 26)
started to be true and since then (r > 55) and (w > 26).”

48



4 K. Sen and G. Roşu and G. Agha: Online Efficient Predictive Safety Analysis of Multithreaded Programs

The formula F2 characterizes the prefixes that make F1

false. In F2 we use {p,¬q} to denote a state where p and
¬q holds and r may or may not hold. Similarly, {} rep-
resents any state of the system. The monitor automaton
for F2 is given also in Fig. 1.

3 Multithreaded Programs

We consider multithreaded systems in which threads
communicate with each other via shared variables. A
crucial point is that some variable updates can causally
depend on others. We will describe an efficient dynamic
vector clock algorithm which, given an executing multi-
threaded program, generates appropriate messages to be
sent to an external observer. Section 4 will show how the
observer, in order to perform its more elaborated anal-
ysis, extracts the state update information from such
messages together with the causality partial order.

3.1 Multithreaded Executions and Shared Variables

A multithreaded program consists of n threads t1, t2, ...,
tn that execute concurrently and communicate with each
other through a set of shared variables. A multithreaded
execution is a sequence of events e1e2 . . . er generated by
the running multithreaded program, each belonging to
one of the n threads and having type internal, read or
write of a shared variable. We use ej

i to represent the
jth event generated by thread ti since the start of its
execution. When the thread or position of an event is
not important we can refer to it generically, such as e,
e′, etc.; we may write e ∈ ti when event e is generated
by thread ti. Let us fix an arbitrary but fixed multi-
threaded execution, say C, and let S be the set of all
variables that were shared by more than one thread in
the execution. There is an immediate notion of variable
access precedence for each shared variable x ∈ S: we say
e x-precedes e′, written e <x e′, iff e and e′ are variable
access events (reads or writes) to the same variable x,
and e “happens before” e′, that is, e occurs before e′ in
C. This can be realized in practice by keeping a counter
for each shared variable, which is incremented at each
variable access.

3.2 Causality and Multithreaded Computations

Let E be the set of events occurring in C and let ≺ be
the partial order on E :

– ek
i ≺ el

i if k < l;
– e ≺ e′ if there is x ∈ S with e <x e′ and at least one

of e, e′ is a write;
– e ≺ e′′ if e ≺ e′ and e′ ≺ e′′.

We write e||e′ if e 6≺ e′ and e′ 6≺ e. The tuple (E ,≺)
is called the multithreaded computation associated with

the original multithreaded execution C. Synchronization
of threads can be easily and elegantly taken into con-
sideration by just generating dummy read/write events
when synchronization objects are acquired/released, so
the simple notion of multithreaded computation as de-
fined above is as general as practically needed. A permu-
tation of all events e1, e2, . . ., er that does not violate
the multithreaded computation, in the sense that the or-
der of events in the permutation is consistent with ≺, is
called a consistent multithreaded run, or simply, a mul-
tithreaded run.

A multithreaded computation can be thought of as
the most general assumption that an observer of the mul-
tithreaded execution can make about the system without
knowing what it is supposed to do. Indeed, an external
observer simply cannot disregard the order in which the
same variable is modified and used within the observed
execution, because this order can be part of the intrin-
sic semantics of the multithreaded program. However,
multiple consecutive reads of the same variable can be
permuted, and the particular order observed in the given
execution is not critical. As seen in Section 4, by allow-
ing an observer to analyze multithreaded computations
rather than just multithreaded executions, one gets the
benefit of not only properly dealing with potential re-
orderings of delivered messages (e.g., due to using mul-
tiple channels in order to reduce the monitoring over-
head), but especially of predicting errors from analyzing
successful executions, errors which can occur under a
different thread scheduling.

3.3 Relevant Causality

Some of the variables in S may be of no importance
at all for an external observer. For example, consider
an observer whose purpose is to check the property “if
(x > 0) then (y = 0) has been true in the past, and
since then (y > z) was always false”; formally, using
the interval temporal logic notation in [13], this can be
compactly written as (x > 0) → [y = 0, y > z). All the
other variables in S except x, y and z are essentially
irrelevant for this observer. To minimize the number of
messages, like in [17] which suggests a similar technique
but for distributed systems in which reads and writes
are not distinguished, we consider a subset R ⊆ E of
relevant events and define the R-relevant causality on
E as the relation / :=≺ ∩(R × R), so that e / e′ iff
e, e′ ∈ R and e ≺ e′. It is important to notice though
that the other variables can also indirectly influence the
relation /, because they can influence the relation ≺.
We next provide a technique based on vector clocks that
correctly implements the relevant causality relation.

3.4 Dynamic Vector Clock Algorithm

We provide a technique based on vector clocks [10,3,18,
1] that correctly and efficiently implements the relevant

49



K. Sen and G. Roşu and G. Agha: Online Efficient Predictive Safety Analysis of Multithreaded Programs 5

causality relation. Let V : ThreadId → Nat be a partial
map from thread identifiers to natural numbers. We call
such a map a dynamic vector clock (DVC) because its
partiality reflects the intuition that threads are dynam-
ically created and destroyed. To simplify the exposition
and the implementation, we assume that each DVC V is
a total map, where V [t] = 0 whenever V is not defined
on thread t.

We associate a DVC with every thread ti and denote
it by Vi. Moreover, we associate two DVCs V a

x and V w
x

with every shared variable x; we call the former access
DVC and the latter write DVC. All the DVCs Vi are kept
empty at the beginning of the computation, so they do
not consume any space. For DVCs V and V ′, we say
that V ≤ V ′ if and only if V [j] ≤ V ′[j] for all j, and we
say that V < V ′ iff V ≤ V ′ and there is some j such
that V [j] < V ′[j]; also, max{V, V ′} is the DVC with
max{V, V ′}[j] = max{V [j], V ′[j]} for each j. Whenever
a thread ti with current DVC Vi processes event ek

i , the
following algorithm A is executed:

1. if ek
i is relevant, i.e., if ek

i ∈ R, then
Vi[i] ← Vi[i] + 1

2. if ek
i is a read of a variable x then
Vi ← max{Vi, V

w
x }

V a
x ← max{V a

x , Vi}
3. if ek

i is a write of a variable x then
V w

x ← V a
x ← Vi ← max{V a

x , Vi}
4. if ek

i is relevant then
send message 〈ek

i , i, Vi〉 to observer.

In the following discussion we assume a fixed number
of threads n. In a program where threads can be created
and destroyed dynamically, we only consider the threads
that have causally affected the final values of the relevant
variables at the end of the computation. For the above
algorithm the following result holds:

Lemma 1. After event ek
i is processed by thread ti

(a) Vi[j] equals the number of relevant events of tj that
causally precede ek

i ; if j = i and ek
i is relevant then

this number also includes ek
i ;

(b) V a
x [j] equals the number of relevant events of tj that

causally precede the most recent event in C that ac-
cessed (read or wrote) x; if i = j and ek

i is a relevant
read or write of x event then this number also in-
cludes ek

i ;
(c) V w

x [j] equals the number of relevant events of tj that
causally precede the most recent write event of x; if
i = j and ek

i is a relevant write of x then this number
also includes ek

i .

To prove the above lemma we introduce some useful
formal notation and then state and prove the following
two lemmas. For an event ek

i of thread ti, let (ek
i ] be

the indexed set {(ek
i ]j}1≤j≤n, where (ek

i ]j is the set {el
j |

el
j ∈ tj , el

j ∈ R, el
j ≺ ek

i } when j 6= i and the set
{el

i | l ≤ k, el
i ∈ R} when j = i. Intuitively, (ek

i ] contains

all the events in the multithreaded computation that
causally precede or are equal to ek

i .

Lemma 2. With the notation above, for 1 ≤ i, j ≤ n:

1. (el′
j ]j ⊆ (el

j ]j if l′ ≤ l;

2. (el′
j ]j ∪ (el

j ]j = (emax{l′,l}
j ]j for any l and l′;

3. (el
j ]j ⊆ (ek

i ]j for any el
j ∈ (ek

i ]j; and
4. (ek

i ]j = (el
j ]j for some appropriate l.

Proof: 1. is immediate, because for any l′ ≤ l, any event
ek
j at thread tj preceding or equal to el′

j , that is one with
k ≤ l′, also precedes el

j .

2. follows by 1., because it is either the case that l′ ≤ l,
in which case (el′

j ]j ⊆ (el
j ]j , or l ≤ l′, in which case

(el
j ]j ⊆ (el′

j ]j . In either case 2. holds trivially.

3. There are two cases to analyze. If i = j then el
j ∈ (ek

i ]j
if and only if l ≤ k, so 3. becomes a special instance of
1.. If i 6= j then by the definition of (ek

i ]j it follows that
el
j ≺ ek

i . Since el′
j ≺ el

j for all l′ < l and since ≺ is
transitive, it follows readily that (el

j ]j ⊆ (ek
i ]j .

4. Since (ek
i ]j is a finite set of totally ordered events, it

has a maximum element, say el
j . Hence, (ek

i ]j ⊆ (el
j ]j .

By 3., one also has (el
j ]j ⊆ (ek

i ]j . ¤

Thus, by 4 above, one can uniquely and unambiguously
encode a set (ek

i ]j by just a number, namely the size of
the corresponding set (el

j ]j , i.e., the number of relevant
events of thread tj up to its lth event. This suggests that
if the DVC Vi maintained by A stores that number in
its jth component then (a) in Lemma 1 holds.

Before we formally show how reads and writes of
shared variables affect the causal dependency relation,
we need to introduce some notation. First, since a write
of a shared variable introduces a causal dependency be-
tween the write event and all the previous read or write
events of the same shared variable as well as all the
events causally preceding those, we need a compact way
to refer at any moment to all the read/write events of a
shared variable, as well as the events that causally pre-
cede them. Second, since a read event introduces a causal
dependency to all the previous write events of the same
variable as well as all the events causally preceding those,
we need a notation to refer to these events as well. For-

50



6 K. Sen and G. Roşu and G. Agha: Online Efficient Predictive Safety Analysis of Multithreaded Programs

mally, if ek
i is an event in a multithreaded computation

C and x ∈ S is a shared variable, then let

(ek
i ]ax =





The thread-indexed set of all the relevant
events that are equal to or causally precede
an event e accessing x, such that e occurs
before or it is equal to ek

i in C,

(ek
i ]wx =





The thread-indexed set of all the relevant
events that are equal to or causally precede
an event e writing x, such that e occurs
before or it is equal to ek

i in C.

It is obvious that (ek
i ]wx ⊆ (ek

i ]ax. Some or all of the
thread-indexed sets of events above may be empty. By
convention, if an event, say e, does not exist in C, then
we assume that the indexed sets (e], (e]ax, and (e]wx are all
empty (rather than “undefined”). Note that if V a

x and
V w

x in A store the corresponding numbers of elements in
the index sets of (ek

i ]ax and (ek
i ]wx immediately after event

ek
i is processed by thread ti, respectively, (b) and (c) in

Lemma 1 hold.
Even though the sets of events (ek

i ], (ek
i ]ax and (ek

i ]wx
have mathematically clean definitions, they are based
on total knowledge of the multithreaded computation
C. Unfortunately, C can be very large in practice, so
the computation of these sets may be inefficient if not
done properly. Since our analysis algorithms are online,
we would like to calculate these sets incrementally, as
the observer receives new events from the instrumented
program. A key factor in devising efficient update algo-
rithms is to find equivalent recursive definitions of these
sets, telling us how to calculate a new set of events from
similar sets that have been already calculated at previ-
ous event updates.

Let {ek
i }Ri be the indexed set whose j components are

empty for all j 6= i and whose ith component is either
the one element set {ek

i } when ek
i ∈ R or the empty set

otherwise. With the notation introduced, the following
important recursive properties hold:

Lemma 3. Let ek
i be an event in C and let el

j be the
event preceding1 it in C. If ek

i is

1. An internal event then
(ek

i ] = (ek−1
i ] ∪ {ek

i }Ri ,
(ek

i ]ax = (el
j ]

a
x, for any x ∈ S,

(ek
i ]wx = (el

j ]
w
x , for any x ∈ S;

2. A read of x event then
(ek

i ] = (ek−1
i ] ∪ {ek

i }Ri ∪ (el
j ]

w
x ,

(ek
i ]ax = (ek

i ] ∪ (el
j ]

a
x,

(ek
i ]ay = (el

j ]
a
y, for any y ∈ S with y 6= x,

(ek
i ]wz = (el

j ]
w
z , for any z ∈ S;

3. A write of x event then

1 If ek
i is the first event then we can assume that el

j does not
exist in C, so by convention all the associated sets of events are
empty

(ek
i ] = (ek−1

i ] ∪ {ek
i }Ri ∪ (el

j ]
a
x,

(ek
i ]ax = (ek

i ],
(ek

i ]wx = (ek
i ],

(ek
i ]ay = (el

j ]
a
y, for any y ∈ S with y 6= x,

(ek
i ]wy = (el

j ]
w
y , for any y ∈ S with y 6= x.

Proof: 1. For the first equality, first recall that ek
i ∈ (ek

i ]
if and only if ek

i is relevant. Therefore, it suffices to show
that e ≺ ek

i if and only if e ≺ ek−1
i for any relevant event

e ∈ R. Since ek
i is internal, it cannot be in relation <x

with any other event for any shared variable x ∈ S, so by
the definition of ≺, the only possibilities are that either
e is some event ek′

i of thread ti with k′ < k, or otherwise
there is such an event ek′

i of thread ti with k′ < k such
that e ≺ ek′

i . Hence, it is either the case that e is ek−1
i

(so ek−1
i is also relevant) or otherwise e ≺ ek−1

i . In any
of these cases, e ∈ (ek−1

i ]. The other two equalities are
straightforward consequences of the definitions of (ek

i ]ax
and (ek

i ]wx .

2. Like in the proof of 1., ek
i ∈ (ek

i ] if and only if ek
i ∈ R,

so it suffices to show that for any relevant event e ∈ R,
e ≺ ek

i if and only if e ∈ (ek−1
i ] ∪ (el

j ]
w
x . Since ek

i is a
read of x ∈ S event, by the definition of ≺ one of the
following must hold:

– e = ek−1
i . In this case ek−1

i is also relevant, so e ∈
(ek−1

i ];
– e ≺ ek−1

i . It is obvious in this case that e ∈ (ek−1
i ];

– e is a write of x event and e <x ek
i . In this case

e ∈ (el
j ]

w
x ;

– There is some write of x event e′ such that e ≺ e′

and e′ <x ek
i . In this case e ∈ (el

j ]
w
x , too.

Therefore, e ∈ (ek−1
i ] or e ∈ (el

j ]
a
x.

Let us now prove the second equality. By the defini-
tion of (ek

i ]ax, one has that e ∈ (ek
i ]ax if and only if e is

equal to or causally precedes an event accessing x ∈ S
that occurs before or is equal to ek

i in C. Since ek
i is a

read of x, the above is equivalent to saying that either
it is the case that e is equal to or causally precedes ek

i ,
or it is the case that e is equal to or causally precedes
an event accessing x that occurs strictly before ek

i in C.
Formally, the above is equivalent to saying that either
e ∈ (ek

i ] or e ∈ (el
j ]

a
x. If y, z ∈ S and y 6= x then one

can readily see (like in 1. above) that (ek
i ]ay = (el

j ]
a
y and

(ek
i ]az = (el

j ]
a
z .

3. It suffices to show that for any relevant event e ∈ R,
e ≺ ek

i if and only if e ∈ (ek−1
i ] ∪ (el

j ]
a
x. Since ek

i is a
write of x ∈ S event, by the definition of ≺ one of the
following must hold:

– e = ek−1
i . In this case ek−1

i ∈ R, so e ∈ (ek−1
i ];

– e ≺ ek−1
i . It is obvious in this case that e ∈ (ek−1

i ];
– e is an access of x event (read or write) and e <x ek

i .
In this case e ∈ (el

j ]
a
x;

– There is some access of x event e′ such that e ≺ e′

and e′ <x ek
i . In this case e ∈ (el

j ]
a
x, too.

51



K. Sen and G. Roşu and G. Agha: Online Efficient Predictive Safety Analysis of Multithreaded Programs 7

Therefore, e ∈ (ek−1
i ] or e ∈ (el

j ]
a
x.

For the second equality, note that, as for the sec-
ond equation in 2., one can readily see that e ∈ (ek

i ]ax
if and only if e ∈ (ek

i ] ∪ (el
j ]

a
x. But (el

j ]
a
x ⊆ (ek

i ], so the
above is equivalent to e ∈ (ek

i ]. A similar reasoning leads
to (ek

i ]wx = (ek
i ]. The equalities for y 6= x immediate,

because ek
i has no relation to accesses of other shared

variables but x. ¤

Since each component set of each of the indexed sets
in these recurrences has the form (ek

i ]i for appropriate
i and k, and since each (ek

i ]i can be safely encoded by
its size, one can then safely encode each of the above
indexed sets by an n-dimensional DVC; these DVCs are
precisely Vi for all 1 ≤ i ≤ n and V a

x and V w
x for all

x ∈ S. Therefore, (a), (b) and (c) of Lemma 1 holds.
An interesting observation is that one can regard the
problem of recursively calculating (ek

i ] as a dynamic pro-
gramming problem. As can often be done in dynamic
programming problems, one can reuse space and derive
the Algorithm A. The following theorem states that the
DVC algorithm correctly implements causality in multi-
threaded programs.

Theorem 1. If 〈e, i, V 〉 and 〈e′, i′, V ′〉 are two mes-
sages sent by A, then e/e′ if and only if V [i] ≤ V ′[i] (no
typo: the second i is not an i′) if and only if V < V ′.

Proof: First, note that e and e′ are both relevant. The
case i = i′ is trivial. Suppose i 6= i′. Since, by (a) of
Lemma 1, V [i] is the number of relevant events that ti
generated before and including e and since V ′[i] is the
number of relevant events of ti that causally precede e′,
it is clear that V [i] ≤ V ′[i] if and only if e ≺ e′. For the
second part, if e / e′ then V ≤ V ′ follows again by (a)
of Lemma 1, because any event that causally precedes
e also precedes e′. Since there are some indices i and
i′ such that e was generated by ti and e′ by ti′ , and
since e′ 6≺ e, by the first part of the theorem it follows
that V ′[i′] > V [i′]; therefore, V < V ′. For the other
implication, if V < V ′ then V [i] ≤ V ′[i], so the result
follows by the first part of the theorem. ¤

4 Runtime Model Generation and Predictive
Analysis

In this section we consider what happens at the ob-
server’s site. The observer receives messages of the form
〈e, i, V 〉. Because of Theorem 1, the observer can infer
the causal dependency between the relevant events emit-
ted by the multithreaded system. We show how the ob-
server can be configured to effectively analyze all pos-
sible interleavings of events that do not violate the ob-
served causal dependency online and in parallel. Only
one of these interleavings corresponds to the real execu-
tion, the others being all potential executions. Hence, the
presented technique can predict safety violations from
successful executions.

4.1 Multithreaded Computation Lattice

Inspired by related definitions in [1], we define the im-
portant notions of relevant multithreaded computation
and run as follows. A relevant multithreaded computa-
tion, simply called multithreaded computation from now
on, is the partial order on events that the observer can
infer, which is nothing but the relation /. A relevant
multithreaded run, also simply called multithreaded run
from now on, is any permutation of the received events
which does not violate the multithreaded computation.
Our major purpose in this paper is to check safety re-
quirements against all (relevant) multithreaded runs of
a multithreaded system.

We assume that the relevant events are only writes
of shared variables that appear in the safety formulae
to be monitored, and that these events contain a pair
of the name of the corresponding variable and the value
which was written to it. We call these variables relevant
variables. Note that events can change the state of the
multithreaded system as seen by the observer; this is for-
malized next. A relevant program state, or simply a pro-
gram state, is a map from relevant variables to concrete
values. Any permutation of events generates a sequence
of program states in the obvious way, however, not all
permutations of events are valid multithreaded runs. A
program state is called consistent if and only if there
is a multithreaded run containing that state in its se-
quence of generated program states. We next formalize
these concepts. For a given computation, let R be the
set of relevant events and / be the R-relevant causality
associated with the computation.

Definition 2 (Consistent Run). For a given permu-
tation of events in R, say R = e1e2 . . . e|R|, we say that
R is a consistent run if for all pairs of events e and e′,
e / e′ implies that e appears before e′ in R.

Let ek
i be the kth relevant event generated by the

thread ti since the start of its execution. A cut C is a
subset of R such that for all i ∈ [1, n] if ek

i is present
in C then for all l < k, el

i is also present in C. A cut
is denoted by a tuple (ek1

1 , ek2
2 , ..., ekn

n ) where each entry
corresponds to the last relevant event for each thread
included in C. If a thread i has not seen a relevant event
then the corresponding entry is denoted by e0

i . A cut C
corresponds to a relevant program state that has been
reached after all the events in C have been executed.
Such a relevant program state is called a relevant global
multithreaded state, or simply a relevant global state or
even just state, and is denoted by Σk1k2...kn .

Definition 3 (Consistent Cut). A cut is said to be
consistent if for all events e and e′

(e ∈ C) ∧ (e′ / e) → (e′ ∈ C)

52



8 K. Sen and G. Roşu and G. Agha: Online Efficient Predictive Safety Analysis of Multithreaded Programs

A consistent global state is the one that corresponds
to a consistent cut. A relevant event el

i is said to be
enabled in a consistent global state Σk1k2...kn if and only
if C ∪ {el

i} is a consistent cut, where C is the consistent
cut corresponding to the state Σk1k2...kn . The following
proposition holds for an enabled event:

Proposition 1. A relevant event el
i is enabled in a con-

sistent global state Σk1k2...kn if and only if l = ki +1 and
for all relevant events e, if e 6= el

i and e / el
i then e ∈ C,

where C is the consistent cut corresponding to the state
Σk1k2...kn .

Proof. Since el
i is enabled in the state Σk1k2...kn , C∪{el

i}
is a cut. This implies that for all events ek

i , if k < l
then ek

i ∈ C ∪ {el
i} and hence ek

i ∈ C. In particular, all
the events e1

i , e
2
i , . . . , e

l−1
i are in C. However, el−1

i is the
last relevant event from thread ti which is included in
C. Therefore, ki = l − 1. Since el

i ∈ C ∪ {el
i}, e / el

i,
and C ∪ {el

i} is a consistent cut, e ∈ C ∪ {el
i} (by the

definition of consistent cut). Since by assumption e 6= el
i,

we have e ∈ C. ut

An immediate consequence of the above proposition
is the following corollary:

Corollary 1. If C is the consistent cut corresponding to
the state Σk1k2...kn and if el

i is enabled in Σk1k2...kn then
the state corresponding to the consistent cut C ∪ {el

i} is
Σk1k2...ki−1lki+1...kn or Σk1k2...ki−1(ki+1)ki+1...kn and we
denote it by δ(Σk1k2...kn , el

i).

Here the partial function δ maps a consistent state Σ and
a relevant event e enabled in that state to a consistent
state δ(Σ, e) which is the result of executing e in Σ. Let
ΣK0 be the initial global state, Σ00...0, which is always
consistent. The following result holds:

Lemma 4. If R = e1e2 . . . e|R| is a consistent multi-
threaded run then it generates a sequence of global states
ΣK0ΣK1 . . . ΣK|R| such that for all r ∈ [1, |R|], ΣKr−1 is
consistent, er is enabled in ΣKr−1 , and δ(ΣKr−1 , er) =
ΣKr .

Proof. The proof is by induction on r. By definition the
initial state ΣK0 is consistent. Moreover, e1 is enabled
in ΣK0 because the cut C corresponding to the state
ΣK0 is empty and hence the cut C ∪ {e1} = {e1} is
consistent. Since ΣK0 is consistent and e1 is enabled in
ΣK0 , δ(ΣK0 , e1) is defined. Let ΣK1 = δ(ΣK0 , e1).

Let us assume that ΣKr−1 is consistent, er is en-
abled in ΣKr−1 , and δ(ΣKr−1 , er) = ΣKr . Therefore,
δ(ΣKr−1 , er) = ΣKr is also consistent. Let C be the cut
corresponding to ΣKr . To prove that er+1 is enabled in
ΣKr we have to prove that C∪er+1 is a cut and it is con-
sistent. Let er+1 = el

i for some i and l i.e. er+1 is the lth

relevant event of thread ti. For every event ek
i such that

k < l, ek
i / el

i. Therefore, by the definition of consistent
run, ek

i appears before el
i for all 0 < k < l. This implies

that all ek
i for 0 < k < l are included in C. This proves

that C∪el
i is a cut. Since C is a cut, for all events e and e′

if e 6= el
i then (e ∈ C∪{el

i})∧(e′/e) → e′ ∈ C∪{el
i}. Oth-

erwise, if e = el
i then by the definition of consistent run,

if e′ /el
i then e′ appears before el

i in R. This implies that
e′ is included in C∪{el

i}. Therefore, C∪{el
i} is consistent

which proves that er+1 = el
i is enabled in the state ΣKr .

Since, ΣKr is consistent and er+1 is enabled in ΣKr ,
δ(ΣKr , er+1) is defined. We let δ(ΣKr , er+1) = ΣKr+1 .

ut
From now on, we identify the sequences of states

ΣK0ΣK1 . . . ΣK|R| as above with multithreaded runs,
and simply call them runs. We say that Σ leads-to Σ′,
written Σ Ã Σ′, when there is some run in which Σ and
Σ′ are consecutive states. Let Ã∗ be the reflexive tran-
sitive closure of the relation Ã. The set of all consistent
global states together with the relation Ã∗ forms a lat-
tice with n mutually orthogonal axes representing each
thread. For a state Σk1k2...kn , we call k1 + k1 + · · · kn

its level. A path in the lattice is a sequence of consis-
tent global states on increasing level, where the level
increases by 1 between any two consecutive states in the
path. Therefore, a run is just a path starting with Σ00...0

and ending with Σr1r2...rn , where ri is the total number
of relevant events of thread ti.

Therefore, a multithreaded computation can be seen
as a lattice. This lattice, which is called computation lat-
tice and referred to as L, should be seen as an abstract
model of the running multithreaded program, containing
the relevant information needed in order to analyze the
program. Supposing that one is able to store the com-
putation lattice of a multithreaded program, which is a
non-trivial matter because it can have an exponential
number of states in the length of the execution, one can
mechanically model-check it against the safety property.

Let VC (ei) be the DVC associated with the thread ti
when it generated the event ei. Given a state Σk1k2...kn

we can associate a DVC with the state (denoted by
VC (Σk1k2...kn)) such that VC (Σk1k2...kn)[i] = ki i.e. the
ith entry of VC (Σk1k2...kn) is equal to the number of rel-
evant events of thread ti that has causally effected the
state. With this definition the following results hold:

Lemma 5. If a relevant event e from thread ti is
enabled in a state Σ and if δ(Σ, e) = Σ′ then
∀j 6= i : VC (Σ)[j] = VC (Σ′)[j] and VC (Σ)[i] + 1 =
VC (Σ′)[i].

Proof. This follows directly from the definition of DVC
of a state and Corollary 1.

Lemma 6. If a relevant event e from thread ti is en-
abled in a state Σ then ∀j 6= i : VC (Σ)[j] ≥ VC (e)[j]
and VC (Σ)[i] + 1 = VC (e)[i].

Proof. VC (Σ)[i]+1 = VC (e)[i] follows from Lemma 5.
Say k = VC (e)[j] for some j 6= i. Then by (a) of
Lemma 1 we know that the kth relevant event from

53



K. Sen and G. Roşu and G. Agha: Online Efficient Predictive Safety Analysis of Multithreaded Programs 9

thread tj causally precedes e i.e. ek
j / e. Then by propo-

sition 1 ek
j ∈ C, where C is the cut corresponding to

Σ. This implies that k ≤ VC (Σ)[j] which proves that
∀j 6= i : VC (Σ)[j] ≥ VC (e)[j].

Lemma 7. If R = e1e2 . . . e|R| is a consistent mul-
tithreaded run generating the sequence of global states
ΣK0ΣK1 . . . ΣK|R| , then VC (ΣKi) can be recursively de-
fined as follows:

VC (ΣK0)[j] = 0 for all j ∈ [1, n]
VC (ΣKr )[j] = max (VC (ΣKr−1)[j],VC (er)[j])

for all j ∈ [1, n] and 0 < r ≤ |R|

Proof. ∀j ∈ [1, n] : VC (ΣK0)[j] = 0 holds by def-
inition. Let er be from thread ti. By Lemma 4
er is enabled in ΣKr−1 . Therefore, by Lemma 6,
∀j 6= i : VC (ΣKr−1)[j] ≥ VC (er)[j]. This im-
plies that ∀j 6= i : VC (ΣKr )[j] = VC (ΣKr−1)[j] =
max (VC (ΣKr−1)[j],VC (er)[j]). Otherwise if j = i, by
Lemma 6, VC (ΣKr−1)[j] + 1 = VC (er)[j]. Therefore,
VC (ΣKr )[j] = VC (ΣKr−1)[j] + 1 = VC (er)[j] =
max (VC (ΣKr−1)[j],VC (er)[j]). This proves that
∀j : VC (ΣKr )[j] = max (VC (ΣKr−1)[j],VC (er)[j]).

Corollary 2. If R = e1e2 . . . e|R| is a consistent mul-
tithreaded run generating the sequence of global states
ΣK0ΣK1 . . . ΣK|R| , then

VC (ΣKr )[i] = max (VC (e1)[i],VC (e2)[i], . . . ,VC (er)[i])
for all i ∈ [1, n] and 0 < r ≤ |R|

Example 2. Figure 2 shows the causal partial order on
relevant events extracted by the observer from the mul-
tithreaded execution in Example 1, together with the
generated computation lattice. The actual execution,
Σ00Σ01Σ11Σ12Σ22Σ23Σ33, is marked with solid edges
in the lattice. Besides its DVC, each global state in the
lattice stores its values for the relevant variables, w and
v. It can be readily seen on Fig. 2 that the LTL prop-
erty F1 defined in Example 1 holds on the sample run
of the system, and also that it is not in the language of
bad prefixes, F2. However, F1 is violated on some other
consistent runs, such as Σ00Σ01Σ02Σ12Σ13Σ23Σ33. On
this particular run ↑ p holds at Σ02; however, r does
not hold at the next state Σ12. This makes the formula
F1 false at the state Σ13. The run can also be symboli-
cally written as {}{}{p}{p}{p, q}{p, q, r}{p, q, r}. In the
automaton in Fig. 1, this corresponds to a possible se-
quence of states 00123555. Hence, this string is accepted
by F2 as a bad prefix.

Therefore, by carefully analyzing the computation
lattice extracted from a successful execution one can
infer safety violations in other possible consistent ex-
ecutions. Such violations give informative feedback to
users, such as the lack of synchronization in the exam-
ple above, and may be hard to find by just ordinary
testing. In what follows we propose effective techniques

to analyze the computation lattice. A first important
observation is that one can generate it on-the-fly and
analyze it on a level-by-level basis, discarding the previ-
ous levels. However, even if one considers only one level,
that can still contain an exponential number of states
in the length of the current execution. A second impor-
tant observation is that the states in the computation
lattice are not all equiprobable in practice. By allow-
ing a user configurable window of most likely states in
the lattice centered around the observed execution trace,
the presented technique becomes quite scalable, requir-
ing O(wm) space and O(twm) time, where w is the size
of the window, m is the size of the bad prefix monitor
of the safety property, and t is the size of the monitored
execution trace.

4.2 Level By Level Analysis of the Computation Lattice

A naive observer of an execution trace of a multithreaded
program would just check the observed execution trace
against the monitor for the safety property, say Mon
like in Definition 1, and would maintain at each mo-
ment a set of states, say MonStates in M. When a new
event arrives, it would create the next state Σ and re-
place MonStates by ρ(MonStates, Σ). If the bad state
b will ever be in MonStates then a property violation
error would be reported, meaning that the current exe-
cution trace led to a bad prefix of the safety property.
Here we assume that the events are received in the order
in which they are emitted, and also that the monitor
works over the global states of the multithreaded pro-
grams. This assumption is essential for the observer to
deduce the actual execution of the multithreaded pro-
gram. The knowledge of the actual execution is used by
the observer to apply the causal cone heuristics as de-
scribed later. The assumption is not necessary if we do
not want to use causal cone heuristics. The work in [22]
describes a technique for the level by level analysis of
the computation lattice without the above assumption.

A smart observer, as said before, will analyze not
only the observed execution trace, but also all the other
consistent runs of the multithreaded system, thus be-
ing able to predict violations from successful executions.
The observer receives the events from the running multi-
threaded program in real-time and enqueues them in an
event queue Q. At the same time, it traverses the compu-
tation lattice level by level and checks whether the bad
state of the monitor can be hit by any of the runs up
to the current level. We next provide the algorithm that
the observer uses to construct the lattice level by level
from the sequence of events it receives from the running
program.

The observer maintains a list of global states (Cur-
rLevel), that are present in the current level of the lat-
tice. For each event e in the event queue, it tries to con-
struct a new global state from the set of states in the cur-
rent level and the event e. If the global state is created

54



10 K. Sen and G. Roşu and G. Agha: Online Efficient Predictive Safety Analysis of Multithreaded Programs

e6:<v=70, T1,(3,3)>

e4:<v=60, T1,(2,1)>

e3:<w=27, T2,(0,2)>

e2:<v=50, T1,(1,1)>

e1:<w=24, T2,(0,1)>

e5:<w=31, T2,(0,3)>

)40,20(

{})(
00

==

=

vw

SL

)70,31(

},,{)(
33

==

=

vw

rqpSL

)60,31(

},,{)(
23

==

=

vw

rqpSL

)50,31(

},{)(
13

==

=

vw

qpSL

)60,27(

},{)(
22

==

=

vw

rpSL

)40,31(

},{)(
03

==

=

vw

qpSL

)50,27(

}{)(
12

==

=

vw

pSL

)60,24(

}{)(
21

==

=

vw

rSL

)40,27(

}{)(
02

==

=

vw

pSL

)50,24(

{})(
11

==

=

vw

SL

)40,24(

{})(
01

==

=

vw

SL

Fig. 2. Computation Lattice

successfully then it is added to the list of global states
(NextLevel) for the next level of the lattice. The pro-
cess continues until certain condition, levelComplete?()
holds. At that time the observer says that the level is
complete and starts constructing the next level by set-
ting CurrLevel to NextLevel, NextLevel to empty set, and
reallocating the space previously occupied by CurrLevel.
Here the predicate levelComplete?() is crucial for gener-
ating only those states in the level that are most likely to
occur in other executions, namely those in the window,
or the causality cone, that is described in the next sub-
section. The levelComplete? predicate is also discussed
and defined in the next subsection. The pseudo-code for
the lattice traversal is given in Fig. 3.

Every global state Σ contains the value of all relevant
shared variables in the program, a DVC VC (Σ) to repre-
sent the latest events from each thread that resulted in
that global state. Here the predicate nextState? (Σ, e),
checks if the event e is enabled in the state Σ, where
threadId(e) returns the index of the thread that gener-
ated the event e, VC (Σ) returns the DVC of the global
state Σ, and VC(e) returns the DVC of the event e.
The correctness of the function is given by Lemma 6. It
essentially says that event e can generate a consecutive
state for a state Σ, if and only if Σ “knows” everything e
knows about the current evolution of the multithreaded
system except for the event e itself. Note that e may
know less than Σ knows with respect to the evolution
of other threads in the system, because Σ has global
information.

The function createState(Σ, e), which implements
the function δ described in Corollary 1 creates a new
global state Σ′, where Σ′ is a possible consistent global
state that can result from Σ after the event e. Together
with each state Σ in the lattice, a set of states of the

while(not end of computation){
Q ← enqueue(Q, NextEvent())
while(constructLevel()){}

}

boolean constructLevel(){
for each e ∈ Q and Σ ∈ CurrLevel {

if nextState?(Σ, e) {
NextLevel ← NextLevel ] createState(Σ, e)
if levelComplete?(NextLevel , e, Q) {

Q ← removeUselessEvents(CurrLevel , Q)
CurrLevel ← NextLevel
NextLevel ← ∅
return true}}}

return false
}

boolean nextState?(Σ, e){
i ← threadId(e);
if (∀j 6= i : VC (Σ)[j] ≥ VC (e)[j] and

VC (Σ)[i] + 1 = VC (e)[i]) return true
return false

}

State createState(Σ, e){
Σ′ ← new copy of Σ
j ← threadId(e); VC (Σ′)[j] ← VC (Σ)[j] + 1
pgmState(Σ′)[var(e) ← value(e)]
MonStates(Σ′) ← ρ(MonStates(Σ), Σ′)
if b ∈ MonStates(Σ′) {

output ′property may be violated′}
return Σ′

}
Fig. 3. Level-by-level traversal.

55



K. Sen and G. Roşu and G. Agha: Online Efficient Predictive Safety Analysis of Multithreaded Programs 11

monitor, MonStates(Σ), also needs to be maintained,
which keeps all the states of the monitor in which any
of the partial runs ending in Σ can lead to. In the func-
tion createState, we set the MonStates of Σ′ with the set
of monitor states to which any of the current states in
MonStates(Σ) can transit when the state Σ′ is observed.
pgmState(Σ′) returns the value of all relevant program
shared variables in state Σ′, var(e) returns the name of
the relevant variable that is written at the time of event
e, value(e) is the value that is written to var(e), and
pgmState(Σ′)[var(e) ← value(e)] means that in pgm-
State(Σ′), var(e) is updated with value(e). Lemma 5
justifies that DVC of the state Σ′ is updated properly.

The merging operation nextLevel]Σ adds the global
state Σ to the set nextLevel. If Σ is already present in
nextLevel, it updates the existing state’s MonStates with
the union of the existing state’s MonStates and the Mon-
states of Σ. Two global states are same if their DVCs are
equal. Because of the function levelComplete?, it may be
often the case that the analysis procedure moves from
the current level to the next one before it is exhaustively
explored. That means that several events in the queue,
which were waiting for other events to arrive in order to
generate new states in the current level, become unneces-
sary so they can be discarded. The function removeUse-
lessEvents(CurrLevel,Q) removes from Q all the events
that cannot contribute to the construction of any state
at the next level. It creates a DVC Vmin whose each com-
ponent is the minimum of the corresponding component
of the DVCs of all the global states in the set CurrLevel.
It then removes all the events in Q whose DVCs are less
than or equal to Vmin . This function makes sure that we
do not store any unnecessary events. The correctness of
the function is given by the following lemma.

Lemma 8. For a given relevant event e, if VC (e) ≤
Vmin then ∀Σ ∈ CurrLevel , e is not enabled in Σ.

Proof. If e is enabled in Σ then by Lemma 6, VC (e)[i] =
VC (Σ)+1, where ti is the thread that generated e. This
implies that if e is enabled in Σ then VC (e) 6≤ VC (Σ).
Since VC (e) ≤ Vmin we have ∀Σ ∈ CurrLevel , VC (e) ≤
VC (Σ). Therefore, e is not enabled in Σ.

The observer runs in a loop till the computation ends.
In the loop the observer waits for the next event from
the running instrumented program and enqueues it in Q
whenever it becomes available. After that the observer
runs the function constructLevel in a loop till it returns
false. If the function constructLevel returns false then
the observer knows that the level is not completed and
it needs more events to complete the level. At that point
the observer again starts waiting for the next event from
the running program and continues with the loop. The
pseudo-code for the observer is given at the top of Fig. 3.

4.3 Causality Cone Heuristic

The number of states on a level in the computation lat-
tice can be exponential in the length of the trace. In
online analysis, generating all the states in a level may
not be feasible. However, note that some states in a level
can be considered more likely to occur in a consistent run
than others. For example, two independent events that
can possibly permute may have a huge time difference.
Permuting these two events would give a consistent run,
but that run may not be likely to take place in a real
execution of the multithreaded program. So we can ig-
nore such a permutation. We formalize this concept as
causality cone, or window, and exploit it in restricting
our attention to a small set of states in a given level.

As mentioned earlier we assume that the events are
received in an order in which they happen in the compu-
tation. We can ensure this linear ordering by executing
the DVC algorithm in a synchronized block so that each
such execution takes place atomically with respect to
each other. Note that this ordering gives the real exe-
cution of the program and it respects the partial order
associated with the computation. This execution will be
taken as a reference in order to compute the most prob-
able consistent runs of the system.

If we consider all the events generated by the execut-
ing distributed program as a finite sequence of events,
then a lattice formed by any prefix of this sequence is a
sub-lattice of the computation lattice L. This sub-lattice,
say L′, has the following property: if Σ ∈ L′, then for
any Σ′ ∈ L if Σ′ Ã∗ Σ then Σ′ ∈ L′. We can see this
sub-lattice as a portion of the computation lattice L en-
closed by a cone. The height of this cone is determined by
the length of the current sequence of events. We call this
causality cone. All the states in L that are outside this
cone cannot be determined from the current sequence of
events. Hence, they are outside the causal scope of the
current sequence of events. As we get more events this
cone moves down by one level.

If we compute a DVC Vmax whose each component
is the maximum of the corresponding component of the
DVCs of all the events in the event queue Vmax repre-
sents the DVC of the global state appearing at the tip of
the cone. The tip of the cone, by Corollary 2, traverses
the actual execution run of the program.

To avoid the generation of a possibly exponential
number of states in a given level, we consider a fixed
number, say w, of most probable states in a given level.
In a level construction, we say that the level is complete
once we have generated w states in that level. However,
a level may contain less than w states. Then the level
construction algorithm gets stuck. Moreover, we cannot
determine if a level has less than w states unless we see
all the events in the complete computation. This is be-
cause we do not know the total number of threads that
participate in the computation beforehand. To avoid this
scenario we introduce another parameter l, the length of

56



12 K. Sen and G. Roşu and G. Agha: Online Efficient Predictive Safety Analysis of Multithreaded Programs

w=3

< w=3

w

Fig. 4. Causality Cones

boolean levelComplete?(NextLevel, e, Q){
if size(NextLevel) ≥ w then

return true;
else if e is the last event in Q

and size(Q) == l then
return true;

else return false;
}

Fig. 5. levelComplete? predicate

the current event queue. We say that a level is complete
if we have used all the events in the event queue for the
construction of the states in the current level and the
length of the queue is l and we have not crossed the
limit w on the number of states. The pseudo-code for
levelComplete? is given in Fig. 5

Note, here l corresponds to the number of levels of
the sub-lattice that can be constructed from the events in
the event queue Q. This is because, by Corollary 1, every
event in the queue Q generates a state in the next level
from a state in the current level in which it is enabled.

Example 3. Figure 6 shows the portion of the computa-
tion lattice constructed from the multithreaded execu-
tion in Example 1 when the causality cone heuristics is
applied with parameters w = 2 and l = 3. The possible
consistent run Σ00Σ01Σ02Σ03Σ13Σ23Σ33, shown on the
left side of the Figure 6, is pruned out by the heuristics.
In this particular run the two independent events e2 and
e5 that are permuted have long time difference in the ac-
tual execution. Therefore, we can safely ignore this run
among all other possible consistent runs.

5 Implementation

We have implemented these new techniques, in version
2.0 of the tool Java MultiPathExplorer (JMPaX), which

has been designed to monitor multithreaded Java pro-
grams. The current implementation is written in Java.
The tool has three main modules, the instrumentation
module, the observer module and the monitor module.

The instrumentation program, named instrument,
takes a specification file and a list of class files as com-
mand line arguments. An example is

java instrument spec A.class B.class C.class

where the specification file spec contains a list of
named formulae written in a suitable logic. The program
instrument extracts the name of the relevant variables
from the specification and instruments the classes, pro-
vided in the argument, as follows:

i) For each variable x of primitive type in each
class it adds access and write DVCs, namely
_access_dvc_x and _write_dvc_x, as new fields in
the class.

ii) It adds code to associate a DVC with every newly
created thread;

iii) For each read and write access of a variable of prim-
itive type in any class, it adds codes to update the
DVCs according to the algorithm mentioned in Sec-
tion 3.4;

iv) It adds code to call a method handleEvent of the
observer module at every write of a relevant vari-
able.

The instrumentation module uses the BCEL [5] Java li-
brary to modify Java class files. Currently, the instru-
mentation module instruments every variable of prim-
itive type in every class. This implies that, during the
execution of an instrumented program, the DVC algo-
rithm is executed for every read and write of variables
of primitive type. This degrades the performance of the
program considerably. We plan to improve the instru-
mentation by using escape analysis [4], to detect the pos-
sible shared variables through static analysis. This will
reduce the number of instrumentation points and hence
will improve the performance.

The observer module, that takes two parameters
w and l, generates the lattice level-by-level when
the instrumented program is executed. Whenever the
handleEvent method is invoked, it enqueues the event
passed as argument to the method handleEvent. Based
on the event queue and the current level of the lattice,
it generates the next level. In the process, it invokes the
nextStates method (corresponding to ρ in a monitor)
of the monitor module.

The monitor module reads the specification file writ-
ten either as an LTL formula or as a regular expression
and generates the non-deterministic automaton corre-
sponding to the formula or the regular expression. It
provides the method nextStates as an interface to the
observer module. The method raises an exception if at
any point the set of states returned by nextStates con-
tains the “bad” state of the automaton. The system be-

57



K. Sen and G. Roşu and G. Agha: Online Efficient Predictive Safety Analysis of Multithreaded Programs 13

e6:<v=70, T1,(3,3)>

e4:<v=60, T1,(2,1)>

e3:<w=27, T2,(0,2)>

e2:<v=50, T1,(1,1)>

e1:<w=24, T2,(0,1)>

e5:<w=31, T2,(0,3)>

)40,20(

{})(
00

==

=

vw

SL

)70,31(

},,{)(
33

==

=

vw

rqpSL

)60,31(

},,{)(
23

==

=

vw

rqpSL

)50,31(

},{)(
13

==

=

vw

qpSL

)60,27(

},{)(
22

==

=

vw

rpSL

)50,27(

}{)(
12

==

=

vw

pSL

)60,24(

}{)(
21

==

=

vw

rSL

)40,27(

}{)(
02

==

=

vw

pSL

)50,24(

{})(
11

==

=

vw

SL

)40,24(

{})(
01

==

=

vw

SL

Fig. 6. Causality Cone Heuristics applied to Example 2

ing modular, the user can plug in his/her own monitor
module for his/her logic of choice.

Since in Java synchronized blocks cannot be inter-
leaved, so corresponding events cannot be permuted,
locks are considered as shared variables and a write
event is generated whenever a lock is acquired or re-
leased. This way, a causal dependency is generated be-
tween any exit and any entry of a synchronized block,
namely the expected happens-before relation. Java syn-
chronization statements are handled exactly the same
way, that is, the shared variable associated to the syn-
chronization object is written at the entrance and at the
exit of the synchronized region. Condition synchroniza-
tions (wait/notify) can be handled similarly, by gener-
ating a write of a dummy shared variable by both the
notifying thread before notification and by the notified
thread after notification.

Note that the above technique for handing synchro-
nization constructs is conservative as it prevents us from
permuting two synchronized blocks even if the events
in the two blocks are independent of each other. Future
work involves finding an extension of the DVC algorithm
that can allow such permutations. This will enable us to
extract more interleavings from a computation.

6 Conclusion and Future Work

A formal runtime predictive analysis technique for mul-
tithreaded systems has been presented in this paper, in
which multiple threads communicating by shared vari-
ables are automatically instrumented to send relevant
events, stamped by dynamic vector clocks, to an exter-

nal observer which extracts a causal partial order on
the global state, updates and thereby builds an abstract
runtime model of the running multithreaded system. An-
alyzing this model on a level-by-level basis, the observer
can infer effectively, from a successful execution of the ob-
served system, when safety properties can be violated by
other executions. Attractive future work includes predic-
tions of liveness violations and predictions of data-race
and deadlock conditions.

7 Acknowledgments

The work is supported in part by the Defense Ad-
vanced Research Projects Agency (the DARPA IPTO
TASK Program, contract number F30602-00-2-0586, the
DARPA IXO NEST Program, contract number F33615-
01-C-1907), the ONR Grant N00014-02-1-0715, the Mo-
torola Grant MOTOROLA RPS #23 ANT, and the joint
NSF/NASA grant CCR-0234524.

References

1. O. Babaoğlu and K. Marzullo. Consistent global states
of distributed systems: Fundamental concepts and mech-
anisms. In S. Mullender, editor, Distributed Systems,
pages 55–96. Addison-Wesley, 1993.

2. H. Barringer, A. Goldberg, K. Havelund, and K. Sen.
Rule-based runtime verification. In Proceedings of 5th In-
ternational Conference on Verification, Model Checking
and Abstract Interpretation (VMCAI’04), volume 2937 of
Lecture Notes in Computer Science, pages 44–57, Venice,
Italy, January 2004. Springer-Verlag.

58



14 K. Sen and G. Roşu and G. Agha: Online Efficient Predictive Safety Analysis of Multithreaded Programs

3. H. W. Cain and M. H. Lipasti. Verifying sequential con-
sistency using vector clocks. In Proceedings of the 14th
annual ACM Symposium on Parallel Algorithms and Ar-
chitectures, pages 153–154. ACM, 2002.

4. J. D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar,
and S. P. Midkiff. Escape analysis for java. In Proceed-
ings of the 1999 ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages and Applica-
tions (OOPSLA ’99), volume 34(10) of SIGPLAN No-
tices, pages 1–19, Denver, Colorado, USA, November
1999.

5. M. Dahm. Byte code engineering with the bcel api. Tech-
nical Report B-17-98, Freie Universit at Berlin, Institut
für Informatik, April 2001.

6. J. Dick and A. Faivre. Automating the generation and
sequencing of test cases from model-based specifications.
In Proceedings of Formal Methods Europe (FME’93): In-
dustrial Strength Formal Methods, volume 670 of Lecture
Notes in Computer Science, pages 268–284, 1993.

7. D. Drusinsky. Temporal rover. http://www.time-
rover.com.

8. D. Drusinsky. The Temporal Rover and the ATG Rover.
In SPIN Model Checking and Software Verification, vol-
ume 1885 of Lecture Notes in Computer Science, pages
323–330. Springer, 2000.

9. D. Drusinsky. Monitoring Temporal Rules Combined
with Time Series. In Proc. of CAV’03: Computer Aided
Verification, volume 2725 of Lecture Notes in Computer
Science, pages 114–118, Boulder, Colorado, USA, 2003.
Springer-Verlag.

10. C. J. Fidge. Partial orders for parallel debugging. In
Proceedings of the 1988 ACM SIGPLAN and SIGOPS
workshop on Parallel and Distributed debugging, pages
183–194. ACM, 1988.

11. E. L. Gunter, R. P. Kurshan, and D. Peled. PET: An in-
teractive software testing tool. In Computer Aided Verifi-
cation (CAV’00), volume 1885 of Lecture Notes in Com-
puter Science, pages 552–556. Springer-Verlag, 2003.

12. K. Havelund and G. Roşu. Monitoring Java Programs
with Java PathExplorer. In Proceedings of the 1st Work-
shop on Runtime Verification (RV’01), volume 55 of
Electronic Notes in Theoretical Computer Science. El-
sevier Science, 2001.

13. K. Havelund and G. Roşu. Synthesizing monitors for
safety properties. In Tools and Algorithms for Construc-
tion and Analysis of Systems (TACAS’02), volume 2280
of Lecture Notes in Computer Science, pages 342–356.
Springer, 2002.

14. M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC:
a Run-time Assurance Tool for Java. In Proceedings of
the 1st Workshop on Runtime Verification (RV’01), vol-
ume 55 of Electronic Notes in Theoretical Computer Sci-
ence. Elsevier Science, 2001.

15. D. Lee and M. Yannakakis. Principles and methods of
testing finite state machines - A survey. In Proceedings
of the IEEE, volume 84, pages 1090–1126, 1996.

16. R. Lencevicius, A. Ran, and R. Yairi. Third eye -
specification–based analysis of software execution traces.
In International Workshop on Automated Program Anal-
ysis, Testing and Verification (Workshop of ICSE 2000),
pages 51–56, June 2000.

17. K. Marzullo and G. Neiger. Detection of global state
predicates. In Proceedings of the 5th International Work-
shop on Distributed Algorithms (WADG’91), volume 579
of Lecture Notes in Computer Science, pages 254–272.
Springer-Verlag, 1991.

18. F. Mattern. Virtual time and global states of distributed
systems. In Parallel and Distributed Algorithms: proceed-
ings of the International Workshop on Parallel and Dis-
tributed Algorithms, pages 215–226. Elsevier, 1989.

19. A. Sen and V. K. .Garg. Partial order trace analyzer
(pota) for distrubted programs. In Proceedings of the 3rd
Workshop on Runtime Verification (RV’03), Electronic
Notes in Theoretical Computer Science, 2003.

20. K. Sen and G. Roşu. Generating optimal monitors for
extended regular expressions. In Proceedings of the 3rd
Workshop on Runtime Verification (RV’03), volume 89
of ENTCS, pages 162–181. Elsevier Science, 2003.

21. K. Sen, G. Roşu, and G. Agha. Generating Optimal
Linear Temporal Logic Monitors by Coinduction. In
Proceedings of 8th Asian Computing Science Conference
(ASIAN’03), volume 2896 of Lecture Notes in Computer
Science, pages 260–275. Springer-Verlag, December 2003.

22. K. Sen, G. Roşu, and G. Agha. Runtime safety analysis of
multithreaded programs. In Proceedings of 4th joint Eu-
ropean Software Engineering Conference and ACM SIG-
SOFT Symposium on the Foundations of Software Engi-
neering (ESEC/FSE’03). ACM, 2003.

23. K. Sen, G. Roşu, and G. Agha. Online efficient predic-
tive safety analysis of multithreaded programs. In Pro-
ceedings of 10th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS’04), volume 2988 of Lecture Notes in Computer
Science, pages 123–138, Barcelona, Spain, March 2004.

24. O. Shtrichman and R. Goldring. The ‘logic-assurance’
system - a tool for testing and controlling real-time
systems. In Proc. of the Eighth Israeli Conference on
computer systems and sofware engineering (ICCSSE97),
pages 47–55, June 1997.

25. L. J. Stockmeyer and A. R. Meyer. Word problems re-
quiring exponential time (preliminary report). pages 1–9.
ACM Press, 1973.

26. S. A. Vilkomir and J. P. Bowen. Formalization of soft-
ware testing criteria using the Z notation. In Proceed-
ings of COMPSAC 01: 25th IEEE Annual International
Computer Software and Applications Conference, pages
351–356. IEEE Computer Society, Oct. 2001.

59



An Instrumentation Technique for Online Analysis of Multithreaded Programs

Grigore Roşu and Koushik Sen
Department of Computer Science,

University of Illinois at Urbana-Champaign, USA
Email: {grosu,ksen}@uiuc.edu

Abstract

Runtime verification of multithreaded systems, that is,
the process of finding errors in multithreaded systems as
they execute, is the theme of this paper. The major goal
of the work in this paper is to present an automatic code
instrumentation technique, based onmultithreaded vector
clocks, for generating the causal partial order on relevant
state update events from a running multithreaded program.
By means of several examples, it is shown how this tech-
nique can be used in a formal testing environment, not only
to detect, but especially topredict safety errorsin multi-
threaded programs. The prediction process consists of rig-
orously analyzing other potential executions that are con-
sistent with the causal partial order: some of these can be
erroneous despite the fact that the particular observed ex-
ecution was successful. The proposed technique has been
implemented as part of a Java program analysis tool, called
Java MultiPathExplorer and abbreviatedJMPAX. A byte-
code instrumentation package is used, so the Java source
code of the tested programs is not necessary.

1. Introduction and Motivation

A major drawback of testing is its lack of coverage: if an
error is not exposed by a particular test case then that erroris
not detected. To ameliorate this problem, many techniques
have been investigated in the literature to increase the cov-
erage of testing, such as test-case generation methods for
generating those test cases that can reveal potential errors
with high probability [8, 21, 30]. Based on experience with
related techniques already implemented in JAVA PATHEX-
PLORER (JPAX) [15, 14] and its sub-system EAGLE [4],
we have proposed in [27, 28] an alternative approach, called
“predictive runtime analysis”, which can be intuitively de-
scribed as follows.

Suppose that a multithreaded program has a subtle safety
error, such as a safety or a liveness temporal property vio-
lation, or a deadlock or a data-race. Like in testing, one

executes the program on some carefully chosen input (test
case) and suppose that, unfortunately, the error is not re-
vealed during that particular execution; such an execution
is calledsuccessfulwith respect to that bug. If one regards
the execution of a program as a flat, sequential trace of
events or states, like NASA’s JPAX system [15, 14], Uni-
versity of Pennsylvania’s JAVA -MAC [20], Bell Labs’ PET
[13], or the commercial analysis systems Temporal Rover
and DBRover [9, 10, 11], then there is not much left to
do to find the error except to run another, hopefully bet-
ter, test case. However, by observing the execution trace in
a smarter way, namely as a causal dependency partial order
on state updates, one can predict errors that can potentially
occur in other possible runs of the multithreaded program.

The present work is an advance inruntime verification
[16], a scalable complementary approach to the traditional
formal verification methods (such as theorem proving and
model checking [6]). Our focus here is on multithreaded
systems with shared variables. More precisely, we present
a simple and effective algorithm that enables an external
observer of an executing multithreaded program to detect
and predict specification violations. The idea is to properly
instrumentthe system before its execution, so that it will
emit relevant events at runtime. No particular specification
formalism is adopted in this paper, but examples are given
using a temporal logic that we are currently considering in
JAVA MULTI PATHEXPLORER (JMPAX) [27, 28], a tool for
safety violation prediction in Java multithreaded programs
which supports the presented technique.

In multithreaded programs, threads communicate via a
set of shared variables. Some variable updates can causally
depend on others. For example, if a thread writes a shared
variablex and then another thread writesy due to a state-
ment y = x + 1, then the update ofy causally depends
upon the update ofx. Only read-write, write-read and write-
write causalities are considered, because multiple consec-
utive reads of the same variable can be permuted without
changing the actual computation. A state is a map assigning
values to variables, and a specification consists of properties
on these states. Some variables may be of no importance at

60

goodelle
Text Box
Appendix D: 



all for an external observer. For example, consider an ob-
server which monitors the property “if(x > 0) then(y = 0)
has been true in the past, and since then(y > z) was always
false”. All the other variables exceptx, y andz are irrele-
vant for this observer (but they can clearly affect the causal
partial ordering). To minimize the number of messages sent
to the observer, we consider a subset ofrelevant eventsand
the associatedrelevant causality.

We present an algorithm that, given an executing mul-
tithreaded program, generates appropriate messages to be
sent to an external observer. The observer, in order to per-
form its more elaborated system analysis, extracts the state
update information from such messages together with the
relevant causality partial order among the updates. This par-
tial order abstracts the behavior of the running program and
is calledmultithreaded computation. By allowing an ob-
server to analyze multithreaded computations rather than
just flat sequences of events, one gets the benefit of not
only properly dealing with potential reordering of delivered
messages (reporting global state accesses), but also ofpre-
dicting errorsfrom analyzing successful executions, errors
which can occur under a different thread scheduling and can
be hard, if not impossible, to find by just testing.

To be more precise, let us consider a real-life example
where a runtime analysis tool supporting the proposed tech-
nique, such as JMPAX, would be able to predict a violation
of a property from a single, successful execution of the pro-
gram. However, like in the case of data-races, the chance
of detecting this safety violation by monitoring only the ac-
tual run is very low. The example consists of a two threaded
program to control the landing of an airplane. It has three
variableslanding, approved, andradio; their values
are1 when theplane is landing, landing has been approved,
andradio signal is live, respectively, and0 otherwise. The
safety property to verify is “If the plane has started landing,
then it is the case that landing has been approved and since
the approval the radio signal has never been down.”

The code snippet for a naive implementation of this con-
trol program is shown in Fig. 1. It uses some dummy func-
tions, askLandingApproval and checkRadio, which
can be implemented properly in a real scenario. The pro-
gram has a serious problem that cannot be detected easily
from a single run. The problem is as follows. Suppose the
plane has received approval for landing and just before it
started landing the radio signal went off. In this situation,
the plane must abort landing because the property was vio-
lated. But this situation will very rarely arise in an execu-
tion: namely, whenradio is set to 0 between the approval
of landing and the start of actual landing. So a tester or a
simple observer will probably never expose this bug. How-
ever, note that even if the radio goes offafter the landing has
started, a case which is quite likely to be considered during
testing but in which the property isnot violated, JMPAX

int landing = 0, approved = 0, radio = 1;
void thread1(){

askLandingApproval();
if(approved==1){

print("Landing approved");
landing = 1;
print("Landing started");}

else {print("Landing not approved");}}
void askLandingApproval(){

if(radio==0) approved = 0
else approved = 1;}

void thread2(){
while(radio){checkRadio();} }

void checkRadio(){
possibly change value of radio;}

Figure 1. A buggy implementation of a
flight controller.

will still be able to construct a possible run (counterexam-
ple) in which radio goes off between landing and approval.
In Section 4, among other examples, it is shown how JM-
PAX is able to predict two safety violations from a single
successful execution of the program. The user will be given
enough information (the entire counterexample execution)
to understand the error and to correct it. In fact, this er-
ror is an artifact of a bad programming style and cannot be
easily fixed - one needs to give a proper event-based imple-
mentation. This example shows the power of the proposed
runtime verification technique as compared to the existing
ones in JPAX and JAVA -MAC.

The main contribution of this paper is a detailed presen-
tation of an instrumentation algorithm which plays a crucial
role in extracting the causal partial order from one flat exe-
cution, and which is based on an appropriate notion of vec-
tor clock inspired from [12, 24], calledmultithreaded vector
clock (MVC). An MVC V is an array associating a natural
numberV [i] to each threadi in the multithreaded system,
which represents the number of relevant events generated
by that thread since the beginning of the execution. An
MVC Vi is associated to each threadti, and two MVCs,V a

x

(access) andV w
x (write) are associated to each shared vari-

ablex. When a threadti processes evente, which can be
an internal event or a shared variable read/write, the code
in Fig. 2 is executed. We prove thatA correctly imple-
ments the relevant causal partial order, i.e., that for any two
messages〈e, i, V 〉 and 〈e′, j, V ′〉 sent byA, e and e′ are
relevant ande causally precedese′ iff V [i] ≤ V ′[i]. This al-
gorithm can be implemented in several ways. In the case of
Java, we prefer to implement it as an appropriate instrumen-
tation procedure of code or bytecode, to executeA when-
ever a shared variable is accessed. Another implementation
could be to modify a JVM. Yet another one would be to en-

2
61

goodelle
Rectangle



ALGORITHM A
INPUT: evente generated by threadti

1. if e is relevant then
Vi[i]← Vi[i] + 1

2. if e is a read of a shared variablex then
Vi ← max{Vi, V

w
x }

V a
x ← max{V a

x , Vi}

3. if e is a write of a shared variablex then
V w

x ← V a
x ← Vi ← max{V a

x , Vi}

4. if e is relevant then
send message〈e, i, Vi〉 to observer

Figure 2. The vector clock instrumen-
tation algorithm.

force shared variable updates via library functions, which
executeA as well. All these can add significant delays to
the normal execution of programs. The work in this paper
has been partly presented at the workshopParallel and Dis-
tributed Systems: Testing and Debugging (PADTAD’04)in
April 2004. A preliminary version has been published in
the PADTAD’04 proceedings [25].

Multithreaded systems are briefly introduced in Section
2 and then the main algorithm is rigorouslyderivedfrom its
desired properties in Section 3. Section 4 describes possible
uses of the algorithm, and Section 5 concludes the paper.

2. Multithreaded Systems

We consider multithreaded systems in which several
threads communicate with each other via a set of shared
variables. A crucial point is that some variable updates can
causally depend on others. We will present an instrumen-
tation algorithm which, given an executing instrumented
multithreaded program, generates appropriate messages to
be sent to an external observer. The observer, in order to
perform its analysis, extracts the state update information
from such messages together with the causality partial or-
der among the updates.

In this paper we only consider a fixed number of threads.
However, the presented instrumentation technique can be
easily extended to systems consisting of a variable number
of threads, where these can be dynamically created and/or
destroyed [28].

2.1. Multithreaded Executions

Givenn threadst1, t2, ..., tn, amultithreaded execution
is a sequence of eventse1e2 . . . er, each belonging to one
of then threads and having typeinternal, reador write of
a shared variable. We useek

i to represent thek-th event
generated by threadti since the start of its execution. When
the thread or position of an event is not important, we may
refer to it generically, such ase, e′, etc. We may writee ∈ ti
when evente is generated by threadti.

Let us fix an arbitrary but fixed multithreaded execution,
sayM, and letS be the set of all shared variables. There is
an immediate notion ofvariable access precedencefor each
shared variablex ∈ S: we say thate x-precedese′, written
e <x e′, if and only if e ande′ are variable access events
(reads or writes) to the same variablex, ande “happens
before”e′, that is,e occurs beforee′ inM. This “happens-
before” relation can be easily realized in practice by keeping
a counter for each shared variable, which is incremented at
each variable access.

The notion of precedence above is consistent with the
sequential memory modelof multithreaded systems, which
is assumed from now on in this paper. In fact, we assume
that all shared memory accesses (reads or writes of shared
variables inS) are atomic and instantaneous. this will al-
low us to properly reason about causal dependencies be-
tween events. For example, if a thread writesx then writes
y followed by another thread writingy thenx, under a non-
sequential memory model it would be possible that the first
write of y takes place before the second, while the first write
of x takes placeafter the second write ofx, leading to a cir-
cular causal dependency between the two threads. So far we
have not considered non-sequential memory models in our
runtime verification efforts, which admittedly would reveal
additional potential errors but would increase the complex-
ity of runtime analysis. This may change in the future if
the assumed sequential model will be found too restrictive
in practical experiments. Recall that our purpose is to find
errors in multithreaded programs, not to prove systems cor-
rect. The errors that we detect using the sequential model
are also errors in other memory models, so our approach is
currently conservative.

2.2. Causality and Multithreaded Computations

Let E be the set of all the events occurring in the multi-
threaded executionM and let≺ be the partial order relation
onE defined as follows:

• ek
i ≺ el

i if k < l;

• e ≺ e′ if there isx ∈ S with e <x e′ and at least one
of e, e′ is a write;

3
62

goodelle
Rectangle



• e ≺ e′′ if e ≺ e′ ande′ ≺ e′′.

The first item above states that the events of a threadi are
causally ordered by their corresponding occurrence time.
The second item says that if two eventse ande′, of the same
thread or not, access a shared variablex and one of them is
a write, then the most recent one causally depends on the
former one. No causal constraint is imposed on read-read
events, so they are permutable. Finally, by closing it under
transitivity, the third item defines≺ as the smallest partial
order including the first two types of causal constraints. We
write e||e′ if e 6≺ e′ ande′ 6≺ e. The partial order≺ on E
defined above is called themultithreaded computationasso-
ciated with the original multithreaded executionM.

As discussed in Section 3.1 in more depth, synchroniza-
tion of threads can be handled at no additional effort by just
generating appropriate read/write events when synchroniza-
tion objects are acquired/released, so the simple notion of
multithreaded computation as defined above is as general
as practically needed. A linearization (or a permutation) of
all the eventse1, e2, ...,er that is consistent with the multi-
threaded computation, in the sense that the order of events
in the permutation is consistent with≺, is called aconsis-
tent multithreaded run, or simply, amultithreaded run. In-
tuitively, a multithreaded run can be viewed as a possible
execution of the same system under a different execution
speed of each individual thread.

A multithreaded computation can be thought of as the
most general assumptionthat an observer of the multi-
threaded execution can make about the system without
knowing its semantics. Indeed, an external observer sim-
ply cannot disregardthe order in which the same variable is
modified and used within the observed execution, because
this order can be part of the intrinsic semantics of the multi-
threaded program. However, multiple causally independent
modifications of different variables can be permuted, and
the particular order observed in the given execution is not
critical. By allowing an observer to analyzemultithreaded
computations, rather than justmultithreaded executionslike
JPAX [15, 14], JAVA -MAC [20], and PET [13], one gets
the benefit of not only properly dealing with potential re-
orderings of delivered messages (e.g., due to using multi-
ple channels to reduce the monitoring overhead), but also
of predicting errorsfrom analyzing successful executions,
errors which can occur under a different thread scheduling.

2.3. Relevant Causality

Some variables inS may be of no importance for an ex-
ternal observer. For example, consider an observer whose
purpose is to check the property “if(x > 0) then(y = 0)
has been true in the past, and since then(y > z) was al-
ways false”; formally, using the interval temporal logic no-
tation notation in [18], this can be compactly written as

(x > 0) → [y = 0, y > z). All the other variables inS
exceptx, y andz are essentially irrelevant for this observer.
To minimize the number of messages, like in [23] which
suggests a similar technique but for distributed systems in
which reads and writes are not distinguished, we consider a
subsetR ⊆ E of relevant eventsand define theR-relevant
causalityon E as the relation⊳ :=≺ ∩(R × R), so that
e ⊳ e′ if and only if e, e′ ∈ R ande ≺ e′. It is important
to notice though that the other shared variables can also in-
directly influence the relation⊳, because they can influence
the relation≺.

We next introduce multithreaded vector clocks (MVC),
together with a technique that is proved to correctly imple-
ment the relevant causality relation.

3. Multithreaded Vector Clock Algorithm

Inspired and stimulated by the elegance and naturality
of vector clocks [12, 24, 2] in implementing causal depen-
dency in distributed systems, we next devise an algorithm to
implement the relevant causal dependency relation in mul-
tithreaded systems. Since in multithreaded systems com-
munication is realized by shared variables rather than mes-
sage passing, to avoid any confusion we call the correspond-
ing vector-clock data-structuresmultithreaded vector clocks
and abbreviate them(MVC). The algorithm presented next
has been mathematically derived from its desired proper-
ties, after several unsuccessful attempts to design it on a
less rigorous basis.

For each threadi, where1 ≤ i ≤ n, let us consider an
n-dimensional vector of natural numbersVi. Intuitively, the
numberVi[j] represents the event number at threadtj that
the threadti is “aware” of. Since communication in mul-
tithreaded systems is done via shared variables, and since
reads and writes have different weights in our approach,
we let V a

x andV w
x be two additionaln-dimensional vec-

tors for each shared variablex; we call the formeraccess
MVC and the latterwrite MVC. All MVCs are initialized to
0. As usual, for twon-dimensional vectors,V ≤ V ′ if and
only if V [j] ≤ V ′[j] for all 1 ≤ j ≤ n, andV < V ′ if
and only if V ≤ V ′ and there is some1 ≤ j ≤ n such
that V [j] < V ′[j]; also, max{V, V ′} is the vector with
max{V, V ′}[j] = max{V [j], V ′[j]} for each1 ≤ j ≤ n.

Our goal is to find a procedure that updates these MVCs
and emits a minimal amount of events to an external ob-
server, which can further efficiently extract the relevant
causal dependency relation. Formally, the requirements of
such a procedure, sayA, which works as an event filter, or
an abstraction of the given multithreaded execution, must
include the following natural requirements.

Requirements for A. AfterA updates the MVCs as a con-
sequence of the fact that threadti generates eventek

i during
the multithreaded executionM, the following should hold:

4
63

goodelle
Rectangle



(a) Vi[j] equals the number of relevant events oftj that
causally precedeek

i ; if j = i and ek
i is relevant then

this number also includesek
i ;

(b) V a
x [j] equals the number of relevant events oftj that

causally precede the most recent event inM that ac-
cessed (read or wrote)x; if i = j andek

i is a relevant
read or write ofx event then this number also includes
ek
i ;

(c) V w
x [j] equals the number of relevant events oftj that

causally precede the most recent write event ofx; if
i = j andek

i is a relevant write ofx then this number
also includesek

i .

Finally and most importantly,A should correctly implement
the relative causality (stated formally in Theorem 3).

We next show how such an algorithm can be derived
from its requirements above. In order to do it, let us first
introduce some useful formal notation. For an eventek

i of
threadti, let (ek

i ] be the indexed set{(ek
i ]j}1≤j≤n, where

(ek
i ]j is the set{el

j | el
j ∈ tj , el

j ∈ R, el
j ≺ ek

i } when
j 6= i and the set{el

i | l ≤ k, el
i ∈ R} when j = i.

Intuitively, (ek
i ] contains all the events in the multithreaded

computation that causally precede or are equal toek
i .

Lemma 1 With the notation above, for1 ≤ i, j ≤ n:

1. (el′

j ]j ⊆ (el
j ]j if l′ ≤ l;

2. (el′

j ]j ∪ (el
j ]j = (e

max{l′,l}
j ]j for anyl andl′;

3. (el
j ]j ⊆ (ek

i ]j for anyel
j ∈ (ek

i ]j ; and

4. (ek
i ]j = (el

j ]j for some appropriatel.

Proof: 1. is immediate, because for anyl′ ≤ l, any eventek
j

at threadtj preceding or equal toel′

j , that is one withk ≤ l′,
also precedesel

j .

2. follows by 1., because it is either the case thatl′ ≤ l, in
which case(el′

j ]j ⊆ (el
j ]j , or l ≤ l′, in which case(el

j ]j ⊆

(el′

j ]j . In either case2. holds trivially.

3. There are two cases to analyze. Ifi = j thenel
j ∈ (ek

i ]j if
and only ifl ≤ k, so3. becomes a special instance of1.. If
i 6= j then by the definition of(ek

i ]j it follows thatel
j ≺ ek

i .

Sinceel′

j ≺ el
j for all l′ < l and since≺ is transitive, it

follows readily that(el
j ]j ⊆ (ek

i ]j .

4. Since(ek
i ]j is a finite set of totally ordered events, it has

a maximum element, sayel
j . Hence,(ek

i ]j ⊆ (el
j ]j . By 3.,

one also has(el
j ]j ⊆ (ek

i ]j . �

Thus, by4 above, one can uniquely and unambiguously en-
code a set(ek

i ]j by just a number, namely the size of the cor-
responding set(el

j ]j , i.e., the number of relevant events of

threadtj up to itsl-th event. This suggests that if the MVC
Vi maintained byA stores that number in itsj-th component
then(a) in the list of requirements ofA would be fulfilled.

Before we formally show how reads and writes of shared
variables affect the causal dependency relation, we need to
introduce some notation. First, since a write of a shared
variable introduces a causal dependency between the write
event and all the previous read or write events of the same
shared variable as well as all the events causally preced-
ing those, we need a compact way to refer at any moment
to all the read/write events of a shared variable, as well
as the events that causally precede them. Second, since a
read event introduces a causal dependency to all the pre-
vious write events of the same variable as well as all the
events causally preceding those, we need a notation to refer
to these events as well. Formally, ifek

i is an event in a mul-
tithreaded computationM andx ∈ S is a shared variable,
then let

(ek
i ]ax =















The thread-indexed set of all the relevant
events that are equal to or causally precede
an evente accessingx, such thate occurs
before or it is equal toek

i inM,

(ek
i ]wx =















The thread-indexed set of all the relevant
events that are equal to or causally precede
an evente writing x, such thate occurs
before or it is equal toek

i inM.

It is obvious that(ek
i ]wx ⊆ (ek

i ]ax. Some or all of the
thread-indexed sets of events above may be empty. By con-
vention, if an event, saye, does not exist inM, then we as-
sume that the indexed sets(e], (e]ax, and(e]wx are all empty
(rather than “undefined”). Note that ifA is implemented
such thatV a

x andV w
x store the corresponding numbers of

elements in the index sets of(ek
i ]ax and(ek

i ]wx immediately
after eventek

i is processed by threadti, respectively, then
(b) and(c) in the list of requirements forA are also fulfilled.

Even though the sets of events(ek
i ], (ek

i ]ax and(ek
i ]wx have

mathematically clean definitions, they are based on total
knowledge of the multithreaded computationM. Unfor-
tunately,M can be very large in practice, so the compu-
tation of these sets may be inefficient if not done properly.
Since our analysis algorithms areonline, we would like to
calculate these setsincrementally, as the observer receives
new events from the instrumented program. A key factor in
devising efficient update algorithms is to find equivalentre-
cursivedefinitions of these sets, telling us how to calculate
a new set of events from similar sets that have been already
calculated at previous event updates.

Let {ek
i }

R
i be the indexed set whosej components are

empty for allj 6= i and whosei-th component is either the
one element set{ek

i } whenek
i ∈ R or the empty set other-

wise. With the notation introduced, the following important

5
64

goodelle
Rectangle



recursive properties hold:

Lemma 2 Let ek
i be an event inM and letel

j be the event
preceding1 it inM. If ek

i is

1. An internal event then

(ek
i ] = (ek−1

i ] ∪ {ek
i }

R
i ,

(ek
i ]ax = (el

j ]
a
x, for anyx ∈ S,

(ek
i ]wx = (el

j ]
w
x , for anyx ∈ S;

2. A read ofx event then

(ek
i ] = (ek−1

i ] ∪ {ek
i }

R
i ∪ (el

j ]
w
x ,

(ek
i ]ax = (ek

i ] ∪ (el
j ]

a
x,

(ek
i ]ay = (el

j ]
a
y, for anyy ∈ S with y 6= x,

(ek
i ]wz = (el

j ]
w
z , for anyz ∈ S;

3. A write ofx event then

(ek
i ] = (ek−1

i ] ∪ {ek
i }

R
i ∪ (el

j ]
a
x,

(ek
i ]ax = (ek

i ],
(ek

i ]wx = (ek
i ],

(ek
i ]ay = (el

j ]
a
y, for anyy ∈ S with y 6= x,

(ek
i ]wy = (el

j ]
w
y , for anyy ∈ S with y 6= x.

Proof: 1. For the first equality, first recall thatek
i ∈ (ek

i ]
if and only if ek

i is relevant. Therefore, it suffices to show
thate ≺ ek

i if and only if e ≺ ek−1
i for any relevant event

e ∈ R. Sinceek
i is internal, it cannot be in relation<x

with any other event for any shared variablex ∈ S, so by
the definition of≺, the only possibilities are that eithere

is some eventek′

i of threadti with k′ < k, or otherwise
there is such an eventek′

i of threadti with k′ < k such that
e ≺ ek′

i . Hence, it is either the case thate is ek−1
i (soek−1

i is
also relevant) or otherwisee ≺ ek−1

i . In any of these cases,
e ∈ (ek−1

i ]. The other two equalities are straightforward
consequences of the definitions of(ek

i ]ax and(ek
i ]wx .

2. Like in the proof of1., ek
i ∈ (ek

i ] if and only if ek
i ∈ R,

so it suffices to show that for any relevant evente ∈ R,
e ≺ ek

i if and only if e ∈ (ek−1
i ] ∪ (el

j ]
w
x . Sinceek

i is a read
of x ∈ S event, by the definition of≺ one of the following
must hold:

• e = ek−1
i . In this caseek−1

i is also relevant, soe ∈
(ek−1

i ];

• e ≺ ek−1
i . It is obvious in this case thate ∈ (ek−1

i ];

• e is a write ofx event ande <x ek
i . In this casee ∈

(el
j ]

w
x ;

• There is some write ofx evente′ such thate ≺ e′ and
e′ <x ek

i . In this casee ∈ (el
j ]

w
x , too.

1If e
k
i is the first event then we can assume thate

l
j does not exist inM,

so by convention all the associated sets of events are empty

Therefore,e ∈ (ek−1
i ] or e ∈ (el

j ]
a
x.

Let us now prove the second equality. By the definition
of (ek

i ]ax, one has thate ∈ (ek
i ]ax if and only if e is equal to

or causally precedes an event accessingx ∈ S that occurs
before or is equal toek

i in M. Sinceek
i is a read ofx,

the above is equivalent to saying that either it is the case
that e is equal to or causally precedesek

i , or it is the case
thate is equal to or causally precedes an event accessingx

that occursstrictly beforeek
i inM. Formally, the above is

equivalent to saying that eithere ∈ (ek
i ] or e ∈ (el

j ]
a
x. If

y, z ∈ S andy 6= x then one can readily see (like in1.
above) that(ek

i ]ay = (el
j ]

a
y and(ek

i ]az = (el
j ]

a
z .

3. It suffices to show that for any relevant evente ∈ R,
e ≺ ek

i if and only if e ∈ (ek−1
i ]∪ (el

j ]
a
x. Sinceek

i is a write
of x ∈ S event, by the definition of≺ one of the following
must hold:

• e = ek−1
i . In this caseek−1

i ∈ R, soe ∈ (ek−1
i ];

• e ≺ ek−1
i . It is obvious in this case thate ∈ (ek−1

i ];

• e is an access ofx event (read or write) ande <x ek
i .

In this casee ∈ (el
j ]

a
x;

• There is some access ofx evente′ such thate ≺ e′ and
e′ <x ek

i . In this casee ∈ (el
j ]

a
x, too.

Therefore,e ∈ (ek−1
i ] or e ∈ (el

j ]
a
x.

For the second equality, note that, as for the second equa-
tion in 2., one can readily see thate ∈ (ek

i ]ax if and only if
e ∈ (ek

i ]∪(el
j ]

a
x. Butel

j ]
a
x ⊆ (ek

i ], so the above is equivalent
to e ∈ (ek

i ]. A similar reasoning leads to(ek
i ]wx = (ek

i ]. The
equalities fory 6= x immediate, becauseek

i has no relation
to accesses of other shared variables butx. �

Since each component set of each of the indexed sets in
these recurrences has the form(ek

i ]i for appropriatei andk,
and since each(ek

i ]i can be safely encoded by its size, one
can then safely encode each of the above indexed sets by
an n-dimensional MVC; these MVCs are preciselyVi for
all 1 ≤ i ≤ n andV a

x andV w
x for all x ∈ S. It is a simple

exercise now to derive the following MVC update algorithm
A (which was also given in Section 1):

ALGORITHM A
INPUT: evente generated by threadti

1. if e is relevant then
Vi[i]← Vi[i] + 1

2. if e is a read of a shared variablex then
Vi ← max{Vi, V

w
x }

V a
x ← max{V a

x , Vi}

3. if e is a write of a shared variablex then
V w

x ← V a
x ← Vi ← max{V a

x , Vi}

6
65

goodelle
Rectangle



4. if e is relevant then
send message〈e, i, Vi〉 to observer

An interesting observation is that one can regard the prob-
lem of recursively calculating(ek

i ] as a dynamic program-
ming problem. As can often be done in dynamic program-
ming problems, one can reuse space and derive the Algo-
rithm A. Therefore,A satisfies all the stated requirements
(a), (b) and(c), so they can be used as properties next in
order to show the correctness ofA:

Theorem 3 If 〈e, i, V 〉 and 〈e′, i′, V ′〉 are two messages
sent byA, thene ⊳ e′ if and only ifV [i] ≤ V ′[i] (no typo:
the secondi is not ani′) if and only ifV < V ′.

Proof: First, note thate ande′ are both relevant. The case
i = i′ is trivial. Supposei 6= i′. Since, by requirement(a)
for A, V [i] is the number of relevant events thatti gener-
ated before and includinge and sinceV ′[i] is the number of
relevant events ofti that causally precedee′, it is clear that
V [i] ≤ V ′[i] if and only if e ≺ e′. For the second part, if
e ⊳ e′ thenV ≤ V ′ follows again by requirement(a), be-
cause any event that causally precedese also precedese′.
Since there are some indicesi andi′ such thate was gen-
erated byti and e′ by ti′ , and sincee′ 6≺ e, by the first
part of the theorem it follows thatV ′[i′] > V [i′]; there-
fore, V < V ′. For the other implication, ifV < V ′ then
V [i] ≤ V ′[i], so the result follows by the first part of the
theorem. �

3.1. Synchronization and Shared Variables

Thread communication in multithreaded systems was
considered so far to be accomplished by writing/reading
shared variables, which were assumed to be knowna pri-
ori. In the context of a language like Java, this assumption
works only if the shared variables are declaredstatic; it is
less intuitive when synchronization and dynamically shared
variables are considered as well. Here we show that, under
proper instrumentation, the basic algorithm presented in the
previous subsection also works in the context of synchro-
nization statements and dynamically shared variables.

Since in Java synchronized blocks cannot be interleaved,
so corresponding events cannot be permuted, locks are con-
sidered as shared variables and a write event is generated
whenever a lock is acquired or released. This way, a causal
dependency is generated between any exit and any entry of
a synchronized block, namely the expected happens-before
relation. Java synchronization statements are handled ex-
actly the same way, that is, the shared variable associated to
the synchronization object is written at the entrance and at
the exit of the synchronized region. Condition synchroniza-
tions (wait/notify) can be handled similarly, by generating
a write of a dummy shared variable by both the notifying

thread before notification and by the notified thread after
notification.

To handle variables that are dynamically shared, for
each variablex of primitive type in each class the instru-
mentation program addsaccessandwrite MVCs, namely
_access_mvc_x and_write_mvc_x, as new fields in
the class. Moreover, for each read and write access of a
variable of primitive type in any class, it adds codes to up-
date the MVCs according to the multithreaded vector clock
algorithm.

3.2. A Distributed Systems Interpretation

It is known that the various mechanisms for process in-
teraction are essentially equivalent. This leads to the follow-
ing natural question: could it be possible to derive the MVC
algorithm in this section from vector clock based algorithms
implementing causality in distributed systems, such as the
ones in [2, 7]. The answer to this question is:almost.

Since writes and accesses of shared variables have differ-
ent impacts on the causal dependency relation, the most nat-
ural thing to do is to associate two processes to each shared
variablex, one for accesses, sayxa and one for writes, say
xw. As shown in Fig. 3 right, a write ofx by threadi can be
seen as sending a “request” message to writex to the “ac-
cess process”xa, which further sends a “request” message
to the “write process”xw, which performs the action and
then sends an acknowledgment messages back toi. This is
consistent with step 3 of the algorithm in Fig. 2; to see this,
note thatV w

x ≤ V a
x at any time.

However, a read ofx is less obvious and does not seem
to be interpretable by message passing updating the MVCs
the standard way. The problem here is that the MVC ofxa

needs to be updated with the MVC of the accessing thread
i, the MVC of the accessing threadi needs to be updated
with the current MVC ofxw in order to implant causal de-
pendencies between previous writes ofx and the current
access, but the point here is that the MVC ofxw doesnot

a w a wi x x i x x

Figure 3. A distributed systems interpre-
tation of reads (left) and writes (right).

7
66

goodelle
Rectangle



have to be updated by reads ofx; this is what allows reads
to be permutable by the observer. In terms of message pass-
ing, like Fig. 3 shows, this says that the access processxa

sends ahiddenrequest message toxw (after receiving the
read request fromi), whose only role is to “ask”xw send an
acknowledgment message toi. By hidden message, marked
with dotted line in Fig. 3, we mean a message which is
not considered by the standard MVC update algorithm. The
role of the acknowledgment message is to ensure thati up-
dates its MVC with the one of the write access processxw.

4. The Vector Clock Algorithm at Work

In this section we propose predictive runtime analysis
frameworks in which the presented MVC algorithm can
be used, and describe by examples how we use it in JAVA

MULTI PATHEXPLORER (JMPAX) [27, 28, 19].
The observer therefore receives messages of the form

〈e, i, V 〉 in any order, and, thanks to Theorem 3, can ex-
tract the causal partial order⊳ on relevant events, which is
its abstraction of the running program. Any permutation
of the relevant events which is consistent with⊳ is called
a multithreaded run, or simply arun. Notice that each run
corresponds to some possible execution of the program un-
der different execution speeds or scheduling of threads, and
that the observed sequence of events is just one such run.
Since each relevant event contains global state update infor-
mation, each run generates a sequence of global states. If
one puts all these sequences together then one gets a lattice,
called computation lattice. The reader is assumed famil-
iar with techniques on how to extract a computation lattice
from a causal order given by means of vector clocks [24].
Given a global property to analyze, the task of the observer
now is to verify it against every path in the automatically ex-
tracted computation lattice. JPAX and JAVA -MAC are able
to analyze only one path in the lattice. The power of our
technique consists of its ability to predict potential errors in
other possible multithreaded runs.

Once a computation lattice containing all possible runs is
extracted, one can start using standard techniques on debug-
ging distributed systems, considering both state predicates
[29, 7, 5] and more complex, such as temporal, properties
[3, 5, 1, 4]. Also, the presented algorithm can be used as
a front-end to partial order trace analyzers such as POTA
[26]. Also, since the computation lattice acts like an abstract
model of the running program, one can potentially run one’s
favorite model checker against any property of interest. We
think, however, that one can do better than that if one takes
advantage of the specific runtime setting of the proposed
approach. The problem is that the computation lattice can
grow quite large, in which case storing it might become a
significant matter. Since events are received incrementally
from the instrumented program, one can buffer them at the

observer’s side and then build the lattice on a level-by-level
basis in a top-down manner, as the events become available.
The observer’s analysis process can also be performed in-
crementally, so that parts of the lattice which become non-
relevant for the property to check can be garbage-collected
while the analysis process continues.

If the property to be checked can be translated into
a finite state machine (FSM) or if one can synthesize
online monitors for it, like we did for safety properties
[28, 17, 18, 27], then one can analyze all the multithreaded
runsin parallel, as the computation lattice is built. The idea
is to store the state of the FSM or of the synthesized monitor
together with each global state in the computation lattice.
This way, in any global state, all the information needed
about the past can be stored via a set of states in the FSM
or the monitor associated to the property to check, which is
typically quite small in comparison to the computation lat-
tice. Thus only one cut in the computation lattice is needed
at any time, in particular one level, which significantly re-
duces the space required by the proposed predictive analysis
algorithm.

Liveness properties apparently do not fit our runtime ver-
ification setting. However, stimulated by recent encourag-
ing results in [22], we believe that it is also worth exploring
techniques that canpredict violations of liveness properties.
The idea here is to search for paths of the formuv in the
computation lattice with the property that the shared vari-
able global state of the multithreaded program reached by
u is the same as the one reached byuv, and then to check
whetheruvω satisfies the liveness property. The intuition
here is that the system can potentially run into the infinite
sequence of statesuvω (u followed by infinity many repe-
titions of v), which may violate the liveness property. It is
shown in [22] that the testuvω |= ϕ can be done in poly-
nomial time and space in the sizes ofu, v andϕ, typically
linear inuv, for almost any temporal logic.

4.1. Java MultiPathExplorer (JMPaX)

JMPAX [27, 28] is a runtime verification tool which
checks a user defined specification against a running pro-
gram. The specifications supported by JMPAX allow any
temporal logic formula, using an interval-based notation
built on state predicates, so our properties can refer to the
entire history of states. Fig. 4 shows the architecture of JM-
PAX. An instrumentation module parses the user specifica-
tion, extracts the set of shared variables it refers to, i.e., the
relevant variables, and theninstrumentsthe multithreaded
program (which is assumed in bytecode form) as follows.
Whenever a shared variable is accessed the MVC algorithm
A in Section 3 is inserted; if the shared variable is relevant
and the access is a write then the event is considered rel-
evant. When the instrumented bytecode is executed, mes-

8
67

goodelle
Rectangle



Specification

Java

Multithreaded

Program

Bytecode

Compile

Instrumentor

Instrumented

Bytecode

Translator

SpecificationImpl

LTL Monitor

Execute

Level 0

Level 5

Level 4

Level 3

Level 2

Level 1

Computation Lattice

Monitor

Execution
Program Execution

JVM

Instrument

Event Stream

Instrumentation

Module
Monitoring

Module

Figure 4. The Architecture of JMPAX.

sages〈e, i, V 〉 for relevant eventse are sent via a socket to
an external observer.

The observer generates the computation lattice on a
level by level basis, checking the user defined specification
against all possible multithreaded runs in parallel. Note that
only one of those runs was indeed executed by the instru-
mented multithreaded program, and that the observer does
not know it; the other runs arepotentialruns, they can occur
in other executions of the program. Despite the exponential
number of potential runs, at most two consecutive levels in
the computation lattice need to be stored at any moment.
[27, 28] gives more details on the particular implementa-
tion of JMPAX. We next discuss two examples where JM-
PAX can predict safety violations from successful runs; the
probability of detecting these bugs only by monitoring the
observed run, as JPAX and JAVA -MAC do, is very low.

Example 1. Let us consider the simple landing controller
in Fig.1, together with the property “If the plane has started
landing, then it is the case that landing has been approved
and since then the radio signal has never been down.” Sup-
pose that a successful execution is observed, in which the
radio goes downafter the landing has started. After instru-
mentation, this execution emits only three events to the ob-
server in this order: a write ofapproved to 1, a write of
landing to 1, and a write ofradio to 0. The observer
can now build the lattice in Fig.5, in which the states are
encoded by triples<landing,approved,radio> and the

leftmost path corresponds to the observed execution. How-
ever, the lattice contains two other runs both violating the
safety property. The rightmost one corresponds to the sit-

<1,1,1>

<1,1,0>

<0,0,1>

<0,1,1> <0,0,0>

<0,1,0>

Figure 5. Computation lattice
for the program in Fig. 1.

uation when the radio goes down right between the test
radio==0 and the actionapproved=1, and the inner one
corresponds to that in which the radio goes down between
the actionsapproved=1 andlanding=1. Both these erro-
neous behaviors are insightful and very hard to find by test-
ing. JMPAX is able to build the two counterexamples very
quickly, since there are only 6 states to analyze and three
corresponding runs, so it is able to give useful feedback.

Example 2. Let us now consider an artificial example in-
tended to further clarify the prediction technique. Suppose
that one wants to monitor the safety property “if(x > 0)
then (y = 0) has been true in the past, and since then
(y > z) was always false” against a multithreaded pro-
gram in which initially x = −1, y = 0 and z = 0,
with one thread containing the codex++; ...; y = x + 1
and another containingz = x + 1; ...; x++. The dots
indicate code that is not relevant, i.e., that does not ac-
cess the variablesx, y and z. This multithreaded pro-
gram, after instrumentation, sends messages to JMPAX’s
observer whenever the relevant variablesx, y, z are up-
dated. A possible execution of the program to be sent to
the observer can consist of the sequence of program states
(−1, 0, 0), (0, 0, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1), where
the tuple(−1, 0, 0) denotes the state in whichx = −1, y =
0, z = 0. Following the MVC algorithm, we can deduce
that the observer will receive the multithreaded computation
shown in Fig. 6, which generates the computation lattice
shown in the same figure. Notice that the observed multi-
threaded execution corresponds to just one particular multi-
threaded run out of the three possible, namely the leftmost
one. However, another possible run of the same computa-
tion is the rightmost one, which violates the safety property.
Systems like JPAX and JAVA -MAC that analyze only the
observed runs fail to detect this violation. JMPAX predicts
this bug from the original successful run.

9
68

goodelle
Rectangle



S
0,0

x = -1, y = 0, z = 0

S
2,2

x = 1, y = 1, z = 1

S
2,1

x = 0, y = 1, z = 1

S
2,0

x = 0, y = 1, z = 0

S
1,1

x = 0, y = 0, z = 1

S
1,0

x = 0, y = 0, z = 0

e1:<x=0, T1,(1,0)>

e4:<x=1, T2,(1,2)>

e2:<z=1,T2,(1,1)>
e3:<y=1,T1,(2,0)>

e2:<z=1,T2,(1,1)>
e3:<y=1,T1,(2,0)>

e1:<x=0, T1,(1,0)>

e2:<z=1,T2,(1,1)>

e3:<y=1,T1,(2,0)>

e4:<x=1, T2,(1,2)>

T1

T2

S
1,2

x = 1, y = 0, z = 1

e4:<x=1, T2,(1,2)>

e3:<y=1,T1,(2,0)>

Figure 6. Computation lattice with three runs.

5. Conclusion

A simple and effective algorithm for extracting the relevant
causal dependency relation from a running multithreaded
program was presented in this paper. This algorithm is sup-
ported by JMPAX, a runtime verification tool able to detect
and predict safety errors in multithreaded programs.

Acknowledgments. Many thanks to Gul Agha and Mark-
Oliver Stehr for their inspiring suggestions and comments
on several previous drafts of this work. The work is sup-
ported in part by the Defense Advanced Research Projects
Agency (the DARPA IPTO TASK Program, contract num-
ber F30602-00-2-0586, the DARPA IXO NEST Pro-
gram, contract number F33615-01-C-1907), the ONR Grant
N00014-02-1-0715, the Motorola Grant MOTOROLA RPS
#23 ANT, and the joint NSF/NASA grant CCR-0234524.

References

[1] M. Ahamad, M. Raynal, and G. Thia-Kime. An adaptive
protocol for implementing causally consistent distributed
services. InProceedings of International Conference on
Distributed Computing (ICDCS’98), pages 86–93, 1998.

[2] O. Babaŏglu and K. Marzullo. Consistent global states
of distributed systems: Fundamental concepts and mecha-

nisms. In S. Mullender, editor,Distributed Systems, pages
55–96. Addison-Wesley, 1993.

[3] O. Babaŏglu and M. Raynal. Specification and verification
of dynamic properties in distributed computations.Journal
of Parallel and Distr. Computing, 28(2):173–185, 1995.

[4] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-
Based Runtime Verification. InProceedings Verification,
Model Checking and Abstract Interpretation (VMCAI 04),
volume 2937 ofLNCS, pages 44–57, Jan. 2004.

[5] C. M. Chase and V. K. Garg. Detection of global predicates:
Techniques and their limitations.Distributed Computing,
11(4):191–201, 1998.

[6] E. M. Clarke and J. M. Wing. Formal methods: state of
the art and future directions.ACM Computing Surveys,
28(4):626–643, Dec. 1996.

[7] R. Cooper and K. Marzullo. Consistent detection of global
predicates.ACM SIGPLAN Notices, 26(12):167–174, 1991.
Proceedings of the ACM/ONR Workshop on Parallel and
Distributed Debugging.

[8] J. Dick and A. Faivre. Automating the generation and se-
quencing of test cases from model-based specifications. In
Proceedings of Formal Methods Europe (FME’93): Indus-
trial Strength Formal Methods, volume 670 ofLNCS, pages
268–284, 1993.

[9] D. Drusinsky. Temporal rover. http://www.time-rover.com.
[10] D. Drusinsky. The Temporal Rover and the ATG Rover.

In Proc. of SPIN’00: SPIN Model Checking and Software
Verification, volume 1885 ofLecture Notes in Computer
Science, pages 323–330, Stanford, California, USA, 2000.
Springer.

[11] D. Drusinsky. Monitoring Temporal Rules Combined with
Time Series. InProc. of CAV’03: Computer Aided Verifi-
cation, volume 2725 ofLecture Notes in Computer Science,
pages 114–118, Boulder, Colorado, USA, 2003. Springer-
Verlag.

[12] C. J. Fidge. Partial orders for parallel debugging. InPro-
ceedings of the 1988 ACM SIGPLAN/SIGOPS workshop on
Parallel and Distr. Debugging, pages 183–194. ACM, 1988.

[13] E. L. Gunter, R. P. Kurshan, and D. Peled. PET: An inter-
active software testing tool. InComputer Aided Verification
(CAV’00), volume 1885 ofLNCS, pages 552–556. Springer-
Verlag, 2003.

[14] K. Havelund and G. Roşu. Monitoring Java Programs with
Java PathExplorer. InProceedings of the 1st Workshop on
Runtime Verification (RV’01), volume 55 ofENTCS. Else-
vier, 2001.

[15] K. Havelund and G. Roşu. Monitoring Programs using
Rewriting. In Proceedings Automated Software Engineer-
ing (ASE’01), pages 135–143. IEEE, 2001.

[16] K. Havelund and G. Roşu.Runtime Verification 2001, 2002,
volume 55, 70(4) ofENTCS. Elsevier, 2001, 2002. Proceed-
ings of aComputer Aided Verification (CAV’01, CAV’02)
workshop.

[17] K. Havelund and G. Roşu. Efficient monitoring of safety
properties.Software Tools and Tech. Transfer, to appear.

[18] K. Havelund and G. Roşu. Synthesizing monitors for safety
properties. InTools and Algorithms for Construction and
Analysis of Systems (TACAS’02), volume 2280 ofLNCS,
pages 342–356. Springer, 2002.

10
69

goodelle
Rectangle



[19] Java MultiPathExplorer.http://fsl.cs.uiuc.edu/jmpax.
[20] M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a

Run-time Assurance Tool for Java. InProceedings of Run-
time Verification (RV’01), volume 55 ofENTCS. Elsevier
Science, 2001.

[21] D. Lee and M. Yannakakis. Principles and methods of test-
ing finite state machines - A survey. InProceedings of the
IEEE, volume 84, pages 1090–1126, 1996.

[22] N. Markey and P. Schnoebelen. Model checking a path (pre-
liminary report). InProceedings of the 14th International
Conference on Concurrency Theory (CONCUR’2003), vol-
ume 2761 ofLNCS, pages 248–262. Springer, 2003.

[23] K. Marzullo and G. Neiger. Detection of global state predi-
cates. InProceedings of the 5th International Workshop on
Distributed Algorithms (WADG’91), volume 579 ofLNCS,
pages 254–272. Springer, 1991.

[24] F. Mattern. Virtual time and global states of distributed sys-
tems. InParallel and Distributed Algorithms: proceedings
of the International Workshop on Parallel and Distributed
Algorithms, pages 215–226. Elsevier, 1989.

[25] G. Roşu and K. Sen. An instrumentation technique for on-
line analysis of multithreaded programs. InPADTAD work-
shop at IPDPS. IEEE Computer Society, 2003.

[26] A. Sen and V. K. .Garg. Partial order trace analyzer (pota)
for distrubted programs. InProceedings of Workshop on
Runtime Verification (RV’03), ENTCS, 2003.

[27] K. Sen, G. Roşu, and G. Agha. Runtime safety analysis of
multithreaded programs. InEuropean Software Engineering
Conference and ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering (ESEC/FSE’03). ACM, 2003.

[28] K. Sen, G. Roşu, and G. Agha. Online efficient predictive
safety analysis of multithreaded programs. In10th Inter-
national Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’04), volume 2988
of LNCS, pages 123–138, Bercelona, Spain, Mar. 2004.
Springer.

[29] S. D. Stoller. Detecting global predicates in distributed
systems with clocks. InProceedings of the 11th Inter-
national Workshop on Distributed Algorithms (WDAG’97),
pages 185–199, 1997.

[30] S. A. Vilkomir and J. P. Bowen. Formalization of soft-
ware testing criteria using the Z notation. InProceedings
of COMPSAC 01: 25th IEEE Annual International Com-
puter Software and Applications Conference, pages 351–
356. IEEE Computer Society, Oct. 2001.

11
70

goodelle
Rectangle



ON PARALLEL vs. SEQUENTIAL THRESHOLD CELLULAR AUTOMATA

PREDRAG TOSIC∗ and GUL AGHA
Open Systems Laboratory (http://osl.cs.uiuc.edu), Department of Computer Science,

University of Illinois at Urbana-Champaign, 201 N. Goodwin, Urbana, IL 61801, USA
{p-tosic, agha}@cs.uiuc.edu

ABSTRACT
Cellular automata (CA) are an abstract model of fine-grain parallelism,

as the node update operations are rather simple, and therefore comparable
to the basic operations of the computer hardware. In a classical CA, all the
nodes execute their operations in parallel and in perfect synchrony. We
consider herewith the sequential version of CA, called SCA, and compare
these SCA with the classical, parallel CA. In particular, we show that
there are 1-D CA with very simple node state update rules that cannot be
simulated by any comparable SCA, irrespective of the node update order-
ing. Consequently, the fine granularity of the basic CA operations and,
therefore, the fine-grain parallelism of the classical, synchronous CA,
insofar as the “interleaving semantics” is concerned, is not fine enough.
We also share some thoughts on how to extend the results herein, and, in
particular, we try to motivate the study of genuinely asynchronous cellular
automata.

Keywords: cellular automata, linear threshold automata, dynamical sys-
tems, concurrency, sequential interleaving semantics

1. Introduction and Motivation

Cellular automata (CA) were originally introduced as an abstract mathematical model that can
capture the behavior of biological systems capable of self-reproduction [19]. Subsequently, CA have
been extensively studied in a great variety of application domains, mostly in the context of complex
physical or biological systems and their dynamics (e.g., [11, 26, 27, 28, 29]). However, CA can also
be viewed as an abstraction of massively parallel computers (e.g, [8]). Herein, we study a particular
simple yet nontrivial class of CA from the parallel and distributed computing perspectives. In
particular, we pose - and partially answer - some fundamental questions regarding the nature of the
CA parallelism, i.e., the perfect synchrony of the classical CA computation.

It is well known that CA are an abstract architecture model of fine-grain parallelism, in that
the elementary operations executed at each node are rather simple and hence comparable to the
basic operations performed by the computer hardware. In a classical (parallel) CA, whether finite or
infinite, all the nodes execute their operations in parallel and in perfect synchrony, that is, logically
simultaneously: in general, the state of a node xi at time step t + 1 is some simple function of the
states of the node xi and a set of its pre-specified neighbors at time t.

We consider herewith the sequential version of CA, that we shall abridge to SCA in the sequel,
and compare these SCA with the perfectly synchronous parallel (or concurrent) CA. In particular,
we will show that there are 1-D CA with very simple state update rules that cannot be simulated by
any comparable SCA, irrespective of the node update ordering. While the result would be trivial if
one considers a single (S)CA computation, we argue that the result is nontrivial and important when
applied to all possible inputs (starting configurations) and, moreover, to the entire classes of CA and
SCA. Hence, the granularity of the basic CA operations, insofar as the (im)possibility of simulating

∗Contact author. Work phone: 217-244-1976. Fax: 217-333-9386.

1
71

goodelle
Text Box
Appendix E:

goodelle
Rectangle



their concurrent computation via appropriate sequential interleavings of these basic operations, turns
out not to be quite fine enough. We also share some thoughts on how to extend the results
presented herein, and, in particular, we try to motivate the study of genuinely asynchronous cellular
automata, where the asynchrony applies not only to the local computations at individual nodes, but
also to the communication among different nodes via the “shared variables” stored as the respective
nodes’ states.

An example of asynchrony in the local node updates (i.e., asynchronous computation at different
“processors”) is when, for instance, the individual nodes update one at a time, according to some
random order. This is a kind of asynchrony found in the literature, e.g., in [14, 15]. It is important
to understand, however, that even in case of what is referred to as asynchronous cellular automata
(ACA) in the literature, the term asynchrony there applies to local updates (i.e., computations)
only, but not to communication, since a tacit assumption of the globally accessible global clock
still holds. We prefer to refer to this kind of (weakly asynchronous) (A)CA as sequential cellular
automata, and, in this work, consistently keep the term asynchronous cellular automata for those
CA that do not have a global clock (see Section 4).

Before dwelling into the issue of concurrency vs. arbitrary sequential interleavings applied to the
threshold cellular automata, we first clarify the terminology, and then introduce the relevant concepts
through a simple programming exercise in Subsection 1.1.

Throughout, we use the terms parallel and concurrent as synonyms. Many programming lan-
guages experts would strongly disagree with this convention. However, a complete agreement in the
computer science community on what exactly concurrency means, and how it relates to parallelism,
is lacking. According to Chapter §12 of [22], “concurrency in the programming language and
parallelism in the computer hardware are independent concepts. [...] We can have concurrency in a
programming language without parallel hardware, and we can have parallel execution without con-
currency in the language. In short, concurrency refers to the potential for parallelism” (italics ours).
Clearly, our convention herein does not conform to the notions of concurrency and parallelism as
defined in [22]. In contrast, [20] uses the term concurrent “to describe computations where the si-
multaneously executing processes can interact with one another”, and parallel for “[...] computations
where behavior of each process is unaffected by the behavior of the others”. [20] also acknowledges
that many authors do not discriminate between “parallel” and “concurrent”. We shall follow this
latter convention throughout and, moreover, by a parallel (concurrent) computation we shall mean
actions of several processing units that are carried out logically (if not necessarily physically) simul-
taneously. That is, when referring to parallel (or, equivalently, concurrent) computation, we shall
always assume a perfect synchrony.

1.1. Capturing Concurrency by Sequential Interleavings

While our own brains are massively parallel computing devices, we seem to (consciously) think
and approach problem-solving rather sequentially. In particular, when designing a parallel algorithm
or writing a computer program that is inherently parallel, we still prefer to be able to understand
such an algorithm or program at the level of sequential operations or executions. It is not surprising,
therefore, that a great deal of research effort has been devoted to interpreting parallel computation
in the more familiar, sequential terms. One of the most important contributions in that respect is
the (nondeterministic) sequential interleaving semantics of concurrency (see, e.g., [7, 9, 13, 17, 18]).

When interpreting concurrency via interleaving semantics, a natural question arises: Given a
parallel computing model, can its parallel execution always be captured by such sequential nondeter-
minism, so that any given parallel computation can be faithfully reproduced via an appropriate choice
of a sequential interleaving of the operations involved? For most theoreticians of parallel computinga,

aThat is, for all “believers” in the interleaving semantics of concurrency - as contrasted with, e.g., proponents of

2
72

goodelle
Rectangle



the answer is apparently “Yes” - provided that we simulate concurrent execution via sequential in-
terleavings at a sufficiently high level of granularity of the basic computational operations. However,
given a parallel computation in the form of a set of concurrently executing processes, how do we tell if
the particular level of granularity is fine enough, i.e., whether the operations at that granularity level
can truly be rendered atomic for the purposes of capturing concurrency via sequential interleavings?

We shall illustrate the concept of sequential interleaving semantics of concurrency with a simple
example. Let’s consider the following trivia question from a sophomore parallel programming class:
Find a simple example of two instructions such that, when executed in parallel, they give a result not
obtainable from any corresponding sequential execution sequence?

A possible answer: Assume x = 0 initially and consider the following two programs

x ← x + 1; x ← x + 1
vs.

x ← x + 1 || x ← x + 1

where “||” stands for the parallel, and “;” for the sequential composition of instructions or programs,
respectively. Sequentially, one always gets the same answer: x = 2. In parallel (when the two
assignment operations are executed synchronously), however, one gets x = 1. It appears, therefore,
that no sequential ordering of operations can reproduce parallel computation - at least not at the
granularity level of high-level instructions as above.

The whole “mystery” can be readily resolved if we look at the possible sequential executions of
the corresponding machine instructions:

LOAD x, ∗m LOAD x, ∗m
ADD x, #1 ADD x, #1
STORE x, ∗m STORE x, ∗m
There certainly exist choices of sequential interleavings of the six machine instructions above that

lead to “parallel” behavior (i.e., the one where, after the code is executed, x = 1). Thus, by
refining granularity from the high-level language instructions down to the machine instructions, we
can certainly preserve the interleaving “semantics” of concurrency.

As a side, we remark that it turns out that the example above does not require finer granularity
quite yet, if we allow that some instructions be treated as no-ops. Indeed, if we informally define
Φ(P ) to be the set of possible behaviors of program P, then the example above only shows that, for
S1 = S2 = (x ← x + 1),

Φ(S1||S2) * Φ(S1; S2) ∪ Φ(S2; S1) (1)

However, it turns out that, in this particular example, it indeed is the case that

Φ(S1||S2) ⊆ Φ(S1; S2) ∪ Φ(S2; S1) ∪ Φ(S1) ∪ Φ(S2) (2)

and no finer granularity is necessary to model Φ(S1||S2), assuming that, in some of the sequential
interleavings, we allow certain instructions not to be executed at all.

However, one can construct more elaborate examples where the property (2) does not hold.
The only way to capture the program behavior of parallel compositions of the form Φ(P1||P2) via
sequential interleavings in such cases would then be to find a finer level of granularity, i.e., to reconsider
at what level can operations be considered atomic, so that the union of all possible sequential
interleavings of such basic operations (including the interleavings that allow “no-ops” for some of
the instructions) is guaranteed to capture the concurrent behavior, i.e., so that (2) holds. That
is, sometimes refining the granularity of operations so that sequential interleavings can capture
synchronous parallel behavior, becomes a necessity.

true concurrency, an alternative model not discussed herewith.

3
73

goodelle
Rectangle



We address herein the (in)adequacy of the sequential interleavings semantics when applied to CA
where the individual node updatesb are considered to be elementary operations. In particular, we
show that the perfect synchrony of the classical CA’s node updates causes the interleaving semantics,
as captured by the SCA and NICA sequential CA models (Section 2), to fail rather dramatically
even in the context of the simplest (nonlinear) CA node update rules.

2. Cellular Automata and Types of Their Configurations

We introduce CA by first considering (deterministic) Finite State Machines (FSMs) such as
Deterministic Finite Automata (DFA). An FSM has finitely many states, and is capable of reading
the input signals coming from the outside. The machine is initially in some starting state; upon
reading each input signal, the machine changes its state according to a pre-defined and fixed rule.
In particular, the entire memory of the system is contained in what “current state” the machine is
in, and nothing else about the previously processed inputs is remembered. Hence, the probabilistic
generalization of deterministic FSMs leads to (discrete) Markov chains. It is important to notice
that there is no way for a FSM to overwrite, or in any other way affect, the input data stream. Thus
individual FSMs are computational devices of rather limited power.

Now let us consider many such FSMs, all identical to one another, that are lined up together
in some regular fashion, e.g., on a straight line or a regular 2-D grid, so that each single “node”
in the grid is connected to its immediate neighbors. Let’s also eliminate any external sources of
input streams to the individual machines at the nodes, and let the current values of any given node’s
neighbors be that node’s only “input data”. If we then specify a finite set of the possible values held
in each node, and we also identify this set of values with the set of each node’s internal states, we
arrive at an informal definition of a classical cellular automaton. To summarize, a CA is a finite
or infinite regular grid in one-, two- or higher-dimensional space, where each node in the grid is a
FSM, and where each such node’s input data at each time step are the corresponding internal states
of the node’s neighbors. Moreover, in the most important special case - the Boolean case, this FSM
is particularly simple, i.e., it has only two possible internal states, labeled 0 and 1. All the nodes
of a classical CA execute the FSM computation in unison, i.e., (logically) simultaneously. We
note that infinite CA are capable of universal (Turing) computation. Moreover, the general class of
infinite CA, once arbitrary starting configurations are allowed, are actually strictly more powerful
than the classical Turing machines (for more, see, e.g., [8]).

We follow [8] and formally define classical (that is, synchronous and concurrent) CA in two steps:
we first define the notion of a cellular space, and, subsequently, we define a cellular automaton over
an appropriate cellular space.

Definition 1 A Cellular Space, Γ, is an ordered pair (G,Q), where

• G is a regular undirected Cayley graph that may be finite or infinite, with each node labeled
with a distinct integer; and

• Q is a finite set of states that has at least two elements, one of which being the special quiescent
state, denoted by 0.

We denote the set of integer labels of the nodes (vertices) in Γ by L. That is, L may be equal to,
or be a proper subset of, the set of all integers.

bIt is tacitly assumed here that the complete node update operation includes, in addition to computing the local
update function on appropriate inputs, also the necessary reads of the neighbors’ values preceding the local rule
computation, as well as the writes of one’s new value following the local computation. These points will become clear
once the necessary definitions and terminology are introduced in Section 2; see also discussion in Sections 4 and 5.

4
74

goodelle
Rectangle



Definition 2 A Cellular Automaton A is an ordered triple (Γ, N, M), where

• Γ is a cellular space;
• N is a fundamental neighborhood; and
• M is a finite state machine such that the input alphabet of M is Q|N |, and the local transition

function (update rule) for each node is of the form δ : Q|N |+1 → Q for CA with memory, and
δ : Q|N | → Q for memoryless CA.

The fundamental neighborhood N specifies what near-by nodes provide inputs to the update rule
of a given node. In the classical CA, Γ is a regular graph that locally “looks the same everywhere”;
in particular, the local neighborhood N is the same for each node in Γ.

The local transition rule δ specifies how each node updates its state (that is, value), based on
its current state (value), and the current states of its neighbors in N . By composing together the
application of the local transition rule to each of the CA’s nodes, we obtain the global map on the
set of (global) configurations of a cellular automaton.

We observe that there is plenty of parallelism in the CA “hardware”, assuming, of course, a
sufficiently large number of nodesc. Actually, classical CA defined over infinite cellular spaces provide
unbounded parallelism where, in particular, an infinite amount of information processing is carried
out in a finite time (even in a single parallel step). In particular, the notion of independence between
parallelism and concurrency as defined in [22] seems inappropriate to apply to CA: without the
parallel “hardware”, that is, multiple interconnected nodes, a CA is not capable of any concurrent
computation. Indeed, a single-node CA is just a “fixed” deterministic FSM - an entirely sequential
computing model.

Insofar as the CA “computer architecture” is concerned, one important characteristic is that
the memory and the processors are not truly distinguishable, in stark contrast to Turing machines,
(P)RAMs, and other standard abstract models of digital computers. Namely, each node of a cellular
automaton is both a processing unit and a memory storage unit; see, e.g., the detailed discussion
in [24]. In particular, the only “memory content” of a CA is a tuple of the (current) states of all
its nodes. Moreover, as a node can “read” (but not “write”) the states or “values” of its neighbors,
we can view the architecture of classical CA as a very simplistic, special case of distributed shared
memory parallel model, where every “processor” (that is, each node) “owns” one cell (typically, one
bit) of its “local memory”, physically separated from other similar local “memories” - yet this local
memory is directly accessible (for read accesses) to some of the other “processors”. In particular,
the “reads” to any “memory cell” (or a “shared variable” stored in such a memory cell) are restricted
to an appropriate neighborhood of that shared value’s “owner processor”, while the “writes” are
restricted to the owner processor alone.

Since our main results herein pertain to a comparison and contrast between the classical, concurrent
threshold CA and their sequential counterparts, we formally introduce two types of the sequential
CA next. First, we define SCA with a fixed (but arbitrary) sequence specifying the order according
to which the nodes are to update. We then introduce a kind of sequential automata whose purpose
is to capture the “interleaving semantics”, that is, where all possible sequences of node updates are
considered at once.

Definition 3 A Sequential Cellular Automaton (SCA) S is an ordered quadruple (Γ, N, M, s),
where Γ, N and M are as in Definition 2, and s is an arbitrary sequence, finite or infinite, all of
whose elements are drawn from the set L of integers used in labeling the vertices of Γ. The sequence
s is specifying the sequential ordering according to which an SCA’s nodes update their states, one at
a time.

cSee the discussion in Section 1, and, in particular, the definition of the relationship between concurrency and
parallelism in reference [22].

5
75

goodelle
Rectangle



However, when comparing and contrasting the concurrent CA with their sequential counterparts,
rather than making a comparison between a given CA with a particular SCA (that is, a corre-
sponding SCA with some particular choice of the update sequence s), we compare the parallel CA
computations with the computations of the corresponding SCA for all possible sequences of node
updates. For that purpose, the following class of sequential automata is introduced:

Definition 4 A Nondeterministic Interleavings Cellular Automaton (NICA) I is defined to be
the union of all sequential automata S whose first three components, Γ, N and M are fixed. That is,
I = ∪s (Γ, N, M, s), where the meanings of Γ, N, M , and s are the same as before, and the union
is taken over all (finite and infinite) sequences s : {1, 2, 3, ...} → L, where L is the set of integer
labels of the nodes in Γ.

We now change pace and introduce some terminology from physics that we find useful for char-
acterizing all possible computations of a parallel or a sequential cellular automaton. To this end,
a (discrete) dynamical system view of CA is helpful. A phase space of a dynamical system is a
directed graph where the vertices are the global configurations (or global states) of the system, and
directed edges correspond to the possible direct transitions from one global state to another.

As for any other kind of dynamical systems, we can define the fundamental, qualitatively distinct
types of global configurations that a cellular automaton can find itself in. We first define these
qualitatively distinct types of dynamical system configurations for the parallel CA, and then briefly
discuss how these definitions need to be modified in case of SCA and NICA.

The classification below is based on answering the following question: starting from a given global
CA configuration, can the automaton return to that same configuration after a finite number of
parallel computational steps?

Definition 5 A fixed point (FP) is a configuration in the phase space of a CA such that, once
the CA reaches this configuration, it stays there forever. A cycle configuration (CC) is a state that,
once reached, will be revisited infinitely often with a fixed, finite temporal period of 2 or greater. A
transient configuration (TC) is a state that, once reached, is never going to be revisited again.

In particular, a FP is a special, degenerate case of a recurrent state with period 1. Due to
deterministic evolution, any configuration of a classical, parallel CA is either a FP, a proper CC,
or a TC. Throughout, we shall make a clear distinction between FPs and “proper” CCs.

On the other hand, if one considers SCA so that arbitrary node update orderings are permitted,
then, given the underlying cellular space and the local update rule, the resulting phase space con-
figurations, due to nondeterminism that results from different choices of possible sequences of node
updates (“sequential interleavings”), are more complicated. In a particular SCA, a cycle configu-
ration is any configuration revisited infinitely often - but the period between different consecutive
visits, assuming an arbitrary sequence s of node updates, need not be fixed. We call a global config-
uration that is revisited only finitely many times (under a given ordering s) quasi-cyclic. Similarly,
a quasi-fixed point is an SCA configuration such that, once the SCA’s dynamic evolution reaches
this configuration, it stays there “for a while” (i.e., for some finite number of sequential node update
steps), and then leaves. For example, a configuration of an SCA can simultaneously be both an FP
and a quasi-CC, or both a quasi-FP and a CC (see Subsection 3.1).

For simplicity, heretofore we shall refer to a configuration C of a NICA as a (weak) fixed point if
there exists some infinite sequence of node updates s such that C is a FP in the usual sense when the
automaton’s nodes update according to the ordering s. A strong fixed point of a NICA automaton is
a configuration that is fixed (stable) with respect to all possible sequences of node updates. Similarly,
we consider a configuration C ′ to be a cycle state, if there exists an infinite sequence of node updates
s′ such that, if NICA nodes update according to s′, then C ′ is a cycle state of period 2 or greater
in the usual sense (see Def. 5). In particular, in case of the NICA automata, a single configuration
can simultaneously be a weak FP, a CC and a TC; see Subsection 3.1 for a simple example.

6
76

goodelle
Rectangle



3. 1-D Parallel vs. Sequential CA Comparison and Contrast for Simple Threshold Rules

After the introduction, motivation and the necessary definitions, we now proceed with our main
results and their meaning. Technical results (and some of their proofs) are given in this section.
Discussion of the implications and relevance of these results, as well as some possible generalizations
and extensions, will follow in Section 4.

Herein, we compare and contrast the classical, concurrent CA with their sequential counterparts,
SCA and NICA, in the context of the simplest nonlinear local update rules possible, viz., the CA
in which the nodes locally update according to linear threshold functions. Moreover, we choose
these threshold functions to be symmetric, so that the resulting (S)CA are also totalistic (see, e.g.,
[8] or [28]). We show the fundamental difference in the configuration spaces, and therefore possible
computations, between the parallel threshold automata and the sequential threshold automata: while
the former can have temporal cycles (of length two), the computations of the latter always either
converge to a fixed point, or otherwise underlying cellular spaces Γ) they fail to finitely converge to
any recurrent pattern whatsoever.

For simplicity, but also in order to indicate how dramatically the sequential interleavings of NICA
fail to capture the concurrency of the classical CA based on perfect synchrony, we restrict the
underlying cellular spaces to one-dimensional Γ. We formally define the class of 1-D (S)CA of a
finite radius below:

Definition 6 A 1-D (sequential) cellular automaton of radius r (r ≥ 1) is a (S)CA defined over
a one-dimensional string of nodes, such that each node’s next state depends on the current states of
its neighbors to the left and right that are no more than r nodes away. In case of the (S)CA with
memory, the next state of any node also depends on the current state of that node itself.

Thus, in case of a Boolean (S)CA with memory defined over a one-dimensional cellular space Γ,
each node’s next state depends on exactly 2r + 1 input bits, while in the memoryless (S)CA case,
the local update rule is a function of 2r input bits. The underlying 1-D cellular space is a string of
nodes that can be a finite line graph, a ring (corresponding to the “circular boundary conditions”),
a one-way infinite string, or, in the most common case, Γ is a two-way infinite string (or “line”).

We fix the following conventions and terminology. Throughout, only Boolean CA, SCA and
NICA are considered; in particular, the set of possible states of any node is {0, 1}. The phrases
“monotone symmetric” and “symmetric (linear) threshold” functions/update rules/automata are used
interchangeably. Similarly, “(global) dynamics” and “(global) computation”, when applied to any
kind of automata, are used synonymously. Unless stated otherwise, CA denotes a classical, concurrent
cellular automaton, whereas a cellular automaton where the nodes update sequentially is always
denoted by SCA (or NICA, when appropriate). Also, unless explicitly stated otherwise, (S)CA with
memory are assumed. The default infinite cellular space Γ is a two-way infinite line. The default
finite cellular spaces are finite rings. The terms “phase space” and “configuration space” are used
synonymously throughout, as well, and sometimes abridged to PS for brevity.

3.1. Synchronous Parallel CA vs. Sequential Interleavings CA: A Simple Example

There are many simple, even trivial examples where not only are concrete computations of the
parallel CA from particular initial configurations different from the corresponding computations of
any of the sequential CA, but actually the entire configuration spaces of the parallel CA on one,
and the corresponding SCA and NICA on the other hand, turn out to be rather different.

As one of the simplest examples conceivable, consider a trivial CA with more than one node (so
that talking about “parallel computation” makes sense), namely, a two-node CA where each node
computes the logical XOR of the two inputs. The two phase spaces are given in Fig. 1.

7
77

goodelle
Rectangle



11

00

10

2

11

11

10 

1

2 2 1,2

01 01

00

(a) (b)
Figure 1:

Configuration spaces for two-node (a) parallel and (b) sequential cellular automata, respectively.
Each node computes the logical XOR function of its own current state, and that of the other node.
In (b), the integer labels next to the transition arrows indicate which node, 1 or 2, is updating and

thus causing the indicated global state transition.

In the parallel case, the state 00 is the “sink”, and the entire configuration space is as in Fig. 1
(a). So, regardless of the starting configuration, after at most two parallel steps, a fixed point “sink”
state, that is, in physics terms, a stable global attractor, will be reached.

In the case of sequential node updates, the configuration 00 is still a FP but, this time, it is not
reachable from any other configuration. Also, while all three states, 11, 10 and 01, are transient
states in the parallel case, sequentially, each of them, for any “typical” (infinite) sequence of node
updates, is going to be revisited infinitely often. In fact, for some sequences of node updates such as,
e.g., (1, 1, 2, 2, 2, 1, 2, 2, 1, ...), configurations 01 and 10 are both quasi-fixed-point states and cycle
states. The phase space capturing all possible sequential computations of the two-node automaton
with δ = XOR(x1, x2) for each node is given in Fig. 1 (b). This NICA has three configurations,
01, 10 and 11, each of which is simultaneously a weak FP, a CC and a TC; it is a trivial exercise to
find particular update sequences for which each of these configurations is of a desired nature (weak
FP, CC or TC). In contrast, configuration 00 is a FP for any sequence of node updatesd.

Some observations are in order. First, overall, the configuration space of the XOR NICA is richer
than the PS of its parallel counterpart. In particular, due to determinism, any FP state of a classical
CA is necessarily a stable attractor or “sink”. In contrast, in case of different possible sequential
computations on the same cellular space, the (weak) fixed points clearly need not be stable. Also,
whereas the phase space of a parallel CA is temporal cycle-free (recall that we do not count FPs
among cycles), the phase space of the corresponding NICA has nontrivial finite temporal cycles.

dIn [25] we refer to such FPs of NICA as proper or strong fixed points, in order to contrast them with respect to
those configurations that are fixed with respect to some but not all sequences of the node updates. We also remark
that, in a given computation, if the starting configuration of this NICA, or any corresponding SCA, is different from
00, then this FP configuration is also an example of a Garden of Eden (GE) configuration, as it cannot ever be reached
irrespective of the sequence s of node updates. For more on GE in discrete dynamical systems, the reader is referred
to [3, 4].

8
78

goodelle
Rectangle



On the other hand, the union of all possible sequential computations (“interleavings”) cannot fully
capture the concurrent computation, either: consider, for example, reachability of the state 00.

All these properties can be largely attributed to a relative complexity of the XOR function as
the update rule, and, in particular, to XOR’s non-monotonicity. They can also be attributed to
the idiosyncrasy of the example chosen. In particular, temporal cycles in the sequential case are not
surprising. Also, if one considers CA on say four nodes with circular boundary conditions (that is, a
CA ring on four nodes), these XOR CA do have nontrivial cycles in the parallel case, as well. Hence,
for XOR CA with sufficiently many nodes, the types of computations that the parallel CA and the
sequential SCA and NICA are capable of, are quite comparable. Moreover, in those cases where one
class is of a richer behavior than the other, it seems reasonable that the NICA automata, overall,
are capable of more diverse computations than the corresponding synchronous, parallel CA, given
the nondeterminism of NICA arising from all different possibilities for the node update sequences.

This detailed discussion of a trivial example of CA and NICA phase spaces has the main purpose
of motivating what is to follow: an entire class of CA and SCA/NICA, with the node update
functions simpler than XOR, yet for which it is the concurrent CA that are provably capable of
a kind of computations that no corresponding (or similar, in the sense to be discussed in Subsection
3.2 and Section 4) SCA and, consequently, NICA, are capable of.

3.2. On the Existence of Cycles in Threshold Parallel and Sequential Cellular Automata

We shall now compare and contrast the classical, concurrent and perfectly synchronous CA with
their sequential counterparts, SCA and NICA, in the context of the simplest nonlinear local update
rules possible, namely, the CA in which the nodes locally update according to symmetric linear
threshold functions. This will be done by studying the configuration space properties, that is, the
possible computations, of the simple threshold automata in the parallel and sequential settings.

First, we define (simple) linear threshold functions, and the corresponding types of (S)CA.

Definition 7 A Boolean-valued linear threshold function of m inputs, x1, ..., xm, is any
function of the form

f(x1, ..., xm) =

{
1, if

∑
i wi · xi ≥ θ

0, otherwise
(3)

where θ is an appropriate threshold constant, and w1, ..., wm are arbitrary (but fixed) real numberse

called weights.

Definition 8 A threshold automaton (threshold (S)CA) is a (parallel or sequential) cellular
automaton where δ is a Boolean-valued linear threshold function.

Therefore, given an integer k, a k-threshold function, in general, is any function of the form as
in Def. 8 with θ = k and an appropriate choice of weights wi, i = 1, ...,m. Heretofore we consider
monotonically nondecreasing Boolean threshold functions only; this, in particular, implies that the
weights wi are always nonnegative. We also additionally assume δ to be a symmetric function of all
of its inputs. That is, the (S)CA we analyze have symmetric, monotone Boolean functions for their
local update rules. We refer to such functions as to simple threshold functions, and to the (S)CA
with simple threshold node update rules as to simple threshold (S)CA.

eIn general, wi can be both positive and negative. This is esp. common in the neural networks literature, where
negative weights wi indicate an inhibitory effect of, e.g., one neuron on the firings of another, near-by neuron. In most
studies of discrete dynamical systems, however, the weights wi are required to be nonnegative - that is, only excitatory
effects of a node on its neighbors are allowed; see, e.g., [3, 4, 26, 27].

9
79

goodelle
Rectangle



Definition 9 A simple threshold (S)CA is an automaton whose local update rule δ is a
monotone symmetric Boolean (threshold) function.

In particular, if all the weights wi are positive and equal to one another, then, without loss of
generality, we may set them all equal to 1; obviously, this normalization of the weights wj may also
require an appropriate adjustment of the threshold value θ.

Throughout, whenever we say a threshold automaton or a threshold (S)CA, we shall mean a
simple threshold automaton (threshold (S)CA), unless explicitly stated otherwise. That is, the 1-D
threshold (S)CA studied in the sequel will have the node update functions of the general form

δ(xi−r, xi−r+1, ..., xi, ..., xi+r−1, xi+r) =

{
1, if

∑r
j=−r xi+j ≥ k

0, otherwise
(4)

where k is a fixed integer from the range {0, 1, ..., 2r + 1, 2r + 2}. For example, if the automaton
rule radius is r = 2, and if k = 2, then the k-threshold (S)CA on a specified number of nodes in this
case is just the 1-D (S)CA with the node update rule δ = “at least 2 out of 5”, meaning that the
update rule evaluates to 1 if and only if at least two out of five of its inputs are currently equal to 1.

Due to the nature of the node update rules, cyclic behavior intuitively should not be expected in
such simple threshold automata. This is, generally, (almost) the case, as will be shown below. We
argue that the importance of the results in this subsection largely stems from the following three
factors:

• the local update rules are the simplest nonlinear totalistic rules one can think of;
• given the rules, the cycles are not to be expected - yet they exist, and in the case of the classical,

parallel (i.e., synchronous) CA only; and, related to that observation,
• it is, for this class of automata, the parallel CA that have the more diverse possible dynamics,

and, in particular, while qualitatively there is nothing among the possible sequential compu-
tations that is not present in the parallel case, the classical parallel threshold CA do exhibit
a particular qualitative behavior - they may have nontrivial temporal cycles - that cannot be
reproduced by any threshold SCA.

The results below hold for two-way infinite 1-D (S)CA, as well as for finite (S)CA with the
circular boundary conditions (i.e., for the (S)CA whose cellular spaces are finite rings).

Lemma 1 The following dichotomy holds for (S)CA with δ = MAJ and r = 1:
(i) Any 1-D parallel CA with r = 1, the MAJORITY update rule, and an even number of

nodes, has finite temporal cycles in the phase space (PS); the same holds for two-way infinite 1-D
MAJ CA.

(ii) 1-D Sequential CA with r = 1 and the MAJORITY update rule do not have any temporal
cycles in the phase space, irrespective of the sequential node update ordering s.

Remark: In case of the infinite sequential SCA as in the Lemma above, a nontrivial temporal
cycle configuration does not exist even in the limit. We also note that s can be an arbitrary sequence
of an SCA nodes’ indices, not necessarily a (possibly infinitely repeated) permutation, or even a
function that is necessarily onto L.

Proof.
To show (i), we exhibit an actual two-cycle. Consider either an infinite 1-D CA, or a finite one,

with circular boundary conditions and an even number of nodes, 2n. Then the configurations (10)ω

and (01)ω in the infinite case ((10)n and (01)n in the finite ring case) form a 2-cycle.
To prove (ii), we must show that no cycle is ever possible, irrespective of the starting configuration.

We consider all possible 1-neighborhoods (there are eight of them: 000, 001, ..., 111), and show that,

10
80

goodelle
Rectangle



locally, none of them can be cyclic yet not fixed. The case analysis is simple: 000 and 111 are stable
(fixed) sub-configurations. Configuration 010, after a single node update, can either stay fixed, or
else evolve into any of {000, 110, 011}; since we are only interested in non-FPs, in the latter case, one
can readily show by induction that, after any number of steps, the only additional sub-configuration
that can be reached is 111, i.e., assuming that 010 does not not fixed, 010 →? {000, 110, 011, 111}.
However, 010 /∈ {000, 110, 011, 111}. By symmetry, similar analysis holds for sub-configuration 101.
On the other hand, 110 and 011 either remain fixed, or else at some time step t evolve to 111, which
subsequently stays fixed. A similar analysis applies to 001 and 100. Hence, no local neighborhood
x1x2x3, once it changes, can ever “come back”. Therefore, there are no proper cycles in Sequential
1-D CA with r = 1 and δ = MAJORITY. 2

An astute reader may have noticed that the above case analysis in the proof of (ii) can be somewhat
simplified if one observes that, for r = 1, the sub-configurations 11 and 00 are always stable with
respect to the MAJORITY node update function, irrespective of the left or right neighbors of the
node performing its update, or the updating sequential order.

Part (ii) of Lemma 1 above can be readily generalized: even if we consider local update rules δ
other than the MAJORITY rule, yet restrict δ to monotone symmetric (Boolean) functions of the
input bits, such sequential CA still do not have any proper cycles.

Theorem 1 For any Monotone Symmetric Boolean 1-D Sequential CA A with r = 1, and any
sequence s of the node updates, the phase space PS(A) of the automaton A is cycle-free.

Proof.
Since r = 1 and 2r + 1 = 3, there are only five Monotone Symmetric Boolean (MSB) functions,

or, equivalently, simple threshold functions, on three inputs. Two of these MSB functions are utterly
trivial (the constant functions 0 and 1). The “at-least-1-out-of-3” simple threshold function is the
Boolean OR on three inputs; similarly, the “at-least-3-out-of-3” simple threshold function is the
Boolean AND. It is straight-forward to show that the CA (sequential or parallel, as long as they
are with memory) with δ ∈ {OR,AND} cannot have temporal cycles. The only remaining MSB
update rule on three inputs is δ = MAJ , for which we have already argued that the corresponding
parallel CA have temporal two-cycles, but all the corresponding SCA (and therefore the NICA)
have cycle-free configuration spaces. 2

Similar results to those in Lemma 1 and Theorem 1 also hold for 1-D CA with radius r = 2:

Lemma 2 The following dichotomy holds for (S)CA with δ = MAJ and r = 2:
(i) Many 1-D parallel CA with r = 2 and δ = MAJ have finite cycles in the phase space.
(ii) Any 1-D SCA with r = 2 and δ = MAJ, for any sequential order s of the node updates

whatsoever, has a cycle-free configuration space.

Proof.
(i) For r = 2, consider configurations (1100)ω and (0011)ω; it is easy to verify that these two

configurations form a temporal cycle for the concurrent CA defined over a two-way infinite line.
The argument in (ii) is similar to that of Lemma 1 (ii), except that now there are 25 = 32

fundamental neighborhoods of the form x1...x5 to consider. We notice that, for r = 2, the sub-
configurations 000 and 111 are stable; this observation simplifies the case analysis. 2

Generalizing Lemmata 1 and 2, part (i), we have the following

Corollary 1 For all r ≥ 1, there exists a monotone symmetric CA (that is, a synchronous
threshold automaton) A such that A has finite temporal cycles in the phase space.

11
81

goodelle
Rectangle



Namely, given any r ≥ 1, a (classical, concurrent) CA with δ = MAJ and Γ = infinite line
has at least one two-cycle in the PS: {(0r1r)ω, (1r0r)ω}. If r ≥ 3 is odd, then such a threshold
automaton has at least two distinct two-cycles, since {(01)ω, (10)ω} is also a two-cycle. Analogous
results hold for the threshold CA defined on finite 1-D cellular spaces, provided that such automata
have sufficiently many nodes, that the number of nodes is appropriate (see [25] for more details),
and assuming circular boundary conditions (i.e., assuming that Γ is a sufficiently big finite ring).
Moreover, the result extends to many finite and infinite CA in the higher dimensions, as well; in
particular, threshold CA with δ = MAJ that are defined over 2D Cartesian grids and Hypercubes
have two-cycles in their respective phase spaces.

More generally, for any underlying cellular space Γ that is a (finite or infinite) bipartite graph,
the corresponding (nontrivial) parallel CA with δ = MAJ have temporal two-cycles. We remark
that bipartiteness of Γ is sufficient, but it is not necessary, for the existence of temporal two-cycles
in this setting.

It turns out that the two-cycles in the PS of concurrent CA with δ = MAJ are actually the
only type of (proper) temporal cycles such cellular automata can have. Indeed, for any symmetric
linear threshold update rule δ, and any finite regular Cayley graph as the underlying cellular space,
the following general result holds [8, 10]:

Proposition 1 Let a classical, parallel simple threshold CA A = (Γ, N, M) be given, where Γ is
any finite cellular space, and let this cellular automaton’s global map be denoted by F . Then for
all configurations C ∈ PS(A), there exists a finite time step t ≥ 0 such that F t+2(C) = F t(C).

In particular, this result implies that, in case of any finite symmetric threshold automaton, for
any starting configuration C0, there are only two possible kinds of orbits: upon repeated iteration,
the computation either converges to a fixed point configuration after finitely many steps, or else it
eventually arrives at a two-cycle.

It is almost immediate that, if we allow the underlying cellular space Γ to be infinite, if computa-
tion from a given starting configuration converges after any finite number of steps at all, it will have
to converge either to a fixed point or a two-cycle (but never to a cycle of, say, period three - or any
other finite period). The result also extends to finite and infinite SCA, provided that we reasonably
define what is meant by a single computational step in a situation where the nodes update one at a
time. The simplest notion of a single computational step of an SCA is that of a single node updating
its state. Thus, a single parallel step of a classical CA defined on an infinite underlying cellular
space Γ includes an infinite amount of sequential computation and, in particular, infinitely many
elementary sequential steps. Discussing the implications of this observation, however, is beyond the
scope of this work.

Additionally, in order to ensure some sort of convergence of an arbitrary SCA (esp. when the
underlying Γ is infinite), and, more generally, in order to ensure that all the nodes get a chance to
update their states, an appropriate condition that guarantees fairness needs to be specified. That
is, an appropriate restriction on the allowable sequences s of node updates is required. As a first step
towards that end, we shall allow only infinite sequences s of node updates through the rest of the
paper.

For SCA defined on finite cellular spaces, one sufficient fairness condition is to impose a fixed
upper bound on the number of sequential steps before any given node gets its “turn” to update
(again). This is the simplest generalization of the fixed permutation assumption made in the work
on sequential and synchronous dynamical systems; see, e.g., [3, 4, 5, 6]. In the infinite SCA case,
on the other hand, the issue of fairness is nontrivial, and some form of dove-tailing of sequential
individual node updates may need to be imposed. In the sequel, we shall require from the sequences
s of node updates of the SCA and NICA threshold automata to be fair in a simple sense to be
defined shortly, without imposing any further restrictions or investigating how are such fair sequences

12
82

goodelle
Rectangle



of node updates to be generated in a physically realistic distributed setting. For our purposes herein,
therefore, the following simple notion of fairness will suffice:

Definition 10 An infinite sequence s : N → L is fair if (i) the domain L is finite or
countably infinite, and (ii) every element x ∈ L appears infinitely often in the sequence of values
s(1), s(2), s(3), ...

Now that we have defined what we mean by a single step of a sequential CA, as well as adopted
some reasonable notionf of fairness, we can now state the following generalization of Proposition 1
to both finite and infinite 1-D CA and 1-D SCA:

Proposition 2 Let a parallel CA or a sequential SCA be defined over a finite or infinite 1-D cellular
space (that is, a line or a ring), with a finite rule radius r ≥ 1. Let this automaton’s local update rule
be an elementary symmetric threshold function. Let’s also assume, in the sequential cases, that the
fairness condition from Def. 10 holds. Then for any starting configuration C0 ∈ PS(A) whatsoever,
and any finite subconfiguration C ⊆ C0, there exists a time step t ≥ 0 such that

F t+2(C) = F t(C) (5)

where, in the case of fair SCA, the Eqn. (5) can be replaced with

F t+1(C) = F t(C) (6)

In the case of δ = MAJ (S)CA, a computation starting from any finitely supported initial
configurationg necessarily (and quickly [25]) converges to either a FP or a two-cycle [10]:

Proposition 3 Let the assumptions from Proposition 2 hold, and let the underlying threshold rule
be δ = MAJ . Then for all configurations C ∈ PS(A) whatsoever in the finite cases, and for all
configurations C ∈ PS(A) such that C has a finite support when Γ(A) is infinite, there exists
a finite time step t ≥ 0 such that F t+2(C) = F t(C). Moreover, in the sequential cases with fair
update sequences, there exists a finite t ≥ 0 such that F t+1(C) = F t(C).

Furthermore, if arbitrary infinite initial configurations are allowed in Propositions 2-3, and the
dynamic evolution of the full such global states is monitored, then the only additional possibility is
that the particular (S)CA computation fails to finitely converge altogether. In that case, and under
the fairness assumption in the case of SCA, the limiting configuration limt→∞F t(C) = C lim can
be shown to be a (stable) fixed point.

To summarize, if the computation of a SCA starting from some configuration C converges at all
(that is, to any finite temporal cycle), it actually has to converge to a fixed point.

To convince oneself of the validity of Prop. 2, two basic facts have to be established. One,
convergence to finite temporal cycles of length three or higher is not possible. Indeed, Prop. 1
establishes that the only possible long-term behaviors of the finite threshold (S)CA are (i) the
convergence to a fixed point and (ii) the convergence to a two-cycle. If infinite cellular spaces are
considered, it is straight-forward to see that the only new possibility is that the long-term dynamics
of a (S)CA fails to (finitely) converge altogether. In some cases with infinite Γ such divergence

fOur notion of fairness in Def. 10 need not be the most general, or most suitable in all situations, such a notion.
However, it is appropriate for our purposes and, in particular, sufficient for the results on threshold SCA and NICA
that are to follow; see Prop. 2 in the main text.

gAlso sometimes called compact support; see, e.g., [10]. A global configuration of a cellular automaton defined
over an infinite cellular space Γ is said to be compactly supported if all except for at most finitely many of the nodes
are quiescent (i.e., in state 0) in that configuration.

13
83

goodelle
Rectangle



indeed takes place - even when the starting configuration is finitely (compactly) supported: consider,
e.g., the OR automaton and the starting configuration ...00100... on the two-way infinite line. Two,
in the sequential cases (that is, for the simple threshold SCA and NICA), temporal two-cycles
are not possible. That is, a generalization of Lemmata 1, 2 and Theorem 1 to arbitrary finite
r ≥ 1, and arbitrary symmetric threshold update rules, holds. This generalization is provided by
an appropriate specialization of a similar result in [4] for a class of sequential graph automata called
Sequential Dynamical Systems (SDS), with possibly different simple k-threshold update rules at
different nodes, and a node update ordering given by repeating ad infinitum a (fixed) permutation
of the nodes. In particular, part (ii) in the Theorem 2 below and its proof are directly based on [4]:

Theorem 2 The following dichotomy holds:
(i) All 1-D (parallel) CA with any odd r ≥ 1, the local rule δ = MAJ, and cellular space Γ

that is either a finite ring with an even number of nodes or a two-way infinite line, have finite cycles
in their phase spaces. The same holds for arbitrary (even or odd) r ≥ 1 provided that Γ is either
a finite ring with a number of nodes divisible by 2r, or a two-way infinite lineh.

(ii) Any 1-D SCA with any monotone symmetric Boolean update rule δ, any finite r ≥ 1,
defined over any (finite or infinite) 1-D cellular space, and for an arbitrary sequence s (finite or
infinite, fair or unfair) as the node update ordering, has a cycle-free phase space.

Proof.
Part (i): For the special case when r = 2, consider the configurations (1100)ω and (0011)ω;

it is easy to verify that these two configurations form a cycle for the corresponding parallel CA.
Similar reasoning readily generalizes to arbitrary r ≥ 2. The “canonical” temporal two-cycle for 1-D
MAJORITY CA defined over an infinite line with r ≥ 1 is {(1r0r)}ω, (0r1r)ω, with the obvious
modification in case of finite CA with n nodes (for n even, and assuming circular boundary conditions).

Part (ii) (proof sketch): The proof of this interesting property is based on a slight modification
of a similar result in [4] for a class of the sequential graph automata called Sequential Dynamical
Systems (SDS). A simple symmetric SDS is an SDS with (possibly different) k-threshold update
rules at different nodes, and with the node update ordering given by a fixed permutation of the
nodes. The central idea of the proof is to assign nonnegative integer potentials to both nodes and
edges in the functional graph of the given SCA. In this functional graph, for any two nodes xi and xj,
unordered pair {xi, xj} is an edge if and only if these two nodes provide inputs to one another, i.e.,
in the 1-D SCA case, if and only if distance(xi, xj) ≤ r (that is, assuming the canonical labeling of
the nodes, so that consecutive nodes always get labeled by consecutive integers, iff |i− j| ≤ r). The
potentials are assigned in such a way that, each time a node changes its value (from 0 to 1 or vice
versa), the overall potential of the resulting configuration is strictly less than the overall potential
of the configuration before the node flip. Since all individual node and edge potentials are initially
nonnegative, and since the total potential of any configuration (that is, the sum of all individual
node and edge potentials in this configuration) is always nonnegative, the fact that each “flip” of any
node’s value strictly decreases the overall potential by integer amounts implies that, after a finite
number of node flips (and, therefore, sequential steps), an equilibrium where no nodes can further
flip is reached; this equilibrium will be a fixed point configuration. Due to space considerations, we
do not provide all the details. Instead, we again refer the reader to [4] for a full, rigorous proof of
the same property as in our claim herein, only in a slightly different setting - the difference being
immaterial insofar as the validity of the claim and the applicability of the just outlined proof idea
based on the decreasing configuration potentials are concerned.

hThere are also CA defined over finite rings and with even r ≥ 2 such that the number of nodes in these rings is
not divisible by 2r yet temporal two-cycles exist. However, a more detailed discussion on what properties the number
of nodes in such CA has to satisfy is required; we leave this discussion out, however, for the sake of clarity and space
constraints.

14
84

goodelle
Rectangle



2

To summarize, symmetric linear threshold CA, depending on the starting configuration, may
converge to a fixed point or a temporal two-cycle; in particular, they may end up “looping” in finite
(but nontrivial) temporal cycles. In contrast, the corresponding classes of SCA (and therefore NICA)
can never cycle. We also observe that, given any sequence of node updates of a finite threshold SCA, if
this sequence satisfies an appropriate fairness condition, then it can be shown that the computation
of such a threshold SCA A is guaranteed to converge to a stable fixed-point (sub)configuration on
any finite subset of the nodes in Γ(A).

The cycle-freeness of the threshold SCA and NICA holds irrespective of the choice of a sequential
update ordering (and, extending to infinite SCA, temporal cycles cannot be obtained even “in the
limit”i). Hence, we conclude that no choice of a “sequential interleaving” can capture the perfectly
synchronous parallel computation of the parallel threshold CA. Consequently, the “interleaving
semantics” of NICA fails to capture the synchronous parallel behavior of the classical CA even for
this, simplest nonlinear class of totalistic CA update rules.

4. Discussion and Future Directions

The results in Section 3 show that, even for the very simplest (nonlinear, nonaffine) totalistic cel-
lular automata, sequential nondeterminism - that is, the union of all possible sequential interleavings
- dramatically fails to capture concurrency. It is not surprising that one can find a concurrent CA
such that no sequential CA with the same underlying cellular space and the same node update rule
can reproduce identical or even “isomorphic” computation, as the example at the beginning of Section
3 clearly shows (see Fig. 1 and the related discussion). However, we find it rather interesting that
very profound differences can be observed even in the case of extremely simple parallel and sequential
CA - that is, the one-dimensional automata with small r and simple threshold functions as the node
update rules - and that this profound difference does not apply merely to individual (S)CA and/or
their particular computations, but to all possible computations of an entire, relatively broad class of
the CA update rules.

Moreover, the differences in parallel and sequential computations in the case of the Boolean XOR
update rule, for example, can be largely ascribed to the properties of the XOR function (see Subsection
3.1). For instance, given that XOR is not monotone, the existence of temporal cycles is not at all
surprising. In contrast, monotone functions such as MAJORITY are intuitively expected not to have
cycles, i.e., for all converging computations, to always converge to a fixed point. This intuition about
the monotone symmetric sequential CA is shown correct. It is actually, in a sense, “almost correct”
for the parallel CA, as well, in that the actual non-FP cycles can be shown to be very few, and
without any incoming transients [25]. Thus, in this case, the very existence of the (rare) nontrivial
temporal cycles can be ascribed directly to the assumption of perfect synchrony of the parallel node
updates.

In the actual engineering, physical or biological systems that can be modeled by CA, however,
such perfect synchrony is usually hard to justify. In particular, when CA are applied to modeling
of various complex physical or biological phenomena (be those the crystal growth, the forest fire
propagation, the information or gossip diffusion in a population, or the signal propagation in an
organism’s neural system), one ought to primarily focus on the underlying CA behaviors that are,
in some sense, dynamically robust. This robustness may require, for instance, a low sensitivity to
small perturbations in the initial configuration. From this standpoint, temporal cycles in the parallel
threshold CA are, indeed, an idiosyncrasy of the perfect synchrony, that is, a peculiarity that is
anything but robust. Likewise, it makes sense to focus one’s qualitative study of the dynamical

iThat is, via infinitely long computations, obtained by allowing arbitrary infinite sequences of individual node
updates.

15
85

goodelle
Rectangle



systems modeled by the threshold CA to those properties that are statistically robust (see, e.g.,
[1]). It can be readily argued in a rigorous, probabilistic sense that, again, the typical, statistically
robust behavior of a typical threshold CA computation is a relatively short transient chain, followed
by convergence to a stable fixed point. In particular, the non-fixed-point temporal cycles of the
threshold CA not only utterly lack any nontrivial basins of attraction (in terms of the incoming
transient ’tails’), but are themselves statistically negligible for all sufficiently large finite, as well as
for all infinite CA.

After these digressions on the meaning and implications of our results on the 1-D threshold parallel
and sequential threshold CA, we now discuss some possible extensions of the results presented thus far.
In particular, we are considering extending our study to non-homogeneous threshold CA, where not all
the nodes necessarily update according to one and the same threshold update rule. Another direction
of future inquiry is to consider threshold (S)CA defined over 2-D and other higher-dimensional regular
grids, as well as the (S)CA defined over regular Cayley graphs that are not simple Cartesian grids.

One of the more challenging future directions, that have already been explored in other contexts,
is to consider CA-like finite automata defined over arbitrary (rather than only regular) graphs. Some
results on phase space properties of such finite automata with threshold update rules can be found,
e.g., in [3, 4]. We have also recently obtained some general results, similar in spirit to those in Section
3 herein, for the parallel and sequential threshold automata defined over arbitrary bipartite graphs:
such graph automata, if the nodes are updated concurrently, also in general do contain nontrivial
cycles even in case of the simplest node update rules such as MAJORITY, yet no cycles are possible
if the nodes are updated sequentially and any monotone symmetric node update rule is used.

Another possible extension is to consider classes of the node update rules beyond the simple
threshold functions. One obvious candidate are the monotone functions that are not necessarily
symmetric (that is, such that the corresponding CA need not be totalistic or semi-totalistic). A
possible additional twist, as mentioned above, is to allow for different nodes to update according
to different monotone (symmetric or otherwise) local update rules. At what point of the increasing
automata complexity, if any, do the possible sequential computations “catch up” with the concurrent
ones, appears an interesting problem to consider.

Yet another direction for further investigation is to consider other models of (a)synchrony in cellular
automata. We argue that the classical concurrent CA can be viewed, if one is interested in node-
to-node interactions among the nodes that are not close to one another, as a class of computational
models of bounded asynchrony. Namely, if nodes x and y are at distance k (i.e., k nodes apart
from each other), and the radius of the CA update rule δ is r, then any change in the state of y
can affect the state of x no sooner, but also no later than after about k

r
(parallel node update)

computational steps.
We remark that the two particular classes of graph automata defined over arbitrary (not necessarily

regular, or Cayley) finite graphs, namely, the sequential and synchronous dynamical systems (SDSs
and SyDSs, respectively), and their various phase space properties, have been extensively studied; see,
e.g., [3, 4, 6, 21] and references therein. It would be interesting, therefore, to consider asynchronous
cellular and graph automata, where the nodes are not assumed any longer to update in unison and,
moreover, where no global clock is assumed. We again emphasize that such automata would entail
what can be viewed as communication asynchrony , thus going beyond the kind of mere asynchrony
in computation at different nodes that has been studied since at least 1984 (e.g., [14, 15]).

What are, then, such genuinely asynchronous CA like? How do we specify the local update rules,
that is, computations at different nodes, given the possible “communication delays” in what was
originally a multiprocessor-like, rather than distributed system-like, parallel model? In the classical,
parallel case where a perfect communication synchrony is assumed, any given node xi of a 1-D CA
of radius r ≥ 1 updates according to

16
86

goodelle
Rectangle



xt+1
i = f(xt

i, x
t
i1
, ..., xt

i2r
) (7)

for an appropriate local update rule δ = f(xi, xi1 , ..., xi2r), whereas, in the asynchronous case, the
individual nodes update according to

xt+1
i = f(xt

i, x
t1
i1
, ..., xt2r

i2r
) (8)

We observe that t in Eqn. (7) pertains to the global time, which of course in this case also
coincides with the node xi’s (and everyone else’s) local time. However, in case of Eqn. (8), each

tj pertains to an appropriate local time, in the sense that each x
tj
ij

denotes the node xij ’s value

that was most recently received by the node xi. That is, x
tj
ij

is a local view of the node xij ’s state,
as seen by the node xi. Thus, the nonexistence of the global clock has considerable implications.
How to meaningfully relate these different local times, so that one can still mathematically analyze
such ACA - yet without making the ACA description too complicatedj? Yet, if we want to study
genuinely asynchronous CA models (rather than arbitrary sequential models with global clocks),
these changes in the definition seem unavoidable.

We point out that this, genuine (that is, communication) asynchrony in CA (see Eqn. (8))
can also be readily interpreted in the nondeterministic terms: at each time step, a particular node
updates by using its own current value, and also nondeterministically choosing the current or one of
the past values of its neighbors. Such a “past value” of a node xij used by the node xi would be
only required not to be any “older” than that value of xij that xi had used as its input on its
most recent local computation, i.e., on the node xi’s most recent previous turn to update. That is,
from the viewpoint of what are the current inputs to any given node’s update function δ, there is a
natural nondeterministic interpretation of the fact that the nodes have different clocks.

Many interesting questions arise in this context. One is, what kinds of the phase space properties
remain invariant under this kind of nondeterminism? Given a triple (Γ, N, M), it can be readily
shown that the fixed points are invariant with respect to the fair node update orderings in the
(synchronized) sequential CA, and, moreover, the FPs are the same for the corresponding parallel
CA. On the other hand, as our results in Section 3 indicate, neither cycle configurations nor
transient configurations are invariant with respect to whether the nodes are updated sequentially or
concurrently (and, in case of the former, in what order). It can be readily observed that, indeed,
the (proper, stable) FPs are also invariant for the asynchronous CA and graph automata, as well -
provided that all the nodes have reached their respective states corresponding to the same fixed point
global configuration, and that they all locally agree what (sub)configuration they are in, even if their
individual local clocks possibly disagree with one another. Therefore, earlier results in [3] on the FP
invariance for sequential and synchronous (concurrent) graph automata are just special cases of this,
more general result.

Theorem 3 Given an arbitrary asynchronous cellular or graph automaton, any fixed point configu-
ration is invariant with respect to the choice of a node update ordering, provided that each node xi

has an up-to-date knowledge of the current state of its neighborhood, Ni.

In addition to studying invariants under different assumptions on asynchrony and concurrency, we
also consider qualitative comparison-and-contrast of the asynchronous CA that we propose, and the
classical CA, SCA and NICA. Such study would shed more light on those behaviors that are solely
due to (our abstracted version of) network delays.

jThat is, while staying away from introducing explicit message sends and receives, (un)bounded buffers, and the
like.

17
87

goodelle
Rectangle



More generally, communication asynchronous CA, i.e., the various nondeterministic choices for
a given automaton that are due to asynchrony, can be shown to subsume all possible behaviors
of the classical and sequential (S)CA with the same corresponding (Γ, N, M). In particular, the
nondeterminism that arises from (unbounded) asynchrony subsumes the nondeterminism of a kind
studied in Section 3; but the question arises, exactly how much more expressive the former model
really is than the latter.

5. Summary and Conclusions

We present herein some early steps in studying cellular automata when the unrealistic assumptions
of perfect synchrony and instantaneous unbounded parallelism are dropped. Motivated by the well-
known notion of the sequential interleaving semantics of concurrency, we try to apply this metaphor
to parallel CA and thus motivate the study of sequential cellular automata, SCA, and the sequential
interleavings automata, NICA. In particular, we undertake a comparison and contrast between the
SCA/NICA and the classical, parallel CA models when the node update rules are restricted to
simple threshold functions. Concretely, we show that, even in very simplistic cases, this sequential
“interleaving semantics” of NICA fails to capture concurrency of the classical CA. One lesson is
that, simple as they may be, the basic local operations (i.e., node updates) in the classical CA cannot
always be considered atomic. That is, the fine-grain parallelism of CA turns out not to be quite fine
enough for our purposes. It then appears reasonable - indeed, necessary - to consider a single local
node update to be made of an ordered sequence of the finer elementary operations:

• Fetching all the neighbors’ values (“Receiving”? “Reading shared variables”?)
• Updating one’s own state according to the update rule δ (that is, performing the local com-

putation)
• Informing the neighbors of the update, i.e., making available one’s new state/value to the

neighbors (“Sending”? “Writing a shared variable”?)

Motivated by these early results on the sequential and parallel threshold CA, and some of the
implications of those results, we next consider various extensions. The central idea is to introduce a
class of genuinely asynchronous CA, and to formally study their properties. This would hopefully,
down the road, lead to some significant insights into the fundamental issues related to bounded vs.
unbounded asynchrony, formal sequential semantics for parallel and distributed computation, and,
on the cellular automata side, to the identification of many of those classical parallel CA phase space
properties that are solely or primarily due to the (physically unrealistic) assumption of perfectly
synchronous parallel node updates.

We also find various extensions of the basic CA model to provide a simple, elegant and useful
framework for a high-level study of various global qualitative properties of distributed, parallel and
real-time systems at an abstract and rigorous, yet comprehensive level.

Acknowledgments: The work presented herein was supported by the DARPA IPTO TASK
Program, contract number F30602-00-2-0586. Many thanks to Reza Ziaei (UIUC) for several useful
discussions.

18
88

goodelle
Rectangle



References

1. W. Ross Ashby, “Design for a Brain”, Wiley, 1960
2. C. Barrett and C. Reidys, “Elements of a theory of computer simulation I: sequential CA over random

graphs”, Applied Math. and Computation, vol. 98 (2-3), 1999
3. C. Barrett, H. Hunt, M. Marathe, S. S. Ravi, D. Rosenkrantz, R. Stearns, and P. Tosic, “Gardens of

Eden and Fixed Points in Sequential Dynamical Systems”, Discrete Math. and Theoretical Comp.
Sci. Proc. AA (DM-CCG), July 2001

4. C. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, R. E. Stearns, “Reachability
problems for sequential dynamical systems with threshold functions”, TCS vol. 295, issues 1-3, pp.
41-64, Feb. 2003

5. C. Barrett, H. Mortveit, and C. Reidys, “Elements of a theory of computer simulation II: sequential
dynamical systems”, Applied Math. and Computation, vol. 107 (2-3), 2000

6. C. Barrett, H. Mortveit, and C. Reidys, “Elements of a theory of computer simulation III: equivalence
of sequential dynamical systems”, Applied Math. and Computation, vol. 122 (3), 2001

7. I. Czaja, R. J. van Glabbek, U. Goltz, “Interleaving semantics and action refinement with atomic
choice”, in “Advances in Petri Nets” (G. Rozenberg, ed.), LNCS 609, Springer-Verlag, 1992

8. Max Garzon, ”Models of Massive Parallelism: Analysis of Cellular Automata and Neural Networks”,
Springer, 1995

9. R. J. van Glabbek, U. Goltz, “Equivalences and refinement”, Proc. LITP Spring School Theoretical
CS, La Roche-Posay, France (I. Guessarian, ed.), LNCS 469, Springer-Verlag 1990

10. E. Goles, S. Martinez, “Neural and Automata Networks: Dynamical behavior and Applications”,
Math. and Its Applications series (vol. 58), Kluwer, 1990

11. E. Goles, S. Martinez (eds.), “Cellular Automata and Complex Systems”, Nonlinear Phenomena and
Complex Systems series, Kluwer, 1999

12. Howard Gutowitz (ed.), “Cellular Automata: Theory and Experiment”, The MIT Press / North-
Holland, 1991

13. C. A. R. Hoare, “Communicating Sequential Processes”, Prentice Hall, 1985
14. T. E. Ingerson and R. L. Buvel, “Structure in asynchronous cellular automata”, Physica D: Nonlinear

Phenomena, Volume 10, Issues 1-2, January 1984
15. S. A. Kauffman, “Emergent properties in random complex automata” (ibid.)
16. Robin Milner, ”A Calculus of Communicating Systems”, Springer-Verlag Lecture Notes in Computer

Science (LNCS), 1980
17. Robin Milner, “Calculi for synchrony and asynchrony”, Theoretical Computer Sci. 25, pp. 267-310,

1983
18. Robin Milner, “Communication and Concurrency”, Prentice-Hall, 1989
19. John von Neumann, “Theory of Self-Reproducing Automata”, edited and completed by A. W. Burks,

Univ. of Illinois Press, Urbana, 1966
20. J. C. Reynolds, “Theories of Programming Languages”, Cambridge Univ. Press, 1998
21. C. Reidys, “On acyclic orientations and sequential dynamical systems”, Adv. Appl. Math. vol. 27,

2001
22. Ravi Sethi, “Programming Languages: Concepts & Constructs”, 2nd ed., Addison-Wesley, 1996

19
89

goodelle
Rectangle



23. K. Sutner, “Computation theory of cellular automata”, MFCS98 Satellite Workshop on CA, Brno,
Czech Rep., 1998

24. P. Tosic, “A Perspective on the Future of Massively Parallel Computing: Fine-Grain vs. Coarse-Grain
Parallel Models”, Proc. ACM Computing Frontiers ’04, Ischia, Italy, April 2004

25. P. Tosic, G. Agha, “Characterizing Configuration Spaces of Simple Threshold Cellular Automata”,
ACRI’04, Amsterdam, The Netherlands, Oct. 25-28, 2004 (to appear in a Springer-Verlag LNCS
volume)

26. S. Wolfram “Twenty problems in the theory of CA”, Physica Scripta 9, 1985
27. S. Wolfram (ed.), “Theory and applications of CA”, World Scientific, Singapore, 1986
28. Stephen Wolfram, “Cellular Automata and Complexity (collected papers)”, Addison-Wesley, 1994
29. Stephen Wolfram, “A New Kind of Science”, Wolfram Media, Inc., 2002

20
90

goodelle
Rectangle



Online Efficient Predictive Safety Analysis of

Multithreaded Programs

Koushik Sen, Grigore Roşu, Gul Agha
Department of Computer Science,

University of Illinois at Urbana-Champaign.
{ksen,grosu,agha}@cs.uiuc.edu

Abstract. An automated and configurable technique for runtime safety
analysis of multithreaded programs is presented, which is able to predict
safety violations from successful executions. Based on a user provided
safety formal specification, the program is automatically instrumented
to emit relevant state update events to an observer, which further checks
them against the safety specification. The events are stamped with dy-
namic vector clocks, enabling the observer to infer a causal partial order
on the state updates. All event traces that are consistent with this partial
order, including the actual execution trace, are analyzed on-line and in
parallel, and a warning is issued whenever there is a trace violating the
specification. This technique can be therefore seen as a bridge between
testing and model checking. To further increase scalability, a window in
the state space can be specified, allowing the observer to infer the most
probable runs. If the size of the window is 1 then only the received ex-
ecution trace is analyzed, like in testing; if the size of the window is ∞
then all the execution traces are analyzed, such as in model checking.

1 Introduction

In multithreaded systems, threads can execute concurrently communicating with
each other through a set of shared variables, yielding an inherent potential for
subtle errors due to unexpected interleavings. Both heavy and lighter techniques
to detect errors in multithreaded systems have been extensively investigated. The
heavy techniques include traditional formal methods based approaches, such as
model checking and theorem proving, guaranteeing that a formal model of the
system satisfies its safety requirements by exploring, directly or indirectly, all
possible thread interleavings. On the other hand, the lighter techniques include
testing, that scales well and is one of the most used approaches to validate
software products today.

As part of our overall effort in merging testing and formal methods, aiming
at getting some of the benefits of both while avoiding the pitfalls of ad hoc
testing and the complexity of full-blown model checking or theorem proving,
in this paper we present a runtime verification technique for safety analysis of
multithreaded systems, that can be tuned to analyze from one trace to all traces
that are consistent with an actual execution of the program. If all traces are
checked, then it becomes equivalent to online model checking of an abstract
model of the computation, called the multithreaded computation lattice, which
is extracted from the actual execution trace of the program, like in POTA [10]
or JMPaX [14]. If only one trace is considered, then our technique becomes
equivalent to checking just the actual execution of the multithreaded program,

91

goodelle
Text Box
Appendix F: 



like in testing or like in other runtime analysis tools like MaC [7] and PaX [5,
1]. In general, depending on the application, one can configure a window within
the state space to be explored, called causality cone, intuitively giving a causal
“distance” from the observed execution within which all traces are exhaustively
verified. An appealing aspect of our technique is that all these traces can be
analyzed online, as the events are received from the running program, and all in
parallel at a cost which in the worst case is proportional with both the size of
the window and the size of the state space of the monitor.

There are three important interrelated components of the proposed runtime
verification technique namely instrumentor, observer and monitor. The code
instrumentor, based on the safety specification, entirely automatically adds code
to emit events when relevant state updates occur. The observer receives the
events from the instrumented program as they are generated, enqueues them and
then builds a configurable abstract model of the system, known as a computation
lattice, on a layer-by-layer basis. As layers are completed, the monitor, which is
synthesized automatically from the safety specification, checks them against the
safety specification and then discards them.

The concepts and notions presented in this paper have been experimented
and tested on a practical monitoring system for Java programs, JMPaX 2.0,
that extends its predecessor JMPaX [12] in at least four non-trivial novel ways.
First, it introduces the technical notion of dynamic vector clock, allowing it to
properly deal with dynamic creation and destruction of threads. Second, the
variables shared between threads do not need to be static anymore: an auto-
matic instrumentation technique has been devised that detects automatically
when a variable is shared. Thirdly, and perhaps most importantly, the notion
of cone heuristic, or global state window, is introduced for the first time in JM-
PaX 2.0 to increase the runtime efficiency by analyzing the most likely states
in the computation lattice. Lastly, the presented runtime prediction paradigm
is safety formalism independent, in the sense that it allows the user to specify
any safety property whose bad prefixes can be expressed as a non-deterministic
finite automaton (NFA).

2 Monitors for Safety Properties

Safety properties are a very important, if not the most important, class of prop-
erties that one should consider in monitoring. This is because once a system
violates a safety property, there is no way to continue its execution to satisfy
the safety property later. Therefore, a monitor for a safety property can pre-
cisely say at runtime when the property has been violated, so that an external
recovery action can be taken. From a monitoring perspective, what is needed
from a safety formula is a succinct representation of its bad prefixes, which are
finite sequences of states leading to a violation of the property. Therefore, one
can abstract away safety properties by languages over finite words.

Automata are a standard means to succinctly represent languages over finite
words. In what follows we define a suitable version of automata, called monitor,
with the property that it has a “bad” state from which it never gets out:

2

92

goodelle
Rectangle



Definition 1. Let S be a finite or infinite set, that can be thought of as the
set of states of the program to be monitored. Then an S-monitor or simply a
monitor, is a tuple Mon = 〈M, m0, b, ρ〉, where

– M is the set of states of the monitor;
– m0 ∈M is the initial state of the monitor;
– b ∈M is the final state of the monitor, also called bad state; and
– ρ : M×S → 2M is a non-deterministic transition relation with the property

that ρ(b, Σ) = {b} for any Σ ∈ S.

Sequences in S⋆, where ǫ is the empty one, are called (execution) traces. A trace
π is said to be a bad prefix inMon iff b ∈ ρ({m0}, π), where ρ : 2M×S⋆ → 2M

is recursively defined as ρ(M, ǫ) = M and ρ(M, πΣ) = ρ(ρ(M, π), Σ), where
ρ : 2M×S → 2M is defined as ρ({m}∪M, Σ) = ρ(m, Σ)∪ρ(M, Σ) and ρ(∅, Σ) =
∅, for all finite M ⊆M and Σ ∈ S.

M is not required to be finite in the above definition, but 2M represents the
set of finite subsets of M. In practical situations it is often the case that the
monitor is not explicitly provided in a mathematical form as above. For example,
a monitor can be just any program whose execution is triggered by receiving
events from the monitored program; its state can be given by the values of its
local variables, and the bad state has some easy to detect property, such as a
specific variable having a negative value.

There are fortunate situations in which monitors can be automatically gen-
erated from formal specifications, thus requiring the user to focus on system’s
formal safety requirements rather than on low level implementation details. In
fact, this was the case in all the experiments that we have performed so far. We
have so far experimented with requirements expressed either in extended regular
expressions (ERE) or various variants of temporal logics, with both future and
past time. For example, [11, 13] show coinductive techniques to generate min-
imal static monitors from EREs and from future time linear temporal logics,
respectively, and [6, 1] show how to generate dynamic monitors, i.e., monitors
that generate their states on-the-fly, as they receive the events, for the safety
segment of temporal logic.

Example 1. Consider a reactive controller that maintains the water level of a
reservoir within safe bounds. It consists of a water level reader and a valve
controller. The water level reader reads the current level of the water, calculates
the quantity of water in the reservoir and stores it in a shared variable w. The
valve controller controls the opening of a valve by looking at the current quantity
of water in the reservoir. A very simple and naive implementation of this system
contains two threads: T1, the valve controller, and T2, the water level reader.
The code snippet for the implementation is given in Fig. 1. Here w is in some
proper units such as mega gallons and v is in percentage. The implementation
is poorly synchronized and it relies on ideal thread scheduling.

A sample run of the system can be {w = 20, v = 40}, {w = 24}, {v =
50}, {w = 27}, {v = 60}, {w = 31}, {v = 70}. As we will see later in the paper,
by a run we here mean a sequence of relevant variable writes. Suppose we are

3

93

goodelle
Rectangle



Thread T1: Thread T2:

while(true) { while(true) {
if(w > 18) delta = 10; l = readLevel();

else delta = -10; w = calcVolume(l);

for(i=0; i<2; i++) { sleep(100);

v = v + delta; }
setValveOpening(v);

sleep(100);

}
}

5

0 {}

1

{~p}

2

{p,~q}

{q,~r}

{p,~q}

3

{p,~q,~r}

4

{q}

{q}

{p,~q}

{q,~r}

{q}

Fig. 1. Two threads (T1 controls the valve and T2 reads the water level) and a monitor.

interested in a safety property that says “If the water quantity is more than
30 mega gallons, then it is the case that sometime in the past water quantity
exceeded 26 mega gallons and since then the valve is open by more than 55%
and the water quantity never went down below 26 mega gallon”. We can express
this safety property in two different formalisms: linear temporal logic (LTL) with
both past-time and future-time, or extended regular expressions (EREs) for bad
prefixes. The atomic propositions that we will consider are p : (w > 26), q : (w >

30), r : (v > 55). The properties can be written as follows:

F1 = �(q → ((r ∧ p)S ↑p)) (1)

F2 = {}∗{¬p}{p,¬q}+({p,¬q,¬r}{p,¬q}∗{q}+ {q}∗{q,¬r}){}∗ (2)

The formula F1 in LTL (↑p is a shorthand for “p and previously not p”) states
that “It is always the case that if (w > 30) then at some time in the past
(w > 26) started to be true and since then (r > 55) and (w > 26).” The formula
F2 characterizes the prefixes that make F1 false. In F2 we use {p,¬q} to denote a
state where p and ¬q holds and r may or may not hold. Similarly, {} represents
any state of the system. The monitor automaton for F2 is given also in Fig. 1.

3 Multithreaded Programs

We consider multithreaded systems in which threads communicate with each
other via shared variables. A crucial point is that some variable updates can
causally depend on others. We will describe an efficient dynamic vector clock
algorithm which, given an executing multithreaded program, generates appro-
priate messages to be sent to an external observer. Section 4 will show how
the observer, in order to perform its more elaborated analysis, extracts the state
update information from such messages together with the causality partial order.

3.1 Multithreaded Executions and Shared Variables

A multithreaded program consists of n threads t1, t2, ..., tn that execute con-
currently and communicate with each other through a set of shared variables. A

4

94

goodelle
Rectangle



multithreaded execution is a sequence of events e1e2 . . . er generated by the run-
ning multithreaded program, each belonging to one of the n threads and having
type internal, read or write of a shared variable. We use e

j
i to represent the j-th

event generated by thread ti since the start of its execution. When the thread or
position of an event is not important we can refer to it generically, such as e, e′,
etc.; we may write e ∈ ti when event e is generated by thread ti. Let us fix an
arbitrary but fixed multithreaded execution, say M, and let S be the set of all
variables that were shared by more than one thread in the execution. There is an
immediate notion of variable access precedence for each shared variable x ∈ S:
we say e x-precedes e′, written e <x e′, iff e and e′ are variable access events
(reads or writes) to the same variable x, and e “happens before” e′, that is, e

occurs before e′ inM. This can be realized in practice by keeping a counter for
each shared variable, which is incremented at each variable access.

3.2 Causality and Multithreaded Computations
Let E be the set of events occurring inM and let ≺ be the partial order on E :

– ek
i ≺ el

i if k < l;
– e ≺ e′ if there is x ∈ S with e <x e′ and at least one of e, e′ is a write;
– e ≺ e′′ if e ≺ e′ and e′ ≺ e′′.

We write e||e′ if e 6≺ e′ and e′ 6≺ e. The tuple (E ,≺) is called the multi-
threaded computation associated with the original multithreaded execution M.
Synchronization of threads can be easily and elegantly taken into consideration
by just generating dummy read/write events when synchronization objects are
acquired/released, so the simple notion of multithreaded computation as defined
above is as general as practically needed. A permutation of all events e1, e2, . . .,
er that does not violate the multithreaded computation, in the sense that the
order of events in the permutation is consistent with ≺, is called a consistent
multithreaded run, or simply, a multithreaded run.

A multithreaded computation can be thought of as the most general assump-
tion that an observer of the multithreaded execution can make about the system
without knowing what it is supposed to do. Indeed, an external observer sim-
ply cannot disregard the order in which the same variable is modified and used
within the observed execution, because this order can be part of the intrinsic
semantics of the multithreaded program. However, multiple consecutive reads
of the same variable can be permuted, and the particular order observed in the
given execution is not critical. As seen in Section 4, by allowing an observer to
analyze multithreaded computations rather than just multithreaded executions,
one gets the benefit of not only properly dealing with potential re-orderings of
delivered messages (e.g., due to using multiple channels in order to reduce the
monitoring overhead), but especially of predicting errors from analyzing success-
ful executions, errors which can occur under a different thread scheduling.

3.3 Relevant Causality
Some of the variables in S may be of no importance at all for an external observer.
For example, consider an observer whose purpose is to check the property “if
(x > 0) then (y = 0) has been true in the past, and since then (y > z) was

5

95

goodelle
Rectangle



always false”; formally, using the interval temporal logic notation in [6], this
can be compactly written as (x > 0) → [y = 0, y > z). All the other variables
in S except x, y and z are essentially irrelevant for this observer. To minimize
the number of messages, like in [8] which suggests a similar technique but for
distributed systems in which reads and writes are not distinguished, we consider
a subset R ⊆ E of relevant events and define the R-relevant causality on E as the
relation ⊳ :=≺ ∩(R×R), so that e⊳ e′ iff e, e′ ∈ R and e ≺ e′. It is important to
notice though that the other variables can also indirectly influence the relation
⊳, because they can influence the relation ≺. We next provide a technique based
on vector clocks that correctly implements the relevant causality relation.

3.4 Dynamic Vector Clock Algorithm
We provide a technique based on vector clocks [4, 9] that correctly and efficiently
implements the relevant causality relation. Let V : ThreadId → Nat be a partial
map from thread identifiers to natural numbers. We call such a map a dynamic
vector clock (DVC) because its partiality reflects the intuition that threads are
dynamically created and destroyed. To simplify the exposition and the imple-
mentation, we assume that each DVC V is a total map, where V [t] = 0 whenever
V is not defined on thread t.

We associate a DVC with every thread ti and denote it by Vi. Moreover, we
associate two DVCs V a

x and V w
x with every shared variable x; we call the former

access DVC and the latter write DVC. All the DVCs Vi are kept empty at the
beginning of the computation, so they do not consume any space. For DVCs V

and V ′, we say that V ≤ V ′ if and only if V [j] ≤ V ′[j] for all j, and we say that
V < V ′ iff V ≤ V ′ and there is some j such that V [j] < V ′[j]; also, max{V, V ′} is
the DVC with max{V, V ′}[j] = max{V [j], V ′[j]} for each j. Whenever a thread
ti with current DVC Vi processes event ek

i , the following algorithm is executed:

1. if ek
i is relevant, i.e., if ek

i ∈ R, then
Vi[i]← Vi[i] + 1

2. if ek
i is a read of a variable x then
Vi ← max{Vi, V

w
x }

V a
x ← max{V a

x , Vi}
3. if ek

i is a write of a variable x then
V w

x ← V a
x ← Vi ← max{V a

x , Vi}
4. if ek

i is relevant then
send message 〈ek

i , i, Vi〉 to observer.

The following theorem states that the DVC algorithm correctly implements
causality in multithreaded programs. This algorithm has been previously pre-
sented by the authors in [14, 15] in a less general context, where the number of
threads is fixed and known a priori. Its proof is similar to that in [15].

Theorem 1. After event ek
i is processed by thread ti,

– Vi[j] equals the number of relevant events of tj that causally precede ek
i ; if

j = i and ek
i is relevant then this number also includes ek

i ;
– V a

x [j] equals the number of relevant events of tj that causally precede the most
recent event that accessed (read or wrote) x; if i = j and ek

i is a relevant
read or write of x event then this number also includes ek

i ;

6

96

goodelle
Rectangle



– V w
x [j] equals the number of relevant events of tj that causally precede the

most recent write event of x; if i = j and ek
i is a relevant write of x then

this number also includes ek
i .

Therefore, if 〈e, i, V 〉 and 〈e′, j, V ′〉 are two messages sent by dynamic vector
clock algorithm, then e ⊳ e′ if and only if V [i] ≤ V ′[i]. Moreover, if i and j are
not given, then e ⊳ e′ if and only if V < V ′.

4 Runtime Model Generation and Predictive Analysis

In this section we consider what happens at the observer’s site. The observer re-
ceives messages of the form 〈e, i, V 〉. Because of Theorem 1, the observer can infer
the causal dependency between the relevant events emitted by the multithreaded
system. We show how the observer can be configured to effectively analyze all
possible interleavings of events that do not violate the observed causal depen-
dency online and in parallel. Only one of these interleavings corresponds to the
real execution, the others being all potential executions. Hence, the presented
technique can predict safety violations from successful executions.

4.1 Multithreaded Computation Lattice

Inspired by related definitions in [2], we define the important notions of relevant
multithreaded computation and run as follows. A relevant multithreaded compu-
tation, simply called multithreaded computation from now on, is the partial order
on events that the observer can infer, which is nothing but the relation ⊳. A rel-
evant multithreaded run, also simply called multithreaded run from now on, is
any permutation of the received events which does not violate the multithreaded
computation. Our major purpose in this paper is to check safety requirements
against all (relevant) multithreaded runs of a multithreaded system.

We assume that the relevant events are only writes of shared variables that
appear in the safety formulae to be monitored, and that these events contain a
pair of the name of the corresponding variable and the value which was written
to it. We call these variables relevant variables. Note that events can change
the state of the multithreaded system as seen by the observer; this is formalized
next. A relevant program state, or simply a program state is a map from relevant
variables to concrete values. Any permutation of events generates a sequence
of program states in the obvious way, however, not all permutations of events
are valid multithreaded runs. A program state is called consistent if and only if
there is a multithreaded run containing that state in its sequence of generated
program states. We next formalize these concepts.

We letR denote the set of received relevant events. For a given permutation of
events in R, say e1e2 . . . e|R|, we let ek

i denote the k-th event of thread ti. Then

the relevant program state after the events ek1

1 , ek2

2 , ..., ekn
n is called a relevant

global multithreaded state, or simply a relevant global state or even just state,
and is denoted by Σk1k2...kn . A state Σk1k2...kn is called consistent if and only if
for any 1 ≤ i ≤ n and any li ≤ ki, it is the case that lj ≤ kj for any 1 ≤ j ≤ n

and any lj such that e
lj
j ⊳ eli

i . Let ΣK0 be the initial global state, Σ00...0. An
important observation is that e1e2 . . . e|R| is a multithreaded run if and only if

7

97

goodelle
Rectangle



it generates a sequence of global states ΣK0ΣK1 . . . ΣK|R| such that each ΣKr

is consistent and for any two consecutive ΣKr and ΣKr+1 , Kr and Kr+1 differ
in exactly one index, say i, where the i-th element in Kr+1 is larger by 1 than
the i-th element in Kr. For that reason, we will identify the sequences of states
ΣK0ΣK1 . . . ΣK|R| as above with multithreaded runs, and simply call them runs.

We say that Σ leads-to Σ′, written Σ  Σ′, when there is some run in which
Σ and Σ′ are consecutive states. Let  ∗ be the reflexive transitive closure of
the relation  . The set of all consistent global states together with the relation
 

∗ forms a lattice with n mutually orthogonal axes representing each thread.
For a state Σk1k2...kn , we call k1 + k1 + · · · kn its level. A path in the lattice is a
sequence of consistent global states on increasing level, where the level increases
by 1 between any two consecutive states in the path. Therefore, a run is just
a path starting with Σ00...0 and ending with Σr1r2...rn , where ri is the total
number of events of thread ti. Note that in the above discussion we assumed
a fixed number of threads n. In a program where threads can be created and
destroyed dynamically, only those threads are considered that at the end of the
computation have causally affected the final values of the relevant variables.

Therefore, a multithreaded computation can be seen as a lattice. This lattice,
which is called computation lattice and referred to as L, should be seen as an
abstract model of the running multithreaded program, containing the relevant
information needed in order to analyze the program. Supposing that one is able
to store the computation lattice of a multithreaded program, which is a non-
trivial matter because it can have an exponential number of states in the length
of the execution, one can mechanically model-check it against the safety property.

Example 2. Figure 2 shows the causal partial order on relevant events ex-
tracted by the observer from the multithreaded execution in Example 1,
together with the generated computation lattice. The actual execution,
Σ00Σ01Σ11Σ12Σ22Σ23Σ33, is marked with solid edges in the lattice. Besides
its DVC, each global state in the lattice stores its values for the relevant vari-
ables, w and v. It can be readily seen on Fig. 2 that the LTL property F1

defined in Example 1 holds on the sample run of the system, and also that it is
not in the language of bad prefixes, F2. However, F1 is violated on some other
consistent runs, such as Σ00Σ01Σ02Σ12Σ13Σ23Σ33. On this particular run ↑ p

holds at Σ02; however, r does not hold at the next state Σ12. This makes the
formula F1 false at the state Σ13. The run can also be symbolically written as
{}{}{p}{p}{p, q}{p, q, r}{p, q, r}. In the automaton in Fig. 1, this corresponds
to a possible sequence of states 00123555. Hence, this string is accepted by F2

as a bad prefix.

Therefore, by carefully analyzing the computation lattice extracted from a
successful execution one can infer safety violations in other possible consistent
executions. Such violations give informative feedback to users, such as the lack of
synchronization in the example above, and may be hard to find by just ordinary
testing. In what follows we propose effective techniques to analyze the computa-
tion lattice. A first important observation is that one can generate it on-the-fly
and analyze it on a level-by-level basis, discarding the previous levels. However,

8

98

goodelle
Rectangle



e6:<v=70, T1,(3,3)>

e4:<v=60, T1,(2,1)>

e3:<w=27, T2,(0,2)>

e2:<v=50, T1,(1,1)>

e1:<w=24, T2,(0,1)>

e5:<w=31, T2,(0,3)>

)40,20(

{})( 00

==

=

vw

SL

)70,31(

},,{)( 33

==

=

vw

rqpSL

)60,31(

},,{)( 23

==

=

vw

rqpSL

)50,31(

},{)( 13

==

=

vw

qpSL

)60,27(

},{)( 22

==

=

vw

rpSL

)40,31(

},{)( 03

==

=

vw

qpSL

)50,27(

}{)( 12

==

=

vw

pSL

)60,24(

}{)( 21

==

=

vw

rSL

)40,27(

}{)( 02

==

=

vw

pSL

)50,24(

{})( 11

==

=

vw

SL

)40,24(

{})( 01

==

=

vw

SL

Fig. 2. Computation Lattice

even if one considers only one level, that can still contain an exponential number
of states in the length of the current execution. A second important observation
is that the states in the computation lattice are not all equiprobable in prac-
tice. By allowing a user configurable window of most likely states in the lattice
centered around the observed execution trace, the presented technique becomes
quite scalable, requiring O(wm) space and O(twm) time, where w is the size of
the window, m is the size of the bad prefix monitor of the safety property, and
t is the size of the monitored execution trace.

4.2 Level By Level Analysis of the Computation Lattice
A naive observer of an execution trace of a multithreaded program would just
check the observed execution trace against the monitor for the safety property,
sayMon like in Definition 1, and would maintain at each moment a set of states,
say MonStates inM. When a new event generating a new global state Σ arrives,
it would replace MonStates by ρ(MonStates, Σ). If the bad state b will ever be in
MonStates then a property violation error would be reported, meaning that the
current execution trace led to a bad prefix of the safety property. Here we assume
that the events are received in the order in which they are emitted, and also that
the monitor works over the global states of the multithreaded programs.

A smart observer, as said before, will analyze not only the observed execution
trace, but also all the other consistent runs of the multithreaded system, thus
being able to predict violations from successful executions. The observer receives
the events from the running multithreaded program in real-time and enqueues

9

99

goodelle
Rectangle



them in an event queue Q. At the same time, it traverses the computation lattice
level by level and checks whether the bad state of the monitor can be hit by any
of the runs up to the current level. We next provide the algorithm that the
observer uses to construct the lattice level by level from the sequence of events
it receives from the running program.

The observer maintains a list of global states (CurrLevel), that are present
in the current level of the lattice. For each event e in the event queue, it tries to
construct a new global state from the set of states in the current level and the
event e. If the global state is created successfully then it is added to the list of
global states (NextLevel) for the next level of the lattice. The process continues
until certain condition, levelComplete?() holds. At that time the observer says
that the level is complete and starts constructing the next level by setting Cur-
rLevel to NextLevel and reallocating the space previously occupied by CurrLevel.
Here the predicate levelComplete?() is crucial for generating only those states
in the level that are most likely to occur in other executions, namely those in
the window, or the causality cone, that is described in the next subsection. The
levelComplete? predicate is also discussed and defined in the next subsection.
The pseudo-code for the lattice traversal is given in Fig. 3.

Every global state Σ contains the value of all relevant shared variables in the
program, a DVC VC (Σ) to represent the latest events from each thread that
resulted in that global state. Here the predicate nextState? (Σ, e), checks if the
event e can convert the state Σ to a state Σ′ in the next level of the lattice,
where threadId(e) returns the index of the thread that generated the event e,
VC (Σ) returns the DVC of the global state Σ, and VC(e) returns the DVC
of the event e. It essentially says that event e can generate a consecutive state
for a state Σ, if and only if Σ “knows” everything e knows about the current
evolution of the multithreaded system except for the event e itself. Note that e

may know less than Σ knows with respect to the evolution of other threads in
the system, because Σ has global information.

The function createState(Σ, e) creates a new global state Σ′, where Σ′ is a
possible consistent global state that can result from Σ after the event e. Together
with each state Σ in the lattice, a set of states of the monitor, MonStates(Σ),
also needs to be maintained, which keeps all the states of the monitor in which
any of the partial runs ending in Σ can lead to. In the function createState,
we set the MonStates of Σ′ with the set of monitor states to which any of the
current states in MonStates(Σ) can transit within the monitor when the state
Σ′ is observed. pgmState(Σ′) returns the value of all relevant program shared
variables in state Σ′, var(e) returns the name of the relevant variable that is
written at the time of event e, value(e) is the value that is written to var(e), and
pgmState(Σ′)[var(e)← value(e)] means that in pgmState(Σ′), var(e) is updated
with value(e).

The merging operation nextLevel ⊎ Σ adds the global state Σ to the set
nextLevel. If Σ is already present in nextLevel, it updates the existing state’s
MonStates with the union of the existing state’s MonStates and the Monstates
of Σ. Two global states are same if their DVCs are equal. Because of the function

10

100

goodelle
Rectangle



levelComplete?, it may be often the case that the analysis procedure moves from
the current level to the next one before it is exhaustively explored. That means
that several events in the queue, which were waiting for other events to arrive in
order to generate new states in the current level, become unnecessary so they can
be discarded. The function removeUselessEvents(CurrLevel,Q) removes from Q

all the events that cannot contribute to the construction of any state at the next
level. To do so, it creates a DVC Vmin whose each component is the minimum
of the corresponding component of the DVCs of all the global states in the set
CurrLevel. It then removes all the events in Q whose DVCs are less than or equal
to Vmin. This function makes sure that we do not store any unnecessary events.

while(not end of computation){

Q← enqueue(Q, NextEvent())

while(constructLevel()){}

}

boolean constructLevel(){

for each e ∈ Q {

if Σ ∈ CurrLevel and nextState?(Σ, e) {

NextLevel ← NextLevel ⊎ createState(Σ, e)

if levelComplete?(NextLevel , e, Q) {

Q← removeUselessEvents(CurrLevel , Q)

CurrLevel ← NextLevel

return true}}}

return false

}

boolean nextState?(Σ, e){

i← threadId(e);

if (∀j 6= i : VC (Σ)[j] ≥ VC (e)[j] and

VC (Σ)[i] + 1 = VC (e)[i]) return true

return false

}

State createState(Σ, e){

Σ′ ← new copy of Σ

j ← threadId(e); VC (Σ′)[j]← VC (Σ)[j]+1

pgmState(Σ′)[var(e)← value(e)]

MonStates(Σ′)← ρ(MonStates(Σ), Σ′)

if b ∈ MonStates(Σ′) {

output ′property may be violated′}

return Σ′

}
Fig. 3. Level-by-level traversal.

The observer runs in a loop
till the computation ends. In the
loop the observer waits for the
next event from the running in-
strumented program and enqueues
it in Q whenever it becomes avail-
able. After that the observer runs
the function constructLevel in a
loop till it returns false. If the func-
tion constructLevel returns false
then the observer knows that the
level is not completed and it
needs more events to complete the
level. At that point the observer
again starts waiting for the next
event from the running program
and continues with the loop. The
pseudo-code for the observer is
given at the top of Fig. 3.

4.3 Causality Cone

Heuristic

In a given level of a computation
lattice, the number of states can
be large; in fact, exponential in the
length of the trace. In online anal-
ysis, generating all the states in a
level may not be feasible. However,
note that some states in a level can
be considered more likely to occur
in a consistent run than others. For
example, two independent events

that can possibly permute may have a huge time difference. Permuting these
two events would give a consistent run, but that run may not be likely to take
place in a real execution of the multithreaded program. So we can ignore such a

11

101

goodelle
Rectangle



permutation. We formalize this concept as causality cone, or window, and exploit
it in restricting our attention to a small set of states in a given level.

In what follows we assume that the events are received in an order in which
they happen in the computation. This is easily ensured by proper instrumen-
tation. Note that this ordering gives the real execution of the program and it
respects the partial order associated with the computation. This execution will
be taken as a reference in order to compute the most probable consistent runs
of the system.

If we consider all the events generated by the executing distributed program
as a finite sequence of events, then a lattice formed by any prefix of this sequence
is a sublattice of the computation lattice L. This sublattice, say L′ has the
following property: if Σ ∈ L′, then for any Σ′ ∈ L if Σ′

 
∗ Σ then Σ′ ∈ L′. We

can see this sublattice as a portion of the computation lattice L enclosed by a
cone. The height of this cone is determined by the length of the current sequence
of events. We call this causality cone. All the states in L that are outside this
cone cannot be determined from the current sequence of events. Hence, they are
outside the causal scope of the current sequence of events. As we get more events
this cone moves down by one level.

w=3

< w=3

w

Fig. 4. Causality Cones

If we compute a DVC Vmax whose each component is the maximum of the
corresponding component of the DVCs of all the events in the event queue, then
this represents the DVC of the global state appearing at the tip of the cone. The
tip of the cone traverses the actual execution run of the program.

To avoid the generation of possibly exponential number of states in a given
level, we consider a fixed number, say w, most probable states in a given level. In

12

102

goodelle
Rectangle



a level construction we say the level is complete once we have generated w states
in that level. However, a level may contain less than w states. Then the level
construction algorithm gets stuck. Moreover, we cannot determine if a level has
less than w states unless we see all the events in the complete computation. This
is because we do not know the total number of threads that participate in the
computation beforehand. To avoid this scenario we introduce another parameter
l, the length of the current event queue. We say that a level is complete if we have
used all the events in the event queue for the construction of the states in the
current level and the length of the queue is l and we have not crossed the limit w

on the number of states. The pseudo-code for levelComplete? is given in Fig. 5

boolean levelComplete?(NextLevel, e, Q){

if size(NextLevel) ≥ w then

return true;

else if e is the last event in Q

and size(Q) == l then

return true;

else return false;

}

Fig. 5. levelComplete? predicate

Note, here l corresponds to the
number of levels of the sublat-
tice that be constructed from the
events in the event queue Q. On the
other hand, the level of this sublat-
tice with the largest level number
and having at least w global states
refers to the CurrLevel in the al-
gorithm.

5 Implementation
We have implemented these new techniques, in version 2.0 of the tool Java Mul-
tiPathExplorer (JMPaX)[12], which has been designed to monitor multithreaded
Java programs. The current implementation is written in Java and it removes the
restriction that all the shared variables of the multithreaded program are static
variables of type int. The tool has three main modules, the instrumentation
module, the observer module and the monitor module.

The instrumentation program, named instrument, takes a specification file
and a list of class files as command line arguments. An example is

java instrument spec A.class B.class C.class

where the specification file spec contains a list of named formulae written in
a suitable logic. The program instrument extracts the name of the relevant
variables from the specification and instruments the classes, provided in the
argument, as follows:

i) For each variable x of primitive type in each class it adds access and write
DVCs, namely _access_dvc_x and _write_dvc_x, as new fields in the class.

ii) It adds code to associate a DVC with every newly created thread;
iii) For each read and write access of a variable of primitive type in any class,

it adds codes to update the DVCs according to the algorithm mentioned in
Section 3.4;

iv) It adds code to call a method handleEvent of the observer module at every
write of a relevant variable.

The instrumentation module uses BCEL [3] Java library to modify Java class
files. We use the BCEL library to get a better handle for a Java classfile.

13

103

goodelle
Rectangle



The observer module, that takes two parameters w and l, generates the
lattice level by level when the instrumented program is executed. Whenever the
handleEvent method is invoked it enqueues the event passed as argument to
the method handleEvent. Based on the event queue and the current level of
the lattice it generates the next level of the lattice. In the process it invokes
nextStates method (corresponding to ρ in a monitor) of the monitor module.

The monitor module reads the specification file written either as an LTL
formula or a regular expression and generates the non-deterministic automaton
corresponding to the formula or the regular expression. It provides the method
nextStates as an interface to the observer module. The method raises an excep-
tion if at any point the set of states returned by nextStates contain the “bad”
state of the automaton. The system being modular, user can plug in his/her own
monitor module for his/her logic of choice.

Since in Java synchronized blocks cannot be interleaved, so corresponding
events cannot be permuted, locks are considered as shared variables and a write
event is generated whenever a lock is acquired or released. This way, a causal
dependency is generated between any exit and any entry of a synchronized block,
namely the expected happens-before relation. Java synchronization statements
are handled exactly the same way, that is, the shared variable associated to
the synchronization object is written at the entrance and at the exit of the
synchronized region. Condition synchronizations (wait/notify) can be handled
similarly, by generating a write of a dummy shared variable by both the notifying
thread before notification and by the notified thread after notification.

6 Conclusion and Future Work

A formal runtime predictive analysis technique for multithreaded systems has
been presented in this paper, in which multiple threads communicating by shared
variables are automatically instrumented to send relevant events, stamped by
dynamic vector clocks, to an external observer which extracts a causal partial
order on the global state, updates and thereby builds an abstract runtime model
of the running multithreaded system. Analyzing this model on a level by level
basis, the observer can infer effectively from successful execution of the observed
system when basic safety properties can be violated by other executions. At-
tractive future work includes predictions of liveness violations and predictions
of datarace and deadlock conditions.

7 Acknowledgments

The work is supported in part by the Defense Advanced Research Projects Agency (the
DARPA IPTO TASK Program, contract number F30602-00-2-0586, the DARPA IXO
NEST Program, contract number F33615-01-C-1907), the ONR Grant N00014-02-1-
0715, the Motorola Grant MOTOROLA RPS #23 ANT, and the joint NSF/NASA
grant CCR-0234524.

References

1. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-Based Run-
time Verification. In Proceedings of Fifth International VMCAI con-

14

104

goodelle
Rectangle



ference (VMCAI’04) (To appear in LNCS), January 2004. Download:
http://www.cs.man.ac.uk/cspreprints/PrePrints/cspp24.pdf.

2. H. W. Cain and M. H. Lipasti. Verifying sequential consistency using vector clocks.
In Proceedings of the 14th annual ACM Symposium on Parallel Algorithms and
Architectures, pages 153–154. ACM, 2002.

3. M. Dahm. Byte code engineering with the bcel api. Technical Report B-17-98,
Freie Universit at Berlin, Institut für Informatik, April 2001.

4. C. J. Fidge. Partial orders for parallel debugging. In Proceedings of the 1988 ACM
SIGPLAN and SIGOPS workshop on Parallel and Distributed debugging, pages
183–194. ACM, 1988.

5. K. Havelund and G. Roşu. Monitoring Java Programs with Java PathExplorer. In
Proceedings of the 1st Workshop on Runtime Verification (RV’01), volume 55 of
Electronic Notes in Theoretical Computer Science. Elsevier Science, 2001.

6. K. Havelund and G. Roşu. Synthesizing monitors for safety properties. In Tools
and Algorithms for Construction and Analysis of Systems (TACAS’02), volume
2280 of Lecture Notes in Computer Science, pages 342–356. Springer, 2002.

7. M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a Run-time Assurance
Tool for Java. In Proceedings of the 1st Workshop on Runtime Verification (RV’01),
volume 55 of Electronic Notes in Theoretical Computer Science. Elsevier Science,
2001.

8. K. Marzullo and G. Neiger. Detection of global state predicates. In Proceedings
of the 5th International Workshop on Distributed Algorithms (WADG’91), volume
579 of Lecture Notes in Computer Science, pages 254–272. Springer-Verlag, 1991.

9. F. Mattern. Virtual time and global states of distributed systems. In Parallel and
Distributed Algorithms: proceedings of the International Workshop on Parallel and
Distributed Algorithms, pages 215–226. Elsevier, 1989.

10. A. Sen and V. K. .Garg. Partial order trace analyzer (pota) for distrubted pro-
grams. In Proceedings of the 3rd Workshop on Runtime Verification (RV’03),
Electronic Notes in Theoretical Computer Science, 2003.

11. K. Sen and G. Roşu. Generating optimal monitors for extended regular expressions.
In Proceedings of the 3rd Workshop on Runtime Verification (RV’03), volume 89
of ENTCS, pages 162–181. Elsevier Science, 2003.

12. K. Sen, G. Roşu, and G. Agha. Java MultiPathExplorer (JMPaX 2.0). Download:
http://fsl.cs.uiuc.edu/jmpax.

13. K. Sen, G. Roşu, and G. Agha. Generating Optimal Linear Temporal Logic Mon-
itors by Coinduction. In Proceedings of 8th Asian Computing Science Conference
(ASIAN’03), volume 2896 of Lecture Notes in Computer Science, pages 260–275.
Springer-Verlag, December 2003.

14. K. Sen, G. Roşu, and G. Agha. Runtime safety analysis of multithreaded pro-
grams. In Proceedings of 4th joint European Software Engineering Conference
and ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE’03). ACM, 2003.

15. K. Sen, G. Roşu, and G. Agha. Runtime safety analysis of multithreaded pro-
grams. Technical Report UIUCDCS-R-2003-2334, University of Illinois at Urnaba
Champaign, April 2003.

15

105

goodelle
Rectangle



A Flexible Coordination Framework for 
Application-Oriented Matchmaking and Brokering Services 

 
 

Myeong-Wuk Jang, Amr M.E. Ahmed, Gul Agha 
Open Systems Laboratory 

Department of Computer Science 
University of Illinois at Urbana-Champaign 

{mjang, amrmomen, agha}@uiuc.edu 
 
 

Abstract 
 

An important problem for agents in open multiagent systems is how to find agents that 
match certain criteria. A number of middle agent services, such as matchmaking and 
brokering services, have been proposed to address this problem. However, the search 
capabilities of such services are relatively limited since the match criteria they use are 
relatively inflexible. We propose ATSpace, a middle agent to support application-

oriented matchmaking and brokering services. Application agents in ATSpace deliver 
their own search algorithms to a public tuple space which holds agent property data; 
the tuple space executes the search algorithms on this data. We show how the ATSpace 
model increases the dynamicity and flexibility of middle agent services. Unfortunately, 
the model also introduces security threats: the data and access control restrictions in 
ATSpace may be compromised, and system availability may be affected. We describe 
some mechanisms to mitigate these security threats. 

 
Keywords: Agent Coordination, Agent Interaction, Middle Agents, Brokering 
Services, Matchmaking Services. 

 
 

1. Introduction 
 
In multiagent systems, agents need to communicate with each other to accomplish their goals. An 
important problem in open multiagent systems is the connection problem: how to find agents that 
match given criteria [Dav83]. When agents are designed or owned by the same organization, 

 - 1 - 
106

goodelle
Rectangle

goodelle
Text Box
Appendix G: 



developers may be able to design agents which explicitly know the names of other agents that they 
need to communicate with. However in open systems, because different agents may dynamically 
enter or leave a system, it is generally not feasible to let agents know the names of all other agents 
that they need to communicate with at some point. 

For solving the connection problem, Decker classifies middle agent services as either 
matchmaking (also called Yellow Page) services or brokering services [Dec96, Syc97]. 
Matchmaking services (e.g. Directory Facilitator in FIPA platforms [Fip02]) are passive services 
whose goal is to provide a client agent with a list of names of agents whose properties match its 
supplied criteria. The agent may later contact the matched agents to request services. On the other 
hand, brokering services (e.g. ActorSpace [Cal94]) are active services that directly deliver a 
message (or a request) to the relevant agents on their clients’ behalf. 

In both types of services, an agent advertises itself by sending a message which contains its 
name and a description of its characteristics to a middle agent. A middle agent may be implemented 
on top of a tuple space model such as Linda [Car89]; this involves imposing constraints on the 
format of the stored tuples and using Linda-supported primitives. Specifically, to implement 
matchmaking and brokering services on top of Linda, a tuple template may be used by the client 
agent to specify the matching criteria. However, the expressive power of a template is very limited; 
it consists of value constraints for its actual parameters and type constraints for its formal 
parameters. In order to overcome this limitation, Callsen's ActorSpace implementation used regular 
expressions in its search template [Agh93, Cal94]. Even though this implementation increased 
expressivity, its capability is still limited by the power of its regular expressions. 

We propose ATSpace1 (Active Tuple Spaces) to empower agents with the ability to provide 
arbitrary application-oriented search algorithms to a middle agent for execution on the tuple space. 
While ATSpace increases the dynamicity and flexibility of the tuple space model, it also introduces 
some security threats as codes developed by different groups with different interests are executed in 
the same space. We will discuss the implication of these threats and how they may be mitigated. 

This paper is organized as follows. Section 2 explains the ATSpace architecture and introduces 
its primitives. Section 3 describes security threats occurred in ATSpace and addresses how to 
resolve them. Section 4 illustrates the power of the new primitives by describing experiments with 
using ATSpace on UAV (Unmanned Aerial Vehicle) simulations. Section 5 evaluates the 

                                                           
1 We will use ATSpace to refer the model for a middle agent to support application-oriented service, while we 

use an atSpace to refer an instance of ATSpace. 

 - 2 - 
107

goodelle
Rectangle



performance of ATSpace and compares it with a general middle agent. Section 6 discusses related 
work, and finally, we conclude this paper with a summary of our research and future work. 
 

2. ATSpace 
 

2.1 A MOTIVATIVE EXAMPLE 
 

We present a simple example to motivate the ATSpace model. In general, a tuple space user with a 
complex matching query is faced with the following two problems: 
 

1. Expressiveness problem because a matching query cannot be expressed using the tuple 
space primitives. 

2. Incomplete information problem because evaluating a matching query requires information 
which is not available for a tuple space manager. 

 
For example, assume that a tuple space has information about seller agents and the prices of the 

products they sell; each tuple has the following attributes (seller name, seller city, 
product name, product price). Buyer agents can access the tuple space in order to find 

seller agents that sell, for instance, computers or printers. Also, a buyer agent wants to execute the 
following query: 

 
Q1: What are the best two (in terms of prices) sellers that offer computers and whose locations are 
roughly within 50 miles from me? 
 

A generic tuple space may not support the request of this buyer agent because, firstly, it may 
not support the “best two” primitive (problem 1), and secondly, it may not have information about 
the distance between cities (problem 2). Faced with these difficulties the buyer agent with the query 
Q1 has to transform it to a tuple template style query (Q2) to be accepted by the general tuple space. 
This query Q2 will retrieve a superset of the data that should have been retrieved by Q1. 
 
Q2: Find all tuples about seller agents that sell computers.  
 

The buyer agent then evaluates its own search algorithm on the returned data to find tuples that 

 - 3 - 
108

goodelle
Rectangle



satisfy Q1. In our example, the buyer agent would first filter out seller agents whose locations are 
less than 50 miles from the location of its user, and then choose the best two sellers from the 
remaining ones. To select seller agents located within 50 miles, the buyer agent has a way of 
estimating roughly distances between cites. Finally, it should send these seller agents a message to 
start the negotiation process.  

An apparent disadvantage of the above approach is the movement of large amount of data from 
the tuple space to the buyer agent. When the tuple space includes large amount of tuples related to 
computer sellers, the size of the message to be delivered is also large. In order to reduce 
communication overhead, ATSpace allows a client agent to send an object containing its own search 
algorithm, instead of a tuple template. In our example, the buyer agent would send mobile code that 
inspects tuples in the tuple space and selects the best two sellers that satisfy the buyer criteria; the 
mobile code also carries information about distances to the near cities. 

In Figure 1, the seller agents with AN2 and AN3 names are selected by the search algorithm, 
and the atSpace agent delivers sendComputerBrand message to them as a brokering service. 

Finally, the seller agents send information about brand names of their computers to the buyer agent.  
 

ATSapce 

AN2, Champaign, computer, 950 

AN3, Urbana, computer, 650 

AN4, Urbana, printer, 420

AN5, Austin, computer, 1290 

 

Figure 1: An Example of ATSpace 
 

<find best two sellers in neighboring cities> sendComputerBrand 

AN1:buyer 

AN5:sellerAN3:seller

AN2:seller 
AN4:seller

 - 4 - 
109

goodelle
Rectangle



2.2 OVERALL ARCHITECTURE 
 
ATSpace consists of three components: a tuple space, a message queue, and a tuple space manager 
(see Figure 2).  
 

ATSpace 

Tuple Space message queue 

 

Figure 2: Basic Architecture of ATSpace 
 

The tuple space is used as a shared pool for agent tuples, npppa ,...,,, 21 , which consists of a 

name field, a, and a property part, P = p1, p2, …, pn where n ≥ 1; each tuple represents an agent 
whose name is given by the first field and whose characteristics are given by the subsequent fields. 
ATSpace enforces the rule that there cannot be more than one agent tuples whose agent names and 
property fields are identical. However, an agent may register itself with different properties 
(multiple tuples with the same name field), and different agents may register themselves with the 
same property fields (multiple tuples with the same property part). 

)]..()..&(&)..()..[(:, atatPtPtPtPtatatjitt jijijijiji ≠→=≠→=→≠∀  

The message queue contains input messages that are received from other agents. Messages are 
classified into two types: data input messages and service request messages. A data input message 
includes a new agent tuple for insertion into the tuple space. A service request message includes 
either a tuple template or a mobile object. The template (or, alternately, the object) is used to search 
for agents with the appropriate agent tuples. A service request message may optionally contain 
another field, called the service call message field, to facilitate the brokering service. A mobile 

tuple 

tuple

tuple 

tuple
Tuple 
Space 

Manager ask service agents
(brokering) 

return names  
(matchmaking)

msgmsgmsg

 - 5 - 
110

goodelle
Rectangle



object is an object that is provided by a service-requesting agent or client agent; such objects have 
pre-defined public methods, such as find. The find method is called by the tuple space manager 

with tuples in its atSpace as a parameter, and this method returns names of agents selected by the 
search algorithm specified in the mobile object. 

The tuple space manager retrieves names of service agents whose properties match a tuple 
template or which are selected by a mobile object. In case of a matchmaking service, it returns the 
names to the client agent. In case of a brokering service, it forwards the service call message 
supplied by the client agent to the service agents. 
 

2.3 OPERATION PRIMITIVES 
 

General Tuple Space Primitives 
 
The ATSpace model supports three basic primitives: write, read, and take. write is used to 
register an agent tuple into an atSpace, read is used to retrieve an agent tuple that matches a given 
criteria, and take is used to retrieve a matched agent tuple and remove it from the atSpace. When 

there are more than one agent tuples whose properties are matched with the given criteria, one of 
them is randomly selected by the agent tuple manager. When there is no a matched tuple, these 
primitives return immediately with an exception. In order to retrieve all agent tuples that match a 
given criteria, readAll or takeAll primitives should be used. The format2 of these primitives is 

as follows: 
 

void write(AgentName anATSpace, TupleData td); 
AgentTuple read(AgentName anATSpace, TupleTemplate tt); 
AgentTuple take(AgentName anATSpace, TupleTemplate tt); 
AgentTuple[] readAll(AgentName anATSpace, TupleTemplate tt); 
AgentTuple[] takeAll(AgentName anATSpace, TupleTemplate tt); 

 

where AgentName, TupleData, AgentTuple, and TupleTemplate are data objects defined in 

ATSpace. A data object denotes an object that includes only methods to set and retrieve its member 
variables. When one of these primitives is called in an agent, the agent class handler creates a 
corresponding message and sends it to the atSpace specified as the first parameter, anATSpace. The 
write primitive causes a data input message while the others cause service request messages. Note 
that the write primitive does not include an agent tuple but a tuple that contains only the agent’s 

                                                           
2 The current ATSpace implementation is developed in the Java programming language, and hence, we use the 
Java syntax to express primitives. 

 - 6 - 
111

goodelle
Rectangle



properties. This is to avoid the case where an agent tries to register a property using another agent 
name to an atSpace. This tuple is then converted to an agent tuple with the name of the sender agent 
before the agent tuple is inserted to an atSpace. 

In some applications, updating agent tuples happens very often. For such applications, 
availability and integrity are of great importance. Availability insures that at least one agent tuple 
exist at any time whereas integrity insures that old and new agent data do not exist simultaneously 
in an atSpace. Implementing the update request using two tuple space primitives, take and write, 
could result in one of these properties not being satisfied. If update is implemented using take 
followed by write, then availability is not met. On the other hand, if update is implemented using 
write followed by take, integrity is violated for a small amount of time. Therefore, ATSpace 
provides the update primitive to insure that take and write operations are performed as one 

atomic operation. 
 

void update(AgentName anATSpace, TupleTemplate tt, TupleData td); 
 

Matchmaking and Brokering Service Primitives 
 

In addition, ATSpace also provides primitives for middle agent services: searchOne and 
searchAll for matchmaking services, and deliverOne and deliverAll for brokering services. 

Primitives for matchmaking are as follows: 
 

AgentName searchOne(AgentName anATSpace, TupleTemplate tt); 
AgentName searchOne(AgentName anATSpace, MobileObject ao); 
AgentName[] searchAll(AgentName anATSpace, TupleTemplate tt); 
AgentName[] searchAll(AgentName anATSpace, MobileObject ao); 

 

The searchOne primitive is used to retrieve the name of a service agent that satisfies a given 
criteria, whereas the searchAll primitive is used to retrieve all names of service agents that match 

a given property. 
Primitives for brokering service are as follows: 

 
void deliverOne(AgentName anATSpace, TupleTemplate tt, Message msg); 
void deliverOne(AgentName anATSpace, MobileObject ao, Message msg); 
void deliverAll(AgentName anATSpace, TupleTemplate tt, Message msg); 
void deliverAll(AgentName anATSpace, MobileObject ao, Message msg); 

 

The deliverOne primitive is used to forward a specified service call message msg to the 
service agent that matches the given criteria, whereas the deliverAll primitive is used to send 

this message to all such service agents. 

 - 7 - 
112

goodelle
Rectangle



 
Note that our matchmaking and brokering service primitives allow agents to use mobile objects 

to support application-oriented search algorithm. We call matchmaking or brokering services used 
with mobile objects active matchmaking or brokering services. MobileObject is an abstract class 

that defines the interface methods between a mobile object and an atSpace. One of these methods is 
find, which may be used to provide the search algorithm to an atSpace. The format of the find 

method is defined as follows: 
 

AgentName[] find(final AgentTuple[] ataTuples); 

 

Service Specific Request Primitive 
 

One drawback of the previous brokering primitives (deliverOne and deliverAll) is that they 

cannot support service-specific call messages. In some situations, a client agent cannot supply an 
atSpace with a service call message to be delivered to a service agent beforehand because it needs to 
examine the service agent properties first. Another drawback of the deliverAll primitive is that 

it stipulates that the same message should be sent to all service agents that match the supplied 
criteria. In some situations a client agent needs to send different messages to each service agent, 
depending on the service agent’s properties. A client agent with any of the above requirements can 
use neither brokering services with tuple templates nor active brokering services with mobile 
objects. Therefore, the agent has to use the readAll primitive to retrieve relevant agent tuples and 

then create appropriate service call messages to send service agents selected. However, this 
approach suffers from the same problems as a general tuple space does. 

To address the above shortcomings, we introduce the exec primitives. This primitive allows a 

client agent to supply a mobile object to an atSpace; the supplied mobile object has to implement 
the doAction method. When the method is called by an atSpace with agent tuples, it examines the 

properties of agents using the client agent application logic, creates different service call messages 
according to the agent properties, and then returns a list of agent messages to the atSpace to deliver 
the service call messages to the selected agents. Note that each agent message consists of the name 
of a service agent as well as a service call message to be delivered to the service agent. The formats 
of exec primitive and the doAction method are as follows. 
 

void exec(AgentName anATSpace, MobileObject ao); 
AgentMessage[] doAction(AgentTuple[] ataTuples); 

 

 - 8 - 
113

goodelle
Rectangle



3. SECURITY ISSUES 
 

By allowing a mobile object to be supplied by an application agent, ATSpace supports application-
oriented matchmaking and brokering services, which increases the flexibility and dynamicity of the 
tuple space model. However, it also introduces new security threats; we address some of these 
security threats and describe some ways to mitigate them. There are three important types of 
security issues for ATSpace: 
 

 Data Integrity: A mobile object may not modify tuples owned by other agents. 
 Denial of Service: A mobile object may not consume two much processing time or space 

of an atSpace, and a client agent may not repeatedly send mobile objects, thus overloading 
an atSpace. 

 Illegal Access: A mobile object may not carry out unauthorized access or illegal 
operations. 

 
We address the data integrity problem by blocking attempts to modify tuples. When a mobile 

object is executed by a tuple space manager, the manager makes a deep copy of tuples and then 
sends the copy to the find or doAction method of the mobile object. Therefore, even when a 

malicious agent changes some tuples, the original tuples are not affected by the modification. 
However, when the number of tuples in a tuple space is very large, this solution requires extra 
memory and computational resources. For better performance, the creator of an atSpace may select 
the option of delivering to mobile objects a shallow copy of the original tuples instead of a deep 
copy, although this will violate the integrity of tuples if an agent tries to delete or change tuples. We 
are currently investigating under what conditions a use of a shallow copy may be sufficient. 

To address denial of service by consuming all processor cycles, we deploy user-level thread 
scheduling. Figure 3 depicts the extended architecture of ATSpace. When a mobile object arrives, 
the object is executed as a thread, and its priority is set to high. If the thread executes for a long time, 
its priority is continually downgraded. Moreover, if the running time of a mobile object exceeds a 
certain limit, it may be destroyed by the Tuple Space Manager; in this case, a message is sent to the 
sender agent of the mobile object to inform it about the destruction of the object. To incorporate 
these restrictions, we have extended the architecture of ATSpace by implementing job queues--thus 
making their semantics similar to that of actors. Other denial of service issues are still our on-going 
research. 

 - 9 - 
114

goodelle
Rectangle



 

 

message queueATSpace 

Figure 3: Extended Architecture of ATSpace 
 
To prevent unauthorized access, an atSpace may be created with an access key; if an atSpace is 

created with an access key, then this key must accompany every message sent from service 
requester agents. Also, an atSpace may limit agents to modify only their own tuples. 

 

4. Experiments 
 

We have applied the ATSpace model in a UAV (Unmanned Aerial Vehicle) application which 
simulates the collaborative behavior of a set of UAVs in a surveillance mission [Jan03]. During the 
mission, a UAV needs to communicate with other neighboring UAVs within its local 
communication range (see Figure 4). We use the brokering primitives of ATSpace to accomplish 
this broadcasting behavior. Every UAV updates information about its location on an atSpace at 
every simulation step using the update primitive. When local broadcast communication is needed, 
the sender UAV (considered a client agent from the ATSpace perspective) uses the deliverAll 

Tuple Space Manager 

Tuple Space 

tuple 

tuple

tuple 

tuple

ATSpace 
Manager

msgmsgmsg

job queues

high obj.obj.
priority

middle
obj.obj. priority

low obj.obj. priority

 - 10 - 
115

goodelle
Rectangle



primitive and supplies as a parameter a mobile object3 that contains its location and communication 
range. When this mobile object is executed in the atSpace, the find method is called by the tuple 
space manager to find relevant receiver agents. The find method computes distances between the 

sender UAV and other UAVs to find neighboring ones within the given communication range. When 
the tuple space manager receives names of service agents, neighboring UAVs in this example, from 
the mobile object, it delivers the service call message given by the client agent--the sender UAV in 
this example--to them. 
 

 

Figure 4: Simulation of Local Broadcast Communication 
 
We also use ATSpace to simulate the behavior of UAV radar sensors. Each UAV should detect 

targets within its sensing radar range (see Figure 5). The SensorSimulator, which is the simulator 
component responsible for accomplishing this behavior, uses the exec primitive to implement this 
task. The mobile object4 supplied with the exec primitive computes distances between UAVs and 

targets, and decides neighboring targets for each UAV. It then creates messages each of which 
consists of the name of its receiver UAV and a service call message to be sent its receiver UAV 
agent. This service call message is simply the environment model around this UAV (neighboring 
targets in our domain). Finally, the mobile object returns these set of messages to the tuple space 
manager which in turn sends them to respective agents. 

 

                                                           
3 The code for this mobile object is in Appendix A. 
4 The code for this mobile object is in Appendix B. 

 - 11 - 
116

goodelle
Rectangle



 

Figure 5: Simulation of Radar Sensor 
 

5. Evaluation 
 

The performance benefit of ATSpace can be measured by comparing its active brokering service 
with the data retrieval service of the template-based tuple space model along four different 
dimensions: the number of messages, the total size of messages, the total size of memory space on 
the clients’ and middle agents’ computers, and the time for the entire computation. To analytically 
evaluate ATSpace, we use the scenario described in section 2.1 where a service-requesting agent has 
a complex query that is not supported by the template-based model. 

Let the number of service agents that satisfy this complex query be n. In the template-based 
tuple space model, the number of messages is n + 2. The details are as follows: 

 Service_Requesttemplate: a template-based service request message that includes Q2.  

A service-requesting agent sends this message to a tuple space to bring a superset of its 
final result. 

 Service_Replytemplate: a reply message that contains agent tuples satisfying Q2. 
 n Service_Call: n service call messages to be delivered by the service-requesting agent 

to the agents that match its original criteria Q1. 

In ATSpace, the total number of messages is n + 1. This is because the service-requesting agent 
need not worry about the complexity of his query and only sends a service request message 

 - 12 - 
117

goodelle
Rectangle



(Service_RquestATSpace) to an atSpace. This message contains the code that represents its criteria 

along with a service call message which should be sent the agents that satisfy the criteria. The last n 
messages have the same explanation as in the template based model except that the sender is the 
atSpace instead of the service-requesting agent. 

While the difference in the number of messages delivered in the two approaches is 
comparatively small, the difference in the total size of these messages may be huge. Specifically, the 
difference in bandwidth consumption (BD: Bandwidth Difference) between the template-based 
model and the ATSpace one is given by the following equation: 

BD = [size(Service_Requesttemplate) – size(Service_RequestATSpace) ] + 
size(Service_Replytemplate) 

In general the ATSpace service request message is larger, as it has the matching code, and thus 
the first component is negative. As such, ATSpace will only result in a bandwidth saving if the 
increase in the size of its service request message is smaller than the size of the service reply 
message in the template-based approach. This is likely to be true if the original query (Q1) is 
complex such that turning it into a simpler one (Q2) to retrieve a superset of the result would incur a 
great semantic loss and as such would retrieve a lot of the tuples from the template-based tuple 
space manager. 

The amounts of the storage space used on the client agent’s and middle agent’s computers are 
similar in both cases. In the general tuple space, a copy of the tuples exists in the client agent, and 
an atSpace also requires a copy of the data for the mobile object to address the data integrity issue. 
However, if a creator of an atSpace opts to use a shallow copy of the data, the size of such a copy in 
the atSpace is much less than that of the copy in the client agent. 

The difference in computation times of the entire operation in the two models depends on two 
factors: the time for sending messages and the time for evaluating queries on tuples. As we 
explained before, ATSpace will usually reduce the total size of messages so that the time for 
sending messages is in favor of ATSpace. Moreover, the tuples in the ATSpace are only inspected 
once by the mobile object sent by the service-requesting agent. However, in the template-based 
approach, some tuples are inspected twice: first, in order to evaluate Q2, the template-based tuple 
space manager needs to inspect all the tuples that it has, and second, the service-requesting agent 
inspects these tuples that satisfy Q2 to retain the tuples that also satisfy Q1. If Q1 is complex then 
Q2 may not filter tuples properly. Therefore, even though the time to evaluate Q2 against the entire 
tuples in the tuple space is smaller than the time needed to evaluate them by the mobile object, most 

 - 13 - 
118

goodelle
Rectangle



of the tuples on the tuple space manager may pass Q2 and be re-evaluated again by the service-
requesting agent. This re-evaluation may have nearly the same complexity as running the mobile 
object code. Thus we can conclude that when the original query is complex and external 
communication cost is high, ATSpace will result in time saving. 

Apart from the above analytical evaluation, we also evaluated the saving in computational time 
resulting from using the ATSpace in the UAV domain using the settings mentioned in section 4. 
Figure 6 shows the benefit of ATSpace compared to a general tuple space that provides the same 
semantic in the UAV simulation. In these experiments, UAVs use either active brokering service or 
data retrieval service to find their neighboring UAVs. In both cases, the middle agent includes 
information about locations of UAVs and targets. In case of the active brokering service, UAVs send 
mobile objects to the middle agent while UAVs using data retrieval service send tuple templates. 
The simulation time for each run is around 40 minutes, and the wall clock time depends on the 
number of agents. When the number of agents is small, the difference between the two approaches 
is not significant. However, as the number of agents is increased, the difference becomes large. 

 

0

100

200

300

400

500

600

200 400 600 800 1000

Number of Agents

W
al

l C
lo

ck
 T

im
e 

(M
in

)

ATSpace
Tuple Space

 

Figure 6: Wall Clock Time for ATSpace and Tuple Space 
 

Figure 7 shows the number of messages, and Figure 8 shows the total size of messages in the 
two approaches, although the number of messages required is similar in both cases. However, a 
general tuple space requires more data movement than ATSpace, the shapes of these two lines in 
Figure 8 is similar to those in Figure 6. Therefore, we can hypothesize that there are strong 

 - 14 - 
119

goodelle
Rectangle



relationship between the total size of messages and the wall clock time of simulations. 
 

0

5

10

15

20

25

200 400 600 800 1000

Number of Agents

N
um

be
r o

f M
es

sa
ge

 (M
)

ATSpace
Tuple Space

 

Figure 7: The Number of Messages for ATSpace and Tuple Space 
 

0

5000

10000

15000

20000

25000

30000

35000

200 400 600 800 1000

Number of Agents

To
ta

l N
um

be
r o

f M
es

sa
ge

s 
(M

B
yt

es
)

ATSpace
Tuple Space

 

Figure 8: The Total Size of Messages for ATSpace and Tuple Space 
 

6. Related Work 
 

 - 15 - 
120

goodelle
Rectangle



In this section we compare our ATSpace model with three related approaches: Other tuple space 
models, the Java Applet model, and finally mobile agents. 
 

6.1 ATSpace Vs. Other Tuple Space Models 
 
Our work is related to Linda [Car89, Gel85] and its variants, such as JavaSpaces and TSpaces 
[Leh99, Sun03]. In these models, processes communicate with other processes through a shared 
common space called a blackboard or a tuple space without considering references or names of 
other processes [Car89, Pfl98]. This approach was used in several agent frameworks, for example 
OAA and EMAF [Bae95, Mar97]. However, these models support only primitive features for 
anonymous communication among processes or agents.  

From the middle agent perspective, Directory Facilitator in the FIPA platform and Broker Agent 
in InfoSleuth are related to our research [Fip02, Jac96]. However, these systems do not support 
customizable matching algorithm.  

Some work has been done to extend the matching capability in the tuple space model. Berlinda 
allows a concrete entry class to extend the matching function [Tol97], and TS uses policy closures in 

a Scheme-like language to customize the behavior of tuple spaces [Jag91]. However, these 
approaches do not allow the matching function to be changed during execution. OpenSpaces 
provides a mechanism to change matching polices during execution [Duc00]. OpenSpaces groups 
entries in its space into classes and allows each class to have its individual matching algorithm. A 
manager for each class of entries can change the matching algorithm during execution. All agents 
that use entries under a given class are affected by any change to its matching algorithm. This is in 
contrast to ATSpace where each agent can supply its own matching algorithm without affecting 
other agents. Another difference between OpenSpaces and ATSpace is that the former requires a 
registration step before putting a new matching algorithm into action. Object Space allows 
distributed applications implemented in the C++ programming language to use a matching function 
in its template [Pol93]. This matching function is used to check whether an object tuple in the space 
is matched with the tuple template given in rd and in operators. However in ATSpace, the client 

agent supplied mobile objects can have a global overview of the tuples stored in the shared space, 
and hence, it can support global search behavior rather than one tuple based matching behavior 
supported in Object Space. For example, using ATSpace a client agent can find the best ten service 
agents according to its criteria whereas this behavior cannot be achieved in Object Space. 

TuCSoN and MARS provide programmable coordination mechanisms for agents through Linda-

 - 16 - 
121

goodelle
Rectangle



like tuple spaces to extend the expressive power of tuple spaces [Cab00, Omi98]. However, they 
differ in the way they approach the expressiveness problem; while TuCSoN and MARS use reactive 
tuples to extend the expressive power of tuple spaces, ATSpace uses mobile objects to support 
search algorithms defined by client agents. A reactive tuple handles a certain type of tuples and 
affects various clients, whereas a mobile object handles various types of tuples and affects only its 
creator agent. Also, these approaches do not provide an execution environment for client agents.  
Therefore, these may be considered as orthogonal approaches and can be combined with our 
approach. 
 

6.2 The ATSpace Model vs. the Applet Model 
 
ATSpace allows the movement of a mobile object to the ATSpace manager, and thus it can be 
confused with the Applet model. However, a mobile object in ATSpace quite differs from a Java 
applet: a mobile object moves from a client computer to a server computer while a Java applet 
moves from a server computer to a client computer. Also, the migration of a mobile object is 
initiated by its owner agent on the client computer, but that of a Java applet is initiated by the 
request of a client Web browser. Another difference is that a mobile object receives a method call 
from an atSpace agent after its migration, but a Java applet receives parameters and does not receive 
any method call from processes on the same computer. 

 
6.3 Mobile Objects vs. Mobile Agents 
 
A mobile object in ATSpace may be considered as a mobile agent because it moves from a client 
computer to a server computer. However, the behavior of a mobile object differs from that of a 
mobile agent. First of all, the behavior of objects in general can be compared with that of agents as 
follows: 

 An object is passive while an agent is active, i.e., a mobile object does not initiate activity.  
 An object does not have the autonomy that an agent has: a mobile object executes its method 

whenever it is called, but a mobile agent may ignore a request received from another agent. 
 An object does not have a universal name to communicate with other remote objects; therefore, 

a mobile object cannot access a method on the remote object, but a mobile agent can 
communicate with agents on other computers. However, note that some object-based 
middleware may provide such functionality: e.g., objects in CORBA or DCOM [Vin97, Tha99] 

 - 17 - 
122

goodelle
Rectangle



may refer remote objects. 
 The method interface of an object is precisely predefined, and this interface is directly used by 

a calling object.5 On the other hand, an agent may use a general communication channel to 
receive messages. Such messages require marshaling and unmarshaling, and have to be 
interpreted by receiver agents to activate the corresponding methods. 

 While an object is executed as a part of a processor or a thread, an agent is executed as an 
independent entity; mobile objects may share references to data, but mobile agents do not. 

 An object may use the reference passing in a method call, but an agent uses the value passing; 
when the size of parameters for a method call is large, passing the reference to local data is 
more efficient than passing a message, because the value passing requires a deep copy of data.  

Besides the features of objects, we impose additional constraints on mobile objects in ATSpace: 

 A mobile object can neither receive a message from an agent nor send a message to an agent. 
 After a mobile object finishes its operation, the mobile object is destroyed by its current middle 

agent; a mobile object is used exactly once.  
 A mobile object migrates only once; it is prevented from moving again. 
 The identity of the creator of a mobile object is separated from the code of the mobile agent. 

Therefore, a middle agent cannot send a mobile object to another middle agent with the 
identity of the original creator of the object. Thus, even if the code of a mobile object is 
modified by a malicious server program, the object cannot adversely affect its creator. 
Moreover, since a mobile object cannot send a message to another agent, a mobile object is 
more secure than a mobile agent.6 However, a mobile object raises the same security issues for 
the server side. 

In summary, a mobile object loses some of the flexibility of a mobile agent, but this loss is 
compensated by increased computational efficiency and security. 

 

7. Conclusion and Future Work 
 

In this technical report we presented ATSpace, Active Tuple Space, which works as a common 
shared space to exchange data among agents, a middle agent to support application-oriented 

                                                           
5 Methods of a Java object can be detected with the Java reflection mechanism. Therefore, the predefined 
interface is not necessary to activate a method of a Java object. 
6 [Gre98] describes security issues of mobile agents in detail. 

 - 18 - 
123

goodelle
Rectangle



brokering and matchmaking services, and an execution environment for mobile objects utilizing 
data on its space. Our experiments with UAV surveillance simulations show that the model may be 
effective in reducing coordination costs. We have described some security threats that arise when 
using mobile objects for agent coordination, along with some mechanisms we use to mitigate them. 
We are currently incorporating memory use restrictions into the architecture and considering 
mechanisms to address denial of service attacks that may be caused by flooding the network [Shi02]. 
We also plan to extent ATSpace to support multiple tuple spaces distributed across the Internet (a 
feature that some Linda-like tuple spaces [Omi98, Sny02] already support). 
 

Acknowledgements 
 
This research is sponsored by the Defense Advanced Research Projects Agency under contract 

number F30602-00-2-0586.  
 

References 
 
[Agh93] G. Agha and C.J. Callsen, “ActorSpaces: An Open Distributed Programming Paradigm,” 

Proceedings of the 4th ACM Symposium on Principles & Practice of Parallel 
Programming, pp. 23-32, May 1993. 

[Bae95] S. Baeg, S. Park, J. Choi, M. Jang, and Y. Lim, “Cooperation in Multiagent Systems,” 
Intelligent Computer Communications (ICC ‘95), Cluj-Napoca, Romania, pp. 1-12, June 
1995. 

[Cab00] G. Cabri, L. Leonardi, F. Zambonelli, “MARS: a Programmable Coordination Architecture 
for Mobile Agents,” IEEE Computing, Vol. 4, No. 4, pp. 26-35, 2000. 

[Cal94] C. Callsen and G. Agha, “Open Heterogeneous Computing in ActorSpace,” Journal of 
Parallel and Distributed Computing, Vol. 21, No. 3, pp. 289-300, 1994. 

[Car89] N. Carreiro, and D. Gelernter, “Linda in context,” Communications of the ACM, Vol. 32, 
No. 4, pp. 444-458, 1989. 

[Dav83] R. Davis and R.G. Smith, “Negotiation as a Metaphor for Distributed Problem Solving,” 
Artificial Intelligence, Vol. 20, No. 1, pp. 63-109, January 1983. 

[Dec96] K. Decker, M. Williamson, and K. Sycara, “Matchmaking and Brokering,” Proceedings of 
the Second International Conference on Multi-Agent Systems (ICMAS-96), Kyoto, Japan, 
December, 1996. 

 - 19 - 
124

goodelle
Rectangle



[Duc00] S. Ducasse, T. Hofmann, and O. Nierstrasz, “OpenSpaces: An Object-Oriented 
Framework for Reconfigurable Coordination Spaces,” In A. Porto and G.C. Roman, (Eds.), 
Coordination Language and Models, LNCS 1906, Limassol, Cyprus, pp. 1-19, September 
2000. 

[Fip02] Foundation for Intelligent Physical Agents, SC00023J: FIPA Agent Management 
Specification, December 2002. http://www.fipa.org/specs/fipa00023/ 

[Gel85] D. Gelernter, “Generative Communication in Linda,” ACM Transactions on Programming 
Language and Systems, Vol. 7, No. 1, pp. 80-112, January 1985. 

[Gre98] M.S. Greenberg, J.C. Byington, and D.G. Harper, “Mobile Agents and Security,” IEEE 
Communications Magazine, Vol. 36, No. 7, pp. 76-85, July 1998. 

[Jac96] N. Jacobs and R. Shea, “The Role of Java in InfoSleuth: Agent-based Exploitation of 
Heterogeneous Information Resources,” Proceedings of Intranet-96 Java Developers 
Conference, April 1996. 

[Jag91] S. Jagannathan, “Customization of First-Class Tuple-Spaces in a Higher-Order 
Language,” Proceedings of the Conference on Parallel Architectures and Languages - Vol. 
2, LNCS 506, Springer-Verlag, pp. 254-276, 1991.  

[Jan03] M. Jang, S. Reddy, P. Tosic, L. Chen, and G. Agha. “An Actor-based Simulation for 
Studying UAV Coordination,” Proceedings of the 15th European Simulation Symposium 
(ESS 2003), pp. 593-601, October 2003 

[Leh99] T.J. Lehman, S.W. McLaughry, and P. Wyckoff, “TSpaces: The Next Wave,” Proceedings 
of the 32nd Hawaii International Conference on System Sciences (HICSS-32), January 
1999. 

[Mar97] D.L. Martin, H. Oohama, D. Moran, and A. Cheyer, “Information Brokering in an Agent 
Architecture,” Proceedings of the Second International Conference on the Practical 
Application of Intelligent Agents and Multi-Agent Technology, London, pp. 467-489, April 
1997.  

[Omi98] A. Omicini and F. Zambonelli, “TuCSoN: a Coordination Model for Mobile Information 
Agents,” Proceedings of the 1st Workshop on Innovative Internet Information Systems, 
Pisa, Italy, June 1998. 

[Pfl98] K. Pfleger and B. Hayes-Roth, An Introduction to Blackboard-Style Systems Organization, 
KSL Technical Report KSL-98-03, Stanford Knowledge Systems Laboratory, January 
1998. 

[Pol93] A. Polze, “Using the Object Space: a Distributed Parallel make,” Proceedings of the 4th 

 - 20 - 
125

http://www.almaden.ibm.com/cs/TSpaces/papers/Cluster.ps.Z
http://www.ksl.stanford.edu/KSL_Abstracts/KSL-98-03.html
http://ksl-web.stanford.edu/publications/
goodelle
Rectangle



IEEE Workshop on Future Trends of Distributed Computing Systems, Lisbon, pp. 234-239, 
September 1993. 

[Shi02] C. Shields, “What do we mean by Network Denial of Service?,” Proceedings of the 2002 
IEEE Workshop on Information Assurance and Security, United States Military Academy, 
West Point, NY, pp. 17-19, June 2002. 

[Sny02] J. Snyder and R. Menezes, “Using Logical Operators as an Extended Coordination 
Mechanism in Linda,” In F. Arbab and C. Talcott (Eds.), Coordination 2002, LNCS 2315, 
Springer-Verlag, Berlin Heidelberg, pp. 317-331, 2002. 

[Sun03] Sun Microsystems, JavaSpacesTM Service Specification, Ver. 2.0, June 2003. 
 http://java.sun.com/products/jini/specs

[Syc97] K. Sycara, K. Decker, and M. Williamson, “Middle-Agents for the Internet,” Proceedings 
of the 15th Joint Conference on Artificial Intelligences (IJCAI-97), pp. 578-583, 1997. 

[Tha99] T.L. Thai, Learning DCOM, O’Reilly & Associates, 1999. 
[Tol97] R. Tolksdorf, “Berlinda: An Object-oriented Platform for Implementing Coordination 

Language in Java,” Proceedings of COORDINATION ’97 (Coordination Languages and 
Models), LNCS 1282, Pringer-Verlag, pp. 430-433, 1997. 

[Vin97] S. Vinoski, “CORBA: Integrating Diverse Applications within Distributed Heterogeneous 
Environments,” IEEE Communications, Vol. 14, No. 2, pp. 46-55, Feb 1997. 

 

 - 21 - 
126

http://java.sun.com/products/jini/specs
http://www.isrl.uiuc.edu/~gasser/courses/amd2003/website/papers/decker+sycara-middle-agents-ijcai97.pdf
goodelle
Rectangle



Appendix A: Mobile Object for Local Broadcast Communication 
 
public class CommunicationMobileObject implements MobileObject 
{ 
 protected final static double BROADCAST_RANGE = 50000.0; 
     //  range for broadcast communication  
 
 private Point m_poPosition; 
     //  location of the current location of a UAV 
 
 /** 
 *  Creates a mobile object with the location of the caller UAV agent. 
  */ 
 public CommunicationMobileObject(Point p_point) 
 { 
  m_poPosition = p_point; 
 } 
 
 /** 
 *  Defines the 'find' method. 
 */ 
 public AgentName[] find(AgentTuple[] p_ataTuples) 
 { 
     double dEWDistance = m_poPosition.getX(); 
     double dNSDistance = m_poPosition.getY(); 
      
  LinkedList llReceivers = new LinkedList(); 
 
  for (int i=0; i<p_ataTuples.length; i++) { 
   if (p_ataTuples[i].sizeOfElements() == 1) { 
    Object objItem = p_ataTuples[i].getElement(0); 
 
    try { 
     // 
     //  check the type of a field of a tuple. 
     // 
     if ( (Class.forName("app.task.uav.Point").isInstance(objItem)) ) { 
      Point poObject = (Point) objItem; 
      double dDistance =  
       Math.sqrt( Math.pow((poObject.getX() - dEWDistance), 2.0) + 
       Math.pow((poObject.getY() - dNSDistance), 2.0) ); 
 
      // 
     //  compute the distance between the caller UAV and another. 
     // 
      if ( dDistance <= BROADCAST_RANGE) { 
       llReceivers.add(p_ataTuples[i].getAgentName()); 
      } 
     } 
    } catch (ClassNotFoundException e) { 
     System.err.println(">> Investigator.search: " + e); 
    } 
   } 
  } 
 
  // 
  //  return the names of neighboring UAV agents. 
  // 
  AgentName anaReceivers[] = new AgentName[llReceivers.size()]; 
  llReceivers.toArray(anaReceivers); 
  return anaReceivers; 
 } 
} 

 - 22 - 
127

goodelle
Rectangle



Appendix B: Mobile Object for Sensors of UAVs. 
 
public class SensorMobileObject implements MobileObject 
{ 
 public final static double RADAR_SENSOR_RANGE = 25000.0; 
      //  range for radar sensing 
 
 private final static double RADAR_SENSOR_ALTITUDE = 2000.0; 
      //  minimum altitude of a UAV to detect an object by a radar 
 
 private ObjectInfo[] m_oiaNeighboringObject; 
 
 /** 
 * Defines the 'doAction' method. 
  */ 
 public AgentMessage[] doAction(final AgentTuple[] p_ataAgentTuples) 
 { 
  LinkedList llMsgs = new LinkedList(); 
 
  // 
     //  classify the tuples into UAVs or Targets. 
     // 
     LinkedList llUAVs = new LinkedList(); 
     LinkedList llTargets = new LinkedList(); 
      
     for (int i=0; i<p_ataAgentTuples.length; i++) { 
         if (p_ataAgentTuples[i].sizeOfElements() == 1) { 
          try { 
              Object objItem = p_ataAgentTuples[i].getElement(0); 
               
     // 
     //  check the type of a field of a tuple. 
     // 
              if ( (Class.forName("app.task.uav.Point").isInstance(objItem))) { 
               // 
         //  if a UAV is lower than the predefined minimum altitude, 
         //      then ignore the UAV. 
         // 
               Point poUAV = (Point) objItem; 
            if (poUAV.getZ() >= RADAR_SENSOR_ALTITUDE) { 
       llUAVs.add(p_ataAgentTuples[i]); 
      } 
     } else if (Class.forName("app.task.uav.ObjectInfo").isInstance(objItem)) { 
      ObjectInfo oiTarget = (ObjectInfo) objItem;  
      llTargets.add(oiTarget); 
     } 
          } catch (ClassNotFoundException e) { 
              System.err.println(">>SensorMobileObject.doAction: " + e); 
          } 
   } 
  } 
      
     // 
     //  change LinkedList-type data to Array-type data.  
     // 
      AgentTuple[] ataUAVs = new AgentTuple[llUAVs.size()]; 
     llUAVs.toArray(ataUAVs); 
      
     ObjectInfo[] oiaTargets = new ObjectInfo[llTargets.size()]; 
     llTargets.toArray(oiaTargets); 
      
  // 
  //  compute horizontal distance and vertical distance among UAVs. 
  // 
     m_oiaNeighboringObject = new ObjectInfo[oiaTargets.length]; 

 - 23 - 
128

goodelle
Rectangle



      
  for (int i=0; i<ataUAVs.length; i++) {      
      // 
      //  collect neighboring objects, such as targets. 
      // 
         int iNumNeighboringObjects = 0; 
 
      Point pointUAV = (Point) ataUAVs[i].getElement(0); 
      double dX = pointUAV.getX(); 
      double dY = pointUAV.getY(); 
 
      for (int j=0; j<oiaTargets.length; j++) { 
    double dDistance =  
        java.lang.Math.sqrt( 
      Math.pow(dX - oiaTargets[j].getEWDistance(), 2.0) + 
      Math.pow(dY - oiaTargets[j].getNSDistance(), 2.0) ); 
 
    if ( (i != j) &&  
         (dDistance < RADAR_SENSOR_RANGE) ) { 
        oiaTargets[j].setHDistance(dDistance); 
        oiaTargets[j].setVDistance(0); 
    
        m_oiaNeighboringObject[iNumNeighboringObjects++] = oiaTargets[j]; 
    } 
      } 
  
      // 
      //  if there are more than one neighboring objects, 
      //      then create a message to send information about them to the UAV. 
      // 
      if (iNumNeighboringObjects > 0) { 
    ObjectInfo[] oiaObjectDetected = new ObjectInfo[iNumNeighboringObjects]; 
   
    System.arraycopy(m_oiaNeighboringObject, 0,  
             oiaObjectDetected, 0,  
             iNumNeighboringObjects); 
 
    Object[] objaArgs = { oiaObjectDetected }; 
   
    llMsgs.add(createAgentMessage(ataUAVs[i].getAgentName(), "alarm", objaArgs)); 
   } 
  } 
 
  // 
  //  return agent messages to ATSpace. 
  // 
  AgentMessage anaMsgs[] = new AgentName[llMsgs.size()]; 
  llReceivers.toArray(anaMsgs); 
  return anaMsgs; 
 } 
} 

 
 

 - 24 - 
129

goodelle
Rectangle



A Perspective on the Future of Massively Parallel
Computing:

Fine-Grain vs. Coarse-Grain Parallel Models

Comparison & Contrast

Predrag T. Tosic
Open Systems Laboratory, Department of Computer Science,

University of Illinois at Urbana Champaign (UIUC)
201 N. Goodwin, Urbana, IL 61801 USA

Email: p-tosic@cs.uiuc.edu Fax: 217 - 333 - 9386

ABSTRACT���������
	��������������������������	�������
������ �����	"!#���%$'&�(�&�)*)
+�)',.-�/0$21435&�3768-�9
� �:;�=<2�����>�;!?�'��@A��	B�C����	�������.�>�
�;��������	B�C�
�D����@AE��'������	����
�������
����F�������
���������
���0!#�;�%	���:;������;�����������	�GIH>��������":�����
���KJL�;!4E ������M
�
��� ����@NE��'�.������;�O@A�������
	P� �	P<Q�����=E����;E2��	����=����A	B�������
���R�4����
����ST�������;�OE �����
�
���U����>����	������
<��'�����>��������V��������������	C����	��
�������>�	
	���@N�WEQ��	�	��
<��
�WX?�J4	Y�;!R� �������	�	��
����E �����
�����
�
	�@Z����=�
@NE����[:'�
���
EQ����!*����@A������\��!"�����\������������RE�����E2�;	��F����@NE��'������	�G
]^&�_._.6#`�+�)Vab$'&�(�&�)#)
+�)c�<�	B���������,.-�9 9Q+�,�3868-�9 6#_.3F/N-�d�+�)V_C	������e�	

&�(�376 fP,�68&�)L9Q+�14(�&�)\9Q+�38gY-�(.h�_�i7jbklklm[no����p,�+�)*) 14)
&�(D&�1435-�/N&�3q&
iqrCjon\� �:��A<Q�����>E����
@A�������Js	������������>���D����@=��
�'M7	�E2������t �=�����'M
����u4��	���� �@A����J;�R)
+�&�(�9�6*9�v\����D,.-�/0$2)w+�xbd�a�9Q&�/C67,�_.� ����	�EQ��������:;����J;G
y0�[XU��:;����� ������Jz����{��
	��A<Q�\:'����XU���{�	W�����������
���<�	���������0@N�4�'M
���
	���!�@=�	�	���:;����JLE �����
�
��������@AE��'������	"��� ��c����Y�
�C@A���J\����	�E2������	
!#����� �@N���;�.�����JL����ST�������;�I!#���;@|������}B@=��
�\	��������@N~WE �����
�
���4����
���
	�������<��'�����z����@NE��'�.����
���o@A�������
	�G
���U����@NE ����?����O�����;�����	B�c��������X������C�����?E �����
�
���4����@AE��'������	

�	P������JN� �:;�W<Q�����b<��������U<;JN�����W�������
��������	YXW�����N������	��0<����
�V�U<�J
�����������GF���N	���<�	��������������VJ�:������������O�������ob���
���'M5�
��:;���c���
	�����	�M
	��
���{��!������OE�����E2���B���
��	\����sE2�����������w��c��':�����.�����	L��!������OE�����M
EQ��	����A@=�	�	���:;����J�E �����
����� ����@AE��'������	P��!Q�����W!#�'����������� ���XU�����
�
<Q�O< �	����^���{�����Ct ����M7������������s���������������
�����
	B�\E �����
�
���I@N�4������	��
����������\��� ������D�����������\:�������;��	F@C��������E����4����	�	����F��������V��������������	��
���\�����KXU�������������
	B�����
<��'������	�J4	�����@N	��TXW���
�.�D����O�����O�KXU�z@=��
�
����������������������?E ���������;@N	c�
�O<����
�
���
���LE �����
�
��������@NE��'������	c��!2�����
�w����P�������F����\�������J\�4��	��R����������������	�G"����������@NE ����
	�����	%����\�����'M
�����	���	b���������
������^!#������	��
���>���������{!#����� �@A���;�.�������������E'��� ��
��� ��������������	����
��	O�;!W:�������;��	N@N�4�����
	N����������O��� ������J>E ��B���
���'M
�w��F�������
���������
�����
���
��	�J4�������	��
��	��c����>����=������������>���'�O���<2�����
_.37(�1�,�3714(�&�)�����{�.149Q,�3768-�9Q&�)"�
��:;���
	�G^�����b!#����� �@A���;�.��U����	����
����M
���
����	=<Q���qXU�����������lt ����M7������������������������
�����
	B�bE �����
�
���0@N�4�����
	
����\�������
�0}B���w�	�	��
����
~?���;���	���M7�;����
�\��������������E ��B��	I��������
	�����	�	����R�
����l	���@N�\�
@AE2���B�.����W��u'E2���������{��':�����.�����	W��!I�����F�;J'E2������������M
����T@A�	�	��V:�����JNE �����
�����T����@NE��'������	U< �	����b�;�=���������������������
�����
	B�
E ���������;@N	?�������B�������������RG

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’04, April 14–16, 2004, Ischia, Italy.
Copyright 2004 ACM 1-58113-741-9/04/0004 ... � 5.00.

���W���������������WXW�����A	��;@N��<����
��!T����@A����4	Y���N�����W�����
����� ��P�����
E �������
��@A	��Q���;������E'��	��T���������	��
�����
�����	0�����
���
� ����
���A!#����@������
�����������������;����	��\@N�4������	L� �:;�N���������'J{� ��^�
�{�����O��u'�
	B���
���oE ��BM
��
�
���T����	��
���R� ����bXW� ��?!*���B�������?���;���������L�����������������;����	��?@A�������
	
@A�JL� �:;�P�
�\�����P!#������	������<��
�P!#�'�������P�;!4E �����
�����4����F���
	B�����
<��'�����
����@NE��'���
����G

Categories and Subject DescriptorsH�G
��� �o�'�%�4�[�Q�
�5���q�������4���������;�BJN����b�4���B:;��JQ�'��G  'G
��� ¡P¢2£T¤#¥A¦b��§
m[¤w£T�R�5�o¨Y���
�
���w��CH0�����J4	N����©H0�'����@A��.��U¨�G��;G ª��U¨�G��;G « �U¨�G �'G «
� ¬L��¢%¥��'m�m�¢2�{j=��¥��¤w®��'¥�®�¯%���'m��7�F¨U���
�
���w��LH0����������������������	��%�0���'M
����%�0����	��2°c�����
�
���TH0����������������������	�� ±��
	������
<��'�����{��J'	B����@A	�� ²UG��;G «
� r�¢Q³s´c¯R®���®�¤#¢Q�¶µT·¸j=µ�m�®[��� ¥�®�¦b�4¹"¤#¥;�4m��5�����������
	\�;!?¨Y�;@OM
E��'�.����
���

General Terms±���	����;�R�z�?�������BJ

KeywordsE �����
�
���R���;@NE��'�.����
���o@N�4�����
	���@A�	�	���:;����JAE �����
�����T����@AE��'���
�����
@C�������
E���������	�	���������@AE��'������	��R���
	������
<��'�����^	�J4	�����@N	��T�����������������M
XU�����4	��'�����
�
���
�����'���;@A��.

1. INTRODUCTION AND BACKGROUND
ON PARALLEL MODELS

²I�
�����
�����T�'���
���
º��
���=����{��������������=$'&�(�&�)*)
+�) 6#_./»�
������@AE��'�������
� �:;�F<2�����l@A��B����	���<4�B������	W��!I����	���������R�2�	�XU���
�"�	0�@A�����O�����
�����������	��P�.� ��
�
��������	�!#��������@AE��'������	���!w�KX?���������A� ����'X?���������M
	����;������	o��
���;�l	��������{��b�
���	B�=�������������J���¼�½;��	�G|������E�����@=��BJ
������:4�
���\!#�������?<2�����
���O������	�������	���!#����i8E�����!#�����<���J;�;@=�	�	���:;�[n%E ��BM
��
�
�����
	�@¾�
�s<Q������	���!w�KX?����N����s� ����'X�����A� �	F<2�����R�I����s	����
���
�
	��������W����:����BM5�������
���C�������=!#���PJ;���Y���
�������PEQ����!*����@A�����������R���
�
E ��B���
�����w�����E����
@A�������J=!#�;�?���
��������,.-�/0$21435&�3768-�92&�)"_5$�+.+�d�G
���@A����J;�W��������������^�����B�.��
�¿!*����� �@N�����.��L���
@A�V�.������;��	��W�
@OM

E2�;	����l<;Jb�����F�w�XW	���!�E���J4	��
��	������zÀ4-�g{��&�_.3������F����z����@AE��'���
XW�V���©l	������
�����VJ�	����4�����;���w��Y����@NE��'�.����
���RG�������	��b�
�
@N���.����
����	��
<�Jo�������
�W:;���BJz� ����������R����F�����.�������
����JzMU��������EQ������������G0���b�E'M
E��������
����������^�������^!#���b�;���4���
�����VJ�����XÁ����@NE��'�.����
����@A�������
	��
���[XU��:;�����'���?��	YXU�;�B���AXW���
�
�W���C������	��
�����U��������u4�
	����
���F�����.�������
��M
���
��	��U����©XW��J������l@N�����o!#���B�������{+�`�-�)V143867-�9Â��
�����^�����bX?���
��M
��	B�.�<����
	������¿E �����	l��������@NE��'�����z� ����'X?���������|����������������������

130

goodelle
Text Box
Appendix H: 



����	����;��	b&�)
-�9T+ ����=�������;���
���z���l<Q�b�<��
�N����������ED	���	��.��
���
���
�����z��u'E2�����������w��?������z����@NE��'�����NE2����!#����@=������z�
@NE����[:;��@N������	
!#�;�O�
�����;���O��� ���������������N����������l���O�qX?�ei7��O�����z@N�;	B��n�G©���
@A������:������X�� ��U�
	P����!#�;���
�[XF���
���U��	��4����������!#�������4<����
� � JA������	��
�����
	���@N�L��u'��	����
���C�����.�������
���;����	�G
�5��� �	"<Q����������������\��� ��"�������qXU�W@A��
�L�����.�������
���;�������������:4�
���

!#�;������	���Y������� ����'X�����0�
��:;���T<2�����
���b	���	B�.��
���
���F�����L��u'E2�;�����'M
���w��T�����[X?���o�
�b���
�����.��T���;@NE��'�����?	�EQ������	��[:;���Y�����L	�E ��b��!�	���:4M
������'�����������	c� �:;�?<2�����zi8�#n%�����U���������
�������OEQ��X?���BM5�w�X©�
@NE����[:;��M
@A������	Y�
�=�
���������	��
����������������	������
��	U����=�����������	�������������	���º���	U��!
�����F< �	��
�F@A��������M5����@NEQ�������;��	W	����.�{�	W	�X��������������A���
����������	��Q����
i8�
�#nR	���@A�
�
��%���������
���������
@AE�����:���@A���;��	"�
�F�����Y���
�����L��J'���
�Y	�E2������	
� H��L²��0�7G"�¿���
���A�����b��������@=����A�
�
@N����	F� �:;�=�����O<2�����>������������
i*J;����n��;�����W!*����� �@N�����.��2�
�XW	P��!TE���J4	��
��	P�
@NE���JC��� ��P������	��W�
�
@OM
����	I����Pt ���V���U����R������������!#�;������X��
�
����:;���;��� �����J\<2�U������.�����RGc�l�����
	�E2������t �������J;�U���e���	��z��!W�����z��:;���BM5�����������	��
����	���º���	N�;!W�����z< �M
	��
�=���
�������������
�o���;@NE2�;��������	������O��	C�����o�w�X�	O��!�@A��������M5������:;����	��
< �	���������E����
�����
E��
��	l��!��4� �������@ @A����� ����
��	o��� ��lE2��	��^�����
!#����� �@N���;�.��0���
@A�V��	A���l�B��	��o����X¾	�@=��
��i7��������[X ������	��{���
z���
�A�;�Fl�.���
E2nL�����������	��A< �	��
�N���
���������;�����=����@NEQ�������;��	�<2��G
² �;�Y�
��	B�.���������XW�V���=����@NEQ�������;�U	���º���	U�E�E�������.���
�����;�P��������������
������� �����M7	�����
�L����o<Q��J������R�'��������� ��;����@ @N����� ����
����Q��ST������	
����>!#����� �@A�����.��YE����
�����
E��
��	C	����.�©�	��c��G ��G
�cy0���
	����4<2������� 	C���'M
�����B�.��
�;�KJ^E����
�����
E������I<2������@A�A��!?�'��@N��	��F�
@NEQ���B�.��������I�	���:;���
�����A���������������
����YE2��	�	��
<��
�
���qJ^�;!?!#���
�YE��;J'	�������Y�������������
�
�<����
���KJ^��!
������	��C� �����M7����:'������	F����^�������
�L<2��� �:'���;��<Q�����;@N��	\b@=[�B�;�0�
	�M
	�����Gc�q�b���	�����!%���
�����N��J4���
��	������=���������������U� ����R�����?�
	U������������
!#����� �@N���;�.��%�w�X¸��!cE���J4	��
��	WMP�����FE����
�����
E��
��!#����@ 	�EQ�����w��"������M
�����:'���qJ{��� ������l	����;� ��������E����;E ��;����A!*�	������F��� ��^�����=	�E2�����
��!P�
�
������M?��� ��\�
@NE��
�
��	0��� ��������NE2�[XU���BM7�w�X �
@AE�����:���@A���;��	��
�
E����4����	�	����?	�E2������	W	��
@AE��VJ=����������W�����;���
�4���A&;dA6*9�f�9�6*3814/CG
�5����	?�
@AE2���B�.����U���C��@AE�� �	��
º��0��� ��?������	��L�������
@A�����E��;J'	�������

�
�
@N����	�����C�.149Qd�&�/A+�9�3q&�) � ���������������!#�����b�
������E2���������;�N��!W���J
E ��B���
�����w��zi8�������������N���O!#�'�������[n�����@NE��'�����O� ����'X?����b�����.��������M
����J{���L�
@NE��
��@N�����.����
���RG��5�F��	\�
@A@N�����w�������� ��\�;���O����s������E
�����������	��
���A�����F	���º��F�;!I	���@N�
�������������������������	��
	B������	�� ���0@A��4�
���
�����^¨U°	�0	b�	AXU���
�W�	=@N��@N�;������	A!*�	B�������?<��'�b������J©����XW�V�����
�
�����\�
�
@N���.����
����	?��@AE2��	����o<�J=�����\�w�X�	���!IE��;J'	��
��	�Gcy0�[XU��:;���������
�
	F��@AE2���B�.��;�\���l����������	B�.����D����D�E�E��������
����N��� ��\�����A�
@AE�����M
������
����	���!q�c��G � G���t �������=	�E2������	C��!F&�9�a�h�6#92ds-B�A_.6�v�92&�)�E�����E �M
�;������;�s���¿&�9 azh�6#9Qd^-K�b&N$ À�a�_.68,.&�)�_.a�_�3K+�/ -�(A/A+�d�6*14/ i8����@OM
E��'�.����
��� ��%���0���������BX��
	��[n�� X��
�
�%	������
���E�E���Jo���=��;Jz���;��������:��<��
�
!#�'�������W����@AE��'�����P����	��
����	����
������	�EQ��������:;�0��!T����X�E�����!#�;�������VJA����!#M
!#���������"������	��P�
��!#�;��@A����
���FE���������	�	��
���0@A��.���
����	"����@N�����w���!'�����
!#�'�������L@=�JA<Q�L!#����@ �����UE �	��?�;�UE�����	������?����	����;��	�Gc�q�oE ��B���
���'M
�w����;������	��0!#����� �@A�����.�� E���J'	��
����2�
��@A����	IXW�
�
� ��� �:;���
� �<���JO� �:;�
	���@N�?E�����!#�������A�
@NE��
�
��������;��	I���O����������@NE��'�����c�����.�������
�����
��	���!
������!*�'���������4��:;���A��!K�;!*������u��@NE��
���;����������X������.�����;���;���
��	P���F�����
��	��W	���@N�
�������������������������	��
	�������	Wi8�;�����������P�qJ'E2��	P��!Q�������	��
	�������	.n
��=��
�8�Y���O��:;���e�
!W������	��z����@NE��'������	N���s�����A� �:;�l¨?°	�0	N����
@A��@A�����
��	��	0XU�C� �:����4����XW��������@ 	���������������:;���BJ���':;���;�L��!
���
���������;�����\���
�����.��R���;@NE��'������	�G

 !���
�R�����FE��;J'	�������"�
�
@N����	��
@NEQ��	����z<�Jo�����F�
�XW	W��!I������������

XU�\t ���z�����Ft ���V����	�EQ��������!I�
��!#�;��@A����
���zE�����E ��;������;�o���A� �:;�
�����Y@A��	���E�����!#�������N����C!*��BM5������.���
�����
@NE��
�
������
����	�G"�?���
	c��
�����
	��������
�N	����A���U���\	��.��B��	������
����	���JC������	����������
���\����@NE��'���
���\@N�4�'M
���
	O��!O&�_b/N&�_._.6#`�+C$'&�(�&�)#)w+�)V6#_./�K&�3C&�)*)U)
+�`�+�)V_��C&�92d���6#9�$'&�(�3867,��
14)
&�(���6#9�38À�+bÀ'&�(�d�gP&�(�+��D&�_C$'-�_�_.6���)
+�� ��� ��A�
	��U�	N@=�	�	���:;�o�	
�������\&�3714(�+ E2����@N����	�GO�q�^�����
	\�4����	B�F!#�;�\	������s@A�	�	���:;����J�E ��BM
��
�
���R@N�4�����
	������[XU��:;�������;���\	��������
�o�����W�
��@A���?���
	W��u'E��
��������
����	
������JF���L������	��?E �����
�
��������@NE��'���
���L@N�4������	�������	��
����	P����������c�
@OM
E��
��@N�����.����
����	?��� ��W	�� �����O���4�4�z������"��!I	��
@N�
�w������qJAXW�����o�����
�4���[X��R�4��u'��	����
���F�������������
�����
��	��'����=�������
�A����������!#������<2�W:'�
��XU���
�	Ai8E2��	�	���<��
�[n0!#���B�������=+�`�-�)V143867-�9Q&�(�a¾��':��������@N������	F��
�����b�����

XU���
��M7�4���[X����;����������FE����
������E��
��	�G �q�|E ��B���
�����
����0�����s�����������;�
i8���C������
���
E ������>�������!#�'�������[n\	��.����=��!?����@NE��'�������������
���������
���
������������������
�����
��	A	��������
�������b�
@NE2�;	�����
��@A���N�;�������A:4�
	����;�
��!R������������������:��<��
��@=�	�	���:;����JNE �����
�
���Q�
��!#����@=����
���=E���������	�	��
���
����:4�
����	�����b@N�����wF��!R������!#�'��������Gc������	?E �E2���?��	?�@A������	��?���M
����@NE'�c���L�������
������?	���@N�UEQ��	�	��
<��
�U�������J�	�����E�	��
�O	������N�E�����	������
��!������Y�������VJ=(�+�`�-�)V143867-�9Q&�(�as@A�������
	���! E �����
�
���4����@NE��'���
�����;����
��!"�����\����X|E �����
�
���R����@AE��'�������N!#��������������	�G

1.1 Limits of the “von-Neumannian”
sequential models

�����O���
�	�	��
���������@NE��'�����\����	��
���R�"��
	��o�����[XW�s�	��7`�-�9��F+�1 �
/N&�9�9�,.-�/0$ 1'3q+�(�&�(�,�À�6#3q+�,�381'(�+"!��F�
	P< �	����A���N������!#���
�
�[X��
���L�qXU�
E�����@N�
	���	�� i8�#nA���������s�
	z>��������oE���J'	��
����\�	oXU�����\�	o�
���;������
	���E �������
����!#����@ X��������{�����{� ��.>����¿E����������@A	o�����	����������
i8@N��@A���BJ�n��F�����XW�������s�����D����@AE��'�.����
���|��	���u4�����'�����pi8E�����M
����	�	�����i8	�n�n��"���� i8���#n�oE���������	�	����\��u'�����'����	F< �	��
�O�
��	B�����������
����	
i8��EQ����������;��	.n0�����N��F=���
@N���R�7G ��G
�R	��������������w��
�VJ;GC����;J{E ��B���w��
����E ��B��������	W� �:;�\<Q������@A����\!#���;@ ������	W< �	��
�\	��������������
��%���;@OM
E��'�����b@N�4�����7G|² ���=��u��@NE��
���?E��
EQ���
�
���
���D�
	=�������;!0�����lX��J'	
��!���u'E��
�����������>6#9 _.38(�1�,�3768-�9��q)w+�`�+�)"$'&�(�&�)#)
+�) 6*_�/�$#&%('(� ��:;���©���©
	������;����M5E���������	�	�����@A��.���
����G*)������Q�����C!#����� �@A�����.��I����	����
���������;�
<2���KXU������E���������	�	��
���>�����	B������������U!#���A�����l@A��	B�AE ��B�,+[��� �	
����@A��
�����RGL�q�{E ��B���
�����
����ci8�wn��
@AE����
��	0��� ���� ��.A� �	0���=�����:;���
!#����@ XW�������\���W�
	�	����������o���NX��������F�V�0��	WE���������	�	����Di7����l< ��.��n��
��������0������;���VJz���b	��b���A	�E2���������=�;����������W��� ��l������	�EQ�����
��!I���
��������XW���������	Ci8�
�wnU�
@NE��
�
��	?��� ��������\< �	��
�\�
��	��������������;��	�� ���'M
���
���������A!*���������
���O�����F� ��.O!#���;@ �����������������
���N�����\� ��.O���O�����
	�������������'������'<Q��J������b	���@A�0<2������t���	?�����W���C�
��������� ��Q	B���������������
����b@N�4�����w������qJA��!RE����4����	�	�����	��'����A�����0EQ��	�	��
<��
�
�V�KJN��!R��u'E����;�V��M
�
���F�������!#������@N�������
�������A�
��	������������
���'M5�
��:;���2E �����
�
���
��	�@.-��4��	�	����'M
���w��
��JF	����
���'��u'�����'�����N���������0���
@N�PM%����C������O	������C�
��	��������������;�
� �	?�����.����L	���@A�Wt �������������[XU��:;���?@N�
���
	������
�����@N�;���;�?��!%���
@A��G
���l@A������:�����z�����l�
�����������������
������!0:�������;��	{i8���
�	�	��
����wnCE �����VM
�
���Y@A�������
	O�	OlX��J��;!��[:;�������;@N�
���l�����b�
�
@N���.����
����	F�;!A}B�����
�
��	B�����������
���©��Ol���
@A��~��w������C���D�����
	C	��������
���R������>	������'Js�����
���������� �����:;��	P���F�����0��u'�
	B���
����E���������	�	����Y:4	�GI@A��@A���BJN��� ��
�V�KJN�
�
	���@N�L�����.��
�R�
�0/��O�����/.ª�G
�q��E ��B���������w����?XU�^��@AE�� �	���º��{�����
����� ��s&�9�a 	��������������w��

����@NE��'��������:;�����0����@=�����@N�4�����\< �	����|���z���������BXW��	����0��� ��
������	���	���	W��!cN	������;���\E����4����	�	��
���A���
��@N�����0���E �<��
�F��!���u'�����'���
���
������JA�����W�
��	��������������;�=��?\���
@A�W��Y	���@N��t �������0	�E2�����R�4���[XU��:;���
!*�	����'��	?��:;���;��� ��
��J=���4��@N���=���C�
��	��0������< ������
�0XW�V���b��:;���BM5@N�����
����@A������
���F����N@A�����?����@AE��
��uO�E�E��
�
������
����	P����O����������EQ����!*���BM
@A������L�����4���
����@N���;��	�1�Gcy0����������<������
���
���O���;@NE��'������	Y��� ��?� �:;�
@C�������
E����LE����4����	�	������A������@A������	?X?�	�������
�
º����z���O<Q�FO@=��������?��!
��������	�	��V�KJb@=��;J=J;�����	W�����G
�4��@A�?��!T������!#����� �@A�����.�� �4����	B���
����	���� ��P� ���������
��JO�����	����
�

�����
	�����������u4�0����������\!#�;���
�[XW����� �
M 
 �>XW� ��C< �	��
�bE�����@A�
	���	�	��������
�>@A�	�	���:;���VJsE �������
���Y	�J4	�M

����@N	�<2�\<����
���32
+�y0�[XU��:;������	����4/,/�ª'G
�F����0/.«�G
- ² ���B�������?����	�����	�	��
���=���^i8�65"°YnP����=	��
@N�
�w��������.�����
�4����	������<2��MJ;�����o�����U	�����E2�L���������
�RG��5�?	����N����	U���C	.�J;�4��� ��?�65�°©@A�JA�����'M	����������<���J��
@NE����[:;�l�����{	����4�����;���w��0����@AE��'�����,� 	=EQ����!#����@A��������<��'���V�c����������c!#����� �@N���;�.�����JF�[:;��������@N�Y�����?<2�������
�������.�4	I	�����@OM@N�
���O!*����@Z������	��L�qXU�N!#����� �@N�����.��%�	�	���@AE'�����;��	�G
1 �q��������������;�R�����������l����z	��s@=���JD�
@AE2���B�.����N���;@NE��'�.����
��� ��E�����<��
��@N	c��� ��P�������<2��	��
����	c�������
	�	����?��!Q���A����������J;��@C���.�O@A��������
������;����J=	�����:;���b�
�bE �����
�����7������R���
�oE ��B���
�����w����'����o<2�L� ����'M����
��JO@=�E�E2���=����������b����.������������������XW�V���=@C�������
E����WE���������	�	�����	�Gy0�[XU��:;�������	o��
������'J�E2���
�����������'���0���o��	o�����
� � J������{EQ����!*���BM@A��������I����D�@A�����o:�������;��	\EQ����!*����@A������A@A�������
��	��"E�����@=����
��J�����?	�E2�����O�;!2��u4�����'���
���R����� ���� �:;�?<2�����O�����?���;@N�
� ����c�����V:'�
���!#��������	�<Q�����
���z�����\�4����	��W!#����@A�	�	���:;�LE �����
�
���
�
	�@zG

131



M2y0�[X©����������P����ST�������;��E����4����	�	��
���W��������	"�������4�������
� ����P�������
�
������
����	�����O	�E��
���c��EA�@A������������@A	�����:;��	I�����?����@AE��'�.����
���O����
�����\�����������l����	�����������	32
MQ��� ��I����P�����Y�������
@A����P�
�
@N����	"��!������Y����@AE��'�.����
��� ���E2�[XU���

��!�������	��lE �����
������@A�������
	��?�����X�� ��b����z�����l�
�
@N����	N�������[X
@C�����C����C<Q�?�;��
������XW������������	��U@A�������
	c����������@A	I��!2	�EQ�����N����
���������PEQ����!*����@A������0@N�������
��	����
�A����@AE ����
	����N���\�����W�
�
@N���.����
����	
����o����	����������L�����4��������@A������	���!"����@NE ����<��
��	��������������w��R@N�4�����
	
i8	���������G ��G
�"� ���B�'°c�7�"� °QH�°QHW�*n�2
�?���
	{X?�����|!#������	���	^��� ���;@NE ����
	����¸���� �����������	B�s��!N�qX?�

E�����!*����������JD����ST���������O���w�	�	���	C��!WE �������
���U@N�4������	�Gs������	��b�qX?�
���w�	�	���	P��!T@A�������
	U����W< �	����A�;�A!#����� �@N���;�.�����JO����ST�������;�U< �	����
E�����@N�
	���	�������b�������
�W��������V��������������	W�������������	����4�����;����J;� ���;���
������J
����ST�������;��Gc�?���Wt ��	B�U���
�	�	Y����W�����=}B���w�	�	��
����
~FE �����
�
���2����@AE��'��M
����	��%	����.�s�	\@C���V���
E����4����	�	����L	���EQ��������@AE��'������	F����s�����KXU���������
���
	�������<��'�����O	�J'	B����@N	��e�	IXU�?�4���[X©������@lG������
	c���w�	�	P����O�������
�
@=��
�s���;������E'��� ��Y�.� �������������
	����
��	�����N�����=	���<'�B�����F��!U�����A����	B�
��! /[��G?������	����������l���w�	�	0����\������	��Wf�9Q+��8v�(�&�6*9Q+�dF$'&�(�&�)#)
+�)"/N-�d �
+�) _U��� ��L����C< �	����{���������o,.-�9�9T+�,�3768-�9 6#_.3eE �������
��@ � ��H����2�5G
�����U�qX?��EQ����� �E�	�<Q��	����4���[X��O��u��@NE��
��	c��! �����
	������������������
�����
	B�
�4�
���z��!"t ����M7������������lE �����
�
���
��	�@z�':4�
º�G
�'�����
�
���
��W��'����@=��.C����
����������%�����KXU�����4	��4XW�
�
�R<2�\�
�����������������z�
�z	��������
��� /��4G
���©@A��;�©�� ��@AE2���B�.��;�^���
����Vt ������
��� �����;������
���¿�����^��	��

��!O�����>������@N	bf�9Q+��8v�(�&�6#9 B+�d3�»���� ,.-�&�(�_�+3�8v�(�&�6#9(B+�d3� E ������M
�
���
��	�@zGI²I����	����;������������
��� �� ����@AE��'�����P	����
�������0����	����
�������
	�����	Pt ���
:'	�GD���;���	��o������4���w������qJD��!WE �����
�����U����@NE��'���
���s��N<2�����e	���!#��M
X?����s������ ����'X?����s�
��:;����	�G ² ���z��u��@AE������L��z�����s	���!w�KX?����
�
��:;���7�L����������¶����	�����	�	lt ����M7��������|:4	����;���	���M5������
�|�������D����M
����@AE2��	��������;��i8�
����������G ��G
���;<4�B������	.n�Gz���������b����b��
	��{�E�E�����E�����M
����l�������
����	N��!L������4���
����V�KJ;�U����e����������!#�����zt ����MC��������;���	���M
������������bE �����
�
���
��	�@z��X������o�V�?����@A��	Y���CE �������
���QE����������@N@N�
���
�������E'���
@N�
º��
���O����@AE��
�����������.�����
�4����	��T��l�
�;��������	B����������������0�
	
����!#���������\��������G ��G
��� H�5(���c�5G��������W�����"��������������������	�����:;��	"���������
�
XW�����{���J���!c�����;	��C�������
����	���!P������4���
����V�KJ;GL�q��	�������R�TXU�C!#�4����	
���>�����b���������;�>��!W����������w������KJ��P����©����@AE ����=t ���b:'	�G��������	��
E �������
���
�
	�@l�%���;���
������Js���s�����A����������u4����!Li7�<�	����������n�@N�4�����
	F��!
E �������
��������@AE��'�����z����.������������������	�Gp�l�;�����[:;�����0�����o�������
���¿��!
t ����M5������
�����©E �����
�����
�
	�@ i8�
�>�����o� ����'X?����[n��
	O< �	����©�;�>�����
���������������
�����
	B��E ���������;@Á� ��H����2�5�'X����������	�<�J=���;���	���M5������
�����
E �������
���
�
	�@ XU�F@A�������
�"���w�	�	��
����%@C�������
E���������	�	������2@C������������@NM
E��'�����\����^���
	B�����
<��'�����^	�J'	B����@N	�M��������
�����
���b�����;	��C��� ��\@C���.�
��!I�����F�
����������������\XU�����
���
�<2����}Kt ����M7���������~ �2	����.�{�	��2��G ��G
�2���
	�M
�����
<��'�����s@N��@N�;�BJ{@C���V���
E����4����	�	����L	���E2��������@NE��'������	\��� ��F@A�J
� �:;�D��������	������	{���{��:����¸������	^��!O��������	������	{��!OE����4����	�	�����	�G
�q�DE ��B���
�����w����I<;J � f�9Q+��8v�(�&�6*9 B+�d3�O$'&�(�&�)#)w+�)Y/N-�d�+�)V_ ! XU�A	�� ��
�
������������!#�����W@A����R�T,.-�9�9T+�,�3768-�9�6*_�3�f�9Q+��8v�(�&�6*9 B+�d3�F/N&�_�_.6#`�+�) aW$'&�(3�
&�)#)w+�)%/N-�d;+�) _.G
�����;����������©�����{�
	�	����{��!\�����^�.�����
���^��!F��¿��������V�������������^��!

@=�	�	���:;����JOE �����
�
���Q@=��.���
����	��;XW�������=	�E ���	Y�����Wt ��	B�Y�KXU���4����	�M
���
����	\�
�s�����O�
�
	����<2�[:;���������� �	F��@AE2���B�.��;�F��@AE��
��������
����	\!#���
�����L���������R� 	��;@N�L���������w��%����	��
���z��� ��
�
�����;��	W�������
�������
MFy0�[X 	��������
�e�����l@C�������
E����zE����4����	�	��;��	A<2�l�;���;����
º���������

�
�������������������������o����������������2
M�H0���W������	��0E���������	�	�����	P����	�� ����W	���������;���4���Y��	Y����.�b��!Q������@

� ���?E����
@A����
��JF!#�4����	����C������	��U�qX?����u4�
	��������\����.�����������������?@N�4�'M���
	o!#���oE �����
�
���L���;@NE��'�.����
���R�0�	b������J¿������0�
��D	�����	����W������KXU�z}B��u�������@A��	�~\����N���	��������?�KXU�z}BE�������	B��~\E �������
��������@NE��'�����E ���������;@N	�G��?�������A����N@A��;J{������������}�����������@N�����w�����~o@N�4������	��	����.���	��U��G ��G
�Y���
	�������<��'������@N��@N���BJ>@C��������M7E����4����	�	����N@N�4������	����� ��L!*��
�L}B	��;@N��X��������C���^<2���qX?������~b�����C	�� ������'M7@A��@N���BJl@C����M���
E����4����	�	��;��	�����|������i8E���J'	��
����
��J��	lXU���
���	��
�����
����
�VJ nb���
	�M�����
<��'����� �����
�
�������
����	D��!o���;@NE��'������	D��������@NE��'���
���|	�J4	�����@N	����� �������N�������>��
�c�����
�
�����������
�;����z	������;���N���
	�������<��'������	BJ'	�����@<�J\��F�E�E����;E����
����0,.-�/C/C149�67,�&�3768-�9A9Q+�37gP-�(.h[������F��� ��%XU��	�� ��
�	��
@NE���J=����!#���?���A�	Fd�6#_.37(�6���143q+�dA_.a�_.3K+�/C_.G

���N� �:;�L����	���XW��}B�
������
~O@A��@A���BJ 2
M?y0�[X �����;�;�L	��������
�^<2�C�����N���;��E����
���z�@A�����b����ST�������;�\E�����M

����	�	�����	Fi7����oEQ��	�	��
<���J=��������������@NEQ�������;��	���!"	����.�lO@A�	�	��V:�����J
E �����
�
���R����@AE��'�������N	BJ'	B����@bn�2
MUy0��X ����F����ST�������;��E����4����	�	�����	0���A����@A@C������������C������������BM

���
� ����LXW�V���o�;���F�������������2
�P����A��!Q�����W@=��
�A����	��
���=�.�����
����	P!*����������	��W���
�
��@N@A�	cJ'�����
��	

����
	B���
�����c���w�	�	c��!2E �����
�
���'@N�4�����
	IXW�����C����	c	�EQ������t ��E �������
��@A	
���� !#�����������	�G ² ���{��u��@NE��
���������>����	��
��� �.�����
���>��!A� �:'�����
s	�� �������	���������;�z�
�����	N���s:�����
����	=	�� �������@A��@N���BJ©@A�������
	��
XW�������z�����zE����4����	�	�����	N�������©���s<Q�o���
��������J>������E��
���e�����������������
�����X��������l�����l@A����¶i8EQ��	�	��
<���J©������J�nCX��Je����ST���������=E����4����	�M
	�����	?����@N@C�����
������WXW�V���o�����\������������?�
	Y:'�w���������
���O!#���;@ ����
XW���V���
���b���b�����O	�� ������^@A��@N���BJ;GO�4�
@N�
�w�����J;�Q�����N�.�����
���O��!������
�����;������� ������;�C@A�������'�
�����	I���L@N�4�����
	�XW�������?���;@N@C�����
������
�����
	
i �B��	�����t2�<���Jl�	�	���@N���2n�	BJ'���.���������;��	0���{�������T����l������	��FXW�������
����@N@C�����
������
����� �	�����<Q�A������������©�	O�	�J4����������������	��c���������
���������O� ����RGD������	��b�KXU�{��������������
��	C�;!�@A�������
	O��!w�����>�����4���
���
������	����������<���JA����ST���������Y�����������
������	Y��������	��
���b����b�� ���J'º����4���
!wM
!#�������;�A��
������������@A���AE �������
��@N	��c����ST���������O@N�4������	����{!#����@=��
��J
�����	����z�<2���'��� ������G
�q�������l����	B�=�;!0�����
	=	��������
���R�YXU�����'���
�
���z�KXU�s@=��
�e���w�	�	���	

��!L�����{E �����
�����0����@AE��'�����b@A�������
	b�
������@NE��'�����b	����
�������^����
����@NE��'�����A�������
�������������>��!0J;��	�������� �J�����e���4� �J�G��?����	��z�qXU�
���w�	�	���	�������
i8�#nP���
���;����Jb������E��
���l@C���V���
E����4����	�	����U	�J4	�����@N	\i*��� ��?�KJ'E�������
��J

� �:;�Y	�� �������@A��@A���BJL�����;��I�
���	B����	�� ����������������	�	I	�E �����n��L����
i8�
�#nb�
�4��	�����J�������E��
���R�F@N��	�	���;�sE �	�	�������< �	����¶���
	B�����
<��'�����

	�J4	�����@N	0i*��� ��Y	�� ����W�������������Y@N��@A���BJO�����P���������������	�	Y	�E ����[n�G
�¿���
���Y!#����� �@A���;�.��
��J\����ST���������I����@=��;J\����	�E2������	���������	��P�qXU�

���w�	�	���	%��!4E �����
�
���;@N�4�����
	"��
	��?	�� ����c	���@A�I�
@NEQ���B�.����%!#�����������	�G

 ���Y��!4������@|�
	%��� ����
�\<Q�����F���	���	"����.�F�
�����V:'�
��� ���E����4����	�	��;�%�
	
����@NE��'�.������;� ��
�VJCEQ��X?����!*���8GcH0�A��������;���������P���VST���������Y�E�E����;��.�
���^<����
�����
���s@A�	�	���:;����J�E �����
�
���U	�J4	�����@N	C�������
�©<Q�o< �	����R�P���'M
	�������R�����A:;���BJ�M5�w�������M5	��
º��W�����KXU�����4	Y���P�����
��	P�;!T�
�;�����������������������
	���@AE��
�0E����4����	�	������O��������	�Gc������EQ��X?���?�;!%E �����
�
���R	BJ'	B����@A	P��� ��
XU�����
�^<2�N<��������\���^������	L< �	��
�CE�����@A��	��CXU�����
�^E�����@=����
��Jl	�����@
!#����@¾�����O����@AE��
��u{�
�����������;�����������
��������s�
����������������;�{E �����������	
�@A���������;�������
��	���� �������?<;J�������@A	�����:;��	c��!20:;���BJC���
@A�V�����C���;@OM
E��'�.����
��� ���E2�[XU����GI�?���N}�������4���
����V�KJ'~0��!2�����
	c���������� �����:;�?���
���
��! E �����
�
����@A�������
	"XU�;����������������!*�����U<2�U������	��
�������<���J\t ��������� ��
��� ��"��!4�����c	��.���� ����F@C�������
E���������	�	����R���%�����KXU���������\���
	B�����
<��'�����
	�J4	�����@ i8���U���������O}B���w�	�	��
����
~�E �������
���#nP��������V��������������	�Gc²2���Y�����
	
�����	����R�L�������KXU��E ��B���
�����
��l��u'�@NE��
��	���!C���w�	�	���	���!C@A�������
	
	������������©�
�D�����
	O	��������
���R��:4�
º�G
�c�����b	�� ������'M7@A��@N���BJD@C��������E�����M
����	�	�����	�����F�����P@A��	�	.�����M7E �	�	��
�������
	B�����
<��'�����F	�J4	�����@N	���XU�Y��
	��
����
�2/N-�d�+�)V_?-B�U,.-�&�(�_�+��8v�(�&�6#9Q+�dU$'&�(�&�)#)
+�) 6#_./C�W�
�F�����������	��"�����������
�
���������� �����:;���'��� ��W�
	��%3*À�+C,.-�9 9T+�,�3768-�9�6#_.3Y/N-�d�+�) _�-K��f�9Q+��8v�(�&�6#9Q+�d
$'&�(�&�)#)
+�) 6*_�/C�l��� ��?XW�
�
�T<Q�\	B�������
���z���0/��4G

1.2 Tightly coupled multiprocessors
���F<2�����
�z�����F���
	�����	�	��
���z�;!�E �����
�
���%����@NE��'���
���N@A�������
	W<;J

t ��	��%������	����������
���?�����c���w�	�	��
����'`�-�9 ��+�14/N&�9 9N&�(�,�À�6#3K+�,�3714(�+�XW�����
b	������;���OE����4����	�	��;�L����^b@A��@N���BJ;�%����^	���@N�C�
�����>i8�7G ��G
�R� ��.
E ����2n�<Q���KXU�����s�����O�qX?��GNy0�[X �
	L�����
	�����.�����������������O���z<Q�N��u�M
�����������z�
!"XU�F��������A����z@N�����\E���������	�	�����	32
���������Y����P��"�����	��R�KXU���;<;:'�
����	%�������
����	�G 
 ���P�
	������W� �:��c	���:�M

������ E����4����	�	�����	���������OXW�V���N����	��[XW�N�
�
�������L�������������2_�À'&�(�+�d.K-�(
v�)�-"��&�) �=/A+�/N-�(�a�G0H0���.������������������	�< �	��������l�����
	0�����������
��@N�4�����
����N����
�
���e_�À'&�(�+�dz/A+�/N-�(�al/N&�,�À�6#9T+�_.GA�q�sE ��B���
�����
����%E����4����	�M
	�����	N����@A@C������������bX������e�����l������������O:'�
^��������
����!#����@ ����
XW���V���
���O���C�����\	�� ������o@A��@N���BJ;G
�����O	����������s��<�:'���;��	L�.���;�����O�
	L��� ��\������sE���������	�	����\� �	L����	

�[X����
�����V:'�
��� ��"@A��@A���BJ;GW�4���������Q�����
��	�	0�����������������R�Q������	��F���
!wM

132



!#���������OE���������	�	�������@N��@N���BJ�E ��
��	�X?�����
�D������
��J�<Q�b���
	B���
�������
�
������E2���������;�W����@NE��'������	?����������Y��� ��z�	��
�����
�����;@NE��'���
���C	BJ'	�M
����@z�����������\� �	����N<2��O����@N@A���o�
�
���Q����	�� ��
�VJo����
�
���s3*À�+ ��1'_��
��� �����������������	�����PE���������	�	�����	F����������������Gby0���������c����.��E����4����	�M
	����L���4��	F����	\�[X��s����@AE��'�.����
���s����s��������
����������Js�������	�	F������J
����	c�[XW�R�;�
�������@A��@A���BJ;��<��'�PE����4����	�	�����	�����N���	��L����@N@C�����
������
XW�����z�;�����������������:'�wO�����F	�� ������l<���	�G?°c�����
�
���%�����������������������	
< �	��������������
	I������������4�
���������U������
���zd�6#_.38(�6 ��143K+�dL/A+�/N-�(�a\/N& �
,�À�6#9Q+�_.G
�?�����KXU�=@A�������
	0�;�'�����
�����^�<2�[:;�C����{<2��:'�
��X?���s�	b}�E�������~

	�� ����������������	������
<��'�����s@N��@N���BJ{@A�������
	��"��F�
���	��\�
��	��;!*��\�	
�����>@C���V����M5E���������	�	�����E �����
�
��������.�����������������>����	��
����	{����D�����'M
�����������RGA����;J{��J4<����
�^:�����
��;��	\��������
��J{����@N�C���z����� � 	\@N�
���RG
�q��E ��B���
�����w������
�C?�KJ4E��
�����	�� ������F@A��@N���BJL@C�������
E����4����	�	��;�%�����
t ����	F��� �������.�DE����4����	�	��;�����
�D����������
���^���z�����A���
��< ���	�� ������
@A��@A���BJ;�;���	��\� �	P����	��[XW�R�����4���� @A��@A���BJ;G�������	P�
�4�����@A��@N���BJ
��!T����.�AE����4����	�	���������A<Q�c�B��	��Y\����.���W��!T�����w�����:;���VJO	�@A�����	��
º����
����z	��
º��<��
��}�@A��
��~z@A��@A���BJ;�"E2��	�	���<���J{X�����������	F�[X���E ��B���w��
����!#���
��M � ���������z@A��@N���BJb���
��������.��J�G
�Y�����\�����P	�� ������F@A��@A���BJ\����.������������������	I����F�����P���
	�������<��'�����

@A��@A���BJ�����.������������������	o< �	���������������������������0E�����@N�
	���	=�;�'��M
�
�
�����N�<2�[:;������U��u'�@NE��
��	c��!"/C1') 376 $2(�-�,�+�_._�-�(�E �����
�
���'����@AE��'��M
����	�GC�q�s@C�������
E���������	�	����L@A��.���
����	��%�����;������
��	�	\��!PX������������L�����
@A��@A���BJz�
	�	�� ����������L����	������
<��'�����>i8���o}�=�
����������<����L��!�<2������~�n��
@A��	B������������;!Q���������c����:'�
����	Y����N����	�����������	P����@NE����
	������F�����@NM
E��'������	�J'	B����@ ����P	�� ������RGI���������[:;�����������I������JF���������G � G����
��E��'��M
���'��E��'�Oi8�&� 
 nW����:'�
����	L	�� ������{<;J{��
�%�����CE���������	�	�����	��Q<��'�\��
	��
�����P��E2��������
���W	BJ'	�����@pi 
 ��n����	"��\�
��������!8�����<2���KXU�����\�����P� ����'M
X?����L����b�����Ni8	���!w�KX?����[nY�E�E��
��������
����	������o���o��� ���� ����'X?������
�
	������F����o�����\	��@A�L!#���W��
�TE����4����	�	�����	�G
�����
�
�C�����C@A��@A���BJ������;����
º�����
���{�
	L�����O�;!c�����O�����;������I����M

	��
���N�.�����
����	���� ���:�������;��	P���w�	�	��Vt ������
����	P����D}B�.�u4�;����@N�
��	�~\��!
�����A	��.���� �����E �����
�����P@N�4�����
	�����A��	�� ��
��J^< �	�������E2�;��i8��G ��G
�
� �0H0� )0�*n������������0�����@=���J����������P����	��
���AE ����@N��������	cXW�������W����!#M
!#���������O����	��
���D�������
����	O�
����D����	��
������t ����;����J�����ST�������;�OE �����
�
���
�����������������������	��;��� ����4���N�������
���������R�4� �:;�W������	��
�������<��
�W�
@AE����
���M
���
����	Y!*���������U�.149Q,�3868-�9Q&�) 6#37a��=�8G ��G
�������WX?�J4	UE �����
�
���QE���������	�	��
���
�
	?��������
���o���'���'�
�b������	��L����ST����������@N�4�����
	�GP�4��@N���;!%������	��L��������M
�
����R����	��
���zE ����@A��������	��
�����
�������
Mz,.-�/C/C149�67,�&�3768-�9 �7/A+�d�6#14/ !�� 	�� �������@N��@N���BJe:4	�G¶���
	�M

�����
<��'�����o@A��@N���BJ;��@N��	�	���;��E �	�	��
���O	�J4	�����@N	��
M�3*À�+F92&�3714(�+C-B�L/A+�/N-�(�ab&;,�,�+�_._��©�����
!#�;��@ :4	�Gc�����4������!*����@z�
M�v�(�&�9 14)
&�(�6*38a�� b:����BJs�
������N����@C<Q���F��!U	���@AE��
�OE���������	�	��
���

��������	?:4	�Gc�����w�����:;����J=	�@A����R����@C<Q���W��!"E2�[XU����!#���%E����4����	�	�����	��
M�6#9 _�37(�1�,�3867-�9^_�37(�+�&�/C_��©	��
�����
��:'	�Gc@=��;JT�
M0d;&�3q&=_.38(.+�&�/C_�� 	������;���L:4	�Gc@A��;JT�o������G
² ���b��u��@NE��
���W��!L���������{�
	oD	������;���{�
��	B�����������
����	��������@z��	��

��� ��C������DE����4����	�	��;���
�>l@C��������M7E����4����	�	�����@A������
���A��u'�����'����	
�����=	.�@A�A�
��	������������
����	O�	O��
�Y���������CE���������	�	�����	��IJ;���C����ST�������;�
E����4����	�	�����	P��u4�����'���W������	��W�
��	B�����������
����	Y���A����ST���������Y� ��.'���������
XU���������� 6#9�v�)
+ #�9 _.38(�1�,�3768-�9���]{14)V386 $2)w+
	�&�3q&����#B]�	 � @A�������7G
] #B]�	|������#���	 @N�4�����
	W����\����t �����z	��
@N�
�w�����J;G
�?�������e����©@A��;J¸!#����� �@N�����.��C�.� ����
��������	ei*���¿<2�©���
	����
�'M

�����
	������z!#����@ @N�����\�������
���������
���A�
�
@N���.����
����	U�;������t ���
�������
��	0��!
�����\E �	��W����E�����	������W�������������
�����
��	.nY��� ��W����	��
��������	W��!IO���
���;����J
������E��
���N@C���V���
E����4����	�	����I� �:;�?���L�[:;��������@A�?���N���������c���\��.���
��:;�
+��0+�,�386#`�+W@A�	�	���:;��E �������
���
�
	�@ ����R�R������	���������������J��R�����C����	��
�����
	�J4	�����@ E2����!#����@=��������Y����	����������o	�� ����
������������G>�q�©���	��o��!������
	�� ������D@A��@A���BJ^@=��.���
����	��������=@A��	����
@NE2�;�B�.��;�CE�����<��
��@ ��	��
���[X|���=��.���
��:;�A_�,.&�)
&"��6#)V6#37a �	W�����F�4��@C<2���W��!IE����4����	�	�����	0����
�����b	���º��b��!?�����o	�� ������>@A��@N���BJ������[XFG^² ���O@N�;���=���>	�� ������
@A��@A���BJN@A�������
	����������
�U	B��������������	?����b����t ���
�������
��	��'����������������
�
	�����!#���������D���l�����=�
����������������=�<2���'�.'?&�(�&�)#)w+�)���&�9Qd;-�/��W,.,�+�_._
]s&;,�À�6#9T+�_D����A�����w������=	�� ������A@A��@N���BJA�<�	���������Y@N�4�����
	����qX?�

	����.�¸����!*������������	s������ �LH��WHW�O���� � ���B�'°c�5G �?���D����������	{�
�
����@NE��'�����P�������������
����JA� �:;�����������'JN:�����
� ������=�����0���
	B�����
<��'�����
@N��@A���BJ0E �������
����@N�4�����
	R���?<Q�c@A�����c	�����w�<��
�I��� ��L���������%	�� ������
@N��@A���BJ����;���;������E ��B��	�G��q�^���	��O��!P���
	B�����
<��'�����^@A��@A���BJl@C����M
���
E���������	�	�����	����V�F�
	\�����A�����������
� ����
���D���������@A@C�����
��������;�{:'�

/A+�_�_�&�v4+�$'&�_._.6#94v ��� ��FE2��	��O	���@N�N��!������N@=[�B�;����� ��
�
�����;��	LM
���������������AX������������l!*����=��!L�
�
!#�z��� ��=	����.��	BJ'	B����@A	=����l@A�����
��� �A�����������N<2�����zE����;�����@ ����o!#�;��@A��
��J=�����	����l�<2�;�'��G

1.3 Loosely coupled distributed systems
�����o@C�������
E���������	�	����A�E�E����;�������	A���'���
�
�����e�
�©�����zE�����:4�
����	

	���<�	��������
���{����������W�������;���VJzX?�Jz��!���.���
��:4�
���=E �������
���
�
	�@ ��
�����{� ����'X�����{�
��:;���8G H0�����������bE2�;	�	��
<����
���KJe�
	=���>� �:;�^D���;�VM
�
�������
���e��!0����ST�������;�=����@NE��'������	���XW�V���eEQ��	�	��
<���J>�4���V���z������������M
������������	C����.������������������	��I��E2��������
����	�J4	�����@N	F������G
�c������������s���
�
�;�������������������c��
�;������	��P���
	�����������@=��.���
����	"X������C����
�;������������������M
���
���z�����KXU�����Q� 	��O��� ��W������Jz����l���;@N@C�����
������\����l���4��EQ��������
XW�V���z����.�l����������GY¨Y�
�������J=���������LX?�����
�z<2�\���N	�� ������z@N��@N�;�BJ
�
�b	����.�o@A�������
	YMc@A��������:������'���������L�
	U���s}B	�� ������o<���	�~ �'���V���������
����O����.�C�
������:4�
��� ��'@=��.���
���Li7��
	�������
�
���OC92-�d�+�n"�
�������
	U/C14) �
3768,.-�/0$2143K+�("@A�������'� �	c����	I�[X��OE2�����
E��������������:4�
����	��;����	 
 ��@=�J
����ST���c!#����@ ������	��?��!2���������c���4����	���������G��q�N���������c!*���c	����.�NL������M
������������������	U�����
�
���������;�=�;!R����@NE��'������	Y����<Q���<����0����!*���������
���b�
�
�����
	��;�R� O����@N@A���b�
��������!8������ ����
�����s/C68d;d4)w+�gY&�(.+�� ��������	����O<Q�
E����[:4�
�����RG 
 �����F�����������
	�A�����qX?�����o���������������
���b��
�%������	��F���
!wM
!#�������;�o���;@NE��'������	�������¿s����@A@N����@A�
��������X?����z�
��������!*�����	��
��� ��\������J^����|}B����������	��.����s������s����������~��"����ST���������\@=��.���
����	
�
�s	����.��z@C���V���
����@AE��'�����\	BJ'	�����@Á��������������\X������s�����=������������
:'�
�_�+�9Qd�6*9�vl&�9Qdb(.+�,�+�6#`[6#9�vo/A+�_._�&�v�+�_.G0�?���
	���u'�.� ������C��!c@A��	�M
	.�����	L@A�J�<2�C�.��4�
���bE��w����N�������	�	������O������	��
�������<��
�OE���J4	��
����
���
	B�.�������	�MU�����
	��
	0�����C���	��C�
�{	�J'	B����@N	WXW�������C����ST�������;�\���;@OM
E��'������	o����{�����������������¿<;J������Dg�68d�+3�B&�(�+�&>9Q+�37gP-�(.h[_zi*�{H0�0	�n�G
�����V���
����@AE��'�����O	�J4	�����@N	C��!W:�����
����	O	����B��	C��� ��A����o�
�������������'M
�����������¿<�J�D����@A@C�����
��������;�������KXU�����������XW����	��{����	��
�����
	
��
�����z�����A������������P�
�
����	F��� ��\X?�N� �:;�L�B��	��F�;�'�����
�����D����=��
	��
�4����XW�l�	�d�6#_.38(�6 ��143K+�dA_�a�_.3q+�/C_���G
±��
	�������<��'�����F	�J'	B����@N	�� �:��P	���:;������4��':�����.�����	I��:����"�����P@C����M

���
E���������	�	����\@A������
����	�GO�����O�����
��!?��':�����.����O�
	L��� ����"�[:;������
�8�
������Jo	�����
�L<Q����������GP�?����Jo����F���	��O@A����� � ��u'�
<��
��� @A�����L��������
�VJ
@N�4����t2�<��
���4���������'t �������<��
�\����o��u4������	��
<��
��������b������J=������������
@N�;���?���������!#���
�VJ;GIH0�
	�� �������
�
���UXW�V���N	��
�����
�?@A��.���
����	I��� ���� �:;�
@A��;JNE���������	�	�����	P���
�������VJNE ��������N�����;�����������4�
�=����	������
<��'�����A	�J4	�M
����@N	P����������JN���
	�	��
E ����
���A����A�����W�������=!#���P���4���
�����C����W��	�� ��
��J
�����N��>�
	�	�����G^y0�[XU��:;�����I���������o����=�����XW< ��.�4	����	�X?���
�7G^² ���
�����������
	B�����
<��'�����¿	�J4	�����@N	o����^@C���.�¿� ��������o���©�������������\����
}BE������;���@N~C��� ��z@C���V���
E����4����	�	����U@A�����������	������GY�4�����;���R��������J
����=@C���.��@A�����A��� �A�����������z:������
!wJ�����R�c�
���;����������7�I!#����@=��
��J
�����	������<Q���'��G��������
�A<2��� �:4�
���N��������	N����<2�l@C�����©�
��	�	NE�����M
���
���.�<��
���?������������������:�����
����	A�qJ'E2��	=��!0����������	=���A!*����
������	=����
���
	B�����
<��'�����z	BJ'	B����@ ��������	����O<Q�\@C���.�o� ��������?��� ��o�
�z���	��\��!
@N�;�������
�������VJ=������E��
���lE �����
�
���R����.������������������	�� ����l	��O�;�RG
�q�=���	��0��!R���
	B�����
<��'�����A	�J'	B����@N	��������W���������������������������qJ;�'���;@OM

� 
 ���Y�
��!#�;��@A��Q����t �������
���b��!"F���
	B�����
<��'�����=	�J4	�����@Z�	?F�����
�
����M���
���N��!T��������:'�
��� �������@AE��'������	������ ��Y�����	���E ���������A<2�����AE��;J'	��VM����
��JN����N�
�����
����
��JC!#����@ ������N�����������4����O�������A�
�;�����������������������<�JO	���@A�?	����B�P��!T\����@N@C�����
������
���O�����KXU�����Q���
	������Y��������	�	�����
��J�����F@N��	���	B�.���� ����R� ����@A��	B���;����������7� �������
���l��!IO���
	B�����
<��'�����	�J4	�����@ !#�������^�
�{����@NE��'������	�������������G\�5���R���[XU��:;�����R	����A����	L!#��������WE�����	������WE�����E2�;	���	��2�	W�����W�������
���z��!cO���
	B�����
<��'�����z	�J4	�����@	����B:���	N��	CX?���
�?�	C�����o�;E�E2��	������b��u�������@A�b���������b���
��������J������'ME��
����@C���V���
E����4����	�	�����	���E2��������@NE��'������	�����	�����	�	����l�
�z������E�����:'�VM����	U	���<�	��������
���NM������0��E�EQ��	��V���0��u4������@N���4���[XU��:;�����4������JOXW�������
�XW� ���XU�U������	��
�����I���������
������<2�Y�����U���
�	�	I��!",.-�&�(�_�+3�8v�(�&�6#9\$'&�(�&�) �)
+�)R/N-�d�+�) _.G�² �;��@N�����\����i8���w�	�	�������#nY����	������
<��'�����o	�J4	�����@N	��'	��������G ��G
�"� ¨ 
 ±*���"����� � ��5(5R�5G

133



@C�����
������
���F�[:;�������
	��.��������������qX?�������
���0�
	�	�����	��������������������� ��BM
����������
	B���
��	W�����0!*���������
�l@C�������
E���������	�	�����	�J'	B����@N	���XU�F����{��'M
�������
��� ��
��JA�
�����;���
!wJ;� �@A�����C�����������'������!*���
���[XW�
���C@A��B���U����	��
���
�
	�	�����	W����z�.� ����
��������	��
M2�����Y� ��������P�;!4�����Y������������J'�
���0�
�����������������������
���������qXU�;���Oi8����	

����EQ���
����J;�������'���
���N@N���.� ����
	�@z�'������G n��
M%����������@A@C�����
��������;�O@N�4�����8�;:'�
º�G
�;XW�����������P����@A@C������������
���

�
	�	BJ'���.���������;��	����W�	�J'���.������������	��
Mc�����\����	����������\���
	�������<��'���
���z����z	�� ��������N@A����� ����
	�@A	��
Mc:�����
����	����������W���4�������
� ����
���'M5�����
������z�
	�	�����	��
MP�����FE�����:����Jl����l	����������V�KJo�
	�	�����	Ci8�����\���N�qJ'E��
����
�VJz� �:4�
���

����ST�������;�z��	�����	l��z����ST����������}B��������	�~�n��������@N���.� �����	�@N	o!#���
@A�������
���C�����������=����@=�����	��
�b������	��\����	�EQ������	�G
�5�P@A�JO<2�W�E�EQ����
�����\���F�������
�������V���
���O���\���
	��������;����	��A�@N�;���

�����oE �������
���?����©���
	B�����
<��'�����e��������V�������������z���w�	�	���	O��!0@N�4�����
	
<�JO��@AE����[J'�
���F	��;@N�?������@N�
�����
����JO!#����@ E��;J'	�����	U�	����������
@A�������J;�
����@AE��'������	Y����WE��;J'	�������2	BJ'	B����@A	�G��?���W	�� ������'M7@A��@N���BJO@C���V����M
E����4����	�	�����	"����W386�v�À�38)VaL,.-�1�$ )w+�d�E �����
�
����@=��.���
����	�G"H0�F��u�������@N�
��u��@NE��
�\XU�����
�l<Q��A	���E2��������@NE��'�����WXW�V����	���:;������"��������	������	
��!����
��������Jo���;��E������^¨?°	�0	�G?�?����@C�������
E���������	�	������;J'<����
��	��Q	������
�	����
	B�����
<��'�����{	�� ������{@N��@N�;�BJl����.������������������	��T����{<2�F:'�
��XU���
�	L	���@A��X�� ��L�
��	�	����
�������VJ����;��E������RG 
 �����O�����C@A��@A���BJl��	L���'M
���
������J����
	B�����
<��'�����R�0X?�s� �:���©�
���;	�����J�������E��
����	�J'	B����@zG �q�
���	��o�;!���������J>���
	�������<��'�����e	�J4	�����@N	��cXW�������z�����A������JD���������z�
	
���=	�� ������{@N��@N���BJz�;!����Jl	��;�B���2<��'�\��
	��A�������E����4����	�	����0� �	
����	F��XW�sE2�����
E���������Y����:'�
����	C���� 
 ������s�
	��������� �����J;����D��'M
�������;@N����	�����@NE��'�������������XW�������b�<���	�XW�V�����
�>�	��
�����
�=@A�M
���������L��	?����E��
������bX������R�'	.�J���FXU�����
�'M7X��
���������qXU�;�������4XU��������
:;���BJb�
�4��	�����Jb������E��
���l���
	�������<��'�����z����@NE��'���
���O	�J4	�����@zG

2. FINE-GRAIN PARALLEL MODELS
�0������VJ���
����u'�
	B���
���©E �����
�
���L����@AE��'������	z<����
���z<�J��4��@A���	

	�� ����^D����@C<Q���b��!\����@N@A����!#�����������	�G¸H0@A������������	�������@NM
@A���s!#�����������	��I�����A������������PE�����EQ���B�qJs�
	\��� ���@N��	��F��!Y�����=���M
��� ���E �����
�
��������@NE��'������	"��������;��	B�������'�����L��!4?�����w�����:;���VJ�@A������	��
�4��@C<2���P��!T�����w�����:;����JOE2�[XU����!#���2E����4����	�	��
���F��������	�G��¿������������XU�
������	��
�����bs���
��������J©������E��
����	�� ������'M7@A��@N���BJe@C�������
E����4����	�	��;���
���Cz:;���BJs�
���;	�����J^������E��
���D�����
�
�������
�����;!?���VST��������������@NE��'���
���
i8	���<2nK	BJ'	�����@A	��
�������������������������©:4�w^{�����KXU�����Q�c�����o�
������:4�
��� ��
}B���4����	�~�XW��������E����4����	�	��
�����.�����	"E��w����P����P!*��
����J�����@AE�����uT������
�KJ4E��
����
��Jz���E �<����C�;!�149 6#`�+�(�_�&�)c,.-�/0$21435&�3768-�9D� y 
 � �W�7GD������	��
�
�>�������R��	�����@N	����^�
@NE���J������B�.��
�©E��������������U������	�������
�;��	O�
��	���M
!*��N�	oÀ'-�g /N&�9 a 	����.� }B���4����	�~s����©<Q��}BE��'�N����������������~^	��
��� ��A������J>XU�;���©�	As���������������AX������
���U�7G ��G��U�	=s	��
�����
�zE ��BM
��
�
���Y����@NE��'������G��q�©���	��o��!�@C�������
E���������	�	�����	��I�����b�4��@C<2���O��!
����ST�������;��E���������	�	�����	?�
	?��	�� ��
�VJ=�
�b�����L��������L��!P��� +�� �[� 1�G 
 �
�����o���������O� ����R�P��:;���e{���
��< ��Y�����KXU������	����.���	������bX?�����
�'M
XW�
���OXU��<�������������������������	{}B�;���VJ'~l�<Q���'�=��� ��� �����N����@AE��'������	
i7�	���!4�����Y�������JF��������	�n�������\�������R��@A����
���W���;���
���P	����.��	BJ'	�����@A	
i8���W���������0	��
º��<��
�F	���<�	�J4	�����@N	�nYX?�����o�
�������
	������
	�A� ����R�T����
��!#�����^:'�
�B��� ��
��J{�
@NEQ��	�	��
<��
���%���������B�.��4����� GA�����
�
�O������	��A����@NM
<Q����	P��!QE����4����	�	��;��	�@A�JC<2��:;���BJO��@AE�����	�	���:;�U�
�N@A���JC�����;����u4��	��
������Jo������4���V���L@A������	��U�
�b�����L������
@N	U��!"<��
���
����JA���?	B�.����
	����
����
E���J4	��
��	�G¶�q	b�����?�������R�W�����������V:��<��
�l���>< �	���@=�	�	���:;����J©E ������M
�
���U���;@NE��'�����C@A�������
	O��!������b!#�'�������o���>�����oE����
������E��
��	O!#�;�����
���'��	��
���W��!%����@NE��'�����Y	������������L����=�������
���������
����M������0E����
������E��
��	
�����E �������
��@A	?��� �������F��������
��JoE����[:'�
�����R�Q���[XU��:;�����2<�Jo:������M
����	\����@NE��
��u{	BJ'	�����@A	L���E �<��
�O�;!P����!*����@A����
���^E����4����	�	������ �%�	
��!#�����z	������z�
�z<��
���
����Jb���?E���J'	��
��	�2
� ���\�.�����A����	������
<��'�����z	�J'	B����@���:����0
	
� �¶�	W�����F��u�������@N���E�EQ��	��V���FX�����������	�EQ���������A�����;�;����Jz������E��
����@C�������
E���������	�	����F_.1 �$�+�(�,.-�/0$ 1'3q+�(�_.G

�q�\�����
	I�������@NE'�I�����u4����������
���W	���@N�P����@N@A���\!#�����������	���!4�����
��u4�
	����
���oE �����
�
���c����@NE��'������	��RXU�OE2�;�����\���'�L�����NE������	�� ����146#) 3
��aFÀ�14/N&�9�_ !>��P�����W<2�����
�����
������!Q�����0E�����:'�
����	YE ���������E��RGI�q�
���	�����!"����@=��'M7@=��������;@NE��'������	��'�
������:4�
��� ��TE����4����	�	��
���C��������	
M�<2�L���U	��
�����
�\¨?°	�0	UE2�;	�	��
<��VJb����;����XW�����b	���@N�0�
�4����T@N��@N�;�BJ��
���I�����?���;���
���U����@AE��'�����I	�J4	�����@N	���� ����
�����������?�&� 
 ����:'������	P����
���������=}BE2�����
E���������
�w�~OMU������2�	0��
������'JbEQ���
�;�����l���'��� !#�;�����o���
<2�b����@AE��'�.����
��� ��
��J{:����BJ�EQ�[XU����!#���7�c<��'�O��
	���!*��
����Js����@NE��
��u
���������	B����J;GAH0@A�����z���������F�
	�	�����	��"�������	��N��!P���
��������J{������E��
���
����@NE��'���
���N	�J4	�����@N	������������F����\E��;J'	��
����"����z�������
���������
���A���
@NM
����	I�	"���W���[X>@A���J\�����P���������EQ�����0��:;���"<Q�U�<��
�����0��ST��������:;����J
}BE ����=����������������~�GP�q�z���	��\��!I���4��	����VJo���;��E������l���
	B�����
<��'�����z	�J4	�M
����@N	����;�������{���������o� ����R�0@A���J�E�����<��
��@A	o����
	��lXW����������X
���O@A����0������	��L����ST�������;��E���������	�	��
���O���
��@A���;��	?��ST��������:;����J=���;@OM
@C�����
��������Q�����;������� ����O��������4��E2����������R�
�����������0���b<2�O�<��
�F���
�������@NE��
�
	��o���;@N@N�;�=�.�	���	����A���
�������VJz����z�����
�
�<��VJ;G
y0�[XU��:;������������	��F����l���������W����@N@A���o!*�����������	0�;!I@A��'M5@A����

E �����
�
���%����@NE��'���
���N	BJ'	�����@A	?�������l�����W<Q�F	�� ������l<;JbXW� ���XU�
@A�Jz������	��
�������	0���
������JlE �����
�
��������!*����@A����
����E���������	�	��
���=	�J4	�M
����@N	W��� ��o}������������W�����������~=@=�����	�G��q��!8������2�
��@=��;Jz���	���	��
}������������0�����������~b	�����@A	W���o�E�E���Jl��u��������Jz�����C��E�E2�;	������{}����'M
���
�������������o����	��
���^E����������
E��
��	�~�GC�"�o�
���
��	���������������
	��%����� � 	�<����
� � J
������	��������L�����O@N��	��L	���E����
	B���
��������^�
��!#����@A������;�{E���������	�	��
���o����M
:'������i8���\����@NE��'�����.n��������
������������<�J^����������O��� ��F�
	F�����[XW�^���
��	?MP� �@A����J;�R3*À�+\À�14/N&�9 ��(�&�6#9 G
�0���
�
���?���
�������VJO������E��
���AE �����
����� ����@NE��'������	P����	��
�������A<;JN���'M

@A��L<�����
��	����������4��@A��\<�����
��	R������@A	�����:;��	"����c���
�������VJ�������E��
���
����@NE��'������	\��� ���� �:��li8�#n�o:;���BJ^�w������N�4��@C<2���F��!Li8���#n������;���VJ
�
�;������������������������i8�
�
�#nL:;���BJD	��
@NE��
�b< �	����o�
��!#����@A������;�DE����4����	�	BM
�
���>��������	��?:'�
º�G���9Q+�14(�-�9 _�G H0�;J�	��
�����
�{����������������@AE��'����	z
	���@AE��
���Wt�u'����!#���������
���¿�;!F����	o�
��E��'��	�G 
 �¿�����^���������z� ����R�
���������o����o@A���J�������������	O�
�>�����=�4��@A��><�����
�¿i7����;��������� +��
��!R������@=n��'����=��:;���o@N�����0�����������'M7����M5���������;�o�������������������������
����	
i8	���@N�\�[� + � ��!Q������@=n��'��
� ������	�����JNE ��������A�
�b\�����w�����:;���VJN	�@A��
�
:;���
��@A��G{�����b����@AE��
��u'���qJ���!?�����=�4��@A��><�����
��M\����>��!?�����
�4������	%�;!��
��!#����@=����
����E����4����	�	������W�V�%�
	R���E �<�������!�M 	�����@A	R�w���������J
i7��������������\�����B�.��
����J������"��u'���
��	���:;���VJ nT!#����@�������	��c�KXU�?�4��@C<2����	��
O�w����;�\�4��@C<2������!L}BE����4����	�	��;��	�~��2����l��z��:;���l�w����������4��@C<2���
��!�}BE����4����	�	����BM8����M7E����4����	�	����?����@A@C�����
��������;�b�
�
����	�~�G
���������O�����@A��;Jl���������W��������Jl!8�	����
� ����
���=��� ��������������	����
��	0��!

�����F����@=��o<��������	0����l���[X|������Jb	��������F����lE���������	�	W�
��!#����@=�M
���
���RG��¿�����
�W	���@N����!Q������	��W!#�����������	P@A�JO<2�W!#�;�����R�4��Y�����	��Y��
�����Y!#���������
��� ��4�
��:;���8���
�F@=��'M5@A����P����@AE��'������	c�	"X?���
�7��@N��	�����!
�����C���������
��I!#�����������	��;!I�����^}����;@NE��'������	�~=��� ��L<��
���
����Jl<����
����	
����b�����0����@AE��'������	Y��� ��?�������
��������	U<����
�
�o�E�EQ����Y����<Q������������
����ST����������!#����@ �����������������G 
 ������������@=�Jl�	��Q�Q����lXU���
������
!#����@ ������������?���[X����D<����
�
��@A�����lE2�[XU����!#���7�?@A�����l�3�A���
���;���
@N�;���C����<���	����%�
��	�	L����������J�X?�	B����!#���7�%����s�.�����EQ���\���
������J{E ��BM
��
�
���R����@NE��'������	32
�4��@A�^�
�����	l!#�;�z���[X¾�����E�E����;�����������	��s�.� ����
��������	l!#����@

<��
���
����J4M7�
��	�E��
�����o����oE��;J'	�����	�M7�
��	�E��
�����bEQ����	�E2��������:;��	?� �:;�0@A��M
����:�������L������������	��
����������
���\��!'?���
�	�	%��!��<�	B��������0}����;�����������
�����
	��
@N�4�����
	�~C��� ��W����������L	���<4����������!"�����L	���<�	��������
����	U��� ���!#���
�
�[X\G

2.1 Artificial Neural Networks
���{<2�����
��XW������D<����
��!F�[:;���B:4�
��X �;!\D���w�	�	b��!LXW� ��o����

<2�N:'�
��XU���D�	�}B@=�	�	���:;����J�E �������
����@A�������
	�~o��� ��C����N���
���������VJ
�
��	�E��
������<;J©�����{�l���������=����������lM�@N�����l	�E2������t �������J;�?<;J�<��VM
���
����J;G=�?����	��N@N�4�����
	F����N< �	����s�;�^�����A������b��� ��F�����;������:'�w��
�
�;���������������������
����	L����{�
�;������������
����	L�@N�����bA:;���BJz�w����;���4��@OM
<2���\��!�:����BJ{	��
@AE����
	����
�{}BE����4����	�	�����	�~o@=�JzJ'�
�����^E �������
���c���;@OM
E��'������	b��� ��o����{@A�����{	�����w�<��
���W@N�;���{����<���	����W@N�����{����������J
���A���
�����N����>EQ��	�	��
<���J���:;���>@A�����=����@NE��'�.������;� ��
�VJ�E2�[XU����!#���
��� ��e���������w�	�	��������E �����
�
����@N�4�����
	A< �	�����������u4�������������������

134



< �	��
�0	����4�����;���w��Q:;���b�0����@A����o������������������������
�=:�����
����	UX?�J4	�G
������	���E �����
�
����@N�4�����
	WXW����	�������@NE��'�.������;� ��%EQ�[XU���0�
	0< �	����
���N���
���N�
�;����������������������:4���KJO����N	�J4�������������
�������;E2��������
���A�@N�;���
�����0E����4����	�	���������������	?����0��!w�����=����
�����^,.-�9 9Q+�,�3868-�9 6#_.3c/N-�d�+�)V_c�
�
�����\������������������Ai�� ��H����2�*n�G
°������ �E�	C�����o<Q��	B�N�4���[X��e����©@A��	��C	������������©���w�	�	C�;!�,.-�9 �

9T+�,�3768-�9�6*_�3�/N-�d�+�)V_ ����z&�(�376 fY,�68&�)I9T+�1'(�&�)I9Q+�38gY-�(.h�_���j=klklm��[G
�����ojbklk @N�4�����Li8�������
���������R�Y�:�����
���KJD��!W�����
������e@N�4�����
	
��� ���	�� ����\	���@A���
@NEQ���B�.����?����@N@A���b!*�����������	�nY�
	?���
����������Jb�
�'M
	�E��
������<�J{�����F�4����XW�
�������N��!U�4��@A��s<��������	�GAy0���������"XU�Nt ��	B�
<����
� � Jz����:'�
��X �����F@A��	��W�
@AE2���B�.����0�.� �������������
	�������	0��!I�����C��BM
�����V�������������li7�� �����@�J n������!#���������
��� ��
���qJei8E��;J'	����;���;��J�n��;!P�����
�4��@A��o<�������RG
�?���F�4��@A��z<���������
	0O:��	��0�����qXU�;���o��!U9Q+�14(�-�9 _.�������;���������

XW�����|(�+�,.+K$235-�(�_ ���� + ��+�,�3q-�(�_ ��� ��A������	���������������	=�
�;����������
XW�����{� y 
 ²I²��5G;���������0����0	���:;������ ��������	������	P��!R���VST���������Y�4�
����	
��!L���������;��	=�
�e������<�����
�RG¶�4��@N�l������������	=�����=���������>}B�
��E��'��~
!#���;@¶�����U��������E'�����I	�����	��;��	c����O����Y������	���������������JF����
�
���b_�+�9 _�-�(
9T+�1'(�-�9�_.�^����������	b}B�
	�	����F����������	�~N���=��ST����������	0�
�l�.� ���������!������
@A�������������;�����;�8������>���������o����b����
�
����/N-�3q-�(b9T+�1'(�-�9�_.G �����
�����.��?����@C<Q���N��!0������������	A�
�e�����o�4��@A��e<�����
����	N��	�����@=������
���©<Q�e��� + � � ��� + + G ����;J�������������	�����s���������������������©������	
��!I��������	.�����	0��!c���������0������������	��Q������	������;�����������
����	L���������
�����
_.a�9Q&�$2_�+�_.������O��������	B���
@=������������.��'�4��@C<2������!2������	���	BJ'� �E�	���	
�
�©�����l����@=��e<�����
�e�
	z��� + ��� ��� + � G�H 	��
�����
�o	�J'� �E�	��l����
	��������O������J^o�
�
@N�������s�@N�;���;�\��!Y�
��!#�;��@A����
���R�%�<2���'�A���z<��V��	��
�����������;�O����	I������E��
�
���L	��������������zi8���\}KXU���
������~�n�G"���4��	�����������������
�<Q���'�0��� +�� � ��� + �?<�����	Y��!T����!*����@A����
���N��	�����@=������O���F<2�0	B���������
�
�l��KJ'E�������R�4��@A��z<�����
�l��W��;J=���
@A�N� � ���;�W�7G
² ����@ �����O!#���������
��� ��cEQ����	�E2��������:;����9T+�1'(�-�9�_N&�(.+O38À�+�$2(�-�,�+�_��

_�-�(�_�-B�?38À�+*��(�&�6#9�G^y0�[XU��:;������������N���������;�C:'�
��XU���N�	P�E����4����	�M
	�������	L��!P=:;���BJl�
�
@N�������{���;@NE��'�.����
��� ���EQ��X?����G\���@A���VJ;�%���J
����:;���D�����������>�
	�������J����E �<��
�=��!?����@NE��'���
���{zt�u'���R�\}B� ����'M
XW�
������~�!#���������
���C��!������U����E��'��	I��� ��c�V�c����������:;��	I:4�w0�V��	I	BJ'� �E�	���	
����zd�+�92d�(�6#3K+�_=��� ��I�����c	����;� ��
	I!#����@¸���������c������������	�����������E'������	
�������������ST����������	�Gs�{��;J�������������	A�E�E�����E����w�������JsXU�����;�D�������
�
�
��E��'��	�������N�������N�����������ct �������
!2�����?XU���
���������N	���@ � �	P������������
���W��u'�����������{N	�EQ������t ���2� ����'M7X��
�����z��������	������
�R� �;������	��F����@=��
�
�4���
��	������;��Gc�?�4��	����
�N��ST��������	����.�A���������;��	P����@AE��'���?:�����w�����	P��!
i*XU���
���������2n��Y�4���
����D��������	������
�©!#�����������;��	�G��{��;J>���������C�����'M
������	��E�E����;E����
�������J��������
�����������J _���1 &�_�À �����sXU�����;�;�����|	���@
�
��E��'��	��\������	z	���� �	����
���©��� �<��
��	o������������	l��!F���;�����
������o����@NM
E��'�.����
����i8!#�;�F@A�������I	������c��G � G��W� y0H )*���*n�G"�¿�����������C����������;�
EQ����!*����@N	���;Jb�������
�
������?E���������	�	��
���O���U�����������[XU��:;�����4�����L!*����
����@A�����	"��� �������.�������������R��:4�
��XU���C�	IWE���������	�	�����������@NE��'����	I
	��
�����
����E�����M7����������@N�
�����C!*���������
���C�;!�����	I�
��E��'��	�GI�q��������	I����	�E2�������
C�����������l��	W!*��
����J=	��
@N�
�w��Y���No)�-�v�68,.&�)Qv�&�3q+��	���o���
��@N���;�.��BJ
� ����'X�����L�������W��!I��KJ'E�������7��	����
�
�����'M5< �	����z���
�����.��R���;@NE��'������G
�q��	���!8��=�	N�����©,�-�/0$2143q&�3868-�9Q&�)0_7$�+.+�d ��!\^�KJ4E��
����W�4��@A��

<�����
�>�
	O���;�������������R�P���O� �	C<Q�����©��u4EQ������@A���;�.��
��JD��	��.�<��
�
	������
��� ��\������^	�J4� �E�	��O��	��R�����:;����������%�������:�������s�<2���'�N���=���
@N��	
EQ���U	������;���R������������<;JNJ'�
���
���
���C��=��	B���
@A������A�[:;������
�Q<�����
�=E�����M
����	�	��
���O��!I�<Q���'�F��� +�� � ��� + �L<��V��	�E2���W	����������D� � �����W�5G
�Y�
�
���
����	U��!R������������	?���=������<�����
�bE�����:'�
���W������<�����
�AXW�����=����	

�
��!#����@=����
���©E���������	�	��
���sEQ�[XU����	�G 
 �©�����l���������N� ����R�YXW� ��
��u�������VJl������	����V���'����	0������<�����
� � 	C/A+�/N-�(�a��>��������[X �
��!#�;��@A�M
���
���e���������
��:���W!#����@ �����z@A��@N���BJ;�U�	NXU���
�W�	D}KXW���V���
���s�[:;����~
�����\@A��@A���BJ;�4XU�����b�
�z���	��\��!"�����\<�����
�R� �
	WO������������:4�w��R�4����	�M
���
���RG�y0�[X©��u��������JF�
	������Y�
��!#����@A������;�F�������4�����R�;	����������C����C����M
�����
��:;���N�
�O�����W<�����
�A��	Y\	���<4�B�����P��!R�������:;������	�������.�A�
�N����@AE��'M
�.����
��� ��%<�����
�����������BJ����������������	������������C�
��������������7G�°I����� �E�	
�����z<Q��	B�=����������	������4�eM����<Q���V�=<;Je����@N�����	N����@AE��
��������J©���'M
������	������4�o�4�������LJ;���?MY�	�EQ�����0��!�����������%���;@NE��'�.����
���o�
�z<�����
��	
EQ���B�.�����	P���F����X�������������	Y�������4���0�
��!#����@A������;�RG��?�������������W������M

�������
º�����@N���.� �����	�@N	0����F�����\t ���
���=�������	��2�����FE��w���� ���
�4��������;�
��!?E ��B���
�����w���������������	���� ��Ft ���b���>l����:;���D	�����@C���
�7�I����������
E2�;E����
������;�������������
����GL�����C��	�	����F�;!c���[X ��������:���;�L�
	0�����=_.a�9 �
,�À;(�-�9 a ��!����������;�ot ���
���O�
	�	B���
�
�T��������Jb����< ������l�@N�����O����������M
	����
��������	���	=� H0�0HL���5GR�¿���
���N������	��A�
	�	�����	F��@AE��
�����N���s<Q�����s�����
@N����� ����
	�@p��!R����������QE���������	�	��
���C����A�����0� ��������0��!R@A��@A�����
º�M
�
���{����D�
��!#�;��@A����
����	B���;������A�
�������=<�����
�R�������=�w��������F	�����@N	
���A<2������	�	W����������	����4���R�Q����z�
��	�	���������
��Jo���
����������Jb�������	��w��.�<��
�
�
�;���=������< �	��
�F!*���������
��� ������KJz�;!�jbkzk @N�4������	�GW����	�� ��
�"���
	BM
����	�	\<Q�����[X oE ��B���
�����
���@A�������c�;!�}B@N��@N�;�BJ4~o���^�����O����������u4�
��!Wjbkzklm��Y����X?��:������c�����
	��
	C�����C�������w��
@Á��� ��������b@N��@N�;�BJ
�
��� ��������������������������qX?������	��Q�7G ��G
�Q<�����
��	L�����������������������B:;����	
	�J4	�����@N	��'�
	��;���;����
º�������
�����N��u��������Jb�����\	��@A�L�
�
����	W�	��
�o�����
���	��L��!"������	��F��B���Vt ���w��R����������%�����qX?�����=@N�4�����
	�G
y0�[X¶���N�����F<�����
��	W� ������
�F�&� 
 �2�8G ��G
� ���[X¸���N������Jz�
������������

XW�V���^�����N���'��	��
���CXU�����
��2|�?���A��������E'������	F�����������4������	���J{@N������M
������<Q�����z��u4������� ��"����l����������� ��R����:4�
������@A���;��	W����R� ���lE ��B���
��M
���w���������������:;�?:�����
����	��4�
����	P��!�_.386#/C1') 6oi8	����.�=�	��;��G � G��;:4�
	�� ������
������������BJ{EQ��������E'���
����	�n0!#����@¾�����O���'��	������OXU�����
�RG��������s	���@N�
�.� ������A�
�s�����A����:4�
������@A���;���
	F�������;�������R�c��������E'������	C	�������	��
��M
� ��
	I���L	�����	����c������������	�Gc�?���?��ST����������	������C�����?���������c� ����R�;�����
�������
���
��E��'����!#������u��@NE��
���;!#���;@ ������@N�������c������������	��4����A��ST�����
����������W�������
����	=�
�e������@C��	����
��	=������;���������;�VJe����E������������l�����
����	��
�����{@N�[:;��@N������GW�?�4��	��Q!#����@¾A����@NE��'�.������;� ��%:'����XWE2���
�����
�����O��������E'������	F����o6#9�$2143�d�+�`[68,�+�_.�©X����������	\��ST����������	LE��w�Jl�����
�����
����!W-�1'3V$21430d�+�`[68,�+�_.G �l�������[:;�����2���������F�
	�A�����B�.��
�D)�&�a�+�(�+�d
_.38(�1 ,�3714(�+ ���s�4��@A��e<�����
�©MF!*����@ s!#���������
��� ����
!0�����A������M
��	�	.����
��J{!*����@ ��D�� �����@A�������EQ����	�E2��������:;��Go�"�l�
�
�
��	B��������O�����
	
�w�J;��������	B�����������������PXU�z<����
� � J©���'���
�
���z{:����BJ©	��
@NE��
��t ���©E��
��M
�������N�;!Y���[X 	�����	����BJ^	B���
@C���
�?i8��ST������	.n��
����s���z@N�������BJ{@N�[:;��M
@N������	Ni8����	�E2����	���	.n�G �W������E'������	\E����[:'�
���O�
��E��'�L���o	�����	����L�����'M
������	��[XW�������L�������F��	����������
�%���'��E��'������!#�����\�����P�
��E��'�"���?:�����
����	
�4������	0��!I������������	W��� ��WEQ����!#����@ 6#9 3K+�(�9Q&�)�$2(�-�,�+�_�_.6#94v���	���@N�\��!
������	��U����������� ��'��������	 �����'��E��'��	I�������CE����[:'�
���U�
��E��'��	����������Y@A��M
�����?������������	��'��� ��?�������o!#�����z��ST����������	UXW�����e}B�
��	B�����������
����	�~C!#���
E ��B���
�����w��F@N�������BJ{�������������Y��������;��	�Gb�����
	\:'����Xp��!U!#���������
��� ��
�w�J;����	F�
�^�����A�4��@A���<�����
��� �	F� ��Dl@A��B���\��@AE ����F���s�����
����	��
���z��!Y/C14)V386 �q)
&�a;+�(�+�do&�(�376 fY,�67&�)%9Q+�14(�&�)%9T+�37gP-�(.h�_	�
���c���[Xs�������L���?@A����LE ���������;@N	����.� �������������
	����
��	"����L���w�	�	���	

��!Wjbkzklm=��� ��N����=!#���������
��� ��
��JD����R�c�
�>	���@N�=���	���	��c	���������M
��������
��J©@N������:�������e<�J©�����A�4����XW�
�������l�<Q���'�A�����zE���J4	��
���
����J
����s�����A�� �����@�J{��!P�����N�4��@A��^<�����
�RGA�q��o�qJ'E��
�����jbkzks�
����.�>}BE����4����	�	�����~\�
	Y��=�
@N���.����
���O�;!RL�����������RGc������	��0�����������'M
�
�
���L���4����	W����L�
�;�����������������������z<�JoCXU��<z��!Y_�a�92&�$23768,N+�d�v�+�_.G

 ���?	.��
�
���;���.� �������������
	������?��! ����������
@A�������N����@=��C<��������	

i7����������B:�����	W	�J4	�����@N	W�
�l������������wn?�
	���� ���������Jz�����[XF� ��� ������
����F����:;�����;E\�[:;���R���
@N��G%�����
	%@A������t2�<��
�
���qJ��;!4�����B:;����	"	BJ'	B����@A	
�
	�����
�
���z$ )
&�_�3768,�6#37a <�Jb����������	����
�������
	B��	�GP�q�z��	�	����������2E��w�	����������KJ
��� �<��
��	������\�����B:;����	0	BJ'	B����@l������o����������!*�����L�����F�
��:4�
���N�����;��'M
�
	�@l�������� �E'�����0:�����
����	c�'J4� �@A�
�P��� �������	I�
�C����	�	����������������
����G
�?XU�N@=��
�o@N���.� ����
	�@N	?��� ���J4�
���
�zE��w�	B���
�����qJo����F�������B�������������
!#���W����������@=�������{�����@=��%�����B:;����	�	BJ'	�����@A	��Q����l�������
��:�����VM
�����	\�
�����;��E2����������s�
�����b�����N��B���Vt ���w��c����������������KXU����������	��
���RG
������	��L�KXU�O@N����� ����
	�@A	�������
i8�#nL,�(.+�&�3768-�9^-B�L9T+�g�_.a�9Q&.$2_�+�_\&�/N-�94v=3*À�+F9Q+�14(�-�9 _.� ����
i8�
�#n?d�a�92&�/C68,L/N-�d�6 fY,.&�3868-�9{-B��38À�+L&�)V(�+�&�d�aA+�x�6#_.386*9�vC_�a�92&�$2_�+�_.G

H0	"��\��u��@AE�������XU�����;��	��
�����I]{14) 376 ��%%&�a;+�( '�+�(�,�+K$ 37(�-�9 _ 8] %('Y_ �
�	������C��!I�����C<Q��	B��M5�����[XW�{�����@A��	B��!#����������������Jl��	�����@A�������
	
��!"��+.+�d � ��-�(�gP&�(�do9T+�1'(�&�)I9Q+�38gY-�(.h�_ � GLH @C���V����M5�w�J����0E2��������E'�������

� 
 !���������	����l����@=�� <��������	������@C�����Z@A�����¿��� �� @A��������J	�����@C���
��	�M7����	�E2����	��e@N���.� �����	�@N	�	����.� �	�������������	��;�'�����
����������������RG
� ±���t �������
����	b������.� �������������
	B���
��	=��!L!#�����'M5!#���BX?����¿�����������������w�	�	���	C��!Wjbklk @A�������
	C����><Q�o!#�������©�
�©��;J�����u���<Q���;�����

135



�
	b@A������;!\����
��E��'�o�
�J;���=�;!L���4����	��W!#���
�
��X?�����qJ'E��
�������J�<�J
�����L���?@N�����L�
�J;����	?��!%�����L	���M7����
�
����À�68d;d�+�9{92-�d�+�_.�=XW���
�.�z����
�������O!#���
�
��X?���C<;JC0	��
�����
�Y�;�'��E��'�c���4���������c�	��
�����
�U�w�J����I@A����
��!%	���:;������Q���'��E��'����������	�Gc�?�����
��E��'���
�J;���Y�
	?�V�����������:;����JD}B!#����~
:�������;��	��
��E��'��	����KJ'E�������
��JL$'&�373q+�(�9 _A��� ��c������������<2�U�������������
º����
<�J������������qXU�;���2�;����	��;@N�U	�E2������t ��E�����EQ���B���
��	��;!2������	���E �����������	
�
���������G������=@=��
�D����������
���{@N���.� �����	�@ ���D�����
	C���
���D�;!?������M
XU�;����	O�
	���� ����Y�	������o����@NE��'�.����
���>�
	O��������������R�������bXU�����;�;��	
��!������s	�J'� �E'���
�s��������	l�;����E|�'J'� �@N�
����
��J¿����|�
��������������V:�����J
��� ������
����G
�"�F	���@N@A�����º�����XW�����N:4�
��XU���A�	Y��=�� �E'����:;�A}B�
��������
���F@A�M

����������~�����¸jbklks�W	����.� �	{¿] %(' !#�����'M5!#���BX?����¸�����qX?�����2�
!#���������
����	������l��	�	���������� �	�!#���
�
�[X�	��
i8�wnT���"����4��������	"�����[XW�
�����;�I�������;�����F��\�V�����������:;�c�
��������
����E�����M

����	�	��
i8���#nY���=}B	B���;����	�~C�����\�4���[X��
�������F��
������'Jo�������@C���w������o�
�o�����

�����������;�Ci8<��'��@A������t2�<��
�[nP:���
����	W��!�	BJ'� �E'���
��XU���
������	�� ����
i8���
�#nL����@=�Js@A�����
!wJ���������;�F�
���������	��=����	F�4���[X��
�������b�<2�;�'�

�����P����:4�
������@A�����Ui8E�����	����;�����F���������P�����qXU�;�����
�\�����P!*����@¶��!4�����
�
��E��'��E �����������	�n?:4�wA�'J4� �@A�
�F@A������t ������
������!I������	���	�J4� �E'�����
�������LXU���
������	�G
5%���=��	=���[X��������e���s�����l�
@NEQ���B�.����A�
	�	����l��!C/A+�/N-�(�a �
�

����������%�����KXU�����4	�G�H0	����������\�
	W���N	���E �������LE���J4	��
����W}B@N��@A���BJ
	������������~0���C0����������4�����qX?�����2�������Y�
��!#�;��@A����
���F�
	�	�����������	����
����J
�
�F�����P���4����	c����F�����Y��������	���!'�����Y�����qX?�����2G������C}BE����������@N~W�
	
���
	�������<��'�����l�������	�	?�����L���4����	���������z���4���\	���������	U�����\�
��!#�;��@A�M
���
���R��X�� ��0!#�����������;�z��!�����	��
��E��'��	W���W�
	�	���E�E2��	����o���N����@AE��'����G
Hp����	����
�������
	����
���o�.� �������������
	B���
�O�;!Y��B����t ���w��c����������c�����KXU�����4	
�
	���� ��W������}B� ��.�~�� �7G ��G
���������������@C���
������l�4���[X��
��������������
�'M
!#�;��@A����
��������Y�'J4� �@A�
�������JL	������������
�F��������	c�	�������VM7:���
�����C����
@A������t2�<��
�A+�d�v�+LgY+�6�v�À�38_.G©�������
�������w��T�����;�0X?���
������	?����E�����	������
}B�
�������w��'	B�.�����~L��! �����������qXU�;���2��������	��?�
���V���w��4XU���
������	�����?�����������
	���@N�lE ��B���
�����w��=E�����M5	�E2�����Vt ����:���
����	������^i8@N�����l����@N@A������J�n
��������;@N��Jb����������������z������R:���
����	W!#����@�O�����B�.��
�zE�����M7	�E2������t ���
������;��G������z�������oXU���
������	O���������'J4� �@N�
����
�VJ>��� ������l�	N�����
����@AE��'�.����
���NE����4��������	U!#����@ �����0��������������;�N���\�����W����u4���4�	P�����
�����KXU������������E�	N����������:4�
��������©E����4����	�	��
���{�����z��������@A�
���{E ���M
��������	Ni8�7G ��G
�Q����X ����E��'��	�n�GL�q�sA�KJ'E�������cjbkzk �E�E��
��������
���R�T���
�
	P���	��\	.��
�C��� ��������������KXU�����b)
+�&�(�9 _^�<Q���'�P�;��!#����@ �������
��E��'�
� ��.��Q:'�wN�����
	L�����������4�����^�'J4� �@A�
���.� �������	\����^����B��	B��@A���;��	
��!L�����^�������{XU���
������	�G ������	��0���¿���	��^��!Fjbkzklm�� ���o��	b�����
����@A@C������������
�����
�
���4	{i8	�J'� �E�	���	�nN����������{�4��@N�����
�����:���
����	
��� ��F������J^�����
�D����D�'J4� �@A�
�������J{��� �������i8	�J4� �E'���
�NXU�����;�;��	�n
��� ��\�.����C�����N�����
�O��!P�����O�
��E��'� �b���'��E��'�4�bXU�����4�����b�.�E2�N��!
z�������
���l@A��.���
���������������4����:���
���;����J;�I��!Y�����A	B���;������N@A��������@
i�}B@A��@N���BJ'~�nP��!I���Jb	B�.���� ����o���
�����.��R���
���������;�����\����@AE��'������G
H0!w�����R� �:4�
�������
	�����	�	����LE����4����	�	�����	��[@N��@N���BJL����L< �	��
�c!#������M

���
��� ��
���KJ=��!cjbkzklm��lXU�\���'���
�
���\	���@N�\��!"�����F@A��
�z���
�	�	���	���!
����������?�����KXU������@N�4�����
	�G^�����b	��
@NE��
��	B�O@N�4�����8�P����D�����o�����
��� ����
	���	�� �����Jb������	��
���������o���O<Q�L�����L!#������� ������;�o	��������L�;!%�����
XW�����
�������F��!%jbklklm��N�;�����;��� �����JN�
�����������������b�
����¼�«��\<�J=�l��M
¨U���
���;�����b����o°�������	0i�� �^¨U°��5�*n��4��	Y������)V6#9Q+�&�(Y$�+�(�,�+q$237(�-�9�G 5"�
�'M
����FEQ��������E'�������D�
	�z	���@AE��
�N@A�������@=����
����I@A�������P��!?z	������;���
�����������e��� ��A����@AE��'����	=��0-�-�)
+�&�9�) 6#9T+�&�(z3*À�(�+�_�À'-�)
dA�.149Q,�3768-�9
��!W����	O����E��'��	�GD����������!*�������Y��
�?{	��
�����
�bE2��������E'�������e����©���^�
	
���w�	�	��
!wJe����.���
��E��'�b�
�����D��������!������l�KXU���
�
���������Je	���E ���������
���w�	�	���	�G�y0�[XU��:;�����4<�J=�E�E����;E����
�������JA����@C<��
���
����F!#��X�E2��������E'M
��������	��%�;���N����s	���@C���w����C�����N��	�� ��P�Y�4���
����s��EQ����������;��	\	������
�	 �����"��� �D���� ��� 	\G��?��������!#�������������qX?������	�@A����?��!Q	���:;������
�w�J;����	W��!c@C�������
E����\�
�
������WEQ��������E'��������	L����l	���@C���w����F���<��V������BJ
�
�����
����%����z�
�����������BM5���������@A�����
�L��EQ����������;��	��;!"���
�����.��R����@AE��'��M
�����\	���<4�B������� �����\��������@N@A���������l������������A�
	�� y0H )*���5G����L:;���BJ<����
� � JA����:'�
��X�	���@A���;!T�����0@N�;	B�Y��@AE2���B�.��;�Y���w�	�	���	Y��!%jbklklm��?�����\�����z�;!%�����
	�	���<�	��������
���RG

����	�G 
 ���{�����������������
��º��������{�
�
������=EQ��������E'�����������>�;<'�.��
�
@N�4�����
	=�;!F��B����t ���w��0������������	b��� ������
��	B���������!FD�
����������W����
����@NE��'�����2��G ��G
�QN�4� ���������
���2�����2@A�����F���������������J;�Q��{���<���������BJ
E2�;�VJ'����@A�
��U_�+K$'&�(�&�35-�(��.149Q,�3868-�9 GCHp@N�����O�
@NE2�;�B�.��;�\������������VM
�
º�����
���R�����[XU��:;�������
	���������
������'JO@A�������
�������o]{14) 376 ��%%&�a;+�( '�+�(3�
,�+q$237(�-�9�8] %('(���QE2����� �E�	�������	������;����@A��	B�0�
@NEQ���B�.����0���w�	�	0��!
��+.+�d � ��-�(�gP&�(�dA9T+�37gP-�(.h�_�G
² �����'M7!*���BX?����{�����qXU�;����	�����CjbklklmFX�����	��F����E2�;���;���
��	0�����'M

�.��
�\���W�
����E�	�G"��� ��"�
	�����
�����������4���P�
�J;����	"����������.��
��J��������������R�
����C�����U	��
��� ��
	c���X?�J'	�E�����E ��;����U!#����@¸�����U�w�J����I���
��	����"���0�����
�
��E��'�I���W�����U�
�J;����	?i*�qJ'E��
�������J;��<��'�c�����I��������	�	.����
��J;�����W�����P:����BJ
����u��\�
�J;���.n��Q��� ��L����C���
��	����W���=�����C���'��E��'���%���{E ��B���
�����w����T���
	����;� ��R��:����WE�����E ��;�����	�< ��.��X?�����	�G
�q!U�
�4��E�	�����=��
�
��X?���R�"��� ����
	����
!Y	��
��� ��
	F����s�����:;����!#����@ 

����:;�����w�J����=���D�����{�;!������{E�����:'�
����	b�w�J;����	��?�������������������
	o
��+.+�d"��&;,�hZ���{�����C�����KXU�����QG 
 !�E ��B���������w����
@NE2�;�B�.������C����������
	���M7����
�
��� ��+�,�1'(�(�+�9 3 �F+�14(�&�)���+�37gP-�(.h�_���XW�������=	��;@N�=���C��
�P��!
�����O���'��E��'�L:��������	\���;@NE��'�����^<;J������O���'��E��'�\�w�J����L��������	F����
	���<�	����4����������Je!#����< ����>����	���@N�l��!������l���4����	b���������l�w�J;����	
E������������
���b�����C���'��E��'�\�
�J;����GL�q�^	���@N�C�����������������������	��T���'��E��'��	
!#����@¸�����Y�;�'��E��'�I���4����	�����Y!*���C< ��.�L���0�����Y�
��E��'�c��������	���XW�����
�
�
�D����������	��I	���@N�A��!U�����=���
�������D�w�J;���F��������	C����������:;�A�������
�����'M
E��'�b<2������!#����@ �����l�
��E��'�b����������N������������
�����A���
�����������4����	
i8!#�����'M7!*���BX?����A	��
��� ��
	�n��;����N!*����@ ���������'��E��'�Y��������	Wi8!*������< ����
	����;� ��
	.n�Gc² ����@A�������'	���������G ��G
�%� y0H )*�L�5G
���������P�����@A���JWX?�J'	R��!4���w�	�	��
!wJ'�����U:�����
����	R�KJ4EQ��	%��!4jbklklm�G

�4��@A�����������
����T����	��
���oE ����@N��������	U��� ����
����b���O����ST���������?�KJ4EQ��	
��!4�����KXU�����4	"����c�������4��@C<2���%��!4�w�J;����	�������L�������4�
���\��!C_���1 &�_�À"�
6#94vF�.1'92,�3867-�9 _ ��� ��\�����N��������	\��� ��\���z���;�����
������\E���������	�	��
���
��	���GO�q�^������@A	L��!������N���
���������
���s��!Y	��
��� ��cE�����E �������
���s��L�����
!#���������
��� ��Y�
��:����7�c�	FXU���
�Y�	F�����=������������J4�
���������qX?�����{����EQ���
��M
���
��	N��O�����z����.������������������U�
��:;���8�PXU�b���
	����
�������
	��©<2���KXU�����©�����
�
���;E'M7�
��	�	P!#�����'M7!#�;�BX?����A�����qX?������	�������N������!#�����'M7< ��.�O�����KXU�����4	
XW�V���e���4��E�	O!*���C< ��.�DE�����E ��;������;�>��!0�
��!#����@A������;�RG��q�>������@A	
��!I����������������
���=E �������
��@z�2�����KXU�����4	0����	��
��������!#���0	���EQ���B:4�
	����
�
��������
���L�������N���\<2��������	��
�������<���JO���VST����������!*����@ �����W�����KXU�����4	
!#���\�����
��!#��������@N�����F�
������������l���L������	��O!*���\����	���EQ���B:4�
	����D��������'M
�
����G0² �����
��	B�.��������%] %('e�
	LA	B�.���� �����@N�4�����"!*���0	���EQ���B:4�
	����
�
��������
���lE�����<��
��@N	\XW���������	=_�+�) ���B-�(7v�&�9�6���6#94v
	C-�À4-�9T+�9�� _N/N&�$2_
i8	������4��G ��G
�Q� y0H )*�L�*n��;�;�O�����W���������P� ����R�4�������u4��@NE��
�
!wJ'�
���L�����
����	���E2���B:4�
	����z����������%�
��������
���NE �������
��@lG
�4��@A���
@AE2���B�.����WjbklkÁ���w�	�	���	��
�������������
M ��&�d�68&�)�0&�_.6#_��Q1'92,�3867-�9=����������R�����KXU�����4	��
M��\-�$[fY+�)�d*�F+�37gP-�(.h[_T��� ��c����U< �	����C���������?��'����Mq�	�	��4���w�����:;�

@N��@A���BJ=E �������
��@z�
M ��d;&�$2386#`�+ �W+�_�-�9Q&�9Q,�+��%À�+�-�(�a �� ��� �C�����qXU�;����	F����^�������
�

:�����
����	W��u4������	��
����	��
MQ����EQ���
�����
�����	����
!wM7�;���;����
º�������@A�E�	���	����.�O�	�	C-�À'-�9T+�9=/N&�$ _.�

��	����l���z����	���E2���B:4�
	����z�
��������
�����
M ����	���E2���B:4�
	����\�
��������
���?@A�������
	R< �	����L�;�N(�+�&�,�3768-�9��Bd�6 ��14_.68-�9��

������G
5"���C��	�	���@N@A�����º��N�
��X�� ��C@A��	B�F���������w��Y����	�E2������	C����N�����

�����������������;����	��%@A�������
	R!*����� �@N�����.��
�VJ�����ST���������"!#����@����������%E ��BM
��
�
���%@A�������
	�G?H0����B����t ���w��%����������������KXU�����Q�Q�	0N�qJ'E��
����%�����'M
�����������;����	��{@A�	�	���:;���VJ�E �����
�
���F����@AE��'�.����
��� ��F@A�������7�F� �	^
:;���BJl�
�����������@C<Q���0�;!I:;���BJz	��
@NE��
�FE����4����	�	������b�����V��	�GW���������VM
��������.��J>�;!0����X ������	��zE���������	�	��
���^��������	�i��79T+�14(�-�9 _ !BnC����o���BM
�;����
º����l��������	0���A<Q��!*�������Jl	��
@AE������ XW������A!*��X �w�J;����	0	��A��� ��
����.�^�w�J;���0� �	Lb���
	B���
�����L!#���������
���RG\�����C������J�}B@N��@A���BJ4~b!#���
�����z� ��.s����o�����z@N�4����t2�<��
�o�������zXU�����;�;��	�Ge�����z���E �<��
�
�V�KJ
��!UE2�����������w��
��J^���
������J^����@NE��
��u{����@AE��'�.����
���s	�����@A	\!*����@¾�����
!#���
�
�[X��
���C���������\���������
����T!8���������	��
i8�#nP�����\�w������L����@C<Q������!�E���������	�	��
���N��������	��
i8�
�#n���{��:;���{�w��������0����@C<Q���0��!�E����4����	�	����BM8����M7E����4����	�	����0�����'M

136



���������
����	�i8���0�59Q+�14(�&�)Q_.a�9Q&�$2_�+�_ !c�
�A�����0�
�
�����F�;!R<��
���
����J n��N����
i8���
�#n������A���E �<��
�����KJ{���l	��
@C���w����s}KXW�����������l�[:;���\�����=	B���;������

@A�����
��@A~�:'�
L�'J'� �@A������
��JC�.� ����;�����L�����W�����;�?XU���
���;��	0i7�	c�����
�����KXU����� � 	�������J©} �WH�� @A��@N���BJ'~�n�G
j=klklmN����Nb�������^���w�	�	���!P@A�������
	\����s��s�������:;�C����	���������

�����N!#�;��	���:;������"�����������	0����XFG?j=klklmF� �:;�F<2�����l	��������
���l<�J
����	�������.������	�����@N�
���=!#����@�t ���
��	L�	����V:�����	��C�	�<����;���;��J;�Q����������M
	��������������?���;@NE��'�.����
��� ���<�����
���������;�BJ�����B����t ���w����
�������
�
�
�����������
�����}B� ����l��������~A����@NE��'�����W	����
��������G?�?��������!#�������Q�
�V��������������F���
�����
	Ft �����D�
	���u�������@N����Js���
�.�>����D����:;����	�����G 
 ����!#�4����	����������
�
�
	������W���z�����
��:�������F��!cjbkzklm\�
�R� 	.�J�� ����������	����
�������\���0��B����t�M
���w��;�
���������
�
������������<��'�I���\XW� ���E �������
��@A	"����FE����;@N�
	���	"����������
������	�����N���������c���������������
�����
	B�P@N�4�����
	c� �:;�U���L��ST���I���������U������M
���BJO����NE�������������?��!QE �����
�
���'����@NE��'�.������;�RG�rCjl�;������������c���
�	�	
��!�@=�	�	���:;����JAE �����
�
���R@A�������
	�� ����\���
	�����	�	����z����u4��G

2.2 Cellular Automata
��������u4�b���;��	��
�����b������������=@A�������W��!L@A�	�	���:;�zE �����
�
���
��	�@

i8�������������������������������"���w�	�	"��!'	����.�F@N�4�����
	�n������ ��"��	������"���
����������J
�
��	�E���������<;Jl<��
���
����J;�2������������	L����l������<�����
�l�
�
����jbklkzmC������
<��'�����
��	�������R�?�
	=�.���
� � J��
��	�E��
������<�JeE���J'	��
��	�G¶�?���
	=���w�	�	=��!
@A�������
	I������P+�)#) 14)
&�( �W143q-�/N&�3q& ��rCj �[G����������������"XW�V���Cjbklklm
���� �?&�9Qd;-�/ �F+�37gP-�(.h[_\i�� �0H����Q�#n��>r�j ����C���	��=����!#�������������
�	{3*À�+�/N-�d�+�)V_�-B�Ff�9Q+��8v�(�&�6*9D$'&�(�&�)#)
+�) 6*_�/C�W�
�������������	B�=���������
,.-�&�(�_�+3�8v�(�&�6#9T+�d0$'&�(�&�)#)w+�)V6#_./|��!R@C��������E����4����	�	�����	Y����=�����KXU���������
���
	�������<��'�����F	BJ'	�����@A	�G"�q�\�����
	"	���<�	��������
���R�[XU�Y��
	��������w����?rCj¶���
jbklklm��;����C�������R�;�
�������?����u���	��������
���R�;��� ��
���.�����:;����JF����@NE ����
����������������	B�b<2�����e������	��l�qXU�D���w�	�	���	=��!L�����������������;����	��=t ����M
��������CE �����
������@N�4�����
	IX������������?���w�	�	��
����7�����;���	���M7�;����
�CE �����
�
���
����z���
	B�����
<��'�����z����@AE��'�������N@N�4�����
	�G
r�j�XU�����\�����
���
� ��
��J=�
�����������������z�
��� ���	�L�[�5G 
 ���F�E�E����;����

���C@N������:�����
���Ar�j �
	Y����t ��	��?���;��	��
����� ��6#9�6*3q+
��3q&�3q+0]s&;,�À�6#9T+�_
�����	�¸m��W	������z�	Fd�+�3K+�(�/C6*9�6#_.3768,�f�9 6#3q+�&�143q-�/N&�35&���¦
�Qj �[� !#���
����;@NE�����������	���:;�0�
�����������������
���=���C¦
�Tj ����A�������
�UE�����E2���B���
��	��
	������ ��G � G��"� y 
 � �W�5G
5%���o��	o������	��
�����b@A��;J�	�����������¸m��0������
�����;���
����0���>�����

��������������P��� ��A����o�
�
�����©��E�����©�
�������������������������©�����;���������O�
�
	���@N�����������w���!8�	����
���R����G ��Gc���A\	�������
���;�P�
�
�������YL���������w��U�[M7±
�����
�R�'	��C��� �������.�z	��
�����
�o}���������~O�
	����;�������������o���O����	?��@A@N������M
����N�����
���4<2�;��	�G 5"��� � 	F��
	��z�����
@A��� ����O���J^��u4������� ���	��;��������	F��!
�
��E��'�Y	��������@N	c���L�����W�
������:4�
��� ��2@=��.���
����	c��� ��U����������W��������	
�
�s�����F�����
�R������s�
���\�����A�������������F:��������	F�;!U���J^����:;���s������� � 	
�����
���4<2����	c<2�U��� ��c������� � 	c������J{}B�
��E��'�c� ��.�~�G��q!�X?�Y�������C	�E2����M
�
!wJC�����0	����Y��!Q������:��������	Y�������=�
�A����.�=�������Ci*�qJ'E��
����
�VJ;�;�����
	P	����
�
	�����������n��Y����>X?�z��
	��^�
�����;���
!wJ������
	O	����N��!�:���
����	OX������>�����
	����O��!W�����o������� � 	z6*9�3K+�(�9Q&�)U_�3q&�3q+�_.��XU�z�������:;�z��A��©�
��!#����@=��
����t �������
�����;!�A�������
���w�����'���;@A������RG0�"�b	���@N@=����
º����Q^,�)
&�_._.6 �
,.&�)�rCj �
	Fzt ���V���A���F�
�'t �������A���������w��\�;�������
��������M��"�qX?��MW���
���
�������BM5����@A����	��
��� ��R	�E ����Ai8������@N�����L������������
��J�� ������������?t �������
���I�
�'t �������U���������w��I�������
�����������O�����E��2n���XW�������U����.�O���4���U�
�������
�����
���
	CzE ��B���������w�����Js	��
@AE��������	� �%XW�V���D������J{�KXU�lE2�;	�	��
<����
�
��������� ��T	��.�����	��4�����\�����
��	��������W	��.����\�O����o�����\�������:;�\	B�.����O���
����=X�����	�������E��'�?� ��.C��U������A���
@N�0	�����Eo����W�����0����������	�E2�����'M
�
���{�������������O�
��������� ��U	B�.�����	C��!W�V��	C�����
���4<2����	�G^H0�
�Y�����b��������	
��u'�����'���L���������	� ����@AE��'�.����
���b�
�z�����
	����R���7G ��G�i8�
�����
����
��J�nP	���M
@C�����.���������	���J�Gc�?�4��	��2rCj�����z<2��:'�
��XU���z�	�OE �����
�
���R@N�4�����
XW�������\$�+�(*��+�,�3U_.a�9Q,�À�(�-�9 aZ�
	��	�	���@N���RG�² �;�0����ST�������;�0:�����w�����	
����z������������
�
º�������;��	���!"�����L< �	��
��rCj�@A�������7��	����=� ��H����Q�5G
H0�����������RX?�JL��!4�
��!#����@=��
��J����������4�������
���LrCj¸�
	R����	��.��B�"!#����@

jbklklm��0�����@=����{	��;@N��@N�4����t ������
����	b�������������o����t ���V���
���RG
� H0	���������
���l	���������	����
����	���XU�A	B�����;������J^��������@A@N�����R���
�D�������M���
���^���>� y0H )*���5�U� y 
 ²I²��U������ ��H����2�Y�	F��u��@NE��
��	F��!P:;���BJ���4�4�e����@NE��'�����A	����
�������z����u4��	��Us���
������Je������w��
@A���e<Q�����©<�J�KXU�O����������%	����
���;���
	���	��%� ¨UyL� �c�5G

²I�
��	B������������:'�
��� ��?}B�����
��	�~C���N}B��������	�~O�
�oArCjl�':4�
��XU���b!#���;@ 
����������������qX?�����\EQ����	�EQ��������:;���;����������I��� ��O����@AE��'�������L����	�����������M
:���
���������A�������M8:����������!#���������
����	=��!L�� ����;��i8�������M7:���
�����2nO���'M
E��'��	���	��������
���
��	B�����������@AE��'���l���
	�����������M7:���
������!*���������
����	b��!
���
	����������=����E��'��:��������	��I�8G ��G
�"�����=�Y�4���
�����!#���������
����	C��!?l���
���
��� ���t �������P	��.����Y@A������
����	I����Y���E �<��
�Y��!�����@NE��'���
����Gc�4�����;���R�
��
�?�����sr�j }B�����
�
	�~����A���4����	o����l�����������
����?������������������������
�7G ��G
�?����W�����
��	A	��
@C���w����o�����l	��@N�����	� GP�����
���R�U��������	=������BJ
���=XU���
���;��	�GW² �;���B���R�Q������������������J4�
���b�;���E���	B�����������������T����������
��� ���<2���
���=�w�J����������	0�
�l���
�	�	��
����"j=klklm��Q�
	W���
������Jz���������w���G
�q�lE ��B���
�����
���� =rCj )
-�,�&�)#)VaA)
-�-�h[_\3*À�+F_�&�/A+O+�`�+�(�a�gIÀ�+�(�+��©�����
	�������������������!cN�����
���4<2�������4�4����!c��;JzE ��B���
�����w��W���4������	�68d�+�9 �
3768,.&�)b���C�����\�������;��<Q���������4�l	B���������������\��!I��;Jo������������������G
�����C�qX?�b@N�;	B�L	��������
���{���w�	�	���	\��!?rCj ����O�����o��±Z����D��±

6#9�fc9 6#3K+ �������
���w�����'���;@A��.li8	����b� � 
 5"²������O� �0H����Q�#n�GQH ��±
i8�
�'t ��������nYrCjZ�
	YL���������.�<���JN���'t �������W	����Y��!I9Q-�d�+�_?i7��
	��\������
���
_.6#3K+�_Bn?�����������������{<�Jl����
�'t ��������	B������
�����0�
������G�������������@N�������
�
�����
����<Q�������4���©��!�����.�>���4���AM�:'��º�G
�c����	��
��!w�O����>�����;�;�O�����
���'M
<2�;��	�+ ���2�������{�����0���;�������
���FX������z�����W�.1'92,�3867-�9Q&�)�9Q+�6�v�À���-�(.À'-�-�d�G
² ������u��@AE������[����������u4��	B�.����c�;!'����4���P@A�J�����E2�������;�L�������qXU�
���4����	���@A@N�����w�������Jz���o�����N�
��!#���"����s�qX?�o��������	F�
@N@A�����
�������J
���A���������
������!#����@ �����2�
�lXW���
�.�{���	��F������!#���������
��� ����������;��<Q���BM
���4�����
	F�;!Y	��
º��N«l����������\��� ��>�'Go�4�
@N�
�w�����J;�I��± �
�'t ���V���orCj
����Y����t �����O��:����c��qX?��M7���
@A����	��
��� ������������w��IE��
�� ��������
�O�	"�����
������������J4�
���N,�+�)#) 14)
&�(Y_5$'&;,�+��������
	������
���
	��
	���@N����E����
�����W�����Y	����I��!
E2�;������	Y���b��± ���������
������AE��w����WX������N<Q�����=�������������P�����������
� �����	�G
�¿���
���ArCj¾����{<Q�C����t �����^�[:;���0���������C(�+5v�14)�&�(\v�(�&�$�À�_Fi8�����������
t �������?���c���'t �������[n��������L��± i�}B�
�
����~�n�����A��± i�}BE��w����?�����
��~�ncrCj
����L�����\<2��	B�0�����[XW�z����l@N��	��?	��������
���z	�E2�����
��R���	���	�G
�5�N� �	O<2�����©	����[X��>��� ��N���'t ��������r�j ����©<2�o����	��
�������©	��

��� ��Y������JA����0���E �<��
�W�;!T������:;����	.��2����@AE��'�.����
���li*��� ��Y�
	�������
��ST��������:;����J\	��
@C���w����P�������:;����	.����������
���W@A��.���
���[nQMT��:������
�\�����
��± ���	���i8	����^� �0H����Q�U����D����!*������������	������������
�2n�Gly0���������YrCj
�E�EQ��������{<Q�o��
���������
@A����=@N�4�����U��!WD149 6#`�+�(�_�&�)*7/N&�_._.6#`�+�)Va
$'&�(�&�)#)
+�) �b,.-�/0$2143K+�( +�+ G
��������X¿@A�������
���=	���@A�0����������E'��� ��QE�����<��
��@N	YXW�����A�����\rCj

@N�4�����7���
�\������@N	"��!'����X¿i8���2nK������
�
	B���
�P�V���
	�G"�q�����w�	�	��
����'rCjl����
�
�����L��������	\i8�7G ��G��4�����L�
�����V:'�
��� ������	�¶m\��U������	�����������	�n��4XW�����
������JA��EQ� ����W�������
�U	B�.�����	O}B�
�=E �����
�
����~ �4�����������
�VJ=�	�	���@N���N���
����@NE��'���\�
�zE2����!#�����0	BJ'���.��������J;G�������	W��	W� ����o�����B��	�����!#J�����	�E2��M
���w��
�VJC�
�O�����?�
�'t �������W��'���;@A��.����	���G �cu'����E'�P!#�;�c	���@A�U	�E2�4���;J
�4� ��;����@Á@A����� ����
����I��ST������	�+&-��e���������N�
	L����i8�
��	��.��;�.������;��	.n
������
������z����
	B�.������lMN����������B�.�������J������o��o������<�����������
��J
�w������A���
	��.�������G 
 ���=�
�
���A��!U����!#����	��=�������
��<2�A��� ��������
	F�����
������������ ���$ À;a�_.68,.&�)W_�6*/C14) 3q&�9Q+�6#37az��!0�����l����������E2� �����	A��� ��
�
	����������
�����l�;!�brCjl� <��'�0�����������@N��������J{)
-�v�67,�&�)%_.6#/C14)V35&�9T+�6*38a�G
H0	����;���=�	W���������4����	������!#���������
�����
���=!*��������
��	�	��VJl����lXW�V���{
h�92-�gc9 t ���V���o<Q�������©���eE2��	�	��
<��
�b����@A@C�����
��������;�D�����w�J'	������
@A�J©<2������������e��� ��N�����
	=�	�	���@AE'���
���e��	A�����A	��s!*��BM7!#�����������
i7��P�
���	B�P�����P����������E'��� ��
��J�n�������:;���O��� ��c�����=}BE����������@A	�~L������	��
���4����	W��u'�����'��������L����@AE��'�.����
����	?��!������������	��
@NE��
�L!#�����������;��	�G
H0�����������=��@AE2���B�.��;�A�
	�	����l�
	NXW�����������b��
�
�[X��
���¶}����<���������BJ

�
�������
��������'t ����������
����	�~b�
�{���	��C�;!��
�'t �������Ar�jÁ	��������
�{<Q�O��'M
@N�
	�	��
<��
������:;���e��A��e�<�	���������O�
��:;���7GD²I�
��	��N��!���
�8�����������l����
�������������.�<���J�@A��;Jl	������{�����'t ����������
����	Ni8�7G ��G��T�
�'t ���V���C	������
����	
��!���	�����s��	�n��4XW�����
�����������\����\������J=���������.�<���Jb@A���J=EQ��	�	��
<��
�
����@NE��'�����FE����;�����@N	�Gz�4���������R�I�
������	�������	��������F���w�	�	��
����P�"���BM
+ � H0	�	���@A�
���b�����A��������	C����N	���������	�	���:;����J^������@A����������s<�J^�
������M������	��4�����\�
@N@N�����w����������
���4<2����	W��!"���4�����^����L����	?E�������������	�	��������z����	�	���������	�	������ �8G ��G
����������	�� � �F������ ����G
+ +�rCj ����L���E �<��
�\��!"��:;���z@A���������8G ��G
����!"����@NE��'���
���O!*���������
����	��� ��A����o�����N�������
����M7����@AE��'�.�<��
���P�
!W���'t �������{rCj X������©�����'Mt �����.��BJb	��.��B���
���O�����'t ����������
����	0����F��
�
��X?����� ��H����2�5G
+&- H0�b�
�;��������	������b����������?�
	Y���
�����������=�����4� �������@pE���J4	��
��	Y�
���������M�������\���o�������Y6#9 _.3q+�6#9 ��'?-�d;-�) _�h�a����?-�_�+�9=$'&�(�&;d�-[x��

137



�
���{@A�����������	�X����������������C�
�'t �������=@A��@A�����
��	�Gl���=��������
�P��� ��
 5149�6*`�+�(�_�&�) � ��14(�6#94v©/N&;,�À;6*9Q+ i����¸n �
	z>����������
����L�<'M
	����������@N�4��������!YA�;����������IE�����EQ��	��oi8	��������������
��wn����
�����.�������@NM
E��'�����Li8��G � G��R� °QH�°THW�7�R� y 
 � �W�#n�G��¿�����
�W������@N��@N�;�BJC�.�EQ�0�;!%
��� �
	F�	�	���@N���s�
�'t ���������"������J{t �������N	��.��B���
���o�����'t ������������;��	
i8�7G ��G��C}B�
��E��'��	�~ �P��� ��A�����������������@A�J>�
�����������l<2�����e�����zE�����M
�����@ ������������ ��.�nA����{��
�
�[XU���RG¶������	o��
	��D����	�������	=��� ����
������J{	�����Es��!������N����@AE��'�.����
���R�%������J{t ����������J^@A���J�}�@N��@OM
���BJl�������
	�~NXW�
�
�"� �:;�F<2�����^�������	�	����{����������WXW�����������R�2XW�V���l�����
����	��\��!������N�������
	\����@A������
���e}B<��w����4~z�����%�
�{�����N���
�����z��!�rCjl�
}B�4���
��	������;��~ G �����A�B��	�����t ������
����!#���o����
�[XW�����>������Jet �������^�
�'M
E��'��	A���e���	��o�;!0�"�����
����@A������
����	li7����e����@AE��'�����NE������;���@N	
�
�©������������wnC��	N��:'�
�����;��G©�?���bt �������o�
��E��'�A����	������
�������;�>����©<Q�
�������	��w������{���o���'t ��������M5	��
º����DrCj��%�	�X?���
�IM�<;J{�����4���
�������o��� ��
�����z������J©E2����@N�
	�	��
<��
�o�
��E��'�A���;�'t ����������
����	=����o������}Kt ����������J
	���E�E2���B�����{�����'t �;��������
����	�~bX��������N��
��<��'��t ����������J�@A���Jz�����
�
	
����o�
���V���w��
��J����������
�����>���{<Q�o�
�D����� � ��1467+�_�,�+�9 3L_�3q&�3q+ ! i*��� ��
�
	��������F�N	��.����[n�G �0��:;���z�����F� ��������F��!I���;��E����
���=����l����������!*�����
�
��!#����@=����
���OE�����E ��;����
���N���orCjl�������
	������4���
����@N���;�������AE ��B���
��M
���w����2����	�������	W�����Ft ��������	�EQ�����{��!c����!*����@A����
���lE�����E ��;����
��� + 1�G
�����
	����
�b�������R� �
@AE����
��	U�����L!*���
���[XW�
�����
i8�wnI���������W������;���VJN���������.�<���JO@A���JO	B�.��B�������\�����'t �;��������
����	��

���������.�<���J�@A���J0�������� �<��
�����;�'t ����������
����	"�!w�����%���J0t �������c�4��@OM
<Q���W��!�	B����E�	�������z�������;�.�<��VJo@A���JzrCj }BE����������@A	�~ �
i8���#n��!w�����O���J�t �������=�4��@C<2���O��!�E �������
���Y	�����E�	C��!0��;J�r�j

	��.��B���
���©!#����@ ��;J�t ���������VJ¿	���E�E2���B�����|�
�������
��L�����'t ����������
���R�
���������LXW���
�R<2�\�;���VJbt ���V������Jb@=��;Jb�����'M5�����
��	��������W	��.�����	��l����
i8���
�#nP���������\�
	?���N	�E2�4���;Jz������
���l������4<2�����������l���
	��.�������	�G
² ���Y������	��0�����	�����	���X?������;���W��� ����'�
!%�����0X?��;��	Y����������	��
�����

�
�'t �������0rCjZ�	PL�
���������
@A����?@A�	�	��V:�����J�E �����
������@A������� ��!2����@NM
E��'�.����
���R�������?	��������
�N�����'t ���W����	P	B�����'JC���������?t �����.��BJO�����'t ��M
��������
����	0�;���VJ;G��Y��	��
���\������t ����������Jl	���E�EQ���B�����������'t �;��������
����	��
�����bXU�����
�e��
	���X��
	��D���s��
���[XZ�����{_5$'&;,�+3�w$�+�(�68-�d�68,�,.-�9�f�v�1'(�& �
3768-�9�_.�c	����.�©�	��I��G ��G
��iB���;n������	F������JD� �:;�At �������b����	������
E'�����;��	
����ot �����.��BJb�'J'� �@N�
��	 + � G
���L���[X¿�������o���NC<����
��!�����@NE ����
	����o����z���;�;�����	���<2���KXU�����

jbklklmP����CrCj�G������ �:������������'JLE2�;���������\�;�'�%������@A����L����@NM
E��
��u4���KJ^�����������ST	��
�D@A�������Y	�EQ������t ������
���>�	C�����=@N�[:;��	�!#����@
jbklklmC���[X?�����	�rCj i8����:'������M7:;����	�;n�GC���O� �:;�N��
	��o��@NE�� �M
	��
º�������� ��o���o�
	oE��������
	�����J������^�'J'� �@N�
����
��J�@N�4����t2�<��
�e+�d�v4+
gY+�6�v�À�38_"���Njbklkzm?��� ���@A����U����������������KXU�����4	� � ��u'��<��
�?����@NM
E��'�.����
��� ��T@A�������R���E �<��
�\��!�����B��	B���
���O���N����l����������
���N!#����@
����	\�
��E��'�F� ��.'G 
 �s�����N���������F� ����R�"���������A�
	\���l�
��������
���z�
�
rCj�����c�
���	��c���������C�����U��	�� ���	�����	��U��! �����YX?����� + � GI����������:������
�����Y������Jl}B� ��.�~0����.���������U���;@NE��'����	����C����������Y	��.�����	"�;!4��� ��
���4��� � 	0�������;��<Q����	Ci8E2��	�	���<���Jz�������
�����
���N�����F���4��� � 	0�[XW�z	��.����[n�G
�0��u4���T�����CEQ�[XU�����;!Y=����������c�����KXU�����l�
	0�KJ'E�������
��Jl���ob�w������
��u4�������W�����L���O�����\!*�������� ����������}BE����4����	�	��;��~C��������	����N�
�������BM
����0XW�������4�������CA!#��X ����������E����4����	�	��;��	��T��� ����
	��Rjbkzklm��������
����� �:;�?!*��
����J�����@NE��
��uC����O������	��?�
�����������;�����������
���C����E2�;���;���
��	�G
H0�
	����4@A���JA����������T�����qX?������	?������
������
��JA!*��
����JA������������������������	
�
�NL	�����	��?��� ��c������E ����������N��!Q��������M7����M5�������W�����������������;��	�@A�J
	��
������t ����;����Jb:���BJz!*����@ �����������������N����������u����T����E2�������
���b���
�����{���4��� � 	o�w�J;���o����¿����	o��:���������������
�^�
�������^�����qXU�;���2G 
 �
�����C���������0� ����R�T�
�4����
�VJ;�RorCjÁ<;Jl����t �������
���{���4���4	W�����C	��@N�
+ 1 ² ���"��u��@NE��
�������\������	��
@NE��
��	B������±©���	����[��������� ������P��!'	��.�������!��������"� �7�5�;�!w�����c�����\i8E �����
�
���#n"	�����EO��! �����?�����
�
���
�����'����@=������ � 	��:;���
�'���
���R�������� �:��P��ST�����I������J\���F�������
	U� � ��� � �[� � ��� �A��� ���	�	� �[� � �
��� ��� �[� � � � �5�oXW������� � �
	?�����\������
��	���!"�����L������E��
�
����G
+ � ¨Y�;@NE��'�.����
����	��;!Yb����:;����rCjÁX������s=t �������C�
����������������;�{���M���
��	 � ���zO����:;���o	�E ����w��
��J=E2�����
�����
�\�
��E��'��	����.�l�	FiB���;n � ����<Q�?	��
@C���
������O<�JC��N�E�E�����E����w����cf�9 6#3q+�,�+�)#) 14)
&�(0&�1435-�/N&�3q&�gc6#38À,�6#(�,�14)�&�( ��-�149Qd;&�(�ab,.-�92d�6#3768-�9 _�G
+�� ���?����� � �c������	��
�����c���������
�C�����?E���������@N��� �	����.�A�	�����G ���
G�	�����!#M����������
º�������;�z�	�s}BE����;E2����~N�4�
���z��!��
������������ G

��:;���BJ�XW���������R�
����� ��Lb�����
���4<2�;�������4�^��!�������{���4���O���4���4	���u�M
�������Jl�
�
���F�����C�����
���4<2�������4���^��!P��;J�������������������G\H0�
	�� �2XW�����
�
������������ ��R!#���������
��� ��%�����
���4<2�������4�4�z�;!I=rCj ���4���\�������l�����
�����
����������XW�����O����	PE��;J'	��
���� �������;��<Q���������4�{i*X������N����	�EQ�����P���L�����
�.���;	����=@N�������
���;�P���
	��.������W!#���������
���2n��;�KJ'E�������
��JO�����W!#���������
��� ��
�����
����<Q�������4���l	���º���	W����\	����
�
�T!*��
����Jb	�@A��
�7Gc�?� ����
	��'������z���4���
�
	�!#���������
��� ��
��Jz����EQ�����������\���{������J�=� �����!#���I��!������������T������BM
<�Jl���4����	�M�����{�����CE ����������^��!c�����
	�����EQ������������J^��	������C	.�@N�
�������	�	�����R�����L���4����	�G
���?���������
�����UXW�����N��������?�;�C�����?�����
���
�O��!Tj=klklm�����br�j�G

������	����qX?�����w�	�	���	U��!%t ����M7�;����
�����oE �����
�����T@N�4������	UXU�����������
����M
� ��
��Jz����	��
�������lXW�V��������ST����������E����
@A��BJl�E�E��
��������
����	0�
��@N�
���R�
��������������F������	��F!#����� �@A�����.��"����ST������������	��
�z�������
�0����	�EQ��������:;�
��������V��������������	�G^H 	��������������CML����D����������!#�����b��������	�	.����
��J���:����BM
	���@AE��
�Vt ����MC���
	����
�������
����<Q���KXU�������������KJ'E�������o}K�.����;���z�E�E��
�VM
������
����	�~z!*����jbklkzmb�����������	��A!#���OrCj��"�
	\��� ��Cjbklklm=����
@N�;	B�C����@N@A������Js��@NE��
�[J;���D�
�>����@AE��'�.����
��� ��P�.�	��4	���� ��O���'M
:;����:;��	���@A�l!#����@ �;! )w+�&�(�9 6#94v�� XW���������	lrCj t ����@A��	��=��!
�������
�Y�E�E��
�
������
����	Y���A	������'J'�����F:�������;��	PE ���������;@N	P��!R����@NE��
��u
	�J4	�����@N	 �sd�a�9Q&�/C67,�_.G��Y�����o���w�	�	���	?��!�@A�������
	�������X?��:�������� �:;�
<2�����b��
	��\��	����A�
�=L:�����
���qJA��!Q���������Y����������u4��	��;�
�����
�����
���F@=�	�M
	��V:�����JbE �����
�
���R������������RE�����EQ��	��\����@AE��'������� G

3. FINE-GRAIN VS. COARSE-GRAIN
PARALLEL MODELS


 ��������u��W���;��T�
	?���O���'���
�
���\C��� ��;�����.�����:;�\����z��� ������.�����:;�
����@NE �����	����©����>�����;�����	B�O<2���qX?�����>�����=t ����M5������
�����©������������M
���
�����
	B�lE �����
�
���L@A�������
	���	������¶�	ljbklkzmD����¸rCj �����������
����e@N�4�����
	O��!W���;���	���M5������
�����©@=�	�	���:;�bE �����
�
���
��	�@z��	����.���	
@C�������
E���������	�	����W	���E2��������@NE��'������	����W��������	�� ��"�����KXU�������������
	BM
�����
<��'������	�J4	�����@N	�� �;�l�����F����������� ����RG�����t ��	B������@NE ����F�����
������������J4�
���L�����������������������	�������E���J4	��
����4	�����������������	�����!�������	��Y�qXU�
���
	B���
�����I���w�	�	���	I��!2E �����
�
���'@N�4�����
	I�
�C	���<�	��������
��� /,/.ª�G��;Gl² ������M
���
��� �������ST������������	z<2���KXU������t ����M5������
�����|����¿���;���	���M5������
�����
E �����
�
���R@A�������
	UXW�
�
�T<Q�L�����\	���<'�B��������!	/,/�ª'G �4G

3.1 Architectural comparison and contrast
�����{t ��	��z	B�����
�4�����©����ST�����������s<Q���KXU�����¿�����{�KXU�©���
�	�	���	o��!

E �����
�
���W@A�������
	A����@AE �����������������;�����	B����������������	bE �E2���=�
	
XW�V���^����	�E2���������^38À�+O9 14/ �.+�(A-B�W$2(�-�,�+�_._�6*9�vz149 6#38_.G��q�^���	��C��!
@C�������
E���������	�	����F@A������
����	F�����A�qJ'E��
����P��������{i7�	F�;!Y�����=������VJ
t ��	��o����������^��!L�������4��	��b�����������BJ�n=��	o!#����@ >!#��XF�����©D!*��X
����º����R����E����e©������E��
�s��!��4�����������|E����4����	�	�����	�GZ�����s@N�;	B�
����@NE��
��uT�2E2�[XU����!#��������l����	����VJz@C��������E����4����	�	�����@=��.���
����	�i*�����
}B	���E2��������@NE��'������	�~C�;!R�����C��¼�¼���	?����b�������������JAt ��	B�?����������L��!
�����=����X @N�
�
���������
��@=n\@A�Js� �:��=!#����@ l!*��XZ�4�����������>��ED���
	���:�������������;��	������	P�;!TE���������	�	�����	�G��4��@N�W��u��@AE�����	P�
�����
����� �T1 �

 6#37_.1.'?&�(�&�)#)w+�) �T+�(�`�+�( � '�����������0X������{��� �;��« �0������;�'°TH���¨
	�����
��CE���������	�	�����	��P���� �L6#3q&�,�À�6 ����������AXW�����e�4� ��«;½�E�	���������M
:;��������� ���B��¨¿E����4����	�	�����	�G
�q!q������	���������;!���������:'�
��� ��4@C�������
E���������	�	����"@=��.���
����	����;���Y�����'M

	���������	b������KXU��������������	������
<��'������	�J4	�����@ �	b�	��
�����
�lE �����
�
���
����@NE��'�����o��� ��O�B��	B�l� �E�EQ����	z���e<2�sE���J'	��
����
��J����
	B�����
<��'�����R�
���������������4��@C<2������!F}BE����4����	�	��
���b��������	�~b��	L=	��
�����
�C	�������	�J4	�M
����@p����b	�����E �	�	P����������������	�EQ�������
���C�4��@C<2����	?���b@C���V���
E����4����	�M
	����W	���EQ��������@AE��'������	0<;Jlª�M5«A����������	0��!I@=���������������G 
 !c��������	����
@A����
����	�J'	B����@N	U@A�������!%@N�
�
�
�
����	Y��!%����@AE��'������	U��� ��U@=�JA<Q�
���
	�EQ����	���������������������l���
��<Q���?� �:;�l����ST���������=��	�����	AXW�V�������
!wM
!#�������;�?����	�����������	?����=���;���	���@=�JO� �:;�0����ST�������;�?����.������������������	��
��EQ������������=	�J4	�����@N	�� ������GUMU��
�%XU�����b�
��������	����R�2	��N��� ��0	����.��
�����
�
�������
���C��!2�����KXU�����;���C����@AE��'������	I����O<2�?�����	���� �<��VJ�������	����'M
�������N�	��
�����
�U����@NE��'���
����	�J4	�����@z����	�0� ��������
�����;��!w�����C�
����������
��J
�
@NEQ��	�	��
<��
���������;�����������
���O�.�	��A���O���������B�.��;��G

138




 �C�����?���������c� ����R�"}B����@AE��'������	�~0XW�����b�[� +��?������������	Wi�}BE�����M
����	�	��
���C��������	�~�n�� ����{��� + � 	�J4� �E�	���	\i�}B����@N@C�����
������
���=�
�����4	�~�n
<Q���KXU�����s������@z�I�	���
������'J^�������������R�c����N��������
��J^E����[:'�������D<�J
�����������F�����������Gl����������:������I<������
���
���>i7��B����t ���w��#n�����������P������M
XU�;����	F@=����N�;!U	.�Js@A���
�
�
����	\��!\i7��B����t ���w��#n�������������	C@A�J^�����
<Q�N�	\��@AE���������
����c�	\���\@A�J{	�����@Á��\t ��	B�F���w�������GNH0����� ��
��J��
���W��	W�������
�����VJoEQ��	�	��
<��
����� ��������\< �	��
�\<����
�
�������A<��
������	��;!�@A�	BM
	���:;�b����������?�����KXU�����4	zi8<2��	��
���o����@=��>�;�O����
@=��Y<�����
��	�n�����
��
������'Jz��������
��Jl�:���
�w�<��
�\MPX?�?�B��	��0�������l���Nt �������C���'�WXW�������
���O�
�4���=!#�;�U������@zG
H0�¶��u��@AE����D��!N }B@=�	�	���:;����J¿E �����
�
���
~�E��;J'	��������	BJ'	B����@l�

XW�������O�
����������������;��	L<2���KXU�����|}B����@NE��'���
���z���
��@N������	�~z����C�.���M
�
����E��w����Y��"����ST�������;��	�����
��	�������\XW�������F�����
�F	���@A�cE�����@A��	���!#���
@=�	�	���:;����JlE �����
�
���I����@AE��'������� �%����C�����z_�-�)V6#35-�9 _.G¾�������O�����'M
������
��J;�2����ST���������0�4�
����	0��!0+.x�,�6#3q& ��)
+3�P9Q-�9�)V6#9T+�&�(0$�À�a�_�67,�&�)�/A+�d�68&
XW�������������WE���������@A�������=��!I(.+�&;,�3867-�9 �Bd�6 �?1'_�67-�9 ����=<2�0�'���
�
�
º����
!#�;�?�������El����zE��;J'	�������
��Jb��������
��Jo��������
º��<��
�Ni7����
���	����
�zE����
�'M
���
E��
��nA@A�	�	���:;����JeE �����
�
���0����@AE��'�.����
���R�����������ST�������;�b�KJ4EQ��	
��!?������������;�'M7����ST��	����;��E����4����	�	���	F��� ��O����=E�����@N�
	��
���z�
��������@N	
��!R�������
�?�
��!#����@=����
���'M7E����4����	�	��
����E2�����������w��
	��'� �:;��<Q�����z��u������'M
	���:;���VJb	������������RGP����	����;!%�����
	���u'���V���
���OXU�����Q�����[XU��:;����� ��	W�������
<�J�E��;J'	������
	���	b����¿��u'E2���B��	z�
������@NE��
��u��'J'� �@A�������	�J4	�����@N	��
�������������� ��^����@NE��'�����L	����
��������	���	�GF² ���L@N�����C�;�{�����
	L	���<'�B�������
	������ ��G � G��"� H0±WH��z�5G
H0�������������c@N�����A��u'�����
�A@A�������P��!?@=�	�	���:;�Ot ����M5������
�DE ������M

�
���
��	�@ �
	�E�����:'�
�����N<�J������ ��1�&�9�3714/Z,.-�/0$ 1'386#94vWE �������
��@z�;��	�ERG
�
�N�����0����������u4�Y��! ��1 ,�)w+�&�(�]s&�v�9T+�3868, �W+�_�-�9Q&�9Q,�+�i8��� ��nc	�E2����M
������	�����E�J��"XW�������A�����A������������J4�
���l	�J'	B����@N	F� �:;�l��� - � ���F@A�����
}B< �	��
�YE����4����	�	������L��������	�~Ci*�KJ4E��
����
��J;��@A������������U	�E��
��	I��!2�����B�.��
�
�4�
����	���!I�����@N	�����@N���
����������	�n���	������ ��G � G���� ¨ 
 � )0�7G ���4��	���t ����M
��������bE �������
���Q����@NE��'������	���XW�����=�����o���U@N�����0�;��������	?�;!%@A�������M
�������F@A�����l}BE����4����	�	�����	�~N��� ��z�����F���;���	���M7�;����
�zE �����
�����%����@NM
E��'������	?�	YXU�������[X¿������@z��������
�o�	�����	��L��
������'J=E�����:'�
�����b<�J
�����������������W�����������G 
 �����.�	��Q� �������R�2�
	W���Nt ���l������@z�2����������M
���
º��U������@ X������OXU�?�����������;�����c������@z������N�
������O���[X©���L�'���
�
�
º��
�������
�U�
��!#����@=����
���'M5E���������	�	��
����EQ�������;���w��
	YMc��	�EQ�����w��
��J=�
�=������@N	
��!?�����;�����;���
�
���Di8�;��}BE����������@N@N�
����~4n0�����=�����������VJ'�
����E��;J'	�������
����<��
���
�����
����T	�J4	�����@N	�����z�������
���'J4� �@N�
��	�G
�?�������s����{���������o�
@AE2���B�.����o���
	B���
�������
����	o<2���KXU�������KJ'E�������

E����4����	�	���������������	%�
�L@A�	�	���:;���VJ0E �����
�
���;���;�����������
�����
	��Rt ����M7�;����
�
@A�������
	�������¿������	��^���¿���;���	���M5������
�¿@C��������E����4����	�	�����	o���o���
	�M
�����
<��'�����>	BJ'	�����@A	�G{�?���b@=��
������ST�����������b<2���KXU�����>�
������:4�
��� ��
E����4����	�	�����	C�
�>�����=�KXU�{���w�	�	���	C��!W@N�4�����
	C��	C��� ����cXW���������	N
	��
�����
�\E���������	�	����W�
��N�������	���M5������
�lE �����
�
���%���;@NE��'�����W��	WEQ��X�M
����!#���7�;��u'E2����	���:;��������C�qJ'E��
����
�VJ���������	c���L���
	�	��
E ����?L���4���O������
��!�����������J;�2OE����4����	�	��
���N�������W�
�z=rCjAM7< �	����z���WC����������%������M
XU�;���A< �	����o����@AE��'�����UXU�;�����z<2�\��u4EQ���������z���N<2��:����BJo	��
@NE��
���
:;���BJ��������ER������¿���
������J�����������J����A���
������G �q���������R�L>	������;���
}B���4����~���!Ne�����KXU���������¶����	������
<��'�����¶	BJ'	B����@ �
	��F������ ��
��J;�F
����@AE��������z����@NE��'�����A<�J©�V��	����
!q�PXW�����e�����l���A@N�����{¨U°	�0	��Y����	
�[XW�^@N��@A���BJ;�R����	L�[X��s���������������
��������s���;@N@C�����
������
�����
�
���4	
���b�����N����	B�F��!P�����O���
	������
<��'�����s	BJ'	�����@l�%����sEQ��	�	��
<���J{�V��	\�[X��
�&� 
 ��������������"EQ�����
E���������4����:4�
����	�G��q�����	��P��!'@C��������E����4����	�	�����	��
������N���4�����
	P��������?:;���BJO�
���	��PL	���E �������0¨U°	���;E2�;	�	��
<��VJCX������
	���@N�Y��! ����	I�[XW���
������'@A��@A���BJAi8	.�J;���
������'����.���[n�GI�q�O��;J����	����
������s����@AE��'�������l�������A�
�D��;Js�������	���M5������
��E �����
�
����@A���������
	
��!"����@NE��
��u=	������������������ ����o���E �<��
�\��!%����@AE��
��u=����@AE��'�.����
���RG
�q�O�����;�����	B���;0	��
�����
�U�������?��!QWt ����M7��������N���;�����������
�����
	��c@N�4�����
������Jo����@NE��'����	0O	��
�����
�LE�����M5����t �����©i7����o�KJ4E��
����
��Jb:;���BJb	��
@OM
E��
�[nY!*���������
���RG
H0�����������I@A��B��������ST�����������U<Q���qXU������t ����M7�;����
�CE �����
�
���'@N�4�'M

���
	P�;�A�������'����=���;���	���M7��������=E �����
�
���2���;@NE��'������	P�;�N�����0���������
� ����R���
	A������� �����������!L@N��@A���BJ©�;�N��������������[XW������� ��	B���;������
@A�����
��@lG"���0� �:;�����������'JA���
	�����	�	����=X�� ��?���=��	�	��������0������	�����M

���'����	c������	���������;�?@A�����
��@ �
�Njbklklm�G��4�
�����?�������������?X?���
������	
����F<Q��������E����������
E��
�������<���������BJL�����������@C<Q����	���@N������
���?��� ��I��
jbklk �����E�����	���@A�<���Jl	��������F�����O������ �����������4��@C<2����	Oi*XW�����
��s���'t �������OE��������
	��
���2nWM�	���@A�����������b��� ��\���o���
�����.��I����@NE��'�����
����O�������@NE��
�
	��\MR�
�������
	I	�����	��Y����������'�����KXU�����4	�����C<2�U:4�
��XU���
�	P��l&�9Q&�)�-�v|i7�	c��E�EQ��	����O���Ad�6�v�6*35&�) n{����@NE��'�����c@A�������7G�y0�[X?M
��:;�����'�����L���'��E��'��	���!�jbklk¾����@AE��'�.����
����	?����L�����������?���
	����������
���c��������
��JC���
	����������
º��<�����GI�q!2XU�?	��
@C���
����U��Njbkzk ���A����
�����.��
����@NE��'�����\i*XW���
�.�b�
	?���[X|	B�����'J=��!�����������T�����KXU�����4	?�
	?��	�� ��
��J
�������[n����������
��E��'�b:���
����	o����������o������ ��0�����������@C<Q����	���<��'�
����������F����������������
��� ��7�%t ��������M5E��������
	����;�D�E�E�����u'�
@A����
����	�Gb² ���BM
��������@N�������"��:������
!P�;���O@=�� �����	L���z<����
������������� �����B����t ���w��
����������2�����qXU�;����X������A�� ��
���\��������XU���
������}B�
��E��'��	�~��;�����W���4����	
��� ��O����������:;�=������	��=�������M8:���
�����©�
��E��'��	�X��
�
�7�c��������@=�������J��I� �:;�
�������
�N	�����	�����	A���A���������N@A���	������
���s����:4�
����	�i*��� ��D}��������~^�����
�������M8:���
�����=�
��E��'��	.nI��� ��P������JN��E2��������WX������A\t ���V���0E��������
	��
���R�
����������<;J;���������
@A�������J;�;�������������
���F	����.�=L���������� �����KXU�����C�����;�V�.��8�
�!w��������
�7Gc������	���jbklkzm\����o	������
�T<2�\���;��	��
���������o���
	����������\����R�
����������!#�����������
�����.��"i8������������
��Js}B���
�������
º��<��
��~4n�����@NE��'������@A�������
	
M����<Q���V��XW�����D�}B@N��@A���BJ4~l@C���.�D����ST����������!#����@ �����=	B����������
@N�����w���!%���������
�������������
�L���
�����.��T���;@NE��'������	?�	UXU���4���[X¿������@lG
�q�����	��^��! rCj��U�����^���;�;��������
	����
�������
���¿��!\�����s� ��������^��!

}B@A��@A���BJ'~���}B	������������~z����|}B�
��E��'��~bXW�����^����	�E2�����\���b�����O�����BM
����	�EQ�������
���s���������;��	N�
�e���
�������������
�z���
�����.��U����@AE��'������	N�
	N��:����
@N�;���o	B�����
�4����� G�¨U����	��������A^	������;���e}�E���������	�	�����~s��!�^�����
�
���w��
��'����@=������RG �����^�������
���^����E��'�o�����
	oE���������	�	����o������	z����{�����
�����������;��	B�.�����	W��!I����	W�����
���4<2����	�GUH0	�	���@A�
���O�����F����@A��
�l�
	W<��VM
� ��BJ;�U�������E���������	�	����A�
	=s	��
@NE��
�ot �������z	��.����z@=��.���
���o��� ��
����^<Q�O�
�^�����C�;!������C�qX?�b	��.�����	��;���VJ;�%�b�;�C�;�%����{��� ��L@=�J
���Y@=�JO�����?�.� ������0����	Y	��.������;�����
	Y�������
	��
���b<2���
����	����
����JN< �	����
���N������	��.�����	���!T�V��	P�������;��<Q����	Y�	c�����W������Js}B�
��E��'��~�GI�q��	���!*��Y�	
@N��@A���BJA	�������������
	U�����������������R������.�o���4���L��!"	������o��'����@=������
XW�V�������� �����=���E�� �<2���\� �	\��u��������J{�����N<��V�F��!Y@N��@N���BJlM�����	
�[X��l�������������0	��.���� + ��G��4�
��������
�%��������	W�;!I=rCj ����@NE��'���L�����
	.�@N�N!#���������
����i8�8G ��G
�"	��
@C���w����O�;���A����s�����A	��@N�Ot �������N	��.����
@A��.���
���[n����;���Y@=�J\��������P��� ��PrCj ����U�	I	��
@NE��
�
	������P�	I���I������	
XW�����b���U����@A��	Y���bi8�#ncE����4����	�	�����	��Ti8���#n�@N��@N�;�BJ��'����^i8�
���#nc�
�������BM
������
���=X������A�����L���'��	��
���WXU�;�����^i8���YX�� ��������@AE��'�����U	������������
	B�
XU�����
�z����
�W}B�&� 
 ~�n�G �?�4��	������\EQ��X?���W��!"�����CrCj @N�4�����%	B����@A	
���;���
������Js!#����@ 6*9�3K+�(�&�,�3768-�9�_ �@N�����o�����A����@AE2����������	=i8���4����	�n
��!T�����W	�J'	B����@ ����	����
!q�4����N������_�a�9Q+�(7v�aW�@N�;���L������	��W�
������:4�
��� ��
���4����	0����z�������
���
������%���;@NE��'�.����
����	�G
�����lt ��	B�=�qX?��@=[�����A��� ������.�����:;���������� ��������.�����:;�l����ST���BM

��������	b<2���qX?�����e�����l���;���	���M7�������������������ot ����M5������
��E �����
�
���
@N�4�����
	���:'�
º�G��;�����?����ST������������	P�����;������
���\�����?� �����������!QE����4����	�	BM
�
���L�����V��	P����O�����U� ��������?��!Q@N��@N�;�BJ���	���������;��������?���
�����
�
���������
!#����@ ^������������
��� ��7�C}B:;���'M5�0����@=������w���~s:4�
��X�EQ���
�;��G¿�q����;J
:�����w��������F�����P������@N�Y��!4�����Y���
�	�	��
�����:;�����0����@A����F����@NE��'�����
��������V���������������4XW�����������UXW�����=�;���0���UX������b@A��;JAE����4����	�	��;��	�����
&=$2(�68-�(�6¶�.������O�	�	���@AE'���
�����
	C���X?�J'	�@A������I��� ������������b��	O
���
��������
	B���
�������
���o<2���KXU�����lE���������	�	�����	W����o@A��@A���BJ;G
�q�o�����F���
�	�	��
����Q:����z�0����@A����l@N�4�����7�����������F�
	WOE����4����	�	����

i8����	���:;������%E����4����	�	��;��	.n��2N@A��@A���BJb<2�����lE���J4	��
�������Jz����l�
������M
����
��Jz	���E ����������!#����@ ������E����4����	�	��;��i8	.n��Q�����	���@N�F	��;�B�W�;!������
�
�;���������������������
���s�
�
���©i8� ��.zE ����2n�<2���KXU�����������C�KXU��GA�q�������'M
�����	����������=���
	B���
�������
����<2���KXU�����¸}BE����4����	�	�����	�~{����¶}�@N��@N���BJ'~
�
�N���	�����!RjbkzklmW��	P@N������	���<'�������4�	��������;���VJs}�@N��@N���BJ'~���� ��
	���������	P38À�+�$2(�-�v�(�&�/C_A��! W����������4�����qX?�����\����Y������ �����J\�����PE�����M
����	�	�����	0������@N	�����:;��	��QX����������	������C������J�}B@N��@N�;�BJ4~=!#����	B���;�������

+ � 
 ����@A�Je���	���������	��
������/A+�/N-�(�a�)
+�_._brCjl��XW�������l����������u4�	��.����0�;!"����4���L���U	����������b�������������
���w��?	�E �����������	?����������E2��������=����	P��XW�A�����������;�U	B�.������4<��'�Y������JN���N�����0	B�.�����	P��!T�����W���4����	<2���
�������
���L���\	���@A�U$2(�-�$�+�(IE�����M7	�E2������t ���A�����
���4<2�;�������4�N��!2��� �����4����G

139



38À�+Ld�&�3q&¿����������W�
�
���4	0i8	�J4� �E�	���	�nc���;�����������
���F�����WE����4����	�	�����	��
�7G ��G�� �����FE����4����	�	����BM8����M7E����4����	�	�����i7����lEQ��	�	��
<���Je}BE����4����	�	����BM8����M
���'��	��
����M8XU�;������~4nT�������������������������
����	�Go���������[:;�������
�\���	�����!CrCjl�
��������D<2�b�����������JD�������������� ��F���������=�
	F:4�
�B��� ��
��Js��������	����
����M
���
���D<2���KXU����� }BE���������	�	�����	�~^����¸}B@A��@N���BJ'~��c�	C����.� }B���4����~
�
	?�}BE����4����	�	�����~��'<��'�?�V��	U	��.����0�
	?��
	��^}B� ��.�~C���C}B�
��E��'��~���� ��
�
	L	����������^�
�^�����O���4���N!#���\�V��	\�����
���4<2����	L���z��	��N����s����@NE��'���
XW�����RG����O��
	��=��<�	����B:;�F��� ����2�����;���������0X������l�����C������� � 	0���4���BM
���
� ����;i8	�nI����}B�q±�~��;�����W������� � 	0_�3q&�3q+��
	������W������JN����	����
�������
	������
E�����EQ���B�qJ=���JA��������� �	Y��� ��U@A���������	Y!#�;�YNr�j ����@AE��'�.����
���RG
�����b���4��� � 	N	��.����b�
	N��
	��©3*À�+z-�9 ) a E�����EQ���B�KJ>��!0{�������si8�����
@A�����\E��������
	�����J;�Q��!����������	�Â��� ��0������l���4������!������C��'���;@A�M
�����o�
	?���;@NE��'�.����
��� ��
��JA���4����:���
���;�?����nP��� ��?��� �������	��'J4� �@A��M
����
��J;�'����=��� ��?����o�ST�����Li8���U<2�\�ST���������b<�J�n�������	���<�	������������
��� �������	U��!T�����0	B�.�����	Y�;!T������BM5<�JA���4����	�Gc������	������������0�
	P:'�
�B���'M
��
��Jo���D}B	������������~N�;�A}��&� 
 ~=���=}B��������[XW�������\@A�����
��@A~O�
�sr�j
<Q��	��
���L����������E����4����	�	��
���N��������	�G
�0��X ��� ��zX?��� �:;���
�����;����t ���¶	��;@N��!#����� �@N�����.���}B� ����'M

X?�����~W���VST������������	"<2���KXU�����\���������;���	���M5������
�F����\�����ct ����M7�;����
�
�<�	���������U@A�������
	Y��!%E �������
���Q����@NE��'������	���X?�0!#������	?����u4�?���=�����
�
����������	��
�o����ST������������	A<Q���qXU�����e�����o�KXU�^���w�	�	���	A��!0����@NE��'���
���
@A�������
	=XW�����¿���o����@A��	b���>���[X¾������	��^����@NE��'���
���©@A�����������	
XU�;����MO��� ��l�
	��0���[X �
	o�
��!#����@=����
���¿E����4����	�	����|��������[XÁ�
	
����@AE��'�������NE2����!#����@A���l���z����.�z���	���G

3.2 Functional comparison and contrast
�0��:;���z�������
�0���;���
������Jz����ST�������;�L����.������������������	�!#����@ ���������w�	�M

	��
����LE �����
�
���\�;�z���
	B�����
<��'�����|���;@NE��'���
���e	�J4	�����@N	������l�
	l�����
	�����E����
	��
���o��� ��L�����Ot ����M7�;����
�s���;�����������
�����
	��FE �����
�
����@N�4�����
	
����@AE��'���{�
�|©������
�������J�����ST���������oX��J�!#����@ ���������z���w�	�	��
����7�
���;���	���M7�;����
�A��������������E ��B��	�Gc���F��@AE�� �	��
º��������0@N��	��YE�����!#�;�����
����ST������������	��IXU�At ��	��C<����
� � J�����:4�
��XZ���[XZ���w�	�	�������P����@AE��'������	
E����4����	�	��
��!#����@=����
���RG
�q�A�����W:;���=�0����@=����=@N�4�����7�;�����0@A����AE ��B��	Y��!T�����0	BJ'	�����@

��������������0	���:;�������E���������	�	�����	��QA	�����������F@N�����
��@ i8@A��@A���BJ n��
����¿	���@A���
�
����	o���������������
���eE���������	�	�����i8	�nNXW������@N��@A���BJ;G H
E����4����	�	����c!#�����.����	�� ��.L!#����@ @N��@A���BJ;��E���������	�	���	c��� ���� ��.L���M
���������
���0���LWE�����M5	�EQ������t ���O	����c��!������
��	�i8����:;����<�J\�����U����@NE��'�����
E������;���@=n��;����C�������O	���������	������\i8EQ��	�	��
<���JF@A������t ���2n�� ��.�< ����
���0�����Y	������������G"���U��������Y��� ��������
	I@N�4�����4��! �
��!#����@A������;�FE�����M
����	�	��
���b�
��������VJ�	B����@N	L!#����@ b�����������o@A������
����M5< �	�����:4�
��X ��!
O���
�����.��T����@AE��'�����W����z����	�����@NE��'���
���NE���������	�	�G
H �������
���A@A����������=i���� n�������	��
	B��	W��!cN�������������"�����V��� ��� ��

����©<2�o�
�©�����o��!�t ����������JD@=���J�	��.�����	��Y��>�
�'t �������=�.�E2�si8���
}B@A��@N���BJ'~�nFX��������z�����z�
��E��'�A�
	N����������:;���R�UE���������	�	��
������!W�����
� ��.^EQ����!#����@N����<�J©��������
���s!#���;@ ����©XW�������
���^���^�����z�.�EQ���
����O���������'��E��'�0i8�
!Q���J�n�X������������R������AL������N���F}B������	��;��~���� ��
EQ���
�;��	C���{��� ��O�����
�Li8�
�4��������;�2nF��!������=�.�EQ�si8@N��@N���BJ nLXW�������
�����L����u��W����@NE��'�.������;�o	B����Eo�
	U���N<2�L��������
���z���'��Gc�������.�E2�L�
	
�����?@A��������J=�	���������;�0@N�����
��@z�4<��'�����	��F�����z}KXU�����4�
���C	�E �����~
XW�������?���;@NE��'�.����
���C�
	I�.��4�
����E��w�����G��q�NE ��B���
�����w������������<��
�
���qJ
��!Q���� ���Cgc(�6#3K+W-�`�+�(?38À�+W,�14(�(�+�9 3�,.-�9�3K+�9�3I-B�U38À�+�3q&.$�+I���O�����'M
������7�"����{���z�[:;���BX��������O����	L�
��E��'�\�
�^E ��B���������w����"��	\�����V���
����c!#���
�����L����@NE��'�.������;� ��QEQ�[XU���?��!%�����L@N�4�����8GI�¿���������'�?�����\�<��
�
���qJ
����XW�������W�����0�.�E2���� ��� X?�����
�b<2�L���C@A�����0EQ�[XU����!#���2��� ��o
¦
�Tj�G �0��<Q������������@A��@N���BJ;�U���������������NXW�������EQ��	�	��
<��
�����KJ©��!
(�&�9Qd;-�/ /A+�/N-�(�a�&;,.,�+�_._.�L��	{��
	������������w�������|��������	�	.��BJ�!#���
�������
����@=��.���
��� � 	O�<��
�
�V�KJs�;!?������:;����	.��Y����@NE��'�.������;�RGe� �4�K°Y���
	���@N@=����
º���	U�����\!#����� �@N���;�.��R����ST������������	W<2���KXU����� ���¸m\����
���	�¶ml<;Je�������
���s������	��l!#�����A�.� �������������
	B���
��	A��!������������D@A�M
����������	���i8�#n\<Q�������s�<��
�b����<Q�����>������©!#����@ ����>XW���V���=���������
�.�EQ�=i*��� ��0�
	��2@N��@A���BJ�n��©i8�
�wnU�����F���������X��������F������������@N�[:;�
<Q�����^���z�����N�
��!w������s���o�����N���
�����=i*����������<�J��	�	������
���o�����N���M
E �<��
�
���qJN��!�(�&�92d;-�/Z/A+�/N-�(�aA&;,.,.+�_._Bn��zi8�
�
�#nI�����W�.�E2�0�
	Y�
�'t �������

i8	������������^&�$2(�68-�(�6>�
@NEQ��	�����<2�������{���������F@A��@N���BJz	��
º��FX��
�
�
��������	�	.����
�VJs	����A���A!#���F����@NE��'�.����
���s�;!U������<���������BJ � � ���
��D���<��V������BJ^�
��E��'��n��I���� i8��: n0�����A	�E2�����w���	��.�����	F!#�;�F�������E'M
�.������0����A���q���������
���A�.����W�
@N@A�����w�������ST�������4�����
���;�W�
�N�����W���	��
��! ���	�¸mz	��������	=¦
�Qj�G �?����	��zE�����EQ���B���
��	A��!0�������
���s@=�M
�.���
����	��2����lE ��B���
�����w�����Jb�������
��!#�����������	�i8�wn������i8�
�#n��'�������	��w����
!*��
����J����
����������J��
�;���b�����O������ ��IE��;J'	�������I�;E2��������
����	L��!����
�����.��
����@NE��'������	W�	UXU�\�4���[X�������@zG
�W������
���o!#����@Á����^X��������
���=���b�����N	B����������C@A��������@l�R�	�XU�

��
������'JNE2���
�������=���'���4��	Y��P�����?:����BJN�������W�;!Q�����W!#�����������;����������!
���
�����.��c���;@NE��'������	�GC�q!P�����C�.�EQ�O� �	L�����O�����
�O��!P�����O@N��@N�;�BJ��
�������^�����A������sEQ���
�;���
���o����o�
��������
���s���\�����
�����^�����O�.�EQ�N�
	
�� ��
���;����	"���������P� ��.W!#���;@¶	���@A��E ��B���
�����w��"@A��@A���BJL�
�4��������;�
<2���
�����.����	����>���s<Q�z��EQ�������������E2���¶i7����©����������!*�����z!#�����.�����R�
�7G ��G
�U�
�;������e!#���;@ @A��@N���BJD���D^E����4����	�	����.n�G 5%��!w�b��������
�����
������N@A�[:;��@N���;��	���
�����L�����U�.�EQ�?��� �<��
�?����� ��� ���F�������	�	P��
�
@N��@A���BJo�
�4��������;��	��T����R�Q�
��E ��B���
�����
����Q����
�[X¸!#���W�����=(�&�92d;-�/
/A+�/N-�(�aA&;,.,.+�_._ �^�����
	YE ��B���
�����w��P���E �<����
���KJO�
	Y���������w��2!#�;�������
����@NE��'�.������;� ��WE2�[XU���=��!������ ��� @N�4�����8�?�
�������������	��AXW�����
������	�������@AE��'�.����
��� ���@A�������
	RXW�����\����	B�����
�������\�4�
����	"��!'@N��@N�;�BJ
�������	�	��%	������s�	L�����C�����O$ 1'_�À"�Bd;-�gc9e&�143q-�/N&�3q& �B¬F¦Aj �FXW�����
�������
�0	��.��.�4	WM?�	�	����.������	B�����
�������{�������	�	���	0���=@N��@N�;�BJz���=�����
��@NEQ��X?���L�����N������������J'�
���z!#����@=��c��'����@A��.b@N�4������	LXW�����{�����
���E �<��
�
���qJb��!�������:;����	���%����@NE��'�.����
��� + � G
�q�o�����������	B�����V���
	?�
@N@A�����
����W��� ��WjbkzklmF�����rCj�E���������	�	

�
��!#����@=����
���{����{����@AE��'���C�
�s=!*����� �@N�����.��
�VJ�����ST�������;�LX?�J
!#����@Á�����A�<Q�[:;�N���'���
�
���N�;!Y�������
���l@A������
����	 �Pi7����s����������!#�;���
���
�����.��U����@NE��'������	 � nFX?�JD��!W����@AE��'������� G��q�©������	��bt ����M7��������
�����������������;����	��PE �����
����� @N�4������	������������W�
	�����}K�.�E2��~F�;�\}�	B����������
@N�����
��@N~N���OXW�������\�[:;����G�¨U����	����4�����;����J;�2<2������E���������	�	��
���=����
	��������
���b�
��!#����@=����
�����
	L�������O�
�^��^��V���;�����������L���VST���������L@=��'M
�����N!#����@ ����X :'�
�B��� ��
�VJ©��
�U�����o��u'��	����
���ei8���
�������������
�[n����
�����.��
����@NE��'������	��Q�
@NE��
��@N�����.����
���l�����.��
��	��	��
�����QE����4����	�	L����{	��������
� ��.'G
������E����;!#�������=����ST������������	Y�
�N�����0��������V��������������	Y<2���KXU�����N�����

t ����M7�;����
�¸��������������;���	���M5������
�|E �����
�
���\@A�������
	zMA������!#���BM
@N���A���D�����=!#�;���
�[X �����lE����4����	�	�����	�M7	���E ���������'M7!*����@OM7X������.�<��
��M
	������������E �������
��@pM���
	��C�
@NE���JA	���@N�0@=[�����Y!#���������
��� ��T����ST���BM
��������	�G������z!*����A��� ��N���������z�
	N���sX��������
���s�[:;���C�����l	B����������
@N�����
��@ �
�������^���;�����������
�����
	��o@N�4�����
	b�
	oE2����� �E�	o�����{@N�;	B�
	��������4�
���O!#���������
��� ��%����	����
���������;�R�'<��'�0�����?�����\������Jb������G
H0�����������F!#����� �@N���;�.��P!#�����������;� ��P����ST�����������=<2���qX?������t ����M

������
�o����b���;���	���M7��������b@A�������
	U��	U���[X�������J=��������������YXW�V���=�����
���'�����0XU�;�����RG������
	0����ST�����������C��	L@N��	��0	������
���
���AXW������rCjÁ����
����@NE ������¶XW�V��� ���J|@N�4��������!N���w�	�	��
����F���
�����.�������@NE��'������	�G
���@A����J;�0rCj ����©,�)
-�_�+�dl$�À�a�_�67,�&�)0_�a�_.3q+�/C_.G �����l������J }����'M
E��'��~�^rCj ��:;������	���	F�
	F����	F�[XW�Dv�)�-"��&�)Y,.-�9�f�v�1'(�&�3868-�9 G rCj
����\�������������W�ST���������R������������o������Jz�ST�������'�������������;:'�
������@N������G
y0�[XU��:;�������V�Y	����;�����=��
	��\<Q�W���������N��� ��Y��A�
�'t ���V���Lr�jZ� �	Y��
�������������.�<��
�A�4��@C<2���F��!?E2��	�	���<��
�A���;�'t ����������
����	bi7����s����������M
!#�����YE2�;	�	��
<����P�
��E��'��	�n���X����������	I���J\���w�	�	��
����;@A���������
	��	�	���@A���
���L����������:;���	�����E��'��	�������JFt �������?	B�����
����	c����t �����N�[:;������N�E�E�����M
E����w����Ot �������A��
E�� �<Q�����I����s����������!*�����=���J{	����.��@N�4�����8�"!#����@
��¿�<�	��������� ��� ���©��������� ��0���
���������;�����{���
�����.��W����@NE��'�����
XW�������FXU�F�	�	���@N�\���4<2�����������{@N��@N�;�BJo�����}��<�	�����������X��J'~
�������
	�	�������!ct ���V����������;����!c	����������<��
� ������E�����	������.�<��
��@A��.���
���
�4��@C<2����	 + � � ����o� �:;�\�;���VJo���;���;�.�<���Jb@=���J=����ST�������;�W�
��E��'��	�G
+ �����@A���VJ;��¬\¦Ajp����O�������������
º��?�;���VJOLE�����E2����	���<�	�������!T��
�'����M���
� �<��
�N�w������ ��;��	\�;!Pt �������O	������
����	��%� �@A����J;�R������,.-�9�3K+.x�3�� �.(�+.+)�&�94v�1 &�v4+�_��c!*���F@N�;�����cz�����������������!*�@A�
���w��LX������s�����A!*����� �M@N�����.��
	0�;!I�����C!#����@=����
������ ������������;�BJl�
	�����!#���������{���^� �4�K°Y�������� y 
 � �W�7G
+ � G
G
G <��'�NXU�>d;-�9Q-�3A}��<�	B��������b�X?�J4~^�����l!#����� �@A���;�.��WE�����E'M���B�qJl��� ��L����.�^�4��@C<2��������{<Q�C����E�����	����������{X�������$�+�(.À'&.$2_N&�9&�( ��6*38(�&�(�a�� ��1'3P_.376#)#)"-�9 ) aWf�9�6*3q+�$2(�+�,�6#_.68-�9 G

140



j=klklm��¾�������������������o� ����R�0����{@A�������
�;�������������:;��X������
�����C���'��	��
����XU�����
����� ���rCj ������0!#������u��@NE��
���T�;���C����{E��
���
����D��������	��>}B!#����@ �����=���'��	��
����~lX�� ���E �����������	�����}B!#�����D�
��~
���s�����l�
��E��'�b��������	=��!\���jbklksGPy0��X?��:������?������J��E ��B�=��!
�����Wjbklk � m=}B	��.�����~\�
	���<�	����B:��<��
�W!#����@ �����W���'��	��
���?M�� �@A����J;�
����:;���{����
��E��'���2XW�������l��!c�����F�;�'��E��'���
�J;���0���������;��	Wt �����T����
XW���
�.������������Gz�5�C��	������C���;�������
�����;�.������ ��F�����=��������	FXW�������
�������
�;������� ���E����4����	�	������\�
	c�.��4�
���LE��w���������� ����
	��������?���4����	F}B�
�
<Q���KXU������~������0�
��E��'������=���������'��E��'�?��������	��������������
����À�68d;d;+�9
�
�^�����Ajbkzk �
�V���������������GA������	F� �@A�O���E'��������	\�����N�
����b��� ��
�����
	FE ��B�F�;!P�����N�����KXU����� � 	F	��.����N��	F��������<�	����B:��<��
�A!#����@¾�����
���'��	��
����GI���������[:;���������\!*������JC����	������
<2�������?	��.����?��!2�����������qXU�;���
��o���Je����@A�l	B����ER�������{��
	�����������	=���D�����[X¾��
���������������������
	�J4� �E'�����F�������\XU���
������	�MU������������W	����W�;!IE ����@N��������	���� ��0������
�
�Dl	�����	����I�
�����������;����Je6*9�3K+�(�9Q&�)e���z�����=	BJ'	B����@l�"����������F��� ��
��<�	����B:��<��
�=!#����@ �����A���'��	��
����Gz�q�D�����������	B���Pr�j ����=���;���
������J
�������	�E ����������%���\!#���
��JC����	�������<Q�?������	��.����?��!TL�����
�����w��P��'���;@A�M
�����R�'�
�b����������
���=�����4���[X��
��������	U������������J4�
��������EQ���
����J=����=�����
¦
�TjZ��� ��U��
� �����0��������	Y	��
@C���w������;�;���=}B������J'~���������	P�����4���[X
�������������������?	��.����0�;!%����.�b�;!R�����L��'����@=������ � 	Y���4����	�G�H0	�	���@OM
�
���0�����Y	B�.����P��!2��C�
�'t ��������rCj ���4��	c�����c� �:��U�t �������Y	���E�E2�;�B�
����	���@N�C�.� �������������
	B���
�oi8	������^�	�	�E ����w���EQ�������4���
���V�KJ n���� ��\���M
�
�[X�	A!*���=st ���V�.��BJe	�EQ������t ������
���R�?���[XU��:;�����U����������!*����@A����
���
�����������;����!W}�������JA�4����XW�
���������L	��.�����	U��!"����R��������	�~C�
	?�
�'t ��������G

 �C�����?����������� ����R�;���L!#���
��JO����NE2����!#�������VJN���������������VJO���E'�������
�����O	��.����O�;!Y���jbklks�%�����N��������	\���o�4���[X �������M8:�����������������
XU���
������	�XW�����soEQ����!*�����bi7����R�R����������!#�������"�
�s������������7�P6#9�fc9 6#3K+�n
E��������
	��
���eM�������������N�
�'t �������l����!*����@A����
���e���;�;��������G��q��@A��;J
����������u���	��R�����
	L@=�J{<2�N��� �������E'�.�<������I�	\<����
� � J{���
	�����	�	����s�
�
/��oi7����z���z@C���.�z@N�;���������.��
�%���R� ��G � G��"� ��H����Q�*n�G
�U����L���WXW� ��I�
��E��'������C�;�'��E��'������R��@A�����Y������������
��J����
�������BM

������
���AX������A�����0���;:'�
������@N�����Y�
�4���O�
�
���0�
�A���	��0��!%jbkzklm�����
rCj��;�����W@A�JN����;���?��� �������P�����?:����BJN!#����� �@A���;�.��2����:;���7�;�����
}B�&� 
 ~{��!?�����b���������������
�����
	��C@A�������
	C�
	�����������C����ST���������O!#����@
XW� ���X?��	����W���A���
�����.�� ����@NE��'������	�GI² ���B��������@A�������4jbklkzm0����
rCj ����{��
	��DE�����!#����������J�����ST�������;�o!#����@ �����{������������=XW�����
���\����@A��	L���z���[X ������J;�":4�
��XU�����	FE��;J'	��������	BJ'	B����@A	��%�
�;����������
XW�����^�������
������:'�����;��@N���;��	��I����D����Xp@C�����������XW� ������
���D��!
�
��!#����@=����
���l��l���'��	��
���\��<�	����B:;���W��������	W���A�4���[X¶�<2���'�W������@
�
�b���������Y���C<Q�L�<��������C!#���
�VJ=	�EQ�����
!wJA�������
�U����	�EQ��������:;�z}B	��.�����	�~ G
����� �:;�����
	�����	�	����=������@=��
����1492,�3768-�92&�)A����	�EQ������	?�
�=X����
���

jbklklm\�����rCj ����L!#����� �@A���;�.��
��J=���
	B���
�����?!*����@Z���������w�	�	���M
����"���
�����.��"����@NE��'������	�G�H0	0�
�����	�����!�������	�����������������"����@NE ��BM
�
	����{����{�����������	�������������E�����:'�
����	�	��������
���R�Q�����C!#������	0X��	����
������!#����� �@A���;�.��;����������E'��� ��;����ST������������	�������������R��� ��F��;JLE ��BM
���
�����w��P�������
���������
���C����	��
���=���Y�
@NE��
��@N�����.����
���N�
���
��	�J4�������	��
��	�G
H?�W�����\:����BJl���������
��:����7� X?�F� �:;��	����[XW�z��� ��0�����F���������������
���'M
�
	���@A�������
	L����C���������������ST�������;�\���^����X ������J�����������:;���TE����4����	�	
����C	��������Y�
��!#�;��@A����
����!#����@¸�������
�I���w�	�	��
����Ti8���
�������������
�[n%���
�����.��
����@AE��'��������������������E ��B��	�G

3.3 Some comparative advantages of
the connectionist fine-grain models

H0!w�����0	���@A@A����
º��
���N<2��������������V��������������I�����!#�����������;� �������!#M
!#������������	L<2���KXU�����{�����O���;�����������
�����
	��L@N�4������	L���^�������%����{�����
���w�	�	��
����T@N�4�����
	������������VJ'�
���N���
�������������
�L���
�����.��T����@AE��'������	������
�����=���������F� ����R�IXU�A���[Xp<����
� � Js��� � �����O����	���@N��i8��u4EQ���������2n
����@AE ��������:;�o��':�����.�����	N��!0����.�RG 
 ���z��!W�����o������
	C��!W�����
	
XU�;���D�	N{XW�����
���U����©�����oE����
@=��BJ>E�����E2��	��z��!W������	AE ��B���
��M
���w��o	��������
���R�W�
	b���>@N������:�����{>���
	�����	�	��
�������������{EQ�������;���w��
E�����@A�
	���	P��!T����	��
�����
��������=<������
���
���C������ ��2@A�	�	��V:�����JOE �����
�
���
����@AE��'������	Y��� ��YXU�����
�=<Q�0�w���������JN< �	����=���=�����0���������������
�����
	B�
E ���������;@N	�G

���>t ��� ���^�����	���� �<��
�D�����	�	���@A����� ����C!#���^����@AE ����<��
�
�4��@C<2����	P�;!T������������	Li8���P�����������'M7�
�
���0	�X��������������F���
��@A���;��	�n�����
	�J4� �E�	���	�����\������ ������������������
�����
	B����jbklkoM7�
�
���c����@AE��'�����TXU�����
�
������<2�>�<��
�s��������@NE��'�������V��������@C���.�|@N�����s�;�l@C���.�|<2����M
�����F��� ��DXW� ��O����@=��D<�����
��	C����D����@NE��'��� + � G{��� ��C�
	��������
E2�[XU���"��!�������	���� �<��VJ\����:����
��EQ��������F!#���������
��� �������@=��\<�����
�
	��������
�b<2�\��^i7�	�J'@NE'�������
�[nc��E�EQ���?<2�������o�
�=������@N	U��!%����@NE��'M
�.����
��� ��%EQ�[XU���0������3�A���
������Jz�;�����Jo���������������
�����
	B����B����t ���w��
����@NE��'�����LX������s������������J>���bMF�����o<����
�
�
���^�����������'M7�
�
���NE����4����	�M
	�����	�������z��� ������M����'� �����\�	�@A���J�E����4����	�	��;�BM8����M5E����4����	�	��;�c�����'M
�����������;�s�
�
����	�GA�0�[XF�"�
!Y���
�����.��c���
�������������
�A���;@NE��'������	\�;�'��E2���BM
!#����@Á����@=��^<�����
��	\�
�^���	��O��!Y�����B�.��
�^����@NE��'�.������;� ����.�	��4	��
�������>���C�
	�����<Q�b��u'E2���������D��� ��Ojbklkzmb�;!?	��
º���	C����@AE ����<��
�
���������l�KJ'E�������0	��
º�����!Fs�4��@A���<�����
��XW���
����
	���<Q���;�'��E2���BM
!#����@A���O<;JC�����?	.�@A�Li8����	���@A�
�
��.n%���
�����.������
�������������
������@NE��'������	
���N������	��W	��@N�����;@NE��'�.����
��� ����.�	���	��4�	�XU���
�7G 
 ���W��u��@NE��
���
	
@C�������
E��VJ'�
����:;���BJ\�w������Y�
�;����������	���� � �;����
����M5E2���
����}B������
	�~�G"H0�'M
������������u��@AE����C�
	0	�������.���
���=��������������:;���BJl�w�������� ��.�< �	���	���!
	�����������������M5!#�����0� ��.Ai��51492-�(�d�+�(�+�dNd�&�3q&"��&�_�+�_ !�n�G��?������������W�����BM
�.��
����Jz@=���Jz���������0	����.�{�E�E��
�
������
��������@=��
��	WX����������R�	�	���@NM
�
���^{���������������
�����
	��OE �����
�
���Y����@AE��'�����C� �	O�:�����w�<��
�©}B� ����'M
X?�����~©����@AE ����<��
�{���>������}�� ����'X?�����~>XU�^�4��@A���	l����^���'M
���[XU���=XW�����R�'	������oC����@NE��'�����U	����;�����o�����?<Q�L��������
	����
�������JA��u�M
E2���������l���=	�����:;�L�KJ'E��������E�����<��
��@A	W!#���;@ ������	��F����@A�����	0!*�	������
��� ��R�c������:;���D����@AE ����<���J��	�!8�	B�O�	��������=���
�����.��P���
�������������
�
����@NE��'������	��;!%�����\�������Jz�4��	��������������BJ�G

 �����������������=� ����R�?���������^�����E��
���;�KJe��!F�E�E��
�
��������;������M

@A�����	YXW������������@=���	UEQ����!#����@p:;���BJAXU���
�7��X������o�����
�.�4����	�	�����
���	�����XW���������	R������!*�	�����	��%����@NE��'������	%���������
���?�����c<Q��	��Yi8�4����XW�2n
��
������������@A	�	������������
�����.����?W:;���BJF�
����������@A�P�;����	���@A������@A��	����'��M
��������JC!*��
�7G	'�&�373K+�(�9b(�+�,.-�v�9 6#3768-�9��;XW�������?�����?E �����������	Y����������;���VJ
	������������������|����������o����������u���M5	�����	�������:;���W�
	o�����^	����.�¿��u��@NE��
���
���N����@AE��'�����?���W��B����t ���w���}B��u4EQ���B�0	BJ'	B����@A~��'!#������u'�@NE��
��������
�����A��;J4XW�������o�����;	��=���{�����b	�EQ�����e����©������������JDX������DXW���
�.�
�4��@A���	z�������;�����
º������������	����
�������
	��¿<Q���qXU�����R����G ��G
�0����ST���������
�4��@A��A!*�����	P���P���������P	��
@N�
�w��c����������u���M5	�����	������V:��������
������JO	���������M
���������o:'��	�� ��R�
@A��;��	 - � G
�����O�����������	B�\���;@NE��'�.����
��� ��c��':�����.�����	L��!Y�4��@A��{<��������	

�[:;���A�����{��u'�
	B���
��� }B	��
�
�
������<��������	�~>�������	�� ��
��Je�������;���;���������
XW�������L�V�?��	U�����0�;���;����
�0<�����
��	,�4$2)�&�_.3867,�6#37a¿��� ��?@A����0��	U��u'�����
XW�V��������	�EQ�����b���s������	��
�
�
�����¶i8���A���������>}B�����'M5�����;����
��~��?@=��'M
@A�����nC���;@NE��'������	�G>�����o����@AE��'�.����
��� ��Y�.�	���	OXW�������o����������
E��w�	����������KJ=���	��
�VJo<2�����	�	��
���
�����R������������!#�;����� 	��������
�z<Q�\��u'E2���������
���A� �:;�F������	��
�������<����A)
+�&�(�9 6#9�v��Id�a�9Q&�/C68,O6#9 3q+�(�&;,�3868-�9^gc6#38Àz38À'+
+�9�`[6#(�-�9 /A+�9 38����������;�L&;d�&�$23q& ��6#)V6#38a�����@AE2����������	U��@C<Q���������b�
�
������@z� ����oX��������\�4� ������V���
��	?���O<Q�L����@AE��'�����z���l����L�
�������
��	���M
����
��JC�.1 � ��a�����������?��� ��z������	�ERG

 ��������\@C���V���
E���JW�KXU�L���;��M7���
�����%�4��@C<2����	TXW���������'�"���J��
������'M

�
�������l���J¿�
����������������;�¿X������¿���������;:'�
������@N�����Di8���������z��� ��
��������
�����
�¿�����s�
��E��'��n��L<��'��<;J�@N�������VJ¿!#���
�
��XW�
����©	���@AE��
���
t�u'���'M5	���º���Mq����'M7����@AE��
��u'���qJ�	����b�;!F���������@N�����
�l�����
��	�G¸��� ��b�
	
XW�;JL���
�����.�������@AE��'������	"�����	���@C���.�\<2���������R��� ��\�4��@A���	TXW�����
���W����@N��	����A@C�������
E��VJ'�
���N�
������\����@C<Q����	�G 
 �z�����F���������W� ����R�

+ � ���P�����
�
<2�����������JL	��.�JL�X?�JL������������������"!#����@¶���JL���
	�����	�	��
���\��!������	���!#���������
����	?��!"����@=��b<��������	?!*���YXW���
�.�b����@A�JA<2�L����< ���M�<��
�OX������������\������J������,�-�/0$2143q&�3868-�9Q&�) �I�����%�
���������R��!#����@ ��;J����< �����XW������������	������o!#���������
����	?�;!"����@=��o<�����
��	���u'�
	B�W�����
�7G
5"���;��XW�
	�����XU�W	B�.�JN�X?�JO!#����@p������	������;��	P	������=�	PXW�����������L,.-�9 �_�,�67-�1'_�9T+�_�_\�����/C6#92db�����_�-�14)"����=������7�c����@AE��'�.�<��
���c	��;������J�����L���N�
��!#����@A������;�bE����4����	�	��
���A���o�����L<��������	�� ����o�����L�
�
����G
- � ��������@=����O��� ��?����������������J=���w�	�	���!#J4�
���CC	����?��!R:'�
	�� ��Q�
@A�����	�
	P�����B�.�������JN\����@AE��'�.����
��� ��'�.�	��QG�H0��JN���;��	����
����	P��u4EQ������������������@=���@A�Je� �:;�zXW���
����E2����!#����@A�
����	�������s�.�	��Q�U�;�e��������������c� ����R�;����O<2�?��������
��J�����;�����N�����I���LE2��	�	���	�	������
	���E���������J����@NE��'�.������;� ��R��� ��
���KJ�G

141



������	��OE�����<��
��@Á����@A��
��	LX��������C�����N����@NE��'���
���z��;�����\� �	F��
���'M5�����
�����T�'J4� �@N�
������������������
���lX�����������@AE�����uzJ;����	������������������
����:4�
������@A������	��'����=X������������;@NE��'�.����
����	Y@=�JN� �:;����=�
�������
�'M
	��
�������Jo���������B�.��
�l���0!#��º�º�Jl����@NEQ�������;�W���N������@z�Q��	�XW�������F�4�'M
@=���	=	������
�W��u4�����0MO������
�
�����VJeX��
�
�0�����;���
�4���l���D��u'�������
�������
!#�;����	������<��
�L!#�'��������G
H0!w�����A�����
	=<����
��!\�[:;���B:4�
��X ��!LX���J;�?X����������b���;@N��	A���������

E�����<��
��@ 	��;�V:'�
���\	�EQ�����b����A��ST�������V:�������	�	��4����.�A��!Q�����W������������M
���
�����
	��N����e�����'M5�����������������;����	��A@N�4������	N�
	O���s<2�z��u4EQ���������e���
EQ����!*����@p@C�����=<2���������Y��� ��=�����0���������U���b���	��0��!R�����B�.��
�bE�����<'M
�
��@�����@=��
��	T��� ��"� �E�E2���\���?<Q�����
������Jo}B����@NE �����<��
��~UXW�V���L�����
�����
�����
���?@A��������� 	R	���������������������l}B����@AE��'�������?	��KJ4�
��~���X?�c�����������
���O�����\�����;������R������@N�\��!"�����
	�	���<�	��������
���RG��q�l@A��4�
���O����@NE ��BM
�
	�����	o����������������	���	=<Q���qXU������������t ����M5������
�R�0���;�����������
�����
	���M
< �	����CE �����
�
���4@N�4������	I���C�������;����O���;���	���M5������
�CE �����
�
���'@N�4�'M
���
	?���=�����L���������?� ����R��XU�0XU�;�����o�
���;�0���C�
����������!#J=	���@N����!%�����
@A��	B�I�
@NEQ���B�.����I����@AE ��������:;�U��':���;�.�����	���� ��c����C<Q�?�����	��;�'M
�<���J���u4EQ���������O��! �����Y��J'E2�����������
����Ri*J;���I����<2�[n"E���J4	��
�������J��������M
�
º����zE �����
�����%����@AE��'������	W��� ��0����F����	��
�������{��
�����O�����F������������
�
�
����	\��!YjbklklmN���\���������Lt ����M7�;����
�sE �����
�
����@N�4�����
	�GO�q�^�����
	
E�����	������A!#���A	��;@N�z	������������������
�lE2�����������w��W��':�����.�����	A��!0�����
���������������
�����
	B��@N�4�����
	�� XU�\X?�����
�����
���F���A�
�����;���
!wJz	���@A�\�4� ��'M
����t2�<��
�0@N�������
��	PXW�������������������� ��Q@=�	�	���:;����JOE �����
�����Q����@AE��'��M
����	N����	��
������������;���{�����z���;�����������
�����
	��NE �������
��@A	zi8�������z����
�
!%������Jo����\������ ��
��Jb<���������nY	��������
�o<2�\�����	���� �<���Jb��u'E2���������o���
���'��EQ����!#����@¶�������
�����w�	�	��
����7��@C�������
E���������	�	����"�;�"���
	������
<��'�����C	BJ'	�M
����@ ��������������E ��B��	�M?��:����^�
!cXU�O�	�	���@A�bi8@C���.��2�n�!*�	B�����\¨U°	�
��J'���
��	��Y@A��@A�����
��	��Y���������@A@C������������
���©�����qX?������	A�
�e���	��z��!
�������
����������?<��'�AXW���������������zX?���
��M5����������	����4�����
��@A����	N�
@NEQ��	����
<�JC�����W�w�X�	P��!TE��;J'	��
��	�i7�	P���
	�����	�	����N�
� /[�[n�GI�����W���w��
@N	���������M
XW�����{����C��������	�	��������Jl�;���VJl�������.�����:;���T�	0�����O������ �������@NE��'�����
� ����'X�����0��
�����L�����W���������������
�����
	B�Y�
�
����	P�
	�J;��������<2�W<����
���Y����
����E��
�[J;���RG
�?���D@N�;	B��	����;���Vt �������EQ��	�	��
<��
�>��':�����.�����	���!C�����>������ ��

t ����M5������
��E �������
���4���;@NE��'������	�����	��
�������O������������
���W���W�����Y< �	����
���������������
�����
	B�\�	�	���@AE'�����;��	��T���^�����0:'����XF�QX?�����
�{<2�O��u4EQ���������
���O<Q�L�����\!#���
�
�[X��
�����
MN_�,.&�)
&"��6#)V6#37a �
�>������@A	O�;!W������E��
���s�
���������	��
���^�����z�4��@C<2���

��!�E����4����	�	������b��������	L����{��ST��������:;����Jl���������
���b@N��������u'E����;�V�.�<����
E �������
���
�
	�@Z!*���U�����F������V���
��� ��T� ����'X?������
MW&�`�-�68d�6#94vN38À'+\_.)�-�g�_.35-�(�&�v4+ ��-�3738)w+�9T+�,�h � ������	B���;�������@N�����w

i�}B@A��@N�����
��	�~4nT<Q���
���L@C���.�C	��
�[XU���"��� ��������UE���������	�	�����	�����U�����
��z�
	�	����L�
�ljbkzkoM5�
���;�L����rCjNM5�
�
���L@A�������
	��
M���+�x�6���6#) 6*38a��U&;d;&�$ 3q&"��6*) 6#37aA�����/N-�d�6 fP&"��6#) 6*38a ��!U	����.�Do	BJ'	�M

����@z��X����������'�N���������
���
���{���^����M8XW�
���o�;�C��u'E����
��������JD����M7E������;���@
�����\�������
���\	BJ'	�����@ ��������	?@=[�����?����@NEQ�������;��	��
M�(�-"��1'_�379T+�_._Y����^(�+�) 67& ��6#)V6#38a ���o�����\E�����	��������F��!������
	����
M%v�(�&;,�+8�.14) d�+7v�(�&;d;&�3868-�9 �z���������������
�����
	��I����@AE��'������	I	��������
��<Q�

��u'E2���������=�����������������@C���.�=@N�����0���������!#���
��JN�
�=E�����	��������0�;!R����M
�������"���4���P�;�"����@N@C�����
������
���L�
�
���L!*��
�
������	%��� ��\�������
�"���w�	�	��
����7�
�����'M5�����������������;����	��W���;���;������E ��B��	��
M{+�9T+�(7v�a�,.-�9�_.14/0$23768-�9 � �����������������;����	��lE �����
�
���L����@AE��'��M

����	����	�	���@A�����L	����A���
������	��
@A���w������KJ\���\<�����
��	���	��������
�N���
	�	��
E ����
@C�����C�
��	�	�������c��� ��N���
�	�	��
����4E �����
���������c���
	B�����
<��'�����O����@AE��'��M
����	���!IO����@NE ����<��
������@AE��'�.����
��� ��RE2�[XU����G
���s	�� ��
�����BJ����©:;���BJ¿<����
� � JD�B��	����
!wJ�	���@A�^��!F������	��^�����'M

�B������������������@NE ��������:;�l��':���;�.��;��	=��!������zt ����M5������
��E �����
�
���
@A�������
	I<;J�<����
� � JF����@AE ����
���WXW� ��c�
	c��
������'J��4����XW�oi*XW�����C���
����@A��	Y�����������4� ��
���qJ=@N�������
��	U�<2�[:;�[n�XW�����A�����L���;������	�E2�;���������
!#�����������	��
�����w�	�	�������"E �����
�
���"@C�������
E���������	�	�����	�����������KXU���������
���
	�������<��'�����z	BJ'	�����@A	�G
²I����	����'X?�\���;��	��
������	���@N�\��':���;�.��;��	W��!cjbkzkoM5�
���;�\���0rCjAM

�
�
���Y@A�������
	�XW�����C����	�EQ�����c���0�����U��	�� ��4���
�������VJF������E��
���OE �����
�
���
����@AE��'�����L��������V��������������	�Gl}�°c������
����~=	���:;��������4�����������^���L	���:4M

������ �����;��	�����AE����4����	�	�����	���!#���P��u��@NE��
�����
�b\����X�¨U���JN	���E2���BM
����@NE��'�������
	�C@=[�����U�.� ��
�
��������G )����=}BE ������
����~o�[� +�� ������������	
XW�V��������c�������
�\�
�����������������������
����	F����	��
���No!*�������J{	�@A��
��:;�;����@A�
i7N�4��@A��l	������
�#nU� �	0<2�����z:;���BJz���A���
�������VJz	��;�V:����l<�Jo�����������G
�W���;������
���l������i8�����w�����:;�[nL	��
��XW����	�	���!?	B���;������=�������	�	��
�D���	��
��!P���Jo:������0����@A������w��{����@NE��'�����L����.�������������������QXU���;<�	����B:;�
��� �����X����
�
�{<2������E����4����	�	��;��	b�����@N��@A�����
��	=��!\���
�����.��0���
����M
���������
�����;@NE��'������	�������EN�;�������
���\!*�	B��������������	��������[X?����	��
�N	�EQ�����
����\��������������
	�E�����EQ���B���
��� ��7Gc�����F����.������������������%����l� ����'X?����
����:;���
��E�@N������	Y�[:;���������0E �	��?ª���M5«;�\J;�����	Y� �:;�W<Q�����b	����.�A��� ��
�������;�E�<Q���KXU�����^¨?°	� 	�E2������	L�����@N��@N�;�BJo	�E2������	�� �	0����E'�
�����[XW�����\M�����A�
	P��u4EQ���������A���F������EA�����[X��
���\�
�N�����W!#������	������<��
�
!#�'��������G������
	"E�����<��
��@z�����[XU��:;������	����;�����������"<Q�P��u'E2���������C��I��
�
�
�C���������������
�����
	���M7< �	�����E �����
�����4����@AE��'������	��������P���L��C�������
�����VJ
����ST���������WE �������
��@ �;!"�
��!#�;��@A����
���o	�����������\����l���������
��:���7G
H0�������������
@NE2�;�B�.��;����':�����.����=��!Y�����=���������������
�����
	���@N�4�'M

���
	?��	U��� ����'!#���?��u��@NE��
���4�����\�!#������@A�������
�������{��� +�� <�����
�o�����'M
������	A����	�	���E ����b�����w�����:;���VJ>�
�������
�o����������Je����R�Y�����
�
�����Y	��J;�������
¨U���JO	���EQ�������;@NE��'������	��4���\�����P�����4���
����@A��B���c�������
���������
��������
t � ������w��W<�����������	b�����w������e�����������
�
��� -3+ G¶�4��@N�l�4� ��;�����.�����:;�
����@NE �����	�����	W����F���l�����������
�o�����\����������u��0��!�������W���
	�	��
E ����
���RG
°I����� �E�	\�����At ��	���	������D��:���
� ����
���D����D����@NE �����	�����<2���KXU�����
�����W< �	��
�W���
�������������
�0����=����������Q	BXW�����.���
���F���
��@N���;��	PX?�	P���;���
<�J �;������:;�;�L�0����@A����\�
�L�����?�[¼�����	��T��������@AE ������������c�
������
���
�����.�������
����J^��!P��� ��F���
@N���R:'�
º�G���o:��������@Á����<Q���"X�������o�KJ4E���M
����R�4��@A��o<�����
�z�����������RGP�?���\������������	W������	����������<���Jb�;�'��E2���BM
!#����@A���A�����0:��������@Z����<2��	UX������b����	�EQ�����?���oi8�����;�����.nP�
�������������'M
���������V:'���qJ;� i8���
�������.n"������	����KJ;��i8	�@A��
�
���.nR	��
º����;����zi8���[XU���.n%����������J
������	���@NE'���
���z� ���	�����5G����������?�����������	��w��������;0@C�����C@N�����?��'M
:���������{�����.�������
����J;�T� �@A���VJ;�Q�����C� 
 �4² ����	��QXU�����C���;@NE ������
XW�V���^�����O<�����
�^������������	�GN�5�L��������	\���'�\��� ��L������	\�
������
���o	����
��M
�����l	BXW�����.���
���N������@A�����W��!������N�[¼�½���	��;�'��E2����!#����@A	?�����\�����������
<�Jz_.6
xN-�(�d�+�(�_�-B�0/N&�v�9 6#371�d�+©���A������@N	Y��!T�����0��u4�����'���
���=	�E2�����R�
XW�����
�P� �:'�����W	��
@N�
�w��R	��
º�����E ��.�4�����0������	����KJ\����F!*����
�����P�������	%���
������	��A��!U<�������D������������	�Gz�?���N�KXU����@AE2���B�.��;�F@A�������
��	\XW�������
�����s������������	l	����
�
������@=��
�¿!*��z	���E2�����
���oXW�����¿����	�E2�����z���©�����
	����
�
�����|i8�
�©�����
	N���	����U� 
 �4² ����	.nO����z�����z�
�;���������������������V:'���qJ
����N������������P����	�	���E ������;�l� H��L²��W�5G������W��'��������	P��!2��� ��P	B�����'J
���������
�����o��� ���}�����������z� �	A!#�������������������V�������������D� ��� ��N�
	��
������<�����
�'�QXW���
�.�b��	���	?�����;���VJ=�
�;�����������������������R��	��
��X¿����:'�
����	U���
@A����?��u�������@N����JC!8�	B��	�����	����BJOE���������	�	��
���\	BJ'	�����@A	�~Ni�� H��L²��0�#n�G
�q���������R�cE����4����	�	������{��!U�����=	�����	��;�BJs	�����@C���
���
	������b��@AE2���B�.��;�
M?<��'�\<�J����o@A�����	C3*À�+A-�9 ) a�M?���w�	�	���!P����@NE��'�.������;� ��"�.�	��4	
XW�������A�����A�����������}KXU���KX?�����~l	B���
�
��������	��
�������<���Js���'��E2����!#�;��@N	
�����\@A��'M7@=����Ni8	���@N��M5�����������������?���W��;Jo���������.nU� ����'X?�����G
�q�©����������
�������l���4��	C!*��C�����.� ��
�
���������>�����
���>��!U�����b����������

XU���KX?����0XW�����o���?����@A��	U���C�
������������������������:4���KJb����o����������Jb���
	BM
	���E ������;�R�[�����P���
�������VJ\������E��
�������������������
�����
	B��@=�	�	���:;����JLE �����
�
���
����@NE��'������	N��� ��NXU�;������<2�z< �	���������	������e����������A}�����.����������M
��������	�~\����A<2�W���	��L��u'E2���������N���\��u'���
<����P�:����BJO���������!#��� ���������M
� ����
���RGY���@A���VJ;� ������������	0���l�����W<�����
��	W������El�'J4�
���N�������������'M
���'�W�;�����
�V:���	���J;������!*���W��W�
���	��WN!#��X¶�����������	���X?�\	�����@ ���N<Q�
!#���������
�����
���A�����	���� �<���JoXU�����"�
�l	�E������\��!���� ���GUH 	��
@A���w���E�����M
����@A�����;�N�E�E��
�
��	c���L�'J'�����\���'����!2�����������	�J4� �E�	���	��;�	cXU�����7G��q�
�����������	B���'���������
�������VJ=������E��
���z���;@NE��'�����?���?���������?�������
���������
���
	�J4	�����@N	YX?�L<����
�
�b�������o���O���	��
�VJb����o����@AE�����������J>}�!*��
�R�E ��B��~
�
!���:�����C	��
�����
�L��@AE2���B�.��;������@AE2�������������
��	�����@A��
!#���������
����	�G
5"���c��	c���[X>���BJ\���L<������ � J�����@NE ����?����C�����������	��I�����������������M

XU�����4	�XW�V���N�����W�
�4��	�����JO������E��
���A���
	�������<��'�����A	�J4	�����@N	�G��q���������R�
���
	B�����
<��'������	BJ'	�����@A	"	�������P@C�����F<2���������"��� ��\���������"���
��������JL�����'M
E��
���l@C�������
E���������	�	�������������������E ��B��	�G 5"�
����X��
	���� ����������Jz���
	�	��
E �M
-3+ 
 !W��������	����P<�����
��	O�������e	��;@N�b�������
�
�����P�	CXU���
�PM\�
�©���	��o��!�4��@A���	?����o��':���������oE����
@A�����	��������
� � JA�������������b�����0@A����� �M���
	�@A	?�;!"����	�E��
������
���l����zEQ����	�E��
������
���RG

142



���
���A��	P�KJ4E��
����
��JO�����Y\@=[���������;���������=�
�A���	��W��!R\���
	�������<��'�����
	�J4	�����@z�W����R��	��
@N�
�w�����J;�?���
	B�����
<��'������	BJ'	�����@A	A������������{@C���.�
@A�����0�;�������!*������JA��� ��=���
��������JA������E��
���o@C���V���
E����4����	�	�����	�GIy0�[X�M
��:;�����2���������C�����@A��;Jz���������0E�����<��
��@N	������	��
���A�
�{�������� ������M
�������
	B���
����!4�����P��u4�
	����
�����
�4��	�����JL������E��
����	BJ'	B����@A	����	����'���
�������F�
�
/[��G ª'G��q�^=�����;���VJ���ST��������:;������������I�����qXU�;���z	������{�	�=�4��@A��
<�����
�R��	��;@N�b����@N@C�����
������
���D�
�����4	C@A�J�i7����>��!w�����©����nF!*��
�7�
<��'�L�����F���b��{�<������ ������O��!I������	����
�
����	L����{@C��������E��
�FE �����	
!#���;@ �����o���4���o������������������P�����o	�J'	B����@ ��	N����������N����<���	��O���
�����
	0�qJ'E2�C��!c!*��
�
������	�GL�l�;�����[:;�����R��
�%�����C�
	�	�����	������EQ�������;���w��
	�����������	���!U��������<��
�A�����
���
� ����
����!#����@ �����A!*�����	F��� ��C����ST�������;�
}B���4����	�~s�
�e^���
	������
<��'�����e	�J4	�����@ ����e<2��i8�wnC�����������E����
����
��J
:;���BJD���
	��.����O!#���;@ �����z��������������0i8�
�#nF�����O:;���BJ¸}����;@NE ����
<��
��~
XW�����^�����=��������������������i8���
�#n0���������\����������������!Y����ST�������;�F��	�����	
XW�����o����ST�������;��� EQ��	�	��
<���Jb����� � �
�����
���=��������������������BXW��	��L�
������@NM
E ����
<��
���4�
�����V:'�
��� ��Q����@NE��'�.������;� ��2���;��
	������������?����
	��0�
�=���	��
��!L�4��@A���<��������	o��������������>}B������
~�����������0�����KXU�����4	=��b��
�7G
������	��NE�����<��
��@N	��%���^�����N����������u��F��!Y��J4EQ�����������������<��
���
����J4M����
E���J4	��
��	BM5�
��	�E��
������i7jbklkoM7�
�
���A���CrCjAM5���
���[nLE �����
�
��������@NE��'�����
�����������������������	z��!F�����^!#�'���������0XU�����
�����V�������z����������
	��s��l��
�7�
�������
	��W<2�W�����	��;� �<���JO��u'E2���������N���\<Q�W���;��	��
�������<���JO	��
@NE��
���I���
	�����:;�Y��� ��O�
�C�����?���	��?��!Q���w�	�	�������7�����;���	���M7�;����
�����N���
	�������<��'�����
	�J4	�����@N	�G 5��	B�?<��'�������?�����	����4X����
�
�0���
	������
<��'�����o	BJ'	�����@A	Y	�������
<Q���������A��� ���������@C��������E����4����	�	����A	�J4	�����@N	AX����������b���;@N��	A���
������
���{@N�����=E����4����	�	��
���{��������	��I�������
��	�����w�<��
�
�V�KJ^XU�����
�D	B���
�
�
�
�
������JF<Q�U@A��;J�����������	c��! @=��������������U<Q���������O��� ��c��! �����U��J4EQ��M
���������
����"E �����
�
���"����@NE��'������	0< �	������;�{j=klk ���\rCj¾@N�4������	�G
�����
	%	�����w�<��
�
���qJ���!����������������������
�����
	B�"E �����
������@A�������
	%�
	%�w���������J
�����A���l�����=E�����EQ���B�KJ���!U�����At ����M7��������>���������������
�����
	��C@N�4�����
	
��� ����T�	��������4��@C<2���W��!IE����4����	�	�����	0�����[XW	�� �����������w�J'	W�����w������
���b!#�����.���
���o� ��.=!#���;@ �����^}B	B���;�������~b�������s�������;����X E�����EQ���BM
���
��� ��
��Jl���z���LM0�	L���������N�
	\���zE���J4	��
����
�VJ{	���E ���������s@A��@N���BJ
	�����������b��� ��N������eE����4����	�	������s���������Y���[XU��:;���N����@N�������PXU�����
�
�������^���z������E��������	�	��
���z������������o����@AE��'�.����
���^�����RGA�q���������R�
�����N�
���������	��
���z����	�������E �����J^<2���KXU�����^�����AE���������	�	��
���l����^�����
@A��@A���BJ=�������	�	�	�EQ������	W���l���JA:����o�0����@A������w��l����.�����������������
�
	N	��
@AE��VJ>�����=��e�
	�	����z�
�>�����ljbklkbM5�
�
���z���brCjAM7�
�
���z@N�4�'M
���
	��I����s�����
	F!#����������=��
�����A��������	����z������	��
�������<����A�
�������
��	��
�
��':���;�.����P��!'�����P�����������������;����	��I@N�4������	"X���������������@A��	%���W	������M
�<��
�
���qJ;G
�"�b	���@N@=����
º���� ���������O�����@=��;JlE2�����������w��"�
@NEQ���B�.����0����@NM

E �������V:��c��':���;�.�����	%��!;������@A�	�	���:;����J0E �����
�
��������@NE��'������	R< �	����
���\���������������������
�����
	B��E �������
��@A	%�[:;���R�����P��	�� ���E �����
�
�����;�%���
	�M
�����
<��'�����©��u�������	��
����	N��!������o:;���©�0����@=����e�����;�V�.��U����@NE��'�����
@A�������
	�GD�¿���
�
���Y�
�>������@A	O��!W�����o	�E2�����e��!0E2����!#����@A�����^:������M
����	����;@NE��'�.����
��� ��c�.�	��4	�������.���;!P�����N�KXU�l����ST����������E �����
�
���
E ���������;@N	b� �	b����	o��XW�Z}BE2�4���
~>��!��E�E��
�
��������;�����;@A��
��	b!#���
XW���
�.���V�z�
	z@C���.�¿<Q���������z	�������������� ��¿�����^����@AE2���������
���R�WXU�
� �:;�=����������^��� ����"�
�s������@A	\�;!Y@=���J{���������F�����V���
�����E ����@A��M
������	��I	����.�©�	C	�����w�<��
�
���qJD�	F�����b�4��@C<2������!�E����4����	�	��
���{��������	
�����[XW	��Y����<���	�������	�	��Y���������!#�������������� ����
���R�U����e����������J©���
	�	���M
E ����
���R�'��J4EQ����������������Tt ����M5������
�oE �������
���T����@AE��'������	?��!%������!#�'M
�������L����o<2�\��u4EQ���������o���O�����;:'�
���������;�VJb���'��EQ����!*����@Z�������
�?���w�	�M
	��
����8�2���;���	���M7��������{���������� �����:;��	�G?����������!#�;�����QXU������������'t �������
��� ��C�����o������ ��Y����	��
���¿i7�	C��E�EQ��	����D���{@N�����=	��
@C���
������;�2nL��!
@=�	�	���:;����JDE �����
�
���?���;@NE��'������	N�
��	�E���������<;J©	���@N�b:�����w��;��	A��!
jbklklm����0r�j���	��@A��������U��!PgIÀ�+�9O����������U��� ��{6 �.Gc�?����t ����M
��������bE �������
���T@A�������
	?����b�����L������ ��T@=��'M5����	��
�������b����@AE��'��M
�
���o	�J4	�����@N	L< �	����s�;�{�����O����������E'��	F����^E �������
��@A	L��!�������	��
@A�������
	\���l� �:;�N�����N!#�'�������NM0��V�����;�����R�"!#����@Á�����N:;���BJ^�������J
�4��	B�������;�����BJoE2����	�EQ��������:;���������
	�!#�'�������\@A�Jb������	�����@ 	��O�������G

4. SUMMARY AND CONCLUSIONS
���L� �:;���.������zC����@NE��'�.������;� ��2:'�
��X|��!%�����A,.-�9�9T+�,�3768-�9�6*_�3

/N-�d�+�)V_p��� �������N@N�;	B����J{	������������s�
�����������\���;�;����u4��	��"	����.�D�	
������������
��������
��������e��B���Vt ���w����
�;�����
�
���;��������i7jbkzklm[n��Y���A�'J�M
� �@A����	L��!P����@AE�����u�	�J4	�����@N	OiqrCjon��R������������s���;@NE ������s����
�����������	B�����|������	��D���������������
�����
	���E �������
���F����@AE��'��������@A�������
	
XW�V���©�����b:;���'M5�0����@=����e@N�4�����U< �	����©E �����
����������.������������������	
��!W������}����w�	�	�������
~^���
�����.��?����@NE��'������	�G©�q��E ��B���
�����
����U�	O�����
�����������������;����	��P@A�������
	P��������E �<��
�W��!�/N&�_._.6#`�+�)Va�$'&�(�&�)#)
+�)26#9���-�(3�
/N&�3867-�9A$2(�-�,�+�_._.6#94v��A������Jb����0����������!#�;�����
���;�V���
@=����W���������� �����	
!#���Y��=���������� �����:;�W�E�E����;����N���\����	����;�N��!T���
������JOE �����
�
���2���;@OM
E��'������	?�;!R�����L!#�'��������M�����R��@N�;�����[:;��������o���������� �����:;������������E'M
��� ��
��J;�������������������������
��Js�����!#���������
��� ��
��J^����������F����@A�����N!#����@
�����L������������
��� ��RE �����
�
���%����z���
	B�����
<��'�����z���;@NE��'���
���O	�J4	�����@N	�G
���D� �:;�D����������¶��� ��l�����D���������������
�����
	B�{@A�������
	l����¶<Q�

:'����XU�����	%@N�4�����
	%��!Q`�+�(�a�fc9T+3�8v�(�&�6#9T+�d�$'&�(�&�)#)w+�)V6#_./C���	R������E�����M
����	�	��
���b��������	��R������������
��< �	��
����EQ��������
����	��%����C@C�����{	��
@AE������
��� ��=�
�=���	��0��!T�����W@A�����W!*�@N�
�
�w����T,.-�&�(�_�+ 5(6� �8v�(�&�6#9T+�d�E �����
�
���
����@NE��'�.������;�{@A�������
	�GC�0���\������J�XU�����
�s���;��������:��<��
�A���;@NE��'��M
����	P����	��
�������=������������
���\���\���������������������
�����
	��PE����
�����
E�����	Y<2�W��u�M
E2���������b���O� �:;��	���:;������T����������	?��!"@=���������������@N������E����4����	�	�����	
��� ��=���JN��!2�����W@=�	�	���:;����J�E �����
����� ���;���	��W������
�=����.������������������	
��� ��c� �:��Y��:;����<2�����O<�����������<��'�c	����.����J'E2�����������
�����t ����M7�;����
�����
E �����
�
���0����@AE��'������	=XU�����
��<2�{:;���BJ�!#����� �@N���;�.�����J�����ST���������
!#����@ �����\E �����
�
���R���
�����.��R����@NE��'������	W�	?XU�\�4���[X�������@ ����� �J
�
�D��
@N�;	B�F��:;���BJs��������������	�E2������Go���A� �:��A����	�����	�	����D	���@A�N��!
�����Y@N��	��"E����;!#������������ST������������	�<Q���KXU�����F�����Pt ����M7��������C����F�����
���;���	���M7��������^E �������
���c@N�4�����
	F��\<2�����^�����N����.������������������c����:;���
i8��!qG������=� ��������b��!�E����4����	�	��;��	O����D@A��@A���BJ n��I����D�����=!#������M
���
��� ��R�
��:;����i8���[X|�
	?�����L�
��!#�;��@A����
���o����E�����	����;�����R�2	B���������l����
E����4����	�	����2n�GI���?� �:;����
	��\����������O��� ����;�
�O@A��;JC����	�EQ������	��������
������ ��Pi*��� ����
	���E��;J'	��
����
��J=������
�
º����2nY����@AE��'������	W< �	����z�;�b�����
�����������������;����	��0E �������
��@N	0��������z�����F�
��!#�;��@A����
���'M5E���������	�	��
���
E����
������E��
��	���� ��IXU�Pt ���C�
�����������������
�����
	B��M5�
���;�P����@AE�����uF	BJ'	B����@A	
�
��������������?�������
��EQ�������;���w��
��Je��u'����<����b	���:;������W@=[�����A��':���'M
�.�����	F�[:;���L�����A���w�	�	��������E �����
�
���Y���������	������
<��'�����s����@AE��'�������
	�J4	�����@N	�G
�¿���
���O=��������Jzt ����M5������
�R�%@A�	�	��V:�����JlE �����
�
���������������������;����	��

@A��'M7@=���������@AE��'�����b�
	=J;���o���><2�^<����
�V���0�V�o����¿��������
��J�<Q�
����������l��� ��0	���@N�F����������E'��	��Q�
�����	�����lE �������
��@N	0	B����@N@A�
���
!#����@ ��������������������������I���������������
�����
	���@A�������
	�	B�������
���{��������X������
� �:;�\���������'Jo!#�������z	���@N�\�E�E��
�
������
���o�
�b�����\�����������0����z�����'M
����@NEQ������BJ=����	��
���o��!%����@NE��'�����?	BJ'	B����@A	�GI² ���?����������	�������	�	��4XU�
������J\@N���������;�F�������E��
�P�;!'��u'�@NE��
��	%!#���;@|�����Y��������!�� ����'X?����
����	��
���RG 
 ���0XU���
�VM5�4����XW�A��u'�@NE��
�W�
	P������� % � #�,�6#(�,�146*3�d�+�_�6
v�9 G
�5�F�E�E2�����	�:����BJ{E��w���	��
<��
����� ��L�����O���������������
�����
	��\���;������E'�F��!
������	�����JbE ��.�4�
���O�:;���BJ=�w��������4��@C<2���U�;!%���
��@N�����.��BJ=E����4����	�	BM
�
���F��������	�X������=L��������Y@=���JC����@N@C�����
������
���O���������������
����	Y<2��M
�KXU������������	��U��������	I� �	���
������'JF!*�������C����	c�E�E��
�
������
�����
�O���	��U��!
�������2+�(�a %R&�(7v4+N&�92d ��) 37(�&.%R&�(7v4+ � a�_.3q+�/ #�9 3K+7v�(�&�3768-�9Dd�+�_�6
v�9 _
�� % � #=&�9Qd � % ��#��0(�+�_5$�� ��G �?���=�����w����
����	����
E�<2���KXU�������*5��4�
i$��5I�4�BnO��������;�����������
�����
	��A�����������@A�������
	N� �	A<2������	B�������
���
	��������L�����N��¼�½���	Fi8��G ��G
�%� H��\² �0�5�%� � ���U�5�#n�G
H0��������������@N�����O���������;����u'�@NE��
�N��!P�����NEQ�������;���w����'���
�
���qJ{��!

�����N���������������
�����
	B�FE �������
��@Á��	L�����N$2(�-�,�+�_._�-�( �L6#9 �L/A+�/N-�(�a
��������V�������������{����	����;�RG¸�?���{@=��
��@A������:�����
����!#���b��@C<2�������
���
	���@N�o!*�	B���Y	�EQ�����w���E�����E2��	��{¨U°	�0	N�
��	������o�����z@A��@A���BJD�
	O���
E ��B���w��
��J{�[:;��������@A�C�����A�����[X��
���z���Es<Q���qXU�����s�����b¨U°	� ����
�����F@A��@A���BJz�������	�	W	�E2������	0�
�l����������@NE2�;����BJo���
���������;���������;@OM
E��'������	�G��5�?����o<Q�L�����������Jb����;�����b��� ����'!#����@ ��o��������V��������������
:'����XWE2���
�����P�����
	O����	��
���©�����������
�����l����E�����	�������	A^������	����������<��
�
����E ��B�������\!#����@ �����\��	�� ��Q:����o�0����@=����o����������E'����� ��W@N��@NM
���BJ^����^E���������	�	�����	\����C���
�������J�	���E ���������R�R<2�����^!#���������
��� ��
��J
����eE���J4	��
�������J;G>y0�[XU��:;�����P�����oE���������	�	�����	N�
�%i8	��
���o��!.n�@N��@NM

143



���BJz����	��
���z�;���VJzE ��B���w��
��Jb�[:;��������@A��	������FE��;J'	�������%	���E �������
���
<Q���KXU������E���������	�	��
���©�����	B���;���������!#���������
��� ��
��J��������{����	����
����M
���
���©<Q���qXU�����eE���������	�	�����	A����e@A��@A���BJD����@A�����	�G>����������!#�������
�������������O��!������b�qX?�{��u��@NE��
��	O�
	N{	�����E>���[X?����>��������JD�
@AE�����M
@A�������
������;Je��!0�����l�����������������;����	��=@N�4�����
	A���e�����l� ����'X�����
<��'���"������������"��s�
�
�
��	B��������
���^��!P���[X 	���@N�O����������E'��	\!#���;@ �����
���������������
�����
	B��@N�4������	c� �:;�U!*�������N�E�E��
�
������
���C�
�C�����?����	��
���O��!
�����C}�����X©�;������������
����~0�;!������'M5�����������������;����	��I���
�����.�������@AE��'������	
���?�������
�?����@AE2����������	�G
�?���=	B�.����A��!U�����=��B�FXW�����D�V�C����@A��	F���l�����A���������������
�����
	B�

@A�������
	�������������
�L�E�E��
�
��������;�l���=@A�	�	��V:�����JzE �����
�
��������@AE��'��M
�
���D�
	b	������
�0��������	=�
��!*�����J;G¸�����
�
�{@C���.����!L�������������������������
��u'E2�����
@N���;�.���XU�;���l� �	\<Q�����s�������A�<Q���'�\E����;E2���B���
��	\�;!P�����'M
����R������	W����o�����
�
���
�����'����@A��.'�������\!*���������@A��
��	U��� ����'XW�����
	������'J4�
���C�����\E2�[XU����	���!"������	��L@N�4������	����
��	B������o��!���@AE��
��@A���;��M
�
���b����R�T	���<�	���������������J��T��:����� ��������=�����C������ ���� ����'X?����F��� ��
XU�;������<2�A����	��
���������;�^�����A���������������
�����
	B��E����
�����
E��
��	��"XU�A	B���
�
�
������ ��
��Je������Je	��
@C���w����zXU�����4�����;	=��!\���jbklk �;�=er�j �
�
	���!w�KX?����0i*��� ��I������	�����	���@N�P!*�@N�
�
�
����[�����'M5�����������������;����	��I��������M
���������
�����
�����.������;@NE��'�����.n�G"�����
	��[���[XU��:;�������
	%���F���?X?�JL��F�
������M
������
���o��� �����:4�
��XU�����	W����������E'��� ��
��Jo������
�
º��<����\E �����
�����%����@NM
E��'������	��������?���������������
�����
	���@N�4�����
	�����?���������������;���
������J�����������
�
	�M
���
���;�%��<�	����
������������������JL@N�����	%��� �������%�����P��������������	��.������;!4	�����M
�������O����������.�������
����J;�R����	��
�����
�����T�
@NE��
��@N�������
���b����R�R��:��������'M
��
��J;��@=�	�	���:;����J=E����4�����������A�;���4���
�����VJz���������������
�����
	���t ����M7�;����
�
E �������
���%����@NE��'������	0��	0	B���
�
�"O���4�A!*���!*�����������l���������:�����G?y0�[X�M
��:;�����[E�����@A��	���	T��� ��"	������LE �������
��������@AE��'������	RXU�����
�L���;���R��!#����@
	�����w�<��
�����KJ�	������.�<��
�O!#���L��������J^@A�	�	���:;�OE �����
�
���
��	�@ ���z����<���	���M
����	�	0���l�����CE�����	�����������!������
	��F���=���������!#���������;���� ����
�����
�l�����
E�����	�������������!8��
��������	%���W����������J\�3�A���
������J;��XW���
�T+�`�+�9�371�&�)#)Vaz@=����
�����
	U���������:;�;�Y@A�����W��� ��AX?���B���=X����
�
��GI² ���Y������	��0�����	�����	���XU�
!#�����'��� ������������������
�����
	B��t ����M5������
�NE �����
�
����@N�4������	�� �:���0:;���BJ
E�����@A�
	��
���0!#�'���������;�����c������J��
�C�����
����V:�����JF	�E2������t ��������	I	����.�O�	
@=��.���
�����
��������
���\�;� � #��C<��'�U��
	��F�	������W������������J4�
�����<�	B��������
@A�������
	?��!%�����L�������������M7E�����EQ��	��\@A�	�	���:;����JAE �����
�����T����@AE��'������	
��!"����@A�������[X\G

5. ACKNOWLEDGMENTS�?������'�������c��	c�����������J���������<'�����C��� �����'H0��� '�;����@ H0� �	B�.�M
	��
���'H0�
!#�����oy0��<��
���W����l��J4��:'�w�� �0�J;� ��
�R�� �0����:;����	����KJ=��!"�q�
�
��M
�����
	�G0�?���
	0XU�����oX?�	�E ��B���w��
�VJz	���E�E2�;�B�����{<�J 	 � � ' � #&' � �
� � � 	 'Y(�-�v�(�&�/C�\�������������������@C<Q��� � ����� � � ��� � � ��������C����
	 � � ' �e] � � # 'U(�-�v�(�&�/C����������������%�4��@C<2��� � ��������  � � ��� �� �	���
�?6 ��)V68-�v�(�&.$ À�a

 �����������	���������������� �!#"%$'&���(�)���*,+�-�*,+/.0&�+�1,*,+�23��4'��2���*,�5��+��

�6)���&7���7���78�!:9;&=<><?)�@�1A� !CB'4D*,EF��&�1HGJI6K5LM!�N�O�O�P

 �KRQTS6�VU?���5�W�6�72�4DE3!C�5�CKX��Q�2�4D4F 7!CYR�CZ��[S64D&�+���*,+[!\"D]RUT^	9_9`�ba

(�1,2���23+=������*,&�+�E'&�c#.�2�)�4D��1d^= �EF��2���ED8�!�*,+e"�f�g�25$_&7��(�)���234DE���+���f0g�2
B'4D��*,+[h_<#2�4DED(�2�i3��* j�2�E0&�+lk�)�����+���+��l��4F��* mWi�*,�71T9`+=��231,1,*,-�2�+�i32�8�!Wn��CYR�
B'4D*,+��W!H$6�TY�#k0����2�+oGA2���E�� LM!qp\1,ED23j	*,2�4R^	i�*A��<\)�@�1A�r.0&�4F��gsk�&71,1,��+��C!
Put7v�t

 �UdKRp?�wY�0�61,1,23+[!RKX��K23+�+�2��� 7!�"%Z6(	��*,��*,��*,+�->$'&���(�*,1,234DE�cx&74

�l&	��2�4D+��64DiMg�* ��2�i3��)�4D2�E�8�!���&�4D-��7+�K�7)�cx���7+�+[!�N�O�O�P

 �.0�R^=�ef����+���EF����ED*,&�!W9`+=��4D&	��)�i3��*,&�+:��&�+�2�)�4D&�E�i3*,2�+�i�2R�7+���i�&��ba

(�)�������*,&�+��71�@�4D��*,+>��g�2�&74F �!��e1,2�i3��)�4D2y-7* j�2�+z*,+{�.�.$_B'f|ED2���*,+��743!
B'2�iM�	���7+�9`+�ED��* ��)	��27!WI�9;I$�!�Q��71,1TN�O�O=N

 �R^	k6B}�eY��B��W�6EDg	@� 7!{"��62�ED*,-�+:cx&74��rB'4D�7*,+�8�!:~q*,1,23 7!dP�t��7O

 B'�UdU[�l�5��k5�	B'��1,1,�74D�[!T"'�6+r*,+=��4D&	��)�i3��*,&�+X��&�+��7��)�4D��1�i3&���(�)	���7a

��*,&�+�8�!W�l9`f�<?4D2�E�E3!dPut7t=�

 $�Z�K6�S���$'&�)�1,&7)�4D*,E�!�n����6&�1,1,*,�b&�4D27!�f��K*,+���@�2�4D-�!�"M�6*,EF��4D*,@�)���2��

^= 	ED��2���E3h?$_&7+�i�2�(	��E\�7+��r�62�ED*,-�+�8�!5�74D�b2��[� !=�6����*,E�&�+�ad~�23E�1,23 7!	N�O�O�P

 $_k^�pH��<T�'^��}$'g=)�4DiMg�1,��+��C!'fR�\n��}^	2;�F+�&u�0E��=*A!'87f0g�2�$'&���(�)	���7a

��*,&�+��71dB'4D��*,+�8�!���9;f�<?4D2�E�E3!dPut�t�N

 $�ZYT�6�����H$'&�4F 7!#�5�#Q��7g��� 7!Hf�Tk��uj�2�1A!0"�.6�lY�^	(�2�i%��4D&�E�i3&�(� Ch

�6+�p?�	(�2�4D*,��2�+�����1,1  y��i�i�2�EDE�*,@�1,2b<#��4D����*,-���cx&�4��6)���+���)���$'&��b(�)��Da
*,+�-�8�!��7��g:~�&74D�	EDg�&�(�&7+�<\g� �ED*,i�E0��$'&7��(�)�������*,&�+[!WB'&7ED��&�+C!dPut�t7�


 �p}���������W��2�1,&�4D��2�!�n��W������&u �2�46GA2���E3� LM!?"M$'2�1,1,)�1,��4}��)���&���������h
��<#��4D�71,1,2�1[�l&	��231,8�K1,)=�'2�4���i�����23��*,iR<\)�@�1A�,!TP�t�t�t

 S�n=Z�������YR��S��4D2% �!6���0^���n7&�g�+�E�&7+[!/"%$'&7��(�)���2�4DE/��+��z9;+�a

��4D��i%����@�*,1,* �` Ch���S)�*,��2R��&���g�2�f�g�2�&74F �&7c\.�<?a;$'&���(�1,23��2�+�2�EDE�8�!y~��
k5�WQ�4D2�2����7+���$'&�� !C^=��+lQ�4D�7+�i�*,EDi�&�!W$'��!TP�t=��t

 S�Y����:���7�rS6��4D��&7+[!T"M��&	��2�1,E\&7cd����EDE�* j�20<#��4D�71,1,2�1,*,E���hd�6+���1  =a

E�*,E#&�c�$'2�1,1,)�1,��4T�6)	��&��������6��+��b.02�)�4D��1�.023�;�'&�4D�=E�8�!^	(�4D*,+�-72�4FaA]}2�4D1,�7-�!
Put7t=�

 S9D^	<?�s����S6*,@�@�&�+�E3!�<T��^	(�*,4D���=*,E�!?"�Ud2�i3��)�4D2�E�&�+:(���4D�71,1,2�1Ci�&7��(�)�a

���7��*,&7+�8�!V$'����@�4D*,��-72�9;+���� 1\^	2�4D*,23E6&�+�<#�74D��1,1,2�1H$'&7��(�)�������*,&�+[!d$'���Xa
@�4D*,��-725I�+�* j��}<?4D2�E�E3!TP�t�t��

 S5Z�����qp��TS6&�1,2�E3!T^��d�l�74F��*,+�2��7!'"M.�23)�4D��1#��+��y�6)���&7���7���:.�2%�Da

�_&74D�	ED8�!lK1,)��_2�4_�6i��7��2���*,iR<?)�@�1A� !��6&74D��4D2�iMg=��!dPut7t7O

 S9FYT���0����S6*,@�@�&�+�E3!u~���Y_ =�D��2�43!�"MpH�ri�*,2�+��T<#��4D�71,1,2�1��61,-7&�4D* ��g��bE�8�!

$'����@�4D*,��-725I0+�* jC�}<?4D2�E�E3!dPut�v7v

 k��H�RK6��^���k0�u ��=*,+[!#"M.02�)�4D��1W+�23�;�_&74D�	E0h?��i3&���(�4D23g�2�+�ED* j�2�cx&7)�+�a

������*,&�+�8�!l���7�=�_2�1,1d�l�7i���*,1,1,�7+/9;+���� 1A!TPut7t7�

 kZQHQT�:���	k0&7�C���7+�+[!#"�<#��4D����*,-���E?&�cC�64F��* mWi3*,��1�9`+=��2�1,1,*,-72�+�i�2�h#�

��23��g�&	��&71,&�-�*,i3��1?��$'&���(�)����7��*,&7+���1H�6+���1  	E�*,E�8�!z^	(�4D*,+�-�2�46a�]}2�4D1,�7-�!
^	*,+�-7��(�&�4D2�!dPut�t7v

 kZ�lI0��n���p_�0k0&�(�i�4D&7c���!6YR�_�l&��;�_�7+�*A!6n�������I01,1,����+[!w"D9;+�a

��4D&	��)�i%��*,&�+/��&���)���&��b�7���bf�g�2�&�4F 7!WUd��+�-7)���-72�E�!��7+��l$'&���(�)����7��*,&7+�8�!
N�+���2��[� !W������*,ED&�+�aA~�2�ED1,23 �N�O7OWP

 n���$_K6��Y�n7�7i%�72�+���&7�#!l"%$'&7+�E�i�*,&7)�E�+�2�E�E���+���f�g�2o$'&7��(�)�����a

��*,&�+���16��*,+���8�!�pH��(�1,&74D�7��*,&7+�Er*,+�$'&�-�+�* ��* j�2�^=i�*,2�+�i�2lE�234D*,2�E�!���9;f
<\4D23E�E�!dPut7t7O

 K�Y����/YR�	�s�	K�74D([!=]��	Y0�7����iMg��7+���4D��+C!T"M<#��4D�71,1,2�1���1,-�&�4D* ��g���E

cx&746^=g���4D2��	a;��2���&74F �����iMg�*,+�2�ED8�!�$_gC���uP���&�c0"Mk0��+���@�&	&7�r&�c#f�g�2�&�a
4D23��*,i��71C$'&���(�)	��2�4_^	i3*,2�+�i�2�8�!=]\&�1A�H9�GA2��[�\n��	j���+/Ud2�2�)��_2�+�LM!�p\1,ED23j	*,2�4
^	i�*A�\<\)�@C�'� �l9`f�<?4D2�E�E3!dPut�t�P

 KZR^�pH��$��?K&	iMg[!?9M�?^	2�-723j�!R"M��23��g�&	��E�*,+e+�2�)�4D&7+���1}��&	��231,*,+�-�h

cx4D&7��ED 	+���(�ED2�E_��&�+�23�`�_&�4D�=E�8�!��l9`f�<\4D2�EDE�!dPut7v�t

 ��$_<\9J�q~��#^��T��i�$')�1,1,&�)�-�g[![~��d<\* �D��E�!�"���1,&�-7*,i���1#i3��1,i�)�1,)�Ecx&�4

��g�20*,��2��7E\*,���b��+�2�+��\*,+�+�2�4Fj�&7)�E}��i3��* j	* �; 	8�!�B')�1,1A� �l����g[�\B'*,&7(�g� �ED*,i�E�!
¡ �=!TPut��	N

 �yp\<C�0��^��'��2�1 j�*,+C!}�X�}<#�7�D��!X"�p?�	(�1,&�* ��*,+�-ymW+�2%a`-74D��*,+�23�o(���4D�71 a

1,2�1,*,ED����g�4D&�)�-7g��qi3&���@�*,+��7��*,&7+¢&�c�g���4D���_�74D2e��+���E�&7c��;�_�74D2���2�iMg�a
+�*,£=)�2�ED8�!¤<?4D&	i7�¥P�v���gz�6+�+[� 9;+���� 1A��^= 	��([��$'&���([���64DiMg[� !�j�&71A�
Put	!TP�t�t�P

 �yI�UTU[�{^��C��)�1,1,2�+���2345GA2��[� LM!'"��6*,ED��4D*,@�)���2��y^� �EF��2���E�8�!sN�+��l23�[�,!

��$_��<\4D23E�E0���6����*,ED&�+�aA~�23E�1,23 7!dPut7t��

 .6p}I5P3��n��'j�&�+q.�2�)�����+�+C!/"Df�g�2yi�&��b(�)���2�4DE/��+��z��g�2y@�4D��*,+�8�!

�\��1,2RI�+�* j��}<?4D2�E�E3!�.�2%��k��uj�2�+[!TP�t=�7v

 .6p}I6N��¦n��\j�&7+{.02�)����7+�+[!X"Df�g�2�&�4F e&�c^	2�1,c�a`Y�2�(�4D&	��)�i3*,+�-��6)�a

��&��b�7����8�!�I0+�* jC�\&7c#9;1,1,*,+�&7*,E�<?4D2�E�E3!dPut��7�

 <C�6<C�0�r$���<#��(��7��*,��* ��4D*,&�)C!C"%$'&���(�)����7��*,&7+���1�$'&��b(�1,23�	* �; 	8�!6�6��a

��*,ED&�+:a?~�2�E�1,2% �!dP�t�t��

 ^�p}n�.0��f�0n���^=2F�F+�&u�0E��=*A!r"y§ f�g�2�$'&��b(�)���2�4:�7+��qf�g�2sB'4D�7*,+[�

Y�23j�*,ED* ��2���8�!¤*,+�"�f�g�2�$'&7��(�)���2�4DE/��+��qf�g�2sB'4D�7*,+[hV<H234DE�(�2�i3��* j�2�E
&�+lk0)�����+���+����64F��* mWi3*,��1d9`+=��231,1,*,-�2�+�i32�8�!�n��CYR��B'4D*,+���!C$��CY��k�����2�+
GA2���E3� LM!�p\1,E�2%j�*,2�40^=i�*A�}<\)�@�1A� !�.0&�4F��g�k0&�1,1,��+��[!dP�t�v7t

 ^	9F<}^=���s�}^	*,(�E�2�43!"�9;+���4D&	��)�i%��*,&�+���&���g�2:f�g�23&�4F �&7c6$'&7��(�)�����a

��*,&�+�8�!�<?~¢^:<\)�@�1,*,EDg�*,+�-�$_&��,!sPut�t��

 ^�Y0�H�6��^��Y��u 7!51,2�i3��)�4D23El*,+�$�^	���=N	!�"���4F��* mWi�*,��1R.�23)�4D��1�.�2%�Da

�_&74D�	ED8�!l�623(����\&�cH$_&7��(�)���2346^=i�*,2�+�i�2�!WI�9FI6$�!�Q���1,1TN�O�O�P

 ^�I6B'9J�wY�6^	)��u ���!�SX��B'*,4F�`�0*,ED��1,2oGA23��E�� LM!�"F]RU#^	9/�7+���<#��4D��1,1,231

$'&���(�)����7��*,&7+�8�!�Q�4D&�+���*,2�4DE3!W�l&74D-���+�K��)�cx����+�+�<\)�@�1A� !TP�t�t�O

 f�I�Y09J�¨�5�R���f#)�4D*,+�-�!l"%$'&���(�)���*,+�-q�b��iMg�*,+�2�4F ¢�7+���*,+=��2�1,1,* a

-�23+�i�2�8�!H*,+¢"M��*,+��[hX�¦�6)��74F��2�4D1  �Y�23j	*,23��&7c�<\ED 	iMg�&�1,&7-7 ���+��V<\g�* a
1,&�ED&�(�g� 	8�!�j�&�1A�}Ud9`©�!W.�&��}N7�7��!�Z6i3����Put=��O

 I6UTUT���wn������6I01,1,����+[!/"%$'&7��(�)�������*,&�+��71�6ED(C23i3��E�&7c5]RU#^=9;8�!

$'&���(C�_^=i�*A�}<?4D2�E�E3!dPut�v��

 ~qZUTQT�ª^W�_~�&�1,c�4D����!�"%$'2�1,1,)�1,�74r�6)���&7���7���V�7+��¢$'&7��(�1,23�	* �; �h

$'&�1,1,2�i%��2���<#��(�2�4DED8�!��6����*,E�&�+/a?~�2�E�1,2% �!dPut7t7�

 ©6�69J�6�ª$���©6�uj	*,2�43!R^���^���9` �2�+�-���43!/"�9`+=��4D&	��)�i3��*,&�+{��&><#��4D��1,1,231

�61,-7&�4D* ��g��bE�8�!6~q*,1,2% �^=2�4D*,2�E?&7+r<#�74D��1,1,2�1��¢�6*,EF��4D*,@�)���2���$'&7��(�)���*,+�-�!
GA2��[�\�5���X���C&7���u ��	LM!Wn���~q*,1,23 :��^	&�+�E3!TP�t�t�v

 �dZp'Z��|���_��&����u ���!�Q'�}p\4Di��71A!�^W��Z61,�74D*,&�)�GA2���E3� LM!X"%^	&71,)���*,&�+�E

��&�<#��4D�71,1,2�1#��+��s�6*,ED��4D*,@�)	��2���$'&��b(�)���*,+�-�<\4D&7@�1,2���E3hRUd23E�E�&7+�Ecx4D&��
B'*,&�1,&7-�*,i��71^=i�*,2�+�i�23E�8�!«~q*,1,23 z^	2�4D*,2�E:&�+�<#��4D�71,1,2�16�¬��*,ED��4D*,@�)���23�
$'&���(�)���*,+�-�!dGA23�[�\�������C��&����u ��	LM!�n���~q*,1,23 :��^	&�+�E�!CN�O�O�P

144



Concurrency vs. Sequential Interleavings in 1-D Threshold Cellular Automata

Predrag Tosic
�
, Gul Agha

Open Systems Laboratory, Department of Computer Science
University of Illinois at Urbana-Champaign, 201 N. Goodwin, Urbana, IL 61801 (USA)�

p-tosic, agha � @cs.uiuc.edu

Abstract

Cellular automata (CA) are an abstract model of fine-
grain parallelism, as the node update operations are rather
simple, and therefore comparable to the basic operations of
the computer hardware. In a classical CA, all the nodes
execute their operations in parallel, that is, (logically) si-
multaneously. We consider herewith the sequential version
of CA, or SCA, and compare it with the classical, par-
allel CA. In particular, we show that there are 1-D CA
with very simple node state update rules that cannot be sim-
ulated by any comparable SCA, irrespective of the node
update ordering. While the result is trivial if one considers
a single computation on a chosen input, we find it both non-
trivial, and having some important and far-reaching impli-
cations when applied to all possible inputs and, moreover,
to the entire nontrivial classes of CA (SCA). We also share
some thoughts on how to extend our results herein, and we
try motivate the study of genuinely asynchronous cellular
automata.

1. Introduction and Motivation

Cellular automata (CA) were originally introduced as
abstract mathematical models that can capture, at a high
level, the behavior of biological systems capable of self-
reproduction [15]. Subsequently, CA have been extensively
studied in a great variety of application domains, but mostly
in the context of physics and, more specifically, of study-
ing complex (physical or biological) systems and their dy-
namics (e.g., [20-22]). However, CA can also be viewed
as an abstraction of massively parallel computers (e.g, [7]).
Herein, we study a particular simple yet nontrivial class of
CA from a computer science perspective. This class are the
threshold cellular automata. We pose (and partially an-
swer) some fundamental questions regarding the nature of
the CA parallelism, i.e., the concurrency of the classical CA
computation; the analysis is done in the context of threshold
CA.

Namely, it is well known that CA are an abstract com-
putational model of fine-grain parallelism [7], in that the
elementary operations executed at each node are rather sim-
ple and hence comparable to the basic operations performed
by the computer hardware - yet, due to interaction and syn-
ergy among a (typically) great number of these nodes, many
CA are capable of highly complex behaviors (i.e., computa-
tions). In a classical (parallel) CA, whether finite or infinite,
all the nodes execute their operations logically simultane-
ously: in general, the state of node ��� at time step ���
	 is
some simple function of the states of node ��� itself, and a
set of its pre-specified neighbors at time � .

We consider herewith the sequential version of CA, or
SCA, and compare it with the classical, parallel (concur-
rent) CA. In particular, we show that there are 1-D CA with
very simple node state update rules that cannot be simulated
by any comparable SCA, irrespective of the node update or-
dering. While the result is trivial if one considers a single
CA, we find the result quite nontrivial, important and with
some far-reaching implications when applied to the entire
classes of CA and SCA. Hence, granularity of the basic CA
operations, insofar as the ability to simulate their concur-
rent computation via appropriate nondeterministic sequen-
tial interleavings of these basic operations, turns out not to
be quite fine enough, as we prove that no such analogue of
the sequential interleaving semantics applied to concurrent
programs of classical CA can capture even rather simplistic
parallel CA computations. We also share some thoughts on
how to extend the results presented herein, and, in partic-
ular, we try motivate the study of genuinely asynchronous
cellular automata, where asynchrony applies not only to
the local computations at individual nodes, but also to com-
munication among different nodes (via “shared variables”
stored as the respective nodes’ states).

An example of asynchrony in the local node updates (i.e.,
asynchronous computation at different “processors”) is the
case when, for instance, the individual nodes update one at
the time, according to some random order. This is a kind
of asynchrony found in the literature, e.g., in [10]. It is im-
portant to understand, however, that even in case of what

145

goodelle
Text Box
Appendix I: 



is referred to as asynchronous cellular automata (ACA) in
the literature, the term asynchrony there applies to local up-
dates (i.e., computations) only, but not to communication,
since a tacit assumption of the globally accessible global
clock still holds. We prefer to refer to this kind of (weakly
asynchronous) (A)CA as sequential cellular automata, and,
in this work, consistently keep the term asynchronous cellu-
lar automata for those CA that do not have a global clock
(see � 4).

Before dwelling into the issue of parallelism vs. arbi-
trary sequential interleavings applied to threshold cellular
automata, we first clarify the terminology, and then intro-
duce the relevant concepts through a simple programming
exercise in ��� 1.1.

An important remark is that we use the terms parallel
and concurrent as synonyms throughout the paper. This
is perhaps not the most standard convention among the re-
searchers of programming languages semantics and seman-
tic models of concurrency (e.g., [17], [16]), but we are not
alone in not making the distinction between the two notions
(cf. discussion in [16]). Moreover, by a parallel (equiva-
lently, concurrent) computation we shall mean actions of
several processing units that are carried out logically (if not
necessarily physically) simultaneously. In particular, when
referring to parallel (or, equivalently, concurrent) computa-
tion, we do assume a perfect synchrony. This approach is
primarily motivated by the nature of CA “hardware” and
the way classical CA compute.

1.1. Capturing concurrency by nondeterministic
sequential interleavings

While our own brains are massively parallel computing
devices, we seem to think and function rather sequentially.
Indeed, human mind’s approach to problem solving is usu-
ally highly sequential. In particular, when designing an al-
gorithm or writing a computer program that is inherently
parallel, we prefer to be able to understand such an algo-
rithm or program in the sequential terms. It is not surpris-
ing, therefore, that since the very beginning of the design of
parallel algorithms and parallel computation formalisms, a
great deal of research effort has been devoted to interpreting
parallel computation in the more familiar, sequential terms.
One of the most important contributions in that respect is
the nondeterministic sequential interleaving semantics of
concurrency [14].

When interpreting concurrency via interleaving seman-
tics, a natural question arises: Given a parallel computing
model, can its concurrent execution always be captured by
such sequential nondeterminism, so that any given parallel
computation can be faithfully reproduced via an appropri-
ate choice of a sequential interleaving of the operations in-
volved? The answer is “Yes”, For most theoreticians of

parallel computing (that is, all the “believers” in interleav-
ing semantics as contrasted with, e.g., proponents of true
concurrency, an alternative model not discussed herewith),
the answer is apparently “Yes” - provided that we simulate
concurrent execution via sequential interleavings at a suffi-
ciently high level of granularity of the basic computational
operations. However, it need not always be clear, how do
we tell, given a parallel computation in the form of a set
of concurrently executing instructions or processes, if the
particular level of granularity is fine enough, i.e., whether
the operations at that granularity level can truly be rendered
atomic for the purpose of capturing concurrency via se-
quential interleavings?

We shall illustrate the concept of sequential interleaving
semantics of concurrency with a simple example. Let’s con-
sider the following trivia question from a sophomore paral-
lel programming class: Find a simple example of two in-
structions such that, when executed in parallel, they give
a result not obtainable from any corresponding sequential
execution sequence?

A possible answer: Assume ����� initially and con-
sider the following two programs

��� � � 		� �
� � � 	
vs.

��� � � 	��� �
� � � 	
Sequentially, one always gets the same answer: ����� .

In parallel (that is, if the two assignment operations to the
same variable � are done concurrently), however, one gets
��� 	 . It appears, therefore, that no sequential ordering of
operations can reproduce parallel computation - at least not
at the granularity level of high-level instructions as above.

The whole “mystery” is resolved if we look at the pos-
sible sequential executions of the corresponding machine
instructions:

LOAD ������� LOAD �������
ADD ����� 	 ADD ����� 	
STORE ������� STORE �������

There certainly exists a choice of a sequential interleav-
ing of the six machine instructions above that leads to “par-
allel” behavior (i.e., the one where, after the code is exe-
cuted, ��� 	 ); in fact, there are several such permutations
of instructions. Thus, by refining granularity from a high-
level language instructions down to machine instructions,
we can certainly preserve the interleaving “semantics” of
concurrency, as the high-level language “concurrent” com-
putation can be perfectly well understood in terms of the
sequential interleavings of computational operations at the
level of assembly language instructions.

146



2. Cellular Automata and Types of
Their Configurations

We introduce classical CA by first considering (deter-
ministic) Finite State Machines (FSMs) such as Determin-
istic Finite Automata (DFA). An FSM has finitely many
states, and is capable of reading input signals coming from
the outside. The machine is initially in some starting state;
upon reading each input signal (a single binary symbol, in
the standard DFA case), the machine changes its state ac-
cording to a pre-defined and fixed rule. In particular, the
entire memory of the system is contained in what “current
state” the machine is in, and nothing else about previously
processed inputs is remembered. Hence, the probabilis-
tic generalization of deterministic FSMs leads to (discrete)
Markov chains. It is important to notice that there is no way
for a FSM to overwrite, or in any other way affect the in-
put data stream. Thus individual FSMs are computational
devices of rather limited power.

Now let us consider many such FSMs, all identical to
one another, that are lined up together in some regular fash-
ion, e.g., on a straight line or a regular 2-D grid, so that
each single “node” in the grid is connected to its immediate
neighbors. Let’s also eliminate any external sources of input
streams to the individual machines at the nodes, and let the
current values of any given node’s neighbors be that node’s
only “input data”. If we then specify the set of the possible
values held in each node (typically, this set is � � � 	�� ), and
we also identify this set of values with the set of the node’s
internal states, we arrive at an informal definition of a clas-
sical cellular automaton. To summarize, a CA is a finite
or infinite regular grid in one-, two- or higher-dimensional
space, where each node in the grid is a FSM, and where
each such node’s input data at each time step are the corre-
sponding internal states of the node’s neighbors. Moreover,
in the most important special case - the Boolean case, this
FSM is particularly simple, i.e., it has only two possible
internal states, 0 and 1. All the nodes of a classical CA
execute the FSM computation in unison, i.e., (logically)
simultaneously. We note that infinite CA are capable of
universal (Turing) computation, and, moreover, are actually
strictly more powerful than classical Turing machines (e.g.,
[7]).

More formally, we follow [7] and define classical (that
is, synchronous and concurrent) CA in two steps: by first
defining the notion of a cellular space, and subsequently
that of a cellular automaton defined over an appropriate
cellular space.

Definition 1: Cellular Space � is an ordered pair��� ���
	 where
�

is a regular graph (finite or infinite), and
� is a finite set of states that has at least two elements, one
of which being the special quiescent state, denoted by � .

Definition 2: Cellular Automaton � is an ordered
triple

� ���� ����	 where:
- � is a cellular space;
- � is a fundamental neighborhood;
- � is a finite state machine such that the input alphabet of
� is ��� ��� , and the local transition function (update rule)
for each node is of the form ������� ��� ������� for CA with
memory, and �
����� ��� �!� for memoryless CA.

The local transition rule � specifies how each node up-
dates, based on its current value and that of its neighbors
in � . By composing local transition rules for all nodes to-
gether, we obtain the global map on the set of (global)
configurations of a cellular automaton.

Assuming a large number of nodes, there is plenty of po-
tential for parallelism in the CA hardware. Actually, clas-
sical CA defined over infinite cellular spaces provide un-
bounded parallelism where, in particular, an infinite amount
of information processing is carried out in a finite time (even
in a single “parallel” step). Roughly, the underlying cellu-
lar space corresponds to the CA “hardware”, whereas the
CA “software” or program is given by the local update rule
� . The global evolution (or, analogously, massively parallel
computation) of a CA is then obtained by the composition
of the effects of the local node update rule to each of the
nodes.

We now change pace and introduce some terminology
borrowed from physics that we find appropriate and useful
for characterizing all possible computations of a parallel or
sequential CA. To this end, a (discrete) dynamical system
view of CA is helpful. A phase space of a dynamical sys-
tem is a (finite or infinite) directed graph where the vertices
are the global configurations (or global states) of the sys-
tem, and directed edges correspond to possible transitions
from one global state to another.

As for any other kind of dynamical systems, we can de-
fine the fundamental, qualitatively distinct types of (global)
configurations that a cellular automaton can find itself in.
The classification below is based on answering the follow-
ing question: starting from a given global CA configuration,
can the automaton return to that same configuration after a
finite number of (parallel) computational steps?

Definition 3: A fixed point (FP) is a configuration in
the phase space of a CA such that, once the CA reaches this
configuration, it stays there forever. A cycle configuration
(CC) is a state that, if once reached, will be revisited in-
finitely often with a fixed, finite period of 2 or greater. A
transient configuration (TC) is a state that, once reached, is
never going to be revisited again.

In particular, a FP is a special, degenerate case of CC
with period 1. Due to deterministic evolution, any configu-
ration of a classical, parallel CA is either a FP, a proper CC,
or a TC.

147



3. 1-D CA vs. SCA Comparison and Contrast
for Simple Threshold Rules

After the introduction, motivation and the necessary def-
initions, we now proceed with our main results and their
meaning. Technical results, and their proofs, are given in
this section; discussion of the implications and relevance
of these results, as well as the possible generalizations and
extensions, will follow in Section � 4.

Herein, we compare and contrast the classical, concur-
rent CA with their sequential counterparts, SCA, in the con-
text of the simplest (nonlinear) local update rules possible,
viz., the CA in which the nodes locally update according
to linear threshold functions. Moreover, we choose these
threshold functions to be symmetric, so that the resulting CA
are also totalistic (see, e.g., [7] or [22]). We show the funda-
mental difference in the configuration spaces, and therefore
possible computations, in case of the classical, concurrent
automata on one, and the sequential threshold cellular au-
tomata, on the other hand: while the former can have tem-
poral cycles (of length two), the computations of the latter,
under some mild additional conditions whose sole purpose
is to ensure some form of convergence, always converge to
a fixed point.

We fix the following conventions and terminology.
Throughout, only Boolean CA and SCA are considered;
in particular, the set of possible states of any node is ��� � 	 � .
The terms “monotone symmetric” and “symmetric (linear)
threshold” functions/update rules/automata are used inter-
changeably; similarly, “(global) dynamics” and “computa-
tion”, when applied to any kind of an automaton, are used
synonymously. Unless stated otherwise, CA denotes a clas-
sical, concurrent cellular automaton, whereas a cellular au-
tomaton where the nodes update sequentially is always de-
noted by SCA. Also, unless explicitly stated otherwise, CA
(SCA) with memory are assumed, and the default cellular
space is a two-way infinite line. Moreover, all the underly-
ing cellular spaces throughout the next two subsections are
(finite or infinite) lines or rings.1 The terms “phase space”
and “configuration space” are used synonymously, as well,
and sometimes abridged to PS for brevity.

3.1. A simple motivating example

A 1-D cellular automaton of radius � is a CA de-
fined over a one-dimensional string of nodes, such that each
node’s next state depends on the current states of its neigh-
bors to the left and right that are no more than � nodes away
(and, in case of CA with memory, on the current state of
that node itself). In case of a Boolean CA with memory,

1We have already generalized some of the results that follow to more
general cellular spaces, but, for the reasons of conciseness and clarity of
exposition, those results will not be discussed herein.

therefore, each node’s next state depends on � � � 	 input
bits, while in the memoryless case, the local update rule is
a function of � � input bits. The string of nodes can be a fi-
nite line graph, a ring (corresponding to “circular boundary
conditions”), a one-way infinite string, or, in the most com-
mon case one finds in the literature, the cellular space is a
two-way infinite string.

We compare and contrast the qualitative properties of
configurations spaces, and therefore dynamics or possi-
ble computations, of the classical, parallel CA versus the
dynamics (computations) of SCA. Sequential cellular au-
tomata (SCA) and their generalizations to non-regular (fi-
nite) graphs have been already studied in the context of a
formal theory of computer simulation (see, e.g., [2-6]).

There are plenty of simple, even trivial examples where
not only are concrete computations of parallel CA from par-
ticular initial configurations different from the correspond-
ing computations of the sequential CA, but actually the en-
tire configuration spaces of the parallel CA and the corre-
sponding SCA are structurally rather different.

As one of the simplest examples conceivable, consider a
trivial CA with more than one node (so that talking about
“parallel computation” makes sense), namely, a two-node
CA where each node computes the Boolean XOR of the
two inputs (viz., of the node’s own current state, and that of
its only neighbor). The two phase spaces are given in Fig.
1. In (b), since the corresponding automaton is nondeter-
ministic, the numbers next to the transition arrows indicate
which node, 1 or 2, is updating and thus causing the indi-
cated global state transition from the current state.

In the parallel case, the state � � is the “sink”, and the
entire configuration space is as in Fig. 1 (a). So, regard-
less of the starting configuration, after at most two parallel
steps, the fixed point “sink” state, that is, in the language
of nonlinear dynamics, a stable global attractor, will be
reached.

In case of the sequential node updates, the configura-
tion � � is still a FP but, this time, it is not reachable from
any other configuration. Moreover, there are two more (un-
stable) pseudo-fixed points, � 	 and 	�� , and two temporal
two-cycles. In particular, while all three states, 	 	 , 	�� and
� 	 , are transient states in the parallel case, sequentially,
each of them, for any “typical” sequence of node updates,
is going to be revisited, either as a pseudo-FP or a cycle
state. In fact, for some sequences of node updates such as,
e.g.,

� 		� 		� � � � � � � 		� � � � � 	 ������� 	 , configurations � 	 and 	��
are both pseudo-fixed point states and cycle states. The
phase space capturing all possible sequential computation
is given in Fig. 1 (b).

Several observations are in order. First, overall, the se-
quential configuration space seems richer than its parallel
counterpart. In particular, whereas, due to determinism, any
FP state of a classical CA is necessarily a stable attractor or

148



2

1

(a) (b)

00

1,222

1 1

11

00

01 10 01

10 

11

Figure 1. Configuration spaces for two-node
(a) parallel and (b) sequential XOR CA, resp.

a “sink” (in the terminology of complex dynamics), and, in
particular, once a FP configuration is reached, all the future
iterations stay there, in case of different possible sequen-
tial computations on the same cellular space, pseudo-fixed
points clearly need not be stable. Also, whereas the phase
space of a parallel CA is cycle-free (if we do not count FPs
as “proper” cycles), the phase space of the corresponding
SCA has nontrivial temporal cycles. On the other hand,
the union of all possible sequential computations (“inter-
leavings”) cannot fully capture the concurrent computation,
either: e.g., consider reachability of the state �	� .

These properties can be largely attributed to a relative
complexity of the XOR function as the update rule, and, in
particular, to XOR’s non-monotonicity. They can also be
attributed to the idiosyncrasy of the example chosen. In
particular, temporal cycles in the sequential case are not
surprising. Also, if one considers CA on say four nodes
with circular boundary conditions (that is, a CA ring on
four nodes), these XOR CA do have nontrivial cycles in the
parallel case, as well. Hence, for XOR CA with sufficiently
many nodes, the types of computations that parallel CA and
sequential SCA are capable of, are quite comparable. More-
over, in cases when one is richer than the other, it seems
reasonable that SCA will be capable of more interesting
computations than parallel CA, given the nondeterminism
due to all the possibilities for node update sequences.

This detailed discussion of a trivial example of the (S)CA
phase spaces has the main purpose of motivating what is to
follow: an entire class of CA and SCA, with the node update
functions even simpler than XOR, yet for which, irrespec-
tive of the number of nodes, the boundary conditions and
other details, it is the concurrent CA that are provably ca-
pable of computations that no corresponding (or similar, in
a sense to be defined below) SCA are capable of.

3.2. On the existence of cycles in
threshold CA and SCA

Now we consider the threshold automata in parallel and
sequential settings.

Definition 4: A threshold automaton (threshold CA)
is a (parallel or sequential) cellular automaton where � is a
(herein, Boolean-valued) linear threshold function.

Herein, we also assume � to be a symmetric function of
all of its inputs.

Due to the nature of the node update rules, cyclic be-
havior intuitively should not be expected in such automata.
This is, generally, (almost) the case, as will be shown below.
We argue that the importance of the results in this subsec-
tion largely stems from the following three factors: (i) the
local update rules are the simplest nonlinear totalistic rules
one can think of; (ii) given the rules, the cycles are not to
be expected - yet they exist, and in case of classical, par-
allel CA only; and, related to that observation, (iii) it is,
for this class of (S)CA, the parallel CA that exhibit the more
interesting behavior than sequential SCA, and, in particu-
lar, while there is nothing (qualitatively) among the possi-
ble sequential computations that is not present in the paral-
lel case, the classical parallel threshold CA are capable of
“oscillatory/non-converging computations” - they may have
nontrivial temporal cycles - that cannot be reproduced by
any threshold SCA.

The results below hold for two-way infinite 1-D CA, as
well as for finite CA and SCA with sufficiently many nodes
and circular boundary conditions (i.e., for (S)CA whose cel-
lular spaces are finite rings).

Lemma 1:
(i) A 1-D classical (i.e., parallel) CA with � � 	 and the

MAJORITY update rule has (finite) temporal cycles in the
phase space (PS).

(ii) 1-D Sequential CA with � � 	 and the MAJOR-
ITY update rule do not have any (finite) cycles in the phase
space, irrespective of the sequential node update order � .

Remark: In case of infinite sequential SCA as in the
Lemma above, a nontrivial cycle configuration does not ex-
ist even in the limit. We also note that � is an arbitrary
sequence of an SCA nodes’ indices, not necessarily a (finite
or infinite) permutation.

Proof: To show (i), we exhibit an actual two-cycle.
Consider either an infinite 1-D CA, or a finite one, with cir-
cular boundary conditions and an even number of nodes,
��� . Then the configurations

� 	���	�� and
� � 	 	�� in the infinite

case (
� 	���	�� and

� � 	 	�� in the finite ring case) form a 2-cycle.
To prove (ii), we must show that no cycle is ever pos-

sible, irrespective of the starting configuration. We con-
sider all possible 1-neighborhoods (there are eight of them:
000, 001, ..., 111), and show that, locally, none of them

149



can be cyclic yet not fixed. The case analysis is simple: � �	�
and 	 	 	 are stable (fixed) sub-configurations. Configuration
� 	�� , after a single node update, can either stay fixed, or else
evolve into any of � �	� � � 	 	�� � � 	 	�� ; since we are only inter-
ested in non-FPs, in the latter case, one can readily show
by induction that, after any number of steps, the only ad-
ditional sub-configuration that can be reached is 	 	 	 , i.e.,
assuming � 	�� is not fixed, � 	�� ��� � � � � � 	 	�� � � 	 		� 	 	 	�� .
However, � 	�� �� � �	� � � 	 	�� � � 	 		� 	 	 	 � . By symmetry, sim-
ilar analysis holds for sub-configuration 	�� 	 . On the other
hand, 	 	�� and � 	 	 either remain fixed, or else at some time
step � evolve to 	 	 	 , which is a fixed point. Similar analy-
sis applies to �	� 	 and 	��	� . Hence, no local neighborhood
� � ��� ��� , once changed, can ever “come back”. Therefore,
there are no proper cycles in Sequential 1-D CA with � � 	
and � = MAJORITY.

Part (ii) of the Lemma above can be readily general-
ized: even if we consider local update rules � other than
the MAJORITY rule, yet restrict � to monotone symmetric
(Boolean) functions of the input bits, such sequential CA
still do not have any proper cycles.

Theorem 1: For any Monotone Symmetric Boolean 1-
D Sequential CA A with � � 	 , and any sequential update
order � , the phase space PS(A) of the automaton A is
cycle-free.

Similar results to those in Lemma 1 and Theorem 1 also
hold for 1-D CA with radius � � � :

Lemma 2:
(i) 1-D (parallel) CA with � � � and with the MAJORITY

node update rule have (finite) cycles in the phase space.
(ii) Any 1-D SCA with MAJORITY node update rule,

� � � and any sequential order on node updates has a
cycle-free phase space.

Generalizing Lemmata 1 and 2, part (i), we have the fol-
lowing

Corollary 1: For all �	� 	 , there exists a monotone
symmetric CA (that is, a threshold automaton) A such that
A has (finite) cycles in the phase space.

Namely, given any �
� 	 , a (classical, concurrent) CA
with � � MAJORITY has at least one two-cycle in the PS:
� � ��� 	��	���� � 	������ 	�� � . If �	��� is odd, then such a thresh-
old automaton has at least two distinct two-cycles, since
� � � 	 	�� � � 	���	�� � is also a two-cycle. Analogous results
hold for threshold CA (SCA) defined on finite 1-D cellular
spaces, provided that such automata have sufficiently many
nodes and assuming circular boundary conditions (i.e., as-
suming � is a sufficiently big finite ring). Moreover, the
result extends to finite and infinite CA in higher dimen-
sions, as well; in particular, 2D rectangular grid CA and
Hypercube CA with � � MAJORITY (or another nontrivial
symmetric threshold update rule) have two-cycles in their
respective phase spaces.

More generally, for any underlying cellular space � that
is a (finite or infinite) bipartite graph, the correspond-
ing (nontrivial) threshold parallel CA have temporal two-
cycles.

It turns out that the two-cycles in the PS of concurrent CA
with � � MAJORITY are actually the only type of (proper)
temporal cycles such cellular automata can have. Indeed,
for any symmetric linear threshold update rule � , and any
(finite or infinite) regular Cayley graph as the underlying
cellular space, the following general result holds [7], [8]:

Proposition 1: Let a classical CA � � � ��� � ����	
be such that � is an elementary symmetric threshold local
update rule applied to a finite cellular space � . Then for all
configurations � ����� � � 	 , there exists � � � such that
��� � � � �
	 ����� � �
	 .

In particular, this result implies that, in case of any (fi-
nite) monotone symmetric automaton, for any starting con-
figuration ��� , there are only two possible kinds of orbits:
upon repeated iteration, after finitely many steps, the com-
putation either converges to a fixed point configuration, or
else one arrives at a two-cycle.

It is almost immediate that, if we allow the underlying
cellular space � to be infinite, if computation from a given
starting configuration converges at all, it will converge ei-
ther to a fixed point or a two-cycle (but never to a cycle of,
say, period three - or any other finite period). The result also
extends to finite and infinite SCA, provided that we reason-
ably define what is meant by a single computational step in
a situation where the nodes update one at a time.2

To summarize, symmetric linear threshold 1-D CA, de-
pending on the starting configuration, may converge to a
fixed point or a temporal two-cycle; in particular, they may
end up “looping” in finite (but nontrivial) temporal cycles.
In contrast, the corresponding classes of SCA can never cy-
cle; while for simplicity we have shown that this holds only
for SCA with short-range interactions (small � ), the result
actually holds for (finite) SCA with arbitrary finite radii of
interaction, ��� 	 . In particular, given any sequence of node
updates of a finite threshold SCA, if this sequence satisfies
an appropriate fairness condition then it can be shown that
the computation of such a threshold SCA is guaranteed to
converge to a fixed point. Since this holds irrespective of
the choice of the sequential update ordering (and, extending
to infinite SCA, temporal cycles cannot be obtained even “in
the limit”, that is, via infinitely long computations, obtained

2Additionally, in order to ensure some sort of convergence of a given
SCA, and, more generally, in order to ensure that, in some sense, all nodes
get a chance to update their states, an appropriate condition that guarantees
fairness may need to be specified. For finite SCA, one sufficient such con-
dition is to impose a fixed upper bound on the number of sequential steps
before any given node gets its “turn” to update. In infinite SCA case, the
issue of fairness is nontrivial, and some form of dove-tailing of sequential
individual node updates may need to be imposed; further discussion of this
issue, however, is beyond our current scope.

150



by allowing arbitrary infinite sequences of individual node
updates), we conclude that no choice of “sequential inter-
leaving” can capture the concurrent computation. Conse-
quently, the “interleaving semantics” of SCA fails to fully
capture the concurrent behavior of classical CA even for
this, simplest nonlinear class of totalistic CA, namely, the
symmetric threshold cellular automata.

4 Discussion and Future Directions

The results in � 3 show that, even for the very simplest
(nonlinear) totalistic cellular automata, nondeterministic in-
terleavings dramatically fail to capture concurrency. It is
not surprising that one can find a (classical, concurrent) CA
such that no sequential CA with the same underlying cel-
lular space and the same node update rule can reproduce
identical or even “isomorphic” computation, as the exam-
ple at the beginning of � 3 clearly shows (see Fig. 1 and the
related discussion). However, we find it rather interesting
that very profound differences (a possibility of looping vs.
the guaranteed convergence to a fixed point configuration)
can be observed in case of the simplest nonlinear 1-D par-
allel and sequential CA with symmetric threshold functions
as the node update rules, and that this profound difference
does not apply merely to individual (S)CA and/or their par-
ticular computations, but the possible computations of the
entire class of the (symmetric) threshold CA update rules.

Moreover, the differences in parallel and sequential com-
putations in case of the Boolean XOR local update rule can
be largely ascribed to the properties of the XOR function.
For instance, given that XOR is not monotone, the existence
of temporal cycles is not at all surprising. In contrast, mono-
tone functions such as MAJORITY are intuitively expected
not to have cycles, i.e., in case of finite domains and con-
verging computations, to always converge to a fixed point.
This intuition about the monotone symmetric SCA is shown
correct. It is actually, in a sense, (statistically) “almost cor-
rect” in case of the parallel CA, as well, in that the actual
non-FP cycles can be shown to be very few, and without
any incoming transients [19]. Thus, in this case, the very
existence of the (rare) nontrivial temporal cycles can be as-
cribed directly to the assumption of perfect synchrony (i.e.,
effective simultaneity) of the parallel node updates.

We now briefly discuss some possible extensions of the
results presented thus far. In particular, we are consider-
ing extending our study to non-homogeneous threshold CA,
where not all the nodes necessarily update according to one
and the same threshold update rule. Another obvious exten-
sion is to consider 2-D and other higher-dimensional thresh-
old CA, as well as CA defined over regular Cayley graphs
that are not simple Cartesian grids. It is also of interest
to consider CA-like finite automata defined over arbitrary
rather than only regular (finite) graphs. We already have

some results along these two lines, but do not include them
herein due to space constraints.

Another interesting extension is to consider classes of
node update rules beyond the threshold functions. One ob-
vious candidate are the monotone functions that are not nec-
essarily symmetric (that is, such that the corresponding CA
need not be totalistic or semi-totalistic). A possible addi-
tional twist, as mentioned above, is to allow for different
nodes to update according to different monotone (symmet-
ric or otherwise) local update rules. At what point of the in-
creasing automata complexity, if any, the possible sequen-
tial computations “catch up” with the concurrent ones ap-
pears an interesting problem to consider.

Yet another direction for further investigation is to con-
sider other models of (a)synchrony in cellular automata. We
argue that the classical concurrent CA can be viewed, if one
is interested in node-to-node interactions among the nodes
that are not close to one another, as a class of computational
models of bounded asynchrony. Namely, if nodes � and �
are at distance � (i.e., � nodes apart from each other), and
the radius of the CA is � , then any change in the state of �
can affect the state of � no sooner, but also and more impor-
tantly, no later than after about �� (parallel node update)
computational steps. As the nodes all update ”in sink”, lo-
cally a classical CA is a perfectly synchronous concurrent
system. However, globally, i.e., if one is interested in the in-
teractions of nodes that are at a distance greater than � apart,
then the classical CA and their various graph automata ex-
tensions are a class of models of bounded asynchrony.

We remark that two particular classes of graph automata
defined over arbitrary (not necessarily regular, or Cayley)
finite graphs, viz., sequential and synchronous dynamical
systems (SDSs and SyDSs, respectively), and their various
phase space properties, have been extensively studied; see,
e.g., [3-6] and references therein. It would be interesting,
therefore, to consider asynchronous cellular and graph au-
tomata, where the nodes are not assumed any longer to up-
date in unison and, moreover, where no global clock is as-
sumed. We again emphasize that such automata would en-
tail what can be viewed as communication asynchrony, thus
going beyond the kind of asynchrony in computation at dif-
ferent nodes (that is, beyond the arbitrary sequential node
updates yet with respect to the global time) that has been
studied since at least 1984 (e.g., [10], [11]).

We propose a broad study of the general phase space
properties, and a qualitative comparison-and-contrast of the
asynchronous CA (ACA) and the classical CA and SCA.
Such a study could shed light on detecting computational
behaviors that are solely due to asynchrony, that is, what
can be viewed as an abstracted version of “network delays”
in physically realistic (asynchronous) cellular automata.
Communication asynchronous CA, i.e., various nondeter-
ministic choices for a given (A)CA that are due to asyn-

151



chrony, can be shown to subsume all possible behaviors
of classical and sequential CA with the same correspond-
ing

� ���� ����	 . In particular, the nondeterminism that arises
from (unbounded) asynchrony subsumes the nondetermin-
ism of a kind studied in � 3; but the question arises, exactly
how much more expressive and powerful the former model
really is than the latter.

5 Conclusions

We present herein some early steps in studying cellu-
lar automata when the unrealistic assumptions of perfect
synchrony and instantaneous unbounded parallelism are
dropped. Motivated by the well-known notion of the se-
quential interleaving semantics of concurrency, we try to
apply this concept to parallel CA and thus motivate the study
of sequential cellular automata, SCA, and the comparison
and contrast between SCA and classical, concurrent CA.
Concretely, we show that, even in very simplistic cases, this
sequential semantics fails to capture concurrency of clas-
sical CA. Hence, simple as they may be, the basic oper-
ations (local node updates) in classical CA cannot always
be considered atomic. In particular, the fine-grain paral-
lelism of CA turns out not to be quite fine enough when it
comes to capturing concurrent execution via nondeterminis-
tic sequential interleavings of those basic operations. It then
seems reasonable to consider a single local node update to
be made of an ordered sequence of finer elementary opera-
tions: (1) fetching (“receiving”?) all the neighbors’ values,
(ii) updating one’s own state according to the update rule � ,
and (iii) making available (“sending”?) one’s new state to
the neighbors.

Motivated by these early results on sequential and par-
allel CA and their implications, we next consider various
extensions. The main idea is to introduce a class of gen-
uinely asynchronous CA, and formally study their prop-
erties. This would hopefully yield, down the road, some
significant insights into the fundamental issues related to
bounded vs. unbounded asynchrony, formal sequential se-
mantics for parallel and distributed computation, and, on
the CA side, to identification of those classical parallel
CA phase space properties that are a direct consequence
of the (physically unrealistic) assumption of perfectly syn-
chronous and simultaneous node updates.

We also argue that various extensions of the basic CA
model can provide a simple, elegant and useful framework
for a high-level study of various global qualitative proper-
ties of distributed, parallel and real-time systems at an ab-
stract and rigorous, yet comprehensive level.

Acknowledgments: The work presented herein was sup-
ported by the DARPA IPTO TASK Program, contract num-
ber F30602-00-2-0586. Many thanks to Reza Ziaei (UIUC)
for several useful discussions.

Bibliography

[1] R. B. Ashby, “Design for a Brain”, Wiley, 1960
[2] C. Barrett and C. Reidys, ”Elements of a theory of com-

puter simulation I: sequential CA over random graphs”, Applied
Math. & Comput., vol. 98 (2-3), 1999

[3] C. Barrett, H. Hunt, M. Marathe, S. S. Ravi, D.
Rosenkrantz, R. Stearns, and P. Tosic, ”Gardens of Eden and
Fixed Points in Sequential Dynamical Systems”, Discrete Math.
& Theoretical Comp. Sci. Proc. AA (DM-CCG), July 2001

[4] C. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D.
J. Rosenkrantz, R. E. Stearns, “ Reachability problems for se-
quential dynamical systems with threshold functions”, TCS 1-3:
41-64, 2003

[5] C. Barrett, H. Mortveit, and C. Reidys, ”Elements of a
theory of computer simulation II: sequential dynamical systems”,
Applied Math. & Comput. vol. 107(2-3), 2000

[6] C. Barrett, H. Mortveit, and C. Reidys, ”Elements of a
theory of computer simulation III: equivalence of sequential dy-
namical systems”, Appl. Math. & Comput. vol. 122(3), 2001

[7] M. Garzon, ”Models of Massive Parallelism: Analysis of
Cellular Automata and Neural Networks”, Springer, 1995

[8] E. Goles, S. Martinez, “Neural networks: theory and
applications”, Kluwer, Amsterdam, 1990

[9] E. Goles, S. Martinez (eds.), “Cellular Automata and Com-
plex Systems”, Nonlinear Phenomena and Complex Systems se-
ries, Kluwer, Dordrecht, 1999

[10] T. E. Ingerson and R. L. Buvel, “Structure in asyn-
chronous cellular automata”, Physica D: Nonlinear Phenomena,
vol. 10 (1-2), Jan. 1984

[11] S. A. Kauffman, “Emergent properties in random com-
plex automata”, ibid.

[12] R. Milner, ”A Calculus of Communicating Systems”,
Lecture Notes Comp. Sci., Springer, Berlin, 1989

[13] R. Milner, ”Calculi for synchrony and asynchrony”, The-
oretical Comp. Sci. 25, Elsevier, 1983

[14] R. Milner, ”Communication and Concurrency”, C. A. R.
Hoare series ed., Prentice-Hall Int’l, 1989

[15] J. von Neumann, “Theory of Self-Reproducing Au-
tomata”, edited and completed by A. W. Burks, Univ. of Illinois
Press, Urbana, 1966

[16] J. C. Reynolds, “Theories of Programming Languages”,
Cambridge Univ. Press, 1998

[17] Ravi Sethi, “Programming Languages: Concepts & Con-
structs”, 2nd ed., Addison-Wesley, 1996

[18] K. Sutner, ”Computation theory of cellular automata”,
MFCS98 Satellite Workshop CA, Brno, Czech Rep., 1998

[19] P. Tosic, G. Agha, “Complete characterization of phase
spaces of certain types of threshold cellular automata” (in prepa-
ration)

[20] S. Wolfram ”Twenty problems in the theory of CA”,
Physica Scripta 9, 1985

[21] S. Wolfram (ed.), ”Theory and applications of CA”,
World Scientific, Singapore, 1986

[22] S. Wolfram, “Cellular Automata and Complexity (col-
lected papers)”, Addison-Wesley, 1994

152



An Instrumentation Technique for Online Analysis of Multithreaded Programs

Grigore Roşu and Koushik Sen
Department of Computer Science,

University of Illinois at Urbana-Champaign, USA
Email: {grosu,ksen}@uiuc.edu

Abstract
A formal analysis technique aiming at finding safety er-

rors in multithreaded systems atruntimeis investigated. An
automatic code instrumentation procedure based onmul-
tithreaded vector clocksfor generating the causal partial
order on relevant state update events from a running mul-
tithreaded program is first presented. Then, by means of
several examples, it is shown how this technique can be
used in a formal testing environment, not only to detect,
but especially topredict safety errorsin multithreaded pro-
grams. The prediction process consists of rigorously an-
alyzing other potential executions that are consistent with
the causal partial order: some of these can be erroneous
despite the fact that the particular observed execution is
successful. The proposed technique has been implemented
as part of a Java program analysis tool. A bytecode instru-
mentation package is used, so the Java source code of the
tested programs is not necessary.

1. Introduction and Motivation

A major drawback of testing is its lack of coverage: if an
error is not exposed by a particular test case then that error
is not exposed. To ameliorate this problem, test-case gener-
ation techniques have been developed to generate those test
cases that can reveal potential errors with high probability
[8, 18, 26]. Based on experience with and on the success in
practice of related techniques already implemented inJAVA

PATHEXPLORER (JPAX) [12, 11] and its sub-systemEA-
GLE [4], we have proposed in [23, 24] a complementary
approach to testing, which we call “predictive runtime anal-
ysis” and can be intuitively described as follows.

Suppose that a multithreaded program has a subtle safety
error. Like in testing, one executes the program on some
carefully chosen input (test case) and suppose that, unfor-
tunately, the error is not revealed during that particular ex-
ecution; such an execution is calledsuccessfulwith respect
to that bug. If one regards the execution of a program as a
flat, sequential trace of events or states, like NASA’sJPAX
system [12, 11], University of Pennsylvania’sJAVA -MAC
[17], or Bell Labs’ PET [10], then there is not much left to
do to find the error except to run another test case. However,
by observing the execution trace in a smarter way, namely

as a causal dependency partial order on state updates, one
can predict errors that can potentially occur in other possi-
ble runs of the multithreaded program.

The present work is an advance inruntime verifica-
tion [13], a more scalable and complementary approach to
the traditional formal verification methods such as theorem
proving and model checking [6]. Our focus here is on mul-
tithreaded systems with shared variables. More precisely,
we present a simple and effective algorithm that enables an
external observer of an executing multithreaded program to
detect and predict specification violations. The idea is to
properlyinstrumentthe system before its execution, so that
it will emit relevant events at runtime. No particular specifi-
cation formalism is adopted in this paper, but examples are
given using a temporal logic that we are currently consid-
ering in JAVA MULTI PATHEXPLORER (JMPAX) [23, 24],
a tool for safety violation prediction in Java multithreaded
programs which supports the presented technique.

In multithreaded programs, threads communicate via a
set of shared variables. Some variable updates can causally
depend on others. For example, if a thread writes a shared
variablex and then another thread writesy due to a state-
ment y = x + 1, then the update ofy causally depends
upon the update ofx. Only read-write, write-read and write-
write causalities are considered, because multiple consec-
utive reads of the same variable can be permuted without
changing the actual computation. A state is a map assign-
ing values to shared variables, and a specification consists
of properties on these states. Some variables may be of
no importance at all for an external observer. For exam-
ple, consider an observer which monitors the property “if
(x > 0) then(y = 0) has been true in the past, and since
then(y > z) was always false”. All the other variables ex-
ceptx, y andz are irrelevant for this observer (but they can
clearly affect the causal partial ordering). To minimize the
number of messages sent to the observer, we consider a sub-
set ofrelevant eventsand the associatedrelevant causality.

We present an algorithm that, given an executing mul-
tithreaded program, generates appropriate messages to be
sent to an external observer. The observer, in order to per-
form its more elaborated system analysis, extracts the state
update information from such messages together with the

153

goodelle
Text Box
Appendix J: 



relevant causality partial order among the updates. This par-
tial order abstracts the behavior of the running program and
is calledmultithreaded computation. By allowing an ob-
server to analyze multithreaded computations rather than
just flat sequences of events, one gets the benefit of not
only properly dealing with potential reordering of delivered
messages (reporting global state accesses), but also ofpre-
dicting errorsfrom analyzing successful executions, errors
which can occur under a different thread scheduling and can
be hard, if not impossible, to find by just testing.

To be more precise, let us consider a real-life example
where a runtime analysis tool supporting the proposed tech-
nique, such asJMPAX, would be able to predict a violation
of a property from a single, successful execution of the pro-
gram. However, like in the case of data-races, the chance
of detecting this safety violation by monitoring only the ac-
tual run is very low. The example consists of a two threaded
program to control the landing of an airplane. It has three
variableslanding , approved , andradio ; their values
are1 when theplane is landing, landing has been approved,
andradio signal is live, respectively, and0 otherwise. The
safety property to verify is “If the plane has started landing,
then it is the case that landing has been approved and since
the approval the radio signal has never been down.”

The code snippet for a naive implementation of this con-
trol program is shown in Fig. 1. It uses some dummy func-
tions, askLandingApproval and checkRadio , which
can be implemented properly in a real scenario. The pro-
gram has a serious problem that cannot be detected easily
from a single run. The problem is as follows. Suppose the
plane has received approval for landing and just before it
started landing the radio signal went off. In this situation,
the plane must abort landing because the property was vio-
lated. But this situation will very rarely arise in an execu-
tion: namely, whenradio is set to 0 between the approval
of landing and the start of actual landing. So a tester or a
simple observer will probably never expose this bug. How-
ever, note that even if the radio goes offafter the landing has
started, a case which is quite likely to be considered during
testing but in which the property isnot violated, JMPAX
will still be able to construct a possible run (counterexam-
ple) in which radio goes off between landing and approval.
In Section 4, among other examples, it is shown howJM-
PAX is able to predict two safety violations from a single
successful execution of the program. The user will be given
enough information (the entire counterexample execution)
to understand the error and to correct it. In fact, this er-
ror is an artifact of a bad programming style and cannot be
easily fixed - one needs to give a proper event-based imple-
mentation. This example shows the power of the proposed
runtime verification technique as compared to the existing
ones inJPAX andJAVA -MAC.

The main contribution of this paper is a detailed presen-

int landing = 0, approved = 0, radio = 1;
void thread1(){

askLandingApproval();
if(approved==1){

print("Landing approved");
landing = 1;
print("Landing started");}

else {print("Landing not approved");}}
void askLandingApproval(){

if(radio==0) approved = 0
else approved = 1;}

void thread2(){
while(radio){checkRadio();} }

void checkRadio(){
possibly change value of radio;}

Figure 1. A buggy implementation of a
flight controller.

tation of an instrumentation algorithm which plays a cru-
cial role in extracting the causal partial order from one flat
execution, and which is based on an appropriate notion of
vector clock inspired from [9, 21], calledmultithreaded vec-
tor clock (MVC). An MVC Vi is associated to each thread
ti, and two MVCsV a

x (access) andV w
x (write) are associ-

ated to each shared variablex. When a threadti processes
evente, which can be an internal event or a shared vari-
able read/write, the code in Fig. 2 is executed. We prove
thatA correctly implements the relevant causal partial or-
der, i.e., that for any two messages〈e, i, V 〉 and〈e′, j, V ′〉
sent byA, e ande′ are relevant ande causally precedese′

iff V [i] ≤ V ′[i]. This algorithm can be implemented in sev-
eral ways. In the case of Java, we prefer to implement it as
an appropriate instrumentation procedure of code or byte-
code, to executeA whenever a shared variable is accessed.
Another implementation could be to modify a JVM. Yet an-
other one would be to enforce shared variable updates via
library functions, which executeA as well. All these can
add significant delays to the normal execution of programs.

ALGORITHM A
INPUT: evente generated by threadti

1. if e is relevant then
Vi[i] ← Vi[i] + 1

2. if e is a read of a shared variablex then
Vi ← max{Vi, V

w
x }

V a
x ← max{V a

x , Vi}
3. if e is a write of a shared variablex then

V w
x ← V a

x ← Vi ← max{V a
x , Vi}

4. if e is relevant then
send message〈e, i, Vi〉 to observer

Figure 2. The vector clock instrumen-
tation algorithm.

2

154

goodelle
Rectangle



2. Multithreaded Systems
We consider multithreaded systems in which several

threads communicate with each other via a set of shared
variables. A crucial point is that some variable updates can
causally depend on others. We will present an algorithm
which, given an executing multithreaded program, gener-
ates appropriate messages to be sent to an external observer.
The observer, in order to perform its analysis, extracts the
state update information from such messages together with
the causality partial order among the updates.

2.1. Multithreaded Executions

Givenn threadst1, t2, ..., tn, amultithreaded execution
is a sequence of eventse1e2 . . . er, each belonging to one
of then threads and having typeinternal, reador write of a
shared variable. We useej

i to represent thej-th event gen-
erated by threadti since the start of its execution. When the
thread or position of an event is not important we can refer
to it generically, such ase, e′, etc.; we may writee ∈ ti
when evente is generated by threadti. Let us fix an arbi-
trary but fixed multithreaded execution, sayM, and letS
be the set of all shared variables. There is an immediate no-
tion of variable access precedencefor each shared variable
x ∈ S: we saye x-precedese′, written e <x e′, if and
only if e ande′ are variable access events (reads or writes)
to the same variablex, ande “happens before”e′, that is,e
occurs beforee′ in M. This “happens-before” relation can
be realized in practice by keeping a counter for each shared
variable, which is incremented at each variable access.

2.2. Causality and Multithreaded Computations

Let E be the set of events occurring inM and let≺ be
the partial order onE :

• ek
i ≺ el

i if k < l;
• e ≺ e′ if there isx ∈ S with e <x e′ and at least one

of e, e′ is a write;
• e ≺ e′′ if e ≺ e′ ande′ ≺ e′′.

We writee||e′ if e 6≺ e′ ande′ 6≺ e. The partial order≺ onE
defined above is called themultithreaded computationasso-
ciated with the original multithreaded executionM. Syn-
chronization of threads can be easily and elegantly taken
into consideration by just generating appropriate read/write
events when synchronization objects are acquired/released,
so the simple notion of multithreaded computation as de-
fined above is as general as practically needed. A permuta-
tion of all eventse1, e2, ...,er that does not violate the mul-
tithreaded computation, in the sense that the order of events
in the permutation is consistent with≺, is called aconsis-
tent multithreaded run, or simply, amultithreaded run.

A multithreaded computation can be thought of as the
most general assumptionthat an observer of the multi-
threaded execution can make about the system without

knowing its semantics. Indeed, an external observer sim-
ply cannot disregardthe order in which the same variable is
modified and used within the observed execution, because
this order can be part of the intrinsic semantics of the multi-
threaded program. However, multiple causally independent
modifications of different variable can be permuted, and
the particular order observed in the given execution is not
critical. By allowing an observer to analyzemultithreaded
computationsrather than justmultithreaded executionslike
JPAX [12, 11], JAVA -MAC [17], and PET [10], one gets
the benefit of not only properly dealing with potential re-
orderings of delivered messages (e.g., due to using multi-
ple channels to reduce the monitoring overhead), but also
of predicting errorsfrom analyzing successful executions,
errors which can occur under a different thread scheduling.

2.3. Relevant Causality

Some variables inS may be of no importance for an ex-
ternal observer. For example, consider an observer whose
purpose is to check the property “if(x > 0) then(y = 0)
has been true in the past, and since then(y > z) was al-
ways false”; formally, using the interval temporal logic no-
tation notation in [15], this can be compactly written as
(x > 0) → [y = 0, y > z). All the other variables inS
exceptx, y andz are essentially irrelevant for this observer.
To minimize the number of messages, like in [20] which
suggests a similar technique but for distributed systems in
which reads and writes are not distinguished, we consider a
subsetR ⊆ E of relevant eventsand define theR-relevant
causalityonE as the relation/ :=≺ ∩(R×R), so thate/e′

if and only if e, e′ ∈ R ande ≺ e′. It is important to notice
though that the other variables can also indirectly influence
the relation/, because they can influence the relation≺.

3. Multithreaded Vector Clock Algorithm

In this section, inspired and stimulated by the elegance
and naturality of vector clocks [9, 21, 3] in implement-
ing causal dependency in distributed systems, we next de-
vise an algorithm to implement the relevant causal depen-
dency relation in multithreaded systems. Since in multi-
threaded systems communication is realized by shared vari-
ables rather than message passing, to avoid any confusion
we call the corresponding vector-clock data-structuresmul-
tithreaded vector clocksand abbreviate them(MVC). The
algorithm presented next has been mathematically derived
from its desired properties, after several unsuccessful at-
tempts to design it on a less rigorous basis. In this section
we present it also in a mathematically driven style, because
we believe that it reflects an instructive methodology to de-
vise instrumentation algorithms for multithreaded systems.

Let Vi be ann-dimensional vector of natural numbers
for each1 ≤ i ≤ n. Since communication in multi-
threaded systems is done via shared variables, and since

3

155

goodelle
Rectangle



reads and writes have different weights, we letV a
x andV w

x

be two additionaln-dimensional vectors for each shared
variablex; we call the formeraccess MVCand the latter
write MVC. All MVCs are initialized to0. As usual, for
two n-dimensional vectors,V ≤ V ′ iff V [j] ≤ V ′[j] for
all 1 ≤ j ≤ n, andV < V ′ iff V ≤ V ′ and there is
some1 ≤ j ≤ n such thatV [j] < V ′[j]; also,max{V, V ′}
is the vector withmax{V, V ′}[j] = max{V [j], V ′[j]} for
each1 ≤ j ≤ n. Our goal is to find a procedure that up-
dates these MVCs and emits a minimal amount of events to
an external observer, which can further extract the relevant
causal dependency relation. Formally, the requirements of
such a procedure, sayA, which works as a filter of the given
multithreaded execution, must include the following natural

Requirements forA. AfterA updates the MVCs as a con-
sequence of the fact that threadti generates eventek

i during
the multithreaded executionM, the following should hold:

(a) Vi[j] equals the number of relevant events oftj that
causally precedeek

i ; if j = i and ek
i is relevant then

this number also includesek
i ;

(b) V a
x [j] equals the number of relevant events oftj that

causally precede the most recent event1 that accessed
(read or wrote)x; if i = j andek

i is a relevant read or
write ofx event then this number also includesek

i ;
(c) V w

x [j] equals the number of relevant events oftj that
causally precede the most recent write event ofx; if
i = j andek

i is a relevant write ofx then this number
also includesek

i .

Finally and most importantly,A should correctly implement
the relative causality (stated formally in Theorem 3).

In order to derive our algorithmA satisfying the properties
above, let us first introduce some notation. For an eventek

i

of threadti, let (ek
i ] be the indexed set{(ek

i ]j}1≤j≤n, where
(ek

i ]j is the set{el
j | el

j ∈ tj , el
j ∈ R, el

j ≺ ek
i }whenj 6= i

and the set{el
i | l ≤ k, el

i ∈ R} whenj = i.

Lemma 1 With the notation above, for1 ≤ j ≤ n:

1. (el
j ]j ⊆ (el′

j ]j if l ≤ l′;

2. (el
j ]j ∪ (el′

j ]j = (emax{l,l′}
j ]j for anyl andl′;

3. (el
j ]j ⊆ (ek

i ]j for anyel
j ∈ (ek

i ]j ; and
4. (ek

i ]j = (el
j ]j for some appropriatel.

Thus, by4 above, one can uniquely and unambiguously en-
code a set(ek

i ]j by just a number, namely the size of the cor-
responding set(el

j ]j , i.e., the number of relevant events of
threadtj up to itsl-th event. This suggests that if the MVC
Vi maintained byA stores that number in itsj-th component
then(a) in the list of requirementsA would be fulfilled.

Let us next move to the MVCs of reads and writes of
shared variables. For a variablex ∈ S, let ax(ek

i ) and

1Most recent with respect to the given multithreaded executionM.

wx(ek
i ) be, respectively, the most recent events that ac-

cessedx and wrotex in M, respectively. If such events
do not exist then we letax(ek

i ) and/orwx(ek
i ) undefined; if

e is undefined then we also assume that(e] is empty. We
introduce the following notations for anyx ∈ S:

(ek
i ]ax =

{
(ek

i ] if ek
i is an access tox, and

(ax(ek
i )] otherwise;

(ek
i ]wx =

{
(ek

i ] if ek
i is a write tox, and

(wx(ek
i )] otherwise.

Note that ifA is implemented such thatV a
x andV w

x store
the corresponding numbers of elements in the index sets of
(ek

i ]ax and(ek
i ]wx immediately after eventek

i is processed by
threadti, respectively, then(b) and(c) in the list of require-
ments forA are also fulfilled.

We next focus on how MVCs need to be updated byA
when eventek

i is encountered. With the notation introduced,
one can observe the following recursive properties, where
{ek

i }Ri is the indexed set whose components are empty for
all j 6= i and whosei-th component is either the one ele-
ment set{ek

i } whenek
i ∈ R or the empty set otherwise:

Lemma 2 Given any eventek
i in M such thatek

i is
1. An internal event then

(ek
i ] = (ek−1

i ] ∪ {ek
i }Ri ,

(ek
i ]ax = (ax(ek

i )], for anyx ∈ S,
(ek

i ]wx = (wx(ek
i )], for anyx ∈ S;

2. A read ofx event then

(ek
i ] = (ek−1

i ] ∪ {ek
i }Ri ∪ (wx(ek

i )],
(ek

i ]ax = (ek
i ] ∪ (ax(ek

i )],
(ek

i ]ay = (ay(ek
i )], for anyy ∈ S with y 6= x,

(ek
i ]wy = (wy(ek

i )], for anyy ∈ S;

3. A write ofx event then

(ek
i ] = (ek−1

i ] ∪ {ek
i }Ri ∪ (ax(ek

i )],
(ek

i ]ax = (ek
i ],

(ek
i ]wx = (ek

i ],
(ek

i ]ay = (ay(ek
i )], for anyy ∈ S with y 6= x,

(ek
i ]wy = (wy(ek

i )], for anyy ∈ S with y 6= x.

Since each component set of each of the indexed sets in
these recurrences has the form(el

j ]j for appropriatej andl,
and since each(el

j ]j can be safely encoded by its size, one
can then safely encode each of the above indexed sets by an
n-dimensional MVC; these MVCs are preciselyVi for all
1 ≤ i ≤ n andV a

x andV w
x for all x ∈ S. It is a simple ex-

ercise now to derive2 the MVC update algorithmA given in
Section 1. Therefore,A satisfies all the stated requirements
(a), (b) and(c), so they can be used as properties next:

2An interesting observation here is that one can regard the problem of
recursively calculating(ek

i ] as a dynamic programming problem. As can
often be done in dynamic programming problems, one can reuse space and
derive the AlgorithmA.

4

156

goodelle
Rectangle



Theorem 3 If 〈e, i, V 〉 and 〈e′, j, V ′〉 are two messages
sent byA, thene / e′ if and only if V [i] ≤ V ′[i] if and
only if V < V ′.
Proof: First, note thate ande′ are both relevant. The case
i = j is trivial. Supposei 6= j. Since, by requirement(a)
for A, V [i] is the number of relevant events thatti gener-
ated before and includinge and sinceV ′[i] is the number
of relevant events ofti that causally precedee′, it is clear
thatV [i] ≤ V ′[i] iff e ≺ e′. For the second part, ife / e′

thenV ≤ V ′ follows again by requirement(a), because any
event that causally precedese also precedese′. Since there
are some indicesi and j such thate was generated byti
ande′ by tj , and sincee′ 6≺ e, by the first part of the the-
orem it follows thatV ′[j] > V [j]; therefore,V < V ′. For
the other implication, ifV < V ′ thenV [i] ≤ V ′[i], so the
result follows by the first part of the theorem.¤

3.1. Synchronization and Shared Variables
Thread communication in multithreaded systems was

considered so far to be accomplished by writing/reading
shared variables, which were assumed to be knowna pri-
ori. In the context of a language like Java, this assumption
works only if the shared variables are declaredstatic; it is
less intuitive when synchronization and dynamically shared
variables are considered as well. Here we show that, under
proper instrumentation, the basic algorithm presented in the
previous subsection also works in the context of synchro-
nization statements and dynamically shared variables.

Since in Java synchronized blocks cannot be interleaved,
so corresponding events cannot be permuted, locks are con-
sidered as shared variables and a write event is generated
whenever a lock is acquired or released. This way, a causal
dependency is generated between any exit and any entry of
a synchronized block, namely the expected happens-before
relation. Java synchronization statements are handled ex-
actly the same way, that is, the shared variable associated to
the synchronization object is written at the entrance and at
the exit of the synchronized region. Condition synchroniza-
tions (wait/notify) can be handled similarly, by generating
a write of a dummy shared variable by both the notifying
thread before notification and by the notified thread after
notification.

To handle variables that are dynamically shared, for
each variablex of primitive type in each class the instru-
mentation program addsaccessandwrite MVCs, namely
_access_mvc_x and_write_mvc_x , as new fields in
the class. Moreover, for each read and write access of a
variable of primitive type in any class, it adds codes to up-
date the MVCs according to the multithreaded vector clock
algorithm.

3.2. A Distributed Systems Interpretation
It is known that the various mechanisms for process in-

teraction are essentially equivalent. This leads to the follow-

ing natural question: could it be possible to derive the MVC
algorithm in this section from vector clock based algorithms
implementing causality in distributed systems, such as the
ones in [3, 7]. The answer to this question is:almost.

Since writes and accesses of shared variables have differ-
ent impacts on the causal dependency relation, the most nat-
ural thing to do is to associate two processes to each shared
variablex, one for accesses, sayxa and one for writes, say
xw. As shown in Fig. 3 right, a write ofx by threadi can be
seen as sending a “request” message to writex to the “ac-
cess process”xa, which further sends a “request” message
to the “write process”xw, which performs the action and
then sends an acknowledgment messages back toi. This is
consistent with step 3 of the algorithm in Fig. 2; to see this,
note thatV w

x ≤ V a
x at any time.

However, a read ofx is less obvious and does not seem
to be interpretable by message passing updating the MVCs
the standard way. The problem here is that the MVC ofxa

needs to be updated with the MVC of the accessing thread
i, the MVC of the accessing threadi needs to be updated
with the current MVC ofxw in order to implant causal de-
pendencies between previous writes ofx and the current
access, but the point here is that the MVC ofxw doesnot
have to be updated by reads ofx; this is what allows reads
to be permutable by the observer. In terms of message pass-
ing, like Fig. 3 shows, this says that the access processxa

sends ahiddenrequest message toxw (after receiving the
read request fromi), whose only role is to “ask”xw send an
acknowledgment message toi. By hidden message, marked
with dotted line in Fig. 3, we mean a message which is
not considered by the standard MVC update algorithm. The
role of the acknowledgment message is to ensure thati up-
dates its MVC with the one of the write access processxw.

a w a wi x x i x x

Figure 3. A distributed systems interpre-
tation of reads (left) and writes (right).

4. The Vector Clock Algorithm at Work
In this section we propose predictive runtime analysis

frameworks in which the presented MVC algorithm can
be used, and describe by examples how we use it inJAVA

MULTI PATHEXPLORER (JMPAX) [23, 24, 16].
The observer therefore receives messages of the form

〈e, i, V 〉 in any order, and, thanks to Theorem 3, can ex-

5

157

goodelle
Rectangle



tract the causal partial order/ on relevant events, which is
its abstraction of the running program. Any permutation
of the relevant events which is consistent with/ is called
a multithreaded run, or simply arun. Notice that each run
corresponds to some possible execution of the program un-
der different execution speeds or scheduling of threads, and
that the observed sequence of events is just one such run.
Since each relevant event contains global state update infor-
mation, each run generates a sequence of global states. If
one puts all these sequences together then one gets a lattice,
called computation lattice. The reader is assumed famil-
iar with techniques on how to extract a computation lattice
from a causal order given by means of vector clocks [21].
Given a global property to analyze, the task of the observer
now is to verify it against every path in the automatically ex-
tracted computation lattice.JPAX andJAVA -MAC are able
to analyze only one path in the lattice. The power of our
technique consists of its ability to predict potential errors in
other possible multithreaded runs.

Once a computation lattice containing all possible runs is
extracted, one can start using standard techniques on debug-
ging distributed systems, considering both state predicates
[25, 7, 5] and more complex, such as temporal, properties
[2, 5, 1, 4]. Also, the presented algorithm can be used as
a front-end to partial order trace analyzers such as POTA
[22]. Also, since the computation lattice acts like an abstract
model of the running program, one can potentially run one’s
favorite model checker against any property of interest. We
think, however, that one can do better than that if one takes
advantage of the specific runtime setting of the proposed
approach. The problem is that the computation lattice can
grow quite large, in which case storing it might become a
significant matter. Since events are received incrementally
from the instrumented program, one can buffer them at the
observer’s side and then build the lattice on a level-by-level
basis in a top-down manner, as the events become available.
The observer’s analysis process can also be performed in-
crementally, so that parts of the lattice which become non-
relevant for the property to check can be garbage-collected
while the analysis process continues.

If the property to be checked can be translated into
a finite state machine (FSM) or if one can synthesize
online monitors for it, like we did for safety properties
[24, 14, 15, 23], then one can analyze all the multithreaded
runsin parallel, as the computation lattice is built. The idea
is to store the state of the FSM or of the synthesized monitor
together with each global state in the computation lattice.
This way, in any global state, all the information needed
about the past can be stored via a set of states in the FSM
or the monitor associated to the property to check, which is
typically quite small in comparison to the computation lat-
tice. Thus only one cut in the computation lattice is needed
at any time, in particular one level, which significantly re-

duces the space required by the proposed predictive analysis
algorithm.

Liveness properties apparently do not fit our runtime ver-
ification setting. However, stimulated by recent encourag-
ing results in [19], we believe that it is also worth exploring
techniques that canpredict violations of liveness properties.
The idea here is to search for paths of the formuv in the
computation lattice with the property that the shared vari-
able global state of the multithreaded program reached by
u is the same as the one reached byuv, and then to check
whetheruvω satisfies the liveness property. The intuition
here is that the system can potentially run into the infinite
sequence of statesuvω (u followed by infinity many repe-
titions of v), which may violate the liveness property. It is
shown in [19] that the testuvω |= ϕ can be done in poly-
nomial time and space in the sizes ofu, v andϕ, typically
linear inuv, for almost any temporal logic.

4.1. Java MultiPathExplorer (JMPaX)
JMPAX [23, 24] is a runtime verification tool which

checks a user defined specification against a running pro-
gram. The specifications supported byJMPAX allow any
temporal logic formula, using an interval-based notation
built on state predicates, so our properties can refer to the
entire history of states. Fig. 4 shows the architecture ofJM-
PAX. An instrumentation module parses the user specifica-

Specification

Java

Multithreaded

Program

Bytecode

Compile

Instrumentor

Instrumented

Bytecode

Translator

SpecificationImpl

LTL Monitor

Execute

Level 0

Level 5

Level 4

Level 3

Level 2

Level 1

Computation Lattice

Monitor

Execution
Program Execution

JVM

Instrument

Event Stream

Instrumentation

Module
Monitoring

Module

Figure 4. The Architecture of JMPAX.

tion, extracts the set of shared variables it refers to, i.e., the
relevant variables, and theninstrumentsthe multithreaded
program (which is assumed in bytecode form) as follows.
Whenever a shared variable is accessed the MVC algorithm
A in Section 3 is inserted; if the shared variable is relevant

6

158

goodelle
Rectangle



and the access is a write then the event is considered rel-
evant. When the instrumented bytecode is executed, mes-
sages〈e, i, V 〉 for relevant eventse are sent via a socket to
an external observer.

The observer generates the computation lattice on a
level by level basis, checking the user defined specification
against all possible multithreaded runs in parallel. Note that
only one of those runs was indeed executed by the instru-
mented multithreaded program, and that the observer does
not know it; the other runs arepotentialruns, they can occur
in other executions of the program. Despite the exponential
number of potential runs, at most two consecutive levels in
the computation lattice need to be stored at any moment.
[23, 24] gives more details on the particular implementa-
tion of JMPAX. We next discuss two examples whereJM-
PAX can predict safety violations from successful runs; the
probability of detecting these bugs only by monitoring the
observed run, asJPAX andJAVA -MAC do, is very low.

Example 1. Let us consider the simple landing controller
in Fig.1, together with the property “If the plane has started
landing, then it is the case that landing has been approved
and since then the radio signal has never been down.” Sup-
pose that a successful execution is observed, in which the
radio goes downafter the landing has started. After instru-
mentation, this execution emits only three events to the ob-
server in this order: a write ofapproved to 1, a write of
landing to 1, and a write ofradio to 0. The observer
can now build the lattice in Fig.5, in which the states are
encoded by triples<landing,approved,radio> and the
leftmost path corresponds to the observed execution. How-
ever, the lattice contains two other runs both violating the
safety property. The rightmost one corresponds to the sit-

<1,1,1>

<1,1,0>

<0,0,1>

<0,1,1> <0,0,0>

<0,1,0>

Figure 5. Computation lattice
for the program in Fig. 1.

uation when the radio goes down right between the test
radio==0 and the actionapproved=1 , and the inner one
corresponds to that in which the radio goes down between
the actionsapproved=1 andlanding=1 . Both these erro-
neous behaviors are insightful and very hard to find by test-
ing. JMPAX is able to build the two counterexamples very
quickly, since there are only 6 states to analyze and three
corresponding runs, so it is able to give useful feedback.

Example 2. Let us now consider an artificial example in-

tended to further clarify the prediction technique. Suppose
that one wants to monitor the safety property “if(x > 0)
then (y = 0) has been true in the past, and since then
(y > z) was always false” against a multithreaded pro-
gram in which initially x = −1, y = 0 and z = 0,
with one thread containing the codex++; ...; y = x + 1
and another containingz = x + 1; ...; x++. The dots
indicate code that is not relevant, i.e., that does not ac-
cess the variablesx, y and z. This multithreaded pro-
gram, after instrumentation, sends messages toJMPAX’s
observer whenever the relevant variablesx, y, z are up-
dated. A possible execution of the program to be sent to
the observer can consist of the sequence of program states
(−1, 0, 0), (0, 0, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1), where
the tuple(−1, 0, 0) denotes the state in whichx = −1, y =
0, z = 0. Following the MVC algorithm, we can deduce
that the observer will receive the multithreaded computation
shown in Fig. 6, which generates the computation lattice
shown in the same figure. Notice that the observed multi-

S
0,0

x = -1, y = 0, z = 0

S
2,2

x = 1, y = 1, z = 1

S
2,1

x = 0, y = 1, z = 1

S
2,0

x = 0, y = 1, z = 0

S
1,1

x = 0, y = 0, z = 1

S
1,0

x = 0, y = 0, z = 0

e1:<x=0, T1,(1,0)>

e4:<x=1, T2,(1,2)>

e2:<z=1,T2,(1,1)>
e3:<y=1,T1,(2,0)>

e2:<z=1,T2,(1,1)>
e3:<y=1,T1,(2,0)>

e1:<x=0, T1,(1,0)>

e2:<z=1,T2,(1,1)>

e3:<y=1,T1,(2,0)>

e4:<x=1, T2,(1,2)>

T1

T2

S
1,2

x = 1, y = 0, z = 1

e4:<x=1, T2,(1,2)>

e3:<y=1,T1,(2,0)>

Figure 6. Computation lattice with three runs.

threaded execution corresponds to just one particular multi-
threaded run out of the three possible, namely the leftmost
one. However, another possible run of the same computa-
tion is the rightmost one, which violates the safety property.
Systems likeJPAX and JAVA -MAC that analyze only the
observed runs fail to detect this violation.JMPAX predicts
this bug from the original successful run.

7

159

goodelle
Rectangle



5. Conclusion

A simple and effective algorithm for extracting the relevant
causal dependency relation from a running multithreaded
program was presented in this paper. This algorithm is sup-
ported byJMPAX, a runtime verification tool able to detect
and predict safety errors in multithreaded programs.

Acknowledgments. Many thanks to Gul Agha and Mark-
Oliver Stehr for their inspiring suggestions and comments
on several previous drafts of this work. The work is sup-
ported in part by the Defense Advanced Research Projects
Agency (the DARPA IPTO TASK Program, contract num-
ber F30602-00-2-0586, the DARPA IXO NEST Pro-
gram, contract number F33615-01-C-1907), the ONR Grant
N00014-02-1-0715, the Motorola Grant MOTOROLA RPS
#23 ANT, and the joint NSF/NASA grant CCR-0234524.

References

[1] M. Ahamad, M. Raynal, and G. Thia-Kime. An adaptive
protocol for implementing causally consistent distributed
services. InProceedings of International Conference on
Distributed Computing (ICDCS’98), pages 86–93, 1998.

[2] O. Babaoglu and M. Raynal. Specification and verification
of dynamic properties in distributed computations.Journal
of Parallel and Distr. Computing, 28(2):173–185, 1995.

[3] O. Babaŏglu and K. Marzullo. Consistent global states
of distributed systems: Fundamental concepts and mecha-
nisms. In S. Mullender, editor,Distributed Systems, pages
55–96. Addison-Wesley, 1993.

[4] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-
Based Runtime Verification. InProceedings Verification,
Model Checking and Abstract Interpretation (VMCAI 04)
(To appear in LNCS), January 2004.

[5] C. M. Chase and V. K. Garg. Detection of global predicates:
Techniques and their limitations.Distributed Computing,
11(4):191–201, 1998.

[6] E. M. Clarke and J. M. Wing. Formal methods: state of
the art and future directions.ACM Computing Surveys,
28(4):626–643, Dec. 1996.

[7] R. Cooper and K. Marzullo. Consistent detection of global
predicates.ACM SIGPLAN Notices, 26(12):167–174, 1991.
Proceedings of the ACM/ONR Workshop on Parallel and
Distributed Debugging.

[8] J. Dick and A. Faivre. Automating the generation and se-
quencing of test cases from model-based specifications. In
Proceedings of Formal Methods Europe (FME’93): Indus-
trial Strength Formal Methods, volume 670 ofLNCS, pages
268–284, 1993.

[9] C. J. Fidge. Partial orders for parallel debugging. InPro-
ceedings of the 1988 ACM SIGPLAN/SIGOPS workshop on
Parallel and Distr. Debugging, pages 183–194. ACM, 1988.

[10] E. L. Gunter, R. P. Kurshan, and D. Peled. PET: An inter-
active software testing tool. InComputer Aided Verification
(CAV’00), volume 1885 ofLNCS, pages 552–556. Springer-
Verlag, 2003.

[11] K. Havelund and G. Roşu. Monitoring Java Programs with
Java PathExplorer. InProceedings of the 1st Workshop on
Runtime Verification (RV’01), volume 55 ofENTCS. Else-
vier, 2001.

[12] K. Havelund and G. Roşu. Monitoring Programs using
Rewriting. In Proceedings Automated Software Engineer-
ing (ASE’01), pages 135–143. IEEE, 2001.

[13] K. Havelund and G. Roşu.Runtime Verification 2001, 2002,
volume 55, 70(4) ofENTCS. Elsevier, 2001, 2002. Proceed-
ings of aComputer Aided Verification (CAV’01, CAV’02)
workshop.

[14] K. Havelund and G. Roşu. Efficient monitoring of safety
properties.Software Tools and Tech. Transfer, to appear.

[15] K. Havelund and G. Roşu. Synthesizing monitors for safety
properties. InTools and Algorithms for Construction and
Analysis of Systems (TACAS’02), volume 2280 ofLNCS,
pages 342–356. Springer, 2002.

[16] Java MultiPathExplorer.http://fsl.cs.uiuc.edu/jmpax .
[17] M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a

Run-time Assurance Tool for Java. InProceedings of Run-
time Verification (RV’01), volume 55 ofENTCS. Elsevier
Science, 2001.

[18] D. Lee and M. Yannakakis. Principles and methods of test-
ing finite state machines - A survey. InProceedings of the
IEEE, volume 84, pages 1090–1126, 1996.

[19] N. Markey and P. Schnoebelen. Model checking a path
(preliminary report). In Proceedings of the 14th In-
ternational Conference on Concurrency Theory (CON-
CUR’2003), LNCS. Springer, 2003.

[20] K. Marzullo and G. Neiger. Detection of global state predi-
cates. InProceedings of the 5th International Workshop on
Distributed Algorithms (WADG’91), volume 579 ofLNCS,
pages 254–272. Springer, 1991.

[21] F. Mattern. Virtual time and global states of distributed sys-
tems. InParallel and Distributed Algorithms: proceedings
of the International Workshop on Parallel and Distributed
Algorithms, pages 215–226. Elsevier, 1989.

[22] A. Sen and V. K. .Garg. Partial order trace analyzer (pota)
for distrubted programs. InProceedings of Workshop on
Runtime Verification (RV’03), ENTCS, 2003.

[23] K. Sen, G. Roşu, and G. Agha. Runtime safety analysis of
multithreaded programs. InEuropean Software Engineering
Conference and ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering (ESEC/FSE’03). ACM, 2003.

[24] K. Sen, G. Roşu, and G. Agha. Online efficient predictive
safety analysis of multithreaded programs. In10th Inter-
national Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’04) (To Appear
in LNCS), Bercelona, Spain, 2004. Springer.

[25] S. D. Stoller. Detecting global predicates in distributed
systems with clocks. InProceedings of the 11th Inter-
national Workshop on Distributed Algorithms (WDAG’97),
pages 185–199, 1997.

[26] S. A. Vilkomir and J. P. Bowen. Formalization of soft-
ware testing criteria using the Z notation. InProceedings
of COMPSAC 01: 25th IEEE Annual International Com-
puter Software and Applications Conference, pages 351–
356. IEEE Computer Society, Oct. 2001.

8

160

goodelle
Rectangle



���������
	������	���	���������
�
��	�������������������! "���$#�����	��%&���'���
()��*�
+-,!�	��.#-%/(0�	�12(

35476�8:9<;>=@?�ACBEDGF�H<9�IKJ@LMI�NPO79�IQBED)R�6<S<FUT79�I)D0R5NP;VTW4XN�A5Y�4*8 Z�6
[\AQ]�I�N�^V_`ACBa^�4ab�c!4a_d]<6W^eAQN/?�fg;eACBWfCA

h\BW;>i7AQNj8k;>^eJU4abml�SeSe;nB<4a;o8/IK^�h�N
H�IKB*Ipc-9�IQ_d]�IQ;eTaB
{ qsrutmvpwWx-y/zm{}|sy}vpwEy�~}|sy!w�~�z��MrE� } �u��r\�K�s���-���Ct�{}�

�U�����
�g�<�g�
�m�/�C�P�
�������Q�/�K�p�����}�j���P�g 0�g�j�k�P�C ¡�V�C¢¡� £P�P�!¤/¥K�C�� �¥C���¦��§��G¢ §C¥g¨

���� �©K¤ª �©��C �¤/¥K�C�� �¥C�e�!�@�G�«�� ¡���¦�K¬K ��:�p*�>¥�§G�V�K¤�® ���°¯K�j�j¬K ¡��¥��` �¥
�P©Q�j�
±}�k¥C��²��¦¥C¢«�C ¡��¥��Q��¥n�$���V�j�j  ³p*�>¥
<���o ´���:��µm¶C©Q�·¤/¥K�C�� �¥C���¦��§
�«�m���K���P�!¥K���k¥C�V¤M¬Q¢«�C�m¸}���� � ¡�P�·�«�5¹�º�»°¼-½�¾�¿0��²:�G���¦�K�g )¥n��a�K�� 
 ¡�¦¤��s¢¡�¦�g�P�G�À ¡�P¤�<¥g�e�G¢X¢�¥�§G���s �©K�g )¸u���C���À�g�Pµ)¹�º�»o¼-½�¾Á�¦����¬Q�� ´¨
�Q�g¢��7�k¥C�}�°¯
*�e�P�����¦��§� ��:¤�W¥C�e�C¢�*�>¥
*�j�� ¡���P��¥n�s�G�«�� ¡���¦�K¬K ��:�Â�V³��P¨
 ��:¤���µXÃ�<�j�j� �u�:�C¢¡¢ ³P¿a �©Q�W�j¥g�V¤M¬Q¢«�C�s¥n��¹Kº�»o¼s½�¾Ä�C�e���n��¢«�C ¡��²j�� �¥
��W�C�o ´���j¬K¢¦�C�7*�>¥Q�j�P���m�Q�K�p�C�e�-�«�C �����*�e�j ��:�p¥�²��j�u��*�>¥°Å:�k�j ¡��¥��
¥n�- �©g�M ´�e�C�k�M¥n�M§G¢�¥K�K�C¢0�
 ��g ¡�P�/ �©��g W�e�n��e�P�
�:�g ���¸À©��g a �©��C ���Æ¥C¨
�k�P���*�«�W�Q¸��C�e�*¥e�kµ�Ç��k¥C�V¤M¬K¢¦�/�n��¢«�C ¡��²j�E �¥�¥��g�C*�>¥Q�j�P���7¤���³��n���j���
 �¥-¥Q �©Q���Q��Æ¥g�k�:���
�:�Q®Q¢�¥Q�:�C¢K�
 ��g ¡�P�u �©g�>¥g¬�§g©��e�P¤/¥Q ¡���°¯���n�:���P�¦¥K�K�
�K�K���e�P¤/¥Q ¡�C�k¥C�V¤M¬Q¢«�C�Pµ�Èo�s¥C�>�g�j�� �¥��:¥g���e�k�k ´¢ ³M�P²k�C¢¡¬��C ����e�P¤/¥Q ¡��°¯�*�e�:������¥��Q�o¿�¸u�À�«�C ¡�>¥��G¬��j�� �©Q���g¥Q ´�¦¥K��¥e�5É�Ê�Ë7ÌÂÍGÎGÏ�Ð<ÎGÑ-Î0Ò7»
ºGË<Ó-�K�Q�W��Æ¥K²��¦�g���K���G¢ §C¥g���� �©�¤d¸À©C���:©}±��k�nW�W��*�>¥Q�j�P���W�Q¸��C�e�
¥n�E¥Q �©Q����*�>¥Q�k�:�����P�Q®�¢¦¥g�P�C¢j�� ¦�C ��:�* �©K�g ��:�K���e���j�j�k � �©Q�E²:�G¢��¦�C��  ³}¥e�
�/¤/¥��G�� �¥g�e�P�M¹�º�»°¼-½�¾m�j¥g�°¤M¬K¢¦�Qµ:ÔE¥Q �©� �©Q�u¢�¥�§0���E�Q�K�� �©Q�À¤/¥��C�¡¨
 �¥C���¦��§M�G¢ §C¥g���� �©�¤��G�n���¡¢�¢¡¬��� ¡�e�C ��:�s �©g�>¥g¬�§g©��s�C¬�¤/�Q�j�<¥n���°¯��Q¤M¨
*¢��P��µ)Õa�¦�K�G¢�¢ ³�¿7¸u���C�P���j�����Q�M¥g¬Q���«¤��¢��:¤��P�g ��g ´��¥���¥e�� �©g�/�G¢ §C¥g¨
���� �©K¤Ö�«�s�s �¥K¥C¢K�:�C¢¡¢��:�M¼-×ÆØ-ÊWÙ<µ

ÚXÛÝÜ�Þ�����ßWà�áÀ�g�
ânßWÞ
ã)ä�ånæ¡ç�è�é°ê�êPéeé°ä�éoë�å>é°ä�ìíè\îKïKì-ðCêPé!ä�å�ñKò¡åÆåeêPé°ê:îQæuóQé°ä�ðgô¡ê:ìÂë

ëVïQõkö�è�ë�ò�îgõjä�éeé°êkõ:æ�ä�é/ò¡îQõ�ä�ì-óCô�êkæ¡ê5ëeógêjõ:òø÷Gõjè:æ�òøä�îGë�ùWõjä�ñKò�îgú$ê:é »é°ä�éoë
ù�èPîgñ-ånèPïgô�æÆë�èPîgñsåeèPò´ô�ïKéVê�ë*ò�î-æ¡öQê�ögèPéVñQç�è�é°ê�ù�ä�ógêPéoèPæ¡ò¡îQú�ëVûCë »æ¡êkìüä�éGîgê:æ´ç�ä�éeýXþ�ÿ@ä�ñQêkô�õ:ögêkõkýKò¡îQú}òøëaè:îmò¡ì-óCä�éeæøèPîQæjæ´êkõköKîCä�ô´ä�ú�û
ç�öKò´õ:ö�òÆëW÷CîQñKò�îgú�ò�îgõPé°êjè�ëVò¡îQú�ïCëoêuèjë<èEì!êjè:îCëWäKåCéVêjñ�ïgõ:ò¡îQú/ëoäKå>æ »ç�èPéVê$êPéeé°ä�éoëPþ���îQåVä�éVæ�ïQîgèPæ´êkô�û�ù<ñKê�ëeógò�æ´ê·ò¡ì-óKé°ê�ë�ë°ò���ê5é°êkõjê:îQæmè:ñ »
��èPîQõjê�ë
ù7æ¡öQê$ëVò��kê�äKåMëVûGëVæ´ê:ìÂësåVä�é�ç�öQò¡õköUì�äKñKêjô�õ:öQêjõ:ýQò�îgú$òÆëånê�èjëVò�ðgô¡ê�é°ê:ì�è:ò�îGëméoèPæ¡öQê:é�ô�ò�ì�ò¡æ´êkñ0þ ½ öKòÆë/ç�ê�èPýQîQê�ë�ë�òÆë/óCè�éVæ¡ò¡õkï »ô¡èPéVô�ûpõ:éeò¡æ¡ò¡õ�è:ô7ò�î5æ¡öQêsõjä�îKæ´ê��Kæ<ä�åEñKòøë°æ�éVò�ð�ïQæ¡êjñpë°ûCëVæ´ê:ìÂë	�Gõjä�îQõ:ïKé »éVêkîQõPû5èPîQñ5èjë°ûKîgõ:ö�éoä�îKû�éVê�ëVïgô�æÆëuò�î5ò¡îKöQê:éVêkîKæ7îgä�î » ñKê:æ´êPéVì�ò¡îKòÆëVìæ�öCèPæ<ëVò´ú�îKòø÷Gõ�èPîKæ´ô�û�ò¡îQõPé°êjè�ë°ê�ëEæ¡öQêMîKïKì-ðCêPé�äKåÀëVæøèPæ´ê�ëÀæ´ä!ðgêsèPîgè »ô�û
�kêkñ)þ Ø ë�èsé°ê�ëVïgô�æ>ù)ì�äQë°æ�ëVûGëVæ´ê:ì ð�ïKò´ô¡ñKêPé�ëmì�ïGëVæ*õ�ä�îKæ¡ò¡îKïQê-æøä
ïCë°êuæ¡ê�ëVæ¡ò�îgú/æøä�ò´ñKêkîKæ¡ò¡ånû�ð�ïQúCëaò¡îMæ¡öQêkò�éaò¡ì-ógô¡ê:ì!ê:îQæ´è:æ�òøä�îGë�þ
½ öQêPé°êÀè�é°êEæ´ç�ä}óQé°ä�ðgô¡ê:ìÂëXç�ò¡æ�ösë�ä�ånæ¡ç�èPéVê�æ´ê�ëVæ¡ò¡îQú0þ��0ò�é�ëVæ>ùkæ¡ê�ëVæ »ò�îgú�òøë*úKêkîQê:é°èkô�ô�û�ñQä�îQê�ò¡îsè:î �Q��©K¥g� ì�èPîQîQê:é��kæ�ögêmëoäKå>æ´ç�è�é°êÀñKê »

��êkô´ä�óCêPé�ì�ïCë°æ<ögè:îQñÂæ�éoèPîGë°ô´èPæ´ê-æ�ögêséVê��ïKò�é°ê:ì!ê:îQæøëÀò¡îKæøä�ëeógêjõ:òø÷Gõ
ñ�ûKîCèPì�ò´õ*õköQêkõkýCëXä�î�æ¡öQê�óKéoä�ú�é°è:ìÖëVæøèPæ´ê�þPãGêkõ�ä�îQñGù
æ´ê�ë°æKõjä��KêPéoè:úKê

òøë�ä�ånæ´ê:î�éoèPæ¡öQê:éaô�ò�ì�ò¡æ´êkñCùjõ�ä���ê:éeò¡îQú/ä�îQô�ûsëoä�ì!êuê��Kêjõ:ïQæ�òøä�î�óGèPæ¡öCë�þ
½ ä5ì�ò�æ¡ò´úQèPæ´ê�æ¡öQêp÷géoë°æ*óQé°ä�ðgô¡ê:ìpùXëoäKå>æ´ç�è�é°ê�ä�ånæ¡êkî�ò¡îQõkô�ïQñQê�ë�ñKû »îgè:ì�ò¡õ�õköQêkõkýCë�ä�î�èMëVûCë°æ¡êkì��«ëuëVæøèPæ´ê�ò�îpä�é°ñKêPé<æøäsò´ñKê:îQæ�ò´ånû-óKéoä�ð »ô�êkìÂë�èPæ)éeïQî » æ�ò¡ì!ê�þ��Àêkõjê:îQæ¡ô�û�ù�æ�ögêPé°ê�ögè�ë�ðgêjê:îÂëoä�ì!ê�ò�îQæ¡ê:éVê�ëVæXò�îéeïQî » æ�ò¡ì!êEì�ä�îQò�æøä�éVò¡îQú�æ´êkõ:öQîKò��ïgê�ë7ç�öKò´õ:ö�óKéoä���ò´ñKêÀèuô�ò¡æ¡æ¡ô¡êuì�ä�éVêéeò´úQä�é/ò�îdæ¡ê�ëVæ¡ò�îgú0þ��nî æ¡öKòÆë�èPóKóKéoäKèkõ:ö0ù7ì�ä�îQò�æøä�é�ësè�é°ê�èPïQæ´ä�ì�èPæ¡ò »õjèkô�ô�û�ëVûKîQæ�ögê�ë°ò��jêkñ-åÆéoä�ì è�åeä�éeì�èkô)ëeóCêkõ:òø÷Gõ�èPæ¡ò´ä�î)þ ½ öQê�ë°êmì�ä�îQò »æ´ä�éoëaì�èPû/æ¡öQêkî�ðgêÀñQêPóCô¡ä�ûgêkñ/äKåÆå » ô�ò�îgê�åeä�éXñKê:ð�ïQúKúKò�îgú�ä�éaä�î » ô�ò¡îQêåeä�é�ñ�ûQîgè:ì�ò¡õ�è:ô¡ô�û-õ:ögêkõ:ýQò�îgúsæ�öCèPæaë�è:åeê:æ¡û-óKéoä�óCêPéVæ�ò´ê�ëEèPéVê�îCä�æGðCê »ò�îgú��Kò´äKô¡è:æ¡êjñ/ñ�ïKéeò¡îQú�ë°ûCëVæ´ê:ì ê��KêkõkïKæ¡ò´ä�î)þ
�nîÁæ¡öKòÆëÂóGè�ógê:éVù�ç�ê`è�éeúKïQê�æ¡ögè:æ�ñ�òÆëVæ�éeò�ð�ïKæ´êkñÄë°ûCë°æ¡êkìÂë5ì�èPû

ðgê�êkå>ånêjõ:æ¡ò���êkô�ûsì�ä�îKò¡æøä�é°êkñ-èPæGéVïKîQæ�ò¡ì!êmèkúQè:ò�îGëVæ0åVä�éVì�è:ô¡ô�û!ëeóCêkõ:ò »÷Gêkñ-ëoèkånêkæ�û�éVê��ïKò�é°ê:ì!ê:îQæøëPþ���û-êkå>ånêjõ:æ¡ò���êEì�ä�îQò�æøä�éVò¡îQúCù:ç�ê}ì!êjèPî
îgä�æEä�îQô�û$ô�ò¡îQê�è�é�êkå>÷0õ:ò´ê:îQõ:û�ù0ð�ïKæ�è:ôøëoä\ñKêjõkêkîKæ�é°èkô�ò��kêjñ·ì�ä�îQò�æøä�é »ò�îgúMç�ögêPé°êuåeêPçÖä�éaîCäMèkñKñKò�æ¡ò´ä�îgèkô�ì!ê�ë�ëoèkúKê�ë*îgêkêkñ�æ´ä�ðCêÀóGèjë�ëoêkñ
åeä�é}ì�ä�îKò¡æ´ä�éeò¡îQúpógï�éeóCäQëoê�ëPþ��\êpò�îQæ�éoä�ñKïQõkê!è:î\ê:óQòÆëVæ´ê:ì�ò´õ!æ´ê:ì »óCä�é°èkô0ô¡äKú�ò´õ�åeä�é�ñ�òÆëVæ�éVò�ð�ïQæ¡êjñMýQîgä�ç�ô¡êkñQúKê�þ��\ê�ò´ô¡ô�ïGëVæ�é°è:æ¡ê�æ¡öQê�ê�� »óKé°ê�ë�ëVò���êkîQê�ë�ëÂä�åsæ�öQòøëpô´ä�úKò¡õ$ðQû ì!êjè:îCëpä�å!ë�ä�ì!ê@ëVò¡ì-ógô¡ê�ê�� »èPì-óCô�ê�ë�þ��Uê·æ�ögê:î@ëVöCä�ç ögä�ç êkå>÷0õ:ò´ê:îKæ�ñKòøë°æ�éVò�ð�ïQæ¡êjñ$ì�ä�îKò¡æ´ä�éoë
ì�èPûdðgêUë°ûKîQæ�ögê�ëVò��kêjñ@å>é°ä�ì.æ¡öQê ëeóCêkõkò´÷Gêjñ é°ê�KïKò�éVêkì!ê:îKæÆë�þ��0ò »îgèkô�ô�û�ùgç�ê-ñQê�ë°õ:éeò�ðgêsèsñ�òÆëVæ�éeò�ð�ïKæ´êkñ5ëVûCë°æ¡êkìÂëmè�óKóCô�ò´õjè:æ�òøä�îÂñKê���êjô »ä�ógì!ê:îKæaå>é°è:ì!êPç�ä�éeý0ùKõjè:ô¡ô¡êkñ ¼-×ÆØ-ÊWÙ þ ½ ä�ïCëoê ¼-×ÆØ-ÊWÙ ù0è�ïCëoêPéì�ïCë°æKóQé°ä��Kò¡ñQêÀèPî�è�óQógô�ò¡õ�èPæ¡ò´ä�î�æ´äKúKê:æ¡öQê:é7ç�ò¡æ�ösæ¡öQêuåVä�éVì�è:ôCëoèkånêkæ�û
óKéoä�óCêPéVæ�ò´ê�ë<æ�öCèPæXë°öQê�ç�èPîQæøë�ì�ä�îKò¡æ´ä�éVêjñ0þ ¼s×>ØsÊWÙ è:ïKæøä�ì�èPæ¡ò´õjè:ô¡ô�ûëVûQîKæ¡öQê�ë°ò��jê�ë�õjäKñKê�åVä�éWì�ä�îQò�æøä�éVò�îgú/æ¡öQê�ëVógêkõkò´÷0êkñMéVê��ïQò�é°ê:ì!êkîKæÆë
èPîgñ/ç�êjè���ê�ëWè�óQóKéoä�óQéeòøèPæ´ê�ò�îGëVæ�éeïQì!ê:îKæøèPæ¡òøä�î�õjäKñKê�ò¡îKæøä�æ¡öQêÀúKò���ê:î
è�óQógô�ò¡õ�èPæ¡ò´ä�î)þ ½ ögê�è�é°õ:öKò¡æ´êkõ:æ¡ï�é°êEä�å ¼-×ÆØ-ÊWÙ òøëXò´ô¡ô�ïGëVæ�é°è:æ¡êjñ}ò¡î��0ò´ú »ï�é°ê ��þ
½ öQê/ç�ä�éeý�óQéVê�ë°êkîKæ´êkñ-ò¡î�æ¡öKòÆë�óCèPógê:é�ç�èjëuë°æ�ò¡ì�ïQô´èPæ´êkñ�ðQû!æ¡öQêä�ð0ë°êPé!��èPæ¡òøä�î/æ¡ögè:æGò�î-ì�èPîKûMñ�òÆëVæ�éVò�ð�ïQæ¡êjñ-ë°ûCëVæ´ê:ìÂë
ùKë°ïQõkö-è�ë*ç�ò�é°ê »ô�ê�ë�ë�ëoê:îCë�ä�é�îQêkæ¡ç�ä�éeýGë�ùgò¡æ<òÆë"�ïKò¡æ´êMò¡ì-óKéoè:õkæ�ò´õjèkô7æ´äÂì�ä�îQò�æøä�é�é°ê »

�ïQò�é°ê:ì!êkîKæÆëÀê��KóKé°ê�ë�ë°êkñ�ò�î�õjô¡è�ë�ë°ò¡õ�è:ôWæ´ê:ì-óGä�éoè:ôaô¡äKú�ò´õ�ëPþ#�)ä�éuê�� »èPì-óCô�ê�ùPõ�ä�îCë°ò¡ñQêPé)èÀëVûGëVæ´ê:ì ä�åCì�ä�ðQò´ô�ê�îgäKñKê�ë0ò¡î/ç�öKò´õ:ö/ä�îQê�ì�ä »ðQò´ô�ê/îgä�ñQêmì�èPû-é°ê��ïgê�ë°æ7è�õjêPéVæ´è:ò�î$��èkô�ïgê�åÆéoä�ì"èPîCä�æ¡öQêPé<ì�ä�ðQò´ô�ê
îgäKñKê�þ&%mîÂéVêjõkêkò���ò¡îQú-æ¡öQê/éVê��ïQê�ëVæ>ùKæ�ögêsëoêkõjä�îQñ�îCä�ñQê/õjä�ì-óQïKæ´ê�ë
æ�ögê���èkô�ïgê�èPîgñ-éVêkæ�ïKéeîGëEò¡ænþ Ø î�ò¡ì-óCä�éVæøèPîKæ0éVê��ïKò�é°ê:ì!ê:îQæ0ò¡î5ëVïgõ:öèpë°ûCë°æ¡êkì'òøë�æ¡ögè:æ�îCä·îCä�ñKê!éVêjõkêkò���ê�ë�è�é°êPóCô�ûUåÆéoä�ì è�îgäKñKê�æ´ä
ç�öKò´õ:ö�ò¡æ�ögèjë�îgä�æ<óKé°ê���òøä�ïGë°ô�û·òøë�ëVïgêkñ$è�éVê��ïQê�ëVæeþ'�næ�òÆë�êjè�ëVû\æ´ä
ë°êjêuæ¡ögè:æ ¾ ò�îgêjè�é ½ ê:ì-óGä�éoè:ô ¾ ä�úKò¡õ�( ¾g½<¾*) ç�ä�ïQô¡ñ/îCä�æQðgê�è�óQé°èkõ »æ�ò´õjèkôgëVógêkõkò´÷0õjèPæ¡òøä�î/ô´èPîQúKïgèkúKêEåeä�é7èPîKû�éVê�èjëoä�îgèPðgô�û/ë°ò��jêkñ/õ�ä�ô¡ô�êjõ »

161

goodelle
Text Box
Appendix K: 



SpecificationDistributed
Program in

Java

Bytecode

Compile

Instrument
or

Instrumented
Bytecode

MonitorImpl

PT -DTL
Monitor

Execute

Program Execution

JVM

Instrumentation
Module

Monitoring
Module

���������
	��������	�������������	���������	 ��!#"%$&�('�)

æ�òøä�î�äKå0îgäKñKê�ë�þ ½ ä�ïCë°ê ¾Q½<¾ ùjç�êÀç�ä�ïQô¡ñ�îQêjêkñ�æøä�õjäKô�ô¡êkõkæQõ�ä�îCë°òøë »æ¡êkîKæ*ëVîCè�óGë°ögä�æøëuä�å�æ�ögêMúQô¡ä�ðCèkôaë°ûCëVæ´ê:ì+*0è�ì�ä�îQò�æøä�é�ç�ä�ïgô�ñ�æ�ögê:î
õ:öQêjõ:ý�æ¡öQê-ëVîgèPóGë°ögä�æÆëEåVä�é�óCäQë�ëVò�ðgô¡ê��Kò´äKô¡è:æ�òøä�îGë�ä�å*æ�ögê�óKéoä�óCêPéVæ�û
ðQûÂõ�ä�îGëVò´ñKêPéVò¡îQú�èkô�ôXóCägë�ë°ò�ðCô�êMò�îQæ¡ê:éVô¡êjè��Kò�îgúgëuä�åEê���ê:îQæøë�æ�öCèPæ<è�é°ê
è:ô¡ô¡ä�ç�êjñ�ðQûmæ¡öQêEñ�òÆëVæ�éeò�ð�ïKæ´êkñ}õjä�ì-óQïKæøèPæ¡òøä�î)þ!�eî�èEë°ûCë°æ¡êkìüä�ågæ¡ögä�ï »ëoèPîgñgë�ä�åaîCä�ñKê�ë�ù�õjä�ô¡ô¡êkõ:æ¡ò¡îQúsë°ïQõkö�èmúQô¡ä�ðCè:ô0ë°îgè�ó0ëVöCä�æGç�ä�ïQô¡ñ�ðgê
óKéoä�öKò�ðQò¡æ¡ò���ê�þ�ÿ@ä�é°êjä���ê:éVù�æ¡öQêuîKïQì-ðgêPéXäKå0óGäQë�ëVò�ðgô¡ê�ò�îQæ¡ê:éVô¡êjè��Kò�îgúgë
æ´äuðgêEõ�ä�îCë°ò¡ñQêPé°êkñ}ç�ä�ïQô¡ñ}ðgêEô¡èPéeúQê�ê���êkî}ò´åCóGä�ç�êPé°å>ïgôkæ´êkõköKîKò��ïgê�ë
ëVïQõköMèjëWóCèPéeæ¡òøè:ôCä�é°ñKêPéXéVêjñ�ïgõ:æ¡ò´ä�î�è�é°êuïGë°êkñ)þ
½ ä�èkñKñ�é°ê�ë�ë*æ�ögê/è�ðCä&��ê}ñKò¡ån÷Gõ:ïgô�æ¡û�ù�ç�ê�ñKêj÷GîQê a�Q�
 ´¨> ´�«¤��m�G�«�P¨

 ¡���¦�K¬K ��:�M ��:¤�W¥C�e�C¢g¢¦¥�§G��� ( ¹�º�»°¼-½�¾ ) þ	�Më°ò�îgú ¹Kº�»o¼s½�¾ ù�ä�îgêuõ�èPîõ:öQêjõ:ý�èMóKéoä�óCêPéVæ�û�ëVïgõ:ö�èjë�æ�ögê!ä�îQê�èPðCä���ê�ðQû·öCè���ò¡îQú·è-ô´ä�õjèkô
ì�ä�îKò¡æøä�é�ä�î!ê�è:õkö�îgä�ñQê�þ��)ä�éEê��gè:ì-ógô¡ê�ù�îgä�ñQê

a
ì�ä�îQò�æøä�é�ë-,�ò´å

aögèjë7éVêjõkê:ò ��êkñ/è ��è:ô�ïQêEæ¡öQê:î�ò�ægì�ïCë°æKðCê�æ�ögêuõ�èjë°êÀæ�öCèPæQóKé°ê���òøä�ïCëoô�û
ò�î�æ¡öQêEóGèjë°ægèPæ

b
æ¡öQê�åVä�ô¡ô¡ä�ç�ò¡îQú�ögêkô¡ñ �

b
ögè�ëaõjä�ì-óQïQæ¡êjñ}æ¡öQê ��è:ô�ïQê

èPîQñ/è:æ
a
èEé°ê�KïQê�ëVæKç�èjëWì�è:ñKêuåeä�é)æ�öCèPæ���è:ô�ïQêEò¡î/æ¡öQê�óGèjë°æ/.Kþ ½ öKòÆëòøë�óQéVêjõ:òÆë°êkô�û èPîQñ�õ�ä�îQõkòøëoêkô�ûUê	��óKé°ê�ë�ë°êjñ�ðgûUæ¡öQê ¹�º�»o¼-½�¾ åeä�é »ì�ïQô´è&�

receivedV alue→
@b( 0 · (computedV alue ∧@a( 0 · requestedV alue)))

1 ä�æ´ê·æ�öCèPæ�ç�ê·é°êjèkñ
@
èjë2,:è:æ/.�ù

@bF
òÆë-æ¡öQê ��è:ô�ïQê$äKå

F
ò¡î

æ�ögê-ì�äQëVæ<éVêjõkê:îQæ*ô´ä�õjèkô�ë°æ´è:æ¡ê�äKå
b
æ¡ögèPæ*æ�ögê!õ:ïKéné°ê:îQæaóKéoä�õkê�ë�ë}òÆëèPç�è�é°ê/ä�åoùKè:îQñ 0 · ñKê:îCä�æ´ê�ë�æ¡öQê/åVä�éVì�ïQô´èmç�èjë�æ�éeïgêMëoä�ì!ê:æ¡ò�ì!ê�ò¡îæ�ögêEóCè�ëVæeþPÿ ä�îKò¡æ´ä�éeò¡îQúmæ¡öQêuèPðCä��Kê�åeä�éeì�ïgô¡è�ò¡î ��äKô �Kê�ëWë°êkîQñKò�îgú�îgä

è:ñKñKò�æ¡òøä�îgèkô)ì!ê�ë�ë�è:úKê�ë�3·ò¡æWò�î���äKô ��ê�ëEò¡îCëoêPéVæ�ò¡îQúpä�îQô�û·èMåeêPç ðgò�æÆë
ä�åGò¡îQåVä�éVì�èPæ¡ò´ä�î�ç�öKò´õ:öMèPéVêEógò¡úQú�ûKðCè:õkýKêkñ�ä�î�æ¡öQêÀì!ê�ë�ë�è:úQê�ëaæ¡ögè:æ
è�é°êEèkô¦é°êjèkñ�û}ðgêkò�îgúuóGèjë�ë°êkñmò¡î�æ�ögê�õjä�ì-ógïKæøèPæ¡ò´ä�î)þ ½ öKòÆë)êjå>÷Gõkò¡êkîQõPûóKéoä���ò´ñKê�ë)èÀë°ï�ðGë°æ´è:îKæ¡ò´èkô�ò¡ì-óKéoä���ê:ì!êkîKæ�ä���ê:éGç�öCèPæ�òÆëXé°ê�KïKò�éVêjñ}æøä
ì�ä�îKò¡æøä�éXåVä�éVì�ïQô´èjëaçméVò¡æ�æ´ê:îMò�îsõkô´èjë�ë°ò¡õ�è:ô ¾g½<¾ þ

�\ê5ò�îQæ�éoä�ñKïQõjê �e�P¤/¥g ��p�°¯���n�:���P�¦¥K�K� ò�î ¹�º�»o¼-½�¾ æ´ä�éVê:óKé°ê »ë°êkîKæ*��èkô�ïgê�ëmç�öKò´õ:ö$èPéVê�ånïKîgõ:æ¡ò´ä�îCë}ñKê:ógêkîQñ�ò¡îQú5ä�î·æ¡öQê�ë°æ´è:æ¡êÂä�åèmé°ê:ì�ä�æ´ê�óQé°äKõkê�ë�ë�þ �)ä�éEê��gè:ì-ógô¡ê�ùQè�óQé°äKõkê�ë�ë�ì�èPû�ì�ä�îKò¡æøä�é*æ¡öQê
óKéoä�óCêPéVæ�û �4,�ò´å)ì�û-è:ô´è�éVì ögè�ë7ðgêjê:î�ë°ê:æCæ¡öQêkî/ò�æCì�ïGëVæQðgêÀæ¡öQêmõjè�ë°ê
æ�öCèPæ�æ¡öQêuñ�ò´åÆånê:éVêkîQõjê<ðCê:æ´ç�êkê:î�ì�û�æ´ê:ì-óCêPéoèPæ¡ï�é°êEè:îQñ�æ¡öQêEæ´ê:ì-óCêPé »èPæ¡ï�é°ê/èPæXóKéoä�õjê�ë�ë

b
ê	�QõkêjêkñQêkñ-æ¡öQê/è:ô¡ô´ä�ç�êkñ$��èkô�ïgê5.�þ ½ öQòøëEòøëÀê�� »óKé°ê�ë�ë°êkñMèjë��

alarm→ 0 · ((myTemp−@botherTemp) > allowed)

6 êPé°ê
@botherTemp

òÆë5è$éVêkì�ä�æ´ê\ê��KóKé°ê�ë�ëVòøä�î æ�öCèPæ�òÆë·ëVï�ð »æ�éoè:õkæ¡êjñ/å>é°ä�ì æ�ögêuô´ä�õjèkô#��èkô�ïgêuä�å
myTemp

þ
Ø î�ê	�gèPì-óCô�ê�ä�åGè�ëoèkånêkæ�û}óKéoä�óCêPéVæ�û}æ�öCèPæ�ì�èPû}ðgê�ïCëoêkånïQôjò�î�æ¡öQêõjä�îKæ´ê��Kæaä�åEèPîpè:ò�éeógô´èPîgêsë�ä�ånæ¡ç�è�é°ê/òÆë��7,Pò¡å�ì�ûpè:ò�éeógô´èPîgê/òÆëÀô´èPîgñ »ò�îgúuæ¡öQêkî}æ¡öQê�éVïKîgç�è:ûmèkô�ô´ä�õ�èPæ´êkñuðQûmæ�ögê�è:ò�éeóCä�éeæ�ì�èPæ´õ:ögê�ë0æ�ögê�ä�îQê

æ�öCèPæ��<èPì óCô¡è:îKîQò�îgú�æ´ä�ïCëoê5.Kþ ½ öQòøëWóKéoä�óCêPéVæ�û/ì�è:û/ðCê}ê��KóKé°ê�ë�ë°êkñò�î ¹�º�»°¼-½�¾ èjë*åeäKô�ô´ä�ç�ë��
landing→ (runway = (@airportallocRunway))

ÿ è:î�ûMéVê�ë°êjèPéVõköQê:éoë<ögè���ê}óQé°ä�óCäQëoêkñ�æ¡êkì-óCä�éoè:ôgô´ä�ú�ò´õ�ë*æøä�éVê�è »ëoä�îpè�ðGä�ïQæXñ�òÆëVæ�éVò�ð�ïQæ¡êjñÂëVûGëVæ´ê:ìÂë�þKÿ ägëVæWä�å*æ�ögê�ë°êsô´ä�ú�ò´õ�ëÀè�é°ê/ò¡î »ëeógò�é°êkñ}ðQû�æ¡öQê�õjô¡è�ë�ë°ò¡õÀç�ä�éeý�äKå Ø ïKì�è:îKî98/:<;XèPîgñ 6 èkô¦óCêPéVî �k ��G¢¦µ
8>=?;�ä�îÂýQîgä�ç�ô¡êkñQúKê/ò¡î5ñ�òÆëVæ�éeò�ð�ïKæ´êkñ5ëVûCë°æ¡êkìÂë�þgÿ êkê:îCèPýGëVöKò �k 7�G¢¦µñKê�÷CîQê�è/ýKîCä�ç�ô�êjñKúKê�æ´ê:ì-óGä�éoè:ô0ô´ä�úKò¡õ�ò�îQæ¡ê:énóQéVêkæ¡êjñ!ä���ê:é�è�ì!ê�ë »ëoèkúKêÂëoê��ïgê:îgõkê�õ:öCè�éVæøë�ò�î�è!ñ�òÆëVæ�éVò�ð�ïQæ¡êjñ$ëVûCë°æ¡êkì@8 �5AB;}è:îQñ·ñQê »
��êkô´ä�ó·ì!êkæ�öCä�ñgë}åVä�éÀì�äKñKêkôWõköQêjõ:ýKò¡îQú5åVä�éVì�ïQô´è:êMò�î·æ¡öKòÆë�ô´ä�úKò¡õKþ
%mï�é}õ�ä�ì�ì�ïQîKò´õjèPæ¡òøä�î!óQéeò¡ì�ò¡æ�ò��Kêsç�è�ëmò�î5óGè�éVæ<ò¡îCëeógò�é°êkñÂðgû·æ�öQòøë
ç�ä�éVýGùPð�ïKægç�êuè:ô¡ô¡ä�ç�èPénðgò�æ�é°èPéeû�ê��KóKé°ê�ë�ëVòøä�îCë7è:îQñ�è:æ´ä�ì�ò¡õ�óQé°ä�óCä »ëVò¡æ�òøä�îGë<ä��KêPé7ê	��óKé°ê�ë�ëVòøä�îGë7ò�îMæ�ögê:ò�éaô´ä�úKò¡õKþ
Ø îgä�æ¡öQê:é�õkô´äQëoêkô�û éVêjô¡è:æ¡êjñ ç�ä�éeý�òÆëpæ¡ögèPæsä�å(C)êkîQõ��kê:ýD8!�E=gù

�4FG;�ç�öQò¡õkö ñKêj÷GîQê�ësèpæ´ê:ì-óGä�éoè:ô�ô¡äKú�ò´õ5äKå�õjè:ïCëoèkô�ýKîCä�ç�ô�êjñKúQê�þ
É îgä�ç�ô¡êkñQúKê�ä�óCêPéoèPæøä�é�ëXèPéVê�óKéoä���ò´ñKêjñuæøämé°êjèjë�ä�î�èPðCä�ïQæ�æ¡öQêÀô´ä�õ�è:ôöKòÆëVæøä�éVûÂä�åEè/óKéoä�õkê�ë�ë
ùCèjëuç�êkô¡ôWèjë}è�ðCä�ïKæXæ�ögê�ýQîgä�ç�ô¡êkñKúQê�ò�æ<èkõ »
�ïQò�é°ê�ë�å>é°ä�ì&ä�æ�ögêPé<óQé°äKõkê�ë�ë°ê�ë�þ 6 ä�ç�ê���êPéVù�ò�îpä�é°ñKêPé<æøä-ýKêjêPó!æ¡öQê
õjä�ì-ógô¡ê��Kò¡æ�û�äKå<ì�äKñKêkôXõ:ögêkõ:ýQò�îgú�æ�é°èkõ:æøè�ðgô¡ê�ùHCXê:îQõ��kêký�ñQäKê�ë�îCä�æ
è:ô¡ô¡ä�ç æ¡öQê-îQê�ëVæ¡ò�îgú·ä�åÀõ�èPïCë�è:ôWýQîgä�ç�ô¡êkñQúKê-ä�ógê:é°è:æ´ä�éoëPþ �eîKæ´êPé°ê�ë°æ »ò�îgúKô�û�ùGæ�ögê�îQê�ëVæ¡ò�îgú�ä�å}õjèPïGëoèkô<ýKîCä�ç�ô�êjñKúQêsä�ógêPéoèPæøä�é�ëmñQäKê�ë}îCä�æ
è:ñQñ�èPî�ûsõjä�ì-ógô¡ê��Kò¡æ�û�æøä�ä�ï�é<è:ô¡úQä�éeò¡æ�öQìüåVä�éaì�ä�îQò�æøä�éVò¡îQú0þ
¾ ê:ïgõ:ýKê:éÂò¡î �Kê�ëVæ¡ò´úQèPæ´ê�ëpô�ò¡îQêjèPéÂæ´ê:ì-óGä�éoè:ô�ô´ä�úKò¡õ@ò�îQæ¡ê:énóQéVêkæ¡êjñä���ê:éué°ê�ëVæ�éVò¡õkæ¡êjñ�ô¡èPðgêjô�êjñ·óCèPéeæ¡òøè:ôEä�é°ñKêPé�ë�õ�è:ô¡ô�êjñ�ÿ@è	�kï�éVýKò´êPç�ò¡õ��

æ�éoè:õjê�ë%8 �JIH;�þ Ø î�ä���ê:é �Kò¡êPç ä�åEñKòøë°æ�éVò�ð�ïQæ¡êjñÂô�ò¡îQêjèPé�æ�ò¡ì!ê�æ´ê:ì-óGä »é°èkôWô¡äKú�ò´õ�ë�ðCè�ë°êkñ5ä�î5ÿ@è	�kï�éVýKò´êPç�ò¡õ��/æ�é°èkõkê�ë�òÆëmú�ò��Kê:î!ðgû ½ öKòøè »úQèPé°è:îLK�èPî �k *�C¢�µ ò¡îM8/IHI<;�þ Ø ô�ï�é �k *�C¢�µ 8�N�;Àò¡îKæ�é°äKñ�ïgõkê!è�æ´ê:ì-óGä »é°èkô�ô¡äKú�ò´õ�äKåCõjèPïGëoèkô�ò¡æ�û�( ½�¾PO") ç�öKò´õ:ömòøëXò¡îKæ´êPéeóKé°ê:æ´êkñmä���êPéGõjè:ïCë�è:ôëVæ�éeïgõ:æ¡ï�é°ê�ë)õjä�éné°ê�ëVóCä�îgñ�ò¡îQú�æøäÀóGè�éVæ�òøè:ô�ä�éVñQêPéGê��KêkõkïKæ¡ò´ä�îCë)ä�åGè�ñ�òÆë »æ�éVò�ð�ïKæ´êkñ�ëVûGëVæ´ê:ì·þ ½ ögêPû�ïCëoê�ðCä�æ�ö-óGèjë°æaè:îQñ�ånïKæ¡ï�é°ê�æ�ò¡ì!ê�ä�óCêPéoè »æ´ä�éoë*èPîgñ�ú�ò ��êuèuì�ä�ñKêjôKõköQêkõkýKò¡îQú/èkô�úgä�éVò�æ¡öKì åVä�éaæ�ögêuô´ä�ú�ò´õ�þ
�nî·é°êkõjê:îQæ*ûQê�è�é�ë�ù)æ¡öQê:éVê�öCèjë}ðCêkêkî$õjä�îCëVò´ñKê:é°èPðgô¡ê-ò�îQæ¡ê:éVê�ëVæ�ò�î

éeïQîKæ¡ò�ì!ê ��ê:éeòø÷Gõjè:æ�òøä�îQ8!�E;oþ 6 è���êjô�ïQîQñ �k m�C¢�µ 8 �JRH;-ú�ò��Kê�èkô�úgä »éeò¡æ¡öKìÂëmåVä�é�ë°ûKîKæ¡öQê�ëVò��:ò¡îQú·êjå>÷Gõ:ò´ê:îQæ<ì�ä�îQò�æøä�é�ë}åeä�é�ëoèkånêkæ�û�óKéoä�ó »êPéVæ�ò´ê�ëPþ�ãGêkî �j Q�C¢�µ 8/IHR<;7ñKê���êjô¡ä�ó�æ´êkõ:öQîKò��ïgê�ëaåVä�éaéVïKîKæ¡ò¡ì!ê}ëoèkånêkæ�ûèPîCè:ô�ûCëVòÆë�åVä�é<ì�ïQô�æ¡ò�æ¡ö�é°êjèkñKêkñ�óKéoä�ú�é°è:ìÂë*è:îQñ-ò¡îKæ�é°äKñ�ïgõkê}æ�ögê�æ´äQä�ô
S ÿTC ÙVU þ)ã)ä�ì!ê!ä�æ¡öQê:é�éeïQîKæ¡ò�ì!ê ��ê:éeòø÷Gõ�èPæ¡ò´ä�î�ë°ûCë°æ¡êkìÂë}ò�îgõkô�ïQñKê
S C)è U åÆéoä�ì 1 Ø ã ØÁØ ì!ê�ëP8>W?;7è:îQñ �XC�Y 1X1 �«ë<ÿ@è:õ�8 �#�E;oþ

162



�Uê�õjèPî-æ¡öKò¡îKý!ä�åWè:æ)ô�ê�èjë°æ0æ�öKéVêjêuì�è�K�ä�é*õjä�îKæ�éeò�ð�ïKæ¡ò´ä�îCë*ä�åaæ¡öQê
ç�ä�éeý!óKé°ê�ë°êkîKæ´êkñ�ò¡îpæ�öQòøë�óCèPógêPéVþ&�0ò�é�ëVæ>ùCç�êsñKêj÷GîQê�è-ëVò¡ì-ógô¡ê/ð�ïQæê���óQéVê�ë�ëVò ��ê-ô¡äKú�ò´õ-æ´ä�ëVógêkõkò¡ånû\ëoèkånêkæ�û�óKéoä�ógê:éeæ¡ò´ê�ëuò�î\ñ�òÆëVæ�éeò�ð�ïKæ´êkñ
ëVûCë°æ¡êkìÂë�þ:ãGêjõjä�îgñCùkç�êEóQé°ä��Kò¡ñQê�è:îMè:ô¡úQä�éeò¡æ¡öKìÄæøä/ëVûQîKæ¡öQê�ëVò��kê�ñKê »õkê:îQæ�éoè:ô�ò��kêkñ}ì�ä�îQò�æøä�é�ëXåeä�éaëoèkånêkæ�ûmóQé°ä�ógêPéVæ¡ò¡ê�ë0æ¡ögè:æQè�é°ê�ê��KóKé°ê�ë�ëoêkñ
ò�î·æ¡öQê!ô´ä�úKò¡õKþ��0ò�îCè:ô¡ô�û�ù)ç�ê!ñKê�ë°õPéVò�ðgê-æ¡öQê�ò¡ì-ógô¡ê:ì!êkîKæøèPæ¡ò´ä�î5äKåuè
æ´äQä�ô ( ¼-×ÆØ-ÊWÙ ) æ�öCèPæ*òÆë�ðCèjëoêkñ$ä�î�æ¡öKòÆëmæ¡êjõ:öQîKò��ïQêKþ ½ öQê�æøäKäKô<òÆëóQï�ðCô�ò´õkô�û�è���èPò´ô´è�ðgô¡êuåVä�éWñQä�ç�îgô¡äQè:ñ)þ
½ öQê�é°ê�ë°æaäKå*æ¡öQê/óCèPógêPéEòÆëuä�éeúQè:îKò��kêjñ-è�ëÀåVä�ô¡ô´ä�ç�ë�þKãGêjõ:æ¡ò´ä�î IèPîQñ5ãGêjõ:æ¡ò´ä�î��ÂúKò���êsæ�ögêMóKé°êkô�ò�ì�ò¡îgèPéeò´ê�ëPþQãGêkõkæ�òøä�î�N5ò¡îKæ�é°äKñ�ïQõjê�ë

¹�º�»°¼-½�¾ þ��eî�ãGêkõkæ�òøä�î :�ç�êÀñQê�ëoõPéVò�ðCê�æ¡öQêÀèkô�úgä�éVò�æ¡öKìÄæ�öCèPæ�ïQîQñKê:é »ô�ò´ê�ë�ä�ïKéXò¡ì-ógô¡ê:ì!ê:îQæ´è:æ�òøä�îXþ:ãGêkõkæ�òøä�î9A�ðQéeò´ê��CûsñKê�ë°õPéVò�ðgê�ëWæ�ögêÀò¡ì »ógô¡ê:ì!ê:îQæ´è:æ�òøä�î�èkô¡ä�îQú/ç�ò¡æ¡ö�ò¡îKò¡æ�òøè:ôCê��KógêPéVò¡ì!ê:îKæøèPæ¡òøä�î)þ
�*Û��Uân�����gân��á��	�Cà�
�W�������Ö�
Ø ñKòøë°æ�éVò�ð�ïKæ´êkñ�ëVûGëVæ´ê:ì òÆë<è�õ�ä�ô¡ô�êjõ:æ¡ò´ä�îMä�å

n
óKéoä�õkê�ë�ëoê�ëWä�éaè:õ »æ´ä�éoë

(p1, . . . , pn)
ù7ê�è:õkö�ç�ò�æ¡ö�ò¡æøë�ä�ç�î�ô¡äKõjè:ôEëVæøèPæ´ê�þ ½ ögê!ô´ä�õjèkôëVæøèPæ´ê-äKå�è/óQé°äKõkê�ë�ëÀòøëmúKò���ê:î�ðQûpæ�ögê ��è:ô�ïQê�ë�ðCä�ïKîgñ�æ´äÂò¡æøë ��èPéeò »è�ðgô¡ê�ëPþ 1 ä�æ´êEæ�öCèPæ�æ¡öQê:éVê�è�é°êEîgä�úQô¡ä�ðCèkô�ä�éaë°ögè�é°êkñ���èPéeòøè�ðCô�ê�ë�þ CGé°ä »õkê�ë�ë°ê�ësõjä�ì�ì�ïQîKò´õjè:æ¡êÂç�ò�æ¡ödä�æ¡öQê:é�ïGëVò¡îQú èjë°ûKîgõ:ö�éoä�îCä�ïGë�ì!ê�ë »ëoè:úQê�ëXç�ögägë°êÀä�éVñQêPé)ä�å0èPénéVò���è:ô�òÆëXò¡îQñKêkæ¡ê:éeì�ò¡îgè:æ¡êKþ ½ ögêEõjä�ì-ógïKæøè »æ�òøä�î/ä�åGê�è:õkö}óQé°äKõkê�ë�ë)òøëaèPðGë°æ�éoè:õkæ¡ô�û�ì�ä�ñKêjô�êjñ�ðgû�èÀëoê:æQäKå �P²j�:�g �� ùèPîQñMèuñKòøë°æ�éVò�ð�ïQæ¡êjñ/õjä�ì-óQïQæ´è:æ�òøä�î�òÆë�ëVógêkõkò´÷0êkñ�ðgûsè�óCè�éVæ¡ò´èkôgä�éVñQêPé

≺
ä�î�æ¡öQê}ê���ê:îQæøëPþ ½ öQê:éVê}è�é°êuæ¡ö�é°êkê�æ¡û�óCê�ë*ä�å7ê���ê:îQæøë	�
��þ �«�C ����V�Q�C¢ ê��Kê:îKæÆëWõkögè:îQúKêÀæ�ögêuô´ä�õjèkôCë°æ´è:æ¡ê�ä�åaèÀóKéoä�õkê�ë�ëJ*
I0þ �
�:�K� ê���ê:îQæøëWõjèPïGë°êmè�óQé°äKõkê�ë�ëaæøäMëoê:îQñsèÀì!ê�ë�ë�è:úKê?*�è:îQñ
�Cþ �e�k�k���¦²�� ê���êkîKæÆëEä�õkõkï�é�ç�ögê:îÂè�ì!ê�ë�ë�è:úQê�òøëEéVêjõkêkò���êkñsðgû�èóKéoä�õjê�ë�ëPþ

¾ ê:æ
Ei

ñKêkîgä�æ¡ê�æ¡öQê�ëoê:æWä�å<ê���êkîKæÆëEä�åaóQé°äKõkê�ë�ë
pi

èPîgñ�ô�êkæ
E
ñKê »îgä�æ´ê ⋃

i Ei

þ 1 ä�ç}ù��
⊆ E ×E

òÆë*ñQêj÷Cîgêkñ�è�ë<åVä�ô¡ô´ä�ç�ë��
��þ

e
�

e′
ò´å

e
èPîgñ

e′
èPéVê�ê���êkîKæÆë*äKåXæ¡öQê/ë�èPì!ê}óKéoä�õjê�ë�ë�èPîgñ

eögèPóKógêkîCëXò¡ì�ì!êkñKò´è:æ¡êjô�û�ðCêkåVä�é°ê
e′
ù

I0þ
e
�

e′
ò¡å

e
òøë*æ¡öQê�ë°ê:îgñMê��Kê:îKæ0äKåaè}ì!ê�ë�ëoèkúKê�èPæXë�ä�ì!êuóKéoä »õkê�ë�ë/è:îQñ

e′
òøë�æ�ögê!õjä�éné°ê�ëVóCä�îgñ�ò¡îQú�éVêjõkêkò���ê�ê���êkîKæ�äKåÀæ¡öQê

ì!ê�ë�ëoè:úQê}è:æQæ¡öQêÀéVêjõ:ò�óQò´ê:îKæQóKéoä�õjê�ë�ë�þ
½ öQê/óCè�éVæ¡ò´èkô7ä�éVñQêPé

≺
òøëÀæ�ögê�æ�éoèPîCë°ò�æ¡ò���êMõkô´äQë°ï�é°êMä�å�æ¡öQê�éVêjô¡è:æ�òøä�î

�-þ ½ öQòøë)óGè�éVæ�òøè:ô�ä�é°ñKê:é0õjè�ógæ�ïKéVê�ëGæ¡öQê �:�C¬����C¢¡��  ³ éVêjô¡è:æ�òøä�îmðgêkæ¡ç�êjê:îê���ê:îQæøëPþ ½ ögê·ë°æ�éVïQõkæ�ïKéVêpñKê�ë°õ:éeò�ðgêjñ�ðgû
C = (E,≺)

òøësõ�è:ô¡ô�êjñ
è �C�¦�
 ´�����K¬� ¡�P�$�:¥K¤�*¬K ¦�C ¡��¥�� èPîQñ·ç�ê!è�ë�ë°ïKì!ê!èPî$èPénðgò�æ�éoè�éVûÂð�ïQæú�ò���êkîMñKòøë°æ�éVò�ð�ïQæ¡êjñMõ�ä�ì-ógïKæøèPæ¡ò´ä�î

C
þ��0ïKéeæ¡öQê:éVù��ÁòÆë�æ¡öQê}éVê��Gê��Qò���ê

èPîQñ/æ�éoèPîGëVò¡æ�ò��Kêuõkô´äQë°ï�é°êuä�å��-þ	�eî��0ò´ú0þ4ICù
e11 ≺ e23

ù
e12 ≺ e23

ù
èPîQñ

e11
�

e23
þ 6 ä�ç�ê���êPéVù

e12 6
�

e23
þ

�)ä�é
e ∈ E

ù0ç�ê-ñKê�÷CîQê
↓e

def
= {e′ | e′

�
e}
ùgæ¡ögèPæWòÆë�ù

↓eòøë�æ¡öQê�ëoê:æ7äKåWê���ê:îQæøë*æ¡ögè:æ)õjè:ïCëoèkô�ô�û-óKé°êkõjêkñQê
e
þ �)ä�é

e ∈ Ei

ùKç�ê
õjèPîMæ�öQò�îQý-äKå

↓e
èjë<æ�ögê}ô´ä�õ�è:ô)ë°æ´è:æ¡ê�ä�å

pi

ç�ögê:îsæ�ögê}ê��Kê:îKæ
e
öCèjë

K°ïGëVægäKõkõkï�éeéVêjñ0þ ½ öKòÆë*ë°æ´è:æ¡ê}õjä�îQæ´è:ò�îGë7æ¡öQê�öQòøë°æ´ä�éeû�äKå)ê���êkîKæÆëWä�å7è:ô¡ôóKéoä�õkê�ë�ëoê�ë7æ¡ögè:æCõ�èPïGëoè:ô¡ô�û�óKé°êkõjêkñKê
e
þ

�Uê!ê��Kæ´ê:îgñ�æ¡öQê-ñQêj÷CîQò�æ¡ò´ä�î5äKå��Mù
≺
èPîgñ�� æøä5ô¡äKõjè:ô*ë°æ´è:æ¡ê�ë

ëVïQõköMæ¡ögè:æ
↓e

�
↓e′

ò¡åÆå
e
�

e′
ù
↓e ≺ ↓e′

ò´åÆå
e ≺ e′

ùKèPîgñ
↓e

�
↓e′

ò¡åÆå
e
�

e′
þ��\ê�ñKê:îCä�æ´êÀæ¡öQê�ë°êkæ)ä�åaô¡äKõjèkôGë°æ´è:æ¡ê�ë�ä�åWè�óQé°äKõkê�ë�ë

m1

p3

p2

p1

e31 e32 e33

e22 e23

e11 e12

m4

m3

m2

���������
	�� �������! �	�" �#"�� � �%$�����	�&('X�)�������*��� ���)+

pi

ðQû
LSi

def
= {↓e | e ∈ Ei}

è:îQñpô�êkæ
LS

def
=

⋃

i LSi

þ#�\ê
ïCëoê�æ�ögêuëVûQì-ðCä�ôøë

si, s
′
i, s

′′
i , . . .

æøämé°êPóKé°ê�ëoê:îQæ�æ�ögê�ô¡äKõjèkôgëVæøèPæ´ê�ë<ä�å
óKéoä�õjê�ë�ë

pi

þ
�\êpè:ôøëoä·èjë�ëVïQì!ê-æ�öCèPæ<æ¡öQê�ô´ä�õ�è:ô�ë°æ´è:æ¡ê
si

ä�å�êjèkõ:ö
óKéoä�õjê�ë�ë

pi

èjë�ëoäKõ:òøèPæ´ê�ë*��è:ô�ïQê�ë<æøäsë�ä�ì!êmô¡äKõjè:ô
��è�éVòøè�ðgô¡ê�ë
Vi

ùKèPîQñ
æ�öCèPæ

si(v)
ñQê:îgä�æ¡ê�ë7æ¡öQê ��èkô�ïgêÀä�åXè ��è�éVò´èPðgô¡ê

v ∈ Vi

ò¡î/æ¡öQêÀô´ä�õ�è:ô
ëVæøèPæ´ê

si

èPægóKéoä�õjê�ë�ë
pi

þ
�\êEïCëoê*æ¡öQê�îgä�æ´è:æ�òøä�î

causal j(si)
æ´äÀé°êkåeêPéGæ´äuæ¡öQê�ô¡è:æ¡ê�ëVæQëVæøèPæ´ê

ä�åÀóKéoä�õkê�ë�ë
pj

æ�öCèPæ*æ¡öQê�óKéoä�õkê�ë�ë
pi

ýQîgä�ç�ëmç�öKò´ô¡ê�ò�î�ëVæøèPæ´ê
si

þ
�)ä�éVì�è:ô¡ô�û�ù�ò´å

causal j(si) = sj

æ�ögê:î
sj ∈ LSj

èPîQñ
sj

�
sièPîgñ�åVä�éuè:ô¡ô

s′j ∈ LSj

ò´å
s′j

�
si

æ�ögê:î
s′j

�
sj

þ �)ä�éÀê��CèPì »ógô¡ê�ùQò¡î �0ò¡úKï�é°ê I
causal1(↓e23) = ↓e12

þ 1 ä�æ´ê/æ¡ögè:æaò¡å
i = jæ�ögê:î

causal j(si) = si

þ
,*Û.-��W����/sâ0�1�32!âeÞ4�g�<�5/6���17�ß<�g�98:2�ß!;aâe�=<?>�@:ACB6D5B3E
C)èjëVæ » æ�ò¡ì!ê ¾ ò�îgêjèPé ½ êkì-óCä�éoè:ô ¾ äKú�ò´õ�( ¹�º�»°¾X½�¾ ) 8!�F�Kù �LN?;7öCèjëðgêjê:î�ïCëoêkñ�ò¡î 8!�ERQù�� �jù4IHRH;0æ´ä�ê	��óKé°ê�ë�ë�ùPì�ä�îQò�æøä�é7è:îQñmóQéVêjñ�ò´õ:æ&��ò »ä�ô´èPæ¡ò´ä�îCëEäKå�ëoèkånêkæ�û!óKéoä�ógê:éeæ¡ò´ê�ë�ä�åEëoä�ånæ´ç�èPéVêsëVûCë°æ¡êkìÂë�þ ½ ögêMëVûQî »æ´è	�säKå ¹�º�»o¾)½�¾ òøë�èjë*åVä�ô¡ô¡ä�ç�ë	�

F ::= true | false | a ∈ A | ¬F | F op F GFH0IJGKI�LNMPO#MQIJRKSUT
| �F | V · F | W F | F S F OQX?YZGKIJH0SUTç�öQê:éVê

op
è�é°êsë°æ´è:îQñQèPéVñsðgò�îCè�éVûÂä�óCêPéoèPæøä�é�ë�ù

∧
ù
∨
ù
→
ùCè:îQñ

↔
þ

�F
ëVöCä�ïgô�ñ�ðgêMé°êjè:ñ5èjëX,�óKé°ê���òøä�ïGë°ô�û?.�ù 0 · F èjëX,Pê��Kê:îKæ¡ïgèkô�ô�û�ò¡î

æ�ögê}óCèjë°æ/.�ù\[
F
èjë-,kè:ô�ç�è:ûCë*ò�î-æ¡öQêmóGèjëVæ .�ù

F1SF2
èjë-,

F1
ë°ò�îgõkê

F2
.�þ
½ öQê/ô´ä�úKò¡õ�òÆë�ò¡îKæ´êPéeóKé°ê:æ´êkñ�ä�î�è�÷CîKò¡æ¡êsë°ê�KïQêkîQõkê�äKå�ëVæøèPæ´ê�ëÀä�éè ��¬�� þ��Vå

ρ = s1s2 . . . sn

òøëuèméeïQî�æ�ögê:î�ç�ê�ô�êkæ
ρi

ñKêkîgä�æ¡ê�æ¡öQê
óKé°êj÷���éeïQî

s1s2 . . . si

åVä�é<ê�è:õ:ö
1 ≤ i ≤ n

þ ½ ögê�ëoê:ì�è:îKæ¡ò¡õ�ë*äKåæ�ögêuñKò¡åÆåeêPé°ê:îQæQä�óCêPéoèPæøä�é�ë7òÆë<úKò���ê:î�ò�î ½ è�ðgô¡ê ��þ
�)ä�é\ê	�gèPì-óCô�ê�ùmæ¡öQê�åVä�éVì�ïQô´è][

((action ∧ �¬action) →
(¬stop S start))

ëVæøèPæ´ê�ë/æ�öCèPæ�ç�öQêkîQê���ê:é �g�j ¡��¥�� ëVæøè�éVæøë/æ´ä�ðgêæ�éVïQê�ùCò¡æ<òÆëmæ¡öQê-õjè�ë°ê�æ¡ögè:æ �
 ��C�o  ç�èjë}æ�éeïgê!èPæ�ë�ä�ì!êMóCä�ò�îQæWò�î·æ¡öQêóCè�ëVæ)èPîgñsë°ò�îgõkêmæ�ögê:î �
 �¥
 ç�èjë�îQê��KêPéaæ�éVïQê#�jò¡î!ä�æ¡öQê:éaç�ä�é°ñgë
ù�æ¡öQêè:õkæ�òøä�î/òÆë*æ´è:ýKê:îsä�îQô�ûMç�öQò¡ô¡êÀæ¡öQê�ëVûGëVæ´ê:ì òÆë�èkõ:æ¡ò���êKþ
1 ä�æ¡ò¡õjêMæ¡ögè:æWæ�ögê!ë°ê:ì�è:îKæ¡ò¡õ�ëmä�åP,
óQéVê��Kò´ä�ïCë°ô�û?.�òøëmúKò���êkîpèjë}ò´å

æ�ögêuæ�éoè:õkê}òÆë<ïQî�ðGä�ïKîgñKêjñ�ò�îsæ�ögêÀóGèjë°æ)èPîQñ�ëVæøèPæ¡òøä�îgèPéeûMò�îsæ¡öQê�÷géoë°æ
ê���ê:îQænþ��nîMéeïQîKæ¡ò�ì!êuì�ä�îQò�æøä�éVò�îgúCùjç�ê�ëVæøè�éVæGæ�ögêÀóQé°äKõkê�ë�ë�ä�å7ì�ä�îQò »æ´ä�éeò¡îQú�å>é°ä�ìÖæ¡öQê�óGä�ò¡îKæ�æ¡ögè:æKæ¡öQêÀ÷gé�ëVæCê���êkîKæ�òÆëWúKêkîQê:é°è:æ¡êjñ�è:îQñ�ç�ê
õjä�îKæ¡ò�îQïQêEì�ä�îQò�æøä�éVò¡îQú�åVä�é<èjë*ô¡ä�îQú�è�ë<ê���êkîKæÆë<èPéVê}úKê:îgêPéoèPæ´êkñ)þ

163



ρ |= true
åVä�éWè:ô¡ô

ρ
ù

ρ 6|= false
åVä�éWè:ô¡ô

ρ
ù

ρ |= a
ò¡åÆå

a
ögäKô�ñCë7ò�îsæ¡öQêmë°æ´è:æ¡ê

sn

ù
ρ |= ¬F

ò¡åÆå
ρ 6|= F

ù
ρ |= F1 op F2

ò¡å>å
ρ |= F1

èPîgñ��nä�é��øò¡ì-ógô�ò´ê�ë��Æò´åÆå
ρ |= F2

ù�ç�öQêkî
op
òÆë
∧/ ∨ /→ /↔

ù
ρ |= �F

ò´åÆå
ρ′ |= F

ù�ç�ögêPé°ê
ρ′ = ρn−1

ò¡å
n > 1

è:îQñ
ρ′ = ρ

ò´å
n = 1

ù
ρ |= 0 · F ò¡åÆå

ρi |= F
åVä�é*ëoä�ì!ê

1 ≤ i ≤ n
ù

ρ |=
[

F
ò¡åÆå

ρi |= F
åVä�é<è:ô¡ô

1 ≤ i ≤ n
ù

ρ |= F1 S F2
ò¡å>å

ρj |= F2
åVä�é*ëoä�ì!ê

1 ≤ j ≤ n
èPîgñ

ρi |= F1
åeä�éaèkô�ô

j < i ≤ n
ù

� ��$9 �	������	�� ��+ � �&��"�� ! ¹�º�»°¾X½�¾
Ø ô�æ¡ögä�ïgú�ö ¹�º�»°¾)½�¾ òÆëÀò¡îKæ´êPéeóKé°ê:æ´êkñ!ä&��êPé�è�ô�ò�îgêjèPéEê��Qêkõ:ïQæ�òøä�îæ�éoè:õjê�ùGò�î�ñKòøë°æ�éVò�ð�ïQæ¡êjñ5ë°ûCë°æ¡êkìÂë�è-õjä�ì-óQïKæøèPæ¡òøä�î�òÆë�èMóGè�éVæ�òøè:ô<ä�é »ñKêPé�ç�öKò´õ:ö�ì�èPû�öCè���ê�ë°ê��KêPéoè:ôCóGäQë�ë°ò�ðCô�ê�ô�ò¡îQê�è�éVò���èPæ¡ò´ä�îCë�þ ½ ögêPé°ê »åeä�éVê�ùCì�ä�îKò¡æ´ä�éeò¡îQú5è�ñ�òÆëVæ�éVò�ð�ïQæ¡êjñpõ�ä�ì-ógïKæøèPæ¡ò´ä�î�é°ê�KïKò�éVê�ë}ì�ä�îKò »æ´ä�éeò¡îQú/èkô�ôKóCägë�ëVò�ðgô¡êuô�ò¡îQêjèPéXæ�é°èkõkê�ëaæ¡ögèPægì�èPû/ðgê}ä�ðQæøèPò¡îQêjñ�åÆéoä�ì è

óCè�éVæ¡ò´èkôQä�é°ñKê:éeþ���îgåeä�éeæ¡ïKîCèPæ´êkô�û�ùPæ�ögêÀîQïKì-ðgê:é7ä�åXô�ò¡îQê�è�éVò���èPæ¡ò´ä�îCëWäKåèEóCèPéeæ¡òøè:ôQä�éVñQêPé)ì�è:û�ðgê}ê���óGä�îgê:îKæ¡òøè:ô�ò¡î�æ¡öQêuô¡ê:îgú�æ¡öMä�å)æ�ögêuõ�ä�ì »óQïKæøèPæ¡òøä�î·èPîQñpæ¡öKïGëÀì�ä�îKò¡æ´ä�éeò¡îQú ¹Kº�»o¾)½�¾ åVä�éVì�ïQô´è/ì�è:ûÂðCê-ò�î »æ�éoè:õkæ´èPðgô¡ê�þ Ø ì�è K�ä�é)õ�ä�îQæ�éVò�ð�ïQæ�òøä�î�ä�åCæ¡öKòÆë)óCèPógêPé0òÆëXæøä}ê	�Kæ´ê:îQñ ¹�º�»
¾)½�¾ ë�äsæ�öCèPæ0ç�ê�õjè:îséVê�èjëoä�î!è�ðCä�ïKæ0è�ñ�òÆëVæ�éVò�ð�ïQæ¡êjñ/óQé°ä�ógêPéVæ¡û�ïCë »ò�îgú�ä�îgô�ûsô¡äKõjè:ôQì�ä�îQò�æøä�éVò¡îQú0þ��\ê�ñKê�ë°õ:éeò�ðgê�æ¡öKòÆë*ê��Kæ´ê:îGëVòøä�î/îgê��Kæeþ
�*Û -��W��� /Mâ*�1���\âe�����gân��á����gà / ��� 7�ß<�g�98�2!ß!;aâV�
Ø ô�æ¡ögä�ïgú�ö ¹�º�»°¾X½�¾ ç�ä�éVýCë�ç�êkô¡ô0åVä�é*è/ëVò¡îQúQô�êmóQé°äKõkê�ë�ë�ùKä�îgõkêç�ê*öCè���ê*ì�ä�éVê<óKéoä�õjê�ë�ëoê�ë0ò�îQæ¡ê:é°èkõ:æ¡ò�îgúuç�ò¡æ�ö�êjèkõ:ö�ä�æ¡öQê:éCç�ê�îQêjêkñ

æ´äÂé°êjè�ëoä�î�èPðCä�ïQæWæ�ögê!ëVæøèPæ´ê�ä�åEé°ê:ì�ä�æ¡êMóQé°äKõkê�ë�ë°ê�ë�þGãCò�îgõkêsóQé°èkõ »æ�ò´õjèkôWñ�òÆëVæ�éeò�ð�ïKæ´êkñ5ëVûCë°æ¡êkìÂëmè�é°êMïGëVïCè:ô¡ô�û·èjë°ûKîQõkö�éoä�îCä�ïCëÀèPîQñÂæ¡öQê
è�ðGë�ä�ô�ïKæ´ê�úQô¡ä�ðCè:ô<ë°æ´è:æ¡ê�ä�å�æ¡öQê!ëVûGëVæ´ê:ì òøë �Q¥g  è���èPò´ô¡èPðgô¡ê�æøä�óKéoä »õkê�ë�ë°ê�ë�ùQæ¡öQê�ðgê�ëVæ7æ�öQò�îgú!æ¡ögèPæaêjèkõ:ö�óKéoä�õkê�ë�ëÀõjèPîpñQä-ò¡æaæ´ä!é°êjèjë�ä�îè�ðCä�ïKæQæ�ögêuúKô´ä�ðGè:ôCëVæøèPæ´êuæ¡ögè:æQò¡æCòøë �¦���Q¸��C�e�À¥e� þ
�Uê�ñKê�÷CîQê2C)èjë°æ »>½ ò�ì!ê ¼ òÆëVæ�éeò�ð�ïKæ´êkñ ½ êkì-óCä�éoè:ô ¾ äKú�ò´õ ( ¹�º�»

¼-½�¾ ) ðgû-ê	�Kæ´ê:îQñKò�îgú ¹Kº�»o¾)½�¾ æøäMê	��óKé°ê�ë�ë�ë�è:åeê:æ¡ûsóKéoä�ógê:éeæ¡ò´ê�ë<äKåñ�òÆëVæ�éeò�ð�ïKæ´êkñ5ì!ê�ë�ëoèkúKêsóGèjë�ë°ò�îgú\ëVûGëVæ´ê:ìÂëPþ)ãgógêjõ:òø÷Gõjèkô�ô�û�ù)ç�ê�èkñKñ
è/óGèPò�éuä�å �n��«�� ��:¤M���s¥�<�j�V�g �¥g�e� èjëuò¡î 8!�EW?;Vù0çméeò¡æ¡æ¡êkî

@
ù0ç�ögägë°ê

é°äKô�êÂòøëMæøä�ê���è:ô�ïgè:æ¡ê5èPî ê��KóKé°ê�ë�ëVòøä�î ä�éMèpåeä�éeì�ïgô¡è�ò¡îUæ¡öQê ¢¦�K�� 
±k�Q¥K¸��5�
 ��g ¡� ä�åuèsé°ê:ì�ä�æ¡êMóQé°äKõkê�ë�ë�þ#�\ê�õ�è:ô¡ô�ëVïgõ:ö$è:î�ê���óQéVê�ë »ëVòøä�îpä�éuè�åVä�éVì�ïQô´è �e�P¤/¥g �� þ Ø é°ê:ì�ä�æ¡êMê���óQéVê�ë�ëVòøä�îpä�é�åeä�éeì�ïgô¡è
ì�èPû$õ�ä�îKæøèPò¡î�îgê�ëVæ´êkñ\êPógòøë°æ¡êkì�ò¡õpä�ógê:é°è:æ´ä�éoë/èPîQñ�éVêjånê:é}æøä ��èPéeò »è�ðgô¡ê�ë�æ�öCèPæ�è�é°ê�ô´ä�õjèkô<æøä$è�éVêkì�ä�æ´ê-óKéoä�õjê�ë�ëPþ'��û$ïGëVò¡îQú5é°ê:ì�ä�æ¡ê
ê���óQéVê�ë�ëVòøä�îGë�ùQò¡î�è:ñQñ�ò¡æ�òøä�îÂæ´ä�é°ê:ì�ä�æ´êsåeä�éeì�ïgô¡èkê�ùCèsô´è�éeúQêPéÀõkô´èjë�ë
ä�å)ñQê�ë°ò�éoè�ðCô�êEóQé°ä�ógê:éeæ¡ò¡ê�ëaä�å7ñ�òÆëVæ�éeò�ð�ïKæ´êkñsëVûCë°æ¡êkìÂëaì�è:û�ðgê�ëeógêjõ:ò »÷GêkñMç�ò�æ¡ögä�ïKæCë�è:õ:éeòø÷Gõ:ò¡îQú�æ�ögêuêjå>÷Gõ:ò´ê:îgõPûMäKå)ì�ä�îKò¡æ´ä�éeò¡îQú)þ
�)ä�éXê��CèPì-ógô¡ê�ù:õjä�îCë°ò¡ñQêPé)æ¡öQêuë°ò�ì-óCô�êÀô´ä�õ�è:ô�óQé°ä�ógê:éeæ¡û/èPægèEóKéoä »õkê�ë�ë

pi

æ¡ögèPægò´å
α
òøëWæ�éVïQêuò�î�æ�ögêuõ:ïKéné°ê:îQæKô´ä�õjèkôgë°æ´è:æ¡êmä�å

pi

æ¡öQêkî
βì�ïCëVæ)ðgê�æ�éeïgê�èPæ7æ¡öQê/ô´èPæ´ê�ë°æaëVæøèPæ´êMäKåWóQé°äKõkê�ë�ë

pj

äKå<ç�öKò´õ:ö
pi

òÆë
èPç�è�é°êÀä�å�þ ½ öKòÆëXóKéoä�óCêPéVæ�û�ç�ò´ô�ô�ðgêÀçméVò¡æ�æ´ê:î�åVä�éVì�è:ô¡ô�û�ò�î ¹�º�»°¼-½�¾èjë

α→ @jβ
þ 6 ä�ç�ê���ê:éVù�é°êkåeêPéeéeò¡îQúuæ´äué°ê:ì�ä�æ´ê�åeä�éeì�ïgô¡èkê�ä�îQô�û}òÆë

�Q¥Q  ë°ïQå>÷Gõkò¡êkîKæ�æøä}ê	��óKé°ê�ë�ë)è�ðQé°äQè:ñÀé°è:îQúKêEä�ågïGë°êkånïQô�úQô¡ä�ðCèkô:óQé°ä�ó »êPéVæ�ò´ê�ë�ëVïgõ:ö�èjëX,kèPæWóQé°äKõkê�ë�ë
pi

ùGæ¡öQê ��èkô�ïgê-äKå
x
ò�î·æ¡öQê-õkï�éeéVêkîKæ

ëVæøèPæ´ê�òÆëuú�é°êjèPæ´êPé�æ�öCèPî!æ¡öQê ��è:ô�ïQêsä�å
y
è:æ)óQé°äKõkê�ë�ë

pj

ò¡î�æ¡öQê�ô´èPæ »ê�ë°æ<õjèPïGëoèkô�ô�û�óQéVêjõkêjñ�ò¡îQúÂë°æ´è:æ¡êKþ . ½ öQê�éVê�èjëoä�îpç�êsò¡îKæ�é°äKñ�ïgõkê�æ¡öQêîgä��Kêkô<ê:óQòÆëVæ´ê:ì�ò´õÂä�óCêPéoèPæøä�é�ë�ä�î\ê���óQéVê�ë�ëVòøä�îGëmòÆë�æ¡ögè:æ�ò¡æEòøë�õPéVï »õ:òøè:ôaæøä�ðCê�è�ðgô¡êMæ´äpè:ôøëoä�é°êkåeêPé�æ´ä ²:�G¢�¬K�P� ä�åEê��KóKé°ê�ë�ëVòøä�îCë�ò�îÂé°ê »ì�ä�æ´êMô´ä�õ�è:ô�ë°æ´è:æ¡ê�ë�þ
�)ä�éuê��CèPì-óCô�ê�ùgæ¡öQêMóKéoä�óCêPéVæ�û5è�ðCä&��ê�õ�èPîpðgê
åeä�éeì�èkô�ô�ûsëVógêkõkò´÷0êkñMè�ëWæ¡öQê ¹Kº�»o¼s½�¾ åVä�éVì�ïQô´è

x > @jy
èPægóKéoä »õkê�ë�ë

pi

ç�öQê:éVê
@jy

òøë�æ¡öQê ��èkô�ïgê�ä�å
y
èPæGóQé°äKõkê�ë�ë

pj

æ¡ögè:æ
pi

òÆë
èPç�è�é°ê}äKå�þ
½ öQêmò¡îKæ¡ïKò¡æ�òøä�îMïKîQñQêPé°ô�ûQò�îgú ¹Kº�»o¼s½�¾ òÆë�æ¡ögèPæ0ê�è:õkö�óQé°äKõkê�ë�ëWòÆëèjë�ëoä�õkò´è:æ¡êjñ/ç�ò¡æ�ö�ô´ä�õ�è:ôKæ¡êkì-óCä�éoè:ô�åVä�éVì�ïQô´è:ê�ç�öQò¡õkö�ì�èPû�é°êkåeêPéXæ´ä

æ�ögê�úKô´ä�ðGè:ô�ë°æ´è:æ¡êpä�å�æ¡öQê!ñKòøë°æ�éVò�ð�ïKæ´êkñ$ëVûGëVæ´ê:ì·þ ½ ögê�ë°ê�åeä�éeì�ïgô¡èkêè�é°êMéVê��ïKò�é°êkñÂæ´äÂðCê ��è:ô�ò¡ñ·èPæ*æ�ögêséVê�ëeógêjõ:æ¡ò���ê�óKéoä�õjê�ë�ëoê�ëmñKï�éVò�îgú
è�ñ�òÆëVæ�éeò�ð�ïKæ´êkñsõjä�ì-óQïQæ´è:æ�òøä�îXþ Ø ñKòøë°æ�éVò�ð�ïKæ´êkñ-õjä�ì-óQïKæøèPæ¡òøä�î-ë�èPæ¡òøë »÷Gê�ë<æ¡öQê�ëeógêjõ:òø÷Gõjè:æ�òøä�îsç�öQêkîsè:ô¡ôgæ�ögê}ô´ä�õ�è:ôgåeä�éeì�ïgô¡èkêuè�é°ê�ëVögä�ç�î
æ´äsëoè:æ�òÆë°ånûMæ¡öQê}õjä�ì-óQïKæøèPæ¡òøä�î)þ
�����	��
���������
�Gé°ä�ì îgä�ç ä�î0ù�ç�êMç�ò¡ô¡ô0ïGë°ê ¹�º�»°¼-½�¾ åVä�éVì�ïQô´è�ä�îgô�û!ò¡î!æ¡öQêõjä�îKæ´ê��KæGä�åWèuóCèPéeæ¡ò¡õkïQô´è�é7óKéoä�õjê�ë�ë
ù�ë�èPû

pi

þ	�\ê�õ�è:ô¡ô)ëVïQõkösåVä�éVì�ï »ô¡èkê
i
¨ �j¥g�V¤M¬Q¢«�C� è:îQñmñKêkîgä�æ´ê�æ�ögê:ìÖè�ë

Fi, F
′
i , . . .

þ�ÿ@ä�é°êjä&��êPéVù�ç�ê
ò�îQæ�éoä�ñKïQõjê

i
¨>�°¯
*�e�P������¥��Q� ù�ê���óQéVê�ë�ëVòøä�îGëaæ¡ögè:æXè�é°ê�ô¡äKõjè:ôCæøä�èuóKéoä »õkê�ë�ë

pi

ùWèPîgñ\ñQê:îCä�æ´êkñ·æ¡öQêkìªðQû
ξi, ξ

′
i, . . .

þ �nîgåeä�éeì�èkô�ô�û�ùXè:î
i
»ê���óQéVê�ë�ë°ò´ä�î/òøë�è:îsê��KóKé°ê�ë�ëVòøä�îsä&��êPéaæ�ögê}úQô¡ä�ðCèkôCë°æ´è:æ¡ê�ä�å7æ¡öQê�ëVûGë »æ¡êkì"æ�öCèPæ7óKéoä�õjê�ë�ë

pi

òÆëuõkï�éeéVêkîKæ´ô�ûpèPç�è�é°êMä�å�þ ¾ äKõjèkô0óQéVêjñ�ò´õjèPæ´ê�ëä�î
i
» ê���óQéVê�ë�ëVòøä�îGëXåeä�éeìüæ�ögêuèPæøä�ì�ò´õEóQé°ä�óCäQë°ò�æ¡òøä�îCë7ä�î�ç�öKò´õ:ö�æ¡öQêæ¡êkì-óCä�é°èkô

i
» åVä�éVì�ïQô´è:ê�èPéVêÀð�ïKò´ô�æeþ

�\ê.èkñKñ æ¡öQê �e*�¦�
 ¡�P¤M���ª¥
*�j�e�C �¥C�e�
@j

æ¡ögèPæÖæ´è:ýKê
j
»ê���óQéVê�ë�ë°ò´ä�îCë-ä�é

j
» åVä�éVì�ïQô´è:ê·èPîgñ@õjä�î���êPéVæ�æ�ögê:ì ò¡îKæøä ê���óQéVê�ë »ëVòøä�îGë*ä�éWåVä�éVì�ïQô´è:ê}ô¡äKõjèkôQæøä/óKéoä�õkê�ë�ë

pi

þ��eîQåVä�éVì�è:ô¡ô�û�ù
@j

ûKò´êkô¡ñgë
èPî·ê��KóKé°ê�ë�ë°ò´ä�îpä�é}è-åeä�éeì�ïgô¡èMä�îpóKéoä�õjê�ë�ë

pj

ä���ê:é�æ�ögê�óQé°ä Koêjõ »æ�òøä�î!äKåWæ�ögê�úKô´ä�ðGè:ô)ëVæøèPæ´ê�æ¡ögèPæ)æ�ögê�õ:ï�éeé°ê:îKæCóQé°äKõkê�ë�ë*òøëÀèPç�è�é°ê/ä�å�þ
½ öQê�åVä�ô¡ô´ä�ç�ò�îgúMúKò���ê�ë�æ¡öQê�åVä�éVì�è:ô)ë°ûKîQæ´è	��ä�å ¹�º�»o¼-½�¾ ç�ò�æ¡ö-é°ê »ëeóCêkõ:æCæøä-èÀóQé°äKõkê�ë�ë

pi

ù�ç�öQê:éVê
i
èPîgñ

j
è�é°êmè:î�û/óQé°äKõkê�ë�ëWò¡îQñKò¡õjê�ë

(øîCä�æQîQêkõjê�ë�ëoè�éVò´ô�ûsñ�òÆëVæ¡ò�îgõ:æ ) �
Fi ::= true | false | P (~ξi) | ¬Fi | Fi op Fi GFH0IJGKI�L M#OPMQIJRKSUT

| �Fi | 0 · Fi |
[

Fi | Fi S Fi OPX	Y6G ICH0S?T
| @jFj XUG�M%L OPX	YZM��

ξi ::= c | vi | f(~ξi) ���FR��?O#M%IJR�S?T
| @jξj XUG�M%L OPX	YZM��

~ξi ::= (ξi, . . . , ξi)

164



½ öQê<ò¡îg÷'��ä�ógêPéoèPæøä�é ¥
 ì�èPûÀðCê�è<ðQò¡îgèPéeûÀóKéoä�óCägëVò¡æ�òøä�îCè:ô�ä�ógê:é »èPæøä�é*ëVïQõkösè�ë
∧,∨,→

ä�é
≡
þ ½ ögêÀæ´êPéVì ~ξi

ëVæøèPîgñgë*åeä�éWèuæ¡ï�ógô¡ê}äKåê���óQéVê�ë�ëVòøä�îGëGä�î}óKéoä�õjê�ë�ë
pi

þ ½ öQê�æ¡ê:éeì
P (~ξi)

òøë7è (Æõ�ä�ì-ógïKæøè�ðgô¡ê )
óKé°êkñ�ò´õjè:æ¡êEä���ê:éGæ�ögê�æ¡ï�óCô�ê ~ξi

èPîQñ
f(~ξi)

òÆëWè (>õjä�ì-ógïKæøè�ðCô�ê ) ånïKîgõ »æ�òøä�î5ä���êPé�æ�ögê/æ¡ï�óCô�êKþ&�)ä�é�ê��gè:ì-ógô¡ê�ù
P
ì�è:û!ðCê

<,≤, >,≥, =èPîQñ
f
ì�èPû-ðCê

+,−, /, ∗
þ Ñ èPéeòøè�ðCô�ê�ë

vi

ðCêkô´ä�îgúgë�æøäsæ�ögêMë°êkæ
Viç�öKò´õ:ö\õ�ä�îQæ´è:ò�îGë/è:ô¡ôEæ¡öQêpô¡äKõjè:ôÀë°æ´è:æ¡ê ��è�éVòøè�ðgô¡ê�ëMä�åuóKéoä�õjê�ë�ë
pi

þ
O ä�îCë°æ´è:îKæÆë*ë°ïQõ:ö-èjë

0, 1, 3.4
è�é°ê�é°êPóQéVê�ë°êkîKæ´êkñ�ðgû

c, c′, c1, . . .
þ

½ öQê�ê���óQéVê�ë�ë°ò´ä�î
@jξj

òøëÀèPî
i
» ê��KóKé°ê�ë�ëVòøä�î/é°êPóQéVê�ë°êkîKæ¡ò�îgú/æ¡öQêéVêkì�ä�æ´êsê	��óKé°ê�ë�ëVòøä�î

ξj

þ)ãGò�ì�ò´ô¡èPéVô�û�ù
@jFj

òøë�èPî
i
» åeä�éeì�ïgô¡è/éVê »ånê:énéVò�îgú�æøä-æ¡öQê�ô´ä�õ�è:ô0ýQîgä�ç�ô¡êkñQúKê�è�ðCä�ïKæGæ¡öQê�é°ê:ì�ä�æ¡ê���èkô�ò´ñ�ò¡æ�û�äKå

j
» åVä�éVì�ïQô´è

Fj

þ'�eî$ä�æ¡öQêPémç�ä�éVñCë�ù
@j

õjä�î �KêPéVæøëmè
j
» ê���óQéVê�ë�ëVòøä�îä�é}è

j
» åVä�éVì�ïQô´è�æøä·èPî

i
» ê���óQéVê�ë�ë°ò´ä�îpä�é}è:î

i
» åVä�éVì�ïQô´è�ùKé°ê�ëVógêkõ »æ�ò��Kêkô�ûKþ

������� 
���� � �����	��


½ öQê�ëoê:ì�èPîQæ�ò´õ�ë ä�å ¹�º�»°¼-½�¾ òÆë è'îgè:æ�ïKé°èkôÁê��Kæ´ê:îGëVòøä�î
ä�å ¹�º�»°¾)½�¾ ç�ò�æ¡ö æ¡öQê ê���óCêkõkæ¡êjñ ðgê:öCè���òøä�éÄåVä�éüæ�ögêÝêPógòøë »æ¡êkì�ò¡õUä�ógê:é°è:æ´ä�éoëPþ ½ öQêUèPæøä�ì�ò´õ·óKéoä�óGäQë°ò�æ¡ò´ä�îCë-äKå ¹�º�»o¾)½�¾ è�é°ê
éVê:ógô´è:õkêjñ ðgû óKé°êkñKò¡õ�èPæ´ê�ë ä���ê:é@æ�ïKógô¡ê�ë ä�å@ê	��óKé°ê�ë�ëVòøä�îGë�þ ½ è »ðgô¡ê IÝåeä�éeì�èkô�ô�û&úKò���ê�ë`æ�ögê ë°êkì�èPîKæ¡ò´õ�ë ä�å`êjèkõ:öÝä�óCêPéoèPæøä�é
ä�å ¹�º�»o¼-½�¾ þ

(C, si)[[@jξj ]]
òÆë æ¡öQê ��èkô�ïgê ä�å æ¡öQê�ê���óQéVê�ë »ëVòøä�î

ξj

ò¡îdæ¡öQê\ë°æ´è:æ¡ê
sj = causal(si)

ç�öQò¡õkö@òÆë-æ¡öQê�ô´èPæ´ê�ë°æ
ëVæøèPæ´ê/ä�åaóQé°äKõkê�ë�ë

pj

ä�å<ç�öQò¡õkö-óKéoä�õjê�ë�ë
pi

òÆë�èPç�è�é°ê/ä�å�þ��Uê�èjë »ëVïKì!êsæ¡ögè:æ*ê���óQéVê�ë�ë°ò´ä�îCë}è�é°êsóKéoä�ógê:éVô�û�æ¡û�óCêkñ)þ ½ û�ógò¡õ�è:ô¡ô�û�ùgæ¡öQê�ë°êæ�ûKógê�ë�õjä�ïQô¡ñ ðCê ���������������������������������������Xþ*�\ê èjë »ëVïKì!ê!æ�öCèPæ
si, s

′
i, s

′′
i , . . . ∈ LSi

è:îQñ
sj , s

′
j , s

′′
j , . . . ∈ LSj

þ
1 ä�æ¡ò¡õjê`æ¡ögè:æÆùMè�ë\ò�î ¹�º�»o¾)½�¾ ù�æ¡öQê ì!ê�èPîQò�îgúüäKå·æ�ögê ,
óKé°ê���ò »ä�ïCëoô�û�. ä�ógê:é°è:æ´ä�é·ä�îÖæ¡öQê ò¡îKò¡æ�òøè:ôÂë°æ´è:æ¡ê�äKå·êjè:õköüóKéoä�õkê�ë�ë·éVê »
�Gêkõkæøë�æ¡öQê�ò¡îKæ¡ïKò¡æ¡ò´ä�îsæ¡ögè:æ0æ¡öQê/ê��Qêkõ:ïQæ�òøä�îsæ�é°èkõkê�òÆë�ïKîKðCä�ïQîQñQêkñ/ò¡î
æ�ögê�óGèjë°æ�èPîgñ �
 ��g ´�¦¥K�K�C�>³ þ#�\ê!õ�ä�îCë°ò¡ñQêPéÀæ¡öKòÆë�èjë}æ¡öQê-ì�ägëVæWé°êjè »ëoä�îCè�ðCô�êuè�ë�ë°ïKì-óQæ¡òøä�î/æ¡ögè:æCä�îQêuõ�èPîMì�èPýKêmè�ðCä�ïKæQæ�ögê�óCè�ëVæeþ
���! �#" ���$�&%�'	��


½ ä/ò¡ô¡ô�ïGëVæ�é°è:æ¡ê�ä�ïKé7ô´ä�úKò¡õ�ù�ç�êuõ�ä�îCë°ò¡ñQêPéWèuåeêPç éVêjô¡è:æ�ò ��êkô�ûsëVæøèPî »ñQè�é°ñÀê��CèPì-óCô�ê�ëCò¡î}æ¡öQê�ñ�òÆëVæ�éeò�ð�ïKæ´êkñ�ëVûGëVæ´ê:ìÂëXô�ò¡æ´êPéoèPæ¡ï�é°ê (eë°êkê�ù�êKþ ú0þ ù
8>I��L; ) þ ½ öQê/÷gé�ëVæ7ê��gè:ì-ógô¡êmòøë ¢��:�K�g���E�j¢��k�j ¡��¥�� åVä�é�è�îgê:æ´ç�ä�éVý�äKåóKéoä�õkê�ë�ëoê�ë�þ ½ ögê�ýKêPû�éVê��ïKò�é°ê:ì!ê:îQæ<åeä�émô¡êjèkñKêPé�êkô¡êkõkæ�òøä�î·òÆë�æ¡ögè:ææ�ögêPé°ê<òÆëXè:æ » ì�äQë°æ�ä�îQê�ô�ê�è:ñQêPéVþ Ø ë�ë°ïKì!ê�æ�ögê*îQïKì-ðCêPéCäKåQóKéoä�õkê�ë�ëoê�ëòøë

n
ùQè:îQñ

state
òøëuè ��è�éVòøè�ðgô¡êmò�îÂêjè:õkö-óKéoä�õjê�ë�ë�æ¡ögè:æ)õjè:î�ögè���ê

��è:ô�ïQê�ë
leader, loser, candidate, sleep

þ	�\ê�õjèPîsåeä�éeì�ï »ô¡è:æ¡ê*æ�ögê*ýKê:û}ô¡êjè:ñQêPéCêkô¡êkõ:æ¡òøä�îÀóQé°ä�ógê:éeæ¡û}èPæ�ê���ê:éeûÀóKéoä�õkê�ë�ë)èjë��J,Pò¡åCè
ô�ê�è:ñKê:é7òÆë�êkô¡êkõkæ¡êjñ�æ¡öQêkî�ò´åXæ¡öQêmõ:ïKéné°ê:îQæKóQé°äKõkê�ë�ë<òøë�è}ô�ê�è:ñKê:éWæ�ögê:îGù
æ´äpò¡æøë�ýKîCä�ç�ô�êjñKúKê�ùgîCä�îQê�äKå�æ�ögê�ä�æ¡öQê:é�óKéoä�õjê�ë�ëoê�ë}òÆë/è�ô¡êjèkñKê:é
.çméeò¡æ�æ´ê:îsèjë<æ�ögê ¹�º�»o¼-½�¾

i
» ô¡äKõjè:ôQåeä�éeì�ïgô¡è �

leaderElected→ (state = leader→
∧

j 6=i(@j(state 6= leader))

(mò���ê:î@è:î ò�ì-óCô�êkì!ê:îKæøèPæ¡òøä�î ä�å�æ¡öQê·ô¡êjèkñKêPé�êjô�êjõ:æ¡ò´ä�î�óKéoä�ðCô�êkìpù
ä�îQêMõjè:îpì�ä�îKò¡æ´ä�é�æ¡öKòÆë}åeä�éeì�ïgô¡èMèPæ<êjèkõ:öÂóKéoä�õjê�ë�ëPþ �Vå�æ�ögê/óQé°ä�ó »

êPéVæ�û�òøë ��òøä�ô´èPæ´êkñCùKæ¡öQêkî�õkô¡êjèPéVô�û!æ¡öQê/ô¡êjèkñKê:é�êkô¡êkõkæ�òøä�î�ò�ì-óCô�êkì!ê:î »æ´è:æ�òøä�îMòøë<ò¡îQõjä�éné°êkõkænþ
½ öQê�ëoêkõjä�îQñsê��gè:ì-ógô¡êuòÆë ¤���Å�¥C����  ³s²k¥g �� þ ½ öQê�ñKê�ëVò�éVêjñMóKéoä�ó »êPéVæ�û�ùJ,Pò¡åGæ¡öQê�é°ê�ë�ä�ô�ïKæ¡ò´ä�î}òÆëWèkõkõkê:óQæ´êkñmæ¡öQê:î�ì�ä�éVê�æ¡ögèPî�öCè:ô¡å)ä�åCæ¡öQê

óKéoä�õjê�ë�ëoê�ë�ëoèPûMûQê�ë�.�ù�õjèPî�ðgê�ëVæøèPæ´êkñ-èjë��

accepted→ (@1(vote) + @2(vote)+
. . . + @n(vote)) > n/2

ç�öQê:éVê�ù�è}óQé°äKõkê�ë�ëEëVæøä�é°ê�ë
1
ò¡î�è�ô¡äKõjèkô���è�éVò´èPðgô¡ê

vote
ò¡åWò¡æ)òÆë�ò¡î

ånè���ä�éWäKå0æ¡öQêuéVê�ëoä�ô�ïKæ¡òøä�îGùjè:îQñ
0
ä�æ¡öQê:éVç�òÆë°êKþ

Ø æ¡öKò�éVñpê��CèPì-ógô¡êMòøë�è�ëoèkånêkæ�ûpóQé°ä�ógêPéVæ¡û�æ¡ögèPæ*è!ëoêPé!��êPé�ì�ïGëVæ
ëoè:æ�òÆë°ånû�ò¡îsõ�èjëoêuò¡ægéVê:ðCäKä�æøëaò�æÆë°êjô�å �<,�æ¡öQêmëoêPé!��êPéWè:õjõkêPógæøë<æ¡öQêuõ�ä�ì »ì�èPîgñ·æ´ä�é°êPðCäQä�æEä�îQô�ûUèkå>æ´êPé�ýKîCä�ç�ò�îgú·æ¡ögèPæEêjèkõ:öUõkô�ò¡êkîKæEòøë/ò¡î »è:õkæ�ò��KêUè:îQñ�èPç�è�é°êUäKå-æ�ögê�ç�èPéeîQò�îgú èPðCä�ïKæmógêkîQñ�ò¡îQú@éVê:ðCäQä�æeþ .
½ öQê�óKéoä�ógê:éeæ¡û5òøë/ê���óQéVê�ë�ëoêkñ�èjë�æ�ögê �
���°²��j�
» ô´ä�õ�è:ô�åeä�éeì�ïgô¡è�ðCê »ô¡ä�ç�ç�öQò¡õköMõ�ä�îKæøèPò¡îCëaîQê�ë°æ¡êjñ�ê:óQòÆëVæ´ê:ì�ò´õ}ä�óCêPéoèPæøä�é�ë��

rebootAccepted→
∧

client
(@client(inactive∧@serverrebootWarning))

) Û+* ßWÞ�âe�
ß<�QâeÞ ;U� 8 ;aß<�gân�-,4�/.�ß<� >:@:A [ D5B
�\ê�ñKê�ë°õPéVò�ðgê-èPî·èPïKæøä�ì�è:æ¡êjñ�æ´êkõköKîQò�KïQê�æøä·ëVûKîQæ�ögê�ë°ò��jêMêjå>÷ »õ:ò´ê:îQæ�ñKòøë°æ�éVò�ð�ïQæ¡êjñÀì�ä�îKò¡æ´ä�éoë0åeä�é0ë�è:åeê:æ¡ûÀóKéoä�óCêPéVæ�ò´ê�ëCò�î�ñ�òÆëVæ�éeò�ð�ïKæ´êkñ

ëVûGëVæ´ê:ìÂëaê��KóKé°ê�ë�ë°êkñmò¡î ¹Kº�»o¼s½�¾ þ �\ê}è�ë�ë°ïKì!ê�æ¡ögè:æQä�îgêuä�é)ì�ä�éVêóKéoä�õjê�ë�ëoê�ë}è�é°ê�èjë�ë�ä�õkò´è:æ¡êjñÂç�ò¡æ�ö ¹�º�»o¼-½�¾ åVä�éVì�ïQô´è:ê�æ�öCèPæWì�ïGëVæðgêÀëoè:æ�òÆëo÷0êkñ�ðgûmæ¡öQê�ñKòøë°æ�éVò�ð�ïKæ´êkñ�õjä�ì-óQïKæøèPæ¡òøä�î)þ ½ öQêÀëVûQîKæ¡öQê�ëVò��kêkñì�ä�îQò�æøä�é<òÆë �G�«�� ¡���¦�K¬K ��:� ù�ò¡î�æ¡öQêMëoê:îCëoê�æ¡ögèPæ7ò¡æ7õ�ä�îCë°òøë°æøëÀä�å�ëoêPóGè »é°è:æ¡ê�ù ¢�¥Q�:�C¢K¤/¥��G�� �¥g�V� éVïKîQîKò¡îQúsä�î�êjèkõ:öMóKéoä�õkê�ë�ëPþ Ø ô¡äKõjè:ôCì�ä�î »ò�æøä�é�ì�èPû!èPæ¡æ´èkõ:ö�èkñKñ�ò¡æ¡ò´ä�îgè:ôCò¡îQåVä�éVì�èPæ¡òøä�î�æøä�èPî�ä�ïKæ´úQä�ò�îgú�ì!ê�ë »ëoèkúKê�åÆéoä�ì�æ�ögêmõ�ä�éeéVê�ëeóGä�îQñKò�îgú�óKéoä�õjê�ë�ë�þ ½ öKòÆë�ò�îgåeä�éeì�è:æ�òøä�î�õ�èPîëVïKðGë°ê��ïgê:îKæ´ô�û�ðgêsê��Kæ�éoè:õ:æ´êkñ!ðQûpæ�ögêsì�ä�îKò¡æøä�éEä�îÂæ¡öQêMé°êkõjê:ò��Kò�îgú
ëVò´ñKê/ç�ò¡æ¡ögä�ïQæ)õ:öCèPîgú�ò¡îQúMæ�ögê�ïKîgñKêPé°ô�ûKò¡îQúsëoê:ì�è:îKæ¡ò¡õ�ë�ä�åWæ¡öQê�ñ�òÆë »æ�éVò�ð�ïKæ´êkñsóKéoä�ú�é°è:ì·þ ½ öQê�ýKê:û�ú�ïQò¡ñKò�îgúsóKéVò�îgõ:ò�ógô¡ê�ë�ò¡î!æ�ögê�ñQê�ëVò´ú�îä�åXæ�öQòøëWæ¡êjõ:öQîKò��ïQê}è�é°ê �
•
Ø ô´ä�õ�è:ôgì�ä�îQò�æøä�é<ëVöCä�ïQô¡ñ�ðgêmånèjë°æÆùKëoäMæ¡ögèPæCì�ä�îKò¡æ´ä�éeò¡îQú/õ�èPîðgê}ñQä�îQêuä�îQô�ò�îgêH*

•
Ø ô¡äKõjè:ôCì�ä�îKò¡æ´ä�éoë�ëVöCä�ïgô�ñMögè���êmô�ò�æ¡æ¡ô¡ê�ì!ê:ì�ä�éeû�ä���ê:éeögêjèkñCùò¡îMóGè�éVæ�ò´õ:ïgô¡èPéVù�ò¡æ7ëVöCä�ïgô�ñ �Q¥g  îQêjêkñsæ´ä!ë°æ´ä�éVêmæ¡öQê�êkîKæ¡ò�é°êmöKòÆë »æøä�éVûMä�å7ê���ê:îQæøë*ä�î-èEóKéoä�õjê�ë�ëE*�èPîQñ

•
½ ögêuîQïKì-ðgê:é*ä�å7ì!ê�ë�ëoè:úQê�ë*æ¡ögèPæGîgêkêjñMæøä�ðgê/ë°êkîKæCðCê:æ´ç�êkê:îóKéoä�õjê�ë�ë°ê�ë0åeä�égæ¡öQê<óQïKénóGäQë°ê�ä�ågì�ä�îQò�æøä�éVò�îgúuëVöCä�ïQô¡ñEðCê*ì�ò¡î »ò¡ì�è:ônþ

�nî�æ¡öKòÆëÀë°êjõ:æ¡ò´ä�îGù�ç�öQêkî!ç�êméVêjånê:é<æ´ä�èmé°ê:ì�ä�æ¡ê�ê��KóKé°ê�ë�ëVòøä�î�ä�é
åeä�éeì�ïgô¡èkê�ç�êÀì!êjèPî/è:î/ê���óQéVê�ë�ëVòøä�î�ç�öQò¡õkö�äKõkõkï�é�ëXò�î�è:î�û/ä�åGæ¡öQê
ì�ä�îQò�æøä�é°êkñ ¹�º�»o¼-½�¾ åVä�éVì�ïQô´è:êKþ
0 ���	�21 ��3�45'	�76�8��:9;��� �<3>=?

O ä�îCë°ò¡ñQêPéÝæ¡öQê.óQé°ä�ðgô¡ê:ì ä�å ê���èkô�ïCèPæ¡ò�îgú è.é°ê:ì�ä�æ¡ê

j
»ê���óQéVê�ë�ë°ò´ä�î

@jξj

èPæCóKéoä�õjê�ë�ë
pi

þ Ø îCèPò���ê�ëoäKô�ïQæ�òøä�îsòÆë<æ¡ögè:æCóKéoä »õkê�ë�ë
pj

ëVò¡ì-ógô�û!ógò¡úQú�ûKðCè:õkýCë�æ¡öQê ��è:ô�ïQê�äKå
ξj

ê���è:ô�ïgè:æ¡êjñ�èPæ
pj

ù

165



C, si |= true
åVä�éaèkô�ô

si

C, si 6|= false
åeä�éaèkô�ô

si

C, si |= P (ξi, . . . , ξ
′
i)

ò´åÆå
P ((C, si)[[ξi]], . . . , (C, si)[[ξ

′
i]]) = true

C, si |= ¬Fi

ò´åÆå
C, si 6|= Fi

C, si |= Fi op F ′
i

ò´åÆå
C, si |= Fi

ä�ó
C, si |= F ′

i

C, si |= �Fi

ò´åÆåXò¡å
∃s′i . s′i

�
si

æ¡öQêkî
C, s′i |= Fi

êkôøë°ê
C, si |= Fi

C, si |= 0 · Fi

ò´åÆå
∃s′i . s′i

�
si

èPîgñ
C, s′i |= Fi

C, si |=
[

Fi

ò´åÆå
C, si |= Fi

åVä�éaèkô�ô
s′i
�

si

C, si |= Fi S F ′
i

ò´å
∃s′i . s′i

�
si

èPîgñ
C, s′i |= F ′

i

èPîgñ
∀s′′i . s′i ≺ s′′i

�
si

ò�ì-óCô�ò´ê�ë
C, s′′i |= Fi

C, si |= @jFj

ò´åÆå
C, sj |= Fj

ç�öQê:éVê
sj = causal(si)

(C, si)[[vi]] = si(vi),
æ�öCèPægòøë
ù�æ¡öQê ��è:ô�ïQêuäKå

vi

ò¡î
si

(C, si)[[ci]] = ci

(C, si)[[f(ξi, . . . , ξ
′
i)]] = f((C, si)[[ξi]], . . . , (C, si)[[ξ

′
i]])

(C, si)[[@jξj ]] = (C, sj)[[ξj ]]
ç�öQêPé°ê

sj = causal j(si)

� ��$9 &	�� ���	�� ��+ � ��� "+��! ¹Kº�»o¼s½�¾
ç�ò�æ¡ö`ê���ê:éeû ì!ê�ë�ë�è:úKê$æ�öCèPæmò�æ/ë°êkîQñCë!ä�ïQænþ ½ öQê·é°êkõkò�ógò¡êkîKæuóKéoä »õkê�ë�ë

pi

õ�èPî�ê��Qæ�éoè:õkæ�æ�öQòøë ��èkô�ïgêEè:îQñ�ïGë°êEò¡æQèjëXæ¡öQê ��èkô�ïgêEäKå
@jξj

þ
6 ä�ç�ê���êPéVù�æ�öQòøë\è�óQóKéoäKèkõ:ö òøë·óKéoä�ðCô�êkì�èPæ¡ò¡õ#�Eé°êkõjèkô�ôMæ¡ögèPæsì!ê�ë »ëoè:úQê�ëpå>é°ä�ì

pj

õ�ä�ïQô¡ñ`éVê�è:õkö
pi

ò¡îÄèPîÁè�éeðQò¡æ�éoè�éVûÁä�é°ñKê:é���ðgê »õjèPïGë°ê�æ¡öQêÀè�éeéVò���è:ô�ä�é°ñKê:éXä�åCæ´ç�ämì!ê�ë�ë�è:úQê�ë�ù:ê���êkî�å>éoä�ìÁæ¡öQêuë�èPì!ê
ë°ê:îgñKê:éVùgòÆëmò�îgñKêkæ¡ê:éeì�ò¡îgè:æ¡ê�ùQì�ä�é°êMéVêjõkê:îQæ ��è:ô�ïQê�ëÀì�è:û5ðgê�ä���ê:é »çméeò¡æ�æ´ê:î ðgûÖä�ô¡ñKê:épä�îgê�ëPþ ½ ä�ýKêkê:óÄæ�éoè:õkýÖä�å!æ�ögêdõjè:ïCë�è:ô/öQòøë »æ´ä�éeû�ù�ä�é�ò¡îpä�æ¡öQê:é�ç�ä�é°ñgë�æ¡öQê/ì�äQëVæ)éVêjõkêkîKæ)ýQîgä�ç�ô¡êkñQúKê�ù�ç�ê�èkñKñ
èPîÖê��Kê:îKæsîKïQì-ðgê:épõjä�éné°ê�ëVóCä�îQñ�ò¡îQú æøäÁæ¡öQê ô´ä�õjèkôsöKòÆëVæøä�éVûüë°ê »
�ïQêkîQõjê è:æ

pj

èPæÂæ�ögê æ�ò¡ì!ê�ê��KóKé°ê�ë�ë°ò´ä�îCë\ç�êPé°êÄë°êkîKæÂä�ïKæ!ò¡î
ì!ê�ë�ë�è:úQê�ë�þuãGæ´èkô�êdò�îgåeä�éeì�è:æ�òøä�î ò�î èUé°êjä�é°ñKê:éVêjñ ì!ê�ë�ë�è:úQê`ë°ê »
�ïQêkîQõjêEòøë*æ¡öQê:î-ëVò¡ì-ógô�ûMñ�òÆë°õ�è�é°ñKêjñ0þ
O è:ïCë�è:ôaä�é°ñKêPéVò¡îQú�õjè:î!ðCê�êkå>ånêjõ:æ¡ò���êkô�û!è:õjõjä�ì-óCô�òÆëVögêkñsðgû�ïCë »ò�îgú�è:î�è�éeé°è:û/õjèkô�ô¡êkñ É�Ê�Ë7ÌÂÍGÎGÏ�Ð<ÎGÑ-Î0Ò)ºGË*Ó ç�ò¡æ¡ö�èPî/ê:îQæ�éVû�åeä�éèPî�û5óQé°äKõkê�ë�ë

pj

åVä�é�ç�öKò´õ:ö·æ¡öQêPé°ê�òÆë/è:î\ä�õjõ:ï�éeé°ê:îQõjê�ä�å
@j

ò¡î
èPî�û ¹�º�»°¼-½�¾ åVä�éVì�ïQô´è/è:æWè:î�û�óQé°äKõkê�ë�ë�þ 1 ä�æ¡ê�æ�öCèPæ7ýKîCä�ç�ô�êjñKúKê
��êkõkæ´ä�éoëWèPéVê}ì�ä�æ¡ò���è:æ¡êjñ�èPîgñ/ò¡îCëeógò�é°êkñ/ðQû ��êkõkæ´ä�é7õkô´ä�õkýCë 8 FKù��J:H;oþ
½ öQê�ëVò��kê/äKå ÉMÊ�Ë7ÌpÍGÎGÏ�Ð<ÎGÑ-Î0ÒXºGË<Ó òøë�îCä�æ0ñKê:ógêkîQñKêkîKæGä�î-æ¡öQêîKïKì-ðCêPé�ä�å�óKéoä�õjê�ë�ëoê�ë�ð�ïKæ*ä�îÂæ¡öQêMîKïQì-ðgêPéÀä�å�é°ê:ì�ä�æ¡êMê���óQéVê�ë »ëVòøä�îCë�èPîgñMåVä�éVì�ïQô´è:êKþ ¾ ê:æ

KV[j]
ñKêkîgä�æ´êÀæ¡öQêmê:îQæ�éVû-åeä�éXóQé°äKõkê�ë�ë

pj

ä�î-è ��êjõ:æøä�é
KV

þ
KV[j]

õjä�îQæ´è:ò�îGë7æ¡öQêuåVä�ô¡ô´ä�ç�ò�îgú�÷Gêkô¡ñgë	�
•
½ öQê�ëoê�KïQê:îgõkêmîKïQì-ðgê:é�ä�å<æ¡öQê�ô´èjë°æ7ê��Kê:îKæaë°êkêkî�èPæ

pj

ùQñKê »îgä�æ¡êjñ�ðQû
KV[j].seq

*
•
Ø ëoê:æMäKå ��è:ô�ïQê�ë

KV[j].values
ëVæøä�éVò¡îQú æ�ögê ��è:ô�ïQê�ë

j
»ê���óQéVê�ë�ë°ò´ä�îCëaèPîgñ

j
» åeä�éeì�ïgô¡èkê�þ

Y�è:õ:ö}óKéoä�õjê�ë�ë
pi

ýKêkê:óGëXè�ô´ä�õ�è:ô É�Ê�Ë7ÌÂÍGÎGÏ�Ð<ÎGÑ-Î0Ò)ºGË*Ó ñKê »îgä�æ´êkñ�ðQû
KVi

þ ½ ögêMì�ä�îKò¡æ´ä�éuä�å�óKéoä�õjê�ë�ë
pi

èPæ¡æøè:õ:ögê�ë�è-õ�ä�óKû
ä�å

KVi

ç�ò¡æ�ö ê���êPéVûdä�ïQæ¡úgä�ò¡îQúUì!ê�ë�ëoèkúKê
m
þ��\ê\ñKê:îCä�æ´ê·æ¡öQê

õjä�óQûÂðgû
KVm

þ ½ ögê!è:ô¡úQä�éVò¡æ�öQì åVä�éuæ¡öQê!ï�ógñgèPæ´ê�ä�å ÉMÊ�Ë7ÌÂÍ)»
ÎGÏ�Ð*ÎGÑ-Î0Ò)ºGË<Ó

KVi

èPægóKéoä�õjê�ë�ë
pi

òøë�èjë*åVä�ô¡ô¡ä�ç�ë	�
��þ����������
	��������� ïKógñQè:æ¡ê

KVi[i]
þ Y*��èkô�ïCèPæ´ê

eval(ξi, si)èPîgñ
eval(Fi, si)

(eë°êkêUãCï�ð0ë°êjõ:æ¡ò´ä�îM:Gþ I ) åVä�é-êjè:õkö
@iξi

èPîgñ
@iFi

ùMé°ê�ëVógêkõkæ�ò ��êkô�û�ùsè:îQñ&ë°æ´ä�éVêÄæ�ögê:ì ò¡î&æ�ögêüë°êkæ
KVi[i].values

*
I)þ������
��

m
���

KVi[i].seq ← KVi[i].seq + 1
þCãGê:îgñ

KViç�ò¡æ�ö
m
è�ë

KVm

*
�Gþ���	��
���������

m
���<åeä�émè:ô¡ô

j
ù)ò´å

KVm[j].seq > KVi[j].seqæ¡öQê:î
KVi[j]← KVm[j]

ù�æ�öCèPægòøë
ù
KVi[j].seq ← KVm[j].seq

ù�è:îQñ
KVi[j].values ← KVm[j].values

þ
�\êuõ�è:ô¡ô�æ�öQòøëaæ�ögê ÉMÊ�Ë7ÌpÍGÎGÏ�Ð<ÎGÑ-Î0ÒXºGË<Ó è:ô¡úQä�éVò¡æ�öQì·þ��eîQåVä�é »ì�è:ô¡ô�û�ù

KVi[j].values
õ�ä�îKæøèPò¡îCë�æ�ögêMô´èPæ´ê�ë°æ���è:ô�ïQê�ë�æ�öCèPæ

pi

öCèjë
åeä�é

j
» ê���óQéVê�ë�ë°ò´ä�îCëWä�é

j
» åVä�éVì�ïQô´è:êKþ ½ öQê:éVêjåeä�éVê�ùjåeä�é7æ¡öQê"��è:ô�ïQê}äKåè}éVêkì�ä�æ´ê�ê���óQéVê�ë�ëVòøä�î�ä�é�åeä�éeì�ïgô¡èmä�åWæ¡öQê�åVä�éVì

@jξj

ä�é
@jFj

ù
óKéoä�õjê�ë�ë

pi

õjè:î KoïCë°æ�ïCëoê*æ¡öQê�ê:îQæ�éVû}õ�ä�éeéVê�ëeóCä�îQñKò�îgúEæ´ä
ξj

ä�é
Fj

ò�î
æ�ögêEëoê:æ

KVi[j].values
þ 1 ä�æ´ê*æ¡ögè:æ�æ�ögêEëoê��ïgê:îgõkêWîQïKì-ðgê:éQîgêkêkñCë

æ´ä5ðgê-ò¡îQõPé°ê:ì!êkîKæ´êkñ·ä�îgô�û�ç�ögê:î\ëoê:îQñKò�îgú5ì!ê�ë�ëoè:úQê�ëPþ ½ öQê�õjä�é »éVêjõ:æ¡îQê�ë�ë�äKåuæ¡öQê�èkô�úgä�éVò�æ¡öKì òÆë�é°êkô´èPæ¡ò���êjô�û\ë°æ�éoèPò´ú�öQæ¡åVä�é°ç�è�é°ñ�èPîQñ
ç�êmë°ýKò�óMò¡æøë�åVä�éVì�è:ô�óQé°äQä�å�þ
��	� "!� ����#�$�# "�&% Õg¥g���K��³}*�>¥Q�k�:���

pi

�K�K���K��³
j
¿a �©g���P�C ¡�>³*�j¥g�

ξj

¥C�
Fj

�¦�
KVi[j].values

�:¥��C ¦�G�«�Q�s �©Q��²:�C¢¡¬���¥n�
@jξj

¥g�
@jFj

¿G�n�:�´*�k�k ´��²j�j¢ ³:µ
½ öQê�èPðCä���ê5è:ô¡úQä�éeò¡æ¡öKì'æ�éeò´ê�ë-æ´äUì�ò¡îKò¡ì�ò��jêpæ�ögê·ô¡äKõjè:ôuç�ä�éeý

ç�öQêkî@ëoê:îgñ�ò¡îQú�èpì!ê�ë�ë�è:úQê�þ 6 ä�ç�ê���êPéVù<ä�ðGëoêPé!��êÂæ�öCèPæÀæ¡öQê ��è:ô »ïQê�ëEõjèkô�õkïQô´èPæ´êkñ�è:æWë°æ¡ê:ó �/èPéVê�îgêkêjñKêkñ!ä�îQô�û!ç�öQêkîÂèPîÂä�ïKæ´úQä�ò�îgú
ì!ê�ë�ëoè:úQêuòÆë�úKêkîQêPéoèPæ´êkñMèPæXëVæ´êPó IGù�ëoäsä�îgê}õ�ä�ïgô�ñ�ögè���ê K°ïGëVæ0ê���èkô »ïgè:æ¡êjñ/è:ô¡ô�æ�ögêÀê��KóKé°ê�ë�ë°ò´ä�îCë

ξi

èPîQñ
Fi

è:ægëVæ´êPó ICùPéeò´ú�öQæ�ðgêjåeä�éVê�æ¡öQê
ì!ê�ë�ëoè:úQê-òøëMë°êkîKæ�ä�ïKæeþ ½ öKòÆë�ç�ä�ïgô�ñpé°êkñKïQõjê-æ�ögê-éeïQîKæ¡ò�ì!ê�ä��KêPé »öQê�è:ñ/èPæGëVæ´êPó ��ð�ïQæ�ò¡ægç�ä�ïgô�ñmò¡îQõ:éVê�èjë°êEò¡æGèPæCë°æ¡ê:ó%I0þ��)ä�éXñ�ò´åÆåeêPé°ê:îKæè�óQógô�ò¡õ�èPæ¡ò´ä�îCë�ùjñKò¡å>ånê:éVêkîKæQèkô�æ´êPéVîgè:æ¡ê�ëaì�èPû�ðgêuì�ä�é°êÀêkå>÷0õ:ò´ê:îKæeþ
½ öQê�ò�îQò�æ¡òøè:ô ��è:ô�ïQê�ëGåVä�é)è:ô¡ô�æ�ögê ��èPéeòøè�ðCô�ê�ëCò¡î�è�ñ�òÆëVæ�éeò�ð�ïKæ´êkñÀóKéoä »ú�éoèPìÄõ�èPîmì�èPû}ðgêEåVä�ïKîgñuêkò�æ¡öQê:égðgû/èEë°æ´è:æ�ò´õ�èPîCè:ô�ûCëVòÆë7ä�ågæ¡öQê�óKéoä »ú�éoèPì ä�éEðQû�èsñ�òÆëVæ�éeò�ð�ïKæ´êkñ�ðKéoäKèkñKõjè�ëVæ<èPæWæ¡öQêMðCê:ú�ò¡îKîQò�îgú�ä�åEæ¡öQê

166



õjä�ì-ógïKæøèPæ¡ò´ä�î)þ ½ öQïCë
ùCò¡æ*òÆë�èjë�ëVïKì!êjñpæ�öCèPæ*ê�è:õ:öpóQé°äKõkê�ë�ë
pi

öCèjë
æ�ögê/õjä�ì-ógô¡ê:æ´ê�ýKîgä�ç�ô¡êkñQúKê�ä�å*æ�ögê�ò�îQò�æ¡òøè:ô ��è:ô�ïQê�ëEäKåWé°ê:ì�ä�æ¡ê�ê�� »óKé°ê�ë�ë°ò´ä�îCë<åeä�éWèkô�ôgóQé°äKõkê�ë�ë°ê�ë�þ ½ ögê�ëoê"��èkô�ïgê�ë<èPéVê}ïCëoêkñMæ´ä�ò¡îKò¡æ�òøè:ô »ò��jêÀæ¡öQêuêkîKæ�éeò´ê�ë

KVi[j].values
ò¡î�æ¡öQê ÉMÊ�Ë7ÌÂÍGÎGÏ�Ð<ÎGÑ-Î0ÒXºCË*Óä�å

pi

åeä�éaè:ô¡ô
j
þ

0 ������� 3 ��� �<3>= � ��8 ��� 3$� ��'����	��
����� 3>=?����' �
½ öQêÀì�ä�îKò¡æ´ä�éeò¡îQú�èkô�úgä�éVò�æ¡öKì åVä�éaè ¹�º�»°¼-½�¾ åeä�éeì�ïgô¡è�òøë�ëVò¡ì »ò¡ô´è�é�ò¡î ëVóQò�éeò¡æuæøäUæ�öCèPæmåeä�ésèPîdä�éVñKò�îCè�éVû ¹�º�»°¾)½�¾ åeä�éeì�ïgô¡èpñKê »ë°õPéVò�ðgêkñsò¡î+8>I?R<;oþ ½ ögê�ýKêPû�ñ�ò´åÆåeêPé°ê:îgõkê}òøë�æ¡ögè:æ)ç�ê/è:ô¡ô´ä�çÁé°ê:ì�ä�æ¡êê���óQéVê�ë�ëVòøä�îGëuè:îQñÂé°ê:ì�ä�æ´ê-åeä�éeì�ïgô¡èkêMç�öCäQëoê ��è:ô�ïQê�ëmè:îQñ���è:ô�ò´ñ »ò�æ¡û�ù
éVê�ëeógêjõ:æ¡ò���êjô�û�ù
îQêjêkñ}æ´ä}ðCê�æ�éoèPîGë°åeêPéeéVêjñ}å>é°ä�ìÁæ¡öQê�éVêkì�ä�æ´ê�óKéoä »õkê�ë�ë�æ´ä$æ�ögêÂõkï�éeéVêkîKæ�óKéoä�õjê�ë�ëPþ %mîgõkêÂæ�ögê É�Ê�Ë7ÌÂÍGÎGÏ�Ð<ÎGÑ-Î0Ò7»

ºGË<Ó òÆësóQé°ä�ógêPé°ô�ûUïKógñgèPæ´êkñCù<æ¡öQê�ô´ä�õ�è:ôuì�ä�îKò¡æøä�é�õjè:îdõjä�ì-óQïQæ¡êæ�ögê�ðCäQä�ô¡êjè:î���è:ô�ïQêuäKå)æ¡öQêmåVä�éVì�ïQô´è�æ´ä/ðgêuì�ä�îKò¡æøä�é°êkñCùPðgû/é°êkõ:ïKé »ëVò���êjô�û/ê���èkô�ïCèPæ¡ò�îgúmæ�ögêEðCäQä�ô¡êjèPî ��èkô�ïgêuä�å0ê�è:õköMä�åGò¡æÆë*ëVïKðgåVä�éVì�ï »ô¡èkêEò�î�æ¡öQê�õ:ïKéné°ê:îQæKëVæøèPæ´ê�þ ½ ä�ñQä/ëoäCù�ò¡æKì�è:û/è:ôøëoämïCëoêEæ�ögê�ðCäKäKô�ê�èPî
��è:ô�ïQê�ë�äKåmë°ï�ðgåVä�éVì�ïQô´è:ê-ê���èkô�ïCèPæ´êkñ5ò¡î�æ�ögê�óQéVê��Kò´ä�ïCë�ëVæøèPæ´êÂè:îQñ
æ�ögê ��è:ô�ïQê�ë<äKåGé°ê:ì�ä�æ´êuê	��óKé°ê�ë�ëVòøä�îGëWèPîgñ�éVêkì�ä�æ´êuåVä�éVì�ïQô´è:êKþ
Ø ånïKîgõ:æ¡ò´ä�î �P²:�G¢ òÆë�ñKê�÷CîQêjñ-îQê��Qænþ �:²:�C¢ æ´è:ýKê�ëuè:ñ ��è:îKæøè:úQê�äKåæ�ögêÀé°êkõkï�é�ëVò���êuîgè:æ�ïKéVê�ä�å7æ¡öQêmæ¡êkì-óCä�é°èkôgä�ógêPéoèPæøä�é�ë*(eë°êjê ½ èPðgô¡ê � )æ´ä·õ�è:ô¡õ:ïgô¡è:æ¡ê�æ¡öQê�ðCäKäKô�ê�èPî���è:ô�ïQêÂä�å}è!åeä�éeì�ïgô¡èsò¡î�æ¡öQê!õkï�éeéVêkîKæ

ëVæøèPæ´ê�ò¡î�æ´êPéVìÂëÀäKå (nè ) ò¡æøë�ðCäQä�ô¡êjèPî ��è:ô�ïQê�ò¡îÂæ¡öQê/óKé°ê���òøä�ïGëÀëVæøèPæ´êèPîQñ (øð ) æ�ögê5ðCäQä�ô¡êjè:î ��è:ô�ïQê$äKå/ò¡æøëÂëVï�ðCåeä�éeì�ïgô¡èkêpò�î`æ�ögê�õ:ïKé »éVêkîKæ�ë°æ´è:æ¡êKþ ½ öQê�ånïKîgõ:æ¡ò´ä�î ¥���
Fi � é°ê:æ¡ï�éVîCë}æ¡öQê�ä�ógêPéoèPæøä�éuäKåÀæ¡öQêåeä�éeì�ïgô¡è

Fi

ù �C�«�Q�C�Æ³��>¥���
Fi ��� é°ê:æ¡ï�éVîCë  ´��¬K� ò´å ¥
�� Fi � òøëEðQò¡îgèPéeû�ù¬��K�G�Æ³��>¥���

Fi ��� é°ê:æ¡ï�éVîCë  ´��¬�� ò´å ¥
�� Fi � òøë)ïQîgè�éVû�ù ¢����� �� Fi � é°ê:æ¡ï�éVîCëæ�ögêÀô�êjå>æ0ëVïKðgåVä�éVì�ïQô´è�ä�å
Fi

ù ���«§g©g ��
Fi � éVêkæ�ïKéeîGë7æ�ögê�éVò¡úKöKæGëVï�ðCåeä�é »ì�ïQô´èMäKå

Fi

ç�öQêkî ¥���
Fi � òøëuðgò�îCè�éVû�ùgèPîgñ �P¬��e�k¥C�V¤M¬K¢¦�	� Fi � éVê »æ�ïKéeîGë�æ¡öQê·ëVï�ðCåeä�éeì�ïgô¡è�ä�å

Fi

ä�æ�ögêPé°ç�òøëoê�þ ½ ögê ��èPéeòøè�ðCô�ê�ò�îgñKê��éVê:óKé°ê�ë°êkîKæÆë7æ¡öQêÀò¡îQñQê��MäKå7è�ëVïKðgåVä�éVì�ïQô´è�þ
array now; array pre; int index;

boolean eval(Formula Fi,State si){

if binary(op(Fi)) then{

lval← eval(left(Fi), si);

rval← eval(right(Fi), si); }

else if unary(op(Fi)) then

val← eval(subformula(Fi), si);

index← 0;

case(op(Fi)) of{

true : return true; false : return false;

P (~ξi) : return P (eval(ξi, si), . . . , eval(ξ′i, si)));

op : return rval op lval; ¬ : return not val;

S : now[index]← (pre[index] and lval) or rval;

return now[index ��� ];
W : now[index]← pre[index] and val;

return now[index ��� ];
V · : now[index]← pre[index] or val;

return now[index ��� ];
� : now[index]← val; return pre[index ��� ];
@jFj : return �FS?T ��XI � Fj � H0I Y KVi[j].values �
}

}

ç�öQê:éVê�ùQæ�ögêMúQô¡ä�ðCèkô7èPénéoèPû *�e� õ�ä�îQæ´è:ò�îGëEæ¡öQê�ðCäKäKô�ê�èPî ��èkô�ïgê�ëuä�åè:ô¡ôgë°ï�ðgåVä�éVì�ïQô´è:ê�ò¡î/æ¡öQêEóQéVê��Kò´ä�ïCëaëVæøèPæ´êÀæ¡ögè:æQç�ò´ô�ôKðgêEé°ê�KïKò�éVêjñmò�îæ�ögêuõkï�éeéVêkîKæCë°æ´è:æ¡ê�ù�ç�öKò´ô¡êuæ¡öQê}úKô´ä�ðCèkôQèPénéoèPû
now

ùKè:ånæ´êPéaæ�ögêuê���è:ô »ïgè:æ�òøä�î�äKå �P²k�C¢ ù:ç�ò´ô¡ôQõ�ä�îKæøèPò¡î�æ¡öQêEðGäKä�ô¡êjè:î ��è:ô�ïQê�ë<ä�åXèkô�ôCëVïKðgåVä�é »ì�ïQô´è:ê�ò¡îpæ�ögê�õ:ïKéné°ê:îQæ7ëVæøèPæ´êMæ�öCèPæ7ì�èPû!ðCê�é°ê�KïKò�éVêjñ-ò�îpæ�ögê/îgê��Kæ
ëVæøèPæ´ê�þ 1 ä�æ¡ê/æ�öCèPæ7æ�ögê �Q¥K¸ è�éeé°è:û �¦ë ��è:ô�ïQê�òÆëuëoê:æaò¡î!æ�ögê�ånïKîgõ:æ¡ò´ä�î
�P²:�G¢ þ ½ öQêuånïKîgõ:æ¡ò´ä�î �P²k�C¢ ä�î�ê��KóKé°ê�ë�ëVòøä�îCëaòøë*ñKê�÷CîQêjñ/îQê	�Kæ �
value eval(Expression ξi,State si){

case(ξi) of{

vi � return si(vi) � ci � return ci �
f(ξ1

i , . . . , ξk
i ) � return f(eval(ξ1

i , si), . . . , eval(ξk
i , si)) �

@jξ
′

j � return �FS?T ��XI � ξ′j � H0IJY KVi[j].values �
}

}1 ä�æ´êsæ�öCèPæWæ¡öQê-å>ïQîQõkæ�òøä�î �P²:�G¢ õjè:îKîgä�æ7ðgêsïCëoêkñpæ´äpê���èkô�ïCèPæ´ê�æ¡öQêðCäQä�ô¡êjèPî ��è:ô�ïQê�ä�åÀèsåVä�éVì�ïQô´èMè:æWæ�ögê�÷géoë°æ*ê���êkîKæ>ùGèjë}æ¡öQêMé°êkõkï�é »ëVòøä�îÂögèPîgñKô¡ê�ë�æ�ögêMõ�èjë°ê
n = 1

ò¡î5èMñ�ò´åÆåeêPé°ê:îQæXç�èPûQþ��\ê-ñKê�÷CîQê
æ�ögêEå>ïQîQõ:æ¡òøä�î �¦�C��  æøä}ögèPîgñKô¡ê*æ¡öKòÆëWëeóCêkõkò´èkô�õjèjëoê�èjë)ò�ì-óCô�ò´êkñ}ðgû}æ¡öQêë°êkì�èPîKæ¡ò´õ�ëaä�å ¹�º�»°¼-½�¾ ò¡î ½ è�ðCô�ê�ë�I�èPîgñ ��ä�î�ä�îQê�ê���êkîKæ�æ�é°èkõkê�ë��
boolean init(Formula Fi,State si){

if binary(op(Fi)) then{

lval← init(left(Fi, si));

rval← init(right(Fi, si)); }

else if unary(op(Fi)) then

val← init(subformula(Fi, si));

index← 0;

case(op(Fi)) of{

true : return true; false : return false;

P (~ξi) : return P (eval(ξi, si), . . . , eval(ξ′i, si)));

op : return rval op lval; ¬ : return not val;

S : now[index]← rval; return now[index ��� ];
W , V · ,� : now[index]← val; return now[index ��� ];
}

} Ø ë<ì!êkîKæ¡ò´ä�îQêjñ�êjèPéVô�ò´êPéVùjò¡î-ä�éVñQêPéaæ´ä�óQé°ä�ógêPé°ô�û/ï�óCñQèPæ´êÀæ¡öQê�ë°êkæ
KVi[i].values

ù�ç�êmõjè:îMê:ò¡æ¡öQêPé7ïCëoêuæ¡öQê}å>ïQîQõ:æ¡òøä�î �P²k�C¢ è:ånæ¡ê:éaê�� »êPéVû/ò¡îKæ´êPéVîgè:ôQê���ê:îQæÆùjä�é7ïGë°ê�ò¡æCò�ì�ì!êjñ�òøèPæ´êkô�û�ðgêkåVä�é°êuë°êkîQñKò�îgú�èPî�û
ì!ê�ë�ëoè:úQê�þ��eå0è�ì�ä�îQò�æøä�é°êkñ ¹�º�»°¼-½�¾ åVä�éVì�ïQô´è

Fi

òÆëWëeógêjõ:òø÷Gêkñ�åVä�é
èEóQé°äKõkê�ë�ë

pi

ù�ç�ê}õjèkô�ô
pi

èjë<æ¡öQê}ä�ç�îgêPéWä�åXæ�öCèPæCåeä�éeì�ïgô¡è�þ Ø æCæ¡öQêä�ç�îQê:é0óKéoä�õjê�ë�ë
ùjç�êuê���èkô�ïCèPæ´ê
Fi

ïCë°ò�îgú�æ¡öQê
eval

å>ïQîQõ:æ¡òøä�î/è:ånæ¡ê:é
ê���êPéVû�ò�îQæ¡ê:éeîCè:ôKè:îQñ�é°êkõjê:ò��Kê�ê���ê:îQæQèPîgñ/èjë�ë°ò¡úKî �Q¥K¸ æ´ä ��e� þ ½ öQòøëòøë}ñgä�îQê-è:ånæ´êPé�æ�ögê ÉMÊ�Ë7ÌÂÍGÎGÏ�Ð<ÎGÑ-Î0ÒXºCË*Ó òÆë}ï�óCñQèPæ´êkñGùQõjä�éné°ê »ëeóGä�îQñKò�îgúKô�ûpèkå>æ´êPéuæ¡öQê�ê��Kê:îKæeþ
�eå�æ¡öQê�ê���èkô�ïCèPæ¡ò´ä�î5äKå

Fi

òøë
falseæ�ögê:îpç�ê�é°êPóGä�éVæaèMç�è�éVîKò¡îQú�æ�öCèPæaæ�ögêMåVä�éVì�ïQô´è

Fi

ögè�ëEðCêkêkî ��ò »ä�ô´èPæ´êkñ)þ ½ öQê�æ¡ò�ì!ê�è:îQñÂëVóCèkõkê/õ�ä�ì-ógô¡ê��Qò�æ¡û-äKå<æ¡öKòÆë�è:ô¡úQä�éeò¡æ¡öKì"èPæ
ê���êPéVû�ê���êkîKæQòøë

Θ(m)
ù�ç�ögêPé°ê

m
òøë*æ¡öQê�ëVò��kê�ä�åXæ�ögê}ä�éVò´ú�ò¡îgè:ôQô¡ä »õjèkôQåVä�éVì�ïQô´è�þ

0 �! � " ���$�&%�'	�

O ä�îCë°ò¡ñQêPéÀæ¡ö�é°êkêMóKéoä�õjê�ë�ë°ê�ë
ù
p1
ù
p2
è:îQñ

p3
þ
p1
ögèjëmè-ô´ä�õ�è:ô

��è�éVò´èPðgô¡ê
x
ç�öCäQë°êsò¡îKò¡æ�òøè:ô���èkô�ïgê�òÆë :gù

p2
öCèjëmèsô¡äKõjè:ô���èPéeòøè�ðCô�ê

167



C, si |= 0 · Fi = C, si |= Fi

ä�é*(
∃s′i . s′i

�
si

èPîgñ
C, s′i |= 0 · Fi

)

C, si |=
[

Fi = C, si |= Fi

èPîgñ (
∃s′i . s′i

�
si

ò¡ì-ógô�ò¡ê�ë
C, s′i |=

[
Fi

)

C, si |= FiSF ′
i = C, si |= F ′

i

ä�é
(C, si |= Fi

è:îQñ
∃s′i . s′i

�
si

èPîgñ
C, s′i |= FiSF ′

i )

� ��$9 &	�����P	������*"�����	���	�� ��+ � ��� " ��! ¹�º�»°¼-½�¾

y
ç�ò�æ¡öÂò¡îKò¡æ¡ò´èkô���è:ô�ïQê%=5èPîgñ

p2
ì�ä�îKò¡æøä�é�ë�æ�ögê-åeä�éeì�ïgô¡è [

(y ≥
@1x)

þ Ø îsê��gè:ì-ógô¡êÀõjä�ì-óQïKæøèPæ¡òøä�î�òøëEë°ögä�ç�î/ò¡î��0ò´ú�ïKéVê �Cþ

p3

p2

p1

0

5

0

5

0

5

2

6

2

6

2

6

2

6

2

6

0

9

1

9

2

6

e20 e21 e22 e23

e30 e31 e32

e10 e11

e12

e13

e14

x=5

y=7

x=9

y=3

1

6

x=6

(violation)

KV[1].seq

KV[1].values

����������	����� �)+����
��� �Q+ � ��! [
(y ≥ @1x)

���
p2

½ öQêPé°ê�òøë7ä�îgô�û�ä�îgê�åVä�éVì�ïQô´èWæøäÀì�ä�îKò¡æ´ä�éCç�ò¡æ¡ö�è�ë°ò�îgúKô¡ê�äKõkõ:ïKé »éVêkîQõkê/äKå�è:î
@
ä�óCêPéoèPæøä�éVù�îgèPì!êjô�û

@1x
þ 6 ê:îQõjê�ùKæ¡öQê ÉMÊ�Ë7ÌÂÍ)»

ÎGÏ�Ð*ÎGÑ-Î0Ò)ºGË<Ó öCèjëEè�ë°ò�îgúKô¡ê�ê:îKæ�éVû-ç�öQò¡õkö�õjä�éeé°ê�ëeóGä�îgñgë<æ´ä
p1
þ

ÿ ä�éVê�ä���ê:éVùGëVò¡îQõjê�æ�ögê�ä�îgô�û5é°ê:ì�ä�æ¡ê�ê	��óKé°ê�ë�ëVòøä�î·æøäpðgê!æ�éoè:õkýKêkñ
òøë

x
ù
KV[1].values

ë°ò�ì-óCô�û!ëVæøä�é°ê�ë*æ¡öQê���è:ô�ïQê�ä�å
x
þ��eî-æ�ögê�÷Gú »ï�é°ê�ùQîgê��KæaæøäÂê�è:õköpê���êkîKæ>ùCç�ê!ëVöCä�ç

KV[1]
è:æWæ�öCèPæWò¡îCëVæøèPîQæWåeä�é

æ�öCèPæaóKéoä�õjê�ë�ë�þ
KV[1]

òÆëmú�éoè�óQöQò¡õ�è:ô¡ô�û5ñ�òÆëeóCô¡è:ûQêjñ!ðgû·è!ë°æ´èkõ:ý$äKå
æ¡ç�äÂîKïQì-ðgêPé�ë�ùgæ�ögêMæøä�ó·îQïKì-ðgê:éÀë°ögä�ç�ò¡îQú

KV[1].seq
èPîgñpæ�ögê

ðCä�æ¡æøä�ì îKïQì-ðgêPéWëVögä�ç�ò¡îQú/æ�ögê ��è:ô�ïQê}åeä�é
x
þ

½ öQê õjä�ì-ógïKæøèPæ¡ò´ä�îüëVæøè�éVæÆë$äKåÆå5ç�ò�æ¡öÖæ¡öQê`ò¡îKò¡æ�òøè:ô ��è:ô�ïQê�ë$äKå
x = 5

èPîgñ
y = 7

þ Ø ô¡ôEóKéoä�õjê�ë�ëoê�ë�ýKîCä�ç æ¡öQêpò¡îKò¡æ�òøè:ô ��èkô�ïgê
ä�å

x
ù�ögê:îgõkêÀæ¡öQê

KV[1].values
åeä�éaê�è:õkö/óKéoä�õjê�ë�ëaögè�ë ��èkô�ïgê#:0þ

�næWòÆë�êjè�ëVû·æøä�ë°êjê-æ�öCèPæ<æ¡öQêsì�ä�îQò�æøä�é°êkñpåVä�éVì�ïQô´è5[
(y ≥ @1x)ögä�ô¡ñgëWò�îQò�æ¡òøè:ô¡ô�û�èPæ

p2
þ�ãGï�ðGëoê�KïQê:îQæ¡ô�û�ùjè:æ

p1
æ�ögêPé°êuòÆë�èPîsò�îQæ¡ê:éeîCè:ô

ê���ê:îQæ
e11

ç�öQò¡õkö�ëoê:æÆë
x = 9

èPîgñuïKógñgèPæ´ê�ë
KV1[1].values

õ�ä�é »éVê�ëeóCä�îQñKò�îgúKô�ûKþ CGé°äKõkê�ë�ë
p1
æ�ögê:î-ëoê:îgñgë�èÀì!ê�ë�ëoèkúKê}æ´ä

p2
ç�ò¡æ�ö�è

õjä�óQû�ä�åXò�æÆëWõkï�éeéVêkîKæ
KV

þ Ø îgä�æ�ögêPé)ò¡îKæ´êPéVîgèkôKê���êkîKæ
e13

õ�èPïGë°ê�ë
xæ´äsðCêsëoê:æaæ´ä AGþBCGéoä�õjê�ë�ë

p1
è:úgèPò¡îpë°êkîQñgëuè�ì!ê�ë�ëoèkúKê�ùKæ�öQòøëÀæ�ò¡ì!ê

æ´ä
p3
ù�ç�ò�æ¡ösæ�ögêuïKógñQè:æ¡êjñ

KV
þ4CGé°äKõkê�ë�ë

p3
ï�óCñQèPæ´ê�ëWò�æÆë

KV
èPîgñë°ê:îgñgëWæ�öQòøë*ä�î�æ¡öQêuì!ê�ë�ëoè:úQêÀò¡æ)ë°ê:îgñgë<æ´ä

p2
þ

Ø æ0óKéoä�õkê�ë�ë
p2
ù�æ�ögê�ì!ê�ë�ë�è:úQê�ë°ê:îQæGðQû

p3
ögè�óQógêkîCë<æ´ä�èPénéVò���ê

êjè�é°ô�ò¡ê:éÀæ�öCèPî5æ�ögê-ì!ê�ë�ëoè:úQê�åÆéoä�ì
p1
þ ½ öQêPé°êkåVä�é°ê�ùGèPæ�ê��Kê:îKæ

e21
ù

ä�î�éVêjõkê:ò ��ò¡îQú/æ¡öQê}ì!ê�ë�ëoèkúKêmåÆéoä�ì
p3
ùjóQé°äKõkê�ë�ë

p2
òøë�èPðgô¡êuæøä/ïKó »ñQè:æ¡ê�ò¡æøë

KV
æ´äsæ¡öQê/ä�îQê�ë°êkîKæXè:æXê���êkîKæ

e14
þ ½ ögê�ì�ä�îKò¡æøä�é�èPæ

p2è:úgèPò¡î/ê���è:ô�ïgèPæ´ê�ëXæ¡öQê�óKéoä�ógê:éeæ¡û/èPîgñ/÷CîQñCë7æ�öCèPæQò�æ0ëVæ¡ò¡ô¡ôQögä�ô¡ñgëPþ ½ öQêì!ê�ë�ëoè:úQê�ë°êkîKæ<ðgû
p1
÷Cîgèkô�ô�û$è�éeéeò ��ê�ë�è:æ

e22
ð�ïKæ*æ¡öQê

KV
óQò´ú »ú�ûKðCè:õkýKêkñ�ä�î�òÆë�ò´ú�îCä�é°êkñ!èjë�ò�æaöCèjëÀèsëVì�èkô�ô¡êPé

KV[1].seq
æ�öCèPî

KV2[1].seq
þ ½ ögê�ì�ä�îQò�æøä�éaõjä�éné°êkõkæ¡ô�û�õjä�îKæ¡ò�îQïQê�ë7æ´ä�ñKêjõkô´è�é°ê�æ�ögêóKéoä�óCêPéVæ�û���è:ô�ò¡ñ)þ 6 ä�ç�ê���êPéVù:èPîgä�æ�ögêPé0ò¡îKæ´êPéVîgèkô�ê���ê:îQæQèPæ

p2
õ�èPïCëoê�ë

æ�ögê���èkô�ïgê�ä�å
y
æøä!ñ�é°ä�ó!æ´ä

3
ùCè:æ7ç�öQò¡õkö�óCä�ò�îQæ)æ¡öQê/ì�ä�îKò¡æ´ä�é�ñKê »æ¡êjõ:æÆë*è�óKéoä�óCêPéVæ�û �Kò´äKô¡è:æ�òøä�îXþ

	 Û /5,4� [�
�F��� /ußWß98
�\ê�ögè���ê\ò¡ì-ógô¡ê:ì!ê:îQæ¡êjñ@æ¡öQê�è�ðGä���ê�æ´êkõköKîQò�KïQê\è�ë5è\æ´äQä�ôÆù

õjèkô�ô¡êkñ ¼-×ÆØ-ÊWÙ ( ¼-× ëVæ�éeò�ð�ïKæ´êkñ Ø-ÊWÙ ô�ûCë°òøë ) (eë°êkê �)ò¡úKï�é°ê�� ) þ ¼-×n»
Ø-ÊWÙ òøë-óQïKðgô�ò¡õjô�ûdè���è:ò¡ô´è�ðCô�ê$è:îQñ@õ�èPî ðCê�ñQä�ç�îgô¡äQè:ñQêkñUåÆéoä�ì �
����������������������� �!�#"%$&"'�(�*)�+,"-�.+�$0/�1�/'� þ �uä�æ�ö ¼-×ÆØ-ÊWÙ èPîQñ
æ�ögêuå>é°è:ì!êPç�ä�éVý�ïKîQñQêPéaç�öKò´õ:ö/ò¡æ0ä�ógê:é°è:æ¡ê�ë<èPéVê}çméeò¡æ�æ´ê:îMò�î S è���è�þ
2 ���	�43 � �<3>=?


Ø îQïKì-ðgê:éGäKåGåeä�éeì�èkô�òÆëVìÂë)õjè:îmðgê�ïCëoêkñmæ´äué°êjè�ëoä�î/èPðCä�ïQæ�ñ�òÆë »æ�éVò�ð�ïKæ´êkñÂë°ûCëVæ´ê:ìÂë
ùQæ¡öQê/ì�ägëVæ7îgè:æ�ïKé°èkôXä�îgê�ðgêkò�îgú Ø õ:æøä�é�ëX8/Igù �B;oþ
Ø õ:æøä�é�ë�è�é°ê/è�ì�ä�ñQêkôGä�å<ñKòøë°æ�éVò�ð�ïKæ´êkñMéVê�è:õkæ�ò��Kê�ä�ðEK�êkõkæøë�èPîgñ-ögè���êèsð�ïKò´ô�æ » ò�î·îCä�æ¡ò´ä�î$ä�å}ê:îQõ�è�ó0ëVïQô´èPæ¡òøä�î�èPîgñ5ò�îQæ¡ê:é°èkõ:æ¡ò´ä�îGùGì�èPýKò¡îQúæ�ögê:ì ç�êkô¡ômë°ïKò¡æ¡êjñ æøä�é°êPóKé°ê�ëoê:îQæuê���ä�ô�ïKæ¡ò´ä�î@èPîQñdõjäKä�éVñKò�îCèPæ¡ò´ä�î
ðgêkæ¡ç�êjê:î�ò¡îKæ´êPéoè:õ:æ¡ò¡îQú�õjä�ì-óCä�îgê:îQæøë0ò�îMñ�òÆëVæ�éeò�ð�ïKæ´êkñ/èPóKógô�ò´õjèPæ¡òøä�îCëPþ
O ä�îgõkêPógæ�ïCè:ô¡ô�û�ùPè:îMè:õkæ´ä�é7ê:îgõjèPóGëVïgô¡è:æ¡ê�ëaèuëVæøèPæ´ê�ù�èEæ�öKéVê�è:ñ/äKå)õjä�î »æ�éoä�ôÆù�èPîgñ�è\ë°ê:æ�ä�å�óQé°äKõkêjñ�ï�é°ê�ë�ç�öKò´õ:ö ì�è:îKò�óQïgô¡è:æ¡êÂæ�ögê\ëVæøèPæ´ê�þ
Ø õ:æøä�é�ë�õ�äKä�é°ñ�ò¡îgè:æ¡ê�ðQûpè�ëVûQîQõ:öKé°ä�îgä�ïCë°ô�û�ë°êkîQñ�ò¡îQú!ì!ê�ë�ë�è:úQê�ëÀæ´äêjèkõ:öpè:îgä�æ�ögêPéVþ&�nîpæ¡öQê-è:õ:æøä�é�å>é°è:ì!êPç�ä�éeý0ùgè�ñKòøë°æ�éVò�ð�ïKæ´êkñpë°ûCë°æ¡êkìõjä�îCëVòÆëVæÆëÂä�å-ñ�ò´åÆåeêPé°ê:îKæ�è:õkæ´ä�éoë!õjä�ì�ì�ïQîKò´õjè:æ�ò¡îQú�æ¡ö�éoä�ïgú�ö@ì!ê�ë »ëoèkúKê�ëPþ ½ öKïGë�ù0æ�ögêPé°ê-òøë/èPî$è:õkæ´ä�é}åVä�é}ê�è:õ:ö5óQé°äKõkê�ë�ë}ò¡î·æ�ögêÂëVûGë »æ¡êkì·þ
�nîsæ�ögêmò�ì-óCô�êkì!ê:îKæøèPæ¡òøä�îGùjê�è:õköMæ¡û�óCêmäKåaèkõ:æøä�é (nä�éaóKéoä�õjê�ë�ë ) òÆëñKêkîgä�æ´êkñ�ðQû$è S è���è�õjô¡è�ë�ëmæ¡ögè:æ*ê��Kæ´ê:îgñgëmèsðGèjë°ê�õjô¡è�ë�ë�5(6>�87��aþ

½ öKòÆë�ðGèjëoê�õkô´èjë�ë�ò¡ì-ógô¡ê:ì!êkîKæÆë�è�ì!ê�ë�ë�è:úKê �ïgê:ïQê/è:îQñ!óKéoä���ò´ñKê�ëæ�ögê�ì!ê:æ¡ögäKñ �>��:9�åeä�éaèjë°ûKîgõ:ö�éoä�îCä�ïGëGì!ê�ë�ëoèkúKê�ë°ê:îgñ�ò¡îQú)þ Y�è:õ:ö
è:õkæ´ä�é0ä�ðEK�êkõkæ�ê��Qêkõ:ïQæ¡ê�ëCò¡î/è�ëoêPóCèPé°è:æ¡ê�æ¡ö�é°êjè:ñ)þ ½ ögêEë°æ´è:æ¡ê�ä�åGè:î�èkõ »æ´ä�é*òÆë�é°êPóKé°ê�ëoê:îQæ¡êjñ�ðgû�æ�ögê�÷Gêjô�ñCë�ä�å*æ�ögê S è���è�õjô¡è�ë�ëPþBY�è:õkö S è���è
õkô´èjë�ëWè:ôøëoä�õ�ä�îQæ´è:ò�îGëXè}ë°ê:æCä�å�;:<%= ���-6Mì!ê:æ¡ögäKñgë)æ¡ögèPægõjè:î�ðgêEò¡î »
��ä�ýKêjñ�ò¡î!é°ê�ëeóGä�îGë°ê/æøä�ì!ê�ë�ë�è:úKê�ë�é°êkõjê:ò���êjñ!å>é°ä�ì"ä�æ�ögêPé�è:õ:æøä�é�ë�þ
Ø ë°ûCëVæ´ê:ì&ô�ê��KêkôGè:õkæ´ä�é*õjè:ô¡ô¡êkñ Ç}�k �¥g�?>$�Q�K��§C�j� æøèPýKê�ë�è}ì!ê�ë�ëoèkúKêèPîgñ}æ�éoèPîCëoånê:éoë)ò¡æKæøämæ�ögê�ì!ê�ë�ë�è:úQê �ïQêkïQê�ä�åCæ¡öQêEæøè�éVúKêkæKè:õ:æøä�éVþ ½ öQêæ´èPéeúQê:æ�èkõ:æøä�é�æ´è:ýKê�ë�èPî�è���èPò´ô¡èPðgô¡ê!ì!ê�ë�ëoèkúKê�å>éoä�ì æ�ögê!ì!ê�ë�ëoèkúKê
�ïgê:ïQê�è:îQñpò�î���ä�ýKê�ëuæ¡öQê-ì!ê:æ¡ögäKñpì!ê:îKæ¡òøä�îQêjñ�ò¡î·æ¡öQê-ì!ê�ë�ëoèkúKê�þ

168



� öQò¡ô¡ê�óKéoä�õkê�ë�ë°ò�îgú}è�ì!ê�ë�ëoè:úQê�ù:èPî�è:õ:æøä�é0ì�è:û�ëoê:îgñuì!ê�ë�ëoèkúKê�ë0æøä
ä�æ¡öQêPéuèkõ:æøä�é�ë�þgÿ�ê�ë�ë�è:úKê!ëoê:îQñKò�îgúCùgðgê:ò¡îQú5èjë°ûKîgõ:ö�éoä�îCä�ïGë�ùKîQê��KêPéðgô´ä�õ:ýGë)è:î�è:õkæ´ä�éeþ 6 ä�ç�ê���êPéVùPèPî/è:õkæ´ä�éGðgô´ä�õ:ýGë)ò¡åGæ¡öQê:éVê�òÆëXîgä}ì!ê�ë »ëoè:úQê�ò¡î!ò�æÆëEì!ê�ë�ë�è:úKê��ïQêkïQêKþ ½ ögêMëVûGëVæ´ê:ì òÆëEò¡îKò¡æ�òøè:ô�ò��jêkñ-ðgû!æ¡öQê
Ç}�k �¥g�?>$�Q�K��§C�j� ä�ðEK�êkõ:æaæ¡ögè:æaõ:éVê�èPæ´ê�ëmè:ô¡ôaæ¡öQê-è:õ:æøä�é�ëÀò�îpæ�ögê!ëVûCë »æ¡êkì�èPîQñsëVæøè�éVæøë<æ�ögê}ê	�KêkõkïKæ¡ò´ä�î�ä�åXæ�ögêmëVûGëVæ´ê:ì·þ
2 ������� �	
 � = ��� � �<�76 �23 ��� �<3>=?
 � ��
������
	
½ öQê�ïCëoêPéXä�å ¼-×ÆØ-ÊWÙ ëVógêjõ:òø÷Gê�ë)æ¡öQê�ô´ä�õjèkô ¹�º�»°¼-½�¾ åVä�éVì�ïQô´è:êæ´ä!ðgêMì�ä�îQò�æøä�é°êkñ�ä�îÂê�è:õ:ö·è:õkæ´ä�é�ò¡î�èsëVógêjõ:òøè:ôW÷Gô¡ê�þ�Y�è:õköpè:õkæ´ä�é

ögèjë*èÀïQîKò��ïgê�îgè:ì!ê�ùjç�öKò´õ:öMòøë*æ¡öQêuîgèPì!êmä�åXæ�ögêuõ�ä�éeéVê�ëeóCä�îQñKò�îgú
óKéoä�õkê�ë�ëPþ ½ öQê}îgè:ì!êuòÆë<óCè�ë�ë°êjñ�èjë�è�ëVæ�éeò¡îQú-èPæGæ¡öQê}æ�ò¡ì!ê�õPé°êjè:æ�òøä�îä�åXè:î-èkõ:æøä�éVþ
Ø ë �0ò¡úKï�é°ê ��ëVögä�ç�ë
ù�æ¡öQê�õ�ä�é°êÁä�å ¼s×>ØsÊWÙ õ�ä�îCë°òøë°æøë�äKåæ¡ç�ä�ì�äKñ�ïQô¡ê�ë	�*èPî �«�Q�
 ´��¬�¤��:�g ��g ´�¦¥K� ì�ä�ñ�ïgô�ê�è:îQñ@è ¤/¥K�C�� �¥C�°¨

�«�K§ ì�ä�ñKïQô¡ê�þ ½ öQê�ò�îGëVæ�éeïQì!ê:îQæ´è:æ�òøä�î-ì�ä�ñKïQô¡ê�æøèPýKê�ëEæ¡öQêsëVógêjõ:òø÷ »õjèPæ¡òøä�î�÷Gô�ê/è:îQñsæ¡öQê�ñ�òÆëVæ�éVò�ð�ïQæ¡êjñ/óQé°äKú�éoèPì çméVò�æ¡æ¡êkî�ò�î-æ¡öQê�è�ðGä���ê
åÆéoèPì!êPç�ä�éVý èPîQñdõPé°êjèPæ´ê�ë!è S è���è�õkô´èjë�ë���7� �>�87�����:; �dæ¡ögè:æ
ò�ì-óCô�êkì!ê:îKæÆëmè�ô´ä�õjèkôWì�ä�îQò�æøä�éuåVä�émêjè:õkö$è:õkæ´ä�é (>ä�éÀóKéoä�õjê�ë�ë ) þ��eæè:ôøëoä�èPïQæ´ä�ì�èPæ¡ò¡õ�è:ô¡ô�û\ò�îGëVæ�éeïQì!ê:îKæÆë/æ�ögêpñKòøë°æ�éVò�ð�ïKæ´êkñ$óKéoä�ú�éoèPì �C 
 �©g�*��³K ¡�k�:¥K�g�E¢��:²j�j¢ (nè:ånæ¡ê:é)õjä�ì-óQò´ô¡è:æ�òøä�î ) ù�ë�äuæ¡ögè:æ�æ�ögêEñ�òÆëVæ�éeò�ð�ïKæ´êkñóKéoä�ú�éoèPì ò�î���ä�ýKê�ëmò¡æÆë/ô´ä�õ�è:ô�ì�ä�îKò¡æøä�é}ç�ögê:îQê��KêPéuò¡æEì�ä�ñ�òø÷Gê�ë�è
÷Gêkô¡ñ ��èPéeòøè�ðCô�ê (Æò¡îKæ´êPéVîgè:ô)ê���ê:îQæ ) ùCë°êkîQñgëuè�ì!ê�ë�ëoèkúKê�ùCä�éEò�î���ä�ýKê�ëè�ì!ê:æ¡ögäKñ (øéVêjõkê:ò ��êÀê���êkîKæ ) þ
%mîgê�ì�è:û è:ô�æ´êPéVîgèPæ´êkô�ûdõkögäKägë°ê·æøä`ê���è:ô�ïgèPæ´ê·æ¡öQê\êPóQòÆëVæ´ê:ì�ò´õ

ê���óQéVê�ë�ëVòøä�îGë�è:îQñ�åVä�éVì�ïQô´è:êÂò�ì�ì!êjñ�òøèPæ´êkô�û$ðCêkåVä�é°ê5ëoê:îQñKò�îgú èPî
ê���ê:îQæ�(nãCïKðGë°êjõ:æ¡ò´ä�î9:0þ�� ) þ��eî-æ�öQòøë�õ�èjëoê}æ¡öQê�ô´ä�õ�è:ôCì�ä�îKò¡æ´ä�éaòÆë�îgä�æò�î���ä�ýQêkñpç�öQê:î$÷0êkô¡ñ ��è�éVò´èPðgô¡ê�ë�èPéVê-ì�äKñ�òø÷Gêkñ)þ � öKò´ô�ê�éeïQîKæ¡ò�ì!ê
ä���êPéVöQê�è:ñmç�èjëaîCä�æQæ�ögê�ì�è K�ä�éaõjä�îgõkê:éeî�åVä�éXïGëaò¡î/ò¡ì-ógô¡ê:ì!ê:îQæ�ò¡îQú
ä�ï�éuóKéoä�æøä�æ¡û�ógê�ùCñQêkô´èPûKò¡îQú�ë°ïQõ:ö\ê���è:ô�ïgèPæ¡òøä�î·úKêkîQêPéoè:ô¡ô�û5éVêjñ�ïQõjê�ë
æ�ögê�éVïKîKæ¡ò¡ì!êuä���ê:éeögêjè:ñ)þ
2 �! ������
 ��� �$
 ��

�Uê ò�ì-óCô�êkì!ê:îKæ´êkñ æ�ögê åVä�ô¡ô¡ä�ç�ò¡îQú ��ä�æ¡ò�îgú èkô�úgä�éVò�æ¡öKì �pè

��� �����póKéoä�õkê�ë�ë}èjë°ýCë}åeä�é ��ä�æ´êsä�î5è/éVê�ëoäKô�ïQæ�òøä�îpåÆéoä�ì
N
��ä�æ »êPé�ë�îCèPì!êkñ���7������

1
����7������

2
������� ����7������

N

ùWç�öQêPé°ê
N

òÆë·ò¡îKò¡æ�òøè:ô�ò��kêkñÖæøäÖè:î èPénðgò�æ�é°èPéeûÁð�ïKæ!÷��Kêjñ�óCägëVò¡æ�ò ��ê@îQïKì »ðgêPéVþ��\ê èjë�ëVïKì!êÄæ�öCèPæpæ�ögê�óQé°äKõkê�ë�ë°ê�ë@è�é°êÄõ�ä�îQîQêkõkæ¡êjñ ò�î è
æ�é°êkê$ýKò¡îQñdäKå�îgê:æ´ç�ä�éeý`ç�ò�æ¡ödæ¡öQê ��� �����ÁèPæmæ�ögê�éoäKä�æmä�åMæ¡öQêæ�é°êkêÁè:îQñ æ¡öQê ��ä�æ´êPé�ë�èPæpñ�ò´åÆåeêPé°ê:îKæ�îCä�ñQê�ë�þ Y�èkõ:ö ��ä�æ´êPé$é°è:î »ñQä�ì!ô�ûÝñQêkõ:ò´ñKê�ë ò´ådò¡æ ç�èPîKæÆëÁæ´ä ��ä�æ´ê�åVä�éÁä�éÁè:úgèPò¡îCëVæUæ¡öQê
éVê�ëoä�ô�ïKæ¡òøä�îGùsè:îQñ õjä�éeé°ê�ëeóGä�îgñ�ò¡îQúKô�û�ëVæøä�é°ê�ë �Ää�é R ò¡î èÖô¡ä »õjè:ô/ë°æ´è:æ¡ê ��è�éVòøè�ðgô¡êUõjè:ô¡ô¡êkñ��!7����*þ ½ ögê ��ä�æ¡ê:é-æ¡öQêkî ëoê:îQñCë�ò�æÆëñKêkõkòøë°ò´ä�î�æøä ò¡æÆë@ò¡ì�ì!êkñKò´è:æ¡êÁóCèPéVêkîKæpò�î&æ�ögêÄæ�é°êkê�þ ½ öQêÁóCèPé »ê:îKæaõjäKô�ô¡êkõkæøë�æ�ögê���ä�æ¡ê�ëÀèPîgñÂë°êkîQñCë�æ¡öQê-ëVïKìÝäKå<ò¡æøë ��ä�æ´êMè:îQñ�ò�æÆë
óKéoä�úKêkîKò´ê�ë�� ��ä�æ´ê�ë�æ´ä�ò�æÆëÀò�ì�ì!êjñ�òøèPæ´ê�óCèPéVêkîKæeþ ½ öQê ��� �����póKéoä »õkê�ë�ë�õ�ä�ô¡ô�êjõ:æÆë�è:ô¡ô7æ�ögê ��ä�æ´ê�ëuèPîQñ�éVê
Koêjõ:æÆë�æ�ögê�é°ê�ë�ä�ô�ïKæ¡ò´ä�î�ä�îQô�û!ò´åögè:ô¡å�ä�é�ì�ä�é°ê ��ä�æ´êPé�ëÀöCè���ê�éVê
Koêjõ:æ´êkñ0þ �\ê-ì�ä�îQò�æøä�éEæ¡öQê-åeäKô�ô´ä�ç »ò�îgúMëoèkånêkæ�û�óKéoä�ógê:éeæ¡û�èPæ ��� �������

reject→ ((
∑

i∈[1..N ] @Voteri
(vote)) < N/2)

½ öQê�óKéoä�ógê:éeæ¡û�ç�èjë/åeä�ïKîQñ�æ´äpðCê �Kò´äKô¡è:æ¡êjñ·ò�î ë°ê���ê:é°èkôWéVïKîGë��aèPæëoä�ì!ê ��ä�æ¡ê:éEîCä�ñQê�ë�ùgæ�ögê ��ä�æ¡ê:éuëoê:îQæ7æ¡öQê!ë°ïKì äKå�ò¡æÆë�óQé°äKúKêkîKò´ê�ë��
��ä�æ´ê�ëuç�ò�æ¡ögä�ïKæWè:ñQñ�ò¡îQú!ò¡æÆë}ä�ç�î ��ä�æ´ê�þ ½ öKòÆëEé°ê�ë°ïQô�æ¡êjñ!ò¡îÂæ¡öQê�é°ê »
Koêjõ:æ¡ò´ä�î�ä�åGæ¡öQê�é°ê�ë�ä�ô�ïKæ¡ò´ä�î�ç�öQê:î�ò¡æCë°ögä�ïQô¡ñ�ögè���ê�ðCêkê:î/èkõkõkê:óQæ´êkñ)þ
�\ê�ögè���êmè:ôøëoäMæ´ê�ëVæ´êkñ-è ��êkõkæ´ä�éaõjô¡äKõ:ý28 FQù��J:H;Wè:ô¡úQä�éVò¡æ�öQìüò¡ì »ógô¡ê:ì!êkîKæ´êkñ�ò¡î�æ¡öQêsåÆéoèPì!êPç�ä�éeý-óQéVê�ë°ê:îQæ¡êjñ�ò¡îÂæ¡öKòÆëuëoêkõ:æ¡òøä�î)þ ½ öQêè:ô¡úQä�éeò¡æ�öQì ç�èjëÀò¡ì-ógô¡ê:ì!ê:îQæ¡êjñ�èjë�óGè�éVæ7äKå*úKô´ä�ðGè:ôXë°îgèPóGëVöCä�æaèPîQñ

úQèPénðGè:úKê-õ�ä�ô¡ô�êjõ:æ¡ò´ä�î\è:ô¡úQä�éeò¡æ�öQì·þ��nî\æ�öQòøë�è:ô¡úQä�éVò¡æ�öQìpù0ê�è:õkö·óKéoä »õkê�ë�ë}òÆë�èjë�ëVïKì!êjñpæ´äpöCè���ê�è-ô¡äKõjè:ô��Kêkõ:æøä�éuõjô¡äKõ:ý
V
æ¡ögèPæWò¡æ*ïKó »ñQè:æ¡ê�ë}èkõkõ�ä�é°ñ�ò¡îQú�æøäÂæ�ögê�ë°æ´è:îQñgè�é°ñ ��êjõ:æøä�éÀõkô´ä�õký5èkô�úgä�éVò�æ¡öKì 8 FG;

ç�öQêkîQê���ê:éuæ�ögêPé°ê�òÆë�è:î$ò¡îKæ´êPéVîgè:ô�ê���ê:îQæÆùXè5ë°êkîQñ�ê���êkîKæEä�é/è-é°ê »õkêkò���ê�ê���ê:îQænþ ½ öQêÀë�è:åeê:æ¡û}óQé°ä�ógê:éeæ¡ûuæ¡ögè:æ�æ�ögêÀè:ô¡úQä�éVò¡æ�öQì�ì�ïCëVæCëoèPæ »òøëoå>ûMòøë<æ¡ögèPæ>ù�èPæGê���ê:éeû/óKéoä�õkê�ë�ë
pi

�<,:èkô�ôgê:îQæ�éVò´ê�ë<äKå)æ¡öQê}ô¡äKõjèkô#��êjõ »æ´ä�éÀõkô´ä�õ:ýpì�ïCë°æaðgê-ú�é°êjè:æ¡ê:é�æ�öCèPî·ä�éuê�KïgèkôXæøäÂæ�ögê-ô¡äKõjè:ô���êjõ:æøä�é
õkô´ä�õký�ò¡î5èMõjè:ïCëoèkô�ô�û5ô¡è:æ¡ê�ëVæ7óKé°êkõjêkñ�ò¡îQúpëVæøèPæ´ê-äKå�è:î�ûpä�æ�ögêPé�óKéoä »õkê�ë�ë�ù .mê��KóKé°ê�ë�ëoêkñ/è�ëWæ¡öQêmåeäKô�ô´ä�ç�ò¡îQú

i
» åVä�éVì�ïQô´è&�

[
(

∧

j∈[1..n]

V ≥ @jV )

ç�öQê:éVê
V ≥ V ′ ç�öQêkî$ê���ê:éeû�êkîKæ�éeû�ò¡î V

òøë/ú�é°êjè:æ¡ê:é}æ¡ögèPîUä�é
ê�Kïgè:ôjæøäuæ¡öQê�õjä�éné°ê�ëVóCä�îQñ�ò¡îQú�êkîKæ�éeû}ò�î

V ′ þ Ø îgä�æ�ögêPé)ëoè:åeê:æ¡û}óKéoä�ó »êPéVæ�û-ëVæøèPæ´ê�ëaæ¡ögè:æ�,kèPæCê���êPéVûmóKéoä�õkê�ë�ë
pi

æ¡öQê
i
» æ¡ö/ê:îKæ�éVû/ò�î�ò�æÆëWô´ä�õ�è:ô

��êkõkæ´ä�éÀõkô´ä�õ:ýpì�ïCë°æaðgê!ëVæ�éVò¡õkæ¡ô�û�ú�é°êjè:æ¡ê:éEæ¡ögè:îÂæ¡öQê
i
» æ�ö5ê:îQæ�éVû·ä�åæ�ögê�ô¡äKõjèkô ��êjõ:æøä�é)õkô´ä�õký�ä�å)è:î�û/ä�æ¡öQê:é0óKéoä�õjê�ë�ë�.�þ ½ öQòøë7õ�èPî�ðgêuê�� »óKé°ê�ë�ë°êkñMèjë<æ�ögê}åVä�ô¡ô¡ä�ç�ò¡îQú

i
» åeä�éeì�ïgô¡è �

[
(

∧

j∈[1..n]

V [i] > @jV [i])

½ öQêÀëoêkõjä�îQñ}óKéoä�óCêPéVæ�û�ç�èjëaåVä�ïQîQñ}æ´ä}ðCê ��òøä�ô´èPæ´êkñmò¡îMëoä�ì!ê�õ�ä�ì »óQïQæ´è:æ�òøä�îGëmñ�ïQê!æ´ä�è-ð�ïQú�õ�èPïCëoêkñ5ðgû�ånè:ò¡ô�ï�é°ê�æøä5ò�îgõPé°ê:ì!êkîKæ<æ¡öQê
i
» æ¡öpêkîKæ�éeû·ä�å�æ¡öQê-ô´ä�õjèkô���êkõkæ´ä�é�õjô¡äKõ:ý·ä�å�óKéoä�õjê�ë�ë

pi

ç�öQê:îÂé°ê »õkêkò���ò¡îQú/ê��Kê:îKæÆë�þ
½ öQê�ë°êmë°ò�ì-óCô�êuê��gè:ì-ógô¡ê�ë7ò´ô�ô�ïCë°æ�éoèPæ´ê�æ¡öQêÀóKéoè:õ:æ¡ò´õjè:ôKïKæ¡ò¡ô�ò¡æ�û-èPîQñóCä�ç�ê:é0äKå ¹�º�»°¼-½�¾ è:îQñmæ¡öQê�ì�ä�îQò�æøä�éVò�îgúÀæøäKäKô ¼-×ÆØ-ÊWÙ ðGèjëoêkñ�ä�îò�æeþ

 *Û"!5ßWÞÀ��8ná���âeßWÞ��WÞ�à$#/á��
áÀ� ��% ß<�'&
½ öKòÆë7ç�ä�éVý�éVê:óKé°ê�ë°êkîKæÆë)æ�ögêÀ÷géoë°ægëVæ´êPó/ò¡î�êjåÆånêjõ:æ¡ò���ê�ñ�òÆëVæ�éeò�ð�ïKæ´êkñì�ä�îQò�æøä�éVò�îgú0þ ½ ögê}ç�ä�éeýMóKé°ê�ëoê:îKæ´êkñMöQê:éVê�ëVïgúKúQê�ëVæÆë�èuîQïKì-ðCêPé<ä�åóKéoä�ðCô�êkìÂëgæ�öCèPæ�é°ê��ïQò�é°ê*ånï�éVæ¡öQêPéQéVê�ë°ê�è�é°õ:ö)þ ½ öQê�ô¡äKú�ò´õ*ò¡æøëoêkô¡åCõjä�ïgô�ñðgê�ì�è:ñQê<ì�ä�é°ê*ê	��óKé°ê�ë�ëVò��Kê�ëoäuæ¡ögèPæ�ò¡æ�ê���óQéVê�ë�ëoê�ëCîCä�æ�ä�îgô�û�ëoèkånêkæ�û�ù

ð�ïKæWè:ôøëoäÂô�ò ��ê:îgê�ë�ëEóKéoä�óCêPéVæ�ò´ê�ëPþ %mîQê�ñKò¡ån÷Gõ:ïgô�æ¡û�òÆë�æ¡ögè:æWë�ä�ånæ¡ç�èPéVê
ñKê���êjô¡ä�ógê:éoëuè�é°êséVêjô�ïgõ:æøèPîKæWæøäpïCëoê�åeä�éeì�èkôaîgä�æ´è:æ�òøä�îGë�þ Ø óCèPéeæ¡òøè:ô
ëoäKô�ïQæ�òøä�î ì�è:û�ðgê·æøä�ì!êPéVúKêpæ¡öQê5óQéVê�ë°ê:îQæuç�ä�éVý@ç�ò�æ¡ö`è5ì�ä�éVê
ê���óQéVê�ë�ë°ò���ê5èPîQñ\óQé°äKú�éoèPì�ì!êPé�åÆéVò´ê:îQñQô�ûUì�ä�îQò�æøä�éVò¡îQú�æ´ê:ì-óGä�éoè:ôô¡äKú�ò´õ\ëVïgõ:ö`è�ë Y ÙWÐ<ÍGÎ 8/A<;�þ Ø õ�ä�ì-ógô¡ê:ì!êkîKæøè�éVû@è�óKóQé°äQè:õköUòÆë
æ´ä�ñKê���êjô¡ä�ó���òÆëVïCè:ôgîgä�æ´è:æ�òøä�îGëWèPîgñsëVûQîKæ¡öQê�ëVò��:ò¡îQú�æ´ê:ì-óGä�éoè:ô�ô´ä�úKò¡õ
åeä�éeì�ïgô¡è�ëaå>é°ä�ì ë°ïQõkö�îgä�æ´è:æ�òøä�îGë�þ ½ ögêPé°êÀì�èPûsè:ôøëoä/ðgêÀæ¡öQêÀóCägë�ëVò »ðQò´ô�ò¡æ¡ûpä�åEô¡êjèPéeîQò�îgú!åeä�éeì�ïgô¡è�ë�ðGèjë°êjñÂä�î�é°êPóQéVê�ë°ê:îQæ´è:æ�ò ��ê�ë°õjê:îgèPé »ò´ägë�þ
Ø îíò¡îKæ´êPé°ê�ë°æ�ò¡îQú è���ê:îQïQê�äKå å>ïQæ�ïKéVêªò¡î���ê�ë°æ�ò´úQè:æ�òøä�î æ�öCèPæ

ä�ïKéÖç�ä�éVý�ëVïQúQúKê�ëVæÆëÖòøë ç�ögèPæ`ç�ê õjèkô�ô)( �Q¥�¸}¢��P�K§g�j¨>���Q�
�:�

169



ÇÀ�´*�k�k ´¨��������P�g ¡�P���E�>¥�§0�e�K¤�¤M�¦��§ þ É îCä�ç�ô�êjñKúKê » ðGèjëoêkñ Ø ëeógêjõ:æ »
%}éeò´ê:îQæ¡êjñ CGéoä�ú�é°è:ì�ì�ò�îgú�òÆë-èpì!ê:æøè » óKéoä�ú�é°è:ì�ì�ò�îgú·ñ�òÆë°õ:ò�ógô�ò¡îQêæ�öCèPæsòøë�ëVïQò�æøè�ðCô�ê åVä�é·ñ�òÆëVæ�éeò�ð�ïKæ´êkñüè�óKóCô�ò´õjè:æ�òøä�îGë�þ �eîÖæ¡öKòÆë·óKéoä »ú�éoèPì�ì�ò¡îQú óGè�éoè:ñ�ò´ú�ìpù�è�óKóQé°ä�óKéVò´è:æ¡êüè:õkæ�òøä�îGëdèPéVê èjë�ëoäKõ:òøèPæ´êkñ
ç�ò�æ¡ö ê�è:õkö ëoèkånêkæ�û åVä�éVì�ïQô´è<*<æ¡öQê�ë°ê�è:õkæ�òøä�îGë�èPéVê$æ´è:ýKê:î ç�öQêkî »ê���êPé7æ�ögêuåVä�éVì�ïQô´èEòøë*��òøä�ô´èPæ´êkñ�æ´ä�ú�ïQò¡ñQêÀæ¡öQê�óQé°äKú�éoèPì èPîgñMè���ä�ò´ñ
õjèPæøèjë°æ�éoä�ógöKò´õ�ånè:ò¡ô�ï�é°ê�ëPþ
�U�'&�Þ�ß�� 8*�gà ; ���1�CÞ����
½ öQêU÷géoë°æ/æ¡ö�é°êkê\è:ïKæ¡ögä�éoëÂè�é°ê�ë°ï�óQóCä�éVæ´êkñ ò¡î óCè�éVæmðQû`æ�ögê ¼ ê »ånêkîCë°ê Ø ñ#��èPîQõjêkñ �Àê�ëoêjè�é°õ:ö C0é°ä Koêjõ:æÆë Ø úKê:îgõPû (øæ¡öQê ¼}Ø �-C Ø
� C ½ % ½gØ ã É CGéoä�ú�é°è:ìpù�õjä�îQæ�éoè:õkæ ���<R?AHRHI » RHR » I » R�:�F<AQùMæ¡öQê
¼uØ �-C Ø � U % 1 Y�ã ½ CGéoä�ú�éoèPìpù@õjä�îKæ�é°èkõ:æ ���\�<A �J: » R � » OÀ»
�EWHR?= ) ù*æ�ögê % 1 ��(}éoèPîQæ 1 RHRHR��LN » R?I » � » RH= �J:gùWè:îQñ`æ�ögêUÿ ä »æ´ä�é°äKô¡è (}éoèPîQæ/ÿ % ½ % � % ¾*Ø �-CXã���I�� Ø 1 ½ þ ½ öQê ô´èjëVæ�èPï »æ�öCä�é!òÆë$ëVïKóKóGä�éVæ¡êjñ`ò¡î óCèPéeæ�ðQû�æ¡öQê K�ä�ò¡îKæ 1 ã�� � 1 Ø ã Ø ú�é°è:îKæ
O-O � » R?I��GN�:<IHN)þ
� � .��G� �gÞÀ���C�
	�
������� ����������������� �"!$#&%('*)��,+-�/.�)�01�2)��43�56�7�98 :<;�%�;6�=8 >@?A�7�B8C)��

D 3*%�E F7�HGI3*%�E F���J=K ��I T �FY XML�L7NPO�Q KSR�T NVU7Q KXWZY NPO�Q�I �\[&] ;-?-�9�^)Z�78B?
_`)��C;A�28 �"ab.�;A)�� ;��B8C?A� ] !c)Z:&0d5��C;6�fe�?�8C;A��?-;6g&h T%L0X �FMQXUHji �	MPX?R��	X �
O T�Tk
AK O T�T O K O T�T7l7g

	 O �nmog-prq�s S g�#*?-�C)��^�t6#4un)Z��; ] )Pvr!c)Z��?�5���� ;A�7�$!c)�:&0d5��C�7�B8C)��bgbwnx^y
z H XJL*L K1
�Y�WZ{7g

	9l��nmog-prq�s S KAx|gp}gw S�L*I R K i g~�g i Y M#O sbK SUR7�`� g�@gy SUT��CIJOPO g�p � I ��R7�
��S?O#MQIJR � ICH6S �?O%ICH �CIJYZG �FO%SUO#M%IJR g��A)�57�,��� ] )Pv2�c5Z��?��B8C)Z��� ]@� � )7G
� �,��:r:o8 � � K�R � 
���R O K1
Y�Y�R�g

	 U �4�`g&p T � H K��}g&z X?TQXA� K S?R���� g&z X?R��A��XA� g�w IZ��X?T � s X ���M#R q I �
��S �KL*S?T#M#OB�)GFH0IJG�X?HNO#MPXJL g�x R\� � )�?A;-;��8 � � �X)Pv��C.�;��6F7�C.c#�����56� ]-��[I[I[e-��:c0d)Z��8B5Z:�)Z�o�S) � 8C?<8 �j!c)�:&0d5��B;��ce7?-8C;A��?-; D � � !XecE �Z��J=K G S q XCLY�T6�S
�T�T7K i S?R � MPX q I K �!S?T#M � ICHNR�MQS K�
�Y�Y L g

	 L �4�`gcp �FY�SUR�R g�p<q H X�X?MPR q OQI�� M L0S q H X�X g�#������ ] ��) v�e7� ���B8 ���B8C?A�K
U�N { Q � 
 O l�{��S
 O l�Y7KS
Y�R7{7g

	9{��4��g�� SUH HNM#R q X?H K�p}g�m I T9�6�KXUH q�K��<g�� S �FX?T��FR�� K SUR7� �<g i X?R g&� �FTQX-�
�KSCL X-� H �FR�O#M#Y X��FX?HNM9  �CSUOPMQIJR g�x R¡� � )�?-;-;��8 � � �})Pvj�7�C. � ���C;�������G
�B8C)Z��� ] !c)Z�^v�;6� ;�7?A;})Z�n%�;6�=8 >@?A�7�B8C)��Z��un)Z�7; ] !c.�;A?+�8 � � �����<#\¢7G
�/�V�^�7?-� � �7�C;6�B0S� ;�� ���B8C)Z� D %7u�!$# � E FZ£�J=K ��I T �FY XjO Y7lZR I � �I;A?��B5��^;
_`)��C;A��8 �j!c)�:c0S5��C;6�Xe�?�8C;A��?-;�K GKS q XJLcU�U � L R7K�¤ X	RFM���X KZx O%SUTB� K6¥ S?R7�
��SUH,�}O T�T U g i GFHNM#R q X?H�� ¤ XUHNT%S qbg

	BR��4�`g1~ S q M#R Kd¥Ag1� SUT#G�X?HNR Kd¦Xgkw I�L0XCL K SUR7� w�gk¤ SUH�� M g�3�;A���/)��78 � ���¢�)75���§@�7)Z¨ ] ;A� � ;6gdwnx^y4z H XJL L K$
�Y�Y L g
	VWZ� � g$¥g�~ M9� q X g4z SUHNO#MQS?T ICH��FX?H*L � IJH9GKSUH0SUT#TQX?T&�FX� � q�q M#R q�g�x R2� � )7G

?A;-;��8 � � �c) v��C.�;@�Z��©�©c#*!duªe �/«�� �b#&_������re �/«`¬�� e�'*)7��+-�/.�)/0
)Z� � ���,� ]B] ; ] �����¡�8 ���9�|8C¢�5��C;A��o;-¢�5 �Z� 8 � � D ' � rHE ©�©ZJ=K G S q XCL
AWZl6�d
Y U g�p � w�K$
Y7W�W�g

	BY7���og�� S �FX	T �FR7�=SUR7� m�g�� I�L ®�� gn¥ S �FSZGKS?O s X¯ G�TQICH X?H �4p H �FR�O#M#Y X
�FX?HNM9  �CS?O#MQIJR4O%IFIJT gbx R a�.�;*°��C. � ���C;������7�B8C)���� ] e-��:c0d)Z��8B5Z:()��@#`�|G
�B8 >�?-8C� ]X� ���C; ]9] 8 � ;A��?-;/��3@)�¢�)7�B8C?A�j�����2#\5��C)Z:r�7�98C)Z�±8 ��e�01�7?A;6t�#
_`;�¨�e�0k��?-; ¬ ���Z���/;���K6w I RFO H XCS?T K �!SURKS��S KZ¥ �FR�X 
AW �1O 
AK O T�T1
-g

	�
�T7���og�� S �FX	T �FR7�]SUR7� mog�� I�L ® � g ib��RFO s XCL M9�	M#R q Y I RFM#OQIJH*L � ICH
L*S �NX	OB� GFH0IJG�X?HNO#MPXJL g\x R a-)�) ] �������r# ] � )7�|8B�C.�:r�7v�)7��!c)������9�|5Z?��B8C)��
������#���� ] ����8 �r)Pv²e��Z���C;A:r� D a�#*!$#�eXE F���J=K ��IJT ��Y X²O�O W6T I � �S;-?6G
�B57� ;o_`)��C;A��8 ��!c)Z:&0d5��C;��*e7?-8B;�7?A;6K GKS q XJL l U�O �bl L {7g i GFHNM#R q X?H��¤ X?HNTQS q7K O T�T O g

	�
�
A�4w�g1� M#Y K i g1� S?RFRKSUR K1x|g�� X	X K SUR7�H³ g i\I6��I T%L��Z� g4¥ S �FS-�%Y S � � S
H �FR��%O#M#Y X�SCL L�� H0S?R ��XOQIFI T � ICHb´*S �FS g&x Ro� � )�?A;-;A�78 � � ��)Pv\3@56���B8 :<;
%�;��|8 >�?���B8C)Z� D 3*%�E F���J=K ��IJT��FY X<L�L I �I[�] ;A?��9� )��78C?@_`)��B;�\8 ��a�.�;6G
)7�^;-�B8B?� ] !c)Z:&0d5��C;��Xe7?-8C;A��?-;Zg�h T L X �FMPX?HXi �	MPX?R��	X K O T�Tk
-g

	�
 O �4w�gZ� X � �A�FX?H gX� I q M��JL�� IJH�Y SA� � H,�FMQX�µ�M��A�O#H0S ��XCL gIy X � s RFM��CS?T � X��
GKIJHNO prx^� � O T�T O�� 
T7K�� � yI��K-p S � s X?R K�m X?HNY�SURZ� K6p G�HNM#TbO T�T O g

	�
l��4¶�g�w S?RFRKS SUR7� p�g$z R ��X?T#M g�ab.�;Ma-;A:&0k)7�,� ] �S) � 8C?j) v�3�;A��?��B8C·-;
�����j!c)���?�5���� ;A�7��e��Z���C;A:r�g iKGFHNMPR q X?H�� ¤ X?HNTQS q�K�¸ X�µ ¦ ICH,� K$
Y�Y O g

	�
 U �4¶�g�w SUR�R�S6S?R�� p}g�z R ��X?TPM g�a-;A:&0k)��^� ] %�;6�=8 >@?A�7�B8C)��M)Pvr3�;A��?��B8C·-;
e-�����C;A:`�t$e��^v�;�� ��g iKGFHNMPR q X?H�� ¤ X?HNTQS q�K�¸ X�µ ¦ ICH,� K$
Y�Y L g

	�
 L �4~�g�w SUOPOPXUHNR g¹¤ M HNO ��S?TO#M#Y X S?R�� q TQI6�KS?TZLNO%SUOPXJL I �j� M%L O HNMB� �FOPX-�
L��KL OPX	Y�L g�x R w�g � g X	O g S?T g K XA�FM#OQIJH K � � )�?A;-;A�78 � � �}) vM�C.�; � �7�C;6�|G
�����B8C)���� ] '*)7��+A�/.�)/0±)Z� � �b�^� ]B] ; ] �������8 ���9�|8C¢�5��B;�o# ] � )��=89�C.Z:r�K
GKS q XJLcO 
 L � O�O {�g6h T%L0X �FMPX?HXi �	MPX	R ��X K1
�Y�W6Y�g

	�
{��4�`g1w X�X	R�S�KL s M)S?R�� �`g1� SUY�S?R ��´ SUY gº� XCS�L*IJR�M#R q S/� I �FO9Y XJL=�
L*S q X GKSCL L M#R q M#Rn  RFM#OQX LNO%SUOPX�X	R �FM H0I RFY X?R�O%L g"x R�� �7�C;6�����7�98C)Z��� ]!c) ]9] )�»75�8B5Z:¼)��½#\5��C)�:`��� �Z�M�d��� � 5Z� � ;A�(����� � � ) � �^��:`:o8 � �D � !$#&� � E F�F�J=K ��I T �FY X 
AW L l I � �I;A?��B57� ;I_`)��C;A�I8 �o!c)�:&0d5��B;��1e7?-89G
;A��?-;�K GKS q XJLXU W6RZ� U Y7W�g i GFHNM#R q X?H�� ¤ XUHNT%S q�K O T�T�Tbg

	�
�R7� � gcz X	R �-��X� g¾p OQX?YZGKIJH0SUT SUGFGFH0I�S � s O%I ��S �KL*S?T<�FR�I�µ�TPX-� q X g�S) � 8C?��A)�57�,��� ] ) vr�C.�; �/«�� �XKZW N 
 Q � WZR6��Y�Y7K O T�T�T�g
	�
AW�� � gIz X	R �-�	XA��SUR7��i gXp Y���H0I�L=���MPX�µ�M��-� g¿w IZ��X?T � s X �A�FMPR q I �

�CS � L0S?T���R�I�µ�TPX-� q X� ICHNY �FTQSCL g�x R '*)7��+A�/.�)/0M)Z�*�8 ���9�|8C¢�5��B;�*e-����G
�C;A:r� D '}<eXE ���ZJ=K ��IJT ��Y X<O W I �I[&] ;A?��9� )��78C?\_`)7�C;�\8C�Ma�.�;-)7� ;��B89G
?A� ] !c)Z:&0S5��C;6�Se7?-8B;�7?A;ZgZh T%L0X �FMQXUHXi �	MPX	R ��X K$
�Y�Y�Y�g

	�
�Y7�4�`gb� SUY�SUR ��´*S?Y gH� I ��S?TI��R�I�µ�TPX-� q X SCL L0XUHNO#M%IJRKL)MPR S � s SUR q M#R q
µICHNT9� g1x R ab.�;A)�� ;��B8C?A� ] #��P0d;A?�� ��)Pv@3&���B8C)Z��� ] 89� �<������§@�7)Z¨ ] ;A� � ;
D a�#&3&§jE ��°�J=K GKS q XJL 
��S
 U gZw IJH q S?R � S � � Y S?RFR K$
Y�Y7{7g

	 O T7���og i X?R Kbm�g7� I�L ® � K S?R�� m�g7p<qZs S gf� �FRFOPM#Y X L*S �NX	OB� S?R�S?TB�KL M%L)I �
Y �FT#O#MPO s H XCS��XA��GFH0I q H0SUY L g²x R #*!duÀe �/« e ¬ ��an!c)Z� v6;�� ;A��?-;²)Z�
�C.�;j�7)756�����7�98C)Z���f) v2e�) v6� ¨@���^; [ � � 8 �7;A;6�|8 � �2Á [ 5�� )�0k;A���ne7)Pv6�9G
¨@���^; [ � � 8 �7;A;6�|8 � � !c)Z�^v�;6� ;�7?A; D �Ie [ Á [ e [ !�E FZ��J=KX� X	T%L M#R���M K~ MPRFTQS?R�� K O T�T�l�g

	 O 
A�nm�g�y X	T g � ���9� )��75Z?��B8C)����C)²�8 ���9�|8C¢�5��C;�r# ] � )7�|8B�B.Z:r�Ag �!S?Y���HNM9� q XÂ RFM �FX?H*L M#OB� z H XCL L K OFR��6X-� MPO#MQIJR K i XUG�OPX	Y��KXUHIO T�T�Tbg
	 O�O �4z�g i g-yIs MQS q S H0S,´*S?R S?R�� x|g � S?T ����MPX�µ�M��-� gSp R6X�¯FGFH XJL LNM �FX	TB� ��I Yf�

G�TQX?OPX)T#M#R�X�SUH�O#M#Y X)OPX?YZGKIJH0SUT\TQI q M�� � ICH w SA� �FH,�FMPXµ)M �A�O H0S ��XCL gXx Ra-¨�; ] �C.*#�����56� ]7��[I[X[ e-��:&0k)Z��8B5Z:�)Z���I) � 8C?o8C�M!c)�:c0S5��C;6�&e7?-89G
;A��?-; D � � !XecE ��ÃAJ=K G S q XCL 
AW�l��d
Y U K � S H*L*S�µ KZz I TQSUR7� K$
�Y�Y�R�g

170



 

 
On Efficient Communication and Service Agent Discovery  

in Multi-agent Systems 
 
 

Myeong-Wuk Jang and Gul Agha 
Department of Computer Science 

University of Illinois at Urbana-Champaign 
{mjang, agha}@uiuc.edu

 
 

Abstract 
 

The paper studies two closely related problems: how 
to support efficient message passing in large-scale 
agent systems given that agents are mobile, and how to 
facilitate the discovery of service agents in an open 
environment where agents may enter and leave. The 
Actor Architecture has been designed to study 
simulations of large-scale agent systems where agents 
obey the operational semantics of actors. We describe 
the solutions to these two problems that have been 
adopted in the Actor Architecture. The problem of 
efficient message-passing is partially addressed by 
using dynamic names for agents. Specifically, a part of 
the name of a mobile agent changes continuously as a 
function of the agent platform that it is currently hosted 
by. This enables the agent platform of a sender to use 
location information about the receiver agent in order 
to optimize message delivery. The problem of agent 
discovery is addressed by using a broker agent. 
Moreover, the sender agent may reduce the 
communication that is required between the sender 
itself and a broker agent by sending the broker an 
agent to localize the search for the appropriate service 
agents. In order to mitigate security problems, this 
search agent is very restricted in what operations it is 
allowed to perform and is transmitted in the form of a 
passive object. A description of the Actor Architecture 
is given, focusing on these two ideas and their 
preliminary evaluation. 
 
Keywords: Open Distributed System, Multi-agent 
System, Actor System, Message Passing, Brokering 
Service. 
 
1. Introduction 
 

A number of multi-agent systems, including EMAF 
[3], JADE [4], InfoSleuth [5], and OAA [6], support an 
open agent systems, i.e., systems in which agents may 
enter and leave at any time. Moreover, the growth of 
computational power and networks has made large-
scale open agent systems a promising technology. 
However, before this vision of scalable open agent 

systems can be realized, two closely related problems 
must be addressed: 

• How can an agent efficiently discover service agents 
which are previously unknown? In an open agent 
system, the mail addresses or names of all agents are 
not globally known; agents may not have the 
addresses of other agents with whom they need to 
communicate. This suggests that middle agent 
services such as brokering and matchmaking are 
necessary [14]. As we scale up agent systems, 
efficiently implementing these services is a 
challenge. 

• How to efficiently send messages to agents which 
have potentially moved? In mobile agent systems, 
efficiently sending messages to an agent is not 
simple because they move continuously from one 
agent platform to another. For example, one obvious 
solution, viz. requiring the agent platform on which 
a mobile agent is created to manage location 
information about that agent, may double the 
message passing overhead.  

We address the message passing problem for mobile 
agents in part by providing a richer structure on names 
which allows the names to dynamically evolve. 
Specifically, the names of agents include information 
about their current location. Moreover, rather than 
simply sending data as messages, we allow an agent 
system to use the data to find the location of an 
appropriate receiver agent. 

We have implemented our ideas in a Java-based 
agent system called the Actor Architecture (or AA). AA 
supports the actor semantics for agents: each agent is 
an autonomous process with a unique name (address), 
message passing between agents is asynchronous, new 
agents may be dynamically created, and agent names 
may be communicated [1]. AA is being used to develop 
tools to facilitate large-scale simulations, but it may be 
used for other large-scale open agent applications as 
well; AA has been designed with a modular and 
extensible, application-independent structure. The 
primary features of AA are to provide a light-weight 
implementation of agents, minimize communication 

 27
171

mailto:agha}@uiuc.edu
goodelle
Text Box
Appendix L: 

goodelle
Rectangle



 

overhead between agents, and enable service agents to 
be located efficiently. 

This paper is organized as follows. Section 2 
introduces the overall structure and functions of AA 
and the agent life cycle model in AA. Section 3 
explains how to reduce the communication overhead in 
AA, and Section 4 shows how to improve the middle 
agent service in AA. Section 5 describes our 
experiments with AA and evaluation of our approaches. 
Finally, in Section 6 we discuss our preliminary 
conclusions and research directions.  
 
2. The Actor Architecture 
 

AA provides a light-weight implementation of 
agents as active objects or actors [1]. Actors can 
provide the infrastructure for a variety of agent 
systems; they are social and reactive, but they are not 
explicitly required to be “autonomous” in the sense of 
being proactive [16]. However, autonomous actors may 
be implemented in AA and many of our experimental 
studies require proactive actors. Although the term 
agent has been used to mean proactive actors, for our 
purposes, the distinction is not critical. In this paper, we 
use terms ‘agents’ and ‘actors’ as synonyms.  

The Actor Architecture consists of two main 
components:  

1. Actor execution environments called AA platforms. 
AA platforms provide the system environment in 
which actors exist and interact with other actors. 
Specifically, AA platforms provide actor state 
management, actor communication, actor migration, 
and middle actor services. 

2. An actor library which supports the development of 
agents that are executed on AA platforms.  

We describe the structure of AA in greater detail. An 
AA platform consists of eight components (see Figure 
1): Message Manager, Transport Manager, Transport 
Sender, Transport Receiver, Delayed Message Manager, 
Actor Manager, Actor Migration Manager, and 
ATSpace.  

A Message Manager (MM) handles message 
passing between actors. Every message passes through 
at least one Message Manager. If the receiver actor of a 
message exists on the same AA platform, the MM of 
the platform directly delivers the message to the 
receiver actor. However, if the receiver actor is not on 
the same AA platform, this MM delivers the message to 
the MM of the platform where the receiver currently 
resides, and finally the MM delivers the message to the 
receiver. A Transport Manager (TM) maintains a 
public port for message passing between different AA 
platforms. When a sender actor sends a message to a 
receiver actor on a different AA platform, the Transport 
Sender (TS) residing on the same platform as the sender 
receives the message from the MM of the sender actor 
and delivers it to the Transport Receiver (TR) on the 

AA platform of the receiver. When there is no a built-in 
connection between these two AA platforms, the TS 
contacts the TM of the AA platform of the receiver 
actor to open a connection so that the TM can create a 
TR for the new connection. Finally, the TR receives the 
message and delivers it to the MM on the same 
platform.  

 

 
Figure1. The Architecture of an AA Platform 

 
A Delayed Message Manager (DMM) temporarily 

holds messages for mobile actors while they are 
moving from their AA platform to other AA platforms. 
An Actor Manager (AM) manages states of the actors 
that are currently executing and the locations of the 
mobile actors created on the AA platform. An Actor 
Migration Manager (AMM) manages actor migration.  

An ATSpace provides middle actor services, such as 
matchmaking and brokering services. Unlike other 
system components, an ATSpace is implemented as an 
actor. Therefore, any actor can create an ATSpace, and 
hence, an AA platform may have more than one 
ATSpaces. The ATSpace created by an AA platform is 
called the default ATSpace of the platform, and all 
actors can obtain the actor names of default ATSpaces. 
Once an actor has the name of an ATSpace, the actor 

 AA Platform 

 
 

 AA Platform 

Actor Migration 
Manager 

Actor 
Manager

Actor 

Delayed Message 
Manager 

Message 
Manager 

ATSpace

Transport 
Manager 

Transport 
Sender

Transport 
Receiver

Transport 
Manager 

Transport 
Receiver

Transport 
Sender

 28
172

goodelle
Rectangle



 

may send the ATSpace messages in order to use its 
services. 

In AA, actors are implemented as active objects and 
ex

Figure 2. The Actor Life Cycle Model 
 

. Optimized Communication 

We describe the mechanisms used to support actor 
co

3.1. Message Passing between Actors 

fter a message has been created, the message is 
ma

(Figure 3a). However, if the receiver is on a different 

3.2. 

r actors, it 
ust know the names of the intended receiver actors. In 

AA

rom the e actor exists 
 the ho , and 

na

Unknown

ecuted as threads; actors on an AA platform are 
executed with that AA platform as part of one process. 
Each actor has one actor life cycle state at any time (see 
Figure 2). An actor may be static, meaning that it exists 
on its original AA platform, or it may be mobile, 
meaning that it has migrated from its original AA 
platform. The state information of a static actor appears 
within only its original AA platform while that of a 
mobile actor appears both on its original AA platform 
and on its current AA platform. When an actor is ready 
to process a message its state becomes Active and 
stays while the actor is processing the message. When a 
mobile actor initiates migration, its state is changed to 
Transit. Once the migration ends and the actor 
restarts, its state becomes Active on the current AA 
platform, and Remote on the original AA platform. 
Following a user request, an actor in the Active state 
may be Suspended state. In contrast to other agent life 
cycle models (e.g. [7, 12]), AA’s life cycle model uses 
the Remote state to indicate that an agent that was 
created on the current AA platform is working on 
another AA platform. 

 

 
 

3
 

mmunication. Specifically, AA uses two approaches 
to reduce the communication overhead for mobile 
actors that are not on their original AA platforms: 
namely, location-based message passing and delayed 
message passing. 

 

 
A
naged by the Message Manager. When the receiver 

actor of a message is located on the same AA platform 
where the sender actor exists, the message is directly 
delivered to the receiver actor by the Message Manager 

machine, the message is delivered to the receiver 
through the Message Manager and the Transport Sender 
of the sender actor, and the Transport Receiver and the 
Message Manager of the receiver actor (Figure 3b). 
Although these two approaches of message passing are 
different at the system level, they are transparent to 
actors, and hence, actors always use the same operator 
to send their messages. 
 

 
Figure 3. Procedure for Actor Communication 

 
Location-based Message Passing 

 
Before an actor can send messages to othe

m
, each actor has its own unique name called UAN 

(Universal Actor Name). The UAN of an actor includes 
the location information and unique identification 
number of the actor as follows: 

 uan://128.174.245.49:37 

F above name, we can infer that th
on st whose IP address is 128.174.245.49
that the actor is distinguished from other actors on the 
same platform with its unique identification number 37. 

When the Message Manager of a sender actor 
receives a message whose receiver actor has the above 

me, it checks whether the receiver actor exists on the 
same AA platform. If they are on the same AA platform, 
the Message Manager finds the receiver actor on the 
AA platform and delivers the message. If they are not, 
the Message Manager of the sender actor delivers the 
message to the Message Manager of the receiver actor. 
In order to find the AA platform where the Message 
Manager of the receiver actor exists, the location 
information 128.174.245.49 in the UAN of the 
receiver actor is used. When the Message Manager on 

D
e 

estroy

Create

Resum

or 
Exe tecu

 
Suspend

Execute

Move Start 

Move 

Move Start 

  End 

Suspended 

Active 

Remote 

Transit 

Resume 
b. External Actor Communication 

a. Internal Actor Communication 

AA platform of a sender actor 

Message 
Manager 

Transport 
Sender 

Sender
Actor

AA platform of a receiver actor 

Transport 
Receiver 

Message 
Manager 

Receiver
Actor

AA platform of a sender actor and a receiver actor 

Sender
Actor

Message 
Manager 

Receive
Actor 

r

 29
173

goodelle
Rectangle



 

the AA platform with IP address 128.174.245.49 
receives the message, it finds the receiver actor and 
delivers the message. 

The above actor naming and message delivery 
scheme works correctly when all actors are static. 
Ho

message delivery is that every message for a 
mo

T
p

tor receives a 
me

lt-tolerant; since messages for a mobile actor 
ne

N should be correct. However, 
mo

 
Actor 

.3. 

ing from one AA 
latform to another, the current AA platform of the 

act

ssage Manager in AA platform is used; the 
Message Manager of the old AA platform delays the 

a. UAN-

wever, because an actor may migrate from one AA 
platform to another, we extend the basic behavior of the 
Message Manager with a forwarding service; when a 
Message Manager receives a message for a mobile 
actor, it delivers the message to the current AA 
platform of the mobile actor. To facilitate this service, 
an AA platform maintains a table providing the current 
locations of mobile actors that were created on the AA 
platform. 

The problem with using only the universal names of 
actors for 

bile actor that has moved from the original AA 
platform where the actor was created still has to pass 
through the original AA platform (Figure 4a). This kind 
of indirection may happen even in case the receiver 
actor exists on an AA platform that is close to (or the 
same as) the AA platform of the sender actor. In fact, 
message passing between actor platforms is relatively 
expensive. AA uses Location-based Actor Naming 
(LAN) for mobile actors in order to generally eliminate 
the need for this kind of indirection. Specifically, a 
LAN of an actor consists of its current location and its 
UAN as follows: 

lan://128.174.244.147//128.174.245.49:37 

he current location of a mobile actor is set by an AA 
latform when the actor arrives on the AA platform. If 

the current location is the same as the location where an 
actor was created, the LAN of the actor does not have 
any special information beyond its UAN. 

Under the location-based message passing scheme, 
when the Message Manager of a sender ac

ssage for a remote actor that exists on the different 
AA platform, it checks the current location of the 
receiver actor with its LAN and delivers the message to 
the AA platform where the receiver actor exists (Figure 
4b). The rest of the procedure for the message passing 
is similar to that in UAN-based message passing 
scheme. 

With location-based message passing, the system is 
more fau

ed not pass through the original AA platform of the 
actor, the messages may be correctly delivered to the 
actor even when the actor’s original AA platform is not 
working correctly.  

In order to use LAN address scheme, the location 
information in a LA

bile actors may move repeatedly, and a sender actor 
may have old LANs of mobile actors. Thus a message 
for a mobile actor may be delivered to the previous AA 
platform from where the actor left. This problem is 
addressed by having an old AA platform deliver the 
message to the original AA platform where the actor 
was created; the original platform always manages the 

current address of an actor. There is no guarantee that 
the location-based message passing will perform better 
than the UAN-based message passing. Therefore, AA 
allows an actor to decide which addressing scheme is 
better for the current situation. 

 

 

Figure 4. Message Passing to a Mobile 
 
3 Delayed Message Passing 
 

While a mobile actor is mov
p

or is not well defined. Therefore, when the Message 
Manager of the original AA platform receives a 
message for a mobile actor, it sends the message to the 
Message Manager of the old AA platform. After the 
Message Manager of the old AA platform receives the 
message, it forwards the message to the Message 
Manager of the original AA platform because it no 
longer has information about the mobile actor’s current 
location. An AA platform manages location 
information about only the mobile actors that are 
created on it. Thus, a message is continuously passed 
between these two AA platforms until the mobile actor 
updates location information with its new AA platform 
by informing the Actor Manager of the original AA 
platform.  

In order to avoid unnecessary message passing, a 
Delayed Me

based Message Passing 

send a message to UAN2 

AA Platform B: 

b. Location-based Message Passing 

send a message to LAN2://C/B:16 

AA Platform B: 

AA Platform A: AA Platform C: 

UAN1://B:15 UAN2://B:16

AA Platform A: AA Platform C: 

UAN1://B:15 UAN2://B:16

 30
174

goodelle
Rectangle



 

me

l for supporting 
een agents that are 

 an open multi-agent system. Recall that in open 
mu

ctor. An ATSpace actor allows a sender 
ac

 
In many situations, moving the search algorithm

ss 
xpensive than moving all the information about certain 

ag

A platforms and actors have been implemented in 
 independent 

ctor mobility. We are using our actor system for large-
sca

ssage passing for a mobile actor while the state of 
the actor is Transit. For this operation, the Actor 
Manager of the old AA platform manages the state of 
the mobile actor and the Delayed Message Manager 
holds messages for the mobile actor until the actor 
reports that its migration has ended. After an actor 
finishes its migration, the new AA platform of the actor 
sends its old AA platform and its original AA platform 
a message to inform that the migration process has 
ended. Whenever one of these two AA platforms 
receives a message, the original AA platform changes 
the state of the mobile actor from Transit to Remote 
while the old AA platform removes information about 
the mobile actor.  

 
4. Active Brokering Service 
 

A brokering service is usefu
attribute-based communication betw
in

lti-agent systems, service agents that support a 
specific service may not be known to client agents; with 
attribute-based communication, client agents may use 
the attributes of the service they require instead of using 
the names of the service agents. The attributes of the 
service are delivered to a middle agent as a tuple 
template, and the middle agent tries to find a service 
agent or a set of service agents whose attributes are 
matched with the tuple template. The agents selected by 
the middle agent receive the message sent by the client 
agent through the middle agent. This service is very 
effective in open multi-agent systems, but the searching 
ability of the middle agent is often very restrictive for 
efficiency reasons; a middle agent typically provides 
only template-based exact matching or regular 
expression matching [2, 8, 11]. If a client agent requires 
a more powerful search, the client agent must use a 
matchmaking service instead of a brokering service; the 
client receives all the information about service agents 
and utilizes its own searching algorithm to locate 
proper service agents. For example, consider a middle 
agent that has information about seller agents with their 
products and prices, and a buyer agent wants to find 
seller agents that sell a computer with price greater than 
$500 and less than $1,000. If the exact matching service 
of the middle agent is not powerful enough to support 
this function, the buyer agent has to obtain all 
information about seller agents from the middle agent, 
and then choose seller agents that sell their computers 
within the price range. This sequence of operations 
requires moving of all information about seller agents 
from the middle agent to the buyer agent through the 
network.  

In order to reduce the communication overhead, AA 
provides an active brokering service through an 
ATSpace a

tor to send its own search algorithm instead of a 
simple description for attributes of the service to locate 
receiver actors, and the algorithms are executed in the 

ATSpace actor. In Figure 5, the seller actors with 
UAN2 and UAN3 are selected by the search algorithm, 
and the ATSpace actor delivers sendComputerBrand 
message to the actors. Finally, they will send 
information about brand names of their computers to 
the buyer actor.  
 

 
 

Figure 5. An Example of Active Brokering Service 

 
from the seller agent to the middle agent is le
e

ents from the middle agent to the sender agent. Since 
a matching algorithm is provided by a sender agent and 
the algorithm is executed on a middle agent, the middle 
agent called an ATSpace actor can provide application 
oriented brokering service more efficiently. Moving the 
search algorithm may be accomplished by sending an 
agent incorporating the search algorithm. However, this 
extension introduces security threats for the data in the 
ATSpace actor. AA provides some solutions to mitigate 
such threats, in particular by not allowing arbitrary 
agents to be sent; agents are sent as passive objects and 
their functions are controlled by the ATSpace actor [9]. 

 
5. Experiments and Evaluation 
 

A
Java language to support operating system
a

le UAV (Unmanned Aerial Vehicle) simulations. In 
these simulations, we investigate the effects of different 
collaboration behaviors among the large number of 
micro UAVs during their surveillance missions on the 
large number of targets [10]. For our experiments, we 
execute more than 5,000 actors on four computers: 
2500 micro UAVs, 2500 targets, and other simulation 
purpose actors. 

An ATSpace actor 

UAN2, seller, computer, 950 

UAN3, seller, computer, 650 

UAN2, seller, printer, 120 

UAN4, seller, computer, 1290 

UAN1:buyer

UAN2:seller

UAN3:seller 

UAN4:seller

?, seller, computer, [500 < ? < 1000]

sendComputerBrand

 31
175

goodelle
Rectangle



 

The delayed message passing removes unnecessary 
message passing for moving agents. When the delayed 
message passing is used, the old AA platform of a 
mo

t provides the same service 
alon

. Conclusions 

The location-based message passing scheme in AA 
 of hops (AA platforms) that a 

essage for a mobile actor goes through. The basic 
me

ing Server to locate the receiver 
act

message passing may be 
mo

his research is sponsored by the Defense Advanced 
cy under contract number 

F3 -00-2-0586.  
 

] G. Agha, Actors: A Model of Concurrent Computation 
stems, MIT Press, Cambridge, Mass, 1986. 

bile actor needs to manage its state information until 
the actor finishes its migration, and the new platform of 
the mobile actor needs to report the migration state of 
the actor to its old AA platforms. In our experience, this 
overhead is more than compensated; without the 
delayed message passing the same message may get 
delivered seven or eight times between the original AA 
platform and the old AA platform in the local network 
environment while a mobile actor is moving. If a 
mobile actor takes more time for its migration, this 
number may be even greater. Moreover, the extra hops 
also make the message log files more complex and 
reduce their readability.  

The performance benefit of the active brokering 
service can be measured by comparing it with the 
matchmaking service tha

g four different dimensions: the number of 
messages, the total size of messages, the total size of 
memory space on two AA platforms for client and 
middle actors, and the time for the whole operation. 
First, in the matchmaking service, the number of 
messages is n + 2, where n is the number of service 
actors, while it is n + 1 in the active brokering service. 
In the former, the number of messages for this 
operation includes a service request message from the 
client actor to the middle actor, a reply message from 
the middle actor to the client actor, and multicast 
messages from the client actor to n service actors. The 
active brokering service does not require the reply 
message, and hence, one message is unnecessary. It is a 
small difference, but more significantly, the total size of 
messages is very different. The service request message 
in the active brokering service is a little larger than that 
in the matchmaking service, because it includes the 
code for a searching algorithm and the message to be 
delivered to service actors. However, the reply message 
in the matchmaking service to be communicated across 
the network may be much larger than the difference of 
service request messages in two approaches. Moreover, 
the total size of storage space for the active brokering 
service is less than that in the matchmaking service; in 
the matchmaking service case a copy of the data exists 
in the client actor, while in the active brokering service 
such a copy need not exist in the client actor. However, 
for the data safety, the active brokering service may 
still keep a copy of the data. Finally, the difference in 
operation times except communication times is 
relatively small. Mainly, the computation in 
matchmaking is off-loaded to the server side. However, 
since the communication time is proportioned to the 
total size of messages, the active brokering service is 
more efficient in the time for the whole operation. 
 
 
 
 

6
 

reduces the number
m

chanism of the location-based message passing is 
similar to the message passing in Mobile IP [13], 
although its application domain is different from ours. 
The original and current AA platforms of a mobile 
actor correspond to the home and foreign agents of a 
mobile client in Mobile IP, and the UAN and LAN of a 
mobile actor are similar to the home address and care-
of address of a mobile client in Mobile IP. However, 
while the sender node in Mobile IP manages a binding 
cache to map home addresses to care-of addresses, the 
sender AA platform in AA does not have a mapping 
table, and while the home agent communicates with the 
sender node to update the binding cache, it does not 
happen in AA. 

Our work may also be compared to SALSA. In 
SALSA, a sender actor may use a middle actor called 
Universal Actor Nam

or [15]. SALSA’s approach requires the receiver 
actor to register its location at a certain middle actor, 
and the middle actor must manage the mapping table. 
With the location-based message passing scheme in AA, 
a LAN of an actor is changed automatically as a 
function of an AA platform, and the mapping table does 
not exist at any single place. 

We are currently implementing and testing new 
message passing mechanisms for mobile agents. For 
example, the location-based 

dified to allow a mobile agent to set its future 
location address in its LAN and announce this to other 
agents. For the delayed message passing, instead of the 
old AA platform of a mobile agent, the new AA 
platform of the mobile agent may hold messages for the 
agent, and hence, when the agent finishes its migration 
it receives the messages managed by the Delayed 
Message Manager of the AA platform. We plan to 
investigate various trade-offs and methods for 
automatically selected best estimated message-passing 
mechanism for a given situation.  

 
 

Acknowledgements 
 
T

Research Projects Agen
0602

References 
 
[1
in Distributed Sy
 
[2] G. Agha and C.J. Callsen, “ActorSpaces: An Open 
Distributed Programming Paradigm,” Proceedings of the 4th 

 32
176

goodelle
Rectangle



 

ACM Symposium on Principles & Practice of Parallel 
Programming, May 1993, pp. 23-32.  
 
[3] S. Baeg, S. Park, J. Choi, M. Jang, and Y. Lim, 
Cooperation in Multiagent Systems,” Intelligent Computer 

ine, A. Poggi, and G. Rimassa, “JADE - A 
IPA-compliant Agent Framework,” Proceedings of 

. Cichocki, J. 
owler, A. Helal, V. Kashyap, T. Ksiezyk, G. Martin, M. 

and S. Baeg, “An 
pen Agent Architecture,” AAAI Spring Symposium, March 

n for Intelligent Physical Agents, SC00023J: 
IPA Agent Management Specification, December 2002.  

e of Java in InfoSleuth: 
gent-based Exploitation of Heterogeneous Information 

Momen, and G. Agha, “ATSpace: A 
iddle Agent to Support Application-Oriented Matchmaking 

0] M. Jang, S. Reddy, P. Tosic, L. Chen, and G. Agha,"An 

1] D.L. Martin, H. Oohama, D. Moran, and A. Cheyer, 

2] D.G.A. Mobach, B.J. Overeinder, N.J.E. Wijngaards, 

3] C.E. Perkins, “Mobile IP,” IEEE Communications 

4] K. Sycara, K. Decker, and M. Williamson, “Middle-

5] C.A. Varela and G. Agha. “Programming Dynamically 

6] M. Wooldridge, An Introduction to MultiAgent Systems, 

“
Communications (ICC ’95), Cluj-Napoca, Romania, June 
1995, pp. 1-12. 
 
[4] F. Bellifem
F
Practical Application of Intelligent Agents and Multi-Agents 
(PAAM ’99), London, April 1999, pp. 97-108. 
 
[5] R.J. Bayardo Jr., W. Bohrer, R. Brice, A
F
Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C. 
Unnikrishnan, A. Unruh, and D. Woelk, “InfoSleuth: Agent-
Based Semantic Integration of Information in Open and 
Dynamic Environments,” ACM SIGMOD Record, Vol. 26, 
No. 2, June 1997, pp. 195-206. 
 
[6] P.R. Cohen, A.J. Cheyer, M. Wang, 
O
1994, pp. 1-8. 
 
[7] Foundatio
F
http://www.fipa.org/specs/fipa00023/ 
 
[8] N. Jacobs and R. Shea, “The Rol
A
Resources,” Proceedings of Intranet-96 Java Developers 
Conference, April 1996. 
 
[9] M. Jang, A. Abdel 
M
and Brokering Services,” Technical Report UIUCDCS-R-

2004-2430, Department of Computer Science, University of 
Illinois at Urbana-Champaign, April 2004. 
 

 

[1
Actor-based Simulation for Studying UAV Coordination," 
15th European Simulation Symposium (ESS 2003), October 
2003, pp. 593-601. 
 
[1
“Information Brokering in an Agent Architecture,” 
Proceedings of the Second International Conference on the 
Practical Application of Intelligent Agents and Multi-Agent 
Technology, April 1997, pp. 467-489.  
 
[1
and F.M.T. Brazier, “Managing Agent Life Cycles in Open 
Distributed Systems,” Proceedings of the 2003 ACM 
symposium on Applied computing, Melbourne, Florida, 2003, 
pp. 61-65. 
 
[1
Magazine, Vol. 35, No. 5, May 1997, pp. 84-99. 
 
[1
Agents for the Internet,” Proceedings of the 15th Joint 
Conference on Artificial Intelligences (IJCAI-97), 1997, pp. 
578-583. 
 
[1
Reconfigurable Open Systems with SALSA,” ACM SIGPLAN 
Notices: OOPSLA 2001 Intriguing Technology Track, Vol. 36, 
No. 12, December 2001, pp. 20-34. 
 
[1
John Wiley & Sons, Ltd, 2002. 
 
 

 
 

 33
177

http://sharon.cselt.it/projects/jade/papers/PAAM.pdf
http://portal.acm.org/citation.cfm?id=253294&dl=ACM&coll=portal&CFID=19122394&CFTOKEN=53165959
http://portal.acm.org/citation.cfm?id=253294&dl=ACM&coll=portal&CFID=19122394&CFTOKEN=53165959
http://portal.acm.org/citation.cfm?id=253294&dl=ACM&coll=portal&CFID=19122394&CFTOKEN=53165959
http://www.isrl.uiuc.edu/~gasser/courses/amd2003/website/papers/decker+sycara-middle-agents-ijcai97.pdf
http://www.isrl.uiuc.edu/~gasser/courses/amd2003/website/papers/decker+sycara-middle-agents-ijcai97.pdf
http://www.isrl.uiuc.edu/~gasser/courses/amd2003/website/papers/decker+sycara-middle-agents-ijcai97.pdf
http://www.isrl.uiuc.edu/~gasser/courses/amd2003/website/papers/decker+sycara-middle-agents-ijcai97.pdf
goodelle
Rectangle



���������
	
���������������������������������� �!����"#���
$%��	'&(�)�*���+�������
",�*�.-/��"#���
�1032����+���3�4"5����$6"
798;:+<>=)?A@CB+DFEHGJILK)=
MONCPQM�RTS;=
MUEHG5VL:)W)IYX;=
M5G#V9RT?ZX[8\R�D9]�8�< ^1:

_`DUa+M�R�bZc,DFEdb+8de*f�8dcga):[bhDUR4B+ij?hDFE[iFD
k`E[?Al;DURm<n?AbhNY8depo1WhWh?qE)8d?r<4MOb+kLRK+MOE�Msf3=
MUcga+MU?hXdE

{ tvuxwpysz[{3|4}p~��v|�yszH|*���v|�z+��}*�QuH� } �x��u`�O�v���3�(�Fw*~��
�Y������j�)�j�

�p�\���h�>��T�F���O���h��������T�Q��� ���T�
�[¡F�h�F¢O¢�¡�£#�¤�+¥ ¦F�¤�>¦Q�§����¨O���¤�U©j¢��ª ¡F���¬«���h�T�1������£�®� ª �n� ¯�q�n°j¨U���h�T���>�j�¤�s¡ ª`± ����²�®�¤©O¨���� ± �h¯������>���
�O� ± ¥ ¦O¡O�� ª ¡F�Z�Q¨U¢§�F�
�>�O�*©U�+� ª¤³ �m���T�F��¢ ¯��4¡O�F���¤¡F�q� ± �F���®¨��F�������T´
µj¦U�x�4¡��J�¤��¡j�1�§�O£Q�F¢§£j¡F�®���¤¦O�*¶O¥ ¦O¡O���¨�� ± �·�®¢ ¯U����£Q���m�T¦��U�F���®�¸���
©��O��� ± ¡��p�h¯��4©U¡j¢��¤�
¹Uºj»�¼�½�¾n¿OÀU¾)Á�¾mÂ>ÃÄ»�Å®Æh¶���� ± ����²�®�¤©O¨���� ± ¶ ± �m�n�>�FÇ
���h�J¢��§È�� ± �O� ±�± ¡U�>�)�U¡j�O�h�>°F¨O���q���O�·¯p���>�®�1��£j�T�+�¤¡4©j�H��>�j���1¡j¢��m¢ ¯ª ¡F�*�4¡��J�¤��¡j�1�§�O£3��¨U�¤�)¡���>�1´+µF¦U�T���s���
�[¡F�r�¤�O�F� ª �T�j�²¨O�h�>�Q¡ ª ¡F¨O�
���O�
�É¡O�j�T¦4���OÊm�*�¤�>�
�h�j�m�����T�J¢O�O� ±[ª �T�O�T��©F¢¤�p�TË·�T���§����¦U�p�>¡��F���¬«U�
¡ ª ¢§�J�Ä£F����>�F¢�� ¡��)�T� ± ����²�®�¤©O¨���� ± �Z¯������>���1´
Ì\Í�Î�Ï�����Ð[Ñ�Ò �j�ÓqÐ[Ï
Ô�Õ ¾x¿OÖÄÆrÂm»�ÁO¾TÅZ×�ØTºU¿4ÙOÅ¬¾TÁ�¾>ºUÃ�ÖÄ»�º�»OÚdÆ®»�ÚqÃ�¼�ØTÅZ¾�¾TÅhÅ¬»�ÅrÆ;ÖÉÆ+Ø ¿OÖ�ÚZÛÜ Â>Ýj½¤ÃUÙOÅr»�ÞF½�¾nßàÖ�º�Á�»�½�Á�Ö�ºUÀ*ß�Ø>º�×�¿�Ö²ÚÉÚh¾TÅ¬¾>ºUÃjØmÆZÙj¾mÂ>ÃÉÆ1á�Æ¬ÝUÂ Õ ØmÆ)Ö�ºFÛ

Âm»�ÅhÅ¬¾nÂ>Ãj»�Å\Ö�ºUÂ·»�ß3ÙF½�¾nÃ�¾xÆZÙj¾nÂnÖ Ü ÂmØTÃ�ÖÄ»�ºFÆán¾TÅhÅ¬»�ÅrÆ;Ö�º�Â·»�¿�Ö�ºUÀJánÚqØTÝj½¤ÃÉÆ
ØTºU¿�ÚhØTÖ²½¤ÝOÅZ¾�ÆHÖ�º�Ã Õ ¾ Õ Ø�Å¬¿O¼�Ø�Å¬¾�áU»�Ùj¾TÅrØTÃ�Ö�ºUÀ�ÆZ×JÆZÃ²¾>ß�»�Å+ºU¾nÃ�¼�»�ÅZ¹5âÔ ¼�»,ÙUÅ¬»�ß�Ö�ºj¾>ºOÃ4ÚZ»�ÅZß�Ø>½QØ�ÙOÙUÅ¬»UØ>Â Õ ¾·Æ�ÝFÆr¾n¿!Ö�º'Â Õ ¾nÂn¹OÖ�ºUÀÚh»�Å
¾TÅhÅ¬»�ÅrÆsØ�Å¬¾OãxÃ Õ ¾m»�ÅZ¾nßäÙUÅ¬»�ÁOÖ�ºjÀåØ>ºU¿ß�»O¿O¾n½�Â Õ ¾mÂ>¹UÖ�ºjÀ#â Ô)Õ ¾·»OÛ
ÅZ¾nß�ÙUÅ¬»�Á�Ö�ºUÀ9ÖÉÆ*ÙJ»�¼�¾TÅ¬ÚAÝj½dÞ�ÝOÃH½�ØTÞF»�ÅhÛÉÖ�ºOÃ²¾>ºJÆZÖ¤ÁO¾�áJÅZ¾mæ�ÝUÖ¤ÅZÖ�ºjÀ9Ö�ºFÛ
Ã�¾>ÅZÁ�¾nºOÃ�Ö²»�º4Þj×çÆr»�ß�¾·»�ºj¾�¼*Ö�Ã Õ ÚhØTÖ�ÅZ½�×�Ær»�Ù Õ ÖÉÆZÃ�Ö²ÂmØTÃ²¾n¿vß�Ø>Ã Õ ¾>ß�ØTÃÄÛ
Ö�Â·Ø>½+Ã¤ÅrØTÖ�ºOÖ�ºUÀ5â5èpº`Ã Õ ¾s»�Ã Õ ¾>Å Õ ØTºU¿Já5ß�»�¿U¾n½+Â Õ ¾mÂ>¹UÖ�ºjÀ.ÖÄÆ�ß�»�ÅZ¾»�ÚdØ�ÙjÝFÆ Õ ÛÄÞ�ÝUÃ�ÃÄ»�º�Ã²¾nÂ Õ ºF»�½²»�À�×�áÞ�ÝUÃJ¿O¾·ÆZÙUÖ�Ã�¾�¾TéUÂnÖ�Ã�Ö�ºUÀ*Å¬¾nÂm¾>ºOÃJØ>¿jÛ
Á�ØTºUÂm¾·Æá�Ã Õ ¾�Æ¬Ö�êm¾�»�Ú
Æ¬×FÆ¬Ã�¾nßçÆHÚh»�Å
¼ Õ Ö²Â Õ Ö�Ã5ÖÉÆHÚh¾mØ·ÆZÖ�Þj½�¾pÅZ¾nß�ØTÖ�ºFÆ
Å¬Ø>Ã Õ ¾TÅ\½�Ö�ß�Ö�Ã²¾n¿#â�ëQÆ�ØHÅ¬¾·ÆZÝj½¤ÃAá>ß�»UÆ¬ÃFÆZ×JÆZÃ²¾>ßìÞ�ÝUÖ�½�¿O¾>ÅrÆ;Â·»�ºOÃ�Ö�ºOÝU¾HÃÄ»
ÅZ¾m½¤×Q»�º�Ã²¾·Æ¬Ã�Ö�ºUÀ�Ã²»�Ö�¿U¾>ºUÃ�Ö²ÚA×4Þ�ÝUÀjÆ[Ö�ºQÃ Õ ¾>Ö�Å;Ö�ß3Ùj½�¾>ß�¾nºOÃÄØTÃ�Ö²»�º5â
Ô�Õ ¾TÅ¬¾ Ø�Å¬¾HÃ²¼*»�ÙUÅ¬»�Þj½�¾>ßçÆ\¼*Ö�Ã Õ Æ®»�ÚqÃ�¼�ØTÅZ¾+Ã²¾·ÆZÃ�Ö�ºUÀ#â�í#Ö�Å®ÆZÃAánÃ�¾�ÆZÃÄÛ

Ö�ºjÀ!ÖÄÆîÀO¾nºU¾>Å¬Øn½�½�×ï¿U»�ºU¾(Ö�ºìØ>ºï� ± ¦O¡j�ðß�ØTºUºU¾>Å�ã�Ö�ÃvÅZ¾mæ�ÝUÖ¤Å¬¾·Æ
Ã Õ ¾�Æ®»�ÚqÃ�¼�ØTÅZ¾3¿O¾TÁO¾n½²»�Ùj¾>Å�Ã²»çÃ�Å¬Ø>ºFÆ¬½²ØTÃ²¾vÙOÅr»�ÙF¾TÅZÃ�Ö²¾·Æ Ö�ºOÃÄ»LÆhÙj¾mÂ>Ö Ü Â
Â Õ ¾mÂ>¹JÆd»�º4Ã Õ ¾HÙUÅ¬»OÀ�ÅrØTßñÆZÃÄØTÃ²¾�âmòJ¾mÂm»�ºU¿Fá>Ã²¾·Æ¬ÃjÂ·»�Á�¾TÅrØ>ÀU¾+ÖÄÆdÅ¬Ø>Ã Õ ¾TÅ
½¤Ö�ß�Ö�Ã²¾n¿5â Ô »Cß�Ö�Ã�Ö²ÀUØTÃ²¾.Ã Õ ¾ Ü ÅrÆ¬ÃxÙUÅ¬»�Þj½�¾>ßsá+Ær»OÚAÃ²¼�Ø�Å¬¾L»�ÚqÃ�¾nºCÖ�ºFÛ
Ân½�ÝU¿O¾�ÆF¿�×UºjØ>ß�Ö�Â)Â Õ ¾mÂ>¹FÆ5»�º�Ã Õ ¾+ÆZ×JÆZÃ²¾>ßçÆ;ÆZÃÄØTÃ²¾�ÃÄ»�Ö²¿O¾nºOÃ�Ö�Úq×�ÙUÅ¬»�ÞFÛ
½�¾nßçÆHØTÃ\ÅhÝUºjÛAÃ�Ö�ß�¾�âmó ¾nÂn¾nºOÃ²½¤×�á�Ã Õ ¾TÅ¬¾ Õ ØmÆ+Þj¾n¾nºçÆr»�ß�¾*Ö�ºUÃ�¾>ÅZ¾�ÆZÃ5Ö�º
ÅhÝUºjÛAÃ�Ö�ß�¾3ß�»�ºUÖ�ÃÄ»�ÅZÖ�ºjÀ.Ã²¾nÂ Õ ºOÖ²æ�Ýj¾·Æ3ô¬õTöp¼ Õ Ö²Â Õ ÙOÅr»�Á�Ö²¿O¾�Øç½¤Ö�Ã�Ã�½�¾
ß�»�Å¬¾sÅhÖ²ÀU»�Å�Ö�º,Ã�¾�ÆZÃ�Ö�ºjÀ#âd÷hºCÃ Õ ÖÄÆ�Ø�ÙUÙOÅr»OØ>Â Õ á[ß�»�ºUÖ�ÃÄ»�Å®Æ3Ø�Å¬¾îØTÝFÛ
Ã²»�ß�ØTÃ�Ö�Â·Ø>½�½¤×çÆ¬×OºOÃ Õ ¾�ÆZÖ²ên¾m¿�ÚÉÅr»�ßøØ�ÚZ»�ÅZß�Ø>½dÆhÙj¾mÂ>Ö Ü ÂmØ>Ã�ÖÄ»�º\â Ô)Õ ¾�Æ¬¾ß�»�ºOÖ�ÃÄ»�Å®Æ�ß�ØT×îÃ Õ ¾nº.Þj¾ç¿O¾>Ùj½²»�×U¾m¿L»�ÚÉÚZÛA½�Ö�ºU¾�ÚZ»�Å�¿O¾TÞ�ÝjÀOÀOÖ�ºjÀ9»�Å
»�ºjÛq½�Ö�ºj¾pÚZ»�Å+¿�×OºFØTß�Ö²ÂmØn½�½�×�Â Õ ¾mÂ>¹UÖ�ºjÀQÃ Õ Ø>ÃdÆ®Ø>Úh¾>Ã�×�ÙOÅr»�ÙF¾TÅZÃ�Ö²¾·Æ+Ø�Å¬¾
ºj»�ÃOÞj¾nÖ�ºjÀ�Á�ÖÄ»�½²ØTÃ²¾n¿�¿�Ý�ÅZÖ�ºUÀ�ÆZ×JÆZÃ²¾>ßù¾>éO¾nÂnÝOÃ�Ö²»�º5â
÷hºgô²ú�ö�¼�¾çØ�ÅZÀ�Ýj¾3Ã Õ ØTÃ
¿OÖÄÆ¬Ã¤ÅZÖ�Þ�ÝOÃ²¾n¿`Æ¬×FÆZÃ²¾>ßçÆ�ß�ØT×9ÞF¾�¾nÚAÚq¾mÂmÛ

Ã�Ö¤ÁO¾n½�×çß�»�ºOÖ�Ã²»�ÅZ¾m¿çØ>ÀjØTÖ�ºFÆ¬ÃdÚZ»�ÅZß�Ø>½�½�×9ÆhÙF¾nÂnÖ Ü ¾m¿LÆrØ>Úh¾>Ã�×çÅZ¾mæ�ÝOÖ�Å¬¾mÛ
ß�¾>ºOÃÉÆ�âTû�×3¾nÚAÚq¾mÂ>Ã�Ö¤Á�¾�ß�»�ºOÖ�Ã²»�ÅhÖ�ºUÀ�¼�¾xß�¾mØTºQºj»�ÃF»�ºU½�×�½¤Ö�ºU¾·Ø�Å[¾nÚZÛÜ Â>Ö²¾>ºjÂT×�áTÞ�ÝOÃJØ>½ÄÆr»�¿O¾mÂn¾>ºUÃ¤ÅrØ>½�Ö²ên¾n¿4ß�»�ºOÖ�ÃÄ»�ÅZÖ�ºjÀp¼ Õ ¾TÅ¬¾xÚh¾T¼!»�Ådºj»

Ø>¿U¿�Ö�Ã�ÖÄ»�ºFØ>½Jß�¾�Æ®ÆrØnÀO¾�Æ+ºU¾m¾n¿�ÃÄ»3ÞF¾*ÙFØ·Æ®Æ¬¾m¿�ÚZ»�Å
ß�»�ºOÖ�Ã²»�ÅhÖ�ºUÀQÙjÝ�ÅhÛ
ÙF»jÆ¬¾·ÆTâOüY¾3Ö�ºUÃ¤År»�¿OÝUÂn¾m¿�ØTº.¾>ÙUÖÉÆZÃ²¾>ß�Ö²ÂQÃ²¾>ß3ÙJ»�ÅrØ>½d½²»�À�Ö²Â3Úh»�Å ¿�ÖÉÆrÛ
Ã¤ÅZÖ�Þ�ÝOÃ²¾n¿�¹Uºj»�¼�½�¾n¿UÀO¾�áUÂ·Ø>½�½�¾m¿*�[�O���;�²�����3¢����j�T�J�x���T�
�)¡j�h�J¢\¢¤¡�£#�¤�
ØTºj¿4Ø�ÞOÞUÅZ¾TÁOÖ²Ø>Ã�¾m¿�ý�þ�Û¬ÿ Ô�� á·ØTºU¿vÆ Õ »�¼�¾m¿ Õ »�¼,ß�»�ºUÖ�ÃÄ»�Å®Æ;ÂmØ>º�Þj¾
ÆZ×UºOÃ Õ ¾·Æ¬Ö�êm¾n¿LÚZ»�Å*Ö�Ãqâdý�þ�Û¬ÿ Ô�� Úh»�Åhß�Ýj½�Øn¾�Ø�Å¬¾�½²»�Â·Ø>½+Ã²».ÙFØTÅhÃ�Ö�ÂnÝjÛ
½�ØTÅ)ÙOÅr»�Âm¾·Æ1Æ¬¾·ÆHØ>ºU¿�ØTÅZ¾*Ö�ºOÃ²¾TÅhÙOÅ¬¾>Ã²¾n¿�»�Á�¾>Å[ÙOÅr»��®¾nÂnÃ�ÖÄ»�ºJÆ
»OÚ)ÀO½²»�ÞJØ>½
ÆZÃÄØTÃ²¾4Ã�Å¬ØnÂn¾�Æ+Ã Õ ØTÃ\Ã Õ ¾�Â>ÝOÅqÅ¬¾>ºUÃJÙOÅr»�Âm¾·Æ1Æ��§���O¥��F�h��¡ ª â�÷qº�Ã Õ ÖÉÆ
ÙJØnÛ
Ùj¾>ÅZáJ¼�¾�Ö�ºUÂ>ÅZ¾·ØmÆr¾�Ã Õ ¾�¾Té�ÙUÅZ¾�Æ®Æ¬Ö¤Á�¾>ºj¾·Æ1Æ�»OÚpý�þ�Ûrÿ Ô�� ØTºj¿.ß�ØT¹O¾Ö�Ã
ß�»�Å¬¾QÙOÅr»�À�ÅrØTß�ß�¾>Å ÚÉÅZÖ�¾nºU¿U½¤×çÞU×îØn¿O¿�Ö�ºUÀ9Â·»�ºFÆ¬Ã¤ÅZÝUÂnÃÄÆ�Æ¬Ö�ß�Ö²½²Ø�Å
Ã²»QÁ�Ø>½�ÝU¾ ÞUÖ�ºU¿OÖ�ºjÀ�Ö�ºQÙOÅr»�À�Å¬Ø>ß�ß�Ö�ºjÀ*½�Ø>ºUÀ�ÝFØ>ÀU¾·Æ[Ø>ºU¿�æOÝjØ>ºOÃ�Ö Ü Â·ØnÛ
Ã�ÖÄ»�º.Ö�º Ü Å®ÆZÃ�»�Å¬¿O¾>Åx½�»OÀ�Ö²Â�â Ô)Õ ¾�Æ¬¾�Â·»�ºFÆ¬Ã¤ÅZÝUÂnÃÄÆpØn½�½²»�¼ ÝFÆpÃÄ»LÆZÝjÂmÛ
Â>Ö�ºUÂnÃ�½�×gÆhÙj¾mÂ>Ö²ÚA×YÙUÅ¬»�Ùj¾TÅZÃ�Ö�¾�Æ�»OÚ4»�Ùj¾nºð¿�ÖÉÆZÃ�ÅhÖ�Þ�ÝOÃ²¾n¿ðÆZ×JÆZÃ²¾>ßçÆQÖ�ºjÛ
Á�»�½�Á�Ö�ºUÀ�¿jØTÃÄØ�â Ô)Õ ¾QºU¾T¼/½²»�ÀOÖ�Â�ÖÄÆ�Â·Ø>½�½�¾m¿���ÿ Ô�� ØTºj¿�Ö�ÃÄÆ�ºF»�Á�¾n½
Úq¾·ØTÃ�Ý�Å¬¾·Æ[ØTÅZ¾xÖ�ºJÆhÙjÖ¤Å¬¾n¿QÚÉÅr»�ß����
	���sô���ö®â
� ¾>Ã
ÝFÆ�Ø·Æ®ÆZÝUß�¾�ØTº`¾>º�Á�Ö�Å¬»�ºOß�¾nºOÃ;Ö�ºî¼ Õ Ö�Â Õ Ø3ºF»�¿O¾

a
ß�ØT×

Æ¬¾nºU¿�Ø*ß�¾�Æ®ÆrØnÀO¾*ÃÄ»�Øpºj»O¿O¾
b
Å¬¾næ�Ýj¾·Æ¬Ã�Ö�ºUÀ�Ø�Âm¾TÅZÃ²Ø>Ö�º�Á�Øn½¤Ýj¾�â Ô)Õ ¾

ºj»O¿O¾
b
á)»�ºîÅZ¾mÂn¾>Ö�Á�Ö�ºUÀLÃ Õ ¾�ÅZ¾mæ�Ýj¾·ÆZÃAá;Â·»�ß3ÙUÝUÃ�¾�Æ*Ã Õ ¾sÁ�Ø>½�ÝU¾sØTºU¿

Æ¬¾nºU¿jÆ�Ö�ÃFÞFØnÂ>¹vÃ²»
a
â Ô�Õ ¾TÅ¬¾�Â·ØTºQÞj¾pß�ØTºO×3ÆZÝjÂ Õ ºj»O¿O¾�Æ1á�Ø>º�×�ÙJØTÖ�Å

ÂmØ>ºîÞF¾�Ö�º�Á�»�½�Á�¾n¿.Ö�ºgÆZÝjÂ Õ Ø�Ã�ÅrØTºFÆ®Ø>ÂnÃ�ÖÄ»�º#á5Þ�ÝOÃxÆZÝOÙOÙJ»UÆ¬¾�Ã Õ ØTÃxØ
ÂTÅZÝUÂnÖ²Øn½FÙOÅr»�ÙF¾TÅZÃ�×3ÃÄ»�¾>ºjÚh»�ÅZÂm¾pÖÄÆ Ã Õ ØTÃ\ºj»3ºF»�¿O¾pÅ¬¾nÂm¾>Ö¤ÁO¾·ÆHØ*Å¬¾TÙF½¤×ÚÉÅr»�ßùØ>ºj»�Ã Õ ¾TÅ[ºj»O¿O¾�Ã²»Q¼ Õ Ö²Â Õ Ö�Ã Õ Ø>¿Qºj»�ÃJÖÄÆ1ÆZÝj¾n¿�ØxÅZ¾mæ�ÝU¾�ÆZÃJ¾mØTÅhÛ
½¤Ö²¾TÅZâjèpºj¾QÂ·ØTº9Â Õ ¾nÂ>¹çÃ Õ ÖÄÆ�ÀU½�»�ÞFØ>½5ÙOÅr»�ÙF¾TÅZÃ�×�ÞU× Õ Ø�Á�Ö�ºUÀs»�ºj¾�½²»OÛ
ÂmØn½�ß�»�ºUÖ�ÃÄ»�Å#»�º�¾mØnÂ Õ ºF»�¿O¾�á�¼ Õ Ö�Â Õ ß�»�ºOÖ�Ã²»�ÅrÆ\Ø ÆZÖ�ºUÀU½�¾
ÙUÅ¬»�Ùj¾TÅZÃ�×Oâ
í5»�ÅHÖ�ºJÆZÃÄØTºjÂn¾�á

a
ß�»�ºUÖ�ÃÄ»�Å®Æ���Ö²Ú

a
Õ Ø·ÆHÅ¬¾nÂm¾>Ö¤Á�¾m¿�ØvÁ�Ø>½�ÝU¾QÚÉÅr»�ß

bÃ Õ ¾>º�Ö�Ã;ß�ÝFÆZÃ\Þj¾4Ã Õ ¾4ÂmØ·Æ¬¾4Ã Õ Ø>Ã5ÙUÅZ¾TÁOÖ²»�ÝFÆr½¤×3Ö�º�Ã Õ ¾�ÙJØmÆ¬Ã;ØTÃ
b
Ã Õ ¾

Úh»O½�½²»�¼*Ö�ºUÀ Õ ¾m½�¿\ã
b
Õ Ø·Æ[Âm»�ß3ÙUÝUÃ�¾m¿*Ã Õ ¾xÁ�Ø>½�ÝU¾pØTºj¿QØTÃ

a
Ø�Å¬¾næOÝU¾�ÆZÃ

¼�ØmÆ
ß�Ø>¿U¾*Úh»�Å�Ã Õ ØTÃ#Á�Øn½¤Ýj¾�Ö�º�Ã Õ ¾pÙFØ·ÆZÃ���â��QÆZÖ�ºUÀ���ÿ Ô�� áUØn½�½;»�ºU¾
ºU¾m¾n¿jÆ[Ã²»�¿U»4ÖÄÆ)Ã²»�ÙOÅr»�Á�Ö²¿O¾HÃ Õ ¾*ÆrØnÚq¾nÃ�×QÙF»O½¤Ö²ÂT×QØ·Æ)Ø�Úh»�Åhß�Ýj½�ØOã

valueReceived→
@b( � · (valueComputed∧ @a( � · valueRequested)))

@
ÖÄÆ+Ø>ºv�q�
�§�����>�Q�¤�x¡���m�h�F�¤¡F�)ØTºj¿QÆ Õ »�Ýj½�¿4Þj¾�Å¬¾mØn¿��nØTÃ����

@bF
ÖÉÆ

Ø4�h�T�4¡U���)���A¡���m�®� ¯vÃ Õ Ø>Ã\Æ Õ »�ÝU½�¿QÞj¾*Ã Õ »�ÝjÀ Õ ÃJ»OÚ�ØmÆ
Ã Õ ¾�Á�Øn½¤Ýj¾�»�Ú
F
Ö�ºQÃ Õ ¾ ß�»jÆZÃUÅZ¾mÂn¾>ºUÃU½²»�Â·Ø>½JÆZÃÄØTÃ²¾p»OÚ

b
Ã Õ ØTÃjÃ Õ ¾xÂnÝ�ÅhÅZ¾nºOÃOÙOÅr»�Ân¾�Æ®ÆÖÄÆHØ>¼*ØTÅZ¾�»OÚ®â·÷qº�ý�þ�Ûrÿ Ô�� ô²ú�ö¬á

@
ÂmØ>º�»�ºU½�×3Ã²Ø>¹O¾�»�ºU¾�ÙUÅ¬»OÂn¾·Æ1Æ+ØmÆ

ØxÆZÝOÞJÆrÂTÅZÖ¤ÙjÃqâ�÷hº���ÿ Ô�� á·ØmÆ)¿O¾·ÆrÂTÅZÖ¤ÞF¾n¿*½²ØTÃ²¾TÅ\Ö�º4Ã Õ ¾HÙJØ�ÙF¾TÅZá
@
Â·ØTº

Ã²Ø>¹O¾*ØTº�×�Æ¬¾>Ã5»OÚ#ÙUÅ¬»OÂn¾�Æ®Æ¬¾�Æ�Ø·Æ+ØpÆ¬Ý�ÞJÆrÂTÅZÖ¤ÙjÃFÃ²»OÀO¾>Ã Õ ¾>Å;¼*Ö�Ã Õ Ø�ÝOºUÖ²Û
Á�¾TÅ®ÆrØn½O»�ÅdØTº�¾TéUÖÄÆ¬Ã�¾nºOÃ�Ö²Øn½�æ�ÝFØTºUÃ�Ö Ü ¾TÅZámÆr»

@b

ÞF¾nÂm»�ß�¾·Æ
�mÆZ×OºUÃ²ØnÂ>Ã�Ö�Â
ÆZÝjÀUØ�Å��xÚZ»�Å

@∀{b} � »�Å�ÚZ»�Å @∃{b} � â � · Æ Õ »�Ýj½�¿�Þj¾�Å¬¾mØ>¿ �T¾TÁO¾>ºOÃ�ÝjÛØ>½�½¤×�Ö�º4Ã Õ ¾�ÙFØmÆ¬Ã!�Oâ#"C»�ºOÖ�ÃÄ»�ÅZÖ�ºjÀ�Ã Õ ¾xÚh»�Åhß�Ýj½�ØHØ�ÞJ»�Á�¾�¼*Ö²½�½UÖ�º�Á�»O½�ÁO¾
Æ¬¾nºU¿�Ö�ºUÀpºF»4Ø>¿U¿�Ö�Ã�ÖÄ»�ºFØ>½�ß�¾·Æ1ÆrØnÀO¾·Æ;Þ�ÝOÃj»�ºU½�×�Ø�Úh¾T¼gÞjÖ�ÃÉÆ)»OÚJÖ�ºUÚZ»�ÅhÛ

178

goodelle
Text Box
Appendix M: 



ß�ØTÃ�Ö²»�ºQÙjÖ�ÀUÀ�×OÞFØ>Ân¹O¾n¿v»�º�Ã Õ ¾*ß�¾�Æ®ÆrØnÀO¾�Æ�Ø>½¤ÅZ¾·Ø>¿O×QÞF¾>Ö�ºUÀQÙFØ·Æ®Ær¾n¿
Úh»�Å\Ã Õ ¾xÂ·»�ß3ÙjÝOÃÄØTÃ�Ö²»�º5âòJÝ�ÙOÙJ»UÆr¾�Ã Õ ØTÃ�¼�¾s¼�ØTºOÃ+ÃÄ».Å¬¾·Æ¬Ã¤ÅZÖ�ÂnÃHÃ Õ ¾sØTÞF»�Á�¾sÆrØ>Úh¾>Ã�×`ÙF»�½²Û
Ö�ÂT×3Þj×�Ö�ß3ÙJ»UÆ¬Ö�ºjÀ�Ø�ÚAÝOÅhÃ Õ ¾>Å�Âm»�ºU¿�Ö�Ã�Ö²»�ºvÃ Õ Ø>Ã5Ã Õ ¾�Á�Øn½¤Ýj¾pÅZ¾mÂn¾>Ö�Á�¾n¿
ÞU×

a
ß�ÝJÆZÃJÞF¾�ÆrØ>ß�¾4ØmÆ
Ã Õ ¾�Á�Ø>½�ÝU¾�Â·»�ß3ÙUÝUÃ�¾m¿4Þj×

b
â Ô »�¾Té�ÙUÅZ¾�Æ®Æ

Ã Õ ÖÄÆ Æ¬Ã¤År»�ºjÀO¾>Å[ÙOÅr»�Ùj¾>ÅhÃ�×�á�¼�¾�ºU¾m¾n¿3ÃÄ»�Âm»�ß3ÙFØ�Å¬¾*Á�Ø>½�ÝU¾�Æ
Ö�ºsÆ¬Ã²Ø>Ã�¾�Æ
ØTÃ+Ã�¼�»9ÙUÅ¬»OÂn¾�Æ®Æ*Ã Õ Ø>ÃHØTÅZ¾�ºj»�Ã
¿�Ö�Å¬¾nÂ>Ã²½�×LÅ¬¾n½²ØTÃ²¾n¿#â Ô�Õ ÖÉÆpÙOÅr»�ÙF¾TÅZÃ�×
ÂmØTºUºj»�Ã#Þj¾Q¿�Ö�ÅZ¾mÂ>Ã²½¤×s¾Té�ÙUÅZ¾�Æ®Ær¾n¿�Ö�º.ý�þ�Û¬ÿ Ô�� ¼*Ö�Ã Õ »�ÝUÃ\Ö�ºOÃ�År»�¿�ÝjÂmÛ
Ö�ºjÀs¾>éOÃ�Å¬ØQÁ�Ø�ÅZÖ²ØTÞj½�¾·ÆxÖ�ºsÃ Õ ¾vÙUÅ¬»OÀ�ÅrØTß Ö�ÃÄÆr¾n½�Ú®â��4»�¼�¾TÁ�¾>ÅZáFØ>¿U¿�Ö�ºUÀ
¾TéOÃ�Å¬ØHÁ�ØTÅhÖÄØ�ÞF½�¾�Æ\Ö�ºQÃ Õ ¾HÙOÅr»�À�Å¬Ø>ß¸Â·ØTº�ÙJ»�Ã²¾>ºOÃ�ÖÄØ>½�½¤×*Å¬¾·Æ¬ÝU½�ÃOÖ�º3ÆZÖ²¿O¾·Û
¾nÚÉÚh¾nÂnÃÄÆd¼ Õ Ö�Â Õ Ø�Å¬¾�ºF»�ÃF¿O¾·Æ¬Ö¤ÅrØ�ÞF½�¾Oâ�ë�ºQ¾n½�¾>ÀjØTºOÃU¼*Ø>×�ÃÄ»QÆ®»�½�Á�¾�Ã Õ ¾
ÙOÅr»�Þj½�¾>ßìÖÉÆ[ÃÄ»QÖ�ºUÃ¤År»�¿OÝUÂm¾�Ã Õ ¾ ºF»�Ã�Ö²»�ºQ¿UØ>Ã²ØmÛÄÞjÖ�ºj¿�Ö�ºUÀ*Ö�ºQÃ Õ ¾p½²»�À�Ö²Â
ÝFÆ¬¾m¿îÚZ»�Å*ß�»�ºUÖ�ÃÄ»�ÅZÖ�ºjÀ#âF÷hºUÚZ»�ÅZß�Ø>½�½¤×�áJ¼�¾sÂmØ>ºîÅ¬¾·Æ¬Ã²Ø>Ã�¾çÃ Õ ¾�ÙUÅ¬»�ÙFÛ
¾TÅZÃ�×�Ø·ÆHÚh»O½�½²»�¼�ÆTã

a
ß�»�ºUÖ�ÃÄ»�Å®Æ���Ö²Ú

a
Õ Ø·Æ
ÅZ¾mÂn¾nÖ¤Á�¾n¿�Ø�Á�Øn½¤Ýj¾�ÚÉÅr»�ß

b
Ã Õ ¾nº9ÅZ¾nß�¾>ß3ÞF¾TÅ�Ã Õ ¾�Á�Ø>½�ÝU¾QÅ¬¾nÂm¾>Ö¤Á�¾m¿sÖ�º`Ø3Á�ØTÅhÖÄØ�ÞF½�¾

k
ØTºj¿9Ö�Ãß�ÝFÆZÃFÞF¾pÃ Õ ¾pÂ·ØmÆr¾�Ã Õ Ø>ÃJÙOÅ¬¾TÁ�ÖÄ»�ÝJÆ¬½�×�Ö�º3Ã Õ ¾xÙJØmÆ¬Ã\ØTÃ

b
Ã Õ ¾*Úh»O½�½²»�¼4Û

Ö�ºjÀ Õ ¾m½�¿\ã
b
Õ Ø·Æ
Âm»�ß3ÙjÝOÃ²¾n¿�Ã Õ ¾pÁ�Ø>½�ÝU¾*ØTºj¿4Ã Õ ¾pÂm»�ß3ÙUÝOÃ²¾n¿QÁ�Ø>½�ÝU¾

ÖÄÆ ¾næ�ÝFØ>½5Ã²»
k
ØTºU¿çØTÃ

a
Ø�ÅZ¾mæ�ÝU¾�ÆZÃ;¼*Ø·ÆHß�Øn¿O¾4ÚZ»�Å+Ã Õ ØTÃdÁ�Ø>½�ÝU¾�Ö�º

Ã Õ ¾�ÙFØ·ÆZÃ���â Ô�Õ ÖÉÆ[ÂmØ>º4ÞF¾x¼pÅZÖ�Ã�Ã�¾nºQÚZ»�ÅZß�Ø>½�½¤×vØmÆ�Úh»O½�½²»�¼�ÆTã
valueReceived→ let k = value in

@b( � · (computedValue∧ (k = valueComputed)
∧@a( � · requestedValue)))

÷qºjÚh»�Åhß�Øn½�½�×�á�Ã Õ ¾�Âm»�ºFÆ¬Ã¤ÅZÝUÂnÃ ��� ��� ~k = ~ξ � � F
��ÞUÖ�ºU¿FÆHÃ Õ ¾QÁ�Ø>½�ÝU¾

»�ÚdÃ Õ ¾�¾TéOÙOÅ¬¾·Æ®Æ¬Ö²»�ºFÆ ~ξ ØTÃ5ÙOÅr»�Ân¾�Æ®Æ a ¼*Ö�Ã Õ Ã Õ ¾�½�»OÀ�Ö²Â�Á�Ø�ÅZÖ²ØTÞj½�¾·Æ ~k¼ Õ Ö²Â Õ Â·ØTº4ÞF¾�Å¬¾nÚh¾TÅhÅZ¾m¿*ÞU×vØTº�×v¾Té�ÙUÅZ¾�Æ®ÆZÖÄ»�º�Ö�ºvÃ Õ ¾xÚZ»�ÅZß�ÝU½²Ø
F
â

ë�ºF»�Ã Õ ¾>ÅH¾TéFØTß3ÙF½�¾�Ö�ºðô�úOö)Å¬¾>ÀjØ�Å¬¿jÆ+ß�»�ºOÖ�Ã²»�ÅhÖ�ºUÀ�Âm¾TÅZÃ²Ø>Ö�ºsÂm»�ÅhÛ
ÅZ¾mÂ>Ã�ºU¾·Æ1Æ�ÅZ¾mæ�ÝUÖ¤Å¬¾>ß�¾nºOÃ*Ö�ºàØð½�¾·Ø>¿U¾TÅhÛq¾n½�¾nÂnÃ�ÖÄ»�º!Ø>½�ÀU»�ÅhÖ�Ã Õ ß.â Ô�Õ ¾
¹O¾T×�Å¬¾næOÝOÖ�ÅZ¾nß�¾>ºUÃ5Úh»�ÅH½�¾mØn¿O¾>ÅH¾m½�¾mÂ>Ã�Ö²»�ºçÖÉÆ�Ã Õ Ø>ÃdÃ Õ ¾TÅ¬¾4ÖÉÆ�Ø>Ã²ÛAß�»UÆ¬Ã»�ºU¾½�¾mØn¿O¾TÅZâ*÷hÚLÃ Õ ¾TÅ¬¾'Ø�Å¬¾ �ïÙOÅr»�Ân¾�Æ®Ær¾·Æ`ºjØ>ß�¾n½�×

a, b, c
ØTºj¿

state
ÖÉÆ3ØsÁ�Ø�ÅZÖ²ØTÞj½�¾�Ö�ºð¾mØ>Â Õ ÙUÅ¬»OÂn¾�Æ®Æ4Ã Õ ØTÃ ÂmØ>º Õ Ø�Á�¾sÁ�Ø>½�ÝU¾�Æ

leader, loser, candidate, sleep
áOÃ Õ ¾nº�¼�¾4ÂmØ>º�¼pÅhÖ�Ã�¾4Ã Õ ¾

ÙOÅr»�Ùj¾>ÅhÃ�×�ØTÃ)¾TÁO¾TÅZ×�ÙOÅr»�Âm¾·Æ1ÆxØ·ÆTã ��Ö²Ú�Ø�½�¾mØn¿O¾>ÅHÖÉÆ�¾n½�¾nÂnÃ�¾m¿�Ã Õ ¾nºçÖ²Ú
Ã Õ ¾�Â>Ý�ÅhÅ¬¾>ºOÃjÙUÅ¬»OÂn¾·Æ1Æ
ÖÄÆ Ø�½�¾·Ø>¿U¾TÅ)Ã Õ ¾>º#á�Ã²»vÖ�ÃÄÆH¹Oºj»�¼�½�¾n¿UÀO¾�á·ºj»�ºU¾
»�ÚFÃ Õ ¾ »�Ã Õ ¾>ÅJÙOÅr»�Âm¾·Æ®Ær¾·Æ\ÖÉÆdØ�½�¾mØ>¿U¾TÅ���â®ü`¾ ÂmØ>º4Úh»�Åhß�Øn½¤Ö²ên¾+Ã Õ ÖÉÆ5ÅZ¾·Û
æ�ÝOÖ�Å¬¾>ß�¾>ºUÃUØmÆ)Ã Õ ¾xÚZ»�½�½²»�¼*Ö�ºjÀ�ý�þ�Û¬ÿ Ô�� Úh»�Åhß�Ýj½�Ø�Ø>ÃjÙOÅr»�Ân¾�Æ®Æ

a
ã

leaderElected→ (state = leader→
(@b(state 6= leader) ∧ @c(state 6= leader))

ü`¾HÂmØTº*¼pÅZÖ�Ã²¾HÆ¬Ö�ß�Ö²½²Ø�Å5ÚZ»�ÅZß�ÝU½²Ø>¾)¼*Ö�Ã Õ Å¬¾·ÆZÙj¾nÂnÃ�Ã²»
b
Ø>ºU¿

c
â
	pÖ¤ÁO¾>º

ØTº�Ö�ß3Ùj½�¾>ß�¾nºOÃÄØTÃ�Ö²»�º�»OÚ)Ã Õ ¾Q½�¾·Ø>¿O¾>Å+¾m½�¾mÂ>Ã�Ö²»�º�ÙOÅr»�ÞF½�¾nßsá�»�ºU¾4Â·ØTº
ß�»�ºOÖ�ÃÄ»�Å+¾·Ø>Â Õ ÚZ»�ÅZß�ÝU½²Ø�½²»�Â·Ø>½�½¤×�áJØTÃ)¾TÁO¾TÅZ×�ÙOÅr»�Âm¾·Æ1Æ�â�÷ZÚ�Á�ÖÄ»�½²ØTÃ²¾n¿
Ã Õ ¾>º�Âm½�¾·Ø�Å¬½¤×�Ã Õ ¾�½�¾·Ø>¿O¾>Å;¾m½�¾mÂ>Ã�Ö²»�º4Ö�ß3ÙF½�¾nß�¾>ºUÃ²Ø>Ã�ÖÄ»�º*ÖÉÆdÖ�ºUÂm»�ÅqÅ¬¾nÂnÃqâ

�4»�¼�¾TÁO¾TÅZá
Ã Õ ¾ðØ�ÞJ»�Á�¾YÚh»�Åhß�Ýj½�Øî¿U»O¾·Æ�ºj»�ÃQÆhÙj¾mÂ>Ö²ÚA×åÃ Õ ¾`ÅZ¾·Û
æ�ÝOÖ�Å¬¾>ß�¾>ºUÃ)Ã Õ ØTÃ�¾TÁ�¾>Åh×îÙOÅr»�Âm¾·Æ®Æ�ß�ÝFÆ¬Ã+¹Uºj»�¼ Ã Õ ¾çºjØTß�¾s»�ÚpÃ Õ ¾
ÙOÅr»�Ân¾�Æ®Æ.Ã Õ ØTÃ Õ ØmÆ.Þj¾m¾>ºà¾n½�¾nÂ>Ã²¾n¿àØmÆî½�¾·Ø>¿U¾TÅZâ�ü`¾ÂmØ>ºOºj»�ÃQ¾TéFÛ
ÙOÅ¬¾·Æ®Æ�Ã Õ ÖÄÆvÆZÃ�År»�ºUÀU¾TÅ�ÅZ¾mæ�ÝOÖ�Å¬¾>ß�¾>ºUÃ)Ö�ºðý�þ�Ûrÿ Ô�� â��4»�¼�¾TÁO¾TÅZá5ÝFÆ®Û
Ö�ºjÀ�Ã Õ ¾xÂm»�ºJÆZÃ�ÅhÝjÂ>Ã ��� ���� � �  � Ø>ºU¿4ØmÆ1ÆZÝUß�Ö�ºjÀ�Ã Õ Ø>ÃOÃ Õ ¾�Á�ØTÅhÖÄØ�ÞF½�¾
leaderName

Â·»�ºOÃÄØTÖ�ºFÆ Ã Õ ¾vºjØ>ß�¾v»OÚHÃ Õ ¾v½�¾mØn¿O¾>ÅZájÃ Õ ¾�ÅZ¾mæ�ÝOÖ�Å¬¾mÛ
ß�¾>ºOÃjÂmØ>ºQ¾mØ·ÆZÖ²½¤×QÞj¾*ÆZÃÄØTÃ²¾n¿�Ö�º �
ÿ Ô�� ØmÆ�ÚZ»�½�½�»�¼�Æ>ã

leaderElected→ let k = leaderName in

(@b(leaderName = k) ∧ @c(leaderName = k))

� »�Ã²¾�Ã Õ Ø>ÃdÃ Õ ¾vØTÞF»�Á�¾QÚh»�Åhß�Ýj½�Ø�ØmÆ®Æ¬ÝOß�¾�Æ Ã Õ Ø>ÃdÃ Õ ¾�ºFØTß�¾3»�ÚH¾TÁUÛ
¾TÅZ×�ÙUÅ¬»OÂn¾�Æ®ÆxÖ�º�Á�»O½�Á�¾m¿�Ö�º.½�¾·Ø>¿O¾>Å ¾n½�¾nÂ>Ã�ÖÄ»�º9ÖÄÆ�¹Uºj»�¼*ºçÃ²»çÝFÆ ÞF¾mÛÚh»�ÅZ¾ Õ Ø>ºU¿#â "C»�Å¬¾m»�Á�¾TÅZáTÃ Õ ¾*Æ¬Ö�êm¾p»OÚ5Ã Õ ¾pÚZ»�ÅZß�ÝU½²Ø�¿O¾>Ùj¾>ºj¿jÆ[»�º�Ã Õ ¾
ºOÝUß3Þj¾TÅ�»OÚpÙOÅr»�Ân¾�Æ®Ær¾·Æ�â;÷hºgØ9¿�ÖÉÆZÃ�ÅhÖ�Þ�ÝOÃ²¾n¿CÆZ×JÆZÃ²¾>ß Ö�º�Á�»O½�ÁOÖ�ºjÀYØ
½�ØTÅhÀU¾[ºOÝUß3Þj¾TÅJ»�ÚOÙOÅr»�Âm¾·Æ®Ær¾·Æá¼pÅhÖ�Ã�Ö�ºjÀ�ÆZÝjÂ Õ Ø)½²Ø�ÅhÀU¾�ÚZ»�ÅZß�ÝU½²Ødß�ØT×
Þj¾�Ö�ß3ÙUÅ¬ØnÂ>Ã�Ö�Â·Ø>½qâ Ô)Õ ¾ ÙUÅ¬»�Þj½�¾>ßìÞj¾mÂm»�ß�¾·Æ[¾TÁO¾>º�ß�»�ÅZ¾�Ö�ß3ÙF»�ÅZÃÄØTºOÃ
Ö�ºsØTºç»�Ùj¾>º�¿OÖÄÆ¬Ã¤ÅZÖ�Þ�ÝOÃ²¾n¿çÆ¬×FÆZÃ²¾>ß ¼ Õ ¾TÅ¬¾4¼�¾�ß�ØT×�ºj»�Ã\¹OºF»�¼ïÃ Õ ¾
ºjØ>ß�¾+»OÚOÙUÅ¬»OÂn¾�Æ®Æ¬¾�ÆFÞF¾nÚZ»�Å¬¾ Õ ØTºU¿5â Ô »*Øn½�½�¾TÁ�ÖÄØTÃ²¾�Ã Õ ÖÉÆ\¿�Ö²Ú Ü ÂnÝU½�Ã�×�áØmÆ
Ø>½¤ÅZ¾·Ø>¿O×�ß�¾>ºUÃ�ÖÄ»�ºj¾n¿Já·¼�¾pÝFÆ¬¾�Ø4Ær¾>Ã5»�ÚdÖ�ºU¿OÖ�Âm¾·Æ�Ö�ºFÆZÃ²¾mØn¿v»OÚ)Ø�ÆZÖ�ºjÛ
ÀO½�¾vÖ�ºj¿O¾TésÖ�º9Ã Õ ¾�»�ÙF¾TÅrØTÃÄ»�Å

@
â Ô�Õ ¾�Æ¬¾>Ã+»�ÚHÖ�ºU¿�Ö²Ân¾�Æ�¿O¾>ºF»�Ã�Ö�ºjÀçØ

Æ¬¾nÃ
»�Ú
ÙOÅr»�Âm¾·Æ1Æ¬¾·Æ�Â·ØTºsÞj¾QÅ¬¾TÙOÅ¬¾·Ær¾>ºUÃ�¾m¿çÂ·»�ß3ÙFØnÂ>Ã²½¤×�ÞU×LØ�ÙOÅ¬¾n¿OÖ²Û
ÂmØ>Ã�¾�»�ºvÖ�ºU¿�Ö²Ân¾�Æ�âmí5»�Å�¾TéFØTß3Ùj½�¾�á·Ö�º3Ã Õ ¾*Ø�ÞF»�Á�¾xÚZ»�ÅZß�ÝU½²Ø·ámÖ�ºFÆ¬Ã�¾·Ø>¿
»�Ú\Å¬¾nÚh¾TÅhÅhÖ�ºUÀ�Ã²»v¾mØnÂ Õ ÙOÅr»�Âm¾·Æ®Æ[ÞU×3Ö�ÃÄÆ�ºFØTß�¾*¼�¾*ÂmØTºQÅ¬¾nÚh¾TÅ[Ã²»QÃ Õ ¾
Æ¬¾nÃ[»OÚ
Øn½�½\Å¬¾>ß�»�Ã²¾*ÙUÅ¬»OÂn¾·Æ1Æ¬¾�Æ+ÞU×�Ã Õ ¾�ÙOÅ¬¾n¿OÖ�Â·ØTÃ²¾

i 6= a
ØTºj¿�ÝJÆ¬¾

Ã Õ ÖÄÆ
Æ¬¾nÃJØ·Æ�Ø*ÆZÝOÞJÆrÂTÅZÖ¤ÙjÃUÃÄ»�Ã Õ ¾p»�Ùj¾>Å¬Ø>Ã²»�Å
@
ã

leaderElected→ let k = leaderName in

@∀{i|i 6=a}(leaderName = k)

@∀{i|i 6=a}(leaderName = k)
¿O¾nºj»�Ã²¾·Æ
Ã Õ ¾�ÚhØ>ÂnÃ5Ã Õ ØTÃ5Ã Õ ¾4Úh»�ÅhÛ

ß�ÝU½²Ø
leaderName = k

ß�ÝJÆZÃ Õ »�½�¿pÃ¤ÅZÝU¾�ØTÃjØ>½�½�ÙOÅr»�Âm¾·Æ®Ær¾·Æ
i
Æ®ØTÃÄÛ

ÖÄÆrÚA×UÖ�ºjÀ*Ã Õ ¾HÙOÅ¬¾n¿OÖ�Â·ØTÃ²¾
i 6= a

â Ô)Õ ÖÄÆ;ÖÉÆ[¾mæ�ÝUÖ¤Á�Ø>½�¾>ºUÃ�Ã²»*Ã Õ ¾ Ü ÅrÆ¬Ãj»�ÅhÛ
¿O¾>Åd½²»�ÀOÖ�Â ÚZ»�ÅZß�ÝU½²Ø

∀i . ((i 6= a) → @i(leaderName = k))
â

Ô)Õ ¾3½²»�À�Ö²Â �
ÿ Ô�� ÙUÅ¬»�ÙF»jÆ¬¾n¿�Ö�º9Ã Õ ÖÉÆxÙFØTÙj¾TÅZáF¾TéOÃ²¾>ºj¿�Ö�ºUÀsý�þ�Û
ÿ Ô�� ¼*Ö�Ã Õ Ã Õ ¾sÂ·»�ºJÆZÃ�ÅhÝjÂ>Ã ��� ���� � �  �.ØTºj¿î¼*Ö�Ã Õ æ�ÝFØTºUÃ�Ö Ü ¾n¿
Æ¬¾nÃÄÆx»�Ú�ÙOÅr»�Ân¾�Æ®Ær¾·Æ+Ö�º�Ã Õ ¾vÆ¬Ý�Þ#Æ¬ÂTÅZÖ�ÙUÃ;»OÚ)Ã Õ ¾Q¾TÙUÖÉÆZÃ²¾>ß�Ö²Â�»�Ùj¾TÅrØTÃÄ»�Å
@
á�ÖÉÆ\ß�»�Å¬¾+¾Té�ÙUÅZ¾�Æ®ÆZÖ�Á�¾+Ø>ºU¿p¾n½�¾>ÀUØ>ºOÃ�Ã Õ ØTº�ý�þ�Ûrÿ Ô�� â Ô)Õ ¾�Æ¬¾
Þj¾nºjÛ
¾ Ü ÃÉÆpØ�Å¬¾vØ>Ã�ÃÄØTÖ�ºU¾m¿ç¼*Ö�Ã Õ »�ÝUÃ�ÆrØ>Â>ÅhÖ Ü ÂnÖ�ºjÀ�¾nÚ Ü Â>Ö²¾>ºjÂT×sØ>ºU¿çÃ Õ ¾Q¿U¾mÛÂn¾nºOÃ�Å¬Øn½¤Ö²ên¾m¿�ºjØ>Ã�ÝOÅZ¾x»OÚ5ß�»�ºOÖ�Ã²»�ÅhÖ�ºUÀ5â
"ðØ>º�×QÅZ¾�Æ¬¾mØTÅZÂ Õ ¾>ÅrÆ Õ Ø�Á�¾�ÙUÅ¬»�ÙF»UÆr¾n¿�Ã�¾nß3ÙF»�ÅrØ>½j½²»�À�Ö²Â·Æ�ÃÄ»�ÅZ¾·ØnÛ

Ær»�ºsØ�ÞJ»�ÝUÃ\¿�ÖÉÆZÃ�ÅZÖ¤Þ�ÝUÃ�¾m¿çÆZ×JÆZÃ²¾>ßçÆ�â�"ð»jÆZÃ[»�Ú�Ã Õ ¾·Æ¬¾v½²»�À�Ö²Â·Æ Ø�Å¬¾4Ö�ºjÛ
ÆhÙjÖ¤Å¬¾n¿�ÞU×�Ã Õ ¾�Âm½�Ø·Æ®Æ¬Ö�Â ¼�»�Åh¹�»OÚJë�ÝOß�Ø>ºOº3ô��Oö\ØTºj¿��4Øn½�ÙF¾TÅZº��n���J¢�´
ô��jö+»�ºç¹Uºj»�¼�½�¾n¿UÀO¾4Ö�º9¿�ÖÉÆZÃ�ÅhÖ�Þ�ÝOÃ²¾n¿9ÆZ×FÆ¬Ã�¾nßçÆ�â "ð¾n¾>ºFØT¹JÆ Õ Ö[�n�;�J¢�´
¿O¾ Ü ºU¾�Ø4¹OºF»�¼�½�¾m¿OÀO¾*Ã²¾>ß3ÙJ»�ÅrØ>½#½²»�ÀOÖ�Â�Ö�ºUÃ�¾>ÅqÙUÅZ¾nÃ�¾m¿�»�Á�¾>Å+Ø�ß�¾�ÆrÛ
ÆrØnÀO¾ Æ¬¾mæ�ÝU¾nºUÂm¾�Â Õ Ø�ÅZÃÄÆ5Ö�º4Ø
¿OÖÄÆ¬Ã¤ÅZÖ�Þ�ÝOÃ²¾n¿�ÆZ×FÆ¬Ã�¾nß ô��OöJØ>ºU¿p¿O¾TÁ�¾m½�»�Ù
ß�¾>Ã Õ »O¿jÆxÚh»�Å ß�»�¿O¾m½[Â Õ ¾nÂ>¹UÖ�ºjÀçÚZ»�ÅZß�ÝU½²Ø>¾QÖ�ºsÃ Õ ÖÉÆ*½²»�ÀOÖ�ÂOâ��4»�¼4Û
¾TÁ�¾TÅZá�Ö�º�»�Ý�Å5¼�»�ÅZ¹4¼�¾ Ø>¿U¿�Å¬¾·Æ1Æ#Ã Õ ¾+ÙUÅ¬»�Þj½�¾>ß¸»OÚJß�»�ºUÖ�ÃÄ»�ÅZÖ�ºUÀ*ØTºU¿
Ö�º�Á�¾�ÆZÃ�Ö�ÀjØTÃ²¾�ØTº�¾TéOÙOÅ¬¾·Æ1ÆZÖ¤Á�¾H¿OÖÄÆ¬Ã¤ÅZÖ¤Þ�ÝUÃ�¾m¿*Ã�¾nß3ÙF»�Å¬Øn½�½�»OÀ�Ö²ÂHÃ Õ ØTÃUÂ·ØTº
Þj¾xß�»�ºOÖ�ÃÄ»�Å¬¾n¿*Ö�ºvØ�¿O¾nÂm¾>ºUÃ¤ÅrØ>½�Ö�êm¾n¿�¼�ØT×Uâ
Ô)Õ ¾4ÅZ¾�ÆZÃ)»�Ú
Ã Õ ¾�ÙJØ�Ùj¾>Å
ÖÉÆx»�ÅhÀjØTºOÖ²ên¾m¿�ØmÆxÚh»O½�½²»�¼�Æ�âOòJ¾mÂ>Ã�Ö²»�º��

¿O¾�Æ¬ÂTÅZÖ�Þj¾·ÆQÃ Õ ¾LÞFØ·ÆZÖ²ÂLÂm»�ºUÂn¾>ÙUÃÉÆ3»�ÚQ¿�ÖÉÆZÃ�ÅhÖ�Þ�ÝOÃ²¾n¿,Æ¬×FÆ¬Ã�¾nßçÆ�â�òJ¾mÂmÛÃ�ÖÄ»�º �.Ö�ºOÃ�År»�¿�ÝjÂn¾�ÆpÃ Õ ¾�ß�»�ÅZ¾ç¾Té�ÙUÅZ¾�Æ®Æ¬Ö¤Á�¾çý�þ�Ûrÿ Ô�� ¼ Õ Ö�Â Õ ¼�¾
ÂmØn½�½ ��ÿ Ô�� âT÷qº�ò#¾nÂ>Ã�ÖÄ»�º���¼�¾ Â·»�ºjÂn½�ÝU¿O¾
Þj×*ÞOÅZÖ�¾��F×QÆZ¹O¾nÃ�Â Õ Ö�ºUÀ4Ø
¿O¾mÂn¾>ºUÃ¤ÅrØ>½�Ö²ên¾n¿*ß�»�ºOÖ�Ã²»�ÅhÖ�ºUÀ4Øn½�Àj»�ÅZÖ�Ã Õ ß.â
��Í��`Óh�·���jÓq�+Ò�� �jÑ"!$#[�·� ��%¸�
ü`¾�Â·»�ºFÆ¬Ö�¿U¾TÅ+Ø4¿�ÖÉÆZÃ�ÅhÖ�Þ�ÝOÃ²¾n¿�ÆZ×JÆZÃ²¾>ßøØmÆ Ø�Âm»O½�½�¾nÂnÃ�ÖÄ»�º�»OÚdÙOÅr»OÛÂn¾�Æ®Æ¬¾�Æ1áJ¾mØ>Â Õ�Õ Ø�Á�Ö�ºUÀ�Ø�ÝOºUÖ�æOÝU¾�ºFØTß�¾QØ>ºU¿sØ�½²»�Â·Ø>½[ÆZÃÄØTÃ²¾�áFÂ·»�ß�Û

ß�ÝOºUÖ�Â·ØTÃ�Ö�ºjÀ4¼*Ö�Ã Õ ¾mØ>Â Õ »�Ã Õ ¾TÅdÃ Õ Å¬»�ÝUÀ Õ ØmÆZ×UºUÂ Õ År»�ºj»�ÝFÆ\ß�¾�Æ®ÆrØnÀO¾
¾TéUÂ Õ Ø>ºUÀO¾Oâ Ô)Õ ¾çÂ·»�ß3ÙUÝUÃ²Ø>Ã�ÖÄ»�º(»�Ú�¾·Ø>Â Õ ÙUÅ¬»OÂn¾·Æ1Æ�ÖÄÆ3ØTÞJÆZÃ�ÅrØ>Â>Ã²¾n¿
»�ÝUÃOÖ�º�Ã²¾TÅZßçÆ)»�Úd�TË·�T�j�¤��¼ Õ Ö�Â Õ ÂmØ>º�Þj¾p»�Ú\Ã Õ ÅZ¾m¾�Ã�×�Ùj¾�ÆTã��§�F���·�Z�U�F¢²á
ØTºs¾TÁ�¾>ºUÃ;¿U¾>ºj»�Ã�Ö�ºUÀ�½�»OÂmØ>½[ÆZÃÄØTÃ²¾QÝ�Ùj¿jØTÃ²¾Q»OÚ+Ø4ÙOÅr»�Âm¾·Æ®ÆáU��>� ± áFØTº
¾TÁ�¾>ºUÃO¿O¾nºj»�Ã�Ö�ºUÀpÃ Õ ¾�Ær¾>ºU¿OÖ�ºjÀ4»�Ú;ØHß�¾·Æ1ÆrØ>ÀU¾HÞU×�Ø�ÙOÅr»�Âm¾·Æ®Æ\ÃÄ»4Ø>ºjÛ
»�Ã Õ ¾>Å)ÙOÅr»�Âm¾·Æ®ÆáUØTºU¿��h�m�n�m�¤Ëm��ájØTº�¾TÁO¾>ºOÃ\¿O¾>ºF»�Ã�Ö�ºjÀvÃ Õ ¾*ÅZ¾mÂn¾>ÙUÃ�Ö²»�º

179



»�Ú
Ø�ß�¾·Æ®Æ®Ø>ÀU¾�ÞU×sØpÙOÅr»�Âm¾·Æ®ÆTâ � ¾>Ã
Ei

¿O¾nºj»�Ã²¾*Ã Õ ¾QÆr¾>Ã[»�Ú�¾TÁO¾>ºOÃÉÆ
»�Ú;ÙOÅr»�Âm¾·Æ1Æ

i
ØTºU¿3½�¾>Ã

E
¿O¾nºj»�Ã�¾ ⋃

i Ei

â�ë4½²Æ®»jáO½�¾>Ã��
⊆ E × EÞj¾x¿U¾ Ü ºj¾n¿�Ø·Æ)ÚZ»�½�½²»�¼�Æ�âõ�â

e
�

e′
Ö²Ú

e
ØTºj¿

e′
ØTÅZ¾*¾TÁ�¾nºOÃÉÆ�»OÚ\Ã Õ ¾4Æ®ØTß�¾�ÙOÅr»�Âm¾·Æ®Æ
ØTºj¿

eÕ ØTÙOÙj¾nºFÆ\Ö�ß�ß�¾n¿OÖ²Ø>Ã�¾m½¤×�ÞF¾nÚZ»�Å¬¾
e′
á

�#â
e
�

e′
Ö�Ú

e
ÖÄÆ�Ã Õ ¾�Æ¬¾>ºj¿Q¾TÁO¾>ºOÃ#»OÚdØ�ß�¾�Æ®ÆrØnÀO¾*ØTÃ\Æ®»�ß�¾xÙOÅr»OÛ

Ân¾�Æ®Æ4Ø>ºU¿
e′
ÖÄÆ�Ã Õ ¾�Âm»�ÅqÅ¬¾·ÆZÙF»�ºj¿�Ö�ºUÀ�ÅZ¾mÂn¾nÖ¤Á�¾�¾TÁ�¾nºOÃ
»OÚ Ã Õ ¾

ß�¾·Æ1ÆrØ>ÀU¾�Ø>ÃUÃ Õ ¾ ÅZ¾mÂ>Ö�ÙUÖ²¾>ºOÃUÙOÅr»�Âm¾·Æ1Æ�âÔ)Õ ¾4ÙFØ�ÅZÃ�Ö²Øn½;»�ÅZ¿U¾TÅ
≺
ÖÄÆ Ã Õ ¾�Ã�ÅrØTºFÆ¬Ö�Ã�Ö¤Á�¾QÂn½²»UÆ¬Ý�Å¬¾Q»�Ú
Ã Õ ¾�ÅZ¾m½�Ø>Ã�ÖÄ»�º

�3â Ô�Õ ÖÉÆ�ÙFØ�ÅZÃ�Ö²Øn½5»�Å¬¿O¾>Å�ÂmØ�ÙjÃ�ÝOÅZ¾�Æ
Ã Õ ¾4�T�J¨��®�J¢���� ¯QÅZ¾m½�Ø>Ã�ÖÄ»�º�ØTß�»�ºUÀ
Ã Õ ¾ç¾TÁ�¾nºOÃÉÆ�Ö�ºð¿�Ö²ÚÉÚh¾TÅ¬¾>ºOÃ
ÙOÅr»�Âm¾·Æ1Æ¬¾·ÆQØTºj¿`ÀOÖ¤Á�¾�Æ�Ø>ºðØTÞJÆ¬Ã¤ÅrØ>ÂnÃ�ÖÄ»�º
»�Ú)Ã Õ ¾ ± ����²�®�¤©O¨���� ± �>¡��
�
¨��¤�j�²��¡O��¿O¾nºj»�Ã²¾n¿vÞj×

C = (E,≺)
â�÷hº

¼ Õ ØTÃdÚZ»�½�½�»�¼�Æáj¼�¾�ØmÆ®Æ¬ÝOß�¾3ØTº9Ø�ÅhÞUÖ�Ã¤ÅrØ�ÅZ×�Þ�ÝUÃ Ü éO¾n¿ç¿�ÖÉÆZÃ�ÅhÖ�Þ�ÝOÃ²¾n¿
Âm»�ß3ÙjÝOÃÄØTÃ�Ö²»�º

C
â � ¾nÃ5ÝFÆ�¿O¾ Ü ºU¾��ñØmÆ�Ã Õ ¾*ÅZ¾��J¾TéUÖ¤Á�¾�ØTºj¿3Ã¤ÅrØTºJÆZÖÄÛ

Ã�Ö¤ÁO¾�Ân½²»UÆ¬Ý�Å¬¾�»�Ú��3âJ÷qº`í#Ö²À#â+õ·á
e11

�
e23
Ø>ºU¿îÃ Õ ¾TÅ¬¾nÚZ»�Å¬¾�Ø>½ÄÆr»

e11 ≺ e23
â �4»�¼�¾TÁ�¾TÅZá+¾TÁO¾>ºåÃ Õ »�ÝUÀ Õ

e12 6
�

e23
áx¼�¾ Õ Ø�Á�¾

e12 ≺ e23
ØmÆ#ÙOÅr»�Âm¾·Æ1Æ �*ÀO¾nÃÄÆ;Ø+ß�¾�Æ®ÆrØnÀO¾+ÚÉÅr»�ß'ÙOÅr»�Ân¾�Æ®Æ ��¼ Õ Ö²Â Õ

Âm»�ºUÃ²Ø>Ö�ºJÆ;¹OºF»�¼�½�¾m¿OÀU¾ »�Ú
e12
â

Ô�Õ ¾4¢�¡j�T�J¢������F���*»OÚ)Ø ÙUÅ¬»OÂn¾�Æ®Æ)ÖÄÆHØTÞJÆZÃ�ÅrØ>Â>Ã²¾n¿3»�ÝUÃFÖ�º3Ã²¾TÅZßçÆ
»OÚ
Ø�Æ¬¾nÃd»OÚ�¾TÁ�¾nºOÃÉÆ�â�í5»�Å

e ∈ E
¼�¾4¿O¾ Ü ºU¾

↓e
def
= {e′ | e′

�
e}
á

Ã Õ ØTÃ[ÖÉÆ1á
↓e
ÖÉÆ�Ã Õ ¾�Æ¬¾>Ã+»�Ú�¾TÁ�¾nºOÃÉÆ�Ã Õ Ø>Ã)ÂmØTÝJÆrØn½�½�×sÙOÅ¬¾nÂn¾m¿O¾

e
âUí5»�Å

e ∈ Ei

á#¼�¾3ÂmØ>ºsÃ Õ Ö�ºO¹L»OÚ
↓e
ØmÆ�Ã Õ ¾3½²»�ÂmØn½�ÆZÃÄØTÃ²¾�»�Ú+ÙOÅr»�Âm¾·Æ1Æ

i¼ Õ ¾>º�Ã Õ ¾x¾TÁ�¾nºOÃ
e
Õ ØmÆ �¬ÝJÆZÃ#»�ÂmÂ>Ý�ÅhÅ¬¾n¿#â

üY¾�¾TéOÃ²¾>ºj¿�Ã Õ ¾3¿U¾ Ü ºUÖ�Ã�Ö²»�º9»OÚ��Qá
≺
ØTºj¿��/ÃÄ»9½�»OÂmØ>½�Æ¬Ã²Ø>Ã�¾�Æ

ÆZÝUÂ Õ Ã Õ Ø>Ã
↓e
�
↓e′
Ö²ÚÉÚ

e
�

e′
á
↓e ≺ ↓e′

Ö�ÚÉÚ
e ≺ e′

áTØTºj¿
↓e

�
↓e′Ö�ÚÉÚ

e
�

e′
âTüY¾xÝJÆ¬¾ Ã Õ ¾*ÆZ×Uß3ÞF»�½ÄÆ

si

á
s′i
á
s′′i
ØTºj¿vÆr»Q»�ºQÃ²»�ÅZ¾>ÙOÅ¬¾mÛ

Æ¬¾>ºUÃ#Ã Õ ¾*½�»OÂmØn½\ÆZÃÄØTÃ²¾·Æ�»OÚ;ÙOÅr»�Âm¾·Æ®Æ
i
âmü`¾�Øn½²Æ®»�ØmÆ1ÆZÝOß�¾pÃ Õ Ø>Ã5¾mØnÂ Õ

½�»OÂmØ>½jÆZÃÄØTÃ²¾
si

»OÚ5¾mØnÂ Õ ÙUÅ¬»OÂn¾�Æ®Æ
i
ØmÆ1Ær»�ÂnÖ²Ø>Ã�¾�ÆdÁ�Ø>½�ÝU¾�Æ;ÃÄ»�Ær»�ß�¾ ½�»UÛÂmØ>½5Á�Ø�ÅZÖ²ØTÞj½�¾·Æ

Vi

ájØ>ºU¿3Ã Õ ØTÃ
si(v)

¿U¾>ºj»�Ã�¾�Æ
Ã Õ ¾�Á�Ø>½�ÝU¾4»OÚ
Ø�Á�ØTÅhÖÄÛ
Ø�Þj½�¾

v ∈ Vi

Ö�ºQÃ Õ ¾�½²»�Â·Ø>½JÆZÃÄØTÃ²¾
si

ØTÃjÙOÅr»�Âm¾·Æ®Æ
i
â

üY¾îÝJÆ¬¾`Ã Õ ¾Lºj»�Ã²Ø>Ã�ÖÄ»�º
causal j(si)

ÃÄ»(Å¬¾nÚh¾TÅ3Ã²»CÃ Õ ¾î½²ØTÃ²¾·Æ¬Ã
ÆZÃÄØTÃ²¾v»OÚ�ÙUÅ¬»OÂn¾�Æ®Æ

j
»�ÚH¼ Õ Ö²Â Õ ÙOÅr»�Âm¾·Æ®Æ

i
¹OºF»�¼�Æ ¼ Õ Ö�½�¾QÖ�ºLÆZÃÄØTÃ²¾

si

âUí5»�Åhß�Øn½�½�×�á
causal j(si) = sj

¼ Õ ¾>ÅZ¾
sj

ÖÉÆpØ3Æ¬Ã²Ø>Ã�¾�Ø>ÃdÙOÅr»OÛ
Ân¾·Æ1Æ

j
ÆZÝjÂ Õ Ã Õ ØTÃ

sj

�
si

ØTºU¿YÚZ»�Å�Ø>½�½xÆZÃÄØTÃ²¾·Æ
s′j
Ö�ºîÙUÅ¬»OÂn¾�Æ®Æ

j
¼*Ö�Ã Õ

s′j
�

si

¼�¾ Õ Ø�Á�¾
s′j

�
sj

â;í5»�Å�¾>éjØTß3ÙF½�¾�á;Ö�º(í#Ö�ÀjÛ
Ý�Å¬¾!õ

causal1(↓e23) = ↓e12
â � »�Ã²¾(Ã Õ ØTÃ4Ö²Ú

i = j
Ã Õ ¾nº

causal j(si) = si

â

m1

p3

p2

p1

e31 e32 e33

e22 e23

e11 e12

m4

m3

m2

�	��
���������������������������! "�#�%$&�' ��)(�*�+�����' ��! ,��+-

.�Í0/21)� �FÏ�Ñ �FÑ �YÓq�����UÓh�+Ò�� �FÑ43 ��%65�Ð)�j�	78�Ð�9dÓh�
÷hº�»�Å¬¿O¾>ÅdÃÄ»QÅ¬¾mØmÆ®»�º�Ø�ÞJ»�ÝOÃJÃ Õ ¾*ÀU½�»�ÞFØ>½F¿OÖÄÆ¬Ã¤ÅZÖ¤Þ�ÝUÃ�¾m¿3Âm»�ß3ÙjÝOÃÄØnÛ

Ã�ÖÄ»�º�½²»�Â·Ø>½�½¤×�á ��ÿ Ô��åÕ ØmÆ Ø�Æ¬¾nÃd»OÚ)Ã Õ Å¬¾n¾*ºU¾T¼ìÁ�ØTÅhÖÄØTºUÃÄÆH»OÚ
�q�
�§�TÇ
���>�Q�¤�+¡���m�h�F�¤¡F�h�TáT¼ Õ »jÆ¬¾
Å¬»O½�¾
ÖÉÆ\Ã²»p¾TÁ�Ø>½�ÝjØ>Ã�¾HØTº�¾TéOÙOÅ¬¾·Æ1ÆZÖÄ»�º�»�Å5Ø

Úh»�Åhß�Ýj½�Ø
Ö�º4Ã Õ ¾x¢��O��OÊn�j¡�¥��������F��� »OÚ5Ø+Å¬¾>ß�»�Ã�¾+ÙUÅ¬»OÂn¾·Æ1Æ�âü`¾�ÂmØ>½�½
ÆZÝjÂ Õ Ø>ºç¾TéOÙOÅ¬¾·Æ1ÆZÖÄ»�ºç»�Å�ØQÚh»�Åhß�Ýj½�ØQ�q�>�4¡U����â�÷hºsØn¿O¿OÖ�Ã�Ö²»�º�ÃÄ»�Ã Õ ¾¾TÙjÖÄÆ¬Ã�¾nß�Ö�Â�»�ÙF¾TÅrØTÃÄ»�Å®Æ1á·¼�¾4Øn¿O¿vÃ Õ ¾*Âm»�ºFÆZÃ�ÅZÝUÂ>Ã �

let ~k = ~ξ in F
�

Ã²» ��ÿ Ô�� Ã²»sÞjÖ�ºj¿L¾TéOÙOÅ¬¾·Æ®Æ¬Ö²»�ºFÆxÃÄ».½�»OÂmØn½�½²»�À�Ö²Â�Á�ØTÅhÖÄØ�ÞF½�¾�Æ�Ã Õ ØTÃ
ÂmØ>º4Þj¾ ÅZ¾mÚq¾>ÅqÅ¬¾n¿pÞj×vØ>º�×�¾TéOÙOÅ¬¾·Æ®Æ¬Ö²»�ºQ»�Å[ÚZ»�ÅZß�ÝU½²ØHÖ�º

F
â

Ô)Õ ¾HÖ�ºOÃ�ÝOÖ�Ã�ÖÄ»�º*ÝUºU¿O¾>ÅZ½�×OÖ�ºUÀ �
ÿ Ô�� ÖÄÆdÃ Õ ØTÃO¾·Ø>Â Õ ÙUÅ¬»OÂn¾�Æ®Æ\ß�ØT×
Þj¾�Ø·Æ®Ær»OÂ>ÖÄØTÃ²¾n¿LØ�½²»�Â·Ø>½)ÚZ»�ÅZß�ÝU½²Øv¼ Õ Ö²Â Õ á#¿OÝU¾vÃÄ»9Ã Õ ¾�¾TÙjÖÄÆ¬Ã�¾nß�Ö�Â»�ÙF¾TÅrØTÃÄ»�Å®Æ1á�Â·ØTºpÅ¬¾nÚh¾TÅ#ÃÄ»pÃ Õ ¾�ÀO½²»�ÞFØn½OÆZÃÄØTÃ²¾x»�ÚFÃ Õ ¾�¿OÖÄÆ¬Ã¤ÅZÖ�Þ�ÝOÃ²¾n¿4ÆZ×JÆrÛ
Ã�¾nß.â Ô)Õ ¾�Æ¬¾�ÚZ»�ÅZß�ÝU½²Ø>¾�Ø�Å¬¾pÅZ¾mæ�ÝUÖ¤Å¬¾n¿vÃÄ»QÞj¾4Á�Øn½¤Ö²¿�ØTÃ#Ã Õ ¾�ÅZ¾�ÆhÙj¾mÂmÛ
Ã�Ö�Á�¾çÙOÅr»�Ân¾�Æ®Ær¾·Æv¿�ÝOÅhÖ�ºUÀ(Ø9¿�ÖÉÆZÃ�ÅZÖ¤Þ�ÝUÃ�¾m¿YÂ·»�ß3ÙjÝOÃÄØTÃ�Ö²»�º5â Ô)Õ ¾9¿�ÖÉÆrÛ
Ã¤ÅZÖ�Þ�ÝOÃ²¾n¿�Â·»�ß3ÙjÝOÃÄØTÃ�Ö²»�ºQÆrØTÃ�ÖÉÆ Ü ¾�Æ)Ã Õ ¾�ÆhÙF¾nÂnÖ Ü Â·ØTÃ�Ö²»�ºQ¼ Õ ¾>ºvØn½�½jÃ Õ ¾
½�»OÂmØn½#Úh»�Åhß�Ýj½�Øn¾�Ø�Å¬¾�Æ Õ »�¼*º�ÃÄ»�Æ®ØTÃ�ÖÄÆrÚA×�Ã Õ ¾4Â·»�ß3ÙjÝOÃÄØTÃ�Ö²»�º5â � ¾>éOÃAá
¼�¾xÚZ»�ÅZß�Ø>½�½¤×Q¿O¾·ÆrÂTÅZÖ¤ÞF¾�Ã Õ ¾�ÆZ×OºUÃ²Ø>éQØTºj¿vÆr¾>ß�ØTºUÃ�Ö²Â·Æ�»�Ú �
ÿ Ô�� â
:';=<>;@?&A)B�CED�F
÷qºpÃ Õ ¾ Æ¬¾næOÝU¾m½ÄáT¼ Õ ¾>ºj¾TÁ�¾TÅF¼�¾+Ã²Øn½¤¹�Ø�ÞJ»�ÝOÃ�Ø>º ��ÿ Ô�� Úh»�Åhß�Ýj½�Ø�á

Ö�Ã�ÖÉÆ\Ö�ºpÃ Õ ¾HÂ·»�ºOÃ²¾TéUÃ�»OÚJØ
ÙFØ�ÅZÃ�Ö�ÂnÝU½²Ø�ÅjÙOÅr»�Ân¾�Æ®Æá Õ Ø�ÁOÖ�ºjÀxÃ Õ ¾+ºFØTß�¾
i
âü`¾+ÂmØ>½�½�ÆZÝjÂ Õ ÚZ»�ÅZß�ÝU½²Ø>¾

i
Ç ª ¡j�Z�Q¨U¢§�F�)ØTºj¿ ½�¾>Ã

Fi, F
′
i

á�¾nÃ�ÂOâ á¿U¾>ºj»�Ã�¾
Ã Õ ¾>ß.â·ë4¿O¿OÖ�Ã�Ö²»�ºjØn½�½�×�á�¼�¾*Ö�ºUÃ¤År»�¿OÝUÂm¾�Ã Õ ¾*ºF»�Ã�Ö²»�º�»�Ú)¾TéOÙOÅ¬¾·Æ1ÆZÖÄ»�ºFÆ
½�»OÂmØn½�Ã²»*Ø
ÙOÅr»�Âm¾·Æ1Æ

i
ÂmØ>½�½�¾n¿�ØmÆ

i
Çq�¬«1���h�>�®���¤¡��U�dØ>ºU¿*½�¾>Ã

ξi, ξ
′
i

á>¾>Ã²Â�â á
¿O¾nºj»�Ã²¾�Ã Õ ¾nß.âJ÷qºjÚh»�Åhß�Øn½�½�×�á5ØTº

i
Ûq¾TéOÙOÅ¬¾·Æ®Æ¬Ö²»�º.ÖÄÆQØTºY¾Té�ÙUÅZ¾�Æ®Æ¬Ö²»�º

»�Á�¾>ÅFÃ Õ ¾�ÀU½�»�ÞFØn½OÆZÃÄØTÃ²¾x»�ÚJÃ Õ ¾xÆ¬×FÆ¬Ã�¾nß¸Ã Õ Ø>Ã�ÙOÅr»�Âm¾·Æ®Æ
i
ÖÄÆ[Â>Ý�ÅhÅ¬¾>ºOÃ²½�×

ØT¼�Ø�Å¬¾�»�Ú1â � »OÂmØ>½·ÙUÅZ¾m¿�Ö²ÂmØ>Ã�¾�Æ\»�º
i
Ûq¾TéOÙOÅ¬¾·Æ®Æ¬Ö²»�ºFÆ#Úh»�Åhß'Ã Õ ¾ Ø>Ã²»�ß�Ö�Â

ÙOÅr»�ÙJ»UÆZÖ�Ã�Ö²»�ºFÆd»�ºv¼ Õ Ö²Â Õ Ã Õ ¾�Ã²¾>ß3ÙF»�Å¬Øn½
i
ÛqÚh»�Åhß�Ýj½�Øn¾HØTÅZ¾ Þ�ÝOÖ²½¤Ãhâ

ü`¾¸Øn¿O¿ñÃ Õ ¾ï�h��������T�Q���!¡���m�h�F�¤¡F�h�
@∀JFj

Ø>ºU¿
@∃JFj¼ Õ Ö²Â Õ ÖÄÆ4Ã¤ÅZÝU¾çÖ²Ú*Ø>Ã Ø>½�½ � »�Å�Ær»�ß�¾�á5Å¬¾·ÆZÙj¾mÂ>Ã�Ö¤Á�¾n½�× � ÙOÅr»�Âm¾·Æ®Ær¾·Æ jÖ�º�Ã Õ ¾vÆ¬¾nÃ

J
á
Fj

Õ »O½�¿FÆ�âOòFÖ�ß�Ö²½�ØTÅZ½�×�áO¼�¾QØn¿O¿�Ã Õ ¾Q¾TÙjÖÄÆ¬Ã�¾nß�Ö�Â�»�ÙFÛ
¾TÅrØTÃÄ»�Å

@Jξj

¼ Õ Ö²Â Õ Å¬¾>Ã�Ý�ÅZºFÆðÃ Õ ¾ìÆr¾>Ãî»OÚ
j
Ûq¾Té�ÙUÅZ¾�Æ®Æ¬Ö²»�ºFÆ

ξjÚh»�Å�Ø>½�½*ÙOÅr»�Âm¾·Æ®Ær¾·Æ
j
Ö�º!Ã Õ ¾CÆ¬¾nÃ

J
â Ô�Õ ¾CÆ¬¾nÃÄÆ

J
ÂmØTºåÞF¾ð¾TéjÛ

ÙOÅ¬¾·Æ1Æ¬¾n¿ðÂ·»�ß3ÙJØ>Â>Ã²½�×YÝJÆZÖ�ºUÀ`ÙOÅ¬¾n¿OÖ�Â·ØTÃ²¾·Æ3»�ÁO¾TÅ
j
â[í5»�ÅQ¾>éjØTß3ÙF½�¾�á

J
ÂmØTº�Þj¾�Ã Õ ¾3Æ¬¾>ÃÉÆ

{j | j 6= a}
»�Å

{j | client(j)}
â Ô)Õ ¾4ÚZ»�½²Û

½�»�¼*Ö�ºUÀìÀOÖ¤Á�¾·Æ`Ã Õ ¾!ÚZ»�ÅZß�Ø>½sÆZ×OºUÃ²Ø>é/»�Ú ��ÿ Ô�� ¼*Ö�Ã Õ Å¬¾·ÆZÙj¾mÂ>Ã
Ã²»,ØîÙOÅr»�Ân¾�Æ®Æ

i
áH¼ Õ ¾TÅ¬¾

i
Ø>ºU¿

j
ØTÅZ¾`Ã Õ ¾LºFØTß�¾Y»�Ú3ØTº�×gÙOÅr»OÛ

Ân¾�Æ®Æ � ºF»�ÃOºj¾nÂm¾·Æ®Æ®Ø�ÅZÖ�½�×Q¿OÖÄÆ¬Ã�Ö�ºUÂnÃ � ã
Fi ::= true | false | P (~ξi) | ¬Fi | Fi op Fi GIHKJLGMJONQP�RSP%JLTMU"V

| �Fi | W · Fi | X Fi | Fi S Fi RSY#Z[G\J]HKU,V
| @∀JFj | @∃JFj Y"G^P_NQRSY#Z`PSa
| let ~k = ~ξi in Fi b P�T^cdP�T^e

ξi ::= c | vi | k | f(~ξi) f=g T^a,R�P_JLT^U,V
| @Jξj Y"G^P_NQRSY#Z`PSa

~ξi ::= (ξi, . . . , ξi)Ô)Õ ¾+Ö�º Ü é�»�ÙF¾TÅrØTÃÄ»�ÅJ¡��ÂmØTºpÞF¾+Ø>º�×xÞjÖ�ºFØ�ÅZ× ÙUÅ¬»�ÙF»UÆ¬Ö�Ã�ÖÄ»�ºjØn½·»�ÙFÛ
¾TÅrØTÃÄ»�Å�ÆZÝjÂ Õ ØmÆ

∧,∨,→,≡
â Ô)Õ ¾xÃ²¾TÅZß ~ξi

ÆZÃÄØTºU¿FÆ
Úh»�Å[Ø�Ã�Ý�Ùj½�¾*»�Ú
¾Té�ÙUÅZ¾�Æ®Æ¬Ö²»�ºFÆ[»�º�ÙUÅ¬»OÂn¾·Æ1Æ

i
â Ô)Õ ¾xÃ²¾TÅZß

P (~ξi)
ÖÉÆ
Ø � Âm»�ß3ÙjÝOÃÄØ�ÞF½�¾ �ÙOÅ¬¾n¿OÖ�Â·ØTÃ²¾+»�ÁO¾TÅJÃ Õ ¾+Ã�ÝOÙj½�¾ ~ξi

ØTºj¿
f(~ξi)

ÖÄÆ[Ø � Âm»�ß3ÙUÝUÃ²ØTÞj½�¾ � ÚqÝOºjÂmÛÃ�ÖÄ»�º.»�Á�¾>Å+Ã Õ ¾QÃ�Ý�Ùj½�¾�âUí5»�Å ¾TéFØTß3Ùj½�¾�á
P
ÂmØ>º�ÞF¾

<,≤, >,≥, =
â

òFÖ�ß�Ö�½²Ø�Å¬½¤×�áJÆr»�ß�¾3¾TéjØ>ß3Ùj½�¾·Æ »OÚ
f
Ø�Å¬¾

+,−, /, ∗
âih+Ø�ÅZÖ²ØTÞj½�¾·Æ

viÞj¾m½�»�ºUÀ�ÃÄ»�Ã Õ ¾3Æ¬¾nÃ
Vi

Âm»�ºOÃÄØTÖ�ºOÖ�ºUÀ�Øn½�½;Ã Õ ¾v½�»OÂmØn½dÆ¬Ã²Ø>Ã�¾3Á�Ø�ÅZÖÄØ�Þj½�¾·Æ
»�Ú5ÙOÅr»�Âm¾·Æ®Æ

i
â
c
ÆZÃÄØT×JÆ)ÚZ»�Å[Âm»�ºFÆ¬Ã²Ø>ºOÃÉÆ1ám¾�â À#â á

0
á
1
á
3.14
â

:';�jk;@?	l\mnD!B�C�oqp\r
Ô)Õ ¾LÆ¬¾nß�ØTºUÃ�Ö²Â·ÆQ»�Ú �
ÿ Ô�� ¾TéOÃ²¾>ºj¿jÆ4Ã Õ ¾9Ær¾>ß�ØTºUÃ�Ö²Â·Æv»OÚ�ý�þ�Û

ÿ Ô�� ÞU×s¿O¾ Ü ºOÖ�ºUÀ�Ã Õ ¾QÃ Õ Å¬¾n¾vÁ�Ø�ÅZÖÄØTºOÃÉÆ »OÚH¾TÙUÖÉÆZÃ²¾>ß�Ö²Â�»�ÙF¾TÅrØTÃÄ»�Å®Æ

180



C, si, [e] |= @∀JFj P f_f ∀j . (j ∈ J)→ C, sj , [e] |= Fj � � Y,HQY sj = causal j(si)
C, si, [e] |= @∃JFj P f_f ∃j . (j ∈ J) ∧ C, sj , [e] |= Fj � � Y,HQY sj = causal j(si)
C, si, [e] |= let (k, . . . , k′) = (ξi, . . . , ξ

′

i) in Fi P f_f C, si, [e, k 7→ (C, si, [e])[[ξi]], . . . , k
′ 7→ (C, si, [e])[[ξ

′

i]]] |= Fi

(C, si, [e, k 7→ val ])[[k]] = val

(C, si, [e])[[@Jξj ]] = {(C, sj , [e])[[ξj ]] | sj = causal j(si) ∧ j ∈ J}

�!��$	��� �!�!����� ��-' ,���!� +�� �
ÿ Ô��
ØTºU¿gÃ Õ ¾`ÞUÖ�ºU¿�Ö�ºUÀ,»�Ùj¾>Å¬Ø>Ã²»�Åhâ Ô)Õ ¾ðÆ¬¾nß�ØTºOÃ�Ö²Â·Æ�ÖÄÆçÀOÖ¤Á�¾>ºgÞU×,ÅZ¾·Û
Â>Ý�Å®ÆZÖ�Á�¾n½�×.¿O¾ Ü ºOÖ�ºUÀ9Ã Õ ¾sÆ®ØTÃ�ÖÄÆrÚqØnÂ>Ã�Ö²»�º.ÅZ¾m½�Ø>Ã�ÖÄ»�º

C, si, [e] |= Fi

á
¼ Õ ¾TÅ¬¾

[e]
ÖÉÆdØTº4¾nº�ÁOÖ¤År»�ºUß�¾>ºUÃmÂmØTÅqÅZ×OÖ�ºUÀ�Ã Õ ¾
ÞUÖ�ºU¿OÖ�ºjÀjÆ5Úh»�Å5¿�Ö²ÚÉÚq¾>ÅhÛ

¾>ºOÃU½�»OÀ�Ö²Â+Á�ØTÅhÖÄØ�ÞF½�¾�Æ\¼ Õ Ö²Â Õ ÀO¾nÃÄÆ\Ö�ºOÃ�År»�¿�ÝjÂn¾m¿ Þj×�Ã Õ ¾��
let


in

��
»�Ùj¾>Å¬Ø>Ã²»�Åhâ

(C, si, [e])[[ξi]]
ÖÄÆ�Ã Õ ¾îÁ�Øn½¤Ýj¾`»OÚ4Ã Õ ¾Y¾Té�ÙUÅZ¾�Æ®ÆZÖÄ»�º

ξiÖ�ºçÃ Õ ¾3Æ¬Ã²Ø>Ã�¾
si

ÝUºU¿U¾TÅ
Ã Õ ¾v¾>º�ÁOÖ¤År»�ºUß�¾>ºOÃ
[e]
â Ô Ø�Þj½�¾.õ�ÚZ»�ÅZß�Ø>½�½¤×

À�Ö¤Á�¾�Æ[Ã Õ ¾�Æ¬¾nß�ØTºUÃ�Ö²Â·Æ+»�Ú;Ã Õ ¾�ºU¾T¼à»�Ùj¾>Å¬Ø>Ã²»�ÅrÆ�»�Ú
�
ÿ Ô�� â·í5»�Å[Ã Õ ¾
Æ¬¾>ß�Ø>ºOÃ�Ö�Â�Æ+»�Ú)»�Ã Õ ¾>Å�»�Ùj¾>Å¬Ø>Ã²»�ÅrÆ)Ã Õ ¾�ÅZ¾·Ø>¿U¾TÅ®Æ
ØTÅZ¾�Å¬¾nÚh¾TÅhÅZ¾m¿4ÃÄ»9ô�úOörâ
ü`¾�ØmÆ1ÆZÝUß�¾�Ã Õ ØTÃ+¾Té�ÙUÅZ¾�Æ®ÆZÖÄ»�ºJÆ*Ø�Å¬¾vÙOÅr»�ÙF¾TÅ¬½¤×9Ã�×�Ùj¾m¿#â Ô ×�ÙjÖ�Â·Ø>½�½¤×
Ã Õ ¾·Æ¬¾xÃ�×OÙj¾�Æ[¼�»�Ýj½�¿*ÞF¾��
	����������������������������
	����#ám¾>Ã²Â�â
ü`¾ Ø>½ÄÆr»�Ø·Æ®ÆZÝUß�¾HÃ Õ ØTÃ

si, s
′
i, s

′′
i , . . .

ØTÅZ¾xÆ¬Ã²Ø>Ã�¾�Æ[»�ÚjÙUÅ¬»OÂn¾�Æ®Æ
i
Ø>ºU¿

sj , s
′
j , s

′′
j , . . .

Ø�Å¬¾pÆ¬Ã²Ø>Ã�¾�Æ�»OÚ#ÙUÅ¬»OÂn¾�Æ®Æ
j
â

��Í���Ð[Ï�Óh�1Ð)�jÓhÏ 9Y� 7�9dÐ)�jÓq� � %
Ô »�ß�»�ºOÖ�ÃÄ»�Å ��ÿ Ô�� ÚZ»�ÅZß�ÝU½²Ø>¾*Ö�ºsØ�¿O¾mÂn¾>ºUÃ¤ÅrØ>½�Ö²ên¾n¿3¼�ØT×�áU¼�¾

ÆZ×OºUÃ Õ ¾·Æ¬Ö�êm¾ ± �§�����1��©O¨O��� ± �4¡O�F���¤¡F�h��ØmÆvÚZ»�½�½�»�¼�ÆTâ5í5»�Å�¾mØ>Â Õ ÙOÅr»OÛ
Ân¾·Æ1Æ�Ã Õ ¾TÅ¬¾îÖÉÆ9ØðÆ¬¾TÙJØ�ÅrØTÃ²¾îß�»�ºOÖ�Ã²»�ÅZá+ÂmØn½�½�¾n¿Øð¢�¡j�T�J¢��4¡��F����¡j�1á
¼ Õ Ö²Â Õ Â Õ ¾mÂ>¹FÆJÃ Õ ¾
½²»�Â·Ø>½ �
ÿ Ô�� ÚZ»�ÅZß�ÝU½²Ø>¾
ØTºU¿�ÂmØ>º*Ø>Ã�ÃÄØ>Â Õ Øn¿O¿�ÖÄÛ
Ã�ÖÄ»�ºFØ>½JÖ�ºUÚZ»�ÅZß�ØTÃ�Ö²»�ºQÃÄ»�Ø>º�×�»�ÝOÃ²ÀU»�Ö�ºjÀvß�¾·Æ®Æ®Ø>ÀU¾�â Ô)Õ ÖÉÆ+Ö�ºUÚZ»�ÅZß�ØnÛ
Ã�ÖÄ»�º�Â·ØTºçÆZÝOÞJÆr¾næ�Ýj¾>ºUÃ�½�×vÞj¾4¾TéUÃ¤ÅrØ>ÂnÃ�¾m¿QÞU×�Ã Õ ¾4½²»�Â·Ø>½Jß�»�ºOÖ�Ã²»�Å
»�º
Ã Õ ¾pÅZ¾mÂn¾>Ö�Á�Ö�ºUÀ�ÆZÖ²¿O¾�¼*Ö�Ã Õ »�ÝUÃ5Â Õ ØTºUÀOÖ�ºjÀ�Ã Õ ¾4ÝOºU¿U¾TÅ¬½¤×UÖ�ºjÀvÆr¾>ß�ØTºFÛ
Ã�Ö²Â·Æ*»OÚHÃ Õ ¾�¿�ÖÉÆZÃ�ÅhÖ�Þ�ÝOÃ²¾n¿�ÙOÅr»�À�Å¬Ø>ß.â Ô)Õ ¾3½²»�Â·Ø>½[ß�»�ºOÖ�Ã²»�Å »OÚ�¾mØnÂ ÕÙOÅr»�Ân¾�Æ®Æ

i
ß�Ø>Ö�ºUÃ²Ø>Ö�ºJÆ)Ø"!$#�%'& ��)( 	 !h +*\þ�%,�¿UØ>Ã²ØmÛhÆ¬Ã¤ÅZÝUÂnÃ�ÝOÅZ¾

KVi

áFÆ¬Ã²»�ÅhÖ�ºUÀ�ÚZ»�ÅH¾mØnÂ Õ ÙOÅr»�Âm¾·Æ1Æ
j
Ö�º�Ã Õ ¾QÆ¬×FÆ¬Ã�¾nß Ã Õ ¾�ÆZÃÄØTÃ�ÝFÆ »OÚ

Ø>½�½[Ã Õ ¾�ÆrØ>Úh¾>Ã�×sÙF»O½¤Ö²ÂT×LÆZÝ�ÞJÛAÚZ»�ÅZß�ÝU½²Ø>¾vØTºj¿.Æ¬Ý�ÞJÛA¾TéOÙOÅ¬¾·Æ1ÆZÖÄ»�ºFÆHÅZ¾·Û
Úq¾>ÅqÅZÖ�ºjÀpÃ²»

j
Ã Õ Ø>Ã

i
ÖÄÆ�ØT¼�Ø�Å¬¾x»�Ú1â Ô)Õ ¾�¹OºF»�¼�½�¾m¿OÀO¾HÁ�¾mÂ>ÃÄ»�Å

KVi

ÖÉÆ
Ø�ÙOÙF¾>ºj¿O¾n¿ Ã²»�Ø>º�×�ß�¾�Æ®Æ®Ø>ÀO¾ Ær¾>ºOÃ�ÞU×

i
âü Õ ¾nº�ÙF¾TÅ¬Úh»�Åhß�Ö�ºUÀ�ØTº*Ö�ºFÛ

Ã�¾>ÅhºFØ>½�Âm»�ß3ÙUÝUÃ²Ø>Ã�ÖÄ»�º4ÆZÃ²¾TÙ5áTÃ Õ ¾xÆ¬Ã²Ø>Ã�ÝJÆ[»�Ú#Ã Õ ¾�½�»OÂmØ>½OÚh»�Åhß�Ýj½�Øn¾+Ø>ºU¿
¾Té�ÙUÅZ¾�Æ®ÆZÖÄ»�ºJÆFÖÉÆdØTÝUÃ²»�ß�ØTÃ�Ö�Â·Ø>½�½¤×pÝ�ÙF¿UØTÃ²¾n¿xÖ�º*Ã Õ ¾H½²»�ÂmØn½�¹OºF»�¼�½�¾m¿OÀO¾
Á�¾nÂnÃ²»�Åhâ®ü Õ ¾>ºpÅZ¾mÂn¾nÖ¤Á�Ö�ºUÀpØ+ß�¾·Æ®Æ®Ø>ÀU¾+ÚAÅr»�ß¸Ø>ºj»�Ã Õ ¾>ÅUÙUÅ¬»OÂn¾�Æ®Æ1áTÃ Õ ¾
¹Oºj»�¼�½�¾n¿UÀO¾QÁ�¾nÂnÃ²»�ÅHÖÉÆ�Ý�ÙF¿UØ>Ã�¾m¿�Ö²ÚHÃ Õ ¾vÅZ¾mÂn¾nÖ¤Á�¾n¿çß�¾·Æ1ÆrØnÀO¾3Âm»�ºjÛ
Ã²Ø>Ö�ºJÆ+ß�»�Å¬¾*Å¬¾nÂn¾nºOÃ\¹Oºj»�¼�½�¾n¿UÀO¾�Ø�ÞJ»�ÝUÃ\ØTº�×�ÙOÅr»�Ân¾�Æ®Æ+Ö�º�Ã Õ ¾3ÆZ×FÆ®Û
Ã�¾nß.â Ô »�¿j»�Ã Õ ÖÉÆ1ájØ4Ær¾næOÝU¾>ºjÂn¾pºOÝUß3Þj¾>Ådºj¾n¾m¿jÆHØ>½ÄÆr»vÃÄ»vÞF¾*ß�ØTÖ�ºjÛ
Ã²Ø>Ö�ºj¾n¿�ÚZ»�Å\¾·Ø>Â Õ ÙUÅ¬»OÂn¾�Æ®Æ;Ö�º4Ã Õ ¾�¹Uºj»�¼�½�¾n¿OÀU¾
ÁO¾nÂ>ÃÄ»�ÅZâ ��ºU½�Ö�¹U¾4ô�úOöZá
Ã Õ ¾�¾>ºUÃ¤ÅZÖ²¾·Æ »OÚ-!$#�%'& ��)( 	 !h +*\þ�%,`Ø�Å¬¾�ÆZ×Oß3ÞJ»�½�Ö�Â�¾Té�ÙUÅZ¾�ÆrÛ
ÆZÖÄ»�ºFÆ�Ö�ºFÆ¬Ã�¾·Ø>¿.»�ÚxÁ�Ø>½�ÝU¾·ÆTâ Ô�Õ ÖÉÆ�ÖÄÆ*¿OÝU¾vÃÄ»sÃ Õ ¾�ÚqØ>ÂnÃ)Ã Õ ØTÃ+Ø>½�½)Ã Õ ¾½�»OÀ�Ö²ÂxÁ�Ø�ÅZÖÄØ�Þj½�¾·Æ[Å¬¾nÚh¾TÅhÅZ¾m¿�Ö�º�Ø>ºv¾TéOÙOÅ¬¾·Æ1ÆZÖÄ»�ºv»�Å�Ø�ÚZ»�ÅZß�ÝU½²Ø>¾ ß�ØT×
ºj»�Ã#Þj¾�Ø�Á�Ø>Ö�½²Ø�ÞF½�¾4Ø>Ã5Ã Õ ¾�Ã�Ö�ß�¾Q»�Ú�¾TÁ�Øn½¤ÝFØTÃ�Ö²»�º�»�Ú)Ã Õ ¾�¾>é�ÙOÅ¬¾·Æ1ÆZÖÄ»�º
»�Å\Ã Õ ¾pÚZ»�ÅZß�ÝU½²Ø�â Ô)Õ ¾>ÅZ¾mÚh»�ÅZ¾�á>Ã Õ ¾x¾TÁ�Ø>½�ÝjØ>Ã�ÖÄ»�º�»OÚ;ØxÚh»�Åhß�Ýj½�Øx»�Å)ØTº
¾Té�ÙUÅZ¾�Æ®ÆZÖÄ»�ºpß�ØT×pÞF¾�ÙJØ�ÅZÃ�ÖÄØ>½Éá>Âm»�ºUÃ²Ø>Ö�ºUÖ�ºjÀxÃ Õ ¾�Á�ØTÅhÖÄ»�ÝJÆ#½²»�ÀOÖ�Â�Á�ØTÅhÖÄÛ
Ø�Þj½�¾·ÆTâ Ô)Õ ¾4½²»�ÀOÖ�Â�Á�ØTÅhÖÄØ�ÞF½�¾�Æ
Ö�º�Ã Õ ¾·Æ¬¾�Úh»�Åhß�Ýj½�Øn¾*»�Å
¾TéOÙOÅ¬¾·Æ®Æ¬Ö²»�ºFÆ
Ø�Å¬¾�Å¬¾TÙF½�ØnÂn¾m¿ Þj×�ØnÂ>Ã�ÝjØn½�Á�Ø>½�ÝU¾·Æ;»�ºUÂn¾+Ã Õ ¾T×�Þj¾mÂm»�ß�¾HØ�Á�Ø>Ö�½²Ø�ÞF½�¾Oâ®ë
¿O¾>ÃÄØTÖ²½�¾n¿v¿�ÖÉÆ¬Â>ÝJÆ®Æ¬Ö²»�º�»�ÚdÃ Õ ¾�Ø>½�ÀU»�ÅhÖ�Ã Õ ß/ÖÉÆ
Þj¾T×F»�ºj¿4Ã Õ ¾�Æ¬Â·»�ÙF¾*»OÚ

Ã Õ ÖÄÆxÆ Õ »�ÅhÃ#ÙFØ�ÙF¾TÅZâ��4»�¼�¾TÁ�¾TÅZá·ÅZ¾·Ø>¿O¾>ÅrÆHØTÅZ¾�ÅZ¾mÚq¾>ÅqÅ¬¾n¿vÃÄ»9ô�úUá �Oö)ÚZ»�Å
Ær»�ß�¾�»�Ú\Ã Õ ¾pÆ¬Ö�ß�Ö²½²Ø�ÅdÖ�¿U¾mØmÆTâ
. Í�/9Ð[Ï � 7qÒ���ÓhÐ[Ï
ü`¾9Þj¾m½¤Ö²¾TÁ�¾sÃ Õ ØTÃ�Ã Õ ¾.½²»�ÀOÖ�Â ��ÿ Ô�� ÙOÅ¬¾·Ær¾>ºUÃ�¾m¿îÖ�º(Ã Õ ÖÄÆ�ÙJØnÛ

Ùj¾>ÅjÖÉÆ;Ø[ÙJ»�¼�¾TÅ¬ÚAÝj½>ÝOºj¿O¾>ÅZ½�×OÖ�ºUÀxÆZÙj¾nÂnÖ Ü ÂmØTÃ�ÖÄ»�º�ÚZ»�ÅZß�Ø>½�ÖÉÆZß'ÚZ»�ÅJ¿�ÖÉÆrÛ
Ã¤ÅZÖ�Þ�ÝOÃ²¾n¿4ÆZ×JÆZÃ²¾>ßçÆ�â>òjÙF¾nÂnÖ Ü Â·ØTÃ�Ö²»�ºFÆ\¾TéOÙOÅ¬¾·Æ®Ær¾n¿�ØmÆ ��ÿ Ô�� ÚZ»�ÅZß�ÝjÛ
½�Øn¾HÂmØTº�Þj¾+¾nÚAÚq¾mÂ>Ã�Ö¤Á�¾n½�×xß�»�ºOÖ�Ã²»�ÅZ¾m¿Fá1¾TÁ�¾nºxÖ�º*Ã Õ ¾+Â·»�ºUÃ�¾TéUÃ�»OÚF½�ØTÅhÀO¾Æ¬Â·Ø>½�¾ »�Ùj¾nºp¿OÖÄÆ¬Ã¤ÅZÖ�Þ�ÝOÃ²¾n¿4ÆZ×JÆZÃ²¾>ßçÆ�â �4»�¼�¾TÁ�¾>ÅZá1Ö�Ã�ÖÄÆ[¼*»�ÅhÃ Õ ¼ Õ Ö�½�¾
Ã²»
Ö�º�Á�¾�ÆZÃ�Ö�ÀjØTÃ²¾x»�Ã Õ ¾>Å)¾TéOÃ²¾>ºJÆZÖÄ»�ºFÆ[Ã Õ ØTÃFÖ�ºUÂTÅ¬¾mØ·Æ¬¾xÖ�ÃÉÆ+¾Té�ÙUÅZ¾�Æ®Æ¬Ö¤Á�¾>ºj¾·Æ1Æ
¼*Ö�Ã Õ »�ÝOÃJÆrØ>Â>ÅhÖ Ü ÂnÖ�ºjÀ4Ã Õ ¾x¾mÚ Ü ÂnÖ�¾nºUÂT×Q»OÚ5ß�»�ºOÖ�Ã²»�ÅhÖ�ºUÀ5â
�Y�10�Ï�Ð�2 7 �FÑ 9 ��% �FÏ��1�
Ô)Õ ¾ Ü Å®ÆZÃ#Ã Õ Å¬¾n¾*ØTÝUÃ Õ »�Å®Æ)ØTÅZ¾4ÆZÝOÙOÙJ»�ÅZÃ�¾m¿4Ö�ºQÙJØ�ÅZÃjÞU×vÃ Õ ¾�ÿ�ë�ó43më
÷53 Ô è Ô ë�ò+!63#Å¬»OÀ�ÅrØTßsá�Âm»�ºOÃ�Å¬ØnÂ>Ãîí �87Uú97 �jÛ:7;7UÛ �UÛ57 �1<�újá�Ã Õ ¾
ÿxë�ó43·ë ÷>=�è � �+ò Ô 3JÅr»�À�Å¬Ø>ßsá�Âm»�ºUÃ¤ÅrØ>ÂnÃ í � ��ú\õ �OÛ57;õnÛ
? ÛõA@97;BFáYÃ Õ ¾ è � ó 	�ÅrØTºOÃ � 79797dõ
�FÛ:7 �UÛ�õ>Û579B;õ �jáîØTºU¿ Ã Õ ¾
"C»�ÃÄ»�År»�½²Ø 	�Å¬Ø>ºOÃ4ó43\òDC�� �,ë ��Ô â Ô)Õ ¾C½²ØmÆ¬Ã3Ø>ÝOÃ Õ »�Å�ÖÄÆYÆZÝOÙFÛ
ÙF»�ÅhÃ²¾n¿pÖ�º*ÙFØ�ÅZÃ�Þj×�Ã Õ ¾ �®»�Ö�ºUÃ � òFí1E � ë�òJë'À�ÅrØTºOÃ ?4? óxÛ57 � ����� � �\â
F �1G
�F� �FÏ � �F�
H:IKJMLONQP R-SUTWVYXWTUV[Z]\^V`_9a'bdc�ef\:ghNjiWejk;NleATnm�oOT]Pqp r4sYb sO\>p t�uhXfPqpqeAT

v m�bw xfL�y)m�bw xAZUz5{}| JdV g Z Y"~U~f�^�W� {;�U� ���f� {)�O� �^�U��J f����4� _
�}�]� V^�
NKY | PSY,H��ia#PSY,T^a#YW�O� �W�;Ih{ � �U� � �H � J����U� g Z U,TIT ��� edHQY#Y#P�TOe�R%J`cdP NKU#eLHQY Y �)aTUTUX]� Ne����fP�XfPqp NQPqpquKNK{ �]���U� {IK�U� � �H��UJ����8� UEH=HqPSTOeIY,H {}���8� JdVSc b Y"Hqe {1�-�f� U | Y,V g TOc { U"T^c �-� � Y,T � � g VSY �
b U NKY c H g TIRSP�Z�Y | Y,HqP�¡>a U,R�P%JdT �£¢ TM¤ \�eUu shshVfp�TU¥UN$e^��¦]P�i¨§5TfP�sO\:TUX]y
P�p�eATWXf�_�eAT©�ªsO\�sKTfuhs$eATnbªsO\5p t�uhXfPqp�eUTAR+«¨eAVfs ��_�iWshuKgªp TW¥¬XUTWVa®]y
NQP�\¯XWuªPA§5TfPqsª\qk)\©s P X]Pqp�eUT v bf«l_9a'§Ww xO°fz5{ª| JdV g Z Y�� �W�U� J f9±;� _
�8�

H � J����
² U,eIP�T {
³h�
� U"V GMY"HqT {'´
�)µ JONKY]N { U,TOc µ¶�
· U"HQcdP �`m�sKXWN¸eUTfp TW¥
Xf®UefoUP]¹�TfeAº��shVU¥UsA�1µM¢©»¨¼ HQYLN N {9IQ�U� ~ �H ~ J����'µ Y#Y#T^UK½MN � P[U"T^c ���'� U"Z�U"T gQ¾ U,Z �D� Y]U]NKJdTIP�T^e U b J g R Z YLN5�
N U#eIY GMU]N NQP�T^e P�T¿¡iTOP�RSY4NQR%U,RSY Y#T | P HKJdTIZ Y,TOR_N � ¢ T §5TfP�sO\:TUX]y
P�p�eATWXf��_�ef�q��eUÀfoUpqoArÁeUTMaoWP�eAr�XfP�XAR ± XUTW¥foOXU¥UsKN¨XWTUV ¤ \�eO¥8\©XWr-y
r-p TW¥ v §Q_9a ± ¤ w xUxUz5{ | JdV g Z Y I � ~ � J f9±9� _
�}�

H � J¬�-� �iY#T {A��� · U"HQc � U"T {U�Â�ª� e � U {]{ U,TOc �Â�O� JON Ã g ��� f ¡ a#PSY,TOR\cIY a#Y#Tf�
R�HKU"V�P�Ä#Y c Z�JLTOP�R%J]HqPSTOe J f N U f Y#RqÅ PST cdP_NQR HqP b g RSY c�N:Å\NqR%Y,Z N �Æ¢ T�¤ \�e]yu s sKV]p TU¥WN�e^�4SWÇfP�i-§5TfP�sO\:TUXfP�p�eATWXf�+_�eAT©�ªsª\©sKTfuhs-eUT��fe^�OP�º�X]\�s � TW¥fp�yTfshsO\>p TU¥ v §Q_
� � w xA°Wz v � e�a)kWk1shX]\:z>�

181



Statistical Model Checking of Black-Box
Probabilistic Systems

Koushik Sen, Mahesh Viswanathan, Gul Agha
Department of Computer Science,

University of Illinois at Urbana-Champaign.
{ksen,vmahesh,agha}@uiuc.edu

Abstract. We propose a new statistical approach to analyzing stochas-
tic systems against specifications given in a sublogic of continuous
stochastic logic (CSL). Unlike past numerical and statistical analysis
methods, we assume that the system under investigation is an unknown,
deployed black-box that can be passively observed to obtain sample traces,
but cannot be controlled. Given a set of executions (obtained by Monte
Carlo simulation) and a property, our algorithm checks, based on statisti-
cal hypothesis testing, whether the sample provides evidence to conclude
the satisfaction or violation of a property, and computes a quantitative
measure (p-value of the tests) of confidence in its answer; if the sample
does not provide statistical evidence to conclude the satisfaction or vio-
lation of the property, the algorithm may respond with a “don’t know”
answer. We implemented our algorithm in a Java-based prototype tool
called VeStA, and experimented with the tool using case studies ana-
lyzed in [15]. Our empirical results show that our approach may, at least
in some cases, be faster than previous analysis methods.

1 Introduction

Stochastic models and temporal logics such as continuous stochastic logic
(CSL) [1, 3] are widely used to model practical systems and analyze their per-
formance and reliability. There are two primary approaches to analyzing the
stochastic behavior of such systems: numerical and statistical. In the numerical
approach, the formal model of the system is model checked for correctness with
respect to the specification using symbolic and numerical methods. Model check-
ers for different classes of stochastic processes and specification logics have been
developed [8, 14, 13, 4, 5, 2, 6]. Although the numerical approach is highly accu-
rate, it suffers from being computation intensive. An alternate method, proposed
by Younes and Simmons [16], is based on Monte Carlo simulation and sequen-
tial hypothesis testing. Being statistical in nature, this approach is less accurate
and only provides probabilistic guarantees of correctness. The approach does
not assume knowledge of a specific formal model for the system being analyzed,
and therefore can be potentially applied to analyzing complex dynamical sys-
tems such as generalized semi-Markov processes (GSMPs), for which symbolic
and numerical methods are impractical. However, the Younes and Simmons’ ap-
proach assumes that the system is controllable (not black-box) and can be used
to generate sample executions from any state on need basis.

Both the numerical and the current statistical methods suffer from several
serious drawbacks when it comes to analyzing practical systems. First, modern
day systems are large heterogeneous, and assembled by integrating equipment

182

goodelle
Text Box
Appendix N: 



and software from diverse vendors, making the construction of a formal model of
the entire system often impossible and thus limiting the feasibility of numerical
and symbolic methods. Second, for large network systems, meaningful experi-
ments may involve dozens or even thousands of routers and hosts, which would
mean that the system needs to be deployed before reasonable performance mea-
sures can be obtained. However, once they are deployed, such systems cannot be
controlled to generate traces from any state, making it impossible to generate
execution samples on a need basis as is required by the Younes et. al’s statistical
approach.

Despite the success of current analysis methods [10, 13, 12, 15, 8], there is
therefore a need to develop methods to analyze stochastic processes that can be
applied to deployed, unknown “black-box” systems (systems from which traces
cannot be generated from any state on need) 1. In this paper we address these
concerns by proposing a new statistical approach to model checking. Like in
Younes et. al’s approach, discrete event simulation methods are used to obtain a
set of sample executions; however, unlike their method we assume no control over
the set of samples we obtain. We then test these samples using various statistical
tests determined by the property to be verified. Since we assume that the sam-
ples are generated before testing, our algorithm relies on statistical hypothesis
testing, rather than sequential hypothesis testing. Our inability to generate sam-
ples of our choosing and at the time of our choosing ensures that our approach
differs from the previous statistical approach in one significant way: unlike the
previous approach where the model checker’s answer can be guaranteed to be
correct within the required error bounds, we instead compute a quantitative
measure of confidence (the p-value, in statistical testing terminology [11]) in
the model checker’s answer. Our algorithm computes the satisfaction of the de-
sired formula by recursively determining the satisfaction of its subformulas (and
the confidence of such an answer) in the “states” present in the sample. This
presents a technical challenge because our algorithm, being statistical in nature,
may be uncertain about the satisfaction of some formulas based on the given
samples. The algorithm needs to compute useful answers (as far as possible)
even in the presence of uncertain answers about the satisfaction of subformulas.
We overcome this challenge by interpreting such “don’t know” answers in an
adversarial fashion. Our algorithm, thus checks if the sample provides evidence
for the satisfaction or violation of a property and the confidence with which such
an assertion holds, or gives up and says “don’t know.” The algorithm that we
propose suffers from one drawback when compared with the previous statistical
approach. Since we analyze a fixed sample, we will get useful answers only when
there are sufficient samples for each “relevant state.” Therefore our method is
likely to work well only when a finite set of samples is enough to provide sufficient

1 We assume that the samples generated from the system by discrete event simulation
have information about the “system state”. We, however, make no assumptions
about the transition structure of the underlying system, nor do we assume knowledge
about the transition probabilities; the system under investigation is black-box in this
sense.

2

183

goodelle
Rectangle



information about relevant states. Examples of systems we can successfully an-
alyze are Continuous-time Markov Chains (CTMCs) or systems whose relevant
states are discrete, while we are unlikely to succeed for GSMPs in general.

A closely related approach to analyzing stochastic systems based on Monte
Carlo simulation is by Herault et. al. [7], which can model-check discrete-time
Markov chains against properties expressed in an expressively weak logic (“pos-
itive LTL”).

We have implemented the whole procedure in Java as a prototype tool, called
VeStA (Verification based on Statistical Analysis).2 We have experimented
with VeStA by applying it to some examples that have been previously analyzed
in [15] and the results are encouraging. However, we suspect that VeStA would
require a lot more space, because it stores the entire collection of samples it is
analyzing. Even though space was not a problem for the examples we tried, we
suspect that it may become an issue later.

The rest of the paper is organized as follows. Section 2 defines the class of
systems we analyze and the logic we use. In Section 3, we present our algorithm
based on statistical hypothesis testing in detail. Details about VeStA and our
case studies are presented in Section 4. In Section 5, we conclude and present
possible directions for future research.

2 Preliminaries

2.1 Sample Execution Paths

The verification method presented here can be independent of the system model
as long as we can generate sample execution paths of the system; the model
and its definition are very similar to [16]. We will assume that the system being
analyzed is some discrete event system that occupies some state s ∈ S, where S
is the set of states of the system. The states in S that can effect the satisfaction
of a property of our interest are called the “relevant states.” Note that the num-
ber of relevant states may be quite small compared to the whole state space of
the system. For example, for a formula φ1 U≤tφ2 the states that can be reached
within time t are relevant. We assume that each relevant state can be uniquely
identified and that information about a state’s identity is available in the exe-
cutions. Since samples are generated before running our analysis algorithm, we
require that a Monte Carlo simulation is likely to generate a sample that has
enough “information” about the relevant states; if not our algorithm is likely to
say that it cannot infer anything about the satisfaction of the property.

We assume that there is a labeling function L that assigns to each state a set
of atomic propositions (from among those appearing in the property of interest)
that hold in that state; thus L : S → 2AP , where AP is a set of relevant atomic
propositions. The system remains in a state s until an event occurs, and then
proceeds instantaneously to a state s′. An execution path that appears in our
sample is thus a sequence

π = s0
t0→ s1

t1→ s2
t2→ · · ·

2 Available from http://osl.cs.uiuc.edu/~ksen/vesta/

3

184

goodelle
Rectangle



where s0 is the unique initial state of the system, si is the state of the system
after the ith event and ti is the time spent in state si. If the kth state of this
sequence is absorbing, then si = sk and ti = ∞ for all i ≥ k.

We denote the ith state in an execution π by π[i] = si and the time spent
in the ith state by δ(π, i). The time at which the execution enters state π[i + 1]
is given by τ(π, i + 1) =

∑j=i
j=0 δ(π, j). The state of the execution at time t (if

the sum of sojourn times in all states in the path exceeds t), denoted by π(t), is
the smallest i such that t ≤ τ(π, i + 1). We let Path(s) be the set of executions
starting at state s. We assume Path(s) is a measurable set (in an appropriate
σ-field) and has an associated probability measure.

2.2 Continuous Stochastic Logic

Continuous stochastic logic (CSL) is introduced in [1] as a logic to express prob-
abilistic properties of continuous time Markov chains (CTMCs). In this paper
we adopt a sublogic of CSL (excluding unbounded untils and stationary state
operators) as in [16]. This logic excludes the steady-state probabilistic opera-
tors and the unbounded until operators. We next present the syntax and the
semantics of the logic.
CSL Syntax

φ ::= true | a ∈ AP | ¬φ | φ ∧ φ | P./p(ψ)

ψ ::= φ U≤tφ | Xφ

where AP is the set of atomic propositions, ./ ∈ {<,≤, >,≥}, p ∈ [0, 1], and
t ∈ R≥0. Here φ represents a state formula and ψ represents a path formula. The
notion that a state s (or a path π) satisfies a formula φ is denoted by s |= φ (or
π |= φ), and is defined inductively as follows:
CSL Semantics

s |= true s |= a iff a ∈ AP(s)
s |= ¬φ iff s 6|= φ s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2

s |= P./p(ψ) iff Prob{π ∈ Path(s) | π |= ψ} ./ p
π |= Xφ iff τ(π, 1) < ∞ and π[1] |= φ

π |= φ1 U≤tφ2 iff ∃x ∈ [0, t]. (π(x) |= φ2 and ∀y ∈ [0, x). π(y) |= φ1)

A formula P./p(ψ) is satisfied by a state s if Prob[path starting at s satisfies
ψ] ./ p. To define probability that a path satisfies ψ we need to define a σ-algebra
over the set of paths starting at s and a probability measure on the corresponding
measurable space in a way similar to [5]. The path formula Xφ holds over a path
if φ holds at the second state on the path. The formula φ1 U≤tφ2 is true over a
path π if φ2 holds in some state along π at a time x ∈ [0, t], and φ holds along
all prior states along π. This can also be recursively defined as follows:

Sat(si
ti→ πi+1, φ1 U≤tφ2)

= (t ≥ 0) ∧ (Sat(si, φ2) ∨ (Sat(si, φ1) ∧ Sat(πi+1, φ1 U≤t−tiφ2))) (1)

where Sat(s, φ) (or Sat(π, ψ)) are the propositions that s |= φ (or π |= ψ). This
definition will be used later to describe the algorithm for verification of φ1U≤tφ2

formula.

4

185

goodelle
Rectangle



3 Algorithm

In what follows we say that s |=A φ if and only if our algorithm (denoted by A)
says that φ holds at state s. Since the algorithm is statistical, the decision made
by the algorithm provides evidence about the actual fact. In our approach, we
bound the strength of this evidence quantitatively by a number in [0, 1] which
gives the probability of making the decision given that the decision is actually
incorrect. In statistics, this is called the p-value of the testing method. We denote
it by α3 and write s |= φ if the state s actually satisfies φ.

We assume that we are given a set of finite executions. The length of a finite
execution path must be large enough so that all the bounded until formulas can
be evaluated on that path. Given a set of sample execution paths starting at the
initial state and a formula φ, the algorithm works recursively as follows:

verifyAtState(φ, s){
if cache contains (φ, s) return cache(φ, s);

else if φ = true then (z, α) ← (1, 0.0);

else if φ = a ∈ AP then (z, α) ← verifyAtomic(a, s);

else if φ = ¬φ′ then (z, α) ← verifyNot(¬φ′, s);
else if φ = φ1 ∧ φ2 then (z, α) ← verifyAnd(φ1 ∧ φ2, s);

else if φ = P./p(ψ) then (z, α) ← verifyProb(P./p(ψ), s);

store (s, φ) 7→ (z, α) in cache;

return (z, α);

}
where verifyAtState returns a pair having 0, 1, or undecided corresponding to
the cases s |=A φ, s 6|=A φ, or A cannot decide respectively, as the first compo-
nent, and p-value for this decision as the second component. To verify a system
we check if the given formula holds at the initial state. Once computed, we store
the decision of the algorithm for φ at state s in a cache to avoid recomputation.
The result of our hypothesis testing can be shown to hold in presence of caching.
This results in a significantly faster running time and a reduction in the sam-
ple set size. In the remainder of this section we define the various procedures
verifyAtomic, verifyAnd, verifyNot, and verifyProb recursively.

The key idea of the algorithm is to statistically verify the probabilistic oper-
ator. We present the corresponding procedure verifyProb below.
3.1 Probabilistic Operator
We use statistical hypothesis testing [11] to verify a probabilistic property φ =
P./p(ψ) at a given state s. Without loss of generality we show our procedure for
φ = P≥p(ψ). This is because, for the purpose of statistical analysis, P<p(ψ) is
essentially the same as ¬P≥1−p(ψ) and < (or >) is in effect the same as ≤ (or
≥). Let p′ be the probability that ψ holds over paths starting at s. We say that
s |= P≥p(ψ) if and only if p′ ≥ p and s 6|= P≥p(ψ) if and only if p′ < p. We
want to decide either s |= P≥p(ψ) or s 6|= P≥p(ψ). Accordingly we set up two
experiments. In the first experiment, we use sample execution paths starting

3 This should not be confused with the Type I error which is also denoted by α

5

186

goodelle
Rectangle



at s to test the null hypothesis H0 : p′ < p against the alternative hypothesis
H1 : p′ ≥ p. In the second experiment, we test the null hypothesis H0 : p′ ≥ p
against the alternative hypothesis H1 : p′ < p.4

Let the number of sample execution paths having a state s somewhere in the
path be n. We can treat the portion of all these paths starting at s (suffix) as
samples from Path(s). Let X1, X2, . . . , Xn be a random sample having Bernoulli
distribution with unknown parameter p′ ∈ [0, 1] i.e. for each i ∈ [1, n], Prob[Xi =
1] = p′. Then the sum Y = X1 + X2 + . . . + Xn has binomial distribution with
parameters n and p′. We say that xi, an observation of the random variable
Xi, is 1 if the ith sample execution path satisfies ψ and 0 otherwise. In the
first experiment, we reject H0 : p′ < p and say s |=A P≥p(ψ) if

∑
xi

n ≥ p and
calculate the p-value as α = Prob[s |=A φ | s 6|= φ] = Prob[Y ≥ ∑

xi | p′ < p].
Note we do not know p′. Therefore, to calculate α we use p which is an upper
bound for p′. If we are not able to reject H0 in the first experiment then we do
the second experiment. In the second experiment, we reject H0 : p′ ≥ p and say
s 6|=A P≥p(ψ) if

∑
xi

n < p and calculate the p-value as α = Prob[s 6|=A φ | s |=
φ] = Prob[Y <

∑
xi | p′ ≥ p]. Thus, a smaller α represents a greater confidence

in the decision of the algorithm A.

3.2 Nested Probabilistic Operators

The above procedure for hypothesis testing works if the truth value of ψ over
an execution path determined by the algorithm is the same as the actual truth
value. However, in the presence of nested probabilistic operators in ψ, A cannot
determine the satisfaction of ψ over a sample path exactly. Therefore, in this
situation we need to modify the hypothesis test so that we can use the inexact
truth values of ψ over the sample paths.

Let the random variable X be 1 if a sample execution path π actually satisfies
ψ in the system and 0 otherwise. Let the random variable Z be 1 for a sample
execution path π if π |=A ψ and 0 otherwise. In our procedure we cannot get
samples from the random variable X; instead our samples come from the ran-
dom variable Z. Let X and Z have Bernoulli distributions with parameters p′

and p′′ respectively. Let Z1, Z2, . . . , Zn be a random sample from the Bernoulli
distribution with unknown parameter p′′ ∈ [0, 1]. We say that zi, an observation
of the random variable Zi, is 1 if the algorithm says that the ith sample execution
path satisfies ψ and 0 otherwise.

For the formula φ = P≥p(ψ) we calculate regions of indifference, denoted by
the fractions δ1 and δ2, based on the algorithm’s decision for the satisfaction
of ψ over the different sample paths. Depending on the values of δ1 and δ2 we
set up the two experiments. In the first experiment, we test the null hypothesis
H0 : p′′ ≤ p + δ1 against the alternative hypothesis H1 : p′′ > p + δ1. If we get∑

zi

n > p + δ1 we reject H0 and say s |=A P≥p(ψ) with p-value α = Prob[s |=A
φ | s 6|= φ] = Prob[

∑
Zi >

∑
zi | p′′ ≤ p + δ1]. If we fail to reject H0 we

4 While handling nested probabilistic operators, these experiments will no longer be
symmetric. Moreover, setting up these two experiments is an alternate way of getting
at a conservative estimate of what Type II error (β value) may be.

6

187

goodelle
Rectangle



go for the second experiment, in which the null hypothesis H0 : p′′ ≥ p − δ2

against the alternative hypothesis H1 : p′′ < p − δ2. We reject H0 and say that
s 6|=A P≥p(ψ) if

∑
zi

n < p − δ2 and calculate the p-value as α = Prob[s 6|=A φ |
s |= φ] = Prob[

∑
Zi <

∑
zi | p′′ ≥ p − δ2]. Otherwise, we say the algorithm

cannot decide.
We now show how to calculate δ1 and δ2. Using the samples from Z we can

estimate p′′. However, we need an estimation for p′ in order to decide whether
φ = P≥p(ψ) holds in state s or not. To get an estimate for p′ we note that the
random variables X and Z are related as follows:

Prob[Z = 0 | X = 1] ≤ α′ Prob[Z = 1 | X = 0] ≤ α′

where α′ is the p-value calculated while verifying the formula ψ. By elementary
probability theory, we have

Prob[Z = 1] = Prob[Z = 1 | X = 0]Prob[X = 0] + Prob[Z = 1 | X = 1]Prob[X = 1]

Therefore, we can approximate p′′ = Prob[Z = 1] as follows:

Prob[Z = 1] ≤ α′(1− p′) + 1.p′ = p′ + (1− p′)α′

Prob[Z = 1] ≥ Prob[Z = 1 | X = 1]Prob[X = 1] ≥ (1− α′)p′ = p′ − α′p′

This gives the following range in which p′′ lies:

p′ − α′p′ ≤ p′′ ≤ p′ + (1− p′)α′

Hence, Prob[
∑

Zi >
∑

zi | p′ ≤ p] ≤ Prob[
∑

Zi >
∑

zi | p′ = p] ≤
Prob[

∑
Zi >

∑
zi | p′′ = p − α′p] which gives δ2 = α′p. Similarly, we get

δ1 = (1− p)α′.
Note that the p-value obtained while verifying ψ over different sample paths

are different. We take the worst or the maximum of all such p-values as α′.
Moreover, since A can say true, false, or cannot decide, note that the A may not
have a definite true or false answer along certain sample paths. For such paths
the algorithm will assume the worst possible answer in the two experiments. For
the first experiment, where we check whether

∑
zi

n > p+ δ1, we take the answers
for the sample paths for which A cannot decide as false and the p-value as 0.
For the second experiment we consider the answer for the undecided paths to
be true and the p-value as 0. This allows us to obtain useful answers even when
the sample does not have enough statistical evidence for the satisfaction of a
subformula.

Thus we can define the procedure verifyProb(P≥p(ψ), s) as follows:

verifyProb(P≥p(ψ), s){
zsummin ← 0; zsummax ← 0; α′ ← 0.0; n ← 0;

for each sample path π starting at s{
(z, α′′) ← verifyPath(ψ, π);

if z =undecided then {zsummin ← zsummin + 1; zsummax ← zsummax + 0;}
else {zsummin ← zsummin + z; zsummax ← zsummax + z;}
α′ ← max (α′, α′′); n ← n + 1;

7

188

goodelle
Rectangle



}
if zsummax/n > p + (1− p)α′ then

return (1,Prob[
∑

Zi > zsummax | p′′ = p + (1− p)α′]);
else if zsummin/n < p− pα′ then

return (0,Prob[
∑

Zi < zsummin | p′′ = p− pα′]);
else return (undecided , 0.0);

}
One can calculate Prob[

∑
Zi > zsummax | p′′ = p+(1−p)α′] (or Prob[

∑
Zi >

zsummin | p′′ = p − pα′]) by noting that
∑

Zi has binomial distribution with
parameters p + (1− p)α′ (or p− pα′) and n.

3.3 Negation

For the verification of a formula ¬φ at a state s, we recursively verify φ at state
s. If s |=A φ with p-value α we say that s 6|=A ¬φ with p-value Prob[s 6|=A ¬φ |
s |= ¬φ] = Prob[s |=A φ | s 6|= φ] = α. Similarly, if s 6|=A φ with p-value α then
s |=A ¬φ with p-value α. Otherwise, if A cannot answer the satisfaction of φ at
s, we say that A cannot answer the satisfaction of ¬φ at s. Thus we can define
verifyNot as follows:

verifyNot(¬φ′, s){
(z, α) ← verifyAtState(φ′, s);
if z =undecided then return (undecided , 0.0); else return (1− z, α);

}

3.4 Conjunction

To verify a formula φ = φ1 ∧ φ2 at a state s, we verify φ1 and φ2 at the state s
separately. Depending on the outcome of the verification of φ1 and φ2, A decides
for φ as follows:

1. If s |=A φ1 and s |=A φ2 with p-values α1 and α2 respectively, then s |=A φ.
The p-value for this decision is Prob[s |=A φ1 ∧ φ2 | s 6|= φ1 ∧ φ2]. Note that
s 6|= φ1 ∧ φ2 holds in three cases, namely 1) s 6|= φ1 and s |= φ2, 2) s |= φ1

and s 6|= φ2, and 3) s 6|= φ1 and s 6|= φ2. Thus, the p-value for the decision
of s |=A φ can be taken as the maximum of the p-values in the above three
cases which is max (α1, α2).

2. If s 6|=A φ1 (or s 6|=A φ2) and either s |=A φ2 or A cannot decide φ2 at s (or
either s |=A φ1 or A cannot decide φ1 at s), then s 6|=A φ and the p-value is
Prob[s 6|=A φ1 ∧ φ2 | s |= φ1 and s |= φ2] = α1 + α2 (or α2 + α1).

3. If s 6|=A φ1 and s 6|=A φ2 then s 6|=A φ1 ∧ φ2. The p-value for this decision is
Prob[s 6|=A φ1 ∧ φ2 | s |= φ1 and s |= φ2] ≤ α1 + α2.

4. Otherwise, A cannot decide φ.

Thus we can define the procedure verifyAnd as follows:

verifyAnd(φ1 ∧ φ2, s){
(z1, α1) ← verifyAtState(φ1, s); (z2, α2) ← verifyAtState(φ2, s);

8

189

goodelle
Rectangle



if z1 = 1 and z2 = 1 then return (1,max (α1, α2));

else if z1 = 0 and z2 6= 0 then return (0, α1 + α2);

else if z1 6= 0 and z2 = 0 then return (0, α1 + α2);

else if z1 = 0 and z2 = 0 then return (0, α1 + α2);

else return (undecided , 0.0);

}
3.5 Atomic Proposition

In this simplest case, given φ = a and a state s, A checks if s |=A a or not
by checking if a ∈ AP(s) or not. If a ∈ AP(s) then s |=A φ with p-value 0.
Otherwise, s 6|=A φ with p-value 0.

verifyAtomic(a, s){
if a ∈ AP(s) then return (1, 0.0); else return (0, 0.0);

}
3.6 Next

To verify a path formula ψ = Xφ over a path π, A verifies φ at the state
π[1]. If π[1] |=A φ with p-value α then π |=A ψ with p-value α. Otherwise, if
π[1] 6|=A φ with p-value α then π 6|=A ψ with the same p-value. Thus we can
define verifyPath for Xφ as follows:

verifyPath(Xφ, π){
return verifyAtState(φ, π[1]);

}
3.7 Until

Let ψ = φ1 U≤tφ2 be an until formula that we want to verify over the path π.
We can recursively evaluate the truth value of the formula over the path π by
following the recursive definition given by Equation 1. Given the truth value and
the p-value for the formula φ1U≤t′−tiφ2 over the suffix πi+1, we can calculate the
truth value of φ1 U≤t′φ2 over the path πi by applying the decision procedure for
conjunction and negation. Observe that the recursive formulation in Equation 1
can be unrolled to obtain an equation purely in terms of conjuction and negation
(and without any until formulas); it is this “unrolled” version that is used in the
implementation for efficiency reasons.

4 Implementation and Performance

We have implemented the above algorithm as part of a prototype Java tool
called VeStA. We successfully used the tool to verify several programs having
a CTMC model.5 The performance of the verification procedure depends on the
number of samples required to reach a decision with sufficiently small p-value. To
get a smaller p-value the number of samples needs to be increased. We need a lot
of samples only when the actual probability of a path from a state s satisfying a
5 We selected systems with CTMC model so that we can compare our results with

that of existing tools.

9

190

goodelle
Rectangle



formula ψ is very close to the threshold p in a formula P./p(ψ) whose satisfaction
we are checking at s.

To evaluate the performance and effectiveness of our implementation we did
a few case studies. We mostly took the stochastic systems used for case studies
in [15]. The experiments were done on a 1.2 GHz Mobile Pentium III laptop
running Windows 2000 with 512 MB memory.6 We did not take into account the
time required for generating samples: we assumed that such samples come from
a running system. However, this time, as observed in some of our experiments,
is considerably less than the actual time needed for the analysis. We generated
samples of length sufficient to evaluate all the time-bounded until formulas. In
all of our case studies we checked the satisfaction of a given formula at the ini-
tial state. We give a brief description of our case studies below followed by our
results and conclusions. The details for the case studies can be obtained from
http://osl.cs.uiuc.edu/~ksen/vesta/.

Grid World: We choose this case study to illustrate the performance of our
tool in the presence of nested probabilistic operators. It consists of an n × n
grid with a robot located at the bottom-left corner and a janitor located at the
top-right corner of the grid. The robot first moves along the bottom edge of a
cell square and then along the right edge. The time taken by the robot to move
from one square to another is exponentially distributed. The janitor also moves
randomly over the grid. However, either the robot or the janitor cannot move to
a square that is already occupied by the other. The robot also randomly sends
a signal to the base station. The underlying model for this example is a CTMC.
The aim of the robot is to reach the top-right corner in time T1 units with prob-
ability at least 0.9, while maintaining a minimum 0.5 probability of communica-
tion with the base station with periodicity less than T2 units of time. This can be
specified using the CSL formula P≥0.9(P≥0.5(trueU≤T2communicate)U≤T1goal).

10-2

10-1

100

101

102

102 103 104 105 106 107

tim
e 

in
 s

ec

no. of states

101

102

103

104

102 103 104 105 106 107

no
. o

f s
am

pl
es

no. of states

Fig. 1. Grid world: verification time and number of samples versus number of states.

We verified the CSL property for Grid World with n ∈ [1, 100]. The property
holds only for n ∈ [1, 13]. The state space of the program is Θ(n3). In Fig.1 we
6 [15] used a 500 MHz Pentium III. However, our performance gain due to the use of

faster processor is more than offset by the use of Java instead of C.

10

191

goodelle
Rectangle



plot the results of our experiment. The graph shows that for n closer to 13 the
running time and the number of samples required increases considerably to get a
respectable p-value of around 10−8. This is because at n = 13 the probability that
P≥0.5(true U≤T2communicate) U≤T1goal holds over an execution path becomes
very close to 0.9. We found that our graphs are similar to [15].

Cyclic Polling System: This case study is based on a cyclic server polling
system, taken from [12]. The model is represented as a CTMC. We use N to
denote the number of stations handled by the polling server. Each station has a
single-message buffer and they are cyclically attended by the server. The server
serves the station i if there is a message in the buffer of i and then moves on to
poll the station (i+1) modulo N . Otherwise, the server starts polling the station
i+1 modulo N . The polling and service times are exponentially distributed. The
state space of the system is Θ(N.2N ). We verified the property that “once a job
arrives at the first station, it will be polled within T time units with probability
at least 0.5.” The property is verified at the state in which all the stations have
one message in their message buffer and the server is serving station 1. In CSL
the property can be written as (m1 = 1) → P≥0.5(true U≤T (s = 1 ∧ a = 0 )),
where m1 = 1 means there is one message at station 1, and s = 1∧ a = 0 means
that the server is polling station 1.

Tandem Queuing Network: This case study is based on a simple tandem
queuing network studied in [9]. The model is represented as a CTMC which
consists of a M/Cox2/1-queue sequentially composed with a M/M/1-queue. We
use N to denote the capacity of the queues. The state space is Θ(N2). We verified
the CSL property P<0.5(true U≤T full) which states that the probability of the
queuing network becoming full within T time units is less than 0.5.

10-2

10-1

100

101

100 101 102 103

tim
e 

in
 s

ec

T in until formula

n=3
n=31

n=255

10-2

10-1

100

100 101 102 103 104

tim
e 

in
 s

ec

T in until formula

n=3
n=31

n=255

Fig. 2. Polling System and Tandem Queuing Network: Running time versus the pa-
rameter T in CSL formula.

The results of the above two case studies is plotted in Fig. 2. The character-
istics of the graphs for both the examples are similar to that in [15]. However,
while achieving a level of confidence around 10−8, the running time of our tool
for these cases is faster than the running time of the tool described in [15]. It
is important to observe that, unlike the work of [15], VeStA cannot guaran-
tee that the error of it’s probabilistic answer is bounded; the p-value computed
depends on the specific sample.

11

192

goodelle
Rectangle



We could not compare the number of samples for these case studies as they
are not available from [15]; theoretically sequential hypothesis testing should
require a smaller sample size than simple hypothesis testing to achieve the same
level of confidence. While in our case studies we never faced a memory problem,
we suspect that this may be a problem in very big case studies. We observed
that, although the state space of a system may be large, the number of states
that appeared in the samples may be considerably smaller. This gives us hope
that our approach may work as well for very large-scale systems.

5 Conclusion and Future Work

We have presented a new statistical approach to verifying stochastic systems
based on Monte Carlo simulation and statistical hypothesis testing. The main
difference between our approach and previous statistical approaches is that we
assume that the system under investigation is not under our control. This means
that our algorithm computes on a fixed set of executions and cannot obtain sam-
ples as needed. As a consequence, the algorithm needs to check for the satisfac-
tion of a property and compute the p-value of its tests. Since the sample may not
provide sufficient statistical evidence to conclude the satisfaction or violation of a
property, one technical challenge is to provide useful answers despite insufficient
statistical evidence for the satisfaction of subformulas. We implemented our ap-
proach in Java and our experimental case studies have demonstrated that the
running time of our tool is faster than previous methods for analyzing stochastic
systems in at least some cases; this suggests that our method may be a feasible
alternative.

Another important challenge is the amount of memory needed. Since we
store all the sample executions, our method is memory intensive, and though
we did not suffer from memory problems on the examples studied here, we sus-
pect that it will be an issue when analyzing larger case studies. Hence, there
is a need to design efficient data structures and methods to store and compute
with a large set of sample executions. We suspect statistical hypothesis testing
approaches (as opposed to sequential hypothesis testing approaches) might be
extendible to check liveness for certain types of systems, possibly by extract-
ing some additional information about the traces. Note that liveness properties
are particularly complicated by the fact that the operators may be nested. We
are currently exploring that direction. Finally, it would be interesting to apply
statistical methods to analyze properties described in probabilistic logics other
than CSL.

Acknowledgments

The work is supported in part by the DARPA IPTO TASK Award F30602-00-2-0586,
the DARPA IXO NEST Award F33615-01-C-1907, the DARPA/AFOSR MURI Award
F49620-02-1-0325, the ONR Grant N00014-02-1-0715, and the Motorola Grant MO-
TOROLA RPS #23 ANT. We would also like to acknowledge the contribution of Jose
Meseguer to this research. Our work has benefitted considerably from stimulating dis-
cussions with him and from our many years of collaboration on probabilistic rewriting
theories. We would like to thank Reza Ziaie for reviewing a previous version of this
paper and giving us valuable feedback.

12

193

goodelle
Rectangle



References

1. A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton. Verifying continuous-time
Markov chains. In 8th International Conference on Computer Aided Verification
(CAV’96), volume 1102, pages 269–276. Springer, 1996.

2. R. Alur, C. Courcoubetis, and D. Dill. Model-checking for probabilistic real-time
systems (extended abstract). In Proceedings of the 18th International Colloquium
on Automata, Languages and Programming (ICALP’91), volume 510 of LNCS,
pages 115–126. Springer, 1991.

3. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model-checking continuous-time
Markov chains. ACM Transactions on Computational Logic, 1(1):162–170, 2000.

4. C. Baier, E. M. Clarke, V. Hartonas-Garmhausen, M. Z. Kwiatkowska, and
M. Ryan. Symbolic model checking for probabilistic processes. In Proceedings
of the 24th International Colloquium on Automata, Languages and Programming
(ICALP’97), volume 1256 of LNCS, pages 430–440. Springer, 1997.

5. C. Baier, J. P. Katoen, and H. Hermanns. Approximate symbolic model checking
of continuous-time markov chains. In International Conference on Concurrency
Theory, volume 1664 of LNCS, pages 146–161. Springer, August 1999.

6. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic
systems. In Proceedings of 15th Conference on the Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS’95), volume 1026 of LNCS.

7. T. Herault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate Proba-
bilistic Model Checking. In Proceedings of Fifth International Conference on Ver-
ification, Model Checking and Abstract Interpretation (VMCAI’04), volume 2937
of LNCS, pages 73–84. Springer, 2004.

8. H. Hermanns, J. P. Katoen, J. Meyer-Kayser, and M. Siegle. A Markov chain
model checker. In Tools and Algorithms for Construction and Analysis of Systems
(TACAS’00), pages 347–362, 2000.

9. H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi-terminal binary decision
diagrams to represent and analyse continuous-time markov chains. In Proceed-
ings of 3rd International Workshop on the Numerical Solution of Markov Chains
(NSMC’99), 1999.

10. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

11. R. V. Hogg and A. T. Craig. Introduction to Mathematical Statistics. Macmillan,
New York, NY, USA, fourth edition, 1978.

12. O. C. Ibe and K. S. Trivedi. Stochastic petri net models of polling systems. IEEE
Journal on Selected Areas in Communications, 8(9):1649–1657, 1990.

13. M. Z. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic symbolic
model checker, 2002.

14. M. Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Verifying quantitative
properties of continuous probabilistic timed automata. In International Conference
on Concurrency Theory (CONCUR’00), volume 1877 of LNCS, pages 123–137.
Springer, 2000.

15. H. L. S. Younes, M. Kwiatkowska, G. Norman, and D. Parker. Numerical vs.
statistical probabilistic model checking: An empirical study. In 10th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’04). Springer, 2004.

16. H. L. S. Younes and R. G. Simmons. Probabilistic verification of discrete event
systems using acceptance sampling. In 14th International Conference on Computer
Aided Verification (CAV’02), volume 2404 of LNCS, pages 223–235. Springer, 2002.

13

194

goodelle
Rectangle



Maximal Clique Based Distributed Group Formation for Autonomous

Agent Coalitions

Predrag Tosic∗, Gul Agha
Open Systems Laboratory, Department of Computer Science

University of Illinois at Urbana-Champaign, USA
{p-tosic, agha}@cs.uiuc.edu

Abstract

We present herein a fully distributed algorithm
for group or coalition formation among au-
tonomous agents. The algorithm is based on
a distributed computation of maximal cliques
(of up to pre-specified size) in the underlying
graph that captures the interconnection topol-
ogy of the agents. Hence, given the current
configuration of the agents, the groups that are
formed are characterized by a high degree of
connectivity, and therefore high fault tolerance
with respect to node and link failures. We also
briefly discuss how our basic algorithm can be
adapted in various ways so that the formed
groups satisfy the requirements (“goodness” cri-
teria) other than mere strong inter-group com-
munication connectivity. We envision various
variants of our basic algorithm to prove them-
selves useful subroutines in many multi-agent
system and ad hoc network applications where
the agents may repeatedly need to form tempo-
rary groups or coalitions in an efficient, fully
distributed and online manner.

Keywords: distributed algorithms, dis-
tributed group formation, multi-agent systems,
autonomous agents, agent coalitions

1 Introduction and Motivation

Multi-agent systems (MAS) are characterized, among
other properties, by (i) considerable degree of au-
tonomy of individual computing entities or processes
(agents) and, at the same time, the fact that (ii) each
agent has a local, that is, in general, incomplete and
imperfect “picture of the world”. Since in MAS there

is either no central control, or at best only a limited
central control, and the individual agents have to both
think and act locally, genuinely distributed algorithms
are needed for the agents to effectively coordinate with
one another. MAS pose a number of challenges to a dis-
tributed algorithm designer; most of these challenges
are related to various aspects of the agent coordina-
tion problem [1, 18]. In order to be able to effectively
coordinate, agents need to be able to reach consen-
sus (or agreement) on various matters of common in-
terest. Two particularly prominent and frequently en-
countered consensus problems are those of leader elec-
tion (e.g., [6, 15]) and group formation.

Group formation is an important issue in dis-
tributed systems in general, and MAS in particular.
Given a collection of computational and communicat-
ing agents, the goal in distributed group formation is
that these agents, based on their local knowledge only,
decide how to effectively split up into several groups,
so that each agent knows what group(s) it belongs to.

There are several critical issues that a MAS designer
needs to address in the context of (distributed) group
formation. First, what is the right notion of a group in a
given setting? That is, how is the quality of a particular
group configuration measured, so that one can say that
one grouping of agents into coalitions is better for that
agent and/or for the whole system than another? Sec-
ond, a distributed group formation mechanism - that
is, a distributed algorithm that enables agents to effec-
tively form groups or coalitions - needs to be provided.
Third, groups and each agent’s knowledge about its
group membership need to be maintained and, when
needed, appropriately updated. Another important is-
sue is whether the groups are allowed to overlap, i.e.,
whether an agent is allowed to simultaneously belong to
two or more groups. Variants of these basic challenges

∗Contact author. Phone numbers: 217-244-1976 (work), 217-390-6515 (cell); fax: 217-333-9386 (for calls/faxes from within the
U.S.). Mailing address: Department of Computer Science, 1334 Siebel Center, 201 N. Goodwin, Urbana, IL 61801 USA

1

195

goodelle
Rectangle

goodelle
Text Box
Appendix O:



are quite common in the MAS literature; indeed, these
challenges have arisen in our own recent and current
work on parametric models and a scalable simulation of
large scale (103−104 agents) ensembles of autonomous
unmanned vehicles on a multi-task mission [5, 16, 17].

Herein, however, we restrict our attention to the
second issue mentioned above. We propose a partic-
ular mechanism (distributed algorithm) for an effec-
tive coalition formation that ensembles of autonomous
agents can use as one of their basic coordination sub-
routines. A need for a distributed, online and efficient
group formation may arise due to a number of differ-
ent factors, such as the geographical dispersion of the
agents, heterogeneity of tasks and their resource re-
quirements, heterogeneity of agents’ capabilities, and
so on. While for small- and medium-scale systems of
robots or unmanned vehicles a fully or partially cen-
tralized approach to group formation and maintenance
may be feasible or even optimal, large scale systems
(with the number of agents of orders of magnitude as
in [5] or higher) seem to require a fully distributed ap-
proach. That is, the agents need to be able to self-
organize into coalitions, and quickly reach a consen-
sus on who is forming a coalition with whom. The
algorithm we present herein is an attempt to address
these challenges shared by many large-scale MAS ap-
plications.

We remark that the group formation and the leader
election problems are often inter-related. In particular,
at least three general approaches to the combined prob-
lem of both forming groups and electing group leaders
can be identified. One approach is, that groups are
formed by an authority from “the outside”, and then
the agents within each thus formed group are to reach
consensus on who is to be the group leader. That
is, only the leader election part is distributed. Dis-
tributed leader election (once the group structure is al-
ready in place) has been extensively studied in various
distributed system models (e.g., [6]).

Another approach is to first select leaders (possi-
bly by appointing them from the outside), and then let
these leaders agree with one another on how to assign
the rest of the agents to groups “belonging” to different
leaders. For very large scale systems and dense inter-
connection topologies, this is likely the most feasible
approach due to its scalability.

The third possibility of how to attack the joint
group-formation-and-leader-election problem is that
the agents in the ensemble self-organize and form
groups first, and then, as in the first scenario, agents
within each group decide on their leaders. That is,
group formation precedes leader election, and both are
done in a genuinely distributed manner. We argue that

this approach is scalable for large scale MAS provided
that the interconnection topology of the ad hoc net-
work the agents are forming (i) is relatively sparse, and
(ii) does not change too rapidly. While our algorithm
in Section 4 is generic, in designing it we were admit-
tedly motivated by the autonomous unmanned vehicle
applications - more specifically, by the micro unmanned
aerial vehicles deployed over a sizable geographical area
(see [5, 17]).

2 Group Formation in
Multi-Agent Systems

Large ensembles of autonomous agents provide an im-
portant class of examples where the agents’ capability
to coordinate and, in particular, to self-organize into
groups or coalitions, is often of utmost importance for
such systems to be able to accomplish their tasks, or, in
some cases, even to merely survive. One can distinguish
between two general, broad classes of such autonomous
agents. One is the class of agents employed in dis-
tributed problem solving. The agents encountered in
distributed problem solving (DPS) typically share their
goal(s). For instance, DPS agents most often have a
joint utility function that they all wish to maximize
as a team, without any regard to (or sometimes even
a notion of) individual payoffs. This joint utility or,
more generally, the goal or set of goals assigned to DPS
agents, is usually provided by their designer. However,
it may not be always feasible - or even possible - that
the designer explicitly provide, for instance, how are the
agents to divide-and-conquer their tasks and resources,
how are they to form groups and elect leaders of those
groups, etc. Due to scalability, incomplete a priori
knowledge of the environments these agents may en-
counter, and possibly other considerations, instead of
“hard-wiring” into his DPS agents explicitly how are
the agents to be coordinated, the system designer may
choose only to enable the agents with the basic coor-
dination primitives, and leave to them to self-organize
and coordinate as the situation may demand. Hence,
in many situations the DPS agents may be required to
be able to effectively form groups or coalitions in a fully
distributed manner.

The second basic type of agents, the self-interested
agents, are a kind of agents that do not share their
goals (and, indeed, need not share their designer). In
contrast to the DPS agents, each self-interested agent
has its own agenda (e.g., an individual utility function it
is striving to maximize), and no altruistic incentives to
cooperate with other agents. Even such self-interested,
goal-driven or individual-utility-driven agents, while in

2

196

goodelle
Rectangle



essence selfish, may nonetheless still need to cooper-
atively coordinate and collaborate with each other in
many situations.

One class of examples are those agents (such as, e.g.,
autonomous unmanned vehicles) that, if they do not
coordinate in order to resolve possible conflicts, they
risk mutual annihilation. Another class of examples
are the agents with bounded resources: individually,
an agent may lack resources to accomplish any of its
desired tasks - yet, if this agent forms a coalition with
one or more other agents, the combined resources and
joint effort of all agents in such a coalition may provide
utility benefits to everyone involved.

For these reasons, group formation and coalition
formation are of considerable interest for many different
kinds of autonomous agents and multi-agent systems,
and, among other, even in those multi-agent systems
where the agents do not share a global utility func-
tion, and where each agent generally acts selfishly. In
particular, efficient fully distributed algorithms for ef-
fective group formation are needed. Such algorithms
should use only a few communication rounds among
the agents, place a very modest computational burden
on each agent, and ensure that a distributed consensus
among the agents - that is, in the end, who is forming a
group with whom - is effectively, reliably and efficiently
reached.

We propose herein one such class of distributed al-
gorithms. We describe in some detail the generic, dis-
tributed max-clique-based group formation algorithm
in Section 4. Various variants of this basic max-clique-
based group formation algorithm can be designed to
suit the needs of various types of agents, such as, e.g.,
the classical DPS agents, the self-interested agents, and
the resource-bounded agents.

First, we discuss a generic distributed group forma-
tion algorithm based on the idea that an agent (node)
would prefer to join a group with those agents that it
can communicate with directly, and, moreover, where
every member of such a potential group can commu-
nicate with any other member directly. That is, the
preferable groups (coalitions) are actually (maximal)
cliques. It is well-known that finding a maximal clique
in an arbitrary graph is NP-complete in the centralized
setting [3,4]. This implies the computational hardness
that, in general, each node faces when trying to deter-
mine maximal clique(s) it belongs to. However, if the
degree of a node (that is, its number of neighbors in the
graph) is small (in particular, if it is O(1)), then finding
all maximal cliques this node belongs to is computa-

tionally feasible. If one cannot guarantee that (or does
not know if) all the nodes in a given underlying MAS
interconnection topology are of small degree, then one
has to impose additional constraints in order to ensure
that the agents (“nodes”) are not attempting to solve
an infeasible problem. In particular, we shall addition-
ally require herein that the cliques to be considered -
that is, the possible coalitions to be formed - be of up to
a certain pre-specified maximum size. Once such coali-
tions are formed, being cliques, they can be expected
to be relatively robust with respect to the subsequent
node or link failures in the system.

Second, we outline how this basic maximal clique
based algorithm can be fine-tuned so that the formed
coalitions are of good quality with respect to criteria
other than the mere robustness with respect to link or
node failures. In particular, we indicate how, in multi-
agent, bounded resource, multi-task environments (as
in, e.g., [17]), the maximal clique algorithm can be ad-
justed so that each agent strives to join a group such
that the joint resources of all the agents in the group
match this particular agent’s needs in additional re-
sources. Such a choice of the group (coalition) would
enable the agent to now be able to complete some of
the tasks that this agent would not be able to complete
with its own resources alone.

A variety of coalition formation mechanisms and
protocols have been proposed in the MAS literature
both in the context of DPS agents that are all sharing
the same goal (as, e.g., in [13]) and in the context of
self-interested agents where each agent has its own in-
dividual agenda (as, e.g., in [12, 22]). In particular, the
problem of distributed task or resource allocation, and
how is this task allocation coupled to what coalition
structures are (most) desirable in a given scenario [13],
are the issues of central importance in our own work on
MAS in bounded resource multi-task environments [5,
16, 17]. These considerations have in part also moti-
vated our work, and especially the extensions of the ba-
sic max clique based group formation algorithm, where
the cost functions or coalition quality metrics, other
than each coalition’s interconnectivity alone, are used
to determine which coalition(s) is (are) most preferred
by which agent1. However, while in [13] all agents share
all of their goals, we assume herein that each agent is
self-interested and, in particular, each agent therefore
has its own preference ordering on the coalitions that
it may consider joining.

Another body of MAS literature related to our work
on modeling and simulation of large scale ensembles of

1In the present work, due to space constraints, this issue of how to generalize our algorithm to more general and specifically more
resource-oriented coalition cost functions will be only briefly touched upon in Section 5. However, such generalizations, and their
implementation in our UAV simulator [5], are a high priority agenda in our future work.

3

197

goodelle
Rectangle



UAVs [5, 16, 17] casts the distributed resource allo-
cation problems into the distributed constraint satis-
faction (DCS) terms [7, 8]. The importance of DPS
in MAS in general is discussed in [21]. However, dis-
cussing DCS based approaches to distributed resource
or task allocation and coalition formation is beyond the
scope of this paper.

3 Problem Statement and
Main Assumptions

Our goal is to design a generic, fully distributed,
scalable and efficient algorithm for ensembles of au-
tonomous agents to use as a subroutine (or a coordi-
nation strategy) with a purpose of efficiently forming
(temporary) groups or coalitions. The proposed algo-
rithm is a graph algorithm. Each agent is a node in
the graph. As for the edges, the necessary requirement
for an edge between two nodes to exist is that the two
nodes be able to directly communicate with one another
at the time our distributed group formation subroutine
is called2.

The basic idea is to efficiently partition this graph
into (preferably, maximal) cliques of nodes. These
maximal cliques may also need to satisfy some addi-
tional criteria in order to form temporary coalitions.
These coalitions are then maintained until they are no
longer useful or meaningful. For instance, the coali-
tions should be transformed (or else simply dissolved)
when the interconnection topology of the underlying
graph considerably changes, either due to the agents’
mobility, or because many old links have died out and
perhaps many new, different links have formed, and the
like. Another possible reason to abandon the existing
coalition structure is when the agents determine that
the coalitions have accomplished the set of tasks that
these coalitions were formed to address. Thus, in an
actual MAS application, the proposed group formation
algorithm may need to be invoked a number of times
as a coordination subroutine.

The algorithm is sketched in the next section. For
this algorithm to work, the following basic assumptions
need to hold:

- agents communicate with one another by exchang-
ing messages either via local broadcasts, or in a peer-
to-peer fashion;

- communication bandwidth availability is assumed
not to be an issue;

- each agent has a sufficient local memory to be
able to store all the information that it receives from
other agents; this information is cf. made of the lists
of neighboring nodes and of the coalitions proposed to
this agent - see Section 4;

- communication is reliable during the group for-
mation, but, once the groups are formed, this need no
longer hold3;

- each agent has (or else can efficiently obtain) a
reliable knowledge of what other agents are within its
communication range;

- each agent, or node, has a unique global identifier
(heretofore referred to as ‘UID’), and it knows its UID;

- there is a total ordering, ≺, on the set of UIDs,
and each agent knows this ordering ≺;

- communication ranges of different agents are iden-
tical - in particular, if agent A can communicate mes-
sages to agent B, then also B can communicate mes-
sages to A.

On the other hand, an agent need not a priori
know UIDs of other agents, or, indeed, how many other
agents are present in the system.

In addition to its globally unique identifier (UID),
which we assume is a positive integer, each agent has
two local flags that it uses in communication with
other agents. One of the flags is the binary “‘deci-
sion flag”, which indicates whether or not this agent
has already joined some group (coalition). Namely,
decision flag ∈ {0, 1}, and the value of this flag is
0 as long as the agent still has not irrevocably com-
mitted to what coalition it is joining. Once the agent
makes this commitment, it updates the decision flag to
1 and broadcasts this updated flag value to all its neigh-
bors (see below). That is, as long as the decision flag
is 0, the agent’s proposals of what group it would like
to form or join are only tentative. Once the decision
flag becomes 1, however, this indicates that the agent
has made a committed choice of which coalition to join
- and this selection is final4.

The second flag is the “choice flag”, which is used to
indicate to other agents, how “happy” the agent is with
its current tentative choice or proposal of the group to
be formed. That is, the choice flag indicates the level of
agent’s urgency that its proposal for a particular coali-
tion to be formed be accepted by the neighbors in the
interconnection topology to whom this proposal is sent.

2We point out that this definition of the graph edges can be made tighter by imposing additional requirements, such as, e.g., that
the two agents to be connected by a link also be compatible, for instance, in terms of their capabilities, or that they each provide some
resource(s) that the other agent needs, or the like.

3As this requirement is still quite restrictive, and considerably limits the robustness of our algorithm, we will try to relax this
assumption in our future work.

4...at least for this particular invocation of the group formation subroutine.

4

198

goodelle
Rectangle



It takes values choice flag ∈ {0, 1, 2, 3}. When an
agent is sending just its neighborhood list (at round
one of the algorithm - see next section), the value of
this flag is 3. Else, if the current choice of a coalition
Ci proposed by agent i has equally preferable alterna-
tives5, then i sets choice flag(i) ← 2. If i has other
available choices of groups it would like to join, yet each
of these alternative choices is strictly less preferable to
i than the current proposal (e.g., if each other possible
group is a maximal clique of strictly smaller size than
the maximal clique Ccurrent

i that is the agent i’s current
proposal), then choice flag(i) ← 1. Finally, if i has
no other alternatives for a coalition proposal (beside
the trivial coalition {i}), then choice flag(i) ← 0.
Hence, an agent whose current value of the choice flag
is equal to 0 is quite desperate that its proposal of a
coalition be accepted by those neighboring agents to
whom the proposal is directed. In contrast, an agent
whose current value of the choice flag is equal to 2 has
some equally good alternative choices and can there-
fore change its mind without being penalized in terms
of having to settle for a less preferable coalition.

4 Maximal Clique Based
Distributed Group Formation

Now that the assumptions have been made explicit and
the notation has been introduced, the stage is set for
presenting our distributed maximal clique based coali-
tion formation algorithm. The algorithm proceeds in
five major stages, as follows:

Stage 1:
Set counter ← 1.
Each node (in parallel) broadcasts a tuple to all its im-
mediate neighbors. The entries in this tuple are (i) the
node’s UID, (ii) the node’s list of (immediate) neigh-
bors, L(i), (iii) the value of the choice flag, and (iv) the
value of the decision flag.

WHILE (the agreement has not been reached) DO

Stage 2:
Each node (in parallel) computes the overlaps of its
neighborhood list with the neighborhood lists that it
has received from its neighbors, C(i, j)← L(i) ∩ L(j).
Repetitions (if any) among this neighborhood list in-
tersections are deleted; the remaining intersections are
ordered with respect to the list size (the ties, if any, are
broken arbitrarily), and a new (ordered) collection of

these intersection lists (heretofore referred to simply as
’lists’) is then formed.
If counter > 1 then:
Each node looks for information from its neighbors,
whether they have joined a group “for good” during
the previous round. Those neighbors that have (i.e.,
whose decision-flag = 1), are deleted from the neigh-
borhood list L(i); the intersection lists C(i, j) are
also updated accordingly, and those C(i, k) for which
k is deleted from the neighborhood list L(i) are also
deleted.

Stage 3:
Each node (in parallel) picks one of the most preferable
lists C(i, j); let C(i) ← chosen [C(i, j)]. If the list
size is the main criterion, then this means, that one of
the lists of maximal length is chosen. The value of the
choice flag is set, based on whether an agent has other
choices of lists as preferable as the chosen clique, and, if
not, whether there are any other still available choices
at all.

Stage 4:
Each node (in parallel) sends its tuple with its UID, the
tentatively chosen list C(i), the value of the choice flag,
and the value of the decision flag, to all its neighbors.

Stage 5:
Each node i (in parallel) compares its chosen list C(i)
with lists C(j) received from its neighbors. If a (rel-
atively small, of size not exceeding k) clique that in-
cludes the node i exists, and all members of this clique
have selected it at this stage as their current group or
coalition of choice (that is, if C(i) = C(j) for all
j ∈ C(i)), this will be efficiently recognized by the
nodes forming this clique. The decision flag of each
node j ∈ C(i) is set to 1, a group is formed, and
this information is broadcast by each node in the newly
formed group to all of its neighbors. Else, if no such
agreement is reached, then agent i, based on its UID
and priority, and its current value of the choice-flag,
either does nothing, or else changes its mind about its
current group of choice, C(i) (the latter being possible
only if choice-flag > 0, meaning that there are other
choices of C(i) that have not been tried out yet that
are still available to agent i).

counter ← counter + 1;
END DO [∗ end of WHILE loop ∗]

If round > 1 then, at Stage 2, each node looks for
the information from its neighbors to find out if any
of them have joined a group in the previous round.
For those nodes that have (i.e., whose decision flag

5In the max. clique context, this means, if there are two or more maximal cliques of the same size, one of which is chosen by an
appropriate tie-breaker. This idea readily generalizes, as long as each agent has a partial order of preferences over all the possible
coalitions that include this agent.

5

199

goodelle
Rectangle



dec = 1), each node neighboring any such already
committed node deletes this committed node from its
neighborhood list L(i), updates all C(i, j) that re-
main, and selects its choice of C(i) based on the up-
dated collection of group choices {C(i, j)}. That is,
now all those nodes that have already made their com-
mitments and formed groups are not “in the game”
any more, and are therefore deleted from all remain-
ing agents’ neighborhood lists as well as the tentative
choices of coalitions. (Of course, the only coalition a
committed agent is not deleted from at this stage is
the coalition that this agent has just joined).

There are some more details in the algorithm that
we leave out for the space constraint reasons. One im-
portant technicality is that, in order to ensure that the
algorithm always avoids to cycle, once an agent changes
its mind about the preferred coalition C(i), it is not
allowed through the remaining rounds of the algorithm
to go back to its old choice(s). Once no other choices
are left, this particular agent sticks to its current (and
the only remaining) choice, and waits for other agents
to converge to their choices. It can be shown that this
ensures ultimate convergence to a coalition structure
that all agents agree to. That is, under the assumptions
stated in the previous section, the agents will reach con-
sensus on the coalition structure after a finite number
of rounds inside the WHILE loop (see also Appendix).
Moreover, if the maximum size of any L(i) is a (small)
constant, then the convergence is fast.

5 Discussion and Extensions

We have outlined a fully distributed algorithm for
group or coalition formation based on maximal cliques.
This algorithm will be efficient when the underlying
graph is relatively sparse, and, in particular, when the
sizes of all maximal cliques are bounded by a small con-
stant k = O(1). When this is not the case (or when it
cannot be guaranteed to always hold), appropriate re-
strictions can be imposed “from the outside” to ensure
that the algorithm converges, and rapidly. For exam-
ple, for each node i, a range of possible values (UIDs)
of those nodes that the node i is allowed to commu-
nicate and form coalitions with can be appropriately
specified.

Once the groups are formed, these groups will be
tight (as everyone in the group can communicate with
everyone else), and, in nontrivial cases, therefore as ro-
bust as possible for a given number of group elements
with respect to either node or link failures. This is a
highly desirable property involving coalitions or teams
of agents (robots, autonomous unmanned vehicles, etc.)

operating in environments where both the agent failures
and the agent-to-agent communication link failures can
be expected.

The proposed algorithm can be used as a subrou-
tine in many multi-agent system scenarios where, at
various points in time, the system needs to reconfig-
ure itself, and the agents need to form new coalitions
(or transform the existing ones) in a fully distributed
manner, where each agent would join an appropriate
(new) coalition because the agent finds this to be in its
individual best interest, and where it is important to
agents to form and agree on these coalitions efficiently,
rather than wasting too much time and other resources
on (possibly lengthy) negotiation.

This algorithm as a coordination subroutine in MAS
applications can be expected to be useful only when
the time scale of significant changes in the inter-agent
communication topology is much coarser than the time
scale for the coalitions of agents, first, to form accord-
ing to the algorithm, and, second, once formed, to ac-
complish something useful in terms of agents’ ultimate
goals. We are currently exploring using some version of
this algorithm as a coordination strategy subroutine in
a scalable software simulation of a system of unmanned
autonomous aerial vehicles (UAVs) on a multi-task mis-
sion.

To be useful in various MAS applications, such as
the above-mentioned UAV simulation, the proposed
generic algorithm can be appropriately fine-tuned, so
that the coalitions are formed that satisfy quality cri-
teria other than robustness with respect to agent or
communication link failures.

Let us assume there is an ensemble of self-interested
agents moving around and about in an environment,
searching for tasks and possible coalition partners
and/or other external resources, and trying to service
as many tasks as possible. Each task has a certain value
to each agent: an agent increases its utility by servicing
some task, and consuming this task’s value [16]. How-
ever, servicing different tasks requires resources, and
an agent may lack sufficient resources to be able to ser-
vice tasks it would like to complete. Hence, such an
agent will have an egotistic incentive [2] to coopera-
tively coordinate with other agents - and, in particular,
to try to form a group or a temporary coalition with
other agents. The preferred partners in such a coalition
would be those agents that would provide sufficient re-
sources for the desired tasks to be completed. Hence,
in the algorithm above, a refinement of the criterion
of “goodness” (quality) of different groups that can be
formed is needed. So, for example, at Stage 3, among
the available lists of intersections C(i, j), the agent i
may want to choose one where the sum of resources of

6

200

goodelle
Rectangle



all the agents in this list is equal to, or exceeds (but
preferably by not too much) the resource requirements
of the particular task the agent i desires to service6.

6 Concluding Remarks

We have proposed herewith a generic algorithm for dis-
tributed group formation based on maximal cliques of
modest sizes. Among the existing distributed group for-
mation algorithms, we argue that our algorithm is par-
ticularly suitable for dynamic coalition formation and
transformation in multi-agent systems whose underly-
ing graph structures (“topologies”) change frequently,
yet not too rapidly. In particular, we find this algo-
rithm, or its appropriately fine-tuned variants, to be a
potentially very useful subroutine in many multi-agent
system applications, where the interconnection topol-
ogy of the agents often changes so that the system needs
to dynamically reconfigure itself, yet where these topol-
ogy changes are at a time scale that allows agents to (i)
form coalitions, and (ii) do something useful while par-
ticipating in such coalitions, before the underlying com-
munication topology of the system changes so much as
to render the formed coalitions either obsolete or inef-
fective. We intend to explore and test the applicability
and practical usefulness of the proposed algorithm as
a coordination strategy for various MAS applications
in general, and in the context of our scalable simula-
tion of autonomous unmanned vehicles on a complex,
multi-task mission [5, 16, 17], in particular.

Acknowledgment: Many thanks to Nirman Ku-
mar and Reza Ziaei (Open Systems Laboratory, UIUC)
for many useful discussions. This work was supported
by the DARPA IPTO TASK Program under the con-
tract F30602-00-2-0586.

Bibliography
[1] N. M. Avouris, L. Gasser (eds.), “Distributed Artifi-

cial Intelligence: Theory and Praxis”, Euro Courses Comp.
& Info. Sci. vol. 5, Kluwer Academic Publ., 1992

[2] D. H. Cansever, ”Incentive Control Strategies For
Decision Problems With Parametric Uncertainties”, Ph.D.
thesis, Univ. of Illinois Urbana-Champaign, 1985

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, “In-
troduction to Algorithms”, MIT Press, 1990

[4] M. R. Garey, D. S. Johnson, “Computers and In-
tractability: a Guide to the Theory of NP-completeness”,
W. H. Freedman & Co., New York, 1979

[5] M. Jang, S. Reddy, P. Tosic, L. Chen, G. Agha, “An
Actor-based Simulation for Studying UAV Coordination”,

Proc. 15th Euro. Symp. Simul. (ESS 2003), Delft, The
Netherlands, October 2003

[6] N. Lynch, “Distributed Algorithms”, Morgan Kauf-
mann Publ., Wonderland, 1996

[7] P. J. Modi, H. Jung, W. Shen, M. Tambe, S. Kulka-
rni, “A dynamic distributed constraint satisfaction ap-
proach to resource allocation”, in “Principles and Practice
of Constraint Programming”, 2001

[8] P. J. Modi, W. Shen, M. Tambe, M. Yokoo, “An
asynchronous complete method for distributed constraint
optimization”, Proc. AAMAS 2003

[9] J. von Neumann, O. Morgenstern, “Theory of
Games and Economic Behavior”, Princeton Univ. Press,
1944

[10] J. Rosenschein, G. Zlotkin, “Rules of Encounter:
Designing Conventions for Automated Negotiations among
Computers”, The MIT Press, Cambridge, Massachusetts,
1994

[11] S. Russell, P. Norvig, “Artificial Intelligence: A
Modern Approach”, 2nd ed., Prentice Hall Series in AI,
2003

[12] O. Shehory, S. Kraus, “Coalition formation among
autonomous agents: Strategies and complexity”, Proc.
MAAMAW’93, Neuchatel, 1993

[13] O. Shehory, S. Kraus, “Task allocation via coali-
tion formation among autonomous agents”, Proc. 14th
IJCAI-95, Montreal, August 1995

[14] R. G. Smith, “The contract net protocol: high-
level communication and control in a distributed problem
solver”, IEEE Trans. on Computers, 29 (12), 1980

[15] G. Tel, “Introduction To Distributed Algorithms”,
2nd ed., Cambridge Univ. Press, 2000

[16] P. Tosic, M. Jang, S. Reddy, J. Chia, L. Chen, G.
Agha, “Modeling a System of UAVs on a Mission”, Proc.
SCI 2003 (invited session), Orlando, Florida, July 2003

[17] P. Tosic, G. Agha, “Modeling Agents’ Autonomous
Decision Making in Multiagent, Multitask Environments”,
Proc. 1st Euro. Workshop MAS (EUMAS 2003), Oxford,
England, 2003

[18] G. Weiss (ed.), “Multiagent Systems: A Modern
Approach to Distributed Artificial Intelligence”, The MIT
Press, Cambridge, Massachusetts, 1999

[19] M. Wooldridge, N. Jennings, “Intelligent Agents:
Theory and Practice”, Knowledge Engin. Rev., 1995

[20] M. Yokoo, K. Hirayama, “Algorithms for Dis-
tributed Constraint Satisfaction: A review”, AAMAS, Vol.
3, No. 2, 2000

[21] M. Yokoo, “Distributed Constraint Satisfac-
tion: Foundation of Cooperation in Multi-agent Systems”,
Springer, 2001

[22] G. Zlotkin, J.S. Rosenschein, “Coalition, cryptog-
raphy and stability: Mechanisms for coalition formation in
task oriented domains”, Proc. AAAI’94, Seattle, Washing-
ton, 1994

6At this stage, however, we need to do more work on formalizing some of these variants of the algorithm, and, in particular, deter-
mine the criteria that would still ensure, under general assumptions similar as before, that the agents would efficiently converge to an
agreement on the coalition structure.

7

201

goodelle
Rectangle



Appendix: Pseudo-code for Max-Clique-Based Distributed Group Formation

Notation:
i := the i-th agent (node) in the system (say, i = 1, ..., n)
V (i) := the i-th node’s UID
N(i) := the list of neighbors of node i
L(i) := the extended neighborhood list (i.e., L(i) = N(i)

⋃
{i})

C(i, j) = L(i)
⋂

L(j)
C(i) := the group of choice of node i at the current stage (i.e., one of the C(i, j)’s)
choice(i) := the choice flag of node i
dec(i) := the decision flag of node i

Maximal Clique Based Distributed Group Formation Algorithm:

Step 1:
DOALL i = 1..n (in parallel, i.e., each node i carries the steps below locally)

send [V (i), L(i), choice(i) = 3, dec(i) = 0] to each of your neighbors
END DOALL

WHILE (not all agents have joined a group) DO
Step 2:

DOALL i = 1..n
FOR all j ∈ N(i) DO [? check if dec(j) = 1 ?]

if dec(j) == 1 then delete j from N(i), L(i), and C(i, j′), ∀j′ ∈ N(i)− {j}
END DO [? end of FOR loop ?]
FOR all j ∈ N(i) DO [? FOR all remaining (undeleted) indices j ?]

compute C(i, j) ← L(i)
⋂

L(j)
END DO [? end of FOR loop ?]

END DOALL
Step 3:

DOALL i = 1..n
pick C(i, j) s.t. |C(i, j)| is of max. size (not exceeding the pre-specified threshold, k):

C(i)← C(i, j);
if more than one such choice, set choice(i)← 2;
else (if there are other choices C(i, j′) but only of smaller sizes)

set choice(i)← 1;
else (if node i has no alternatives left for a non-trivial coalition that would include i)

set choice(i)← 0;
END DOALL

Step 4:
DOALL i = 1..n

send [V (i), C(i), choice(i), dec(i) = 0]
END DOALL

Step 5:
DOALL i = 1..n

compare C(i) with C(j) received from one’s neighbors;
if there exists a clique {i, j1, j2, ..., jl} such that C(i) = C(j1) = C(j2) = ... = C(jl)
then set dec(i)← 1 (an agreement has been reached);

broadcast group G = (i, j1, j2, ...jl) and decision flag value dec(i) = 1 to all neighbors
else based on i and the priority (as defined by the relation ≺ on the set of nodes 1, 2, ..., n)

either DO NOTHING
or change your mind: C(i)← newchoice (from the list of candidate groups)

END DOALL
END DO [∗ end of WHILE loop ∗]

8

202

goodelle
Rectangle



ATSpace: A Middle Agent to Support Application Oriented
Matchmaking and Brokering Services

Myeong-Wuk Jang, Amr Abdel Momen, Gul Agha
Department of Computer Science

University of Illinois at Urbana-Champaign, USA
{mjang, amrmomen, agha}@uiuc.edu

http://osl.cs.uiuc.edu

Abstract

An important problem for agents in open multiagent
systems is how to find agents that match certain criteria.
A number of middle agent services–such as matchmaking
and brokering services–have been proposed to address this
problem. However, the search capabilities of such ser-
vices are relatively limited since the match criteria they
use are relatively inflexible. We propose ATSpace, a model
to support application-oriented matchmaking and broker-
ing services. Application agents in ATSpace deliver their
own search algorithms to a public tuple space which holds
agent property data; the tuple space executes the search al-
gorithms on this data. We show how the ATSpace model
increases the dynamicity and flexibility of a middle agent
service. Unfortunately, the model also introduces security
threats: the data and access control restrictions in ATSpace
may be compromised, and system availability may be af-
fected. We describe some mechanisms to address these se-
curity threats.

1 Introduction

In multiagent systems, agents need to communicate with
each other to accomplish their goals, and an important prob-
lem in open multiagent systems is the problem of finding
other agents that match given criteria, called the connection
problem [4]. When agents are designed or owned by the
same organization, developers may be able to design agents
which explicitly know the names of other agents that they
need to communicate with. However in open systems, be-
cause an agent may be implemented by different groups, it
is not feasible to let agents know the names of all agents
that they may at some point need to communicate with.

Decker classifies middle agent services as either match-
making (also called Yellow Page) services or brokering ser-

vices [5]. Matchmaking services (e.g. Directory Facilitator
in FIPA platforms [7]) are passive services whose goal is to
provide a client agent with a list of names of agents whose
properties match its supplied criteria. The agent may later
contact the matched agents to request services. On the other
hand, brokering services (e.g. ActorSpace [1]) are active
services that directly deliver a message (or a request) to the
relevant agents on their client’s behalf.

In both types of services, an agent advertises itself by
sending a message which contains its name and a descrip-
tion of its characteristics to a service manager. A service
manager may be implemented on top of a tuple space model
such as Linda [3]; this involves imposing constraints on the
format of the stored tuples and using Linda-supported prim-
itives. Specifically, to implement matchmaking and broker-
ing services on top of Linda, a tuple template may be used
by the client agent to specify the matching criteria. How-
ever, the expressive power of a template is very limited; it
consists of value constraints for its actual parameters and
type constraints for its formal parameters. In order to over-
come this limitation, Callsen’s ActorSpace implementation
used regular expressions in its search template [1]. Even
though this implementation increased expressivity, its capa-
bility is still limited by the power of its regular expressions.

We propose ATSpace1 (Active Tuple Spaces) to em-
power agents with the ability to provide arbitrary
application-oriented search algorithms to the tuple space
manager for execution on the tuple space. While ATSpace
increases the dynamicity and flexibility of the tuple space
model, it also introduces some security threats as codes de-
veloped by different groups with different interests are exe-
cuted in the same space. We will discuss the implication of
these threats and how they may be mitigated.

1We will use ATSpace to refer the model for a middle agent to support
application-oriented service, while we use an atSpace to refer an instance
of ATSpace.

203

goodelle
Text Box
Appendix P:



2 ATSpace

2.1 A Motivativing Example

We present a simple example to motivate the ATSpace
model. Assume that a tuple space has information about
seller agents (e.g., city and name) and the prices of the prod-
ucts they sell. A buyer agent wants to contact the two “best”
seller agents who offer computers and whose location is
within 50 miles of his city. A brokering service supplied by
a generic tuple space implementation may not support the
request of the buyer agent because, firstly, it may not sup-
port the “best two” primitive, and secondly, it may not store
distance information between cites. The buyer agent is now
opt to retrieve from the tuple space the complete tuples that
are related to computer sellers, and then execute their own
search algorithm on them. However, this approach entails
the movement of large amount of data. In order to reduce
communication overhead, ATSpace allows a sender agent
to send its own search algorithm which may, for example,
carry information about distances to the nearest cities.

2.2 Overall Architecture

ATSpace consists of three components: a tuple space, a
message queue, and a tuple space manager (see Figure 1).

ATSpace

Tuple Space

Message Queue

Tuple
Space
Manager

(matchmaking)
return names

ask service agents
(brokering)

tuple

tuple

tuple

tuple
msg.msg. msg.

Figure 1. Basic Architecture of ATSpace

The tuple space is used as a shared pool for agent tuples,
〈a, p1, p2, . . . , pn〉, which consists of a name field, a, and
a property part, P = p1, p2, · · · , pn where n ≥ 1; each
tuple represents an agent whose name is given by the first
field and whose characteristics are given by the subsequent
fields. ATSpace enforces the rule that there cannot be more
than one agent tuple whose agent names and property fields
are identical at any time. However, an agent may regis-
ter itself with different properties, and different agents may
register themselves with the same property fields.

∀ti, tj : i �= j → [ (ti.a = tj .a) → (ti.p �= tj .p) &&
(ti.p = tj .p) → (ti.a �= tj .a) ]

The message queue contains input messages that are re-
ceived from other agents. Messages are classified into two
types: data input messages and service request messages. A
data input message includes a new agent tuple for insertion
into the tuple space. A service request message includes ei-
ther a tuple template or a mobile object. The template (or,
alternately, the object) is used to search for agents with the
appropriate agent tuples. A service message may optionally
contain another field, called the service call message field,
to facilitate the brokering service. A mobile object is an ob-
ject that is provided by a service request agent; such objects
have a pre-defined public method called find. The find
method is called by the tuple space manager with tuples in
this atSpace as a parameter; it returns names of agents se-
lected by the search algorithm specified in the mobile ob-
ject.

The tuple space manager retrieves names of service
agents whose properties match a tuple template or which
are selected by the mobile object. In case of a matchmak-
ing service, it returns the names to the client agent. In case
of brokering service, it forwards the service call message
supplied by the client agent to the agents.

2.3 Operation Primitives

The ATSpace model supports the three general tuple
space primitives: write, read, and take. In addi-
tion, ATSpace also provides primitives for the matchmak-
ing and brokering services. The searchOne primitive
is used to retrieve the name of a service agent that satis-
fies a given property, whereas the searchAll primitive is
used to retrieve the names of all service agents that satisfy
the property. The deliverOne primitive is used to for-
ward a specified message to a service agent that matches
the property, whereas the deliverAll is used to send
this message to all such service agents. These matchmak-
ing and brokering service primitives allow client agents to
use mobile objects to support application-oriented search
algorithm as well as a tuple template. MobileObject is
used as an abstract class that defines the interface methods
between a mobile object and the ATSpace. One of these
methods is find, which may be used to provide the search
algorithm to an atSpace.

When a client agent requires information about specific
properties of service agents stored in an atSpace to make
service call messages, the above matchmaking or broker-
ing service primitives cannot be used. The exec primitive
within a mobile object provides this service. The supplied
mobile object has to implement the doAction method
which when called by the atSpace with agent tuples, exam-
ines the properties of agents using the client agent applica-
tion logic, creates different service call messages according
to the properties, and then returns a list of agent messages

204



to the atSpace for delivery to the selected agents.

3 Security Issues

There are three important security problems in ATSpace.

Data Integrity A mobile object may not modify tuples
owned by other agents.

Denial of Service A mobile object may not consume too
much processing time or space of an atSpace and a
client agent may not send repeatedly mobile objects
to overload an atSpace.

Illegal Access A mobile object may not carry out unautho-
rized accesses or illegal operations.

We address the data integrity problem by blocking at-
tempts to modify tuples. When a mobile object is executed
by a tuple space manager, the manager makes a copy of tu-
ples and then sends the copy to the find or doAction
method of the mobile object. Therefore, even when a mali-
cious agent changes some tuples, the original tuples are not
affected by the modification. However, when the number of
tuples in the tuple space is very large, this solution requires
extra memory and computational resources. For better per-
formance, the creator of an atSpace may select the option
to deliver a shallow copy of the original tuples to mobile
objects instead of a deep copy, although this will violate the
integrity of tuples if an agent tries to delete or change its
tuple. We are currently investigating under what conditions
a use of a shallow copy may be sufficient.

To address denial of service by consuming all processor
cycles, we deploy user-level thread scheduling. Figure 2
depicts the extension of the tuple space manager to achieve
this. When a mobile object arrives, the object is executed
as a thread, and its priority is set to high. If the thread exe-
cutes for a long time, its priority is continually downgraded.
Moreover, if the running time of a mobile object exceeds a
certain limit, it may be destroyed by the Tuple Space Man-
ager; in this case, a message is sent to its supplier informing
it of the destruction. To incorporate these restrictions, we
have extended the architecture of ATSpace by implement-
ing job queues.

To prevent unauthorized accesses, if an atSpace is cre-
ated with an access key, then this key must accompany ev-
ery message sent from service requester agents. In this case,
agents are allowed to modify only their own tuples. This
prevents removal or modification of tuples by unauthorized
agents.

4 Evaluation

Figure 3 shows the advantage of ATSpace compared to
a matchmaking service which provides the same semantic

Tuple Space Manager

priority

job queues

priority
high

priority

low

middle

ATSpace
Manager obj.obj.

obj.obj.

obj.obj.

Figure 2. Extended Architecture of ATSpace

in UAV simulation (see [9] for details of this simulation).
In these experiments, the UAVs use either an active broker-
ing service or a matchmaking service to find their neighbor-
ing UAVs. In both cases, the middle agent includes infor-
mation about the locations of UAVs. In case of the active
brokering service, UAVs send mobile objects to the middle
agent while UAVs using matchmaking service send tuple
templates. The simulation time for each run is around 35
minutes.

 0

 100

 200

 300

 400

 500

 600

 200  300  400  500  600  700  800  900  1000

W
al

l C
lo

ck
 T

im
e 

(m
in

)

Number of Agents

ATSpace
Matchmaking

Figure 3. Wall Clock Time for ATSpace and
Matchmaking Services

When the number of agents is small, the difference be-
tween the two approaches is not significant. However, as
the number of agents is increased, the difference becomes
significant.

5 Related Work

Our work is related to Linda [3] and its variations, such
as JavaSpaces and TSpaces [10, 13]. In these models, pro-
cesses communicate with other processes through a shared
common space called a tuple space without considering ref-

205



erences or names of other processes. From the middle agent
perspective, Directory Facilitator in the FIPA platform and
Broker Agent in InfoSleuth are related to our research [7, 8].
However, these systems do not support customizable match-
ing algorithm.

Some work has been done to extend the matching ca-
pability in the tuple space model. Berlinda allows a con-
crete entry class to extend the matching function [14]. How-
ever, this approach does not allow the matching function to
be changed during execution time. OpenSpaces provides a
mechanism to change matching polices during the execu-
tion time [6]. OpenSpaces groups entries in its space into
classes and allows each class to have its individual match-
ing algorithm. A manager for each class of entries can
change the matching algorithm during execution time. All
agents that use entries under a given class are affected by
any change to its matching algorithm. This is in contrast
to ATSpace where each agent can supply its own matching
algorithm without affecting other agents. Another differ-
ence between OpenSpaces and ATSpace is that the former
requires a registration step before putting the new matching
algorithm into action.

TuCSoN and MARS provide programmable coordination
mechanisms for agents through Linda-like tuple spaces to
extend the expressive power of tuple spaces [2, 11]. How-
ever, they differ in the way they approach the expressiveness
problem; while TuCSoN and MARS use reactive tuples to
extend the expressive power of tuple spaces, ATSpace uses
mobile objects to support search algorthms defined by client
agents. A reactive tuple handles a certain type of tuples and
affects various clients, whereas a mobile object handles var-
ious types of tuples and affects only its creator agent. Also,
these approaches do not provide an execution envrionment
for client agents. Therefore, these may be considered as
orthogonal approaches and can be combined with our ap-
proach together.

6 Conclusion

ATSpace works as a common shared space to exchange
data among agents, a middle agent to support matchmak-
ing and brokering services, and an execution environment
for mobile objects utilizing data on its space. Our exper-
iments with a UAV surveillance task show that the model
may be effective in reducing coordination costs. We de-
scribed some security threats that arise when using mobile
objects for agent coordination, along with some mecha-
nisms we use to mitigate them. We are currently incor-
porating memory use restrictions into the architecture and
considering mechanisms to address denial of service attacks
that may be caused by flooding the network [12].

Acknowledgements

This research is sponsored by the DARPA ITO under
contract number F30602-00-2-0586.

References

[1] G. Agha and C. Callsen. ActorSpaces: An Open Distributed
Programming Paradigm. In Proceedings of the 4th ACM
Symposium on Principles & Practice of Parallel Program-
ming, pages 23–32, May 1993.

[2] G. Cabri, L. Leonardi, and F. Zambonelli. MARS: a Pro-
grammable Coordination Architecture for Mobile Agents.
IEEE Computing, 4(4):26–35, 2000.

[3] N. Carreiro and D. Gelernter. Linda in Context. Communi-
cations of the ACM, 32(4):444–458, 1989.

[4] R. Davis and R. Smith. Negotiation as a Metaphor for Dis-
tributed Problem Solving. Artificial Intelligence, 20(1):63–
109, January 1983.

[5] K. Decker, M. Williamann, and K. Sycara. Matchmak-
ing and Brokering. In Proceedings of the Second Interna-
tional Conference on Multi-Agent Systems (ICMAS-96), Ky-
oto, Japan, December 1996.

[6] S. Ducasse, T. Hofmann, and O. Nierstrasz. OpenSpaces:
An Object-Oriented Framework for Reconfigurable Coordi-
nation Spaces. In A. Porto and G. Roman, editors, Coor-
dination Languages and Models, LNCS 1906, pages 1–19,
Limassol, Cyprus, September 2000.

[7] Foundation for Intelligent Physical Agents. SC00023J:
FIPA Agent Management Specification, December 2002.
http://www.fipa.org/specs/fipa00023/.

[8] N. Jacobs and R. Shea. The Role of Java in InfoS-
leuth: Agent-based Exploitation of Heterogeneous Informa-
tion Resources. In Proceedings of Intranet-96 Java Devel-
opers Conference, April 1996.

[9] M. Jang, A. A. Momen, and G. Agha. A Flexible Coordina-
tion Framework for Application-Oriented Matchmaking and
Brokering Services. Technical Report UIUCDCS-R-2004-
2430, Department of Computer Science, University of Illi-
nois at Urbana-Champaign, 2004.

[10] T. Lehman, S. McLaughry, and P. Wyckoff. TSpaces: The
Next Wave. In Proceedings of the 32nd Hawaii Interna-
tional Conference on System Sciences (HICSS-32), January
1999.

[11] A. Omicini and F. Zambonelli. TuCSoN: a Coordination
Model for Mobile Information Agents. In Proceedings of the
1st Workshop on Innovative Internet Information Systems,
Pisa, Italy, June 1998.

[12] C. Shields. What do we mean by Network Denial of Ser-
vice? In Proceedings of the 2002 IEEE Workshop on Infor-
mation Assurance and Security, pages 17–19, United States
Military Academy, West Point, NY, June 2002.

[13] Sun Microsystems. JavaSpacesTM Service Specification,
ver. 2.0, June 2003. http://java.sun.com/products/jini/specs.

[14] R. Tolksdorf. Berlinda: An Object-oriented Platform for
Implementing Coordination Language in Java. In Proceed-
ings of COORDINATION ’97 (Coordination Languages and
Models), LNCS 1282, pages 430–433. Pringer-Verlag, 1997.

206



Learning Continuous Time Markov Chains from Sample Executions
Koushik Sen, Mahesh Viswanathan, Gul Agha

Department of Computer Science
University of Illinois at Urbana Champaign
{ksen,vmahesh,agha }@cs.uiuc.edu

Abstract
Continuous-time Markov Chains (CTMCs) are an impor-

tant class of stochastic models that have been used to model
and analyze a variety of practical systems. In this paper we
present an algorithm to learn and synthesize a CTMC model
from sample executions of a system. Apart from its theoret-
ical interest, we expect our algorithm to be useful in veri-
fying black-box probabilistic systems and in composition-
ally verifying stochastic components interacting with un-
known environments. We have implemented the algorithm
and found it to be effective in learning CTMCs underlying
practical systems from sample runs.

1. Introduction
Stochastic models such as continuous-time Markov

chains (CTMCs) [22] are widely used to model prac-
tical software systems and analyze their performance
and reliability. Before building a complex software sys-
tem, CTMCs are generated from higher-level speci-
fications, like queueing networks, stochastic process
algebra [14, 11], or stochastic Petri-nets [4]. These mod-
els are then used for quantitative evaluation of reliability
and performance for example to determine the through-
put of production lines, to calculate average failure time
of systems, or to find other reliability or performance bot-
tlenecks of the system. Once a model has been validated
against performance and reliability requirements, the sys-
tem is implemented. However, even if a model has been
carefully validated, the implementation may not con-
form to the model. There are two potential sources of
error: first, there could be bugs introduced when trans-
lating the design into system code, and second the es-
timated values of various parameters used in construct-
ing the stochastic model may differ considerably from the
actual values in the deployed system. To catch such po-
tential post-implementation problems, testing for perfor-
mance and reliability is performed by running the system a
large number of times in the real environment and check-
ing for reliability problems or performance bottlenecks.
However, because it is difficult achieve completecover-
ageduring testing, despite its evident importance in prac-
tice, testing fails to guarantee the full correctness of a
deployed system.

An approach that tries to leverage the benefits of formal
analysis - usually done in the design phase - to the post-
implementation phase, islearning the model from sam-
ple executions of the system and then formally verifying
the learnt model against the design specification. This ap-
proach has been fruitfully used to model-check unknown,
black-boxsystems [9] and to learn unknown environments
to assist in compositional verification of systems [7]. Both
these efforts apply to non-deterministic, discrete systems
and have not been extended to more general stochastic sys-
tems. While there are several machine learning algorithms
on grammatical inference [6, 1, 8, 19, 5] that have been
successfully applied to pattern recognition, speech recog-
nition, natural language processing and several other do-
mains, there are no algorithms in the literature that can learn
the real-time, stochastic models that are typically used to
model systems in formal verification. In this paper, we ad-
dress this problem by presenting an algorithm that given ex-
ecution traces (possibly obtained by running the deployed
system during testing) of the system, infers a CTMC model
that could have generated the traces according to the ob-
served distribution. The learned CTMC can then be used
by existing probabilistic model-checking [17, 12, 21, 24]
and performance evaluation tools [14, 4] for further analy-
sis and thereby helping to find bugs in post-implementation
phase. The learning algorithm may also potentially be used
to perform automatic compositional verification (as in [7])
for stochastic systems. A closely related work is given in
[23] where they learn continuous-time hidden Markov mod-
els to do performance evaluation. However, they fix the size
of the continuous-time hidden Markov model before learn-
ing. This can be restrictive if the system cannot be modelled
by a continuous-time hidden Markov model of given size.
In our approach there is no such restriction.

We present an algorithm and show that it correctly iden-
tifies the CTMC model in the limit [8] when it is given
samples drawn from a distribution generated by a CTMC.
One technical difficulty when talking about samples drawn
from a CTMC is that traditionally CTMCs are unlabeled,
and so they only have runs, which are sequences of states
that are traversed and not traces. However, the problem is
that when samples are drawn from an implementation get-

1

207

goodelle
Text Box
Appendix Q:

goodelle
Rectangle



ting information that uniquely identifies states is expensive
and impractical, and can lead to the construction of a very
large model which does not collapse equivalent states. To
address this difficulty, we introduce the model of anEdge
Labeled Continuous-time Markov Chain(CTMCL) where
edges are labeled from a finite set of alphabet and traces are
sequences of edge labels which are given to the learning al-
gorithm.

Our algorithm is based on the state merging paradigm
introduced and used in RPNI [19] and ALERGIA [6]. The
samples provided to the learning algorithm are used to con-
struct what we call aprefix-tree continuous-time Markov
chain. Such Markov chains are the simplest CTMC that are
consistent with the samples. The algorithm then progres-
sively generalizes this model (i.e., produces models with ad-
ditional behaviors) by merging pairs of states about whose
“equivalence” the sample has evidence. Since the traces
do not have complete state information about the original
CTMC states, statistical information present in the samples
is used to distinguish states. Our key algorithmic insight is
in determining the statistical tests that can be used to con-
clude the equivalence of states with a given confidence. The
candidate states that are tested for equivalence by the algo-
rithm are done in a carefully chosen order (as in RPNI and
ALERGIA) to ensure that the algorithm runs in time poly-
nomial in sample size. The algorithm terminates when it
has tested for all possible merges. Like all algorithms that
learn in the limit, we show that this algorithm learns the cor-
rect CTMC given a sufficiently large sample. Our proof that
the algorithm learns in the limit relies on a novel method
to bound the error probability of our statistical tests. The
CTMC that the algorithm learns may be much smaller than
the implementation, since it merges all potentially equiva-
lent states, and it only generates thereachableportion of the
implementation. This can be particularly beneficial in the
context of formal verification; the running time and space
requirements of verification algorithms depend on the size
of the reachable portion of the model. We have implemented
our algorithm in Java and experimented by learning some
example systems encountered in practice.

The rest of the paper is organized as follows. We give
the preliminary definitions and notations in Section 2, fol-
lowed by the learning algorithm in Section 3. In Section 4
we prove that the learned CTMC converges to the original
CTMC in the limit. We report our initial experimental re-
sults in Section 5 and conclude in Section 6.
2. Preliminaries

We recall some basic concepts related to CTMCs. Our
presentation of this material is slightly non-standard in that
we consider CTMCs that have labels both on the edges and
the states. In what follows we assumeAP to be a finite set
of atomic propositions that are used in describing reliability
and performance constraints.

Definition 1 An Edge Labeled Continuous-time Markov
Chain(CTMCL) is a tupleM = (S, Σ, s0, δ, ρ, L) where

• S is a finite set of states,

• Σ is a finite alphabet of edge labels,

• s0 ∈ S is the initial state,

• δ : S×Σ → S is a partial function which maps a state
and an alphabet to the next state,

• ρ : S × Σ → R≥0 is a function which returns a posi-
tive real, calledrate, associated with the transition. We
assume thatρ(s, a) = 0 if and only ifδ(s, a) is not de-
fined.

• L : S → 2AP is a function which assigns to each state
s ∈ S the setL(s) of atomic propositions that are valid
in s.

A CTMCL defined as above is deterministic in the sense
that for a given states ∈ S and an alphabeta ∈ Σ the
state reached froms by the edge labeleda is unique if it
exists. Intuitively, the probability of moving from states
to states′ along the edge labeleda within time t is given
by (1 − e−ρ(s,a)t). This probability corresponds to the cu-
mulative probability of an exponential distribution with rate
ρ(s, a). For a given states, if there are more than one al-
phabeta ∈ Σ such thatρ(s, a) > 0 then there is a competi-
tion between the transitions. More precisely, for each tran-
sition s → δ(s, a) from s for which ρ(s, a) > 0, a ran-
dom time t is sampled from the exponential distribution
with rateρ(s, a). Then the transition corresponding to the
lowest sampled time is taken. The probability to move from
a states to another state, along the edgea, within t time
units i.e. the time sampled for the transition corresponding
to s → δ(s, a) is minimum, is given by

P(s, a, t) =
ρ(s, a)
E(s)

(
1− e−E(s)t

)

where E(s) =
∑

a∈Σ ρ(s, a) is the total rate at which
any transition from the states is taken. In other words,
the probability of leaving the states within t time units is
(1 − e−E(s)t). This is because the distribution for the min-
imum time among all edges is exponential with rateE(s).
Thus we can see the probability of moving from a states
along the edgea is the probability of staying at the states
for less thant time units times the probability of taking the
edgea. The probability of taking the edgea from states is
thus given by

P(s, a) =
ρ(s, a)
E(s)

WhenE(s) = 0, we defineP(s, a) = 0 for everya.

2

208

goodelle
Rectangle



Paths and Probability SpaceA pathτ starting at states is

a finite or infinite sequencel0
(a1,t1)−→ l1

(a2,t2)−→ l2
(a3,t3)−→ · · ·

such that there is a corresponding sequencev0
a1−→ v1

a2−→
v2

a3−→ · · · of states withs = v0, L(vi) = li, ti ∈ R≥0,
δ(vi, ai+1) = vi+1 for all i. For a pathτ from s, τ [s, i] = vi

is the ith state of the path andη[τ, s, i] = ti is the time
spent in statevi−1. A maximalpath starting at states is a
path τ starting ats such that it is either infinite or (if fi-
nite)E(τ [s, n]) = 0, wheren is the length ofτ . The set of
all maximal paths starting at states is denoted byPath(s);
the set of all (maximal) paths in a CTMCM, denoted by
Path(M), is taken to bePath(s0), wheres0 is the initial
state.

Let π = l0
a1−→ l1

a2−→ · · · ak−→ lk be a finite sequence
such that there is a sequence of statess0, s1, . . . sk such
that s0 is the initial state,L(si) = li and δ(si, ai+1) =
si+1; π[i] is used to denote statesi in the sequence cor-
responding toπ. Let I1, I2, . . . Ik be non-empty intervals
in R≥0. Then C(l0, (a1, I1), l1, . . . (ak, Ik), lk) denotes a
cylinder setconsisting of all pathsτ ∈ Path(s0) such that
τ [s0, i] = π[i] (for i ≤ k) andη[τ, s0, i] ∈ Ii. Let B be
the smallestσ-algebra onPath(s0) which contains all the
cylindersC(l0, (a1, I1), l1, . . . (ak, Ik), lk). The probability
measure overB is the unique measure inductively defined
asPath(C(l0)) = 1, if L(s0) = l0 and fork > 0 as

Prob(C(l0, (a1, I1), l1, . . . lk−1, (ak, Ik), lk))
= Prob(C(l0, (a1, I1), l1, . . . lk−1))·

P(sk−1, ak) · (e−E(sk−1)` − e−E(sk−1)u
)

where` = inf Ik andu = sup Ik, andsk−1 = π[k − 1]

3. Learning Edge Labeled CTMCs
The learning problem considered in this paper falls un-

der the category of stochastic grammatical inference [6, 16,
20, 5]. In stochastic grammatical inference, samples are
taken from a stochastic language. Given these samples the
stochastic language is learned by finding statistical regular-
ity among the samples. The parameters for the different dis-
tributions determining the language are also estimated from
the relative frequencies of the samples. For most of these
learning algorithms it has been shown that they can learn
the stochastic language in thelimit i.e. if the number of sam-
ples tends towards infinity then the learned language is the
same as the language that generated the sample. All these al-
gorithms essentially follow the same technique: they build
a prefix-tree automata which stores exactly the same sam-
ples and then they test and merge possibly equivalent states.

We present the algorithm for learning edge labeled
CTMCs. We first consider the issue of how to gener-
ate and reason about behaviors (visible execution traces) of
finite length, given that traditionally the behaviors are as-
sumed to be of infinite length. We then present some con-
cepts that are used in the algorithm. After this we present

the algorithm, whose proof of correctness appears in Sec-
tion 4.

3.1. Generating Samples
In this paper we consider the problem of learning

CTMCL from examples generated by simulating a sys-
tem under investigation. The wayCTMCL is formally
defined in Section 2, all behaviors aremaximal execu-
tions, and maximal executions are typically infinite. This
creates a technical difficulty namely what the samples ap-
propriate for learning are. To overcome this problem
we define a finitary version ofCTMCL called Fini-
tary Edge Labeled Continuous-time Markov Chains
(CTMC f

L) which is a CTMCL, with a non-zero stop-
ping probability in any state. This allows one to generate
and reason about behaviors of finite length. It is impor-
tant to note however, that use ofCTMC f

L is merely a
technical tool. Our primary goal is to learn the under-
lying CTMCL and as we shall see in Proposition 3,
we can achieve this by learning theCTMC f

L. More-
over in this effort, the specific value of the stopping
probability that we use does not influence the correct-
ness of the result. We present the formal definition of a
CTMC f

L.

Definition 2 A Finitary Edge Labeled Continuous-time
Markov Chain(CTMC f

L) is a pair F = (M, p) where
M is a CTMCL and p denotes the stopping probabil-
ity in any states ofM
There exists a trivial surjectionΘ: (M, p) 7→ M.

A finite sequenceτ = l0
(a1,t1)−→ l1

(a2,t2)−→ l2 · · · (an,tn)−→ ln
is a path of theCTMC f

L F = (M, p) starting from a states
iff it is path (not necessarily maximal) ofM starting froms.
The set of paths starting from states is denoted byPath(s).
The ith state of pathτ from s and the time spent in the
ith state are defined similarly, and are denoted byτ [s, i]
and η[τ, s, i], respectively.Theσ-field corresponding to a
CTMC f

L is defined analogously to that of aCTMCL. For
the pathτ from states, the probability that theCTMC f

L ex-
hibits such a path is given by

ProbF (τ, s) =
(1− p) ·P(τ [s, 0], a1, t1) · (1− p) ·P(τ [s, 1], a2, t2)
· · · (1− p) ·P(τ [s, n− 1], an, tn) · p

Given aCTMCL we extend it to aCTMC f
L by associat-

ing a known probabilityp⊥ (say p⊥ = 0.1) as the stop-
ping probability. TheCTMC f

L thus obtained is then simu-
lated to get a multi-set of finite samples which we treat as
the multi-set of examples for learning. In our algorithm we
will assume that we are given a finite multi-set of examples
from aCTMCL M extended with a known stopping prob-
ability p to aCTMC f

L. Our goal will be to learnM from
the multi-set of examples.

3

209

goodelle
Rectangle



Note that for a given implemented system, which can be
seen as a software program, an example can be generated
in the following way. Lets0 be the initial state of the pro-
gram. Then addl0 = L(s0) to the example sequence. We set
a probabilityp0 = 0.1. With probabilityp0 return the cur-
rent sequence as an example. With probability1 − p0 ex-
ecute the next instruction of the program. If the execution
of the instructionai takes timeti and results in the change

of state fromsi−1 to si then add
(ai,ti)−→ L(si) to the exam-

ple sequence.

3.2. Definitions
We next define the notations and the concepts that

we will use to describe the learning algorithm. Given a
CTMCL M = (S, Σ, s0, δ, ρ, L) we can extend the defini-
tion of δ as follows:

δ(s, λ) = s whereλ is the empty string
δ(s, xa) = δ(δ(s, x), a) wherex ∈ Σ∗ anda ∈ Σ
δ(s, a) = ⊥ if δ(s, a) is not defined
δ(s, xa) = ⊥ if δ(s, x) = ⊥ or δ(δ(s, x), a) is undefined

For a given exampleτ = l0
(a1,t1)−→ l1

(a2,t2)−→ l2 · · · (an,tn)−→
ln, let τ |Σ be the stringa1a2 . . . an. We usePr(τ) to de-
note the set{x | ∃y : xy = τ |Σ}, that is,Pr(τ) is the set
of all prefixes ofτ |Σ. Given a multi-setI+ of examples, let
Pr(I+) be the set

⋃
τ∈I+ Pr(τ). If there exists an exam-

ple l0
(a1,t1)−→ l1

(a2,t2)−→ l2 · · · (ai,ti)−→ li · · · (an,tn)−→ ln in I+

such thatx = a1a2 . . . ai then we defineL(x, I+) = li.
Let n(x, I+) be the number ofτ ∈ I+ such thatx ∈

Pr(τ) and letn′(x, I+) ben(x, I+) minus the number of
x ∈ I+. Thus n(x, I+) counts the number of examples
in I+ for which x is a prefix andn′(x, I+) is the num-
ber of examples inI+ for which x is prefix and length of

x is less than the length of the example. Forτ = l0
(a1,t1)−→

l1
(a2,t2)−→ l2 · · · (ai,ti)−→ li · · · (an,tn)−→ ln, if x = a1a2 . . . ai−1

anda = ai, thenθ(x, a, τ) = ti and0 otherwise; in other
words,θ(x, a, τ) denotes the time spent in the state reached
afterx in τ . We definêθ(x, I+) andp̂(x, a, I+) as follows:

θ̂(x, I+) =

{ ∑
a∈Σ

∑
τ∈I+ θ(x,a,τ)

n′(x,I+) if n′(x, I+) > 0
0 otherwise

p̂(x, a, I+) =

{
n(xa,I+)
n′(x,I+) if n′(x, I+) > 0
0 otherwise

Note thatθ̂(x, I+) gives an estimate of1/E(s) where
s is the stateδ(s0, x) and p̂(x, a, I+) gives an estimate of
P(s, a).

Given a multi-setI+ of examples we first construct a
prefix-treeCTMC f

L defined as follows.

Definition 3 The prefix-tree CTMC f
L for a multi-

set of examplesI+ is a CTMC f
L PCTMC (I+) =

((S, Σ, s0, δ, ρ, L), p), where

1. S = Pr(I+)

2. s0 = λ (the empty string)

3. δ(x, a) =
{

xa if xa ∈ S
⊥ otherwise

4. E(x) = 1/θ̂(x, I+)

5. P(x, a) = p̂(x, a, I+)

6. ρ(x, a) = P(x, a)E(x)

7. L(x) = L(x, I+)

8. p is the stopping probability associated with the
CTMC f

L that generated the examples.

A PCTMC (I+) is anCTMC f
L consistent with the ex-

amples inI+ in the sense that for every example inI+ there
is a corresponding path in theCTMC f

L.
The learning algorithm proceeds by generalizing the ini-

tial guess,PCTMC (I+), by mergingequivalentstates. The
formal definition of when two states are equivalent is now
presented.

Definition 4 Given aCTMCL M = (S, Σ, s0, δ, ρ, L), a
relationR ⊆ S × S is said to bestable relationif and only
if for anys, s′ ∈ S such that(s, s′) ∈ R, we have

a) L(s) = L(s′)

b) E(s) = E(s′)

c) for all a ∈ Σ if there existst ∈ S such thatδ(s, a) = t
then there exists at′ ∈ S such thatδ(s′, a) = t′,
P(s, a) = P(s′, a) and(t, t′) ∈ R, and conversely

d) for all a ∈ Σ if there existst′ ∈ S such thatδ(s′, a) =
t′ then there exists at ∈ S such thatδ(s, a) = t,
P(s′, a) = P(s, a) and(t′, t) ∈ R.

Two statess ands′ in CTMCL M are said to beequivalent
(s ≡ s′) if and only if there is a stable relationR such that
(s, s′) ∈ R.

The correctness of learning algorithm crucially depends
on the fact that merging two equivalent states results in a
CTMCL that generates the same distribution. But before
we state and prove this formally we make a simple observa-
tion about equivalent states.

Lemma 1 Let F = (M, p) be anCTMC f
L and s ≡ s′.

τ is a path starting froms iff τ is a path starting froms′.
MoreoverProbF (τ, s) = ProbF (τ, s′).

Proof: Let τ = l0
(a1,t1)−→ l1

(a2,t2)−→ l2 · · · (an,tn)−→ ln be a path
starting froms. There is a sequencev0

a1−→ v1
a2−→ · · · vn

of states such thatv0 = s. Sinces ≡ s′ andδ(s, a1) = v1,
there must be a stateu1 such thatδ(s′, a1) = u1 and
u1 ≡ v1. Continuing inductively, we can construct a se-
quence of statesu0

a1−→ u1
a2−→ · · ·un, such thatu0 = s′

4

210

goodelle
Rectangle



andui ≡ vi. Henceτ is also a path starting froms′. Fur-
thermore, sinceui ≡ vi, we know thatE(ui) = E(vi),
andP(ui, ai+1) = P(vi, ai+1) and henceProbF (τ, s) =
ProbF (τ, s′). For paths starting froms′, the argument is
symmetric.

Definition 5 TwoCTMC f
LsF andF ′ with initial statess0

ands′0, respectively, are said to beequivalentif Path(F) =
Path(F ′) and for everyτ ∈ Path(F), ProbF (τ, s0) =
ProbF ′(τ, s′0).

For a CTMCL M = (S, Σ, s0, δ, ρ, L), the minimal
CTMCL is defined to be the quotient ofM with respect
to the equivalence relation on states. Formally, the minimal
CTMCL isM′ = (S′, Σ, s′0, δ

′, ρ′, L′) such that

1. S′ are the equivalence classes ofS with respect to≡,

2. s′0 = [s0], the equivalence class ofs0

3. δ′([s], a) = [s′] iff δ(s, a) = s′

4. ρ′([s], a) = ρ(s, a) and

5. L′([s]) = L(s)

Observe, that this is well-defined, because of the way≡ is
defined.

Proposition 2 Let F = (M, p) be a CTMC f
L. Then

F ′ = (M′, p) is equivalent toF whereM′ is the mini-
malCTMCL corresponding toM
Proof: The proof is a straightforward consequence of the
definition of the minimalCTMCL M′. It relies on the ob-
servation that for a pathτ , v0

a1−→ v1
a2−→ · · · vn is a se-

quence of states visited inM iff [v0]
a1−→ [v1]

a2−→ · · · [vn]
in M′. Furthermore, sinceρ′([s], a) = ρ(s, a), the proba-
bilities are also the same.

We conclude the section with the observation that for
equivalentCTMC f

Ls with the same stopping probability,
the associatedCTMCLs define the same probability space
on the set of paths. This next proposition together with
Proposition 2 shows that given anyCTMCL, we can al-
ways construct a smaller equivalentCTMCL by merging
equivalent states, thus providing mathematical justification
for our algorithm.

Proposition 3 LetF = (M, p) andF ′ = (M′, p) be two
CTMC f

Ls with the same stopping probabilityp. Then the
probability spaces defined byM andM′ are the same.

We skip the proof of this proposition in the interests of
space. However, we would like to point out some of the im-
portant consequences of Proposition 3. First is that if we
learn anCTMC f

L that has the same stopping probability as
the one that was used to generate the samples from the sys-
tem, then the underlyingCTMCLs are also equivalent in
terms of the distribution on traces they generate. Second,
the specific value of the stopping probability plays no role

in proving the correctness of our learning algorithm. It may
have an effect in terms of the length of traces produced and
the number of traces needed to learn. The right choice of
the stopping probability is thus one that is determined by
the empirical constraints that one is working in.

3.3. Learning Algorithm

algorithm learnCTMC
Input: I+ : a multi-set of examples

α : confidence level
Output: CTMCL

begin
A ← PCTMC (I+)
for i = 2 to |A| do

for j = 1 to i− 1 do
if compatible(si, sj , α, I+) then

A ← merge(A, si, sj)
A ← determinize(A)
exit j-loop

endif
return A

end
Figure 1. Algorithm to learnCTMC f

L

The algorithm for CTMCL learning, described
in Figure 1, first constructs the prefix-treeCTMC f

L

A = PCTMC (I+) from the multi-set of examplesI+. We
assume that the states inA are ordered in lexicographic or-
der.1 Let |A| be the number of states inA. The algorithm
then tries to merge pairs of states inA that are equiva-
lent in a quadratic loop, i.e. for alli from 1 to |A| the al-
gorithm tries to mergesi with the statess1, s2, . . . , si−1

in that order. If two statessi and sj are equivalent they
are merged using the methodmerge(A, si, sj). The small-
est state in a block of merged states is used to represent the
whole block. After every merge of statesi andsj the result-
ing CTMC f

L may be non-deterministic. However, equiva-
lence ofsi andsj implies that each successor ofsi is equiv-
alent to the corresponding successor ofsj . This means
that those successors should also get merged. To en-
sure this the methoddeterminize(A) described in Fig-
ure 2 is invoked which removes the non-determinism in
A by a sequence of merges. After every merge the prob-
abilities P(s, a) and the ratesE(s) are re-computed for
every state as there is more information available at ev-
ery state. The algorithm stops when no more merging is
possible.

1 For Σ = {a, b}, the lexicographic ordering is
λ, a, b, aa, ab, ba, bb, aaa, . . .

5

211

goodelle
Rectangle



algorithm determinize
Input: A
Output: CTMCL

begin
while(∃s, a ∈ A : s′, s′′ ∈ δ(s, a)) do

A ← merge(A, s′, s′′)
return A

end
Figure 2. determinizeremoves non-determinism

Now the observations Proposition 2 and 3 together sug-
gest that the above algorithm would be correct if indeed we
could test for equivalence of two states. This, however, is
not the case, asA is built from experimental data. However,
we approximately check the equivalence of two states recur-
sively through statistical hypothesis testing [15, 18]. We say
that two statessi andsj are compatible, denoted bysi ≈ sj ,
if L(s) = L(s′), E(s) ∼ E(s′), for all a ∈ Σ, P(si, a) ∼
P(sj , a), and δ(si, a) ≈ δ(sj , a), whereE(s) ∼ E(s′)
means thatE(s) andE(s′) are equal within some statistical
uncertainty and similarly forP(si, a) ∼ P(sj , a). The deci-
sion for compatibility is made using the functioncompatible
described in Figure 3.

algorithm compatible
Input: x, y, I+, α
Output: boolean
begin

if L(x, I+) 6= L(y, I+) then
return FALSE

if differentExpMeans(θ̂(x, I+), n′(x, I+),

θ̂(y, I+), n′(y, I+), α) then
return FALSE

for ∀a ∈ Σ
if differentBerMeans(p̂(x, a, I+), n(xa, I+),

p̂(y, a, I+), n(ya, I+), α) then
return FALSE

if not compatible(δ(x, a), δ(y, a), I+, α) then
return FALSE

endfor
return TRUE

end

Figure 3. compatiblechecks if two two states are ap-
proximately equivalent

The check forE(si) ∼ E(sj) is performed by the func-
tion differentExpMean, described in Figure 4, which uses
statistical hypothesis testing. The function actually checks
if the means1/E(si) and1/E(sj) of two exponential dis-
tributions are different. Given two exponential distributions
with meansθ1 andθ2 we want to check ifθ1 = θ2 against

the fact fact thatθ1 6= θ2. This is equivalent to checking
θ1
θ2

= 1 against the fact thatθ1
θ2
6= 1. In statistical terms

we call θ1
θ2

= 1 as the null hypothesis (denoted byH0)

and θ1
θ2
6= 1 as the alternate hypothesis (denoted byHa).

To test the hypothesisH0 againstHa we drawn1 samples,
sayx1, x2, . . . , xn1 , from the exponential distribution with
meanθ1 andn2 samples, sayy1, y2, . . . , yn2 , from the ex-
ponential distribution with meanθ2. We estimateθ1 andθ2

by θ̂1 =
∑n1

i=1 xi

n1
and θ̂2 =

∑n2
i=1 yi

n2
respectively. Then we

use the ratioθ̂1

θ̂2
to checkH0 againstHa as follows:

We can say thatx1, x2, . . . , xn1 are random samples
from the random variablesX1, X2, . . . , Xn1 where each
Xi has an exponential distribution with meanθ1. Similarly,
y1, y2, . . . , yn2 are random samples from the random vari-
ablesY1, Y2, . . . , Yn2 where eachYi has an exponential dis-
tribution with meanθ2. Then it can be shown by methods
of moment generating function that the random variables
2

∑
Xi

θ1
and 2

∑
Yi

θ2
haveχ2(2n1) andχ2(2n2) distributions

respectively. This implies that the ratio(2
∑

Xi)/(2n1θ1)
(2

∑
Yi)/(2n2θ2)

or
∑

Xi/n1
θ1

/
∑

Yi/n2
θ2

hasF distribution with (2n1, 2n2) de-

grees of freedom. Assuming thatH0 holds
∑

Xi/n1∑
Yi/n2

has
F (2n1, 2n2) distribution. Let us introduce the random vari-
ablesΘ1 andΘ2 whereΘ1 =

∑
Xi

n1
andΘ2 =

∑
Yi

n2
. Our

experimental value ofθ̂1

θ̂2
gives a random sample from the

random variableΘ1
Θ2

. Let the random variableZ = Θ1
Θ2

θ2
θ1

.
ThenZ hasF distribution with(2n1, 2n2) degrees of free-
dom. Givenθ1 = θ2, from Chebyshev’s inequality, we get

Prob
[∣∣∣∣

Θ1

Θ2
− µ

∣∣∣∣ ≥
σ√
α

]
= Prob

[
|Z − µ| ≥ σ√

α

]
≤ α

whereµ = n2
n2−1 is the mean ofF (2n1, 2n2) and σ =√

n2
2(n1+n2−1)

n1(n2−1)2(n2−2) its standard deviation. Thus, takingř =
µ− σ√

α
andr̂ = µ + σ√

α
, we get

Prob
[
ř ≤ Θ1

Θ2
≤ r̂

]
> 1− α (1)

If θ̂1

θ̂2
> 1 then we calculate the probability of our observa-

tion givenθ1 = θ2, called thep-value, as

p-value= Prob

[
Θ1

Θ2
>

θ̂1

θ̂2

]
= Prob

[
Z >

θ̂1

θ̂2

]

Similarly, if θ̂1

θ̂2
< 1, thep-value is given by

p-value= Prob

[
Θ1

Θ2
<

θ̂1

θ̂2

]
= Prob

[
Z <

θ̂1

θ̂2

]

If the calculatedp-value in both cases together is less thanα
we say we have enough evidence to reject the null hypoth-

6

212

goodelle
Rectangle



esisθ1 = θ2. This is equivalent to say that we rejectH0 if
θ̂1

θ̂2
/∈ [ř, r̂].

algorithm differentExpMeans
Input: θ̂1, n1, θ̂2, n2, α
Output: boolean
begin

if n1 = 0 or n2 = 0 then
return FALSE

return θ̂1
θ̂2

/∈ [ř, r̂]

end

Figure 4. differentExpMeanschecks if two estimated
exponential means are different; the parameterα is
used in calculatinǧr andr̂

The check forP(si, a) ∼ P(sj , a) is performed by the
function differentBerMeans(see Figure 5) using Hoeffd-
ing bounds similar to that in [6]. The method checks if the
meansp1 andp2 of two Bernoulli distributions are statisti-
cally different or not. Iff1 tries are 1 out ofn1 tries from
a Bernoulli distribution with meanp1 andf2 tries are 1 out
of n2 tries from a Bernoulli distribution with meanp2, then
we say thatp1 andp2 are statistically same if

∣∣∣∣
f1

n1
− f2

n2

∣∣∣∣ <

√
1
2

log
2
α

(
1√
n1

+
1√
n2

)

Note that it is possible to use other tests, such as multi-
nomial test [16], to compare two means of Bernoulli distri-
butions.

algorithm differentBerMeans
Input: p̂1, n1, p̂2, n2, α
Output: boolean
begin

if n1 = 0 or n2 = 0 then
return FALSE

return |p̂1 − p̂2| >
√

1
2

log 2
α

(
1√
n1

+ 1√
n2

)

end

Figure 5. differentBerMeanschecks if two estimated
Bernoulli means are different

3.4. Complexity
The worst case running complexity of the algorithm is

cubic in the sum of the length of all samples. However, in
our experiments we found that the running time grows al-
most linearly with the sum of length of sample lengths. The
parameterα influences the size of the sample needed for

converging on the right model. The exact dependence of
sample size onα is an open problem that needs investiga-
tion.

4. Learning in the Limit
In order to prove correctness of our algorithm, we need

to show that theCTMCL that the learning algorithm pro-
duces is eventually equivalent to the model that was used
to generate the samples. Our proof proceeds in two steps.
First we show that the learning algorithm will eventually
be presented what is usually called astructurally complete
sample. A structurally complete sampleI+ is a multi-set of
traces such that the traces visit every (reachable) state and
every transition. More formally, for every states of the tar-
getCTMCL, there is a traceτ ∈ I+ such thats is one of
the states visited when traceτ was produced, and for every
(reachable) transition(s, a) there is a traceτ ∈ I+ such that
(s, a) is traversed byτ . Observe that ifI+ ⊆ I ′+ andI+

is structurally complete thenI ′+ is also structurally com-
plete. The second step of the proof involves showing that
if we keep adding samples to a structurally complete set,
then we will eventually learn the rightCTMCL. These two
steps together show that our algorithm will learn the target
CTMCL in the limit [8].

The first thing to observe that for anyCTMCL M there
is a finite structurally complete sample set. LetΓ be a struc-
turally complete sample set and letF = (M, p) be a
CTMC f

L (with any stopping probabilityp). Now observe
that for anyτ ∈ Γ, p = ProbF (τ, s0) is finite and non-
zero. Thus, the probability thatτ is not among the firstk
samples generated byF is (1 − p)k, and this tends to0 as
k increases. Hence, every string inΓ is eventually gener-
ated, and so the sample given to the learning algorithm is
eventually structurally complete.

The main challenge in the proof of correctness is to
show that once we have a structurally complete sample,
we will eventually learn the rightCTMCL. In what fol-
lows, we simply assume that whenever we refer to a sam-
ple I+, we mean thatI+ is structurally complete. Ob-
serve that for a (structurally complete) sampleI+, the right
CTMCL is one that results from merging equivalent states
of PCTMC (I+). However, since we can only check com-
patibility (and not exact equivalence) the only errors the al-
gorithm makes can result when we check the compatibility
of two states. There are two types of errors in this context.

1. Type I error : compatibility returns false when two
states are actually equivalent, and

2. Type II error : compatibility returns true when two
states are not equivalent

Our goal is to reduce these two errors as much as possible.
We show that ass = |I+| goes to infinity, the global contri-
bution of these two errors tend to zero. Observe that, ift is

7

213

goodelle
Rectangle



the number of states inPCTMC (I+), thent cannot grow
as fast ass does. Ifm be the number of states in the target
CTMC f

L, then the number of merges performed by the al-
gorithm before giving the correctCTMC f

L is t−m. Further
recall that thep-value of the tests performed by the func-
tions differentExpMeansanddifferentBerMeansis at most
α. Hence, global Type I error,eα is bounded byα(|Σ|+1)t.
This error can be made negligible and independent of the
size of thePCTMC (I+) by taking α = kt−1 for some
very small constantk.

Thus, by makingα small we can ensure that the learning
algorithm always merges equivalent states. Then the errors
of the learning algorithm can be confined to those resulting
from merging inequivalent states. In the absence of Type I
errors, the learning algorithm always outputs aCTMC f

L,
whose states form a partition of the targetCTMC f

L. Thus
an upper bound on Type II errors is given by the probabil-
ity that an error occurs when comparing two states of the
targetCTMC f

L. Taking β to be the probability of merg-
ing two non-equivalent states, we get the Type II error
eβ ≤ 1

2βm(m− 1)(|Σ|+ 1). Thus if we show thatβ tends
to 0 as the sample size grows, then we know that the algo-
rithm will eventually not make any errors.

Observe that the probability of merging a pair of non-
equivalent states is bounded by the probability of either
differentExpMeansor differentBerMeansreturning TRUE
when the actual means are different. Hence, in order to show
that the learning algorithm eventually gives the right an-
swer, we need to show that the probability thatdifferent-
ExpMeansanddifferentBerMeansmake an error when the
means are different tends to 0. We will consider each of the
procedures separately and bound their error.
CasedifferentExpMeans: Assume thatr = θ2

θ1
6= 1, i.e.,

E(si) 6= E(sj). Recall that for a givenα, takingř = µ− σ√
α

andr̂ = µ+ σ√
α

, whereµ is the mean andσ the standard de-

viation of F (2n1, 2n2), we say that an observationθ̂1

θ̂2
pro-

vides evidence forE(si) ∼ E(sj) when θ̂1

θ̂2
∈ [ř, r̂]. Now,

we have

Prob
[
ř ≤ Θ1

Θ2
≤ r̂

]
= Prob

[
řr ≤ Θ1

Θ2

θ2
θ1
≤ r̂r

]

= Prob [řr ≤ Z ≤ r̂r]

where, Z has distributionF (2n1, 2n2). Once again by
Chebyshev’s inequality, we know that

Prob

[
|Z − µ| ≥ σ√

β

]
≤ β

Thus, ifrř ≥ µ + σ√
β

or rr̂ ≤ µ− σ√
β

then

Prob

[
ř ≤ Θ1

Θ2
≤ r̂

]
= Prob [řr ≤ Z ≤ r̂r] ≤ β

Taking

β =
(

σ
√

α

|r − 1|µ√α + rσ

)2

we observe that ifr < 1 thenrř ≥ µ + σ√
β

and if r ≥ 1
thenrr̂ ≤ µ − σ√

β
. Finally, plugging in the values ofµ, σ

andα, we observe thatβ tends to0.
Case differentBerMeans: Let P(si, a) = p1 6= p2 =
P(sj , a). Let F1 be a random variable that is the mean of
n1 Bernoulli trials with meanp1 and F2 the mean ofn2

Bernoulli trials with meanp2. Recall that we sayP(si, a) ∼
P(sj , a) if some observation̂f1 of variableF1 and observa-
tion f̂2 of F2 are such that|f̂1 − f̂2| < ε where

ε =

√
1

2
log

2

α

(
1√
n1

+
1√
n2

)

We will try to bound the probability that this happens. Ob-
serve thatE(F1 − F2) = p1 − p2 and

Var(F1 − F2) = Var(F1) + Var(F2)

= p1(1−p1)
n1

+ p2(1−p2)
n2

≥ 1
4n1

+ 1
4n2

Now β = Prob(|F1−F2| < ε) < Prob(|(F1−F2)−(p1−
p2)| > |p1 − p2| − ε). By Chebyshev’s inequality,β ≤ B
where

B =





Var(F1−F2)

(|p1−p2|−ε)2
if ε < |p1 − p2| and
Var(F1 − F2) < ((p1 − p2)− ε)2

1 otherwise

First observe thatn1 andn2 grow linearly ass = |I+| in-
creases, and so even ifα is kt−1 as needed in order to elim-
inate Type I errors, sincet is bounded bys, ε tends to0 ass
grows. NextVar(F1−F2) also tends to0 ass grows. Hence
B vanishes withs, proving that in the limit Type II errors
are eliminated.

5. Tool and Experiments
We have implemented the learning algorithm in Java as

a sub-component of the toolVESTA (Verification based on
Statistical Analysis).2 The tool takes a multi-set of examples
generated from the simulation of a system having an un-
knownCTMCL model. Based on these examples the tool
learns the underlyingCTMCL for a given value ofα. The
learned model can be used for verification of CSL formulas
either using the statistical model-checker ofVESTA [21] or
other model-checkers such as PRISM [17], ETMCC [12],
Ymer [24] etc. We tested the performance of our tool on
severalCTMCL models. For eachCTMCL model we per-
formed discrete-event simulation to get a large number of
examples and then learned aCTMCL based on these exam-
ples. Finally we checked if the learnedCTMCL is equiva-
lent as the originalCTMCL, that generated the examples.
We found that the learnedCTMCL is equivalent to the
original CTMCL in all our experiments provided that the
number of samples is large enough. In all our experiments
we assumed that the set of atomic propositions at any state

2 Available fromhttp://osl.cs.uiuc.edu/ ∼ksen/vesta/

8

214

goodelle
Rectangle



are same. This is assumed to show the working of the statis-
tical tests. If we take atomic propositions into consideration
then the learning becomes faster because atomic proposi-
tions will be sufficient in distinguishing certain states. We
next report the results of our experiments performed on a
Pentium III 1.2GHz laptop with 620 MB SDRAM.
Symmetric CTMC The CTMCL in Figure 6, which is
carefully selected, contains four states. The probability of
taking the edges labeleda and b from the states0 and 2
are same; however, the total rates at which transitions take
place from the two states are different. Therefore, to distin-
guish these two states comparison of the total rates is re-
quired. Similar is the case for states1 and3. On the other
hand, the total rates for the states0 and1 are same; how-
ever, the probability of taking the edgesa andb are different
which is used to distinguish the two states. The same is true
for the states2 and3. Thus this example shows the effec-
tiveness of both the functionsdifferentBerMeansanddiffer-
entExpMeansduring learning. We use theCTMCL to gen-
erate samples which are then used to learn aCTMCL. We
found that for more than 600 samples andα = 0.0001 the
CTMCL learned is same as the originalCTMCL.

0

3 2

1

a, rate = 5 

b, rate = 3 

b, rate = 10 

b, rate = 20 
a, rate = 24 

a, rate = 12

b, rate = 6 

a, rate = 10

Figure 6. Symmetric CTMC

Triple Modular Redundant System Our next example is
theCTMCL in Figure 7 representing the model of aTriple
Modular Redundant System(TMR). The example is taken
from [10, 2]. We ignore the atomic propositions that are
true at each state to show the effectiveness of our statisti-
cal test. Although we generated the samples through the dis-
crete event simulation of theCTMCL in Figure 7, we can
as well assume that the samples are coming from the ac-
tual running system. In figure 7 we plot the average number
of states in the learnedCTMCL and time taken in learning
against the number of samples used in learning. The number
of states converges to five when the sample is large enough.
The time taken for learning grows almost linearly with the
number of samples. Withα = 0.0001 and 1000 samples
the algorithm learns the sameCTMCL in less than 2 sec-

onds. For small number of samples, due to lack of sufficient
information, the algorithm tends to generalize more result-
ing in less number of states in the learnedCTMCL.

Tandem Queuing Network In this more practical example
we considered a M/Cox2/1-queue sequentially composed
with a M/M/1-queue. This example is taken from [13]. For
N = 3, whereN denotes the capacity of the queues, the
algorithm learned aCTMCL model with15 states. How-
ever, the number of samples required in this case to learn
the underlyingCTMCL is quite large (around 20,000).
This particular experiment suggests that learning underly-
ing CTMCL for large systems may require a large number
of samples. Therefore, a more effective technique would be
to verify the approximate model learnt from small number
of samples. However, because the model learnt is approxi-
mate, the result of verification would also be approximate.
This suggests that the confidence in verification should be
quantified reasonably. How to do such quantification re-
mains an open problem.

6. Conclusion and Future Work
We have presented a novel machine-learning algo-

rithm to learn the underlying edge-labeled continuous-time
Markov chains of deployed stochastic systems for which
we do not know the model before-hand. An impor-
tant aspect of the learning algorithm is that it can learn
a formal stochastic model from the traces generated dur-
ing testing or executing the deployed system. The learnt
CTMCL can be used to verify the deployed systems us-
ing existing probabilistic model-checking tools. More-
over, one can also check if the learnt model isF -bisimilar
[2, 3] to the model given in a specification. This al-
lows us to check if the deployed system correctly imple-
ments a specification with respect to a set of formulas
F . Finally, we provide an implementation of the algo-
rithm which can be used with various other tools.

One of the limitations of our work is that it may not
scale up for systems having large underlying CTMC model.
Therefore, one needs to develop techniques that can per-
form approximate verification as the model is learnt. The
accuracy of such verification technique should increase with
the increase in the number of samples. The difficult part in
developing such an approach is to correctly quantify the
confidence (or accuracy) in verification. Such a technique
will make verification of “black-box” systems a very prac-
tical approach that can co-exist with testing based on dis-
crete event simulation.

Acknowledgement
The work is supported in part by the DARPA IPTO TASK

Award F30602-00-2-0586, the DARPA/AFOSR MURI Award
F49620-02-1-0325, the ONR Grant N00014-02-1-0715, and the
Motorola Grant MOTOROLA RPS #23 ANT. Our work has ben-
efitted considerably from our collaboration with Abhay Vardhan

9

215

goodelle
Rectangle



3

0

4

1

2

a, rate=3λ

a, rate=λ

a, rate=2λ

b, rate=µ

b, rate=µ

b, rate=µ

c, rate=ν
c, rate=ν

c, rate=ν
c, rate=ν

a, rate=δ

 0

 0.5

 1

 1.5

 2

 100  200  300  400  500  600  700  800  900  1000

T
im

e

Number of Samples

 0

 1

 2

 3

 4

 5

 6

 0  200  400  600  800  1000

N
um

be
r 

of
 S

ta
te

s

Number of Samples

Figure 7. Learning TMR

on “learning to verify” framework for verifying infinite state sys-
tems. We would like to thank Tom Brown for giving us feedback
on a previous version of this paper.

References

[1] D. Angluin. Learning regular sets from queries and coun-
terexamples.Infor. and Comp., 75(2):87–106, 1987.

[2] C. Baier, B. Haverkort, H. Hermanns, and J. Katoen. Model
checking continuous-time Markov chains by transient analy-
sis. InComputer Aided Verification (CAV’00), volume 1855
of LNCS, pages 358–372. Springer, 2000.

[3] C. Baier, J. Katoen, H. Hermanns, and B. Haverkort. Simu-
lation for continuous-time Markov chains. In13th Interna-
tional Conference on Concurrency Theory (CONCUR’02),
volume 2421 ofLNCS, pages 338–354. Springer, 2002.

[4] G. Balbo, G. Conte, S. Donatelli, G. Franceschinis, and
M. A. Marsan.Modelling with Generalized Stochastic Petri
Nets. John Wiley & Sons, 1995.

[5] L. Baum, T. Petrie, G. Soules, and N. Weiss. A maximiza-
tion technique occuring in the statistical analysis of proba-
bilistic functions of Markov chains.Annals of Mathematical
Statistics, 41(1):164–171, 1970.

[6] R. C. Carrasco and J. Oncina. Learning stochastic regular
grammars by means of a state merging method. InInterna-
tional Colloquium Grammatical Inference and Applications
(ICGI’94), volume 862 ofLNCS. Springer, 1994.

[7] J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu.
Learning assumptions for compositional verification. In
Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’03), volume 2619 ofLNCS, pages 331–346.

[8] E. M. Gold. Language identification in the limit.Informa-
tion and Control, 10:447–474, 1967.

[9] A. Groce, D. Peled, and M. Yannakakis. Adaptive model
checking. InTools and Algorithms for the Construction
and Analysis of Systems (TACAS’02), volume 2280 ofLNCS,
pages 357–371, 2002.

[10] B. Haverkort. Performance of Computer Communication
Systems: A Model-Based Approach. Wiley, 1998.

[11] H. Hermanns, U. Herzog, and J. Katoen. Process algebra
for performance evaluation.Theoretical Computer Science,
274(1–2):43–87, 2002.

[12] H. Hermanns, J. P. Katoen, J. Meyer-Kayser, and M. Siegle.
A tool for model-checking Markov chains.Software Tools
for Technology Transfer, 4(2):153–172, 2003.

[13] H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi-
terminal binary decision diagrams to represent and analyse
continuous-time Markov chains. InWorkshop on the Numer-
ical Solution of Markov Chains (NSMC’99), 1999.

[14] J. Hillston.A Compositional Approach to Performance Mod-
elling. Cambridge University Press, 1996.

[15] R. V. Hogg and A. T. Craig.Introduction to Mathematical
Statistics. Macmillan, New York, NY, USA, 1978.

[16] C. Kermorvant and P. Dupont. Stochastic grammatical infer-
ence with multinomial tests. InGrammatical Inference: Al-
gorithms and Applications, volume 2484 ofLecture Notes in
Artificial Intelligence. Springer, 2002.

[17] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM:
Probabilistic symbolic model checker. InComputer Per-
formance Evaluation, Modelling Techniques and Tools
(TOOLS’02), volume 2324 ofLNCS, pages 200–204.

[18] W. Nelson.Applied Life Data Analysis. Wiley, 1982.
[19] J. Oncina and P. Garcia. Inferring regular languages in poly-

nomial update time. InPattern Recognition and Image Anal-
ysis, volume 1 ofSeries in Machine Perception and Artificial
Intelligence, pages 49–61. 1992.

[20] D. Ron, Y. Singer, and N. Tishby. On the learnability and us-
age of acyclic probabilistic finite automata.Journal of Com-
puter and System Sciences, 56(2):133–152, 1998.

[21] K. Sen, M. Viswanathan, and G. Agha. Statistical model
checking of black-box probabilistic systems. In16th confer-
ence on Computer Aided Verification (CAV’04), LNCS (To
Appear). Springer, July 2004.

[22] W. J. Stewart. Introduction to the Numerical Solution of
Markov Chains. Princeton, 1994.

[23] W. Wei, B. Wang, and D. Towsley. Continuous-time hidden
Markov models for network performance evaluation.Perfor-
mance Evaluation, 49(1–4):129–146, September 2002.

[24] H. L. S. Younes, M. Kwiatkowska, G. Norman, and
D. Parker. Numerical vs. statistical probabilistic model
checking: An empirical study. InTools and Algorithms for
the Construction and Analysis of Systems (TACAS’04), vol-
ume 2988 ofLNCS. Springer, 2004.

10

216

goodelle
Rectangle



Towards a Hierarchical Taxonomy of Autonomous
Agents∗

Predrag T. Tosic and Gul A. Agha
Open Systems Laboratory, Department of Computer Science

University of Illinois at Urbana-Champaign, USA
E-mail: {p-tosic, agha}@cs.uiuc.edu

Abstract – Autonomous agents have become an influential
and powerful paradigm in a great variety of disciplines,
from sociology and economics to distributed artificial in-
telligence and software engineering to philosophy. Given
that the paradigm has been around for awhile, one would
expect a broadly agreed-upon, solid understanding of what
autonomous agents are and what they are not. This, how-
ever, is not the case. We therefore join the ongoing debate
on what are the appropriate notions of autonomous agency.
We approach agents and agent ontology from a cybernet-
ics and general systems perspective, in contrast to the much
more common in the agent literature sociology, anthropology
and/or cognitive psychology based approaches. We attempt
to identify the most fundamental attributes of autonomous
agents, and propose a tentative hierarchy of autonomous
agents based on those attributes.

Keywords: Smart Agents, Intelligent Systems, Intelligent
and Soft Computing - Systems and Applications

1 Introduction and Motivation
Autonomous agents have become a powerful paradigm in

a great variety of disciplines, from sociology and economics
to distributed artificial intelligence and software engineering
to cognitive sciences to philosophy. While different disci-
plines have different needs and may have different notions
of agents, the agents in economics and those in distributed
artificial intelligence (DAI), for example, nonetheless tend
to share most of the fundamental properties. Given that the
paradigm has been around for awhile, one would expect a rel-
atively solid understanding of what autonomous agents are,
and what they are not. This, however, is not at all the case.

Is there, then, at least a reasonably unified and broadly
agreed upon notion ofautonomous agencyamong the com-
puter scientists? The answer is still‘No.’ In particular,
the notion of autonomous agency in open distributed com-
puting environments (e.g., [2, 6]), while certainly sharing
some of the properties, does not coincide with the corre-
sponding standard notion of agency in artificial intelligence
(e.g., [18]). One would hope that understanding this gap

∗0-7803-8566-7/04/$20.00c© 2004 IEEE.

can assist in bridging it, thereby enhancing the ability of the
software system designers to meet the requirements of vari-
ous AI and other applications more effectively and easily by
readily identifying and efficiently building the required ad-
ditional functionality (“agent capabilities”) on the top of the
existing open distributed agent-based (or even merely object-
based) software infrastructures.

Herewith, we attempt to contribute to the ongoing debate
on what are the appropriate notions ofautonomous agency.
Instead of proposing a single such prescriptive (and there-
fore necessarily also restrictive), “one size fits all” defini-
tion of autonomous agents, we propose an entire hierarchy
of agents, from simpler (reactive situated agents) towards
quite complicated and capable of human-like complex cog-
nitive tasks (deliberative, intelligent agents). The proposed
hierarchy, rather than being based on any particular school
of thought in artificial intelligence and cognitive sciences, is
chiefly based on ideas and paradigms from other scientific
disciplines - mainlycybernetics [25] and systems science
[14, 15]. We argue that learning from other, non-AI and non-
cognitive disciplines such as cybernetics or biology can pro-
vide some critical, yet thus far for the most part missing,
ingredients in building successful and complete theories of
artificial autonomous agents and multi-agent systems. This
work is intended to be a modest step in that direction.

2 What Are Autonomous Agents?
It has become common to define an appropriate notion of

agency by specifying thenecessary attributesthat all agents
of the particular kind one has in mind are required to share
(e.g., [10, 16, 18]). There has been much of debate, however,
what set of properties exactly qualifies an entity, such as a
single human decision maker, a firm in the market, a com-
puter program, a robot or an unmanned autonomous vehicle,
for an autonomousor an intelligent agent. Influential po-
sition papers, such as [26] for intelligent agents or [10] for
autonomous agents, while trying to clarify and unify the ter-
minology, and propose agent taxonomies, also illustrate the
heterogeneity and lack of agreement on the definition and
the required (as opposed to optional) properties even in the
case of autonomous agents that are restricted to computer

217

goodelle
Text Box
Appendix R: 



programs alone (which disallows, say, humans or social in-
sects).

It has been observed that the main division line is the one
that separates the (purely)reactive agents[17, 18] from the
more complex, capable of cognitive-like behaviorsdeliber-
ative agents [16, 18, 26]. A reactive agent is one that is
coupled to the environment and is capable of being affected
by, and perhaps in turn also affecting, the environment. It
need not be capable of cognitive tasks such as learning, plan-
ning or reasoning. It need not have any complicated internal
structure, or any capability of complex correlations between
its internal states and the states of the outer world (“symbolic
representations”); it uses a little or no memory, etc.

In contrast, a deliberative agent is much more complex in
terms of its internal structure, is typically capable of creat-
ing and working with abstract representations of a complex
outer world (e.g., by performing planning, reasoning and/or
learning tasks), has some sense of its purpose (tasks, goals,
utilities), usually is pro-active and adaptable, etc. Much of
research in the main-stream artificial intelligence (AI) over
the past twenty or more years has been focused on the de-
sign problem of such artificial deliberative agents, capable
of acting in complex environments and autonomously pursu-
ing their complex goals or tasks in such environments (see,
e.g., [6, 16, 18, 24, 26] and references therein).

Herein, we attempt to hierarchically classify agents based
on their complexity in terms of their capabilities and func-
tionalities, not on (models of) agents’ internal structure. An
agent is more sophisticated than another, if it is capable of
more complex behaviors observable by an outside observer.
This natural functionalist, behaviorist and systems theory
oriented approach, however, does not seem very common in
the mainstream agent literature.

Some of the most frequently encountered general prop-
erties of agents found in the literature include reactive-
ness, pro-activeness, ability to execute autonomously, goal-
orientedness or goal-drivenness, a capability of sensing the
environment and being affected by the environment, a ca-
pability of affecting the environment, sociability, ability to
communicate, persistence, purposefulness, and ability to
learn and/or reason about the world.

Not all the agents have to possess all of the above men-
tioned properties, of course. We shall make an attempt, how-
ever, to identify those properties that arenecessaryfor au-
tonomous agents of a desired level of complexity.

In case of the computer programs, being capable of au-
tonomous execution, that is, an execution that is not (en-
tirely) controlled from the outside, seems to be the most natu-
ral requirement for any notion of autonomous agency. How-
ever, a question then arises, is this enough? For instance, a
finite state machine (FSM)executes autonomously (and re-
actively, inasmuch as the ability of an agent to be affected by
the environment suffices for reactivity), but we find it hard
to considerindividual FSMs an appropriate abstraction of
autonomous agents. On the other hand, acoupled finite au-
tomata model has been proposed as an abstraction of reac-

tive situated agents (e.g., [17]). We shall discuss in some
detail what we consider to be the necessary attributes of au-
tonomous agency, as well as propose a hierarchy of agents in
terms of the attributes they possess, inSection 4.

3 A Systems Approach To Agents
Most approaches to classifying various types of (natural

as well as artificial) agents are based on specifying the nec-
essary attributes of a particular kind of agents, as in, e.g.,
[10]. We adopt this general approach, as well. However, we
also try to be more specific as towhat kinds of attributes
we allow. Tools from other cognitive disciplines, such as
psychology, anthropology and sociology, have been liber-
ally applied to characterize the fundamental properties, and
therefore the very nature, of various artificial agent systems.
In particular, software and robotic agents have been gener-
ously ascribed properties that characterize anthropomorphic
cognition, such as beliefs, desires, intentions, emotions, etc.
One of the most successful examples of such approach are
the BDI agent paradigm and architectures [16].

However, we see some potential conceptual and practical
problems with assigning too liberally human (cognitive or
other) attributes to a piece of software or a robot. In scien-
tific and engineering modeling, the very purpose of amodel
is to be intrinsically simpler, and therefore more amenable to
analysis, than the phenomenon being modeled. But when the
attributes of beliefs, intentions, emotions, and the like are as-
cribed to, for instance, a software agent system with individ-
ual agents of a fairly modest complexity, it seems that exactly
the opposite is the case. While there is some justification in
correlating, for instance, how artificial agents represent and
interact with complex, partially observable environments and
tasks to how humans act (reason, learn, represent knowledge,
etc.) with respect to their tasks and environments, there are
also certain dangers in this approach. For, after all, robots
and software agents are not human, and (unless one believes
in the Strong AI hypothesis [19]) perhaps cannot ever be
made very human-like in terms of their cognitive capabil-
ities. Furthermore, representing and reasoning about rela-
tively simple software agents encountered in many software
engineering applications in terms of highly complex capa-
bilities of human-like cognition seems to be an “overkill”, in
that the complexity of the model may end up considerably
exceeding the sophistication of the modeled.

Another problem with attributing various anthropomor-
phic features to artificial agents emerges once different types
of such agents are compared and contrasted with one an-
other. Software agents, robots and other types of artificial
agents are man-designed engineering systems. They should
be characterized, studied, compared and contrasted to one
another in terms of how they as systemsbehave, not what
“mental states” or “beliefs” or “desires” or “emotions” their
designer attributes to them. Whether an agent is reactive or
adaptable can be, in general, verified by an outside observer
that is independent of the agent. What are the belief or desire
or emotional states of an agent, on the other hand, cannot.

218



We shall propose in the sequel a less cognition-oriented,
and less anthropomorphic, approach to modeling, classifying
and understanding various types of (artificial) autonomous
agents and multi-agent systems (MAS). In particular, our ap-
proach, instead of cognitive psychology, draws more analo-
gies and paradigms from cybernetics [25] and systems sci-
ence [14, 15] on one, and biology and natural evolution [9],
on the other hand. We argue that this approach fairly natu-
rally leads to various possible hierarchical classifications of
autonomous agents, and we propose one such general and
broad agent hierarchy.

In particular, instead of comparing various agents in terms
of their sophistication by chiefly comparing the complexi-
ties of agents’ internal representations or “logics”, we adopt
a cybernetics-inspired approach based on the “black box”
abstraction, and consider what kind of properties an agent
needs in order to be able to do certain things, or function
a certain way. We view an agent system “not a thing, but
a list of variables” [5] and relations among those variables.
Moreover, to understand an autonomous agent, one has to
also understand this agent’s environment, as well as various
loops (e.g., feed-forward or feedback) that determine how
this agent interacts with its environments. Thus our empha-
sis is on a functionalist, behavioral aspects of agency, and an
agent is viewed as a black box whose inner structure (such as
beliefs, desires, emotions, etc.) may or may not be accessible
or understood, but it isthe interaction of this black box sys-
tem with the outside world,mechanisms for that interaction,
and observable behavioral consequences of that interaction
that are given the “first class” status (see, e.g., [4, 5]).

4 An Agent Hierarchy: From
Reactive Towards Deliberative

We now discuss in some detail what are the critical,nec-
essary (as opposed to optional) attributes that characterize
most known autonomous agents, biological and computa-
tional alike. The most elementary attributes of such agents
can be expected to be those properties that characterize any
autonomous systemin general. Once a couple of additional
attributes that characterize virtually all agents are added, we
arrive at aweak notion of autonomous agency. Subse-
quently, some additional properties will be identified that,
we argue, characterize nearly all autonomous agents found
in AI and DAI. An agent that possesses each of these at-
tributes, as well as those of weakly autonomous agents, we
shall call strongly autonomous. Finally, one more prop-
erty will be identified that is absolutely necessary for any
(however weak) notion of intelligence. Thus this list of sys-
tem properties, each to at least some degree observable or
testable by an observer external to the system, will implicitly
define a tentativenatural hierarchy of autonomous agents.
In addition to similar attempts at classifying various types of
agents (e.g., [10, 26]), our approach is also motivated by the
general systems theory, and, in particular, by epistemological
hierarchies of(general) systems,as in, e.g., [15].

The minimal notion of autonomy is the requirement that
an entity (at least partially) controls its own internal state.
Some degree of control1 of one’s internal state indeed ap-
pears necessary for autonomous agency, as well - but it is by
no means sufficient. In addition to control over itsinternal
state, an autonomous system ought to have at least some
degree of control over itsbehavior. In case of a computer
program (that is, a software agent), this means autonomous
execution. If some autonomous control of a software sys-
tem’s state and execution were all it takes for such a sys-
tem to be an autonomous agent, then the distinction between
software agents and arbitrary computer programs would be
rather blurred, and(almost) all programs would “qualify”
for autonomous agents (see, e.g., discussions in [10, 17]).
This is clearly undesirable. The question arises, what is miss-
ing - what additional requirements need to be imposed on an
arbitrary computer program so that such a program can be
considered a legitimate software agent?

Agents cannot be understood in isolation from the envi-
ronment in which they are embedded [10]. This implies that,
in order to develop a meaningful model of an agent, we need
(a) an appropriate model of the environment, and (b) a model
of the agent’sinteraction with the environment.

Regardless of the nature and mechanisms of this interac-
tion between an agent and its environment (where the envi-
ronment may also include other agents), there would be no
point to any such interaction if it were not able toaffect ei-
ther the agent, or the environment outside of the agent, or,
most often in practice,both.

Consequently, we considerreactivity (or what is called
“responsiveness” in [26]) to be another necessary attribute
of any notion of autonomous agency, as the agent has to be
able to (1) notice changes in the environment, (2) appropri-
ately respond to those changes, and (3) affect what input or
stimuli it will receive from the environment in the future.
Hence, the necessary attributes for any reasonable notion of
autonomous agency identified thus far are (i) some control
of one’s internal state and execution, and (ii) reactivity as a
prerequisite for the agent-environment interactions that, in
general, may affect both the agent and the environment.

Any “proper” computational or biological autonomous
agent can also be expected to be at least somewhatpersis-
tent, that is, to “live on” beyond completing a single task
on a single occasion. In case of software agents, persistence
makes an agent different from say asubroutine of a com-
puter program whose “turning on and off” is controlled from
outside of that subroutine (see, e.g., [10]). This necessity
of some form of persistence is evidently strongly related to
the most basic requirement of(weakly) autonomous agency,
namely, that an agent ought to have some degree of control
of its internal state and behavior.

1Full and exclusive control of one’s internal state, if understood in the
sense of that “nothing from the outside” can affect the entity’s state, is
clearly not desirable in case of agents, as one would like the agent to be
able to be effected by its environment.

219



We summarize below our notion ofweakly autonomous
agency (WAA)2 in terms of the necessary agent attributes:

weak autonomous agency≈ control of own state
+ reactivity + persistence

Hence, at the bottom level of the emerging hierarchy of
autonomous agents, we find purely reactive embedded (or
situated) agents [17]. Such agents can be appropriately ab-
stracted via finite state machines (deterministic case) or dis-
crete Markov chains (probabilistic case). A combination
of reactivity and persistence characterizes many of both the
simplest life forms and simple artificial agents. When some
degree of control of the agent’s internal state and behavior
is also present, one arrives at what we shall call herewith
weakly autonomous agency (WAA).We suggest the actor
model of distributed computing [1, 2] to be a canonical ex-
ample ofWAA among the software agents.

One common feature found in all or nearly all interesting
autonomous agents, biological and computational alike, is
some form of goal-orientednessor goal-drivenness. In
case of the living organisms, the highest level driving mech-
anisms are the instincts ofsurvival and reproduction. The
single most fundamental instinct in all of known life forms
(to which an appropriate notion of an instinct can be ascribed
at all) is that of survival. Indeed, the instinct of reproduction
is related to the survival of the species or, perhaps, of the
particular genes and gene patterns, as opposed to the “mere”
survival of the individual organisms [9]. At lower levels, the
driving mechanisms - finding food or a sexual partner - are
those that are expected to provide, promote and enhance the
two highest-level goals, survival and reproduction.

In the case of artificial computational agents such as a web
crawler or a robot or an autonomous unmanned vehicle, these
agents are designed and programmed with a particular goal
or a set of goals in designer’s mind. Thus, the ability to act
autonomously is typically related to an agent having some
goal(s) to accomplish, and therefore being goal-driven.

From a systems perspective, in order for an agent to be
reactive, it has to becoupled to its environment via some
appropriate sensors (or “input channels”) and effectors (“out-
put channels”). Due to agent’s sensors, the environment can
affect the agent; due to agent’s effectors, the agent can affect
the outside environment. For a stronger notion of agency
thanWAA, in addition to some sort of sensors and effectors,
necessary to ensure that the agent can interact with, affect
and be affected by the outside world, it seems natural that
an appropriate feedback, or control, loop exists between the
agent and the outside world, so that this feedback loop af-
fects how the agent responds to the environmental changes.
A feedback loop provides the agent with knowledge of “how
well it is doing”. In particular, an agent will have use of a
feedback loop only if it has an appropriate notion of its goals
or tasks, and an evaluation function (task value, utility, re-

2This notion of weak agent autonomy, mainly based on the dominant no-
tion of autonomous agents in the area of software design for open distributed
systems, is obviously not calledweak by those who consider it sufficient for
their purposes.

source consumption, or the like) associated with it. That is,
an agent needs some sort of acontrol loop in order to be
capable of goal-oriented or utility-oriented behavior.

Finally, in addition to responsiveness, persistence and
goal-drivenness or goal-orientedness, one more characteris-
tic found in nearly all interesting autonomous agents, not
altogether unrelated to goal-orientedness, is that ofpro-
activeness [10, 18, 26]. While some literature on au-
tonomous agents treats pro-activeness and goal-drivenness
as synonyms, we briefly discuss why, in general, the two at-
tributes ought to be distinguished.

Namely, a situated, reactive agent can be goal-oriented
without being pro-active: given an input from the “world”,
the goal-oriented agent acts so as to ensure, e.g., avoiding
being in certain of its internal states that it views incom-
patible with its limited knowledge of “what is going on out
there”. If there are no changes in the environment, the agent
simply keeps “sitting” in whatever its current state happens
to be. Thus, this reactive agent has a goal (although admit-
tedly a very simplistic one), but is not pro-active. Similarly,
an agent can be pro-active without being goal-oriented, as
long as we require of agent’s goal(s) to be non-trivial, and,
in particular, to possibly entail some deliberate effect that the
agent’s actions may be required, under appropriate circum-
stances, to have on the environment. Under this assumption,
an agent may “pro-actively” perform a more or less random
walk among its internal states, without any observable effects
on the outside world, and therefore without accomplishing -
or, indeed, having - any specific goals insofar as the agent’s
deliberate influence on the environment.

Thus, while pro-activeness and goal-orientedness are usu-
ally closely related, they are not synonymous, and, moreover,
neither subsumes the other.

Once aWAA agent is additionally equipped with some
form of goal-drivenness and pro-activeness, we arrive at
what we define asstrongly autonomous agency (SAA).Most
agents encountered in AI, whether they are software agents,
robots, unmanned vehicles, or of any other kind, are of this,
strongly autonomous type (see, e.g., [18, 16, 24]).

Therefore, we find that it is precisely the properties of (i)
some degree of control of one’s own internal state and behav-
ior, (ii) reactiveness or responsiveness, (iii) persistence, (iv)
pro-activeness, and (v) goal-drivenness or goal-orientedness
that, together, and in synergy with each other, make an agent
truly (or strongly) autonomousin an AI sense:

strong autonomous agency≈ weak autonomous agency
+ goal-orientedness + pro-activeness

Granted, much of the agent literature has identified prop-
erties (i) - (v) as common to autonomous agents (see, e.g.,
[26, 10] and references therein). We claim, however, that
these five agent capabilities arethe necessary proper-
ties that are all found in nearly every reasonable model of
autonomous agency, whereas other characteristics, includ-
ing sociability, mobility, “mental states”, beliefs-desires-
intentions, etc., are not as essential, and are found in (or can
be reasonably attributed to) onlysome, but by no means

220



(nearly) all of the known autonomous agents, whether bio-
logical or artificial.

However, even those living organisms that one would
never consider intelligent have one more fundamental prop-
erty, absent from our notion ofSAA, and that is the abil-
ity to adapt (e.g., through metabolism). Adaptability is a
necessary prerequisite for biological survival, as well as for
any reasonable notion of intelligence. The “control loop” be-
tween the agent and the world serves no purpose, if the agent
has no goals or notions of “goodness” with respect to which
it tries to optimize its behavior. But such goal- or utility-
drivenness is useless, if the agent cannot dynamically adjust
its behavior based on the feedback, i.e., if it cannot adapt.

To summarize, based on how is an agent coupled to its en-
vironment, how complex properties of that environment the
particular type of coupling (e.g., type of sensors, “control
loop”, effectors) can capture, and how complex behaviors or
actions the agent is capable of, we have proposed a tenta-
tive general hierarchical classification of autonomous agents
embedded in, and acting as a part of, their environments.

Whether one would consider an agent that (i) has at least
some control over its internal state and behavior, and is (ii)
reactive, (iii) persistent, (iv) pro-active, (v) goal- or utility-
driven, and (vi) adaptable, to automatically beintelligent,
depends on one’s definition of intelligence and is subject to
debate. What seems clear, however, is that no proper subset
of the properties (i) - (vi) satisfies even the weakest notion of
intelligence. Moreover, we argue that, as one keeps adding
on properties from (i) towards (vi), one can recognize many
well-known examples of agents found in the literature, yet
not as a part of what we argue is a reasonable and natural
hierarchy of agents3. For instance, artificial agents that pos-
sess only (i), (ii) and possibly (iii) are studied in detail in
[17]. Some examples ofWAA agents possessing (i) - (iii)
andSAA agents having attributes (i) - (v) are discussed next.

5 Discussion and Some Applications
To illustrate the usefulness of the proposed hierarchy

of agents, we consider some software engineering de-
velopments in the context of open distributed systems.
Agent-oriented programming [20] can be viewed both as a
novel paradigm and the natural successor to object-oriented
paradigm [13]. The transition from object-oriented towards
agent-oriented programming was motivated by the design of
open distributed platforms, so that concurrency and resource
sharing can be exploited in heterogeneous distributed envi-
ronments [3].

To place the development of a general paradigm of au-
tonomous agency into a broader computer science perspec-
tive, we briefly make a comparison to the development of
the object-oriented paradigm. The primary motivation for
moving away from function evaluation based classical im-
perative programming towards the object-oriented program-
ming paradigm was primarily motivated by the nature of a

3However, see [10] for another proposal of a hierarchical taxonomy of
various types of agents.

great number of emerging applications, where it was more
natural to think in terms of objects and their classes and hi-
erarchies, their capabilities (“methods”), etc., then in terms
of functions being evaluated on variables. One particular do-
main that gave a huge impetus to the growth and success
of object-oriented programming was that of computer simu-
lation of various complex and distributed infrastructures [8].
As computing started becoming increasingly distributed both
physically and logically, and these distributed systems get-
ting increasingly heterogeneous, complex and open, the in-
dividual components, whether hardware or software, were
moving away from non-autonomous components of a single,
tightly coupled system, towards being increasingly sophis-
ticated, autonomous and complex (sub)systems themselves,
that were only loosely coupled into an overarching larger
system. Hence, a novel paradigm capturing the increasing
requirements in terms of autonomy, flexibility and complex-
ity of the individual components in such distributed systems
was sought - and, in case of the software, theagent-based
programmingparadigm was born [20].

We thus see the relationship of agent-oriented program-
ming to object-oriented programming, in essence, similar
to the relationship of object-oriented to classical imperative
programming: each is a novel metaphor and a radical depar-
ture from its predecessor - yet a novel metaphor that clearly
builds on the top of its predecessor, and adds more desir-
able properties that brings thus enhanced model considerably
closer to the target applications.

Actors [1, 2] are a powerful model for specifying coordi-
nation in open distributed systems. In addition to its internal
state, an actor also encapsulates its behavior (both data and
procedure). An actor can communicate via asynchronous
message passing with other actors; this asynchronous com-
munication is, therefore, central to how actors interact with
their environment. An actor is responsive or reactive; it also
may (but need not) be persistent. Actors thus fit well into our
concept ofweakly autonomous agency.

Actors can also be used as a building block towards imple-
menting more complex systems and, in particular, for soft-
ware design of autonomous agents with stronger autonomous
capabilities, via appropriate extensions (added functionality)
of the basic actor model. For instance, ref. [3] addresses
an important problem of how to extend actors into a pow-
erful concurrent programming paradigm fordistributed ar-
tificial intelligence (DAI) [6, 24]. There are other exam-
ples of designing strongly autonomous applications on the
top of weakly autonomous infrastructures. For instance, an
actor-based (hence, “weakly autonomous”) software infras-
tructure is used in [11, 12] to build a simulator of a particu-
lar kind of strongly autonomous agents, namely, autonomous
unmanned vehicles [22, 23]. The basic agent capabilities
are provided by the actor infrastructure, whereas the higher-
order autonomous abilities, such as the pro-active pursuit of
an agent’s goals or the agents’ coordination strategies, are
built on the top of the basic actor architecture, i.e., at the
“application software” level [11, 22, 23].

221



6 Conclusions
The subject of this paper areautonomous agentsfrom a

systems perspective. First, we survey some relevant litera-
ture and offer some general thoughts about various properties
and notions of autonomous agents. We then propose a hier-
archy of autonomous agents based on the complexity of their
behaviors, and the necessary attributes that can yield partic-
ular behaviors. Instead of marking various types of agents
as more or less complex in terms of the sophistication of
their (supposed) mental or emotional states, we make dis-
tinction in terms of the basic agent capabilities whose pres-
ence - or lack thereof - is readily observable and measurable
by an observer outside of the agent itself. Thus, instead of
a “cognitive” or symbolic AI approach, we propose classi-
fying autonomous agents in more behaviorist, functionalist
and systems theory terms. In particular, we identify the three
absolutely necessary properties for even the weak(est) notion
of autonomous agency, and three additional, more advanced
properties that are necessary for an agent, whether biological
or artificial, to be reasonably considered deliberative or intel-
ligent. We also show how some well-known, existing agent
models fit into the appropriate layers of our proposed agent
hierarchy. Finally, we point out some examples of how the
lower-level agents can be used as “building blocks” in design
of more complex, higher-level autonomous agents andMAS.

Acknowledgments: This work was supported by the
DARPA IPTO TASK Program, contractF30602-00-2-0586.

References
[1] G. Agha, “Actors: A Model of Concurrent Computa-

tion in Distributed Systems”, MIT Press, Cambridge,
MA, 1986

[2] G. Agha, “Concurrent Object-Oriented Program-
ming”, in Communications ACM,vol. 33 (9), 1990

[3] G. Agha, N. Jamali, “Concurrent Programming for
DAI”, in G. Weiss (ed.), “Multiagent Systems: A Mod-
ern Approach to Distributed Artificial Intelligence”,
The MIT Press, 1999

[4] W. Ross Ashby, “Design for a Brain”, Wiley, 1960

[5] W. Ross Ashby, “An Introduction to Cybernetics”, 4th
impression, Chapman & Hall Ltd., London, 1961

[6] N. M. Avouris, L. Gasser (eds.), “Distributed Artificial
Intelligence: Theory and Praxis”, Euro Courses Comp.
& Info. Sci. vol. 5, Kluwer Academic Publ., 1992

[7] M. E. Bratman, “Intentions, Plans and Practical Rea-
son”, Harvard Univ. Press, Cambridge, MA, 1987

[8] T. Budd, “An Introduction to Object-Oriented Pro-
gramming”, Addison-Wesley, 1991

[9] R. Dawkins, “The Selfish Gene”, Oxford Press, 1990

[10] S. Franklin, A. Graesser, “Is it an Agent, or just a Pro-
gram? A Taxonomy for Autonomous Agents”, Proc.
3rd Int’l Workshop on Agent Theories, Architectures &
Languages, Springer-Verlag, 1996

[11] M. Jang, S. Reddy, P. Tosic, L. Chen, G. Agha, “An
Actor-based Simulation for Studying UAV Coordina-
tion”, Proc. 15th Euro. Symp. Simul. (ESS ’03), Delft,
The Netherlands, October 2003

[12] M. Jang, G. Agha, ”On Efficient Communication and
Service Agent Discovery in Multi-agent Systems,” 3rd
Int’l Workshop on Software Engineering for Large-
Scale Multi-Agent Systems (SELMAS ’04), Edin-
burgh, Scotland, May 2004

[13] N. R. Jennings, “An agent-based approach for build-
ing complex software systems”,Communications of
the ACM vol. 44 (4), 2001

[14] G. J. Klir, “Facets of Systems Science” (2nd ed.),
Plenum Press, New York, 2001

[15] G. J. Klir, “Systems Science”, Encyclopedia of Infor-
mation Systems, Vol. 4, Elsevier Sci. (USA), 2003

[16] A. S. Rao, M. P. Georgeff, “BDI Agents: From The-
ory to Practice”, Proc. 1st Int’l Conf. on MAS (IC-
MAS’95), San Francisco, USA, 1995

[17] S. J. Rosenschein, L. P. Kaelbling, “A Situated View of
Presentation and Control”,Artificial Intelligence vol.
73, 1995

[18] S. Russell, P. Norvig, “Artificial Intelligence: A Mod-
ern Approach”, 2nd ed., Prentice Hall, 2003

[19] John Searle, “Minds, Brains and Science”, Harvard
University Press, Cambridge, 1984

[20] Y. Shoham, “Agent-oriented programming”,Artificial
Intelligence vol. 60, 1993

[21] H. A. Simon, “Models of Man”, J. Willey & Sons,
New York, 1957

[22] P. Tosic, M. Jang, S. Reddy, J. Chia, L. Chen, G. Agha,
“Modeling a System of UAVs on a Mission”, Proc.
SCI’03, Orlando, Florida, July 2003

[23] P. Tosic, G. Agha, “Modeling Agent’s Autonomous
Decision Making in Multi-Agent, Multi-Task Environ-
ments”, Proc. 1st Euro. Workshop onMAS (EU-
MAS’03), Oxford, England, December 2003

[24] G. Weiss (ed.), “Multiagent Systems: A Modern Ap-
proach to Distributed Artificial Intelligence”, The MIT
Press, Cambridge, MA, 1999

[25] N. Wiener, “Cybernetics”, J. Willey, New York, 1948

[26] M. Wooldridge, N. Jennings, “Intelligent Agents: The-
ory and Practice”, Knowledge Engin. Rev., 1995

222



Characterizing Configuration Spaces of Simple
Threshold Cellular Automata

Predrag T. Tosic and Gul A. Agha

Open Systems Laboratory, Department of Computer Science
University of Illinois at Urbana-Champaign

Mailing address: Siebel Center for Computer Science,
201 N. Goodwin Ave., Urbana, IL 61801, USA

p-tosic@cs.uiuc.edu, agha@cs.uiuc.edu

Abstract. We study herewith the simple threshold cellular automata (CA), as
perhaps the simplest broad class of CA with non-additive (i.e., non-linear and
non-affine) local update rules. We characterize all possible computations of the
most interesting rule for such CA, namely, the Majority (MAJ) rule, both in
the classical, parallel CA case, and in case of the corresponding sequential CA
where the nodes update sequentially, one at a time. We compare and contrast the
configuration spaces of arbitrary simple threshold automata in those two cases,
and point out that some parallel threshold CA cannot be simulated by any of
their sequential counterparts. We show that the temporal cycles exist only in case
of (some) parallel simple threshold CA, but can never take place in sequential
threshold CA. We also show that most threshold CA have very few fixed point
configurations and few (if any) cycle configurations, and that, while the MAJ
sequential and parallel CA may have many fixed points, nonetheless “almost all”
configurations, in both parallel and sequential cases, are transient states.

1 Introduction and Motivation

Cellular automata (CA) were originally introduced as an abstract mathematical model
of the behavior of biological systems capable of self-reproduction [15]. Subsequently,
variants of CA have been extensively studied in a great variety of application domains,
predominantly in the context of complex physical or biological systems and their dy-
namics (e.g., [20, 21, 22]). However, CA can also be viewed as an abstraction of mas-
sively parallel computers (e.g, [7]). Herein, we study a particular simple yet nontrivial
class of CA from a computer science perspective. This class are the threshold cellular
automata. In the context of such CA, we shall first compare and contrast the con-
figuration spaces of the classical, concurrent CA and their sequential analogues. We
will then pick a particular threshold node update rule, and fully characterize possible
computations in both parallel and sequential cases for the one-dimensional automata.

Cellular automata CA are an abstract computational model of fine-grain paral-
lelism [7], in that the elementary operations executed at each node are rather simple
and hence comparable to the basic operations performed by the computer hardware. In
a classical, that is, concurrently executing CA, whether finite or infinite, all the nodes
execute their operations logically simultaneously: the state of a node ��� at time step

223

goodelle
Text Box
Appendix S:



�����
is some simple function of the states (i) of the node ��� itself, and (ii) of a set of

its pre-specified neighbors, at time
�
.

We consider herewith the sequential version of CA, heretofore abridged to SCA,
and compare such sequential CA with the classical, parallel (concurrent) CA. In
particular, we show that there are 1-D CA with very simple node state update rules that
cannot be simulated by any comparable SCA, irrespective of the node update ordering.

We also fully characterize the possible computations of the most interesting case of
threshold cellular automata, namely, the (S)CA with the Majority node update rule.

An important remark is that we use the terms parallel and concurrent as synonyms
throughout the paper. This is perhaps not the most standard convention, but we are
not alone in not making the distinction between the two terms (cf. discussion in [16]).
Moreover, by a parallel (equivalently, concurrent) computation we shall mean actions
of several processing units that are carried out logically (if not necessarily physically)
simultaneously. In particular, when referring to parallel or concurrent computation,
we do assume a perfect synchrony.

2 Cellular Automata and Types of Their Configurations

We follow [7] and define classical (that is, synchronous and concurrent) CA in two
steps: by first defining the notion of a cellular space, and subsequently that of a
cellular automaton defined over an appropriate cellular space.

Definition 1: A Cellular Space, � , is an ordered pair ���
	��� where � is
a regular graph (finite or infinite), with each node labeled with a distinct integer, and
� is a finite set of states that has at least two elements, one of which being the special
quiescent state, denoted by � .

We denote the set of integer labels of the nodes (vertices) in � by � .

Definition 2: A Cellular Automaton (CA), A, is an ordered triple ����	���	���
where � is a cellular space, � is a fundamental neighborhood, and � is a finite
state machine such that the input alphabet of � is ��� ��� , and the local transition
function (update rule) for each node is of the form ��� ��� �!� "$#&%'� for CA with
memory, and �(�)�*� ���+%,� for memoryless CA.

Some of our results pertain to a comparison and contrast between the classical,
concurrent threshold CA and their sequential counterparts, the threshold SCA.

Definition 3: A Sequential Cellular Automaton (SCA) S is an ordered quadruple
���-	.��	���	0/1 , where �-	.� and � are as in Def. 2, and / is a sequence, finite or infinite,
all of whose elements are drawn from the set � of integers used in labeling the vertices
of � . The sequence / is specifying the sequential ordering according to which an
SCA’s nodes update their states, one at a time.

However, when comparing and contrasting the concurrent threshold CA with their
sequential counterparts, rather than making a comparison between a given CA with a
particular SCA, we compare the parallel CA computations with the computations of
the corresponding SCA for all possible sequences of node updates. To that end, the
following convenient terminology is introduced:

Definition 4: A Nondeterministic Interleavings Cellular Automaton (NICA) I is
defined to be the union of all sequential automata S whose first three components, �-	.�

224



and � , are fixed. That is, I � ��� ���-	���	���	�/1 , where the meanings of �-	.��	�� , and
/ are the same as before, and the union is taken over all (finite and infinite) sequences
/!��� � 	��+	��+	
	�	�	� % � (where � is the set of integer labels of the nodes in � ).

Since our goal is to characterize all possible computations of parallel and sequential
threshold CA, a (discrete) dynamical system view of CA will be useful. A phase space
of a dynamical system is a (finite or infinite, as appropriate) directed graph where the
vertices are the global configurations (or global states) of the system, and directed
edges correspond to possible transitions from one global state to another. We now define
the fundamental, qualitatively distinct types of (global) configurations that a classical
(parallel) cellular automaton can find itself in.

Definition 5: A fixed point (FP) is a configuration in the phase space of a CA such
that, once the CA reaches this configuration, it stays there forever. A (proper) cycle
configuration (CC) is a state that, if once reached, will be revisited infinitely often with
a fixed, finite period of 2 or greater. A transient configuration (TC) is a state that, once
reached, is never going to be revisited again.

In particular, FPs are a special, degenerate case of recurrent states whose period
is 1. Due to their deterministic evolution, any configuration of a classical, parallel CA
belongs to exactly one of these basic configuration types, i.e., it is a FP, a proper CC,
or a TC. On the other hand, if one considers sequential CA so that arbitrary node
update orderings are permitted, that is, if one considers NICA automata, then, given the
underlying cellular space and the local update rule, the resulting phase space configura-
tions, due to nondeterminism that results from different choices of possible sequences
of node updates, are more complicated. In a particular SCA, a cycle configuration is
any configuration revisited infinitely often - but the period between different consecu-
tive visits, assuming an arbitrary sequence / of node updates, need not be fixed. We call
a global configuration that is revisited only finitely many times (under a given ordering
/ ) quasi-cyclic. Similarly, a quasi-fixed point is a SCA configuration such that, once
the dynamics reaches this configuration, it stays there “for a while” (i.e., for some finite
number of sequential node update steps), and then leaves. For example, a configuration
of a SCA can be simultaneously a (quasi-)FP and a (quasi-)CC (see, e.g., the example
in [19]). For simplicity, heretofore we shall refer to a configuration � of a NICA as a
pseudo fixed point if there exists some infinite sequence of node updates / such that
� is a FP in the usual sense when the corresponding SCA’s nodes update according to
the ordering / . A global configuration of a NICA is a proper FP iff it is a fixed point
of each corresponding SCA, that is, for every sequence of node updates / . Similarly,
we consider a global configuration � of a NICA to be a cycle state, if there exists an
infinite sequence of the node updates /�� such that, if the corresponding SCA’s nodes
update according to / � , then � is a recurrent state and, moreover, � is not a proper FP.
Thus, in general, a global configuration of a NICA automaton can be simultaneously a
(pseudo) FP, a CC and a TC (with respect to different node update sequences / ) # .
�

When the allowable sequences of node updates ��������������� ��!�!�!#"�$&% are required to be
infinite and fair so that, in particular, every (infinite) tail ��' (*)+���*,-�.,0/1�2�3,4/5����!�!�!#"6$7% is
onto L, then pseudo fixed points and proper fixed points in NICA can be shown to coincide
with one another and, moreover, with the “ordinary” FPs for parallel CA. For the special case
when % is finite and � is required to be an ad infinitum repeated permutation see, e.g., [3, 4].

225



Definition 6: A 1-D cellular automaton of radius � ( � � �
) is a CA defined

over a one-dimensional string of nodes, such that each node’s next state depends on the
current states of its neighbors to the left and to the right that are no more than � nodes
away (and, in case of the CA with memory, on the current state of that node itself).

We adopt the following conventions and terminology. Throughout, only Boolean
CA and SCA/NICA are considered; in particular, the set of possible states of any node
is �1� 	 �  . The terms “monotone symmetric” and “symmetric (linear) threshold” func-
tions/update rules/automata are used interchangeably. Similarly, the terms “(global) dy-
namics” and “(global) computation” are used synonymously. Also, unless explicitly
stated otherwise, automata with memory are assumed. The default infinite cellular
space � is a two-way infinite line. The default finite � is a ring with an appropriate
number of nodes � . The terms “phase space” and “configuration space” will be used
synonymously, as well, and sometimes abridged to PS.

3 Properties of 1-D Simple Boolean Threshold CA and SCA

Herein, we compare and contrast the classical, parallel CA with their sequential coun-
terparts, SCA and NICA, in the context of the simplest (nonlinear) local update rules
possible, namely, the Boolean linear threshold rules. Moreover, we choose these
threshold functions to be symmetric, so that the resulting CA are also totalistic (see,
e.g., [7] or [21]). We show the fundamental difference in the configuration spaces, and
therefore possible computations, in case of the classical, concurrent threshold automata
on one, and the sequential threshold cellular automata, on the other hand: while the
former can have temporal cycles (of length two), the computations of the latter either
do not converge at all after any finite number of sequential steps, or, if the convergence
does take place, it is necessarily to a fixed point.

First, we need to define threshold functions, simple threshold functions, and the
corresponding types of (S)CA.

Definition 7: A Boolean-valued linear threshold function of � inputs, � # 	*	�	�	 	 ��� ,
is any function of the form

� � � # 	*	�	�	 	 ���  �
� � 	 if � �
	 ��� � � ��
�+	 otherwise

(1)

where


is an appropriate threshold constant, and 	 � are real-valued weights.

Definition 8: A threshold cellular automaton is a (parallel or sequential) cellu-
lar automaton such that its node update rule � is a Boolean-valued linear threshold
function.�

It turns out, that circular boundary conditions are important for some of our technical results.
Likewise, some results about the phase space properties of concurrent and sequential threshold
CA may require (i) a certain minimal number of nodes and (ii) that the number of nodes be,
e.g., even, divisible by four, or the like. Heretofore, we shall assume a sufficient number of
nodes that “works” in the particular situation, without detailed elaborations.

226



Definition 9: A simple threshold (S)CA is an automaton whose local update rule
� is a monotone symmetric Boolean (threshold) function.

Throughout, whenever we say a threshold automaton (threshold CA), we shall
mean simple threshold automaton (threshold CA) - unless explicitly stated otherwise.

Due to the nature of the node update rules, cyclic behavior intuitively should not
be expected in these simple threshold automata. This is, generally, (almost) the case,
as will be shown below. We argue that the importance of the results in this section
largely stems from the following three factors: (i) the local update rules are the simplest
nonlinear totalistic rules one can think of; (ii) given the rules, the cycles are not to be
expected - yet they exist, and in the case of classical, parallel CA only; and, related to
that observation, (iii) it is, for this class of (S)CA, the parallel CA that exhibit the more
interesting behavior than any corresponding sequential SCA (and consequently also
NICA) [19], and, in particular, while there is nothing (qualitatively) among the possible
sequential computations that is not present in the parallel case, the classical parallel
threshold CA are capable of a particular qualitative behavior - namely, they may have
nontrivial temporal cycles - that cannot be reproduced by any simple threshold SCA
(and, therefore, also threshold NICA).

The results below hold for the two-way infinite 1-D CA, as well as for the finite CA
and SCA with sufficiently many nodes and circular boundary conditions.

Lemma 1: (i) A 1-D classical (i.e., parallel) CA with � � �
and the Majority

update rule has (finite) temporal cycles in the phase space (PS). In contrast, (ii) 1-D
Sequential CA with �4� �

and the Majority update rule do not have any (finite) cycles
in the phase space, irrespective of the sequential node update order / . �

Remarks: In case of infinite sequential SCA as in the Lemma above, a nontrivial
cycle configuration does not exist even in the limit. In finite cases, / is an arbitrary
sequence of an SCA nodes’ indices, not necessarily a (repeated) permutation.

We thus conclude that NICA with � � � ��� and � � �
are temporal cycle-free.

Moreover, it turns out that, even if we consider local update rules � other than the MAJ
rule, yet restrict � to monotone symmetric Boolean functions, such sequential CA still
do not have any temporal cycles.

Lemma 2: For any Monotone Symmetric Boolean 1-D Sequential CA S with�4� �
, and any sequential update order / , the phase space PS(S) is cycle-free. �

Similar results to those in Lemmata 1-2 also hold for 1-D CA with radius � � � .

Theorem 1: (i) 1-D (parallel) CA with � � � and with the Majority node update
rule have (finite) cycles in the phase space. (ii) Any 1-D SCA with � � MAJ or any
other monotone symmetric Boolean node update rule, � � �

and any sequential order
/ of the node updates has a cycle-free phase space. �

Remarks: The claims of Thm. 1 hold both for the finite (S)CA (provided that they
have sufficiently many nodes, an even number of nodes in case of the CA with cycles,
and assuming the circular boundary conditions in part (i)), and for the infinite (S)CA.
We also observe that several variants of the result in Theorem 1 (ii) can be found in
the literature. When the sequence of node updates of a finite SCA is periodic, with a
single period a fixed permutation of the nodes, the temporal cycle-freeness of sequential
CA and many other properties can be found in [8] and references therein. In [4], fixed

227



permutation of the sequential node updates is also required, but the underlying cellular
space � is allowed to be an arbitrary finite graph, and different nodes are allowed to
compute different simple � -threshold functions.

As an immediate consequence of the results presented thus far, we have

Corollary 1: For all � � �
, there exists a monotone symmetric CA (that is, a

threshold automaton) A such that A has finite temporal cycles in the phase space.

Some of the results for (S)CA with � � MAJ do extend to some, but by no means
all, other simple threshold (S)CA defined over the same cellular spaces. For instance,
consider the � -threshold functions with � � � . There are five nontrivial such functions,
for ��� � � 	��+	��+	�� 	��  . The 1-threshold function is Boolean OR function (in this case,
on � � � � ��� inputs), and the corresponding CA do not have temporal cycles; like-
wise with the “5-threshold” CA, that update according to Boolean AND on five inputs.
However, in addition to Majority (i.e., 3-threshold), it is easy to show that 2-threshold
(and therefore, by symmetry, also 4-threshold) such CA with � � � do have temporal
two-cycles; for example, in the 2-threshold case, for CA defined over an infinite line,
�+� � � � �)	� 	1��� � � �)	�  is a two-cycle.

We now relate our results thus far to what has been already known about simple
threshold CA and their phase space properties. In particular, the only recurrent types of
configurations we have identified thus far are FPs (in the sequential case), and FPs and
two-cycles, in the concurrent CA case. This is not a coincidence.

It turns out that the two-cycles in the PS of the parallel CA with � � MAJ are
actually the only type of (proper) temporal cycles such cellular automata can have.
Indeed, for any symmetric linear threshold update rule � , and any finite regular
Cayley graph as the underlying cellular space, the following general result holds (see
[7, 8]):

Proposition 1: Let a classical CA A � ���-	��&	�
� be such that � is finite and
the underlying local rule of 
 is an elementary symmetric threshold function. Then for
all configurations ������ ���  , there exists

� � � such that 
�� "�� ���( ��
������� . �
In particular, this result implies that, in case of any finite simple threshold automa-

ton, and for any starting configuration ��� , there are only two possible kinds of orbits:
upon repeated iteration, after finitely many steps, the computation either converges to a
fixed point configuration, or else it converges to a two-cycle� .

We now specifically focus on � � MAJ 1-D CA, with an emphasis on the infinite
case, and completely characterize the configuration spaces of such threshold automata.
In particular, in the � � infinite line case, we show that the cycle configurations are
rather rare, that fixed point configurations are quite numerous - yet still relatively rare
in a sense to be discussed below, and that almost all configurations of these threshold
automata are transient states.

Heretofore, insofar as the SCA and NICA automata were concerned, for the most
part we have allowed entirely arbitrary sequences / of node updates, or at least arbi-
trary infinite such sequences. In order to carry the results on FPs and TCs of (parallel)
MAJ CA over to the sequential automata with � � � ��� (and, when applicable, other
�

If one considers threshold (S)CA defined over infinite � , the only additional possibility is that
such automaton’s dynamic evolution fails to converge after any finite number of steps.

228



simple threshold rules) as well, throughout the rest of the paper we will allow fair se-
quences only: that is, we shall now consider only those threshold SCA (and NICA )
where each node gets its turn to update infinitely often. In particular, this ensures that
(i) any pseudo FP of a given NICA is also a proper FP, and (ii) the FPs of a given parallel
CA coincide with the (proper) FPs of the corresponding SCA and NICA.

We begin with some simple observations about the nature of various configurations
in the (S)CA with �4� MAJ and �4� �

. We shall subsequently generalize most of these
results to arbitrary � � � . We first recall that, for such (S)CA with �4� �

, two adjacent
nodes of the same value are stable. That is,

� �
and � � are stable sub-configurations.

Consider now the starting sub-configuration � ��� #
� � � �

"$# =
� � � . In the parallel case, at

the next time step, � � % �
. Hence, no FP configuration of a parallel CA can contain� � � as a sub-configuration. In the sequential case, assuming fairness, � � will eventually

have to update. If, at that time, it is still the case that � ���

# � � �

"$# �
�
, then � � % �

,
and � ���

#
� � � �

"$# %
� � �

, which is stable. Else, at least one of � ���

# 	
� �

"$# has already
“flipped” into � . Without loss of generality, let’s assume �����

# � � . Then � ���

#
� � = � � ,

which is stable; so, in particular, � ���

#
� � � �

"$# will never go back to the original
� � � .

By symmetry of �4� MAJ with respect to 0 and 1, the same line of reasoning applies to
the sub-configuration � ���

#
� � � �

"$# = � � � . In particular, the following properties hold:

Lemma 3: A fixed point configuration of a 1D-(S)CA with � � Majority and�4� �
cannot contain sub-configurations

� � � or � � � . Similarly, a cycle configuration of
such a 1D-(S)CA cannot contain sub-configurations � � or

� �
. �

Of course, we have already known that, in the sequential case, no cycle states exist,
period. In case of the parallel threshold CA, by virtue of determinism, a complete
characterization of each of the three basic types of configurations (FPs, CCs, TCs) is
now almost immediate:

Lemma 4: The FPs of the 1D-(S)CA with �4� MAJ and �4� �
are precisely of the

form ��� � � � � � � � �  � . The CCs of such 1D-CA exist only in the concurrent case, and the
temporal cycles are precisely of the form �)� � �) � 	 ��� �  �  . All other configurations are
transient states, that is, TCs are precisely the configurations that contain both (i) � � � �
or
� � � �

(or both), and (ii)
� � � or � � � (or both) as their sub-configurations. In addition,

the CCs in the parallel case become TCs in all corresponding sequential cases. �

Some generalizations to arbitrary (finite) rule radii � are now immediate. For in-
stance, given any such � � �

, the finite sub-configurations � � "$# and
� � "$# are stable

with respect to �1� MAJ update rule applied either in parallel or sequentially; con-
sequently, any configuration of the form ��� � "$#.� � � � � "$# � �  � , for both finite and infi-
nite (S)CA, is a fixed point. This characterization, only with a considerably different
notation, has been known for the case of configurations with compact support for a
relatively long time; see, e.g., Chapter 4 in [8]. On the other hand, fully characterizing
CCs (and, consequently, also TCs) in case of finite or infinite (parallel) CA is more
complicated than in the simplest case with � � �

. For example, for � � �
odd, and

� � infinite line, �+� � �) � 	 ��� �  �  is a two-cycle, whereas for � � � even, each of
� � �) � , ��� �  � is a fixed point. However, for all � � �

, the corresponding (parallel) CA
are guaranteed to have some temporal cycles, namely, given � � �

, the doubleton of
states �)� � � � �  � 	1��� � � �  �  forms a temporal two-cycle.

229



Lemma 5: Given any (finite or infinite) threshold (S)CA, one of the following two
properties always holds: either (i) this threshold automaton does not have proper cycles
and cycle states; or (ii) if there are cycle states in the PS of this automaton, then none
of those cycle states has any incoming transients. �

Moreover, if there are any (two-)cycles, the number of these temporal cycles and
therefore of the cycle states is, statistically speaking, negligible:

Lemma 6: Given an infinite MAJ CA and a finite radius of the node update rules� � �
, among uncountably many ( � ��� , to be precise) global configurations of such a

CA, there are only finitely many (proper) cycle states. �

On the other hand, fixed points of some threshold automata are much more numer-
ous than the CCs. The most striking are the MAJ (S)CA with their abundance of FPs.
Namely, the cardinality of the set of FPs, in case of � � MAJ and (countably) infinite
cellular spaces, equals the cardinality of the entire PS:

Theorem 2: An infinite 1D-(S)CA with �0� MAJ and any � � � has uncountably
many fixed points. �

The above result is another evidence that “not all threshold (S)CA are born equal”.
It suffices to consider only 1D, infinite CA to see a rather dramatic difference. Namely,
in contrast to the �4� MAJ CA, the CA with memory and with � � � ��� 	 � ���  (i)
do not have any temporal cycles, and (ii) have exactly two FPs, namely, � � and

� � .
Other threshold CA may have temporal cycles, as we have already shown, but they still
have only a finite number of FPs.

We have just argued that 1-D infinite MAJ (S)CA have uncountably many FPs.
However, these FPs are, when compared to the transient states, still but a few. To see
this, let’s assume that a “random” global configuration is obtained by “picking” each
site’s value to be either 0 or 1 at random, with equal probability, and so that assigning a
value to one site is independent of the value assignment to any of the other sites. Then
the following result holds:

Lemma 7: If a global configuration of an infinite threshold automaton is selected
“at random”, that is, by assigning each node’s value independently and according to a
toss of a fair coin, then, with probability 1, this randomly chosen configuration will be
a transient state. �

Moreover, the “unbiased randomness”, while sufficient, is certainly not necessary.
In particular, assigning bit values according to outcomes of tossing a coin with a fixed
bias also yields transient states being of probability one.

Theorem 3: Let � be any real number such that �
	���	 �
, and let the

probability of a site in a global configuration of a threshold automaton being in state 1
be equal to � (so that the probability of this site’s state being 0 is equal to  � ��� � ).
If a global configuration of this threshold automaton is selected “at random” where the
state of each node is an i.i.d. discrete random variable according to the probability
distribution specified by � , then, with probability 1, this global configuration will be a
transient state. �

In case of the finite threshold (S)CA, as the number of nodes, � , grows, the
fraction of the total of � � global configurations that are TCs will also tend to grow.

230



In particular, under the same assumptions as above, in the limit, as � %�� , the
probability that a randomly picked configuration, � , is a transient state approaches 1:

�����
���
	  � ��� � / � ��� ��/ �� � � 5� �

(2)

Thus, a fairly complete characterization of the configuration spaces of threshold
CA/SCA/NICA over finite and infinite 1-D cellular spaces can be given. In particular,
under a simple and reasonable definition of what is meant by a “randomly chosen”
global configuration in the infinite threshold CA case, almost every configuration of
such a CA is a TC. However, when it comes to the number of fixed points, the striking
contrast between �5� MAJ and all other threshold rules remains: in the infinite �
cases, the MAJ CA have uncountably many FPs, whereas all other simple threshold CA
have only finitely many FPs. The same characterizations hold for the proper FPs of the
corresponding simple threshold NICA automata.

4 Conclusion

The theme of this work is a study of the fundamental configuration space properties
of simple threshold cellular automata, both when the nodes update synchronously in
parallel, and when they update sequentially, one at a time.

Motivated by the well-known notion of the sequential interleaving semantics of con-
currency, we apply the “interleaving semantics” metaphor to the parallel CA and thus
motivate the study of sequential cellular automata, SCA and NICA, and the comparison
and contrast between SCA and NICA on one, and the classical, concurrent CA, on the
other hand [19]. We have shown that even in this simplistic context, the perfect syn-
chrony of the classical CA node updates has some important implications, and that the
sequential CA cannot capture certain aspects of their parallel counterparts’ behavior.
Hence, simple as they may be, the basic operations (local node updates) in classical CA
cannot always be considered atomic. Thus we find it reasonable to consider a single
local node update to be made of an ordered sequence of finer elementary operations:
(1) fetching (“receiving”?) all the neighbors’ values, (ii) updating one’s own state ac-
cording to the update rule � , and (iii) making available (“sending”?) one’s new state to
the neighbors.

We also study in some detail perhaps the most interesting of all simple threshold
rules, namely, the Majority rule. In particular, we characterize all three fundamental
types of configurations (transient states, cycle states and fixed point states) in case of
finite and infinite 1D-CA with � � MAJ for various finite rule radii � � �

. We show
that CCs are, indeed, a rare exception in such MAJ CA, and that, for instance, the
infinite MAJ (S)CA have uncountably many FPs, in a huge contrast to other simple
threshold rules that have only a handful of FPs. We also show that, assuming a random
configuration is chosen via independently assigning to each node its state value by
tossing a (not necessarily fair) coin, it is very likely, for a sufficiently large number of
the automaton’s nodes, that this randomly chosen configuration is a TC.

To summarize, the class of the simple threshold CA, SCA, and NICA is (i) relatively
broad and interesting, and (ii) nonlinear (non-additive), yet (iii) all of these automata’s
long-term behavior patterns can be readily characterized and effectively predicted.

231



Acknowledgments: The work presented herein was supported by the DARPA IPTO
TASK Program, contract number F30602-00-2-0586.

References

1. W. Ross Ashby, “Design for a Brain”, Wiley, 1960
2. C. Barrett and C. Reidys, “Elements of a theory of computer simulation I: sequential CA

over random graphs”, Applied Math. & Comput., vol. 98 (2-3), 1999
3. C. Barrett, H. Hunt, M. Marathe, S. S. Ravi, D. Rosenkrantz, R. Stearns, and P. Tosic, “Gar-

dens of Eden and Fixed Points in Sequential Dynamical Systems”, Discrete Math. & Theo-
retical Comp. Sci. Proc. AA (DM-CCG), July 2001

4. C. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, R. E. Stearns, “
Reachability problems for sequential dynamical systems with threshold functions”, TCS
1-3: 41-64, 2003

5. C. Barrett, H. Mortveit, and C. Reidys, “Elements of a theory of computer simulation II:
sequential dynamical systems”, Applied Math. & Comput. vol. 107(2-3), 2000

6. C. Barrett, H. Mortveit, and C. Reidys, “Elements of a theory of computer simulation III:
equivalence of sequential dynamical systems”, Appl. Math. & Comput. vol. 122(3), 2001

7. Max Garzon, “Models of Massive Parallelism: Analysis of Cellular Automata and Neural
Networks”, Springer, 1995

8. E. Goles, S. Martinez, “Neural and Automata Networks: Dynamical Behavior and Applica-
tions”, Math. & Its Applications series (vol. 58), Kluwer, 1990

9. E. Goles, S. Martinez (eds.), “Cellular Automata and Complex Systems”, Nonlinear Phe-
nomena and Complex Systems series, Kluwer, 1999

10. T. E. Ingerson and R. L. Buvel, “Structure in asynchronous cellular automata”, Physica D:
Nonlinear Phenomena, vol. 10 (1-2), Jan. 1984

11. S. A. Kauffman, “Emergent properties in random complex automata”, Physica D: Nonlinear
Phenomena, vol. 10 (1-2), Jan. 1984

12. Robin Milner, “A Calculus of Communicating Systems”, Lecture Notes Comp. Sci.,
Springer, Berlin, 1989

13. Robin Milner, “Calculi for synchrony and asynchrony”, Theoretical Comp. Sci. 25, Elsevier,
1983

14. Robin Milner, “Communication and Concurrency”, C. A. R. Hoare series ed., Prentice-Hall
Int’l, 1989

15. John von Neumann, “Theory of Self-Reproducing Automata”, edited and completed by A.
W. Burks, Univ. of Illinois Press, Urbana, 1966

16. J. C. Reynolds, “Theories of Programming Languages”, Cambridge Univ. Press, 1998
17. Ravi Sethi, “Programming Languages: Concepts & Constructs”, 2nd ed., Addison-Wesley,

1996
18. K. Sutner, “Computation theory of cellular automata”, MFCS98 Satellite Workshop on CA,

Brno, Czech Rep., 1998
19. P. Tosic, G. Agha, “Concurrency vs. Sequential Interleavings in 1-D Cellular Automata”,

APDCM Workshop, Proc. IEEE IPDPS’04, Santa Fe, New Mexico, 2004
20. Stephen Wolfram “Twenty problems in the theory of CA”, Physica Scripta 9, 1985
21. Stephen Wolfram (ed.), “Theory and applications of CA”, World Scientific, Singapore, 1986
22. Stephen Wolfram, “Cellular Automata and Complexity (collected papers)”, Addison-

Wesley, 1994
23. Stephen Wolfram, “A New Kind of Science”, Wolfram Media, Inc., 2002

This article was processed using the LATEX macro package with LLNCS style

232



ON CHALLENGES IN MODELING AND DESIGNING RESOURCE-BOUNDED
AUTONOMOUS AGENTS ACTING IN COMPLEX DYNAMIC ENVIRONMENTS

Predrag T. Tosic and Gul A. Agha
Open Systems Laboratory, Department of Computer Science, University of Illinois at Urbana-Champaign

1334 Siebel Center for Computer Science, 201 N. Goodwin, Urbana, IL 61801, USA
Email: �p-tosic, agha�@cs.uiuc.edu

ABSTRACT
Applications in which agent ensembles reside and operate in
dynamically changing environments and where the agents are
required to accomplish various tasks pose a number of model-
ing, design and analysis challenges. A necessary prerequisite
for effective design and analysis of deliberative autonomous
agents acting in complex dynamic environments is to have a
good model of agents’ environments and goals. In particu-
lar, a thorough theory of Multi-Agent Systems (MAS) requires
modeling the interaction and coupling among an agent’s be-
havior, properties of the environment, and the nature of an
agent’s goals in terms of the desired and/or achieved effects
of the agent’s behavior on the environment. This paper fo-
cuses on some of the challenges of understanding and model-
ing the relationship between an agent and its behavior on one,
and the nature of the agent’s environment and tasks, on the
other hand. We also discuss the promises and limitations of the
classical decision theory when applied to an individual agent’s
autonomous decision making in such MAS scenarios where
the measure of an agent’s successfulness is a function of the
critical parameters of the agent’s environment, and where this
environment is dynamic, complex and partially inaccessible to
the agent.

KEYWORDS
multi-agent systems, autonomous agents, resource-bounded
agents, bounded rationality, decision theory

1 Introduction

Autonomous agents are a growing and increasingly exciting
research area in many scientific disciplines, from economics
to social sciences to software engineering to artificial intelli-
gence (e.g., [1, 22, 23]). However, there is no unique, broadly
agreed upon notion of agency in general, and autonomous
agency in particular [4]. During the early stages of the area
of multi-agent systems (MAS) and distributed artificial intelli-
gence (DAI), the default assumption was that different agents
were designed and deployed by the same user, and, conse-
quently, that all these different agents shared the same goal.
That is, under this assumption, the main problem of DAI is
the problem of distributed control. More generally, classical
DAI is chiefly about distributed problem solving (DPS) (e.g.,
[1]). Thus, the agents employed in distributed control type
problems, where the design goals include optimal allocation

of subtasks and resources, and where optimality or effective-
ness are defined with respect to the system as a whole, are typ-
ically not self-interested. On the other hand, the agents that
are self-interested, and have their own agendas and goals tend,
in general, to be more complex to both design and analyze -
and, in particular, can be expected to require a higher degree
of individual autonomy. For our purposes, the main charac-
teristic of this individual autonomy is an agent’s capability of
goal-driven (or utility-driven) autonomous decision making.

We shall consider herein a simplified version of an
agent’s decision making problem, that of an action selection:
among a finite set of available actions, an agent is to select
the one it finds the best or most optimal, given some notion of
optimality, a measure of “goodness”, and (limitations of) the
agent’s knowledge about the state of the world.

We are primarily interested in self-interested agents that,
nonetheless, may need to coordinate with one another - includ-
ing cooperative or collaborative forms of coordination. There
are also those MAS applications where, from the designer’s
perspective, individual agents need not be self-interested in
the strict sense, and where there exists an overall shared set
of goals at the system level. That is, there is an overall ob-
jective that all agents share - yet maintaining the knowledge
of these goals in a dynamic, distributed and, in many applica-
tions, hard real-time setting, may not be feasible. In such situa-
tions, it seems reasonable to assume that the agents are indeed
self-interested. Each agent is thus assumed only to have its in-
dividual goals, and such an agent only needs to maintain the
knowledge of its own goals, but need not worry about main-
taining any shared knowledge about the goals or the state of
the environment with other agents. For the large-scale multi-
agent systems of this sort, the classical distributed control ap-
proach would likely not scale well. Therefore, an alternative
is to “endow” the agents with higher-level capabilities of indi-
vidual autonomous decision making. The MAS designer then,
initially, “pretends” that each agent solely has its own agenda,
without having any shared goals with other agents. Once scal-
ability and robustness of the system have been achieved (see,
e.g., [5]), the system designer can then focus on how to trans-
late good or optimal individual behaviors (with respect to the
individual utility functions) into a good or optimal system be-
havior (with respect to an imposed by the designer global util-
ity). This, essentially, is the problem of incentive engineering
[3]. We shall not specifically address this issue herein due to
space constraints.

233

goodelle
Text Box
Appendix T:



An example of a class of application domains such that,
in order to achieve system scalability, robustness, dependabil-
ity and other desired properties, a high degree of agent au-
tonomy may be required, are the systems of autonomous, un-
manned vehicles that are operating in complex, dynamic and
partially observable environments. These agents have to ac-
complish some task or a set of tasks in such environments.
Before actual systems of such vehicles, where no direct hu-
man control or other run-time intervention is required, can be
successfully deployed, however, effective and scalable proto-
types need to be designed, tested and evaluated. Agent-based
modeling and simulation seem the most natural candidates for
developing the needed mathematical and computational mod-
els in that context.

Various theories of situated agents (e.g., [12]) address
the relationship, or coupling, between reactive, persistent
agents embedded and acting in (generally, dynamic) environ-
ments, and their environments. Reactive situated agents need
not be self-interested, and even if they are, they need not have
any complex goals. However, even for such reactive situated
agents that are relatively simple in that they need not be delib-
erative, it has been realized that (i) having a model of agent’s
environment and its dynamic behavior, and (ii) understanding
the coupling and interaction between agent’s actions or moves,
and the corresponding moves (changes) in the environment,
are of utmost importance [12]. In particular, theories of sit-
uated agents rightly treat the agent’s environment as a “first
class citizen”.

In case of the more complex, deliberative agents, one
of the causes of the additional complexity is the nature of an
agent’s goals, and the agent’s need to deliberately affect the
environment in order to be successful with respect to accom-
plishing its goals. The agent affects the environment by chang-
ing the environment’s state via appropriately choosing among
the available actions. Therefore we argue that, in case of such
deliberative agents, both the environment and the agent’s goals
deserve “first class status”.

An agent’s goal-driven autonomous decision making
needs to be expressible in terms of the most relevant param-
eters characterizing the agent’s environment and goals. This
autonomous decision making model specifies how is the agent
to act, given its current internal state and the current state of the
environment. In addition, the relationship among the agent’s
goals and its “measure(s) of success” on one, and the critical
parameters of the environment, on the other hand, also needs
to be established. That is, a complete model of such delib-
erative agents needs to capture the three-way coupling and
interaction among (i) the agent’s internal states and decision
making mechanisms, (ii) the states and parameters of the “out-
side world”, and (iii) the agent’s goals, and some metrics of
how successful the agent has been in accomplishing, or get-
ting close to accomplishing, those goals.

This short paper has two main purposes. First, we out-
line a generic, broadly applicable “skeleton” model of agents’
environments in terms of the basic parameters characterizing
such environments. These parameters are also critical for each
agent’s goal-driven or utility-driven decision making process.

The parameters we identify are shared by most of the MAS
applications we are aware of. We therefore hope that our dis-
cussion will provide some general guidelines to multi-agent
system designers in different application areas, and assist them
in identifying the most critical system parameters.

Secondly, we formulate a generic meta-problem of an au-
tonomous agent acting in a multi-agent, multi-task dynamic
environment, and point out some limitations of the classical
decision theory when applied to an agent’s action selection in
scenarios where the agent’s environment is sufficiently com-
plex. The main contribution of this part of the paper is to iden-
tify some general types of scenarios where the classical deci-
sion theory likely should not be applied to modeling an agent’s
autonomous decision making. Some alternative, simple local-
knowledge based (and therefore scalable) decision theoretic
flavored mathematical models for an agent’s action selection
will be presented in our second paper in this volume.

2 Main Parameters of Agent Environments

An autonomous agent, whether natural or artificial, is often
defined as an entity situated in and being a part of an envi-
ronment (“world”) such that it both can affect, and in turn be
affected, by its environment [14]. A deliberative agent is an
agent that is not merely reactive, but also has some notion of
its purpose or goal(s) [14, 23]. The most common measure of
an agent’s successfulness with respect to that purpose or those
goals is provided by an appropriate evaluation or utility func-
tion. Thus a notion of a deliberative autonomous agent that
we adopt herein is that of an autonomously acting entity that
is reactive and persistent, but also pro-active and goal- or
utility-driven [19].

A pro-active and utility-driven agent accomplishes its
goals and increases its utility by acting in its environment and,
in particular, changing some properties of the environment. In
order to effectively act upon the environment, the agent needs
some mechanism that enables it, given the state of the envi-
ronment and the agent’s internal state, to effectively choose,
among a set of available actions, a particular action that the
agent hopes would affect the environment in a most desirable
way in terms of its implications for the agent’s agenda such as,
e.g., this agent’s (individual) utility. An agent’s internal state
typically captures some knowledge about the past states of the
world, and how desirable different past states have turned out
to be. In particular, an agent may have an internal represen-
tation of partial or complete histories of the previous states of
the environment.

These considerations have two major implications. One,
the agent correlates its measure of successfulness to the ex-
pected, or anticipated, future states of the environment that
it thinks would result from undertaking particular actions.
Two, the nature of an agent’s environment or, more prop-
erly, agent’s (quantitative, parametric) model of its environ-
ment, coupled with a model of how the agent’s actions are ex-
pected to change the state of the environment, are critical to
the agent’s goal-driven action selection decision-making pro-

234



cess. In order to effectively design and/or analyze a delibera-
tive, goal-driven agent that is an autonomous decision maker,
it is, consequently, critical to also design a parametric model
of this agent’s “world”, how the agent interacts with it, and
how changes that occur in this world, in turn, affect the agent,
by, e.g., getting it closer to or farther away from its goals. The
changes that occur in an agent’s “world”, in general, include
both those that are caused by the agent and those that are not.

What are, then, the most general properties, or parame-
ters, of the agent environments that are found in the greatest
variety of various autonomous agent systems? First, there are
certain individual goals, or tasks, that each agent strives to ac-
complish. In general, different goals or tasks may differ in (i)
how valuable they are to each agent, and (ii) how difficult (or
easy) they are for an agent to accomplish. Moreover, complet-
ing any task usually does not come for free: the agent needs
to spend some resources in order to get the job - that is, the
task(s) - done. At the very least, completing any nontrivial
task takes some amount of time. The agent may or may not
have sufficient resources to complete any given task. Further-
more, additional resources, external to the agent, may or may
not be available for the agent to acquire (perhaps at a certain
cost) in order to be able to accomplish the task(s) it is after.
Last but not least, the agent’s environment may contain other
agents.

We argue that, in most if not all interesting MAS scenar-
ios and applications, an agent’s environment is characterized
by the following necessary “ingredients”:

- some number (at least one, possibly more) of mutually
independent tasks, where each of these tasks may be made of
several (not necessarily independent) subtasks;

- a certain number (or amount) of various resources or
capabilities that may be required for the completion of tasks;
and

- other agents.
We identify the following critical quantitative parameters

characterizing such an environment of our agent, and therefore
largely defining its goals and how successful the agent is with
respect to accomplishing those goals:

- the number of (independent) tasks that (currently) exist
in the system;

- the (current) value of each task for the agent;
- the (current) vector (an appropriate tuple) of resource

requirements of each task;
- the (current) number of other agents in the system.
Another critical system parameter, more reasonably at-

tributed to the agent itself than to the “outer” world, is
- the vector (tuple) of amounts of each resource that the

agent currently has at its disposal; that is, the tuple of agent’s
capabilities to service various tasks (see, e.g., [17]).

We describe in Section 3 a fairly generic multi-agent,
multi-task framework where an agent’s autonomous decision
making is a capability used for the purpose of maximizing
agent’s individual utility or payoff defined in terms of the
agent’s successfulness in completing those tasks. To illustrate
the applicability of our generic model, we shall outline in the
follow-up paper (also in this volume) how to apply our generic

framework to a concrete MAS application domain - the system
of unmanned vehicles on a multi-task mission [5, 19].

We would like to focus specifically on agents that are
capable of individual decision making in non-trivial dynamic
environments that are, in general, non-episodic and only par-
tially accessible to the agents [14]. The non-episodic nature of
an agent’s environment makes the agent’s iterative reinforce-
ment learning of the optimal behavior difficult or even impos-
sible. Partial (in)accessibility, that is, the existence of certain
aspects of the environment that are relevant to, yet not within
the reach of, an agent would force this agent to have to reason
and act “in darkness”, that is, under uncertainty. Thus, the de-
cisions made by agents in such a complex environment may in
general impact both the agents themselves and their environ-
ment in ways that are not necessarily easy (or even possible)
to reliably predict or fully observe - or, indeed, to even learn,
over time, how to reliably predict in the future.

3 Generic Problem Formulation:
Agents, Tasks, Resources

We now propose a high-level framework for a kind of multi-
agent, multi-task problems where an agent’s capability of au-
tonomous decision-making plays a central role. We find this
framework to be general enough to capture many situations
where one has an ensemble of highly autonomous agents and a
collection of independent tasks that these agents need to com-
plete dynamically and in an on-line manner.

Let us consider a collection of � agents that need to
serve a collection of up to � tasks. Each task �� has a
dynamically changing value function associated with it, that
we denote �����. An agent, ��, is driven by the desire to
increase its own (expected) utility, ��, by consuming as much
of value of different tasks as possible. In particular, an agent
is not simply embedded into its environment, where it may un-
dertake different actions merely as a reaction to the observed
changes in the environment. Instead, the agent pro-actively
seeks to improve its own well-being.

In order to be able to meaningfully and effectively pursue
the increase in (expected) utility or payoff, the agent must have
some idea of what its goals or tasks are, what actions are on
its disposal in order to pursue those goals or tasks, and some
estimated utility function associated with completing each of
these tasks. This is not to say, that the agent needs to a priori
know all of its tasks or all of those tasks’ values. However,
some a priori, i.e., built-in, basic knowledge about the agent’s
goals, and awareness of the available capabilities and resources
for accomplishing those goals, have to exist. This awareness
can be expected, in general, to evolve with time, as the agent
goes along in exploring its environment, and learning more
about the tasks, the available and/or required resources, and
the other agents.

When an agent discovers a particular task, it gets at-
tracted by that task’s value. If the agent happens to be simulta-
neously aware of two or more tasks at a given time step1, the

1Agent’s awareness of tasks’ existence, and some, not necessarily accurate,

235



agent needs to decide which of the tasks is currently most at-
tractive to it. The agent needs to choose one of finitely many
possible actions at its disposal. In general, such actions may
include, for instance, sending messages to other agents in or-
der to solicit their help in terms of sharing capabilities and/or
resources in order to service the tasks - an example of cooper-
ative coordination. Many other kinds of actions that include
some form of interaction with other agents can be considered,
in addition to those actions that do not (directly) include other
agents, but, instead, only an agent’s interaction with other,
non-agent aspects of the environment. Whatever the set of pos-
sible actions in a given situation may be, the basic idea is that,
the agent acting (or trying to act) rationally2, it is the agent’s
desire that this action would maximize the agent’s (expected)
utility.

In our simple yet fairly generic multi-agent, multi-
task problem formulation and related models of agents’ au-
tonomous action selection, the set of actions at an agent’s dis-
posal will be considerably simplified, and reduced to deciding
which task an agent that is currently free chooses to tackle next
(see Section 4). That is, at the starting point in modeling and
analysis of an agent’s autonomous decision making, interac-
tions of an agent with other agents are abstracted away. This is
not to say, that the impact other agents may have on an agent
is altogether ignored. How exactly is this impact captured in
our model will be discussed in the follow-up paper (also in this
volume); for more, see [19], as well.

A few more words are due on our simple model of an
agent’s environment. In essence, from an agent’s perspective,
the environment is (entirely) made of tasks, resources, and
other agents. The total amount of the available value of all
tasks in the system is assumed to be bounded at all times.
Consequently, the agents can be expected to sometimes end up
competing for this limited source of utility increase that they
are after. This general scenario leads to competitive coordina-
tion, where agents typically need to negotiate how are the
tasks and/or resources to be divided among them (e.g., [13]).
Likewise, resources available to each agent are also bounded,
and an agent’s resources may or may not suffice for servicing
any particular task.

In our current framework that is considerably motivated
by a particular application in mind (see our other paper in this
volume, and also [5, 19]), the agents, assuming they all ini-
tially have the same amount of the same type of resources
available, are all equally capable. In particular, no agent spe-
cialization beyond the restrictions imposed by the bounds on
available resources is considered. The tasks appear identical
to all agents - except possibly for their (true or estimated) val-
ues and resource demands. We further assume that the tasks
are mutually independent of one another. In particular, when-
ever an agent has several available choices, which task(s) it is
going to select to service, and in what order, is driven by the

idea of those tasks’ values are results of either the agent having sensed those
tasks, or because it got the (not necessarily reliable) information about the
tasks from other agents.

2... although often under the circumstances of limited and incomplete ob-
servability and knowledge, and therefore bounded rationality [18].

agent’s appropriate estimate of those tasks’ values, resource
consumption requirements, and the estimated competition for
those tasks - that is, by the agent’s estimate of the tasks’ ex-
pected utilities to the agent only.

In our model, agents are assumed to be self-interested
by default, that is, without an explicit or implicit incentive,
they are not going to be inclined to cooperate. Each agent’s
(default) sole goal is to maximize its own payoff. However,
various forms of coordination (including cooperation and col-
laboration) may nonetheless arise. An explicit incentive for
cooperative coordination is, for example, an agent’s realiza-
tion that, with its own resources alone, it cannot accomplish a
particular highly desirable task, and therefore, such agent may
wish to use whatever communication channels it has on its dis-
posal, to contact other agents and offer collaboration. This
phenomenon is well-known in multi-player game theory [8],
where the incentive for forming coalitions is still purely ego-
tistic - including the realization by the rational agent (player)
that the spoils, if any, will have to be split with the participating
collaborators. Distributed resource-based coalition formation
in distributed problem solving type of MAS has been studied,
e.g., in [17]. We address distributed coalition formation for
MAS made of self-interested agents in [20].

A generic example of a self-interested agent having an
implicit incentive to cooperate with other agents is any kind of
a conflict resolution scenario where the agents, unless they co-
ordinate, can expect mutual destruction and, therefore, no hope
of fulfilling their goals. Concrete such examples are readily
available, among other domains, in the context of transporta-
tion systems and, in particular, in the domains of air traffic
control and aerial vehicles (e.g., [7]).

4 Agents as Decision Makers:
Some Challenges and Limitations

We now outline the bare essence of the (classical) decision the-
ory in the context of an autonomous agent’s decision making
problem of an appropriate choice of action. Ideally, an agent
would always choose an action leading to its optimal perfor-
mance. Realistically, however, in most situations an agent
can only strive for an expected and/or estimated and/or ap-
proximately optimal action selection. Moreover, sometimes
“best-effort” or even merely “good enough effort” choices are
sought, due to a number of limiting factors, from partial ob-
servability of the world to bounded computational and other
resources.

How is this action selection problem an agent faces to be
succinctly mathematically formalized? Following [10, 11], we
first observe that an agent, ��, by performing one of the ac-
tions at its disposal, say action ��, affects the environment.
Let the state of the environment (or that part of it that is acces-
sible to the agent) be denoted by 	. Let the agent’s desirability
of any particular state of the environment be quantified by that
state’s utility value to agent �� that we shall denote ���	�.
Typically, an agent cannot uniquely determine the next state of
the world by its action, as there are other factors, possibly in-

236



cluding actions of other agents, that also affect the future state
of the world. That is, the outcomes of the agent’s actions need
not necessarily always be deterministic.

Let 
��	����� be the conditional probability that, if ��

does ��, the subsequent state of the world is 	�. Then, accord-
ing to classical decision theory (see, e.g., [10] and references
therein), the expected utility of selecting action �� for agent
�� is given by

�������� � ��������	� �
��	����� � ��	��� (1)

Therefore, an optimally acting agent, whenever facing an ac-
tion selection problem as outlined above, will choose an action
�
 � �����	 according to

�
 � ��������� ��� �
��	����� � ��	��� � (2)

However, this approach, based on the idea that an agent would
strive to choose the particular action that maximizes its ex-
pected utility, rests on a number of nontrivial assumptions that
need not even approximately hold in an actual application.
Hence, the entire approach may, in practice, dramatically fail
in case of a number of important MAS scenarios, including
many that fit well into the general model we have outlined in
Sections 2-3.

Usually an agent can only partially observe the world.
Hence, assuming the agent can determine what “states” of the
world any given action can lead to, in reality these “states”, 	�,
are actually only sub-states of the full states of the world. Thus
each 	� uniquely determines an equivalence class of the possi-
ble full states of the world. Assuming there is a single-valued
utility function defined on the set of all complete states of the
world, utility values ��	�� defined over equivalence classes
corresponding to partial states 	� are clearly not crisp but fuzzy
(and, in general, multi-valued) - with degree of fuzziness that
may be (i) hard or even impossible for the agent to estimate,
and (ii) potentially so great as to render the computation in
Equation (2) meaningless. Likewise, computing (or even esti-
mating or approximating) conditional probabilities 
��	�����
may be infeasible or even impossible. For instance, in cases
where an agent’s a priori knowledge about the environment
is very limited, so that even the set of complete states of the
world is not known, computing these probabilities exactly is
impossible, and any attempt at estimating them may yield arbi-
trarily poor estimates. This applies in those situations, among
other, where an agent first needs to discover (yet unknown)
tasks and/or resources in the environment, prior to ordering
somehow their importance and being able to assign utility val-
ues to them3.

A typical approach to designing an agent that is going
to be capable of arriving at the “right” choice of action �

in Equation (2) is to endow the agent with some memory
for storing the past history (i.e., sequences of the past states
of the environment), and a capability to perform some sort of
iterative, online learning from this stored knowledge. That

3More precisely, the utility values are assigned to those states or sets of
states of the world that correspond to (that is, are expected to result from) the
agent choosing particular task(s) to service.

is, an agent may begin with perhaps very poor estimates of
the needed utilities and conditional probabilities, and, conse-
quently, with very bad choices of actions estimated to be op-
timal at time step �. We denote herein an agent’s estimate or
guess of the optimal strategy �
 at time � by ��
. The central
idea is that, as the agent proceeds along, presumably it would
(or, at least, in principle could) learn how to improve its esti-
mates of the required conditional probabilities and the utilities
of various (sub)states of the world, thereby yielding improved
choices of ��
, until, eventually, as ���, its behavior con-
verges to optimal: ��
 � �
.

There are many known iterative learning algorithms that
hope to accomplish this kind of convergence to an optimal
decision making behavior. Among many such reinforcement
learning approaches, perhaps the most studied are those based
on the idea of Q-learning (e.g., [15, 21]). Under certain as-
sumptions, it has been shown that Q-learning, in the long-
run (that is, in the limit), indeed provably converges to opti-
mal agent behavior. However, thus achieved convergence is
often very slow in practice, and therefore infeasible. More-
over, in case of inherently non-episodic environments, there
are fundamental limitations on how much can be learned at
all, and hence considerable additional resources may be spent
(or wasted) by the agent without any guarantees of improved
performance, let alone eventual convergence to the optimal be-
havior.

It is precisely this kind of autonomous agents’ environ-
ments - dynamic, partially inaccessible, and non-episodic - and
the corresponding decision making problems that we have in
mind, and whose simplified generic version we have outlined
in Sections 2-3 and reference [19]. Hence, a genuinely differ-
ent approach to an agent’s autonomous action selection mod-
eling seems to be required4.

5 Summary

The subject of this paper are autonomous agents that are op-
erating in complex multi-agent, multi-task, bounded-resource
dynamic environments. We emphasize the importance of an
agent’s models of its environment and its goals, and what are
the implications of the characteristics of the environment, cap-
tured by an appropriate set of (in general, time-varying) param-
eters, for the agent’s autonomous decision making process.

The problem of an agent’s autonomous decision making
viewed as an appropriate action selection, we argue, cannot be
divorced from the nature or model of agent’s environment and
agent’s goals. Our agents are pro-active, goal-oriented enti-
ties acting in dynamic, partially observable, unpredictable en-
vironments, and striving to maximize their expected utilities
or payoffs under the circumstances of bounded rationality and
bounded resources. In order to model an autonomous agent’s
decision making and study the challenges to be expected in de-
signing such decision-making autonomous agents, we briefly
discuss promises as well as limitations of the classical decision
theory.

4A class of such models is discussed in the follow-up paper to this one.

237



This, first part of our work focuses on some parametric
models of the agent environments, and on some limitations
of the classical decision theory when those environments are
sufficiently complex. The environment’s complexity chiefly
stems from two frequently encountered in practice, and as-
sumed throughout herein, properties. The first property of a
typical complex environment is, how (in)accessible, that is,
(un)observable, it is to the agents. The other source of dif-
ficulty in designing effective deliberative agents is the envi-
ronment’s dynamic nature and, in particular, its being non-
episodic; this property dramatically limits how much an agent
can learn to predict the outcomes of its actions in the future
based on the observed environment’s behavior and the agent’s
corresponding payoffs in the past.

In our successor paper (also in this volume), we shall fo-
cus on some decision theoretic flavored models of an agent’s
action selection that circumvents some of the conceptual and
feasibility problems with the classical approaches. In our mod-
eling framework in the follow-up paper, an agent opts for rea-
soning and decision making that is strictly local, not burdened
with resource-consuming high-level presentations of the world
or the costly planning or learning heuristics. Hence, the agent’s
local knowledge based decision making becomes sufficiently
simple and scalable (and, therefore, feasible) to apply even
in the scenarios where the environments are highly dynamic
and very complex, where the agents have to act online and in
real-time, and where the underlying multi-agent systems are
potentially of a very large scale.

Acknowledgment: Many thanks to the members of the
Open Systems Laboratory’s TASK group. This work was sup-
ported by the DARPA IPTO TASK Program under the contract
F30602-00-2-0586.

References

[1] N. M. Avouris, L. Gasser (eds.), “Distributed Artificial Intelli-
gence: Theory and Praxis”, Euro Courses Comp. & Info. Sci.
vol. 5, Kluwer Academic Publ., 1992

[2] D. P. Bertsekas, “Dynamic Programming: Deterministic and
Stochastic Models”, Prentice-Hall, 1987

[3] D. H. Cansever, “Incentive Control Strategies For Decision
Problems With Parametric Uncertainties”, Ph.D. thesis, Univ.
of Illinois Urbana-Champaign, 1985

[4] S. Franklin, A. Graesser, “Is it an Agent, or just a Program?
A Taxonomy for Autonomous Agents”, Proc. 3rd Int’l Work-
shop on Agent Theories, Architectures & Languages, Springer-
Verlag, 1996

[5] M. Jang, S. Reddy, P. Tosic, L. Chen, G. Agha, “An Actor-
based Simulation for Studying UAV Coordination”, Proc. 15th
Euro. Symp. Simul. (ESS ’03), Delft, The Netherlands, October
2003

[6] H. Kopetz, “Scheduling”, Chapter 18 in “Distributed Sys-
tems” (ed. S. Mullender), ACM Press and Addison-Wesley,
1993

[7] J. K. Kuchar, L. C. Yang, “A review of conflict detection and
resolution modeling methods”, IEEE Trans. Intelligent Trans-
portation Systems, vol. 1, December 2000

[8] J. von Neumann, O. Morgenstern, “Theory of Games and Eco-
nomic Behavior”, Princeton Univ. Press, 1944

[9] G. Owen, “Game Theory” (2nd ed.), Academic Press, 1982

[10] S. Parsons, M. Wooldridge, “Game Theory and Decision The-
ory in Multi-Agent Systems”, Int’l J. AAMAS, vol. 5, Kluwer,
2000

[11] S. Parsons, M. Wooldridge, “An introduction to game theory
and decision theory”, in “Game theory and decision theory in
agent-based systems”, S. Parsons, P. Gmytrasiewicz, and M. J.
Wooldridge (eds.), Kluwer, 2002

[12] S. J. Rosenschein, L. P. Kaelbling, “A Situated View of Presen-
tation and Control”, Artificial Intelligence vol. 73, 1995

[13] J. Rosenschein, G. Zlotkin, “Rules of Encounter: Designing
Conventions for Automated Negotiations among Computers”,
The MIT Press, Cambridge, Massachusetts, 1994

[14] S. Russell, P. Norvig, “Artificial Intelligence: A Modern Ap-
proach”, 2nd ed., Prentice Hall Series in AI, 2003

[15] T. W. Sandholm, R. H. Crites, “On multi-agent Q-learning
in a semi-competitive domain”, Proc. IJCAI-95 Workshop on
Adaptation & Learning in MAS, Montreal, Canada, 1995

[16] O. Shehory, S. Kraus, “Coalition formation among au-
tonomous agents: Strategies and complexity”, Proc. MAA-
MAW’93, Neuchatel, Switzerland, 1993

[17] O. Shehory, S. Kraus, “Task allocation via coalition formation
among autonomous agents”, Proc. 14th IJCAI-95, Montreal,
August 1995

[18] H. A. Simon, “Models of Man”, J. Willey & Sons, New York,
1957

[19] P. Tosic, M. Jang, S. Reddy, J. Chia, L. Chen, G. Agha, “Mod-
eling a System of UAVs on a Mission”, Proc. SCI ’03 (invited
session), Orlando, Florida, July 2003

[20] P. Tosic, G. Agha, “Maximal Clique Based Distributed
Group Formation Algorithm for Autonomous Agent Coali-
tions”, Proc. Workshop on Coalitions & Teams, AAMAS ’04,
New York City, New York, July 2004

[21] C. J. C. H. Watkins, “Learning from delayed rewards”, Ph.D.
thesis, Cambridge Univ., 1989

[22] G. Weiss (ed.), “Multiagent Systems: A Modern Approach
to Distributed Artificial Intelligence”, The MIT Press, Cam-
bridge, Massachusetts, 1999

[23] M. Wooldridge, N. Jennings, “Intelligent Agents: Theory and
Practice”, Knowledge Engin. Rev., 1995

238



SOME MODELS FOR AUTONOMOUS AGENTS’ ACTION SELECTION IN
DYNAMIC PARTIALLY OBSERVABLE ENVIRONMENTS

Predrag T. Tosic and Gul A. Agha
Open Systems Laboratory, Department of Computer Science, University of Illinois at Urbana-Champaign

1334 Siebel Center for Computer Science, 201 N. Goodwin, Urbana, IL 61801, USA
Email: �p-tosic, agha�@cs.uiuc.edu

ABSTRACT
We study the resource-bounded autonomous agents acting
in complex, dynamic and partially observable multi-agent
and multi-task environments, and, in particular, the agent
action selection problem in such environments. Design-
ing effective autonomous decision making agents is par-
ticularly challenging, due to a number of demands that
such environments pose in terms of the agents’ necessary
capabilities. We make an early attempt in modeling and
designing agents for large-scale multi-agent systems and
complex environments, where individual agent’s behaviors
are sufficiently simple to be scalable and applicable in real-
time settings, and where the agents’ coordination and self-
organization capabilities can still make agents (both indi-
vidually and as ensembles) highly effective. This short pa-
per focuses on finding scalable models of an agent’s local
knowledge based individual behavior. We propose herein
several simple mathematical models for an agent’s local
knowledge-based action selection. We illustrate the gen-
eral ideas about bounded-resource autonomous agents act-
ing in complex dynamic environments with a concrete ap-
plication example: a modeling framework for the scalable
simulation of a collection of autonomous unmanned aerial
vehicles (UAVs) on a multi-task mission.

KEYWORDS
multi-agent systems, autonomous agents, resource-
bounded agents, bounded rationality, decision theory

1 Introduction

The subject of this work are some simple, scalable and
feasible parametric models for individual agent behavior
in complex dynamic environments that include multiple
agents, resources and tasks. We shall view an autonomous
agent as a pro-active, goal-driven and self-interested de-
cision maker. Its autonomous decision making, coupled
with other capabilities, such as adaptability and coordina-
tion with other agents, enables the agent to meaningfully
strive to maximize its individual expected payoff. This ac-
tion selection decision-making process critically depends
on (i) the properties of an agent’s environment (and the
agent’s model of its environment), and (ii) the character-
istics of agent’s goals that are defined as an appropriate
function of the main parameters of the environment.

Even when much of the environment is inaccessible
to the agent, the agent may still need to learn and reason
(make inferences) about various environment’s properties -
including those that it cannot directly observe. That is, the
agent needs to make inferences and decisions under uncer-
tainty, and possibly also in the presence of various sources
of noise. However, such high level cognitive abilities often
place considerable computational and resource burdens on
the agent. Hence, a resource-bounded agent may, instead,
choose to “think and act (strictly) locally”, fully aware that
such approach may lead to suboptimal behavior. Moreover,
we want each agent to act as autonomously as possible with
respect to other agents - yet to still be able to coordinate
(both competitively and cooperatively) with other agents,
should the circumstances warrant such coordination.

An agent’s goal-driven autonomous decision making
needs to be mathematically expressed in terms of the most
relevant parameters characterizing the agent’s environment
and goals. Such an autonomous decision making model
should specify how is the agent to act, given its current in-
ternal state and the current state of the environment. In ad-
dition, the relationship between the agent’s goals and “the
measure(s) of success” with the critical parameters of the
environment also needs to be established. That is, a com-
plete model of such deliberative agents needs to capture the
three-way coupling and interaction among (i) the agent’s
internal states and decision making mechanisms, (ii) the
states and parameters of the “outside world”, and (iii) the
agent’s goals, and some metrics of how successful the agent
has been thus far in accomplishing those goals.

Given a kind of applications we primarily have in
mind (ensembles of autonomous robots, unmanned vehi-
cles [7, 26, 27]), instead of restricting deliberative au-
tonomous agents exclusively to computer programs alone
(as it is done, e.g., in [5]) we are more inclusive as to what
kinds of entities and systems can meet the criteria for de-
liberative autonomous agents. In particular, we allow the
entities that, in addition to computing capabilities based on
an appropriate computer program, may also possess vari-
ous sensors, communication links and effectors for inter-
action and information exchange with their environments.

In this paper, we shall formulate a generic problem
of an autonomous agent acting in a multi-agent, multi-task
dynamic environment, and make an attempt to modify the
classical decision theoretic action selection formulations in

239

goodelle
Text Box
Appendix U:



order to obtain applicable, feasible and scalable paramet-
ric models for an agent’s utility-driven action selection in
such environments. The main idea is to trade the likely
unreachable optimality for efficiency, practicality and lo-
cality as the primary metrics of how good and applicable
in online and real-time settings (see [27]) an agent’s action
selection strategy is. We then briefly indicate how this gen-
eral framework can be fruitfully applied to a concrete MAS
application: a system of autonomous, resource-bounded
unmanned aerial vehicles (UAVs) on a multi-task mission
[7, 8, 26, 27].

2 Autonomous Agents’ Individual
Behavior Functions

We view agent autonomy as a capability of pro-active,
goal-driven decision making. One of the central challenges
in MAS research is how to model this decision-making pro-
cess, and what are the critical parameters that it depends
on? We have argued in a companion paper (also in this vol-
ume) that the common prescriptions of classical decision
theory do not work well in situations where the agents’ en-
vironments are sufficiently complex - in particular, when
these environments are dynamic, non-episodic and (par-
tially) inaccessible to agents. The general prescription for
an agent’s action selection, given by Eqn. (2) in the com-
panion paper is problematic, due to intrinsic intractabil-
ity or even impossibility of computing the needed condi-
tional probabilities and utilities. An alternative approach,
based on Markov games (e.g., [11]) and Partially Observ-
able Markov Decision Processes (POMDPs), (e.g., [6])
has been extensively studied by the MAS research commu-
nity (see, e.g., [12, 13, 14]), but it is known that POMDPs
are prohibitively computationally expensive except for the
simplest cases and small-sized problems [2, 12].

We now try to justify the class of generic models of
agent autonomy in the context of the general problem of
an autonomous agent acting in an unknown or partially
known, multi-agent, multi-task dynamic environment as
outlined in the predecessor paper (also in this volume). The
model of an agent’s autonomous decision making will be
an appropriate class of action-selecting mathematical func-
tions, that, depending on the situation, in general can be
deterministic, nondeterministic or probabilistic1.

Herein, for simplicity we shall restrict the class of
models of an individual agent’s autonomous decision-
making to action-selection mechanisms that are required to
be deterministic, and that we shall call individual behav-
ior functions, ����� [26]. Given a set of tasks with their
current values, an agent �� evaluates its behavior func-
tion �� that returns the index �� of the task ��� such that,
if �� selects ��� as its next task to service, this choice,

1That is, a probability distribution over a well-defined, finite set of
possible actions, or, more generally, for autonomous agents more com-
plex than what we consider herein, over a set of agent’s possible plans or
strategies.

from ��’s perspective, ought to maximize the estimated
(expected) increase in an appropriate utility-like quantity,
��. A generalization of this short-term, “single-shot” ac-
tion selection mechanism given by �� to the individual
behavior functions that, instead of a single index ��, would
return partial or complete (expected) optimal or approxi-
mately optimal schedules ���

�
� ���� ����, is immediate.

The parameters that these individual behavior func-
tions in general may depend on include the estimated re-
sources and/or capabilities that the agent �� needs to ser-
vice a particular task �� , the task’s current value ����� (or
an imperfect estimate of this value), the task’s resource re-
quirements, and the estimated competition for that task and
its value, i.e., the number of other agents that are estimated
to be interested (or, possibly, needed to provide assistance
to agent ��) in servicing the task �� .

Let 	�
� ��� be the resource demand vector that repre-

sents how much of each of several pre-specified resources
is agent �� going to need in order to fully service task ��
(and thus, assuming no competition, to consume all of the
still available task’s value, ��). Let 
���� be the vector of
available resources (capabilities) - these are the resources
(capabilities) that agent the �� “owns” and may freely de-
cide whether and how to utilize (i.e., spend) in its pursuit
of finding and servicing tasks and, consequently, thus in-
creasing its individual utility, ��. Let ��	�

� �� be the norm
(or, more generally, some cumulative function of all com-
ponents) of the resource demand vector	�

� , and let ���� be
the (estimated) number of agents interested in task �� ac-
cording to some parametric criterion �. One general class
of models of the -th agent’s target task selection can be
specified by

����� � ������������ ���� � 	
�
� � 
�� ����� ��� (1)

where � is a function that is increasing in the current
(true or estimated) task’s value, �� , and non-increasing in
the resource requirements 	

�
� .

One example of a simple individual behavior that fits
the general framework specified by Eqn. (1) is given by

����� � ������������ �
�����

�������� � �� � ��	�
� ��

� � (2)

where it is assumed that the norm of resource requirements
of any task with respect to any agent is strictly positive.

Let us assume that, in the given concrete multi-agent,
multi-task problem, time to complete different tasks is the
most critical resource. Then one may want to use the agent
choice-of-action function �� given by

����� � ������������ �
������ �

�
�	
 � ������� � ��

������� � �
� �

(3)
where �

�
�	
 is the estimated time that agent �� would

need to spend in pre-processing, before starting consum-
ing a particular task’s value �� , and where �� stands for
the value consumption rate for �� . The tacit assumptions

240



made in Eqn. (3) - such as, for example, that each agent,
from the moment it starts consuming the task’s value, will
get an “equal share” of the remaining value as any other
agent working on the same task - are oversimplifications
that may not hold in a given situation even as crude ap-
proximations. Yet, such simplifying assumptions may be
often necessary, in order for the agent’s choice-of-action
function �� to be readily (and quickly) computable “on
the fly”.

Should the agent’s computing resources and the avail-
able time for deliberation allow it, the agent can readily
incorporate online learning into the action selection mech-
anism given by Eqn. (3). For instance, typically not all
other agents that seem interested in task �� will actually
pursue this particular task. Hence, a discount parameter
���� such that 	 � ���� � �, that indicates what fraction
of other agents that seem interested in task �� , is likely
going to participate in servicing this task, can perhaps be
learned over time, and the action selection in Eqn. (3) ap-
propriately modified:

����� � ������� �
������ �

�
�	
 � ���� � ������� � ��

���� � ������� � �
� �

(4)
Similarly, optimal or good values of other parameters ap-
pearing in various action selection models, in principle, can
be also learned - assuming the sufficient time and other re-
sources at the agent’s disposal.

We begin the discussion of the proposed agent action-
selection problem with a remark on some work seemingly
similar to ours. The model of the environment in [24],
and, in particular, the model of tasks with their resource re-
quirements, are the same as ours. The problem addressed,
namely, distributed task allocation, also appears quite sim-
ilar to our agent action-selection problem. However, the
agents in [24] are not self-interested, have no individual
agendas or utilities, and are jointly attempting to maximize
the joint (or common) utility. Thus [24] is about dis-
tributed problem solving, whereas the fundamental char-
acteristic of our agents is that they are self-interested.

Let us now initially assume that the agents have per-
fectly reliable (within their finite ranges) sensors and com-
munication links. An agent’s knowledge of the environ-
ment, and of the tasks in particular, even if assumed (lo-
cally) accurate, is still, in general, not complete. Due to
the ontological assumptions of (i) no central control, and
(ii) bounded sensor and communication ranges, each agent
necessarily has only a local picture of the tasks, as well
as of the other agents and their whereabouts. If the agents
work in unison, i.e., if they have the common goal that they
are striving to achieve (that is, a single joint utility func-
tion), then the problem of how to split up the tasks among
the agents, and in what order, approximately reduces to a
well-known problem of (distributed) online task allocation
and scheduling (e.g., [24, 9]).

However, the problem we desire to model is consider-
ably more complex than mere distributed dynamic schedul-

ing. The main reason behind this additional complexity
is the inherently distributed and local nature of individual
agents’ information, knowledge, and interests. Even un-
der the (usually unrealistic) assumptions of perfectly reli-
able communication and sensing, we identify the follow-
ing generic sources of additional difficulty: (i) each agent
only has a local knowledge of the tasks and of other agents
(and of the world in general); in particular, an agent can
be affected by those aspects or “parts” of the world that it
itself cannot access or directly influence; (ii) each agent
is trying to optimize its own individual payoff, and there is
no guarantee, in case of those application domains where
the overall system performance actually matters, that indi-
vidual self-interested efficiency would necessarily lead to a
satisfactory efficiency of the system as a whole; (iii) even
if communication links are perfectly reliable, the informa-
tion that an agent receives from other agents need not be
reliable, as the agents, in general, can be expected to com-
pete for tasks and therefore the veracity assumption, in any
such competitive scenario, need not hold.

Observation (i), and models for and analysis of this
paradigm in various application domains, as well as the de-
sign of agents that can overcome the adversities due to this
limitation, are the central subject of distributed artificial in-
telligence [31]. Similarly, (ii) and its generalization - how
to reconcile the quest for maximizing individual vs. joint
utility functions - is a subject matter of either incentive en-
gineering [4], in case that an agent itself has to ensure ap-
propriately defined system efficiency (for instance, social
welfare) while pursuing its own agenda and self-interest,
or of mechanism design [21], in case where an outside in-
telligent entity (typically, the designer of the MAS) ensures
that self-interested agents would “play by the rules” as this
actually is in their individual best interest, and they are suf-
ficiently rational to realize that. Finally, (iii) takes us into
the realm of (many-player) game theory (e.g., [19, 15]).

Thus far we have assumed that the agents’ knowledge
of their environment and their tasks, while local, is per-
fectly accurate, in that the sub-state of the (complete) state
of the world that is accessible to the agent2, ��, is reliably
and accurately known by the agent. Most of the time, a re-
alistic agent model has to drop the assumption of reliable
local knowledge in favor of an imperfect, noisy model of an
agent’s knowledge of even those aspects of the world that
are fully accessible to the agent. In general, an agent’s sen-
sors cannot be assumed to be perfectly accurate: whatever
properties of the environment they measure, these measure-
ments likely introduce uncertainty and noise in the agent’s
local picture of the world. Likewise, an agent’s communi-
cation links can be seldom assumed perfectly reliable: they
may be faulty and they may experience delays. The delays
in communication may cause an agent to base its decisions
on outdated information about the world, which may lead
to potentially catastrophic consequences.

2See detailed discussion in the companion paper immediately preced-
ing this paper.

241



3 An Application

A collection of Unmanned Aerial Vehicles (UAVs) on
a multi-task mission provides a suitable framework for
identifying, modeling and analyzing many interesting
paradigms, design parameters and solution strategies ap-
plicable not only specifically to autonomous unmanned ve-
hicles and teams of robots, but to Multi-Agent Systems
(MAS) in general. UAVs are already finding, or are an-
ticipated to find, their use in a variety of military and law-
enforcement operations, e.g., in various surveillance, re-
connaissance, and search-and-rescue tasks. A typical UAV
or micro-UAV is equipped with certain sensors (such as,
e.g., radars or infra-red cameras). With these sensors, a
UAV probes its environment and forms a (local) “picture
of the world” on which its future actions may need to be
based. A UAV is also equipped with some communica-
tion capabilities, that enable it to communicate with other
UAVs and/or the ground or satellite control. This commu-
nication enables a UAV to have an access to the information
that is not local to it - that is, the information not directly
accessible to the UAV’s sensors.

While trying to accomplish their mission, these UAVs
need to respect a heterogeneous set of constraints on their
physical and communication resources. The UAVs also
need to be able to communicate and coordinate with each
other. Their cooperative coordination may range from
merely assuring that they stay out of each other’s way (col-
lision avoidance) to enabling themselves to adaptively and
dynamically divide-and-conquer their tasks.3

Not all kinds of UAVs can be reasonably considered
genuine autonomous agents; e.g., those that are remotely
controlled throughout their mission are neither autonomous
nor agent-like. However, for the reasons of system scala-
bility, dependability and robustness, increasingly complex
and autonomous unmanned vehicles are being studied and
designed. We are interested in (micro-)UAVs that are not
remotely controlled and that have the ability to make their
own decisions in real time. We are also assuming, for the
most part, no central control of any sort (see [7, 26, 27]). In
particular, the knowledge of the world that each UAV pos-
sesses is assumed to be local, possibly noisy, to vary with
time, and to be augmentable, at a certain cost, via commu-
nication with other UAVs.

Some of the problems that have been extensively stud-
ied in the context of UAVs include motion planning and
conflict detection and resolution; see, e.g., [3, 10, 16].
What has drawn considerably less attention (until very
recently) is modeling and analysis of the goal-driven or
utility-driven autonomous behavior of the UAVs that can
be reasonably viewed as autonomous agents [7, 26, 27].

We now turn to a MAS formulation of a system of
autonomous UAVs and how is each UAV to choose tasks
or targets. A collection of � UAVs needs to accomplish

3In [26], this latter, higher form of cooperative coordination we also
call goal-driven (cooperative) coordination.

a certain complex, multi-task mission. We model this mis-
sion as a set of � tasks, or interest points (IPs) [26].
Each interest point �� has a dynamically changing value
associated with it, 
����. An IP may be static or mo-
bile. A mobile IP �� , at any time step �, is completely
and uniquely specified by its position and velocity vectors,
����� and �����, respectively, and its value 
���� [7, 26].
This model can be readily augmented by adding a time-
dependent resource requirement vector to each IP, in lieu
with the generic model in Section 2. Each UAV �� is
driven by the desire to increase its own utility, ��, by con-
suming as much of value of various IPs as possible. The to-
tal amount of value is assumed to be bounded at all times.
Consequently, the UAVs can be expected to compete for
this limited resource.

From an individual UAV’s perspective, the goal is to
maximize its own utility, by visiting as many interest points
and consuming as much of their value as possible. This
is accomplished by following a certain either fixed or dy-
namically changing (adaptable) individual behavior strat-
egy. This individual behavior can be specified by an ap-
propriate individual behavior function, ��, that UAV ��
follows as long as there is no outside signal telling the UAV
it should start doing something else. An example of such
outside signal is a request to a given UAV to join a newly
formed group. If such a request comes from a leader whose
supremacy in authority is recognized, the follower UAV
will have to abandon its current behavior and comply with
the leader’s desires, thereby giving up its individual auton-
omy. Thus, one can observe an instance of a fundamental
tradeoff between individual autonomy and group coordi-
nation which may require (partial or complete, temporary
or permanent) sacrifice of the agent’s autonomy.

For much more on modeling UAVs as autonomous
agents, on the nature of interest points, and some models
of multi-agent coordination (as well as the interaction be-
tween individual autonomy and multi-agent coordination),
we refer the reader to [26, 27]. A UAV simulation testbed
is described in some detail in [7, 8].

4 Some Simple Models for UAV
Autonomous Action Selection

In order for any type of an unmanned vehicles to be con-
sidered autonomous agents, they have to be capable of
autonomous decision making under uncertainty without
direct intervention by an outside operator. We outline a
simple model of autonomy applicable to UAVs that would
render UAVs proper autonomous agents. Herein, UAVs are
modeled as utility-driven entities. They fulfill their goals
and thus increase their utilities by servicing their tasks; we
refer to these UAVs’ tasks as interest points (IPs), and as-
sociate an appropriate, time-dependent value function 
�

to each IP. As we assume that a single UAV can consume
value from at most one IP at a time, the question arises:
among several candidate IPs, how should a UAV choose in

242



what order it is to visit these IPs? Therefore, each UAV
faces an online scheduling problem. We further simplify
the analysis, and only ask, given a set of interest points
whose current positions and (estimated) values are known
to a particular UAV, which IP among them should the UAV
select to visit next?

Given a set of IPs with their current positions and val-
ues4, a UAV �� evaluates its behavior function �� that
returns the index �� of the IP such that, if the UAV selects
that IP as its next task to service, this choice, from that
UAV’s perspective, is expected to maximize the estimated
increase in the UAV’s utility. In particular, each UAV is
assumed self-interested - unless and until ordered differ-
ently.

Clearly, a great variety of self-interested individual
strategies can be specified via different choices of the func-
tions ��.

We can now readily specialize the general model from
the previous sections to the concrete application domain at
hand. Some parameters that individual behavior functions
of UAVs can be expected to depend on are the UAV’s dis-
tance from the given IP, the IP’s current value (or its es-
timate), the UAV’s currently available resources (or capa-
bilities), the IP’s resource requirements, and the estimated
competition for that IP and its value - viz., the number of
other UAVs in the IP’s vicinity. Let ����� and ����� be the
-th UAV’s position and velocity vectors at time t, respec-
tively, let ����� be the position of IP � at time �, ����� its
velocity, and let ���� be the total number of UAVs within
the distance � from IP �. Then one class of models of the
-th UAV’s target selection strategy can be specified by

����� � �������� ��
�� ���� � �� ��� ���� � �� ��� ����� ���
(5)

where � is a function that is increasing in 
� and
non-increasing in the distance of the UAV from the IP �,
������� � �������, and the (estimated) relative velocity be-
tween the two, �������� �������.

One example of a simple individual behavior that fits
the given general framework and that we have considered
in case of fixed (static) IPs [26] is given by

����� � ������������ �

����

������� � �������� �� ��
� �

(6)
where there exists a strictly positive minimal allowable dis-
tance of any UAV from any IP, and where distances are ap-
propriately normalized so that one may treat them as (phys-
ically) “dimensionless”.

Another example of a simple yet not entirely trivial
greedy individual behavior, that assumes the IPs are either
stationary or else that their velocities can be neglected, is
given by

����� � ������������ �

����� ������� � �

�������� �� ��
� � (7)

4In case of mobile targets (IPs), current velocities of the targets (IPs)
would be also needed.

where � above stands for the (constant) consumption rate
of an IP’s value, and where similar assumptions hold as
before.

Yet another, slightly more elaborate UAV choice-of-
action function that we have considered is given by

����� � ������������ �

����� �

�
�	
 � ���� � �

���� � �
� � (8)

where �
�
�	
 is the estimated time that UAV �� will need to

reach close enough to IP �� in order to start consuming its
value. Thus Eqn. (8) above can be considered as a special
case of Eqn. (3) in Section 2.

Everything said thus far about UAVs’ individual be-
havior strategies rests on the assumption that each UAV
acts strictly selfishly, and largely independently (except for
the dependence of �� on ����) from what other UAVs
do. Once UAV-to-UAV communication and coordination
are taken into account, faithfully modeling a UAV’s au-
tonomous behavior becomes considerably more complex.
In particular, in addition to the already mentioned parame-
ters, each UAV’s “picture of the world” and, consequently,
its ����� would be expected to also depend on messages
that �� has received from other UAVs.

An important point about the IP value function 
����
is that this function, for each IP �� , represents the ��’s true
(or objective) value, irrespective of which UAV may have
observed �� , and from how far away [7, 26]. The tacit as-
sumption has been that, once an IP is discovered by the
UAVs, all UAVs who are aware of this IP’s existence im-
mediately also know its exact (current) value. A more real-
istic assumption is that each UAV has its own, local and, in
general, imperfect (i.e., noisy) and intrinsically uncertain
knowledge of each of IPs’ values.

5 Summary and Conclusions

The subject of this paper are autonomous agents that are
operating in complex multi-agent, multi-task, bounded-
resource dynamic environments. We emphasize the impor-
tance of what are an agent’s models of its environment and
its goals, and how the properties of the environment cru-
cially affect an agent’s autonomous decision making pro-
cess.

The problem of an agent’s autonomous action selec-
tion cannot be divorced from the nature and model of the
agent’s environment and the agent’s goals. Our agents are
pro-active, goal-oriented entities acting in dynamic, par-
tially observable, unpredictable environments, and striv-
ing to maximize their expected utilities under the circum-
stances of bounded rationality and bounded resources. In
that context, we consider promises as well as limitations of
the classical decision theory. The first part of our work fo-
cuses on some parametric models of agent environments,
and on limitations of classical decision theory when those
environments are sufficiently complex (cf. in terms of

243



how (in)accessible, that is, (un)observable, they are to the
agents).

We propose herewith a class of generic models for an
agent’s task selection applicable to multi-agent, multi-task
complex dynamic environments, where the choice of ac-
tion can be abstracted to selecting (or scheduling) one or
more among the available tasks to be serviced. The main
idea is to trade complexity and poor scalability (that tend
to come hand-in-hand with a quest for optimality) for sim-
plicity, high scalability and locality in this decision making
process. To illustrate the usefulness of our simple mod-
els for the design of application-level agents that are online
decision makers in actual dynamic, non-episodic and par-
tially inaccessible environments, we indicate in Sections 3-
4 how the generic framework and task-selection models
can be applied to a system of unmanned autonomous vehi-
cles on a multi-task mission.

As for the future work, we envision two main direc-
tions. One is to consider more complex individual behav-
ior strategies of agents. In particular, introducing agent’s
memories, and subsequently the ability of an agent to learn
from and reason about its past experiences, could make
agents more effective in terms of making good decisions,
while less prone to instability due to “knee-jerk” reactive
responses to frequent and unpredictable random oscilla-
tions in the environment. However, such reasoning would
place considerable additional cognitive and resource con-
sumption burdens on the agent, thereby possibly hurting
the model’s scalability and hence applicability to very large
scale MAS. Finding an appropriate tradeoff between the
complexity and sophistication of an agent’s deliberation
model, and the system’s scalability and efficiency, is a task
of utmost importance. Clearly, no “one size fits all” single
solution is possible, and a MAS system designer needs to
make her own choices based on the properties of the appli-
cation at hand, available resources, and other application-
dependent considerations.

The second important consideration that needs to
be further addressed is the interaction, synergy and con-
flict between an agent’s self-interest-driven individual de-
cision making, and multi-agent (cooperative and/or non-
cooperative) coordination.

While the models of autonomous agents, their envi-
ronments and their decision making presented herein do
require a considerable future work on both further general-
ization as well as application to concrete problem domains,
we do hope that this report sheds some light and makes
a modest contribution to understanding and modeling au-
tonomous agents acting in complex - that is, multi-agent,
multi-task, bounded-resource, partially inaccessible, un-
predictable and non-episodic - and dynamic environments.

Acknowledgment: This work was supported by the
DARPA IPTO TASK Program contract # F30602-00-2-
0586.

References
[1] N. M. Avouris, L. Gasser (eds.), “Distributed Artificial Intelligence: Theory and Praxis”, Euro Courses

Comp. & Info. Sci. vol. 5, Kluwer Academic Publ., 1992

[2] D. P. Bertsekas, “Dynamic Programming: Deterministic and Stochastic Models”, Prentice-Hall, 1987

[3] A. Bicchi, L. Pallottino, “On optimal cooperative conflict resolution for air traffic management systems”,
IEEE Trans. Intelligent Transport. Systems, vol. 1, Dec. 2000

[4] D. H. Cansever, “Incentive Control Strategies For Decision Problems With Parametric Uncertainties”,
Ph.D. thesis, Univ. of Illinois at Urbana-Champaign, 1985

[5] S. Franklin, A. Graesser, “Is it an Agent, or just a Program? A Taxonomy for Autonomous Agents”, Proc.
3rd Int’l Workshop on Agent Theories, Architectures & Languages, Springer-Verlag, 1996

[6] R. A. Howard, “Dynamic Programming and Markov Processes”, The MIT Press, Cambridge, MA, 1960

[7] M. Jang, S. Reddy, P. Tosic, L. Chen, G. Agha, “An Actor-based Simulation for Studying UAV Coordina-
tion”, Proc. 15th Euro. Symp. Simul. (ESS ’03), Delft, The Netherlands, October 2003

[8] M. Jang, G. Agha, ”On Efficient Communication and Service Agent Discovery in Multi-agent Systems,”
3rd Int’l Workshop on Software Engineering for Large-Scale Multi-Agent Systems (SELMAS ’04), pp.
27-33, May 24-25, Edinburgh, Scotland, 2004

[9] H. Kopetz, “Scheduling”, Chapter 18 in “Distributed Systems” (ed. S. Mullender), ACM Press and
Addison-Wesley, 1993

[10] J. K. Kuchar, L. C. Yang, “A review of conflict detection and resolution modeling methods”, IEEE Trans.
Intelligent Transportation Systems, vol. 1, December 2000

[11] M. Littman, “Markov Games as a Framework for Multi-Agent Reinforcement Learning”, Proc. 11th Int’l
Conf. Machine Learning (ML’94), 1994

[12] M. L. Littman, A. Cassandra, L. P. Kaelbling, “Learning policies for partially observable environments:
Scaling up”, Proc. 12th Int’l Conf. Machine Learning, San Francisco, CA, 1995

[13] W. S. Lovejoy, “A survey of algorithmic methods for partially observed Markov decision processes”,
Annals of Oper. Research vol. 28, April 1991

[14] G. E. Monahan, “A survey of partially observable Markov decision processes: Theory, models, and algo-
rithms”, Management Sci., vol 28 (1), 1982

[15] G. Owen, “Game Theory” (2nd ed.), Academic Press, 1982

[16] L. Pallottino, E. M. Feron, A. Bicchi, “Conflict Resolution Problems for Air Traffic Management Systems
Solved With Mixed Integer Programming”, IEEE Trans. Intelligent Transportation Systems, vol. 3, No. 1,
March 2002

[17] S. Parsons, M. Wooldridge, “Game Theory and Decision Theory in Multi-Agent Systems”, Int’l J. AA-
MAS, vol. 5, Kluwer, 2000

[18] S. Parsons, M. Wooldridge, “An introduction to game theory and decision theory”, in “Game theory
and decision theory in agent-based systems”, S. Parsons, P. Gmytrasiewicz, and M. J. Wooldridge (eds.),
Kluwer, 2002

[19] A. Rapoport, “N-Person Game Theory”, The Univ. of Michigan Press, 1970

[20] S. J. Rosenschein, L. P. Kaelbling, “A Situated View of Presentation and Control”, Artificial Intelligence
vol. 73, 1995

[21] J. Rosenschein, G. Zlotkin, “Rules of Encounter: Designing Conventions for Automated Negotiations
among Computers”, The MIT Press, Cambridge, Massachussets, 1994

[22] S. Russell, P. Norvig, “Aritifical Intelligence: A Modern Approach”, 2nd ed., Prentice Hall Series in AI,
2003

[23] T. W. Sandholm, R. H. Crites, “On multi-agent Q-learning in a semi-competitive domain”, Proc. IJCAI-95
Workshop on Adaptation & Learning in MAS, Montreal, Canada, 1995

[24] O. Shehory, S. Kraus, “Task allocation via coalition formation among autonomous agents”, Proc. 14th
IJCAI-95, Montreal, August 1995

[25] H. A. Simon, “Models of Man”, J. Willey & Sons, New York, 1957

[26] P. Tosic, M. Jang, S. Reddy, J. Chia, L. Chen, G. Agha, “Modeling a System of UAVs on a Mission”, Proc.
SCI ’03 (invited session), Orlando, Florida, July 27-30, 2003

[27] P. Tosic, G. Agha, “Modeling Agent’s Autonomous Decision Making in Multi-Agent, Multi-Task Envi-
ronments”, Proc. 1st Euro. Workshop on Multi-Agent Systems (EUMAS’03), Oxford, England, December
18-19, 2003

[28] P. Tosic, G. Agha, “Maximal Clique Based Distributed Group Formation Algorithm for Autonomous Agent
Coalitions”, Proc. Workshop on Coalitions & Teams, AAMAS ’04, New York City, New York, July 19-23,
2004

[29] C. J. C. H. Watkins, “Learning from delayed rewards”, Ph.D. thesis, Cambridge Univ., 1989

[30] C. J. C. H. Watkins, P. Dayan, “Q-Learning”, Machine Learning vol. 8 (3), 1992

[31] G. Weiss (ed.), “Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence”, The
MIT Press, Cambridge, Massachussets, 1999

[32] M. Wooldridge, N. Jennings, “Intelligent Agents: Theory and Practice”, Knowledge Engin. Rev., 1995

244



Task Assignment for a Physical Agent Team via a Dynamic 
Forward/Reverse Auction Mechanism  

Amr Ahmed, Abhilash Patel, Tom Brown, MyungJoo Ham, Myeong-Wuk Jang, Gul Agha 
Open Systems Laboratory 

Department of Computer Science 
Urbana, IL 61802, USA 

{amrmomen,apatel1,tdbrown,ham1,mjang,agha}@uiuc.edu 
http://osl.cs.uiuc.edu

 
 

Abstract ⎯ In the dynamic distributed task assignment 
(DDTA) problem, a team of agents is required to accomplish 
a set of tasks while maximizing the overall team utility. An 
effective solution to this problem needs to address two 
closely related questions: first, how to find a near-optimal 
assignment from agents to tasks under resource constraints, 
and second, how to efficiently maintain the optimality of the 
assignment over time. We address the first problem by 
extending an existing forward/reverse auction algorithm 
which was designed for bipartite maximal matching to find 
an initial near-optimal assignment. An important problem 
with such assignments is that the dynamicity of the 
environment compromises the optimality of the initial 
solution. We address the dynamicity problem by using 
swapping to locally move agents between tasks. By linking 
these local swaps, the current assignment is morphed into 
one which is closer to what would have been obtained if we 
had re-executed the computationally more expensive auction 
algorithm. In this paper, we detail the application of this 
dynamic auctioning scheme in the context of a UAV 
(Unmanned Aerial Vehicle) search and rescue mission and 
present early experimentations using physical agents to 
show the feasibility of the proposed approach. 

1.  INTRODUCTION 

Recently, the problem of dynamic distributed task 
assignment (DDTA) among a team of agents has gained 
tremendous attention due to the wide variety of applications 
that require an efficient solution to this problem like: 
distributed sensor network [2], vehicle monitoring [4], and 
search and rescue [6]. In the DDTA problem a team of 
agents is required to accomplish a set of tasks according to a 
given criteria. This criterion can be either minimizing the 
time to accomplish all tasks or maximizing the utility of the 
accomplished tasks in a given time frame. 

Several approaches have been proposed to solve this 

problem that can be classified as either centralized or 
distributed. In centralized approaches [10], there exists a 
central agent who plays the role of a leader. This leader 
aggregates information from other team members, plans 
optimally for the entire team, and finally propagates the task 
assignments to other team members. This master-slave 
architecture has the advantage of finding an optimal solution, 
yet it has several disadvantages such as: a single point of 
failure, inability to respond fast to changes in the 
environments, and inability to deal with partially observable 
environments. 

To deal with the above shortcomings, distributed approaches 
were proposed. They attack the DDTA problem by requiring 
each agent to plan for itself based on local information [11]. 
In these approaches agents rely on a predefined negotiation 
framework that allows them to decide what activity to do 
next, what information to communicate, and to whom. A 
difficulty with these approaches is that they require agents 
to posse accurate knowledge about their environment which 
is difficult to maintain in heterogeneous and open systems. 

What is missing from the previous approaches, as reported 
in [2], is a formalization of the DDTA problem that exposes 
its challenging requirements and drives researchers to 
design efficient algorithms for this important problem. 
These efficient algorithms need to address two closely 
related questions: 1) combinatorial issues: how to find a 
near-optimal assignment from agents to tasks under time 
and bandwidth resource constraints, and 2) environment 
dynamicity: how to efficiently maintain the optimality of the 
assignment over time.  

In this paper we present a dynamic auctioning scheme that 
uses a divide and conquer strategy to approach the DDTA 
problem. We address the first question by extending a 
forward/reverse auction algorithm [1] which was originally 
designed for bipartite maximal matching to handle 
non-unary task requirements. This algorithm alternates 
between rounds of forward and reverse auctions. In the 
forward stage, agents bid for tasks, while in the reverse 
stage tasks conceptually bid for agents by reducing their 
prices. Because the environment is dynamic the solution 
found during the auction may degrade from optimal to 
highly inefficient, we propose to use swapping to locally 
move agents between tasks. By linking these local swaps, 

245

http://osl.cs.uiuc.edu/
goodelle
Text Box
Appendix V:



the current assignment is morphed into the one which 
should have been obtained if we had re-executed the 
expensive auction algorithm.  

The rest of this paper is organized as follows. The next 
section describes our application domain, i.e., the UAV 
(Unmanned Aerial Vehicle) search and rescue domain. In 
section 3 and 4 we detail the use of the dynamic auctioning 
scheme within this domain. Section 5 describes the UAV 
agent architecture, while section 6 presents our flexible 
experimental setting and reports on early experiments with 
this domain. In section 7 we discuss related work, and 
finally in sections 8 we conclude this paper and list several 
future research directions. 

2.  THE APPLICATION DOMAIN 

We used a search and rescue mission as an example of the 
DDTA problem. In this application domain, a set of UAVs1 
roam a rectangle mission area looking for targets (downed 
pilots, injured civilians, etc). These targets move according 
to a pre-determined path not known to the UAVs. Each 
target has a step utility function as depicted in Figure 1 and 
requires a minimum number of UAVs to be serviced. This 
step utility function means that before the target gets its 
required number of UAVs, none of its utility can be 
consumed by the team. Once the required number of UAVs 
arrived around the target, it will be considered to be serviced. 
UAVs monitor targets and coordinate to form groups to 
service them subject to maximizing the total team benefit as 
described by Equation 1: 

targets ( )

max at
t a group

t cutil
∈ ∈

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑
t

                                                          

 … (1) 

where group(t) is the set of UAVs assigned to target t, utilt is 
the utility value of target t, and cat is the cost incurred by 
UAV a to service target t (in our scenario, this is the cost of 
the path length along which the UAV moves to the target). 

3.  THE FORWARD / REVERSE AUCTION 

The forward/reverse auction algorithm was originally 
proposed by Bertseka and Castanon to solve the asymmetric 
assignment problem in which the goal is to match m persons 
with m out of n objects (m < n) while maximizing the total 
benefit of the match [1]. The algorithm proceeds in 
alternating rounds of forward and reverse auctions. In the 
forward stage, people bid for objects and the highest bidders 
get assigned to the objects. In the reverse stage, objects 
conceptually bid for people by reducing their prices to 
attract more persons. It was shown in [1] that this alternation 
of forward and reverse auctions deals better with price wars 
than either of its components (only forward or only reverse) 
and tends to terminate substantially faster than other 

 
1 In this paper, the term UAV and Agent are used interchangeably.  

approaches.  

We can consider the work in [1] as a mean of solving a 
snapshot of the dynamic distributed task assignment. 
However, one shortcoming of this approach is that it only 
deals with unary task requirements (i.e. all tasks require 
single agent each).  

To understand the challenges imposed by dealing with 
multi-requirement tasks, consider the scenario depicted in 
Figure 2: a team of three agents are required to service two 
targets that require three and two agents respectively. A 
direct application of the scheme in [1] would result in agent 
1 and 2 gets assigned to target 1 whereas agent 3 gets 
assigned to target 2. This pattern would continue 
indefinitely and would result in no utility gain because of 
the shape of the targets’ utility functions (see Figure 1). To 
circumvent this problem we propose a dynamic non-linear 
target utility function. In our scheme, the utility of the target 
as viewed by a single agent is increased non-linearly with 
the number of agents assigned to this target (section 3.3). In 
the previous scenario depicted in Figure 2, this would result 
in target 1 luring agent 3 to leave target 2 and join agent 1 
and 2 in servicing it.  

3.1. Overview of the Protocol 

We define two main roles in our protocol: the target 
auctioneer agent and the bidder agent. The former is 
responsible for running the auction on behalf of the target, 
while the latter competes with other bidder agents to service 
this target. It should be noted that the distinction drawn by 
the above two roles is a functional one rather than being a 
temporal or existential one. For example, an agent may be 
the auctioneer for more than one target, play the role of the 
auctioneer for a given target and bidder for other ones, or 
even bid for a target for which he is the auctioneer. This is 
acceptable as we implicitly assume honesty among team 
members, therefore no agent would give himself a slack for 
bidding to a target for which it is the auctioneer.   

Figure 3 gives an overview of the agent states pertaining to 
the auction protocols as well as their possible interactions.  
The auction starts once a new target is detected inside the 
mission area. The nearest UAV is considered as its 
auctioneer agent and it announces a new auction. In case of 
a tie, the highest ID agent is selected. From this point all 
UAV agents start competing for the new target and the 
auction runs in rounds each of which is of a predetermined 
length. During each round, the auctioneer agent receives 
bids from bidder agents and updates the target price 
appropriately (section 3.2). At the end of each round, the 
auctioneer agent evaluates its current state: if it collects the 
required number of agents for the target, then it announces 
the result to winner agents which form a winner group to 
service the target, and this information becomes a common 
knowledge in the team. Otherwise, the auctioneer agent 
reduces the price of the current target (reverse step) and 
propagates this information to the agent team members. The 
above procedure is repeated until the target is assigned. 

246



#Agents 

A3 A1 A2 

T2 T1 

Figure 1 - Step Utility Function 

Figure 2 - Multi-requirement 
Targets Challenges. T1 requires 3 
UAVs, and T2 requires 2 UAVs 

Utility 

Bidding

Auction 
Start 

Collecting 
Bids 

Round 
End 

Reverse 
Step 

Auction 
End 

Announce  

Task Auctioneer

No Target

New 
Target 

Servicing 
Target 

Won 
Auction 

Bidding 

No Target 

New 
Target 

Servicing 
Target 

Won 
Auction 

New  

Target 

Announce Announce

Figure 3 - Inter-roles Interaction in the Forward/Reverse Auction Protocol 

Not Enough Bids 

Enough Bids 

Bidder Agent Bidder Agent 

It should be noted that the framework allows for more than 
one auction to exist at the same time. In this case bidder 
agents need to choose the target to bid for (section 3.3). 

At the end of this stage, a near-optimal static assignment is 
found, and the resulting agent groups are announced by the 
auctioneers.  

3.2. Auctioneer Agent’s Policy 

The agent who plays the role of the auctioneer for a given 
target, t, has a very straightforward policy which is 
parameterized by two variables: ROUND_TIME which is 
the time period for each forward round and 
PRICE_REDUCE_RATIO which is the ratio used to update 
the target price in the reverse step. The auctioneer agent 
starts by setting the price of the target to zero. During the 
forward stage, it keeps a decreasing list (received_bids) of the 
received bids. Upon reception of a given bid, it first updates 
the received_bids and then updates the price of the target 
(pricet) using the Equation 2. 

[ ] if num( _ )  
min [ ] otherswise                              

i

t tprice received_bids req received bids req
receved_bids i

= ⎧⎪
⎨
⎪⎩

t≥

auctioneer’s one. While the bidder agent is in the bidding 

 

………….(2) 

where reqt is the minimum number of bids to service target 
t. 

Because the auctions are running asynchronously and under 
the auspice of different auctioneer agents, bidder agents may 
change their bidding decision and decided to bid for another 
target (see section 3.3). To do that they send a 

BID_RETRACT_REQUEST to the old best target 
auctioneer agent first. This is because a bid is viewed as a 
provisional commitment from the bidder to service the 
target if the auctioneer agent deems him as the winner. This 
request may be received by the auctioneer agent during the 
forward round. To respond, the auctioneer agent simply 
removes the retracted bidder from the received_bids list and 
updates the target price using Equation 1. 

At the end of the round, the auctioneer agent examines the 
provisional commitments it received. If it has got enough 
bids, it chooses the best ones based on the target 
requirement. The auctioneer agent then tries to turn these 
provisional commitments into a final one by a simple two 
way handshaking protocol with the winner bidders. This 
handshaking mechanism is required because the winner 
bidders might have chosed to retract their provisional 
commitments, but the requests they sent have not arrived at 
the auctioneer agent yet. If the auctioneer agent manages to 
turn sufficient (based on the target requirements) provisional 
commitments into final ones, then the auction ends and the 
winners are notified. If the auctioneer agent fails in 
collecting sufficient final commitments, it proceeds as if it 
did not acquire the required number of bids. In this case, it 
updates the target price based on the remaining provisional 
bidders using Equation 2. After that it reduces the target 
price by multiplying it with the PRICE_REDUCE_RATIO, 
which constitutes the reverse step, and broadcasts the new 
price to start a new forward round. This two round approach 
is repeated until the target is assigned. 

3.3. The Bidding Strategy 

The bidder agent’s strategy is rather more complex than the 

247



state (see Figure 3), it keeps track of the up-to-date prices of 
all known non-assigned targets. The bidder agent then needs 
to make two decisions: 1) which target to bid for and 2) how 
much to bid for this target. The situation is exacerbated 
because the information needed to answer these questions 
(price updates from old auctioneers and new target 
announcements) arrives asynchronously to the bidder agent. 
To solve this problem, the bidder agent first answers the 
above question using Algorithm 1, and whenever the bidder 
agent receives new information, it re-computes this answer 
using the same algorithm. If the best target changes, the 
bidder first retracts its bid from the old target auctioneer 
agent and then sends a new bid to the new target auctioneer 
agent. 

Algorithm 1 - GetBestTrgetBiddingStructure for agent i 

( )
1 2

1

2

  targets

  targets 

Calculate the benefit ( ) of  servicing target   as follows

- Find as follows:

- 

         

  ,  

            argmax     

         argmax

ij

j
ij ij j

j j

i i

i ij
j

i
j

a j

util
a c price

req asn

j j

j a

j
∈

∈

= − −
−

=

=
{ }

( )
i1

1 1 1 2

\ 

Bid for task with value

  

-    
i i i

ij
j

i j ij ij

a

j a aπ = −

 

where: 

util  = utility oj f target j ,  

req  = # of UAV required bj y target j 

asn  = # of UAV assigned to target j j

cij = cost of agent i to service target j 

price  = current price of target j j

Algorithm 1 is very intuitive. First, it computes the first and 

The bidder agent repeats the above procedure until it 

4.  SWAPPING: DYNAMIC MAINTENANCE OF 

The auction algorithm results in a near-optimal assignment 

 Efficiency: All negotiations need to be local between 

 s: Group membership is assumed to be a 

Let the current assignment under which the agents are 

Once a swap is selected for execution by an initiator agent, 

second maximally beneficial targets. It then bids for the first 
target with a bid value equal to the difference between the 
two benefits [1]. In calculating the benefit for target j, the 
utility of this target is divided by the remaining number of 
its requirement which constitutes the non-linear utility 
function explained in section 3.1. 

receives a request from the auctioneer agent to turn its 
provisional bid into a final one. In this case it needs to check 
that it is still provisionally committed to this target. If so, it 
answers positively; otherwise, it answers negatively. Finally, 
once the bidder agent receives the results of the auction to 
which it has submitted a bid, it can go in either of two ways: 
if it wins the bid, the agent starts to work in servicing the 
target and coordinate with its group members; otherwise it 

repeats the above procedure until it gets assigned to a target. 

AUCTION RESULTS    

at the time it was executed [1]. At the end of it, agents are 
divided into groups each of which is working on servicing a 
given target. However, as the agents proceed to accomplish 
this task, the agent states as well as the target states might 
change in a way that renders this assignment sub-optimal. 
One way of dealing with this problem is to periodically run 
the auction algorithm. However, this is a very expensive 
option and does not make efficient use of the information 
that the agents have. If we analyze the set of successive 
optimal assignments, we would discover that they morph 
into each other seamlessly through a finite set of possible 
swaps: a change of the assigned targets between two agents.  
To leverage this observation into an algorithm, we need to 
design an efficient and robust algorithm that has the 
following two properties: 

member agents of the two respective groups affected by 
the swap. 
Robustnes
global knowledge between group members. Therefore, 
the algorithm should maintain this property across 
swaps.  

working be S. While each agent is servicing its target, the 
agent periodically monitors the environment and considers 
as set of candidate swaps with nearby agents. The agent then 
examines all these candidate swaps and finds the best swap 
and its corresponding new assignment S’. The benefit of the 
swap is computed as the difference between the values of 
these two assignments using Equation 1. The agent decides 
to start negotiating the swap with the other group member if 
the swap benefit is larger than a given threshold. The 
intuition behind this threshold is twofold: first, it avoids 
thrashing between groups due to small perturbations of the 
environment, and second, it provides a way of weighing the 
benefit of the swap against the resources needed to execute 
it (the number of messages are needed to maintain 
intra-group synchronization). 

this agent starts to negotiate the swap with the other member 
in the thought after group. As usual, synchrony conspires 
with the distributed nature of the application to only 
exacerbate the situation. To understand this, consider the 
situation in which there are two groups each of which has 
three members. If two different pairs of members have 
decided to execute the swap at the same time, intra-groups 
synchronization becomes very hard and expensive to 
maintain. To prevent this situation from taking place, we 
stipulate a third requirement: 

248



 Isolation: At any given time there can be at most one 
swap taking place between any two groups. 

To achieve these requirements, an agent within each group 
is assigned to be the group leader. Let a swap take place 
between an initiator agent and an intended agent. The swap 
is then proceeds as follows: 

1. Initialization - The initiator of the swap asks its group 
leader for permission to start a new swap. This 
permission is granted as long as there is no other swap 
taking place. 

2. Asking for a swap - Upon reception of the swap 
permission from its own group leader, the initiator agent 
contacts the member agent involved in the swap in the 
other group to inform it about executing the swap. 

3. Responding to the swap - Once the intended agent 
receives the swap request, it asks for permission from its 
own group leader. Based on its leader response (grant or 
decline), it informs the initiator with its decision (accept 
or decline). 

4. Swap execution - Once the two parties agreed on the 
swap, each one informs its peers about the group update. 

5. Finalization - After the initiator and intended agents 
inform their peers about the swap, they report to their 
group leaders that intra-group synchronization has been 
achieved. 

As evident from the above procedure, a swap requires a 
large number of messages back and forth between group 
members; therefore the SWAP_THRESHOLD should be 
adjusted to take this into consideration. Currently, this 
threshold is treated as a pre-determined parameter to the 
framework, and its value is set based on a worst case 
analysis.  

5.  UAV AGENT ARCHITECTURE 

This section provides a function-oriented specification of 
different components of an UAV agent used in the 
experimentation and the information flow between them. 
The emphasis here will be of the reasoning part of the agent.  

Figure 4 depicts the UAV agent components as well as 
information flow between them. The central component of 
the agent architecture is the world model which is the main 
memory of the agent. It stores various kind of problem 
information at different levels of abstractions. The world 
model is feed with vision data from the communication 
module, and it provides various retrieval functions to other 
components of the agent. This allows these components to 
examine the world around the agent at the most suitable 
level of details for this component’s task.  

The coordination module is the brain of the agent where all 
decisions are taken. It is responsible of sequencing the agent 
decision making process as well as coordinating the overall 
team members’ actions (team-level action sequencing). The 
main responsibility of this module is to decide the agent 
current mode of operation (rooming, bidding, or task 

execution), and it also runs the auction framework as 
detailed before. It also stores partial coordination results on 
the world model like (which target I am currently committed 
to which group I am a member of, what is my role in this 
group, etc.) to be used by other modules. 

UAV 

Communication 
Module Robot Interface 

World Model 

Coordination 
Module 

Target Handling 

Object Info 

Object 
Info 

Coordination
Result 

Object 
Info 

Partial 
Decisions 

Group 
Sync. 

Movement 
Commands

Coordination 
Messages 

Messages 

Motion Planning / 
Collision Avoidance

Objects Info 

Other 
Info 

Objects 
UAVs 

 

Figure 4 - Internal Architecture of a UAV Agent 

The target handling and motion planning modules are 
responsible for materializing decisions of the coordination 
module. The responsibilities of these modules are to decide 
which point of the target to go to and to coordinate with 
other group members to avoid conflicts. This coordination is 
done by exchanging path-planning messages between group 
members through the communication module. Afterwards, 
the collision avoidance module monitors the world by 
examining the world model and make sure to avoid/prevent 
collisions using an A* algorithm [16]. 

6.  EXPERIMENTAL RESULTS  

Our main aim is to demonstrate our framework using a set 
of robot cars. Each car is controlled by an iPAQ and 
receives localization information from a leader vision server 
collaborating data from four vision servers, each of which is 
connected to a ceil-mounted vision camera. A vision server 
takes images from a camera and processes images searching 
for color plates mounted over the robot cars, which 
designate corresponding robots’ identification and headings. 
A leader vision server takes localization information from 
each vision server, and sends filtered and regulated 
localization information to iPAQs. Inter-agent 
communication is achieved via wireless communication 
between iPAQs. Different cars are used to represent UAVs 
and targets (see Figure 5). It is quite clear that this hardware 
setting would make discovering logical errors as well as 
tracing the agents’ behavior very hard. To deal with these 
issues, we developed a hardware/software shared agent code 

249



architecture that allows us to simulate this hardware setting 
in software while at the same time guaranteeing 
interoperability when porting this code to the hardware 
setting. The main design philosophy of the system is to ease 
parallel developments and testing. The agent’s (UAV/Target) 
implementation is isolated from the architecture on which 
the system is running. The system can run in two modes: 
Simulated Mode or Real Mode. 

 

Figure 5 - Experimental Environments 

Our experiments are performed with the proposed 
framework in a 6 UAVs vs. 9 target scenario. The metric we 
used is the total mission time to service all targets. We ran 
this mission with different settings for the dynamic auction 
framework parameters: ROUND_TIME (RT) and 
PRICE_REDUCE_RATIO (PPR). We also ran experiments 
with and without the reverse auction stage and with and 
without swapping. If swapping is disabled, then agents 
would stick to there initial target assignment even if it 
becomes sub-optimal later. In all of these experiments, 
SWAP_THRESHOLD was set to 30 and the swap was 
considered every 20 seconds (currently, these values are set 
experimentally). 

As evident from the results, swapping and the reverse 
auction step help reducing the total mission time in all 
combination of the other parameter settings.  

From Table 1, small values of the RT would negatively 
affect the overall performance. This is largely due to the 
asynchrony of the application as small RT values would not 
give the auctioneer agent a chance to receive all bids 
submitted from bidder agents. This would results in running 
the auction many times because of not receiving enough 
bids. The optimal setting for this parameter depends largely 
on the average message delay. From Table 3, the best PPR 
setting is 50% which results in the fastest auction 
termination. We are currently in the process of conducting 
more experiments to understand the role of this parameter. 

Table 1: The effect of auction round time 

RT=1 sec RT=3 sec
Fwd Fwd/Rev Fwd Fwd/Rev
217 sec 163 sec 175 sec 212 sec

 PR=50% with swapping 

Table 2: The effect of swapping  

  PR = 50%, RT = 1 sec 

With Swapping Without Swapping
Fwd Fwd/Rev Fwd Fwd/Rev
217 sec 207 sec 249 sec 163 sec

Table 3: The effect of the price reduce ratio 

. 

7.  RELATED WORK 

els in multi-agent coordination in 

ced in [1] to 

ted to conflict management in a team of 

The use of economic mod
general and task allocation in particular is not new. Various 
approaches exploited auction-like approaches in both 
situated [5, 12] and non-situated agents [7, 8]. However, as 
we detailed before, these approaches lack a formal 
specification of the DDTA problem. Moreover, they mainly 
concentrate ([7] slightly depart from this) on how to assign 
tasks to agents without providing a solid framework to 
maintain the assignment optimality over time. 

The forward/reverse auction was first introdu
solve asymmetric assignment problem, and therefore it can 
be regarded as a mean to solve a snapshot of the DDTA 
problem. Our work here can be viewed as extending it in 
three directions: first, we allow the algorithm to deal with 
non-unary task requirements by introducing non-linearity in 
the task utility function; second, we adapt the initial results 
of the algorithm using swapping to retain its optimality over 
time; third, we provide a robust implementation for this 
algorithm that deals with the distributed and asynchronous 
nature of the DDTA problem. This implantation can be 
viewed as a relaxed version of the two-phase commit 
protocols [13].  

Swapping is rela
agents. Several approaches have been proposed to deal with 
this problem which is based on the shared intention theory 
[3] in which agents inside the team are assumed to share a 
common goal. This theory has been materialized in [14, 15] 
as a set of reusable teamwork heuristic rules that enable 

RT = 1 sec, with swapping 

Forward Reverse Auction
PR=10% PR=30% PR=50%
207 sec 211 sec 163 sec

250



agent teams to act reliably in dynamic situations. However, 
our work differs from these generic approaches as it was 
designed specifically to permeate seamlessly with our 
forward/reverse auction framework. 

8.  CONCLUSION AND FUTURE WORK 

and conquer 
approach for the DDTA problem that deals separately with 

n the same search 
and rescue domain using our Actor Architecture (AA) [17] 

ed by the Defense Advanced 
Research Projects Agency under contract number 

as and D.A. Castanon, “A Forward/reverse 
Auction Algorithm for Asymmetric Assignment Problems,” 

 S. Kulkarni, 
“Dynamic Distributed Resource Allocation: A Distributed 

d 
joint action,” In Proceedings of the 12th International Joint 

 
on Intelligent Systems and their Applications, 11(6):36-46, 

oboCup Rescue Simulation Domain: A 
Short Note,” In Proceedings of the International Symposium 

tion,” IEEE Transactions 
on Robotics and Automation, Special Issue on Multi-robot 

Mobile Robots,” In 
Proceedings of IEE/RSJ International Workshop on 

Robotics 
Institute Technical Report CMU-RI-TR-01-26, August 2001.  

University of Massachusetts, May 1995.  

cial Intelligence, 
20:63-109, 1983. 

s - Concepts and Design, 3rd edition, 
Addison-Wesley, 2001. 

onitoring,” Journal of Artificial 
Intelligence Research, 12:105-147, 2000. 

al Conference on 
Artificial Intelligence (AAAI), August 1997. 

r Saddle River, 
NJ, 2003. 

d Simulation for Studying UAV Coordination," 
15th European Simulation Symposium (ESS 2003), pp. 

In this paper we have presented a divide 

its two main challenging aspects: combinatorial and 
dynamicity issues. To deal with the first issue we have 
adapted a forward reverse auction algorithm which was 
originally designed for bipartite maximal matching [1] to be 
suitable for the distributed, asynchronous, multi-requirement 
aspects of the DDTA problem. We have then proposed to 
use swapping as a mean to maintain the optimality of the 
initial auction results over time via chaining of local, 
communication-inexpensive negotiating steps. We have 
detailed the application of our approach in a UAV search 
and rescue domain and reported on early experimentations 
that prove the promise of our framework. 

We plan to run large scale experiments o

which supports up to 10000 agents. We also plan to 
incorporate learning in our architecture to first tailor the 
agents’ bidding decisions and second to adapt the algorithm 
parameters to the environment dynamics in order to 
efficiently utilize the available bandwidth. Moreover, we 
will also contrast our approach with that in [2] and provide a 
principled way to contrast them in different settings. Finally, 
we also plan to investigate theoretically the optimally our 
multi-requirements extension to the auction algorithm. 

ACKNOWLEDGMENT 

This research is sponsor

F30602-00-2-0586. We would like to thank Hananeh 
Hajishirazi for implementing part of the collision avoidance 
and target handling modules. We would like also to thank 
Soham Mazumdar for early discussion on the 
forward/reverse auction algorithm. 

REFERENCES 

[1] D.P. Bertsek

Technical Report Lids-P-2159, MIT, 1993.  

[2] P.J. Modi, H. Jung, M. Tambe, W. Shen,

Constraint Satisfaction Approach,” In Intelligent Agents VIII 
Proceedings of the International Workshop on Agents, 
Theories, Architectures, and Languages (ATAL’01), 2001. 

[3] P.R. Cohen and H.J. Levesque, “Confirmation an

Conference on Artificial Intelligence, pages 951-957, 1991. 

[5] K. Sycara, A. Pannu, M. Williamson, and D. Zeng, 
“Distributed Intelligent Agents,” IEEE Expert, Special Issue

December 1996.  

[6] R. Nair, T. Ito, M. Tambe, and S. Marsella, “Task 
Allocation in the R

on RoboCup(RoboCup'01), 2001. 

[7] B.P. Gerkey and M.J. Matarić, “Sold!: Auction 
Methods for Multi-robot Coordina

Systems, 18(6):758-768, October 2002. 

[8] P. Caloud, W. Choi, J.-C. Latombe, C. Le Paper, and M. 
Yim, “Indoor Automation with many 

Intelligent Robots and Systems, pages 67-72, 1990. 

[10] M.B. Dias and A. Stentz, “A Market Approach to 
Multirobot Coordination,” Carnegie Mellon 

[11] K.S. Decker, “Environment Centered Analysis and 
Design of Coordination Mechanisms,” Ph.D. Dissertation, 

[12] R. Davis and R.G. Smith, “Negotiation as a Metaphor 
for Distributed Problem Solving,” Artifi

[13] G. Coulouris, J. Dollimore, and T. Kindberg. 
Distributed System

[14] G.A. Kaminka and M. Tambe, “Robust Agent Teams 
via Socially-attentive M

[15] M. Tambe, “Agent Architectures for Flexible, Practical 
Teamwork,” In Proceedings of the Nation

[16] S. Russell, P. Norvig, Artificial Intelligence: A Modern 
Approach, 2nd edition, Prentice Hall, Uppe

[17] M. Jang, S. Reddy, P Tosic, L. Chen, G. Agha. "An 
Actor-base

593-601, October 26-29, Delft, The Netherlands, 2003. 

251



Dynamic Agent Allocation for Large-Scale

Multi-Agent Applications

Myeong-Wuk Jang and Gul Agha

Department of Computer Science
University of Illinois at Urbana-Champaign,

Urbana IL 61801, USA
{mjang, agha}@uiuc.edu

Abstract. Although distributed computing is necessary to execute large-
scale multi-agent applications, the distribution of agents is challenging
especially when the communication pattern among agents is continuously
changing. This paper proposes two dynamic agent allocation mechanisms
for large-scale multi-agent applications. The aim of one mechanism is to
minimize agent communication cost, while that of the other mechanism
is to prevent overloaded computer nodes from negatively affecting over-
all performance. In this paper, we synthesize these two mechanisms in
a multi-agent framework called Adaptive Actor Architecture (AAA). In
AAA, each agent platform monitors the workload of its computer node
and the communication pattern of agents executing on it. An agent plat-
form periodically reallocates agents according to their communication
localities. When an agent platform is overloaded, the agent platform
migrates a set of agents, which have more intra-group communication
than inter-group or inter-node communication, to a relatively under-
loaded agent platform. These agent allocation mechanisms are developed
as fully distributed algorithms, and they may move the selected agents
as a group. In order to evaluate these mechanisms, preliminary exper-
imental results with large-scale micro UAV (Unmanned Aerial Vehicle)
simulations are described.

1 Introduction

Large-scale multi-agent simulations have recently been carried out [8, 12]. These
large-scale applications may be executed on a cluster of computers to benefit
from distributed computing. When agents participating in a large-scale applica-
tion communicate intensively with each other, the distribution of agents on the
cluster may significantly affect the performance of multi-agent systems: over-
loaded computer nodes may become the bottleneck for concurrent execution, or
inter-node communication may considerably delay computation.

Many load balancing and task assignment algorithms have been developed
to assign tasks on distributed computer nodes [13]. These algorithms mainly use
information about the amount of computation and the inter-process communica-
tion cost; a task requires a small amount of computational time to finish, and the

252

goodelle
Text Box
Appendix W:



communication cost of tasks is known a priori. However, in many multi-agent
applications, agents do not cease from execution until their system finishes the
entire operation [5]. Furthermore, since the communication pattern among co-
operative agents is continuously changing during execution, it may be infeasible
to estimate the inter-agent communication cost for a certain time period. There-
fore, task-based load balancing algorithms may not be applicable to multi-agent
applications.

This paper proposes two agent allocation mechanisms to handle the dynamic
change of the communication pattern of agents participating in a large-scale
multi-agent application and to move agents on overloaded computer nodes to
relatively underloaded computer nodes. Adaptive Actor Architecture (AAA), the
extended multi-agent framework of Actor Architecture [9], monitors the status of
computer nodes and the communication pattern of agents, and migrates agents
to collocate intensively communicating agents on a single computer node. In
order to move agents to another computer node, an agent platform on a single
node manages virtual agent groups whose member agents have more intra-group
communication than inter-group or inter-node communication. In order to evalu-
ate our approach, large-scale micro UAV (Unmanned Aerial Vehicle) simulations
including 10,000 agents were tested.

This paper is organized as follows. Section 2 introduces the overall archi-
tecture of our agent system. Section 3 explains in details two dynamic agent
allocation mechanisms of our agent system. Section 4 shows the preliminary
experimental results to evaluate these allocation mechanisms, and Section 5 de-
scribes related work. Finally, Section 6 concludes this paper with our future
work.

2 Adaptive Actor Architecture

AAA provides a light-weight implementation of agents as active objects or actors
[1]; agents in AAA are implemented as threads instead of processes, and they
communicate using object messages instead of string messages. The actor model
provides the fundamental behavior for a variety of agents; they are social and
reactive, but they are not explicitly required to be “autonomous” in the sense of
being proactive [16]. However, autonomous actors may be implemented in AAA,
and many of the applications used in our experimental studies require proactive
actors. Although the term agent has been used to mean proactive actors, for our
purposes the distinction is not critical. In this paper, we use the terms ‘agent’
and ‘actor’ as synonyms.

Adaptive Actor Architecture consists of two main parts:

– AAA platforms which provide the system environment in which agents exist
and interact with other agents. In order to execute agents, each computer
node must have one AAA platform. AAA platforms provide agent state
management, agent communication, agent migration, agent monitoring, and
middle agent services.

253



AAA Platform

Message Manager

Actor Manager Actor Migration Manager

Transport Receiver

Transport Receiver Transport Sender

Transport Sender

AAA Platform

Transport Manager

Transport Manager

Delayed Message Manager

Actor Allocation Manager

ATSpace

Actor

System Monitor

Fig. 1. Architecture of an AAA Platform

– Actor library which is a set of APIs that facilitate the development of agents
on the AAA platforms by providing the user with a high level abstraction of
service primitives. At execution time, the actor library works as the interface
between agents and their respective AAA platforms.

An AAA platform consists of ten components (see Fig. 1): Message Manager,
Transport Manager, Transport Sender, Transport Receiver, Delayed Message
Manager, Actor Manager, Actor Migration Manager, Actor Allocation Manager,
System Monitor, and ATSpace.

The Message Manager (MM) handles message passing between agents. Every
message passes through at least one Message Manager. If the receiver agent of
a message exists on the same AAA platform as the sender agent, the MM of
the platform directly delivers the message to the receiver agent. However, if the
receiver agent is not on the same AAA platform, this MM delivers the message
to the MM of the platform where the receiver currently resides, and finally
the MM delivers the message to the receiver. The Transport Manager (TM)
maintains a public port for message passing between different AAA platforms.
When a sender agent sends a message to a receiver agent on a different AAA
platform, the Transport Sender (TS) residing on the same platform as the sender
receives the message from the MM of the sender agent and delivers it to the
Transport Receiver (TR) on the AAA platform of the receiver. If there is no

254



built-in connection between these two AAA platforms, the TS contacts the TM
of the AAA platform of the receiver agent to open a connection so that the TM
creates a TR for the new connection. Finally, the TR receives the message and
delivers it to the MM on the same platform.

The Delayed Message Manager (DMM) temporarily holds messages for mo-
bile agents while they are moving from their AAA platforms to other AAA
platforms. The Actor Manager (AM) manages states of the agents that are cur-
rently executing and the locations of the mobile agents created on the AAA
platform. The Actor Migration Manager (AMM) manages agent migration.

The System Monitor (SM) periodically checks the workload of its computer
node and an Actor Allocation Manager (AAM) analyzes the communication
pattern of agents. With the collected information, the AAM makes decisions for
either agents or agent groups to deliver to other AAA platforms with the help of
the Actor Migration Manager. The AAM negotiates with other AAMs to check
the feasibility of migrations before starting agent migration.

The ATSpace provides middle agent services, such as matchmaking and bro-
kering services. Unlike other system components, the ATSpace is implemented
as an agent. Therefore, any agent can create an ATSpace, and hence, an AAA
platform may have more than one ATSpaces. The ATSpace created by an AAA
platform is called the default ATSpace of the platform, and all agents can ob-
tain the agent names of default ATSpaces. Once an agent has the name of an
ATSpace, the agent may send the ATSpace messages in order to use its services,
and the messages are delivered through the Message Manager.

3 Dynamic Agent Allocation

In order to develop large-scale distributed multi-agent applications, the multi-
agent systems must be scalable. This scalability may be achieved if the appli-
cation or the infrastructure does not include centralized components which can
become a bottleneck. Moreover, the scalability requires relatively balanced work-
load on computer nodes. Otherwise, the slowest node may become a bottleneck.
However, balancing the workload between computer nodes requires significant
overhead: the relevant global state information needs to be gathered, and agents
have to transferred sufficiently frequently between computer nodes. Therefore,
when the number of computer nodes and/or the number of agents is very large,
load balancing is difficult to achieve. AAA uses the load sharing approach in
which agents on an overloaded agent platform are moved to other underloaded
agent platforms, but balanced workload among computer nodes is not required.

The third important factor for the scalability of multi-agent systems is the
communication overhead. When agents on separate computer nodes communi-
cate intensively with each other, this factor may significantly affect the per-
formance of multi-agent systems. Even though the speed of local networks has
increased considerably, the intra-node communication speed for agent message
passing is much faster than inter-node communication. Therefore, if we can col-
locate together agents which communicate intensively with each other, com-

255



munication time significantly decreases. It is not generally feasible for a user
to distribute agents based on their communication pattern, because the com-
munication pattern among agents may change over time in unpredictable ways.
Therefore, agents should be reallocated dynamically according to their communi-
cation patterns, and this procedure should be managed by a middleware system,
such as agent platforms. Each agent platform in AAA monitors the status of its
computer node and the communication pattern of agents on it, and the platform
dynamically reallocates agents according to the information gathered.

3.1 Agent Allocation for Communication Locality

An agent allocation mechanism used in AAA handles the dynamic change of the
communication pattern among agents. This mechanism consists of four phases:
monitoring, agent allocating, negotiation, and agent migration (see Fig 2).

Agent Allocation

Monitoring

Negotiation

Agent Migration

Fig. 2. Four Phases for Basic Dynamic Agent Allocation

Monitoring Phase The Actor Allocation Manager checks the communication
pattern of agents under the support of the Message Manager. The Actor Allo-
cation Manager makes a log with information about both the sender agent and
the agent platform of the receiver agent of each message. Therefore, each agent
element in the Actor Allocation Manager has variables representing all agent
platforms communicating with this agent; Mij is the number of messages sent
from agent i to agent platform j.

Periodically or when requested by a system agent, the Actor Allocation Man-
ager updates the communication pattern between agents and agent platforms
with the following equation:

Cij(t) = α

(

Mij(t)
∑

k Mik(t)

)

+ (1 − α)Cij(t − 1)

256



where Cij(t) is the communication dependency between agent i and agent plat-
form j at the time step t; Mij(t) is the number of messages sent from agent i to
agent platform j during the t-th time step; and α is a coefficient for the relative
importance between recent information and old information.

For analyzing the communication pattern of agents, agents in AAA are clas-
sified into two types: stationary and movable. Any agent in AAA can move itself
according to its decision, even though it is either stationary or movable. However,
the Actor Allocation Manager does not consider stationary agents as candidates
for agent allocation; an agent platform can migrate only movable agents. These
types of agents are initially decided by agent programmers, and may be changed
during execution by the agents, but not by agent platforms.

Agent Allocation Phase After a certain number of repeated monitoring
phases, the Actor Allocation Manager computes the communication dependency
ratio of an agent between its current agent platform and another agent platform:

Rij =
Cij

Cin
, j �= n

where Rij is the communication dependency ratio of agent i between its current
agent platform n and agent platform j.

When the maximum ratio of an agent is larger than a predefined threshold,
the Actor Allocation Manager assigns this agent to a virtual agent group that
represents the remote agent platform:

max(Rij) > θ → ai ∈ Gj

where θ is the threshold for agent migration, ai represents agent i, and Gj means
agent group j.

When the Actor Allocation Manager has checked all agents and assigned some
of them to agent groups, the Actor Allocation Manager starts the negotiation
phase. After the agent allocation phase, information about the communication
dependency of agents is reset.

Negotiation Phase Before an agent platform migrates the agents that are in
an agent group to another agent platform, the Actor Allocation Manager of the
sender agent platform communicates with that of the destination agent plat-
form to check its current status. If the destination agent platform has enough
space and available computational resources for new agents, its Actor Alloca-
tion Manager accepts the request for the agent group migration. Otherwise, the
destination agent platform sends the number of agents that it can accept. The
granularity of this negotiation between agent platforms is an agent. When the
Actor Allocation Manager receives a reply from the destination agent platform,
the Actor Allocation Manager sends as many agents to the destination agent
platform as the number of agents recorded in the reply message. When the
number in the reply message is less than the number of agents in the virtual

257



group, the agents to be migrated are selected according to their communication
dependency ratios.

Agent Migration Phase When the destination agent platform can accept new
agents, the Actor Allocation Manager of the sender agent platform initiates the
migration of agents in the selected agent groups. After the current operation of
a selected agent finishes, the Actor Migration Manager moves the agent to the
destination agent platform decided by the Actor Allocation Manager. After the
agent is migrated, the agent may restart its remaining operations.

3.2 Agent Allocation for Load Sharing

With the previous agent allocation mechanism, AAA handles the dynamic change
of the communication pattern of agents. However, this mechanism may increase
the workload of certain agent platforms. Therefore, our agent allocation has
been extended. When an agent platform is overloaded, the System Monitor de-
tects this and activates the agent reallocation procedure. Since agents had been
assigned to their current agent platforms according to their communication pat-
tern, choosing agents randomly to migrate to underloaded agent platforms might
result in moving them back to their original agent platforms by the Actor Allo-
cation Managers of their new agent platforms. This is because the moved agents
may still have a high communication with their previous agent platform. This
agent allocation mechanism consists of five phases: monitoring, agent grouping,
group allocation, negotiation, and agent migration (see Fig 3).

Group Allocation

Agent Grouping

Monitoring

Negotiation

Agent Migration

Fig. 3. Five Phases for Extended Dynamic Agent Allocation

258



Monitoring Phase In the second agent allocation mechanism, the System
Monitor periodically checks the state of its agent platform; the System Monitor
gathers information about the current processor usage and the memory usage of
its computer node. When the System Monitor decides that its agent platform is
overloaded, it activates the agent allocation procedure. When the Actor Alloca-
tion Manager is notified by the System Monitor, it starts monitoring the local
communication pattern among agents and classifies them to agent groups. If an
agent belonged to an agent group, it is assigned to this agent group; if an agent
did not belong to any agent group, it is randomly assigned to an agent group.
The number of agent groups that exist on an agent platform is predefined.

For checking the communication pattern of agents, the Actor Allocation Man-
ager makes a log with information about the sender agent, the agent platform of
the receiver agent, and the agent group of the receiver agent of each message. In
addition to the number Mij of messages sent from agent i to agent platform j,
the number mik of messages sent from agent i to agent group k is updated when
the receiver agent exists on the same agent platform. The summation of all m
variables of an agent is equal to the number of messages sent by the agent to
its current agent platform:

∑

k mik = Min where the index of the current agent
platform is n.

After a predetermined time interval, or in response to a request from a sys-
tem agent, the Actor Allocation Manager updates the communication pattern
between agents and agent groups on the same agent platform with the following
equation:

cij(t) = β

(

mij(t)
∑

k mik(t)

)

+ (1 − β)cij(t − 1)

where cij(t) is the communication dependency between agent i and agent group
j at the time step t; mij(t) is the number of messages sent from agent i to agents
in agent group j during the t-th time step; and β is a coefficient for deciding the
relative importance between recent information and old information.

Agent Grouping Phase After a certain number of repeated monitoring phases,
each agent i is assigned to an agent group whose index is decided by arg

j
max (cij(t));

this group has the maximum value of the communication localities cij(t) of agent
i. Since the initial group assignment of agents may not be well organized, the
monitoring and agent grouping phases are repeated.

After each agent grouping phase, information about the communication de-
pendency of agents is reset. During the agent grouping phase, the number of
agent groups can be changed. When two groups have much smaller populations
than others, these two groups may be merged into one group. When one group
has a much larger population than others, the agent group may be split into
two groups. The minimum number and maximum number of agent groups are
predefined.

259



Group Allocation Phase After a certain number of repeated monitoring and
agent grouping phases, the Actor Allocation Manager makes a decision to move
an agent group to another agent platform. The group selection is based on the
communication dependency between agent groups and agent platforms; the com-
munication dependency Dij between agent group i and agent platform j is de-
cided by the summation of the communication dependency between agents in
the agent group and the agent platform:

Dij =
∑

k

Ckj(t) where ak ∈ Ai

where Ai represents the agent group i, and ak is a member agent of the agent
group Ai.

The agent group which has the least dependency to the current agent plat-
form is selected; the index of the group is decided by the following equation:

arg
j

max
(

∑

j,j �=n Dij

Din

)

where n is the index of the current agent platform. The destination agent plat-
form of the selected agent group i is decided by the communication dependency
between the agent group and agent platforms; the index of the destination plat-
form is arg

j
max (Dij).

Negotiation Phase If one agent group and its destination agent platform are
decided, the Actor Allocation Manager communicates with that of the destina-
tion agent platform. If the destination agent platform accepts all agents in the
group, the Actor Allocation Manager of the sender agent platform starts the
migration phase. Otherwise, this Actor Allocation Manager communicates with
that of the second best destination platform until it finds an available destination
agent platform or checks the possibility of all other agent platforms.

This phase of the second agent allocation mechanism is similar to that of
the previous agent allocation mechanism, but there are some differences. One
important difference between these two negotiation phases is the granularity of
negotiation. If the destination agent platform has enough space and available
computation power for all agents in the selected agent group, the Actor Alloca-
tion Manager of the destination agent platform accepts the request for the agent
group migration. Otherwise, the destination agent platform refuses the request.
The granularity of this negotiation between agent platforms is an agent group;
the destination agent platform cannot accept part of an agent group.

Agent Migration Phase When the sender agent platform receives the accep-
tance reply from the destination agent platform, the Actor Allocation Manager
of the sender agent platform initiates the migration of agents in the selected
agent group. The procedure for the following phase in the second agent alloca-
tion mechanism is the same as that of the previous agent allocation mechanism.

260



3.3 Characteristics

Transparent Distributed Algorithm These agent allocation mechanisms are
developed as fully distributed algorithms; each agent platform independently
performs its agent allocation mechanism according to information about its
workload and the communication pattern of agents on it. There are no cen-
tralized components to manage the overall procedure of agent allocation. These
mechanisms are transparent to multi-agent applications. The only requirement
for application developers is to declare candidate agents for agent allocation as
movable.

Load Balancing vs. Load Sharing The second agent allocation mechanism is
not a load balancing mechanism but a load sharing mechanism; it does not try to
balance the workload of computer nodes participating in an application. The goal
of our multi-agent system is to reduce the turnaround time of applications with
optimized agent allocation. Therefore, only overloaded agent platforms perform
the second agent distribution mechanism, and agents are moved from overloaded
agent platforms to underloaded agent platforms.

Individual Agent-based Allocation vs. Agent Group-based Allocation
With the agent group-based allocation mechanism, some communication local-
ity problems may be solved. First, when two agents on the same agent platform
communicate intensively with each other but not with other agents on the same
platform, these agents may continuously stay on the current agent platform even
though they have a large amount of communication with agents on another agent
platform. If these two agents can move together to the remote agent platform,
the overall performance can be improved. However, an individual agent-based
allocation mechanism does not handle this situation. Second, individual agent
allocation may require much platform-level message passing among agent plat-
forms for the negotiation. For example, in order to send agents to other agent
platforms, agent platforms should negotiate with each other to avoid sending
too many agents to a certain agent platform, thus overloading the agent plat-
form. However, if an agent platform sends a set of agents at one time, the agent
platforms may reduce negotiation messages and negotiation time.

Stop-and-Repartitioning vs. Implicit Agent Allocation Some object real-
location systems require the global synchronization. This kind approach is called
the stop-and-repartitioning [2]. Our agent distribution mechanisms are executed
in parallel with applications. The monitoring and agent allocation phases do not
interrupt the execution of application agents.

Size of a Time Step In the monitoring phase, the size of each time step may
be fixed. However, this step size may be adjusted by an agent application. For
example, in multi-agent based simulations, this size may be the same as the size

261



of a simulation time step. Thus, the size of time steps may be flexible according
to the workload of each simulation step and the processor power. To use dynamic
step size, our agent system has a reflective mechanism; agents in applications
are affected by multi-agent platform services, and the services of the multi-agent
platform may be controlled by agents in applications.

4 Experimental Results

For the purpose of evaluation, we provide experimental results related to micro
UAV (Unmanned Aerial Vehicle) simulations. These simulations include from
2,000 to 10,000 agents; half of them are UAVs, and the others are targets. Mi-
cro UAVs perform a surveillance mission on a mission area to detect and serve
moving targets. During the mission time, these UAVs communicate with their
neighboring UAVs to perform the mission together. The size of a simulation time
step is one half second, and the total simulation time is around 37 minutes. The
runtime of each simulation depends on the number of agents and the collabora-
tion policy among agents. For these experiments, we have used four computers
(3.4 GHz Intel CPU and 2 GB main memory) with a Giga-bit switch.

For UAV simulations, the agent-environment interaction model has been used
[3]; all UAVs and targets are implemented as intelligent agents, and the navi-
gation space and radar censors of all UAVs are implemented as environment
agents.

To remove centralized components in distributed computing, each environ-
ment agent on a single computer node takes charge of a certain navigation area.
UAVs communicate directly with each other and indirectly with neighboring
UAVs and targets through environment agents. Environment agents provide ap-
plication agent-oriented brokering services with the ATSpace [10]. During sim-
ulation, UAVs and targets move from one divided area to another, and UAVs
and targets communicate intensively either directly or indirectly.

Fig. 4 depicts the difference of runtimes in two cases: dynamic agent alloca-
tion, and static agent allocation. Fig. 5 shows the ratio of runtimes in both cases.
These two figures show the potential performance benefit of dynamic agent allo-
cation. In our particular example, as the number of agents is increased, the ratio
also generally increases. With 10,000 agents, the simulation using the dynamic
agent allocation is more than five times faster than the simulation with a static
agent allocation.

5 Related Work

The mechanisms used in dynamic load balancing may be compared to those in
AAA. Zoltan [7], PREMA/ILB [2], and Charm++ [4] support dynamic load bal-
ancing with object migration. Zoltan uses a loosely coupled approach between
applications and load balancing algorithms using an object-oriented callback
function interface [7]. However, this library-based load balancing approach de-
pends on information given by applications, and applications activate object

262



2000 4000 6000 8000 10000
0

10

20

30

40

50

60

Number of Agents (UAVs + Targets)

R
un

tim
e 

(H
ou

rs
)

Static Agent Allocation
Dynamic Agent Allocation

Fig. 4. Runtime for Static and Dynamic Agent Allocation

2000 4000 6000 8000 10000
0

1

2

3

4

5

6

Number of Agents (UAVs + Targets)

R
un

tim
e 

R
at

io

Fig. 5. Runtime Ratio of Static-to-Dynamic Agent Allocation

263



decomposition. Therefore, without developers’ through analysis about applica-
tions, the change of dynamic access patterns of objects may not correctly be
detected, and object decomposition may not be performed at the proper time.
The ILB of PREMA also interacts with objects using callback routines to collect
information to be used for the load balancing decision making, and to pack and
unpack objects [2]. Charm++ uses the Converse runtime system to maintain
message passing among objects, and hence, the runtime system may collect in-
formation to analyze communication dependencies among objects [4]. However,
this system also requires callback methods for packing and unpacking objects as
others do. In AAA, the Actor Allocation Manager does not interact with agents,
but it receives information from the Message Manager and the System Monitor
to analyze the communication patterns of agents and the workload of its agent
platform. Also, developers do not need to define any callback method for load
balancing.

J-Orchestra [15], Addistant [14], and JavaParty [11] are automatic appli-
cation partitioning systems for Java applications. They transform input Java
applications into distributed applications using a bytecode rewriting technique.
They can migrate Java objects to take advantage of locality. However, they dif-
fer from AAA in two ways. First, while they move objects to take advantage of
data locality, AAA migrates agents to take advantage of communication locality.
Second, the access pattern of an object differs from the communication pattern
of an agent. For example, although a data object may be moved whenever it is
accessed by other objects on different platforms, an agent cannot be migrated
whenever it communicates with other agents on different platforms. This is be-
cause an object is accessed by another single object, but an agent communicates
with other multiple agents at the same time.

The Comet algorithm assigns agents to computer nodes according to their
credit [5]. The credit of an agent is decided by its computation load, intra-
communication load, and inter-communication load. Chow and Kwok have em-
phasized the importance of the relationship between intra-communication and
inter-communication of each agent. However, there are some important differ-
ences. The authors’ system includes a centralized component to make decisions
for agent assignment, and their experiments include a small number of agents,
i.e., 120 agents. AAA uses fully distributed algorithm, and experiments include
10,000 agents. Because of the large number of agents, the Actor Allocation Man-
ager cannot analyze the communication dependency among all individual agents,
but only that between agents and agent platforms and that between agent groups
and agent platforms.

The IO of SALSA [6] provides various load balancing mechanisms for multi-
agent applications. The IO also analyzes the communication pattern among
individual agents. Therefore, it may not be applied to large-scale multi-agent
applications because of the large computational overhead.

264



6 Conclusion and Future Work

This paper has explained two dynamic agent allocation mechanisms used in our
multi-agent middleware called Adaptive Actor Architecture; these agent alloca-
tion mechanisms distributes agents according to their communication localities
and the workload of computer nodes participating in large-scale multi-agent ap-
plications. The main contribution of this paper is to provide agent allocation
mechanisms to handle a large number of agents which communicate intensively
with each other and change their communication localities. Because of the large
number of agents, these agent allocation mechanisms focus on the communi-
cation dependencies between agents and agent platforms and the dependencies
between agent groups and agent platforms, instead of the communication de-
pendencies among individual agents. Our experimental results show that micro
UAV simulations using the dynamic agent allocation are approximately five times
faster than those with a static agent allocation.

Our experiments suggest that increased load does not necessarily result in a
decrease in the performance of multi-agent applications. If agents are properly
located according to their communication pattern, the processor usage of their
agent platforms is quite high. Adding more computer nodes can increase the
turnaround time of the entire computation; when the number of agent platforms
for an application exceeds a certain limit, the inter-node communication cost
becomes larger than the benefit of distributed computing. Therefore, we plan to
develop algorithms to determine the appropriate number of agent platforms for
a large-scale multi-agent application.

Acknowledgements

This research is sponsored by the Defense Advanced Research Projects Agency
under contract number F30602-00-2-0586.

References

1. G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, 1986.

2. K. Barker, A. Chernikov, N. Chrisochoides, and K. Pingali. A Load Balancing
Framework for Adaptive and Asynchronous Applications. IEEE Transactions on
Parallel and Distributed Systems, 15(2):183–192, February 2004.

3. M. Bouzid, V. Chevrier, S. Vialle, and F. Charpillet. Parallel Simulation of a
Stochastic Agent/Environment Interaction. Integrated Computer-Aided Engineer-
ing, 8(3):189–203, 2001.

4. R.K. Brunner and L.V. Kalé. Adaptive to Load on Workstation Clusters. In The
Seventh Symposium on the Frontiers of Massively Parallel Computation, pages
106–112, February 1999.

5. K. Chow and Y. Kwok. On Load Balancing for Distributed Multiagent Computing.
IEEE Transactions on Parallel and Distributed Systems, 13(8):787–801, August
2002.

265



6. T. Desell, K. El Maghraoui, and C. Varela. Load Balancing of Autonomous Actors
over Dynamic Networks. In Hawaii International Conference on System Sciences
HICSS-37 Software Technology Track, Hawaii, January 2004.

7. K. Devine, B. Hendrickson, E. Boman, M. St. Jhon, and C. Vaughan. Design of
Dynamic Load-Balancing Tools for Parallel Applications. In Proceedings of the
International Conference on Supercomputing, pages 110–118, Santa Fe, 2000.

8. L. Gasser and K. Kakugawa. MACE3J: Fast Flexible Distributed Simulation of
Large, Large-Grain Multi-Agent Systems. In Proceedings of the First International
Conference on Autonomous Agents & Multiagent Systems (AAMAS), pages 745–
752, Bologna, Italy, July 2002.

9. M. Jang and G. Agha. On Efficient Communication and Service Agent Discovery
in Multi-agent Systems. In Third International Workshop on Software Engineer-
ing for Large-Scale Multi-Agent Systems (SELMAS ’04), pages 27–33, Edinburgh,
Scotland, May 24-25 2004.

10. M. Jang, A. Abdel Momen, and G. Agha. ATSpace: A Middle Agent to Support
Application-Oriented Matchmaking and Brokering Services. In IEEE/WIC/ACM
IAT(Intelligent Agent Technology)-2004, pages 393–396, Beijing, China, September
20-24 2004.

11. M. Philippsen and M. Zenger. JavaParty - Transparent Remote Objects in Java.
Concurrency: Practice and Experience, 9(11):1225–1242, 1997.

12. K. Popov, V. Vlassov, M. Rafea, F. Holmgren, P. Brand, and S. Haridi. Parallel
Agent-Based Simulation on a Cluster of Workstations. Parallel Processing Letters,
13(4):629–641, 2003.

13. P.K. Sinha. Chapter 7. Resource Management. In Distributed Operating Systems,
pages 347–380. IEEE Press, 1997.

14. M. Tatsubori, T. Sasaki, S. Chiba, and K. Itano. A Bytecode Translator for Dis-
tributed Execution of ’Legacy’ Java Software. In Proceedings of the 15th European
Conference on Object-Oriented Programming (ECOOP), pages 236–255, Budapest,
June 2001.

15. E. Tilevich and Y. Smaragdakis. J-Orchestra: Automatic Java Application Parti-
tioning. In Proceedings of the 16th European Conference on Object-Oriented Pro-
gramming (ECOOP), Malaga, June 2002. http://j-orchestra.org/.

16. M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons, Ltd,
2002.

266



Maximal Clique Based Distributed Group Formation
For Task Allocation in Large-Scale Multi-Agent Systems

Predrag T. Tosic and Gul A. Agha

Open Systems Laboratory, Department of Computer Science
University of Illinois at Urbana-Champaign

Mailing address: Siebel Center for Computer Science,
201 N. Goodwin Ave., Urbana, IL 61801, USA

p-tosic@cs.uiuc.edu, agha@cs.uiuc.edu

Abstract. We present a fully distributed algorithm for group or coalition formation among autonomous agents. The al-
gorithm is based on two main ideas. One is a distributed computation of maximal cliques (of up to pre-specified size) in
the underlying graph that captures the interconnection topology of the agents. Hence, given the current configuration of
the agents, the groups that are formed are characterized by a high degree of connectivity, and therefore high fault toler-
ance with respect to node and link failures. The second idea is that each agent chooses its most preferable coalition based
on how highly the agent values each such coalition in terms of the coalition members’ combined resources or capabili-
ties. Coalitions with sufficient resources for fulfilling particular highly desirable task(s) are preferable to coalitions with
either insufficient resources, or with resources that suffice only for completing less valuable tasks. We envision variants
of our distributed algorithm herein to prove themselves useful coordination subroutines in many massively multi-agent
system applications where the agents may repeatedly need to form temporary groups or coalitions of modest sizes in an
efficient, online and fully distributed manner.

Keywords: distributed algorithms, large-scale multi-agent systems, distributed group formation, agent coalitions

1 Introduction and Motivation

Autonomous agents and multi-agent systems (MAS) [1, 4, 29, 30] are characterized, among other properties, by (i) a
considerable degree of autonomy of individual computing entities or processes (agents) and, at the same time, the fact that
(ii) each agent has a local, that is, in general, incomplete and imperfect “picture of the world”. Since in MAS there is either
no central control, or at best only a limited central control, and the individual agents have to both think and act locally,
genuinely distributed algorithms are needed for the agents to effectively coordinate with one another.

MAS pose a number of challenges to a distributed algorithm designer. Many of the major challenges are related to
various aspects of the agent coordination problem (e.g., [1, 29]). In order to be able to effectively coordinate, agents
need to be able to reach consensus (or agreement) on various matters of common interest. Two particularly prominent
distributed consensus problems are those of leader election (e.g., [8, 22]) and group formation. Group or coalition
formation is an important issue in distributed systems in general [8], and MAS in particular [33]. Given a collection of
communicating agents, the goal in distributed group formation is that these agents, based on their local knowledge only,
decide how to effectively split up into several groups, so that each agent knows which group(s) it belongs to.

There are several critical issues that a MAS designer needs to address in the context of (distributed) group formation.
First, what is the right notion of a group in a given setting? Second, a distributed group formation mechanism - that is,
a distributed algorithm that enables agents to effectively form groups or coalitions - needs to be provided. Third, groups
and each agent’s knowledge about its group membership need to be maintained and, when needed, appropriately updated.
Fourth, are the groups to be allowed to overlap, so that an agent may simultaneously belong to two or more groups? These
and other challenges related to autonomous agents forming coalitions have been extensively studied in the literature on

267

goodelle
Text Box
Appendix X:



multi-agent systems, e.g., [9, 11, 14, 18, 19, 33]. They have also arisen in our own recent and ongoing work on parametric
models and a scalable simulation of large scale (

�����������	�
agents) ensembles of autonomous unmanned vehicles on a

multi-task mission [6, 7, 23, 24].
Herein, we restrict our attention to the second issue above. We propose a particular mechanism (distributed algorithm)

for an effective coalition formation that ensembles of autonomous agents can use as one of their basic coordination subrou-
tines. A need for a dynamic, fully distributed, efficient and online group formation may arise due to a number of different
factors, such as the geographical dispersion of the agents, heterogeneity of tasks and their resource requirements, hetero-
geneity of agents’ capabilities, and so on [24]. While for small- and medium-scale systems of robots or unmanned vehicles
a fully or partially centralized approach to group formation and maintenance may be feasible or even optimal, large scale
systems (with the number of agents of orders of magnitude

���
�������	�
or higher) appear to necessitate a fully distributed

approach. That is, the agents need to be able to self-organize into coalitions, and quickly reach a consensus on who is
forming a coalition with whom in a fully decentralized manner [25].

2 Group or Coalition Formation in Multi-Agent Systems

Large ensembles of autonomous agents provide an important class of examples where the agents’ capability to coordinate
and, in particular, to self-organize into groups or coalitions, is often of utmost importance for such systems to be able to
accomplish their tasks.

One can distinguish between two general, broad classes of such autonomous agents. One is the class of agents deployed
in the context of distributed problem solving. The agents encountered in distributed problem solving (DPS) typically share
their goal(s). For instance, DPS agents most often have a joint utility function that they all wish to maximize as a team,
without any regard to (or perhaps even a notion of) individual payoffs. This joint utility or, more generally, the goal or set
of goals assigned to DPS agents, is usually provided by their designer. However, it may not be always feasible - or even
possible - that the designer always explicitly specify, for instance, how are the agents to divide-and-conquer their tasks
and resources, how are they to form groups and elect leaders of those groups, etc. Due to scalability, incomplete a priori
knowledge of the environments these agents may encounter, and possibly other considerations, instead of “hard-wiring”
into his DPS agents explicitly how are the agents to be coordinated, the system designer may choose only to enable the
autonomous agents with the basic coordination primitives, and leave to the agents to self-organize and coordinate as the
situation may demand. Hence, in many situations the DPS agents may be required to be able to effectively form groups or
coalitions in a fully distributed manner.

The second basic type of agents, the self-interested agents, are a kind of agents that do not share their goals (and,
indeed, need not share their designer). In contrast to the DPS agents, each self-interested agent has its own agenda (e.g., an
individual utility function it is striving to maximize), and no altruistic incentives to cooperate with other agents. However,
even such self-interested, goal-driven or individual-utility-driven agents, while in essence selfish, may nonetheless still
need to cooperatively coordinate and collaborate with each other in many situations. One class of examples are those
agents (such as, e.g., autonomous unmanned vehicles) that, if they do not coordinate in order to resolve possible conflicts,
they risk mutual annihilation. Another class of examples are the agents with bounded resources: individually, an agent may
lack resources to accomplish any of its desired tasks - yet, if this agent forms a coalition with one or more other agents, the
combined resources and joint effort of all agents in such a coalition may provide utility benefits to everyone involved. An
example are heterogeneous types of agents deployed to a rescue mission in a disaster area: while there is an overarching,
global goal at the system level, each agent typically also has its local, individual notion of task(s) and its own goal(s).

For these reasons, group and coalition formation are of considerable interest for many different kinds of autonomous
agents and multi-agent systems, and, among other, even in those multi-agent systems where the agents do not share a
global utility function, and where each agent generally acts selfishly. In particular, efficient fully distributed algorithms for
effective group formation are needed. Such algorithms should use only a few communication rounds among the agents,

268



place a very modest computational burden on each agent, and ensure that a distributed consensus among the agents on who
is forming a group with whom is effectively, reliably and efficiently reached.

We propose herein one such class of distributed algorithms. We describe the generic, distributed group (coalition)
formation algorithm in Section 4 and give the pseudo-code in the Appendix. Variations of this basic max-clique-based
group formation algorithm can be designed to meet the needs of various types of agents, such as, to give some examples,
the following:

- the classical cooperative DPS agents [9, 10, 18, 19];
- different kinds of self-interested, either strictly competing or competing-and-cooperating agents [14, 24] where con-

cepts, paradigms and tools from N-person game theory have found many applications; and, more generally,
- various bounded-resource, imperfect-knowledge agents acting in complex environments (e.g., [24, 30]) that are typi-

cally only partially accessible to any agent; such autonomous agents are thus characterized by bounded rationality [20].
We propose herewith a generic distributed group formation algorithm based on the idea that, in peer-to-peer (in par-

ticular, leaderless) MAS, an agent (node) would prefer to form a group with those agents that it can communicate with
directly, and, moreover, where every member of such a potential group can communicate with any other member directly.
That is, the preferable groups (coalitions) are actually (maximal) cliques. It is well-known that finding a maximal clique in
an arbitrary graph is NP-complete in the centralized setting [3, 5]. This implies the computational hardness that, in general,
each node faces when trying to determine maximal clique(s) it belongs to. However, if the degree of a node (that is, its
number of neighbors in the graph) is small, in particular, if it is ��� ��� , then finding all maximal cliques this node belongs to
is computationally feasible. If one cannot guarantee that, or a priori does not know if, all the nodes in a given underlying
MAS interconnection topology are of small degree, then one has to impose additional constraints in order to ensure that the
agents are not attempting to solve an infeasible problem. In particular, we shall additionally require herein that the possible
coalitions to be formed, be of up to a certain pre-specified maximum size.

One may ask, why would this, maximal-clique based approach be promising for the very large scale (or massive) multi-
agent systems (MMAS) that may contain ensembles of anywhere from thousands to millions of agents? The underlying
graph (network topology) of such MMAS is bound to be very large, thus, one may argue, rendering even many typically
efficient (i.e., polynomial-time in the number of agents) algorithms obsolete due to their prohibitive cost, let alone allowing
distributed coordination strategies that are based on the graph theoretic algorithms that are themselves, in the classical,
centralized setting, NP-complete in general. However, there is one critical observation that saves the day of the approach
that we propose herewith: even if the underlying graph of an MMAS is indeed very large (possibly millions of nodes), in
many important applications this graph will also tend to be very sparse. That is, a typical, average node (agent) will tend to
have only a handful, and almost certainly only ��� ��� neighbors. Therefore, a distributed algorithm where agents act, reason
and communicate strictly locally, where no flooding of the network is ever performed (or needed), and where each node
needs to store and work with only the data pertaining to its near-by nodes, can still be designed to be sufficiently efficient.

Some examples of the engineering, socio-technical and socio-economic systems and infrastructures that can be modeled
as MMAS and that are also characterized by the aforementioned sparseness of the underlying network topology, include
the following:

(i) Large-scale (
��� � � � �	�

) ensembles of micro-UAVs (or other similar autonomous unmanned vehicles) deployed, for
example, in a surveillance or a search-and-rescue mission over a sizable geographic area. Unlike the scenarios where dozens
of macro UAVs are employed, where a centralized control and/or one human operator per UAV are affordable and perhaps
the most efficient and robust way of deployment, in a very large-scale system of UAVs no central control is feasible or even
possible, and the run-time human intervention is either minimal or nonexistent. Such micro-UAV ensembles, therefore,
need to be able to coordinate, self-organize, and self-adapt to the changing environments in a truly decentralized, dynamic
and autonomous manner. For more on design and simulation challenges of such large-scale ensembles of (micro-)UAVs,
see, e.g., [6, 23, 24].

(ii) Smart sensor networks that include anywhere from thousands to millions of tiny sensors, each of which often of

269



only a few millimeters in size, and of a rather limited computational and communication power. In particular, the RAM
memory of such sensors is currently typically of the order of Kilobytes, the flash memory range is about

�����
, the

communication bandwidth is
����� � ���	�

Kilobits/second, and a typical battery life span is anywhere from a few hours
up to a week. Such smart sensors usually communicate via essentially local broadcasts with very limited ranges. The
main “communication mode” of the agents in our algorithm in Section 4 will be precisely the local broadcasts. Also,
due to small memory capacities and low power consumption requirements, smart sensors, in order to be effective, have to
simultaneously minimize both the amount of local processing, and how much (and how often) they communicate messages
to other sensors. Sensor networks, although on a much smaller scale, have already been used as an example to which
dynamic distributed constraint satisfaction/optimization formalisms can be fruitfully applied [10].

(iii) Various social networks, and, in particular, various variants of ’small-world’ networks where, in addition to strictly
local connectivity in the communication network topology, a relatively few long-range connections are randomly added
[27, 28]. A typical node in such a network will have only a handful of neighbors it can directly communicate with, and,
moreover, most or nearly all of these neighbors in the network will also tend to be the neighbors in the usual, physical
proximity sense.

(iv) Various socio-technical infrastructures, such as, e.g., traffic and transportation systems, power grids, etc. For a
simple concrete example, consider a car driver (an autonomous agent) participating in the traffic in a large city. While there
may be millions of such drivers on the road at the same time, the decision-making of a driver-agent is based, for the most
part � , on a few properties of its local environment, i.e., the actions of near-by agents; likewise, his own actions will usually
directly affect only a handful of other agents in the system (e.g., the driver right behind him, or the pedestrian trying to cross
the street right ahead of him). Thus, when modeling and simulating such an infrastructure with an appropriate large-scale
network and a MMAS, the underlying network, while of a very large size, will be in general fairly sparse, and a typical
node adjacent to (meaning, in this context, capable of directly affecting and/or perceiving) only a small number of other
nodes. An ambitious project on realistic, large-scale modeling and simulation of infrastructures such as city traffic systems,
called TRANSIMS, is described at [26] and in the documents found therein.

We now return to the dynamic, distributed group or coalition formation in massively multi-agent systems, and the
mathematical formalisms and algorithmic solutions proposed for this challenging problem. A variety of coalition formation
mechanisms have been proposed in the MAS literature both in the context of DPS agents that are all sharing the same goal
(as, e.g., in [19]) and in the context of self-interested agents where each agent has its own individual agenda (as, e.g., in
[18, 33]). In particular, the problem of distributed task or resource allocation, and how is this task allocation coupled to
what coalition structures are (most) desirable in a given scenario [9, 19], are also of central importance in our own work
on a concrete MAS application with a particular type of robotic agents, namely, unmanned aerial vehicles (UAVs), that are
residing and acting in bounded resource multi-task environments [6, 23, 24].

Another body of MAS literature highly relevant to our central problem herein, namely distributed coalition forma-
tion and task and/or resource allocation, casts the distributed resource allocation problems into the distributed constraint
satisfaction and/or optimization (DCS/DCO) terms [9, 10, 11].

Of the particular relevance to our work herein and other possible extensions of the original maximal clique based group
formation algorithm presented in [25] are references [19] and [10]. While Modi et al. in [10] offer the most complete
formalization of various distributed resource and/or task allocation problems and general mappings to appropriate types or
subclasses of (dynamic) distributed constraint problems, two characteristics of their approach make it unsuitable for a direct
application to our modeling framework of massively multi-agent systems in general (see, e.g., [24]), and the application
domains we had in mind when devising the algorithm presented herein, in particular.

One, the agents in [10] are strictly cooperative, share the same goals, and have no notion of individual utilities or
preferences. While we have studied cooperative MAS in [24] and elsewhere, as well, one of our main assumptions is that,
�

There are exceptions of course; for instance, when an imminently approaching tornado is announced on the radio.

270



due to a large scale of the system and a high dynamism and unpredictability of the changes in the environment and the goals,
no shared or global knowledge of the environment or the goals is maintained, and, in particular, each agent has its own
individual preferences over the possible (local) states of the world. The collaboration is then achieved through “encoding”
incentives into the individual agents’ individual behavior functions [23], and thus using the incentive engineering approach
[2] to enable the agents to cooperatively coordinate even though each agent is, strictly speaking, self-interested.

Two, we address the issue of which agents will select which tasks to serve [23, 24], or, as in this paper, which groups of
agents will form in order to serve some particular set of tasks. To that end, what is critical is an agent’s or agent coalition’s
capabilities for serving the desired task(s). Each agent possesses a tuple of capabilities or available resources; likewise, each
task has a tuple of resource requirements. An agent coalition can serve a particular task if and only if each component (i.e.,
individual capability or resource) of its joint tuple of capabilities is greater than or equal to the corresponding requirement
vector entry of that task. An agent can only belong to one coalition at a time, and work with its fellow coalition members on
one task at a time. Thus, while the agent operations in [10] are mutually exclusive with respect to time (an agent can only
execute a single operation at any time), our agent capabilities are mutually exclusive with respect to space or, equivalently,
task allocation. Clearly, a complete model of resource and task allocation in MMAS should incorporate both aspects.
Since we are presently only interested in coalition formation for the purpose of coalition-to-task mapping, but we are not
concerned herein with how are then these agent coalitions exactly going to perform the tasks they have been mapped to,
our framework as described in [24] and outlined herein suffices for the current purposes.

The importance of DCS in MAS in general is discussed, e.g., in [32]. However, further discussion of DCS based
approaches to distributed resource or task allocation and coalition formation is beyond the scope of this paper.

3 Problem Statement and Main Assumptions

The main purpose of this work is a generic, fully distributed, scalable and efficient algorithm for ensembles of autonomous
agents to use as a subroutine - that is, as a part of their coordination strategy - with a purpose of efficiently forming
temporary groups or coalitions.

The proposed algorithm is a graph algorithm. The underlying undirected graph
�

captures the communication (ad hoc)
network topology among the agents, as follows. Each agent is a node in the graph. As for the edges, the necessary require-
ment for an edge between two nodes to exist is that the two nodes be able to directly communicate with one another at
the time our distributed group formation subroutine is called. That is, an unordered pair of nodes ����� ��� is an edge of the
underlying graph if and only if � can communicate messages to

�
, or

�
can communicate messages to � , or both.

�
.

The basic idea is to efficiently partition this graph into (preferably, maximal) cliques of nodes. These maximal cliques
would usually also need to satisfy some additional criteria in order to form temporary coalitions of desired quality. These
coalitions are then maintained until they are no longer useful or meaningful. For instance, the coalitions should be trans-
formed (or else simply dissolved) when the interconnection topology of the underlying graph considerably changes, either
due to the agents’ mobility, or because many old links have died out and perhaps many new, different links have formed,

�
For simplicity, we assume the graph is undirected, even though the communication from one node to another is clearly directional,
and the communication links need not be symmetric. However, since the nodes eventually need to reach a mutual consensus, which
requires that all members of a coalition agree to the same coalition and notify all other coalition members of the agreement, the
assumption about the edge (non-)directionality is inconsequential, in a sense that only those coalitions that indeed are cliques in the
corresponding directed graph will ever be agreed upon by the agents.�
We point out that this definition of the graph edges can be made tighter by imposing additional requirements, such as, e.g., that the
two agents (that is, graph nodes), if they are to be connected by an edge, also need to be compatible, for instance, in terms of their
capabilities, that they each provide some resource(s) that the other agent needs, and/or the like.

271



and the like. Another possible reason to abandon the existing coalition structure is when the agents determine that the coali-
tions have accomplished the set of tasks that these coalitions were formed to address. Thus, in an actual MAS application,
the proposed group formation algorithm may need to be invoked a number of times as a coordination subroutine.

We assume that each agent has a locally accurate (see, e.g., discussion in [24]) picture of (i) who are its neighboring
agents, and (ii) what are the near-by tasks and, in particular, what are these tasks’ resource requirements. Each agent is
equipped with a tuple of its internal resources, or capabilities [19]. Each task requires certain amount of each of the
individual resources in this tuple in order to be serviced. A single agent, or a coalition of two or more agents, can serve a
particular task if and only if their joint capabilities suffice with respect to the task’s resource consumption requirements.
That is, the sum of each component of the capability vector taken over all the agents in the coalition has to be greater than,
or equal to, the corresponding component of the task’s resource consumption vector.

Our distributed max-clique based group formation algorithm is sketched in the next section. For this algorithm to be
applicable, the following basic assumptions need to hold:

- Agents communicate with one another by exchanging messages either via local broadcasts, or in a peer-to-peer
fashion.

- Communication bandwidth availability is assumed not to be an issue.
- Each agent has a sufficient local memory for storing all the information received from other agents.
- Communication is reliable during the group formation, in the following sense: if an agent, � , sends a message to

another agent
�

(either via a local broadcast where it is assumed that
�

is within the communication range of � , or in a
direct, peer-to-peer manner), either agent

�
gets exactly the same message that � has sent, or else the communication link

has completely failed and so
�

does not receive anything from � at all. In particular, we assume no scrambled or otherwise
modified messages are ever received by any receiving agent. Also, once the groups are formed, the above assumption on
communication reliability need no longer hold

�
.

- Each agent has (or else can efficiently obtain) a reliable knowledge of which other agents are within its communication
range.

- Each agent, i.e., each network node, has a unique global identifier, ’UID’, and the agent knows its UID.
- There is a total ordering, � , on the set of UIDs, and each agent knows this ordering � .
- Each agent uses time-outs in order to place an upper bound on for how long it may be waiting to hear from any other

agent. If agent � has sent a message (e.g., a coalition proposal - see Section 4 ) to agent
�

, and the latter is not responding
at all, there are three possibilities: (i) agent

�
has failed; (ii) communication link from

�
to � has failed; or (iii) while

�

is in � ’s communication range, vice versa actually does not hold (but � may not know it).
- The veracity assumption holds, i.e., an agent can trust the information about tasks, capabilities, etc. it receives from

other agents.
To summarize, when agent � sends a message to

�
, then

�
either receives exactly what � had sent, or nothing at

all - and, moreover, if
�

has received the message,
�

knows that � is telling the truth about its neighbors, capabilities,
commitments and preferences in it (see Appendix).

On the other hand, an agent need not a priori know the UIDs of any of the other agents, or, indeed, how many other
agents are present in the system at any time.

In addition to its globally unique identifier UID, which we assume is a positive integer, and the vector of capabilities,
each agent has two local flags that it uses in communication with other agents. One of the flags is the binary “decision flag”,
which indicates whether or not this agent has already joined some group (coalition). Namely, �������	�
���� ��������� � � � � � , and
the value of this flag is

�
as long as the agent still has not irrevocably committed to what coalition it is joining. The second

flag is the “choice flag”, which is used to indicate to other agents, how “happy” the agent is with its current tentative choice
�

As this requirement is still restrictive, and considerably limits the robustness of our algorithm, we will try to relax this assumption
in our future work, and enable the agents to effectively form groups even in the presence of some limited amount of communication
noise during the group formation process.

272



or proposal of the group to be formed. That is, the choice flag indicates the level of an agent’s urgency that its proposal for
a particular coalition to be formed be accepted by the neighbors to whom this proposal is being sent. For more details, we
refer the reader to Appendix and reference [25].

4 An Outline of Max-Clique-Based Distributed Group Formation for Task Allocation

Now that the assumptions have been stated and the notation has been introduced, we outline our distributed maximal clique
based coalition formation algorithm. We describe in some detail how the algorithm works below; the pseudo-code is given
in Appendix.

The proposed distributed group or coalition formation algorithm is based on two main ideas. One idea, familiar from
the literature (see, e.g., [19] and references therein), is to formulate a distributed task and/or resource allocation problem
as a (distributed) set covering problem, (D)SC, in those scenarios where group overlaps are allowed, or a (distributed)
set partitioning problem, (D)SP, when no group overlaps are allowed. Two (or more) groups overlap if there exists an
element that belongs to both (all) of them. It is well-known that decision versions of the classical, centralized versions of
the SC and SP problems are NP-complete [5]. Hence, we need efficient (distributed) heuristics so that the agents can
effectively deploy DSC- or DSP-based strategies for coalition formation. Fortunately, some such efficient heuristics are
already readily available [19].

The second main idea is to ensure that the formed groups of agents meet the robustness and fault tolerance criteria,
which are particularly important in applications where there is a high probability of node and/or communication link
failures. Indeed, we were primarily motivated by such applications when designing the algorithm proposed herewith (see
[23, 24]). The most robust groups of agents of a particular size are those that correspond to cliques in the underlying
interconnection topology of the agents’ communication network. Moreover, the larger such a clique, the more robust the
group of agents in the clique with respect to the node and/or link failures. Hence, appropriate maximal cliques need to
be formed in a distributed fashion. However, the Maximal Clique problem is also well-known to be NP-hard [3, 5]. This
hardness stems from the fact that an agent, in the general case (arbitrary underlying graph), may need to test for “cliqueness”
exponentially many candidate subsets that it belongs to. However, in graphs where the maximum degree of each node is
bounded by ��������� , where � is a constant and � is the total number of nodes in the graph, the number of subsets that each
node belongs to, and therefore the number of candidate cliques, is �����
	 � , i.e., polynomial in the total number of nodes,
� . In particular, in sufficiently sparse graphs, where the node degrees are bounded by some (small) constant, �� ��� ��� ,
the size of any maximal clique cannot exceed � . In such situations, since ��� is presumably still sufficiently small, finding
maximal cliques becomes both theoretically feasible (i.e., solvable in the time polynomial in the number of agents) and
practically computable in the online, real-time scenarios that are of main interest in MMAS applications � .

We approach distributed coalition or group formation for task allocation as follows. The “candidate coalitions” are
going to be required (whenever possible) to be cliques of modest sizes. That is, the system designer, based on the application
at hand and the available system resources (local computational capabilities of each agent, bandwidth of agent-to-agent
communication links, etc.), a priori chooses a threshold, � , such that only coalitions of sizes up to � are considered.
Agents themselves subsequently form groups in a fully distributed and online manner, as follows. Each agent (i) first
learns of who are its neighbors, then (ii) determines appropriate candidate coalitions, that the agent hopes are (preferably
maximal, but certainly of size bounded by � ) cliques that it belongs to, then (iii) evaluates the utility value of each such
candidate coalition, measured in terms of the joint resources of all the potential coalition members, then (iv) chooses the
most desirable (highest utility value to the agent) candidate coalition, and, finally, (v) sends this choice to all its neighbors.
�

We remark that there are also other important and frequently encountered in practice special cases, in terms of the structural properties
of the underlying graphs, where the Maximal Clique problem turns out to be computationally feasible. In particular, the sharp uniform
upper bound on all node degrees is sufficient, but not necessary, for the computational feasibility of the Max Clique problem.

273



This basic procedure is then repeated (see the WHILE loop in the pseudo-code in Appendix), together with all agents
updating their knowledge of (a) what are the preferred coalitions of their neighbors, and (b) what coalitions have already
been formed.

We remark that any candidate coalition, that is, a subset of the set of all neighbors of an agent, such that the agent
currently considers this subset to be a possible choice of the coalition this agent would like to form, need not be a clique,
let alone a maximal clique. Indeed, based on its strictly local knowledge (the basic information it has received, and keeps
receiving, from its nearest neighbors), the agent in general does not know which of its candidate coalitions are cliques, if
any. However, only those candidate coalitions that indeed are cliques will ever be agreed upon by the participating agents,
and therefore possibly become the actual (as opposed to merely potential) coalitions. This observation justifies the name
of our algorithm. Moreover, in case of the candidate coalitions of fewer than � elements (see Appendix) that actually end
up being agreed upon by the agents, and therefore becoming the actual coalitions, it can be proved that these groups
of nodes actually do form maximal cliques in a sense that these cliques can be possibly made larger in only two ways:
by adding the nodes so that the threshold � is exceeded, and/or by taking away the nodes that already belong to another,
equally good or better, coalition.

The algorithm proceeds in five major stages. The only assumption about synchrony among different nodes is that
no node begins stage �� � before all the nodes have completed stage  (for  � � � � � ��� ��� ��� � ) � . Within each stage,
however, every node (agent) does its local computations, as well as communication (local broadcasts) independently, i.e.,
asynchronously and in parallel with respect to other agents. We do assume that no node failures take place during the group
formation; communication links, on the other hand, are allowed to fail - but the tacit assumption is that there won’t be too
many such link failures, so that non-trivial clique-like groups can be formed.

The five stages of the algorithm, and a brief description of each stage, follow:

Stage 1:
Set � �	� �
 ���� �

.
Each node (in parallel) broadcasts a tuple to all its immediate neighbors. The entries in this tuple are (i) the node’s UID,
(ii) the node’s list of (immediate) neighbors, L(i), (iii) the value of the choice flag, and (iv) the value of the decision flag.

WHILE (not every agent has joined a group yet) DO

Stage 2:
Each node (in parallel) computes the overlaps of its neighborhood list with the neighborhood lists that it has received from
its neighbors, � ��� ��� � ��� ��� ��� � ��� � . Repetitions (if any) among this neighborhood list intersections are deleted. The
remaining intersections are ordered with respect to the list size (the ties, if any, are broken arbitrarily), and a new (ordered)
collection of these intersection lists (heretofore referred to simply as ’lists’) is then formed.

If � �	� �
 ����� � then:
Each node looks for information from its neighbors, whether they have joined a group “for good” during the previous
round. Those neighbors that have (i.e., whose decision-flag � �

), are deleted from the neighborhood list � ��� � ; the
intersection lists ����� ��� � are also updated accordingly, and those ����� ��� � for which � is deleted from the neighborhood
list � ��� � are also deleted.

Stage 3:
Each remaining node (in parallel) picks one of the most preferable lists ����� ��� � ; let ����� � � ��� �����
 � ����� ��� ��! . If
the group or coalition size is the main criterion, then this means, that one of the lists of maximal length is chosen. If the
combined capabilities of each tentative coalition for servicing various tasks is the main criterion, then each agent evaluates
or estimates the coalition value with respect to its (possibly imperfect, and generally local) knowledge of the existing tasks
and their demands in terms of resources or capabilities. To evaluate these coalition values of what are as of yet only tentative
"

We do hope to relax this assumption in future refinements of the current version of the algorithm.

274



coalitions, the agent needs to obtain information about other, near-by agents’ capabilities. The agent then orders possible
future coalitions based on these estimated coalition values, and picks as its current coalition proposal one of the possible
coalitions with the highest coalition value. Since the assumption is that the capability vector of each agent has all entries
nonnegative, this monotonicity property ensures that no proper subset of a candidate max clique coalition is ever chosen -
except in the cases when the clique size exceeds the pre-specified threshold, � .

Irrespective of the exact criteria for the coalition quality, once the agent has partially ordered all candidate coalitions
whose sizes do not exceed the upper bound � , it picks the best (or, in case of a tie, one of the best) coalition(s) with
respect to those criteria. Then, the value of the choice flag is set, based on whether the agent has other choices of candidate
coalitions that are as preferable as the current choice, and, if not, whether there are any other still available (nontrivial)
choices at all.

Stage 4:
Each node (in parallel) sends its tuple with its UID, the tentatively chosen list � ��� � , the value of the choice flag, and the
value of the decision flag, to all its neighbors.

Stage 5:
Each node � (in parallel) compares its chosen list � ��� � with lists � ��� � received from its neighbors. If a clique that
includes the node � exists, and all members of this clique have selected it at this stage as their current group or coalition
of choice (that is, if ����� � � ����� � for all ��� � ��� � ), this will be efficiently recognized by the nodes forming this clique.
The decision flag of each node � � � ��� � is set to 1, a group is formed, and this information is broadcast by each node
in the newly formed group to all of its neighbors. Else, if no such agreement is reached, then agent � , based on its UID
and priority, and its current value of the choice flag, either does nothing, or else changes its mind about its current group
of choice, � ��� � . The latter scenario is possible only if choice � � , meaning that there are other choices of potential
coalitions ����� � that have not been tried out yet that are still available to agent � .
� �	� �
 ��� � � �	� �
 ��� � � ;
END DO � � �
 � ��� ����� ��� � � �
	 � !

If � �	�  � � � then, at Stage 2, each node looks for the information from its neighbors to find out if any of them have
joined a group in the previous round. For those nodes that have (i.e., whose decision flag � ��� � �

), each node neighboring
any such already committed node deletes this committed node from its neighborhood list � ��� � , updates all � ��� ��� � that
remain, and selects its choice of ����� � based on the updated collection of group choices � ����� ��� ��� � � � ��� � � . That is,
now all those nodes that have already made their commitments and formed groups are not “in the game” any more, and are
therefore deleted from all remaining agents’ neighborhood lists as well as the tentative choices of coalitions. (Of course,
the only coalition a committed agent is not deleted from at this stage is the coalition that this agent has just joined).

It can be readily shown that, once all agents exit the WHILE loop (that is, a repeated execution of the Stages 2-5), each
thereby formed group is, indeed, a clique. Moreover, those agent coalitions whose sizes do not exceed the pre-specified
threshold, � , are also maximal in a sense that, given such a coalition � , no agent(s) outside of this coalition can be added
to it, so that (i) each of the new agents is already adjacent in the communication topology to all the “old” coalition members
of � , (ii) if more than one new agent is added, then all the added agents are also pairwise neighbors to each other, (iii) the
newly added agent(s) did not already belong to a coalition (or coalitions) at least as good as � , and (iv) the new size of the
augmented coalition � is still at most � .

However, it is easy to construct examples of underlying graphs and particular “legal” runs of the algorithm (cf. in terms
of the “tie-breaking” when an agent has two or more equally preferred choices to choose from) such that, once every node
joins a coalition and the algorithm terminates, several agents end up in trivial coalitions, such as, e.g., groups of size 1 or
2. It is therefore reasonable, in most applications, to introduce an (optional) Stage 6 of the algorithm, where these small
- and therefore potentially not sufficiently robust, or useful - coalitions, whenever possible, are merged together. That is,

275



if some two small coalitions are adjacent to each other � , they can be merged together. Obviously, the connectivity of such
coalitions, and therefore their tolerance to communication link failures, is in general going to be lower than that of those
coalitions that are genuine cliques.

How are the non-clique coalitions to be formed, i.e., what criteria are to be used for merging together small groups into
larger ones, critically depends on the nature of the underlying application and the designer’s priorities when it comes to the
agent coalitions’ desired properties. Further discussion of this important issue, however, is beyond our current scope.

There are some more details in the algorithm that we leave out for the space constraint reasons. One important tech-
nicality is that, in order to ensure that the algorithm avoids to cycle in every possible scenario, once an agent changes its
mind about the preferred coalition � ��� � , it is not allowed through the remaining rounds of the algorithm to go back to its
old choice(s). Once no other choices are left, this particular agent sticks to its current (and the only remaining) choice, and
waits for other agents to converge to their choices. It can be shown that this ensures ultimate convergence to a coalition
structure that all agents agree to. That is, under the assumptions stated in the previous section, the agents will reach con-
sensus on the coalition structure after a finite number of rounds inside the WHILE loop (see also Appendix). Moreover, if
the maximum size of any � ��� � is a (small) constant, then the convergence is fast.

5 Analysis and Discussion

We have outlined a fully distributed algorithm for group or coalition formation based on maximal cliques, combined with
the set partition based distributed task allocation. This algorithm will be feasible when the underlying graph is relatively
sparse, and, in particular, when the sizes of all maximal cliques are bounded by ��� ������� for some small (i.e., close to 1)
constant � and the number of agents � . For � very large, the proposed algorithm will be highly efficient if the maximal
node degree in the underlying graph is bounded by a constant � � ��� ��� of a modest size. When this is not the case (or
when it cannot be guaranteed to always hold), appropriate restrictions can be imposed “from the outside” to ensure that the
algorithm (i) converges, and (ii) is of a feasible computational complexity. Also, the coalition value for each sufficiently
small subset of the set of all agents has to be efficiently computable by each agent involved.

Once the groups are formed, these groups will be tight (as everyone in the group can communicate with everyone else),
and, in nontrivial cases, therefore as robust as possible for a given number of group members with respect to either node or
link failures. This is a highly desirable property involving coalitions or teams of agents operating in environments where
both the agent failures and the agent-to-agent communication link failures can be expected. One example of such MAS
application domain, and in particular coordination strategies in this domain, are studied in [6, 7, 23, 24].

The proposed algorithm can be used as a subroutine in many multi-agent system scenarios where, at various points in
time, the system needs to reconfigure itself, and the agents need to form new coalitions, or transform the existing ones, in
a fully distributed manner, where each agent would join an appropriate (new) coalition because the agent finds this to be
in its individual best interest, and where it is important for agents to agree efficiently on what coalitions are to be formed,
rather than spending precious resources on complex negotiation protocols.

It is important, however, to point out that, in case of the self-interested agents, some form of negotiation among the
agents is typically unavoidable, irrespective of the particular mechanism employed for the purposes of generating a desired
coalition structure. In particular, self-interested agents that would use a variant of our algorithm presented in the previous
section, would still need to negotiate, at the very least, on how are the spoils to be divided up among them. According to
T. Sandholm in Chapter 5 of [29], a complete coalition formation process is made of three stages: (i) coalition structure
generation, (ii) optimization within each coalition, and (iii) payoff (or utility) distribution; see also [17]. In case of the
DPS agents, stages (i) and (ii) generally suffice, but when the agents have their individual preferences over the states of
the world in general, and the desirability of different coalitions and tasks in particular, addressing (iii) is necessary for a
coalition formation strategy to be complete and effective.
�

That is, if there exist node � in the first coalition and node � in the second such that � and � are adjacent in the underlying graph.

276



We also notice that, in our approach, the stages (i) and (ii) are not separated from each other (so that forming coalitions
causally and temporally precedes the agents within each coalition then attempting to solve an appropriate optimization
problem), but, instead, (i) and (ii) are intertwined. That is, the desired coalition structure emerges as a result of the agents
solving simultaneously a coordination and a distributed constraint optimization problem. We briefly outline our view on
why, in many MAS applications, stages (i) and (ii) in Sandholm’s classification scheme need not be separated as in [17].
Since in most MAS situations coordination (herein, reduced to forming groups or coalitions) is not a goal in itself, but,
rather, a capability needed for, or an effective approach to, solving an underlying optimization problem, such as (distributed)
resource or task allocation, the good ways to coordinate are those that enable the agents to effectively solve the underlying
optimization problem. Thus the “goodness” of particular coalitions and the overall coalition structure (stage (i)), often
cannot be separated from “optimization within each coalition” (stage (ii)): to optimize well precisely means to form good
coalitions with respect to the properties of the agents’ tasks and resources.

An important game-theoretic consideration in the context of coalition formation in N-person games [13] is that of
the nature of the environment, and, in particular, whether the environment is super-additive, sub-additive, or neither.
The nature of the environment and its implications in the MAS context were formalized and discussed, e.g., in [17, 18].
Initially, in designing the maximal clique group formation algorithm [25], we have tacitly assumed locally super-additive
environments, that is, super-additivity subject to the constraints stemming from the communication network topology that
restricts which agents can communicate to each other directly (as opposed to via multiple hops). Local or constrained super-
additivity still holds when the coalition quality is measured with respect to the joint capabilities of the coalition members,
as long as either a “single shot” coalition-to-task mapping is performed, or, alternatively, if each agent’s resources or
capabilities are renewable after each task (or round of tasks) is completed. Hence, in this context, insofar as the coalition-
to-task mapping is concerned, all that matters is that the total resources of agents in the coalition exceed the resource
requirements of the desired task - but by how much is not considered relevant. Once the agent resources are depleteable,
and an agent is expected to participate in completing several tasks (with each agent or coalition still restricted to being
able to work on only one task at a time), on the other hand, these agents would be interested in long-term planning, in
computing the marginal utility of servicing each task [16], etc. These considerations, however, are beyond our current
scope. For our purposes herein, without further ado, the environments are assumed locally super-additive in the sense
outlined above. Once the issue of how is the payoff for servicing the tasks to be distributed among the respective coalition
members is brought to the picture (stage (iii) in Sandholm’s classification), even the local (or constrained) super-additivity
assumption, in general, becomes hard to justify. However, as already mentioned, in the present work we intentionally avoid
addressing the issue of the payment disbursements altogether.

Last but not least, we emphasize that our algorithm as a coordination subroutine in MAS can be expected to be useful
only when the time scale of significant changes in the inter-agent communication topology is much coarser than the time
scale for the coalitions of agents, first, to form according to the algorithm, and, second, once formed, to accomplish
something useful in terms of the agents’ ultimate goals (see, e.g., [24, 25]).

6 Summary

We have proposed herewith a generic algorithm for distributed group formation based on (maximal) cliques of modest
sizes. We find this algorithm, or its appropriately fine-tuned variants, to be a potentially very useful subroutine in many
multi-agent system applications, where the interconnection topology of the agents often changes so that the system needs to
dynamically reconfigure itself repeatedly, yet where these topology changes are at a time scale that allows agents to (i) form
their coalitions, and (ii) do something useful while participating in such coalitions, before the underlying communication
topology of the system changes so much as to render the formed coalitions either obsolete or ineffective.

As for the future work, we plan a detailed comparative analysis of the approach presented herein on one, and the well-
known coalition formation approaches known from the MAS literature, on the other hand. In particular, we would like to

277



compare and contrast the purely P2P, genuinely “democratic” approaches to multi-agent coordination, where all agents are
made equal (except possibly for the different capability vectors), with the asymmetric, less democratic and more leader-
based coordination approaches (such as, e.g., various automated dynamic auctions). Intuitively, the genuinely leaderless
mechanisms for coalition formation, such as our maximal clique based approach, are less prone to “bottlenecks” and single
points of failure than the coordination strategies where certain agents are given (even if only temporarily) special roles or
“leader” status. However, this intuition needs to be both further theoretically investigated and experimentally tested and
validated via appropriate comparative simulations and performance measurements.

One possible “testing ground” for determining the practical usefulness of our approach to multi-agent coordination,
and its comparative (dis)advantages with respect to other approaches known from the literature, is the scalable simulation
of bounded-resource autonomous unmanned aerial vehicles (UAVs) on a complex multi-task mission, developed at Open
Systems Laboratory (OSL); see http://osl.cs.uiuc.edu/ for more details. Our short-term plans, therefore, include imple-
mentation and testing of appropriately fine-tuned variants of the algorithm presented herein in the context of the OSL’s
large-scale UAV simulation.

Acknowledgment: Many thanks to Myeong-wuk Jang, Nirman Kumar and Reza Ziaei (all of Open Systems Laboratory,
UIUC) for many useful discussions. This work was supported in part by the DARPA IPTO TASK Program under the
contract F30602-00-2-0586. The first author would also like to acknowledge and express his gratitude for the travel grant
from the MMAS’04 conference organizers.

References

1. N. M. Avouris, L. Gasser (eds.), “Distributed Artificial Intelligence: Theory and Praxis”, Euro Courses Comp. & Info. Sci. vol. 5,
Kluwer Academic Publ., 1992

2. D. H. Cansever, ”Incentive Control Strategies For Decision Problems With Parametric Uncertainties”, Ph.D. thesis, Univ. of
Illinois Urbana-Champaign, 1985

3. T. H. Cormen, C. E. Leiserson, R. L. Rivest, “Introduction to Algorithms”, MIT Press, 1990
4. S. Franklin, A. Graesser, “Is it an Agent, or just a Program? A Taxonomy for Autonomous Agents”, Proc. 3rd Int’l Workshop on

Agent Theories, Architectures & Languages, Springer-Verlag, 1996
5. M. R. Garey, D. S. Johnson, “Computers and Intractability: a Guide to the Theory of NP-completeness”, W. H. Freedman & Co.,

New York, 1979
6. M. Jang, S. Reddy, P. Tosic, L. Chen, G. Agha, “An Actor-based Simulation for Studying UAV Coordination”, Proc. 15th Euro.

Symp. Simul. (ESS 2003), Delft, The Netherlands, 2003
7. M. Jang, G. Agha, ”On Efficient Communication and Service Agent Discovery in Multi-agent Systems,” 3rd Int’l Workshop on

Software Engineering for Large-Scale Multi-Agent Systems (SELMAS ’04), pp. 27-33, May 24-25, Edinburgh, Scotland, 2004
8. N. Lynch, “Distributed Algorithms”, Morgan Kaufmann Publ., Wonderland, 1996
9. P. J. Modi, H. Jung, W. Shen, M. Tambe, S. Kulkarni, “A dynamic distributed constraint satisfaction approach to resource alloca-

tion”, in Proc. 7th Int’l Conf. on Principles & Practice of Constraint Programming, 2001
10. P. J. Modi, H. Jung, W. Shen, “Distributed Resource Allocation: Formalization, Complexity Results and Mappings to Distributed

CSPs”, technical report (extended version of [9]), November 2002
11. P. J. Modi, W. Shen, M. Tambe, M. Yokoo, “An asynchronous complete method for distributed constraint optimization”, Proc. 2nd

AAMAS-03, Melbourne, Australia, 2003
12. J. von Neumann, O. Morgenstern, “Theory of Games and Economic Behavior”, Princeton Univ. Press, 1944
13. A. Rapoport, “N-Person Game Theory”, The Univ. of Michigan Press, 1970
14. J. Rosenschein, G. Zlotkin, “Rules of Encounter: Designing Conventions for Automated Negotiations among Computers”, The

MIT Press, Cambridge, Massachusetts, 1994
15. S. Russell, P. Norvig, “Artificial Intelligence: A Modern Approach”, 2nd ed., Prentice Hall Series in AI, 2003

278



16. T. Sandholm and V. Lesser, “Issues in automated negotiation and electronic commerce: Extending the contract net framework”, in
1st Int’l Conf. on Multiagent Systems, pp. 328-335, San Francisco, 1995.

17. T. Sandholm, V. Lesser, “Coalitions among Computationally Bounded Agents”, Artificial Intelligence, spec. issue on “Principles
of MAS”, 1997

18. O. Shehory, S. Kraus, “Coalition formation among autonomous agents: Strategies and complexity”, Proc. MAAMAW’93, Neucha-
tel, Switzerland, 1993

19. O. Shehory, S. Kraus, “Task allocation via coalition formation among autonomous agents”, Proc. 14th IJCAI-95, Montreal, August
1995

20. H. A. Simon, “Models of Man”, J. Willey & Sons, New York, 1957
21. R. G. Smith, “The contract net protocol: high-level communication and control in a distributed problem solver”, IEEE Trans. on

Computers, 29 (12), 1980
22. G. Tel, “Introduction To Distributed Algorithms”, 2nd ed., Cambridge Univ. Press, 2000
23. P. Tosic, M. Jang, S. Reddy, J. Chia, L. Chen, G. Agha, “Modeling a System of UAVs on a Mission”, Proc. SCI 2003 (invited

session), Orlando, Florida, 2003
24. P. Tosic, G. Agha, “Modeling Agents’ Autonomous Decision Making in Multiagent, Multitask Environments”, Proc. 1st Euro.

Workshop on MAS (EUMAS 2003), Oxford, England, 2003
25. P. Tosic, G. Agha, “Maximal Clique Based Distributed Group Formation Algorithm for Autonomous Agent Coalitions”, Proc.

Workshop on Coalitions & Teams, AAMAS ’04, New York City, New York, July 19-23, 2004
26. For more on the TRANSIMS project at the Los Alamos National Laboratory, go to http://www-transims.tsasa.lanl.gov/

(The ’Documents’ link includes a number of papers and technical reports for the period 1995 - 2001)
27. D. J. Watts, “Small Worlds: The Dynamics of Networks Between Order and Randomness”, Princeton Univ. Press, Princeton, N.

Jersey, 1999
28. D. J. Watts, S. H. Strogatz, “Collective dynamics of ’small-world’ networks”, Nature 393, 1998
29. G. Weiss (ed.), “Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence”, The MIT Press, Cambridge,

Massachusetts, 1999
30. M. Wooldridge, N. Jennings, “Intelligent Agents: Theory and Practice”, Knowledge Engin. Rev., 1995
31. M. Yokoo, K. Hirayama, “Algorithms for Distributed Constraint Satisfaction: A review”, AAMAS, Vol. 3, No. 2, 2000
32. M. Yokoo, “Distributed Constraint Satisfaction: Foundation of Cooperation in Multi-agent Systems”, Springer, 2001
33. G. Zlotkin, J.S. Rosenschein, “Coalition, cryptography and stability: Mechanisms for coalition formation in task oriented domains”,

Proc. AAAI’94, Seattle, Washington, 1994

279



7 Appendix:
Pseudo-Code for Max-Clique-Based Distributed Group Formation for MAS Task Allocation

Notation:

� � � the � -th agent (node) in the system (say, � � � ������� �  )� ��� ��� � the � -th node’s UID
� ��� � � � the list of neighbors of node �
� ��� � � � the extended neighborhood list (i.e., � ��� � � � ��� ��� ��� � )
� ��� ��� � � � ��� ��� � ��� �
� ��� ��� � the group of choice of node � at the current stage (i.e., one of the ����� ��� � ’s)
��� ���	� � ��� ��� � the choice flag of node �
����� ��� ��� � the decision flag of node �

Remark: For simplicity, clarity and space limitations, we focus on distributed computation of cliques, and consensus
reaching on what clique-like coalitions are to be formed. We therefore assume that there is a highly efficient, readily
available subroutine for each agent to evaluate (or estimate) the utility value of each potential coalition. This subroutine is
called independently by each agent inside of Stage 3 below.

Max Clique-based Distributed Coalition Formation Algorithm:

Stage 1:
DOALL � � � ���  (in parallel, i.e., each node � carries the steps below locally)

send � � ��� � � � ��� � ����� ���	� � � � � ��� � � � ! to each of your neighbors
END DOALL

WHILE (not all agents have joined a group) DO
� 	 Stages 2-5 are repeated until consensus on the coalition structure is reached 	 !
Stage 2:

DOALL � � � ��� 
FOR all � � � ��� � DO � 	 check if � ��� ��� � � � 	 !

if ��� � ��� � � � �
then delete � from � ��� � � � ��� � � and ����� ����
 � �� ��
 � � ��� � � ��� �

END DO � 	 end of FOR loop 	 !
FOR all � � � ��� � DO � 	 FOR all remaining (undeleted) indices ��	 !

compute � ��� ��� � � � ��� ��� � ��� �
END DO � 	 end of FOR loop 	 !

END DOALL

Stage 3:
DOALL � � � ��� 

FOR all � � � ��� � DO
compute utility value ��� ��� � ��� ��� ��! of each candidate coalition � ��� ��� ���

END DO
pick � ��� � � � such that � � ��� ����� � � ��! ��� ��������������� � ����� � ��� ��� ��! (subject to ! � ��� ��� � !�" � )
����� � � ����� � � � ;#

We require throughout, that all groups to be considered, that is, all “candidate coalitions”, be of appropriately bounded size,$ %'&�(*)�+�,-$/.10
.

280



if (there is more than one such choice of max. utility value) then
set ��� ����� � ��� � � � ;

else (if there are other choices ����� ����
 � but only of strictly smaller utility value)
set ��� ����� � � �

;
else (if node � has no alternatives left for a non-trivial coalition that would include � )

set ��� ����� � � �
;

END DOALL

Stage 4:
DOALL � � � ��� 

send � � ��� � ��� ��� � ����� ����� � � ����� � � !
END DOALL

Stage 5:
DOALL � � � ��� 

compare � ��� � with ����� � received from one’s neighbors � � � ��� � ;
if (there exists a clique � � ��� � ��� � � ����� � �

�
such that ����� � � ����� �

� � ����� � � � ����� � ����� � � )
then set ����� � �

(an agreement has been reached);
broadcast group

�
� ��� ��� � ��� � ������� ��� �

�
and ����� ��� � � �

to all neighbors � � � ��� � :
send � � ��� � ��� ��� � � � ����� ����� � � ����� � � !

else (based on UID � and the priority as defined by the relation � )
either DO NOTHING
or change your mind: � ��� � �  ��� ��� ����� � ����� ��� �

(from the list of candidate groups that are still available)
END DOALL

END DO � � �
 � ��� ��� � ��� � � �
	 � !

This article was processed using the LATEX macro package with LLNCS style

281



Electronic Notes in Theoretical Computer Science 89 No. 2 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume89.html 20 pages

Generating Optimal Monitors for Extended
Regular Expressions

Koushik Sen 1,3

Department of Computer Science,
University of Illinois at Urbana Champaign,

USA.

Grigore Roşu 2,4

Department of Computer Science,
University of Illinois at Urbana Champaign,

USA.

Abstract

Ordinary software engineers and programmers can easily understand regular pat-
terns, as shown by the immense interest in and the success of scripting languages
like Perl, based essentially on regular expression pattern matching. We believe that
regular expressions provide an elegant and powerful specification language also for
monitoring requirements, because an execution trace of a program is in fact a string
of states. Extended regular expressions (EREs) add complementation to regular
expressions, which brings additional benefits by allowing one to specify patterns
that must not occur during an execution. Complementation gives one the power to
express patterns on strings more compactly. In this paper we present a technique
to generate optimal monitors from EREs. Our monitors are deterministic finite
automata (DFA) and our novel contribution is to generate them using a modern
coalgebraic technique called coinduction. Based on experiments with our imple-
mentation, which can be publicly tested and used over the web, we believe that our
technique is more efficient than the simplistic method based on complementation of
automata which can quickly lead to a highly-exponential state explosion.

1 Supported in part by the Defense Advanced Research Projects Agency (the DARPA
IPTO TASK Program, contract number F30602-00-2-0586 and the DARPA IXO NEST
Program, contract number F33615-01-C-1907) and the ONR Grant N00014-02-1-0715.
2 Supported in part by the joint NSF/NASA grant CCR-0234524.
3 Email: ksen@cs.uiuc.edu
4 Email: grosu@cs.uiuc.edu

c©2003 Published by Elsevier Science B. V.

282

http://www.elsevier.nl/locate/entcs/volume89.html�
mailto:ksen@cs.uiuc.edu�
mailto:grosu@cs.uiuc.edu�
goodelle
Text Box
Appendix Y:



Sen and Roşu

1 Introduction

Regular expressions can express patterns in strings in a compact way. They
proved very useful in practice; many programming/scripting languages like
Perl, Python, Tcl/Tk support regular expressions as core features. Because
of their power to express a rich class of patterns, regular expressions, are used
not only in computer science but also in various other fields, such as molecular
biology [18]. All these applications boast of very efficient implementation of
regular expression pattern matching and/or membership algorithms. More-
over, it has been found that compactness of regular expressions can be in-
creased non-elementarily by adding complementation (¬R) to the usual union
(R1 + R2), concatenation (R1 · R2), and repetition (R∗) operators of regular
expressions. These are known as extended regular expressions (EREs) and
they proved very intuitive and succinct in expressing regular patterns.

Recent trends have shown that the software analysis community is inclin-
ing towards scalable techniques for software verification. Works in [12] merged
temporal logics with testing, thereby getting the benefits of both worlds. The
Temporal Rover tool (TR) and its follower DB Rover [5] are already commer-
cial. In these tools the Java code is instrumented automatically so that it
can check the satisfaction of temporal logic properties at runtime. The MaC
tool [17,22] has been developed to monitor safety properties in interval past
time temporal logics. In [24,25], various algorithms to generate testing au-
tomata from temporal logic formulae, are described. Java PathExplorer [10]
is a runtime verification environment currently under development at NASA
Ames. The Java MultiPathExplorer tool [29] proposes a technique to moni-
tor all equivalent traces that can be extracted from a given execution, thus
increasing the coverage of monitoring. [7,11] present efficient algorithms for
monitoring future time temporal logic formulae, while [13] gives a technique
to synthesize efficient monitors from past time temporal formulae. [27] uses
rewriting to perform runtime monitoring of EREs.

An interesting aspect of EREs is that they can express safety properties
compactly, like those encountered in testing and monitoring. By generat-
ing automata from logical formulae, several of the works above show that
the safety properties expressed by different variants of temporal logics are
subclasses of regular languages. The converse is not true, because there are
regular patterns which cannot be expressed using temporal logics, most no-
toriously those related to counting; e.g., the regular expression (0 · (0 + 1))∗

saying that every other letter is 0 does not admit an equivalent temporal logic
formula. Additionally, EREs tend to be often very natural and intuitive in
expressing requirements. For example, let us try to capture the safety prop-
erty “it should not be the case that in any trace of a traffic light we see green
and then immediately red at any point”. The natural and intuitive way to
express it in ERE is ¬((¬∅) · green · red · (¬∅)), where ∅ is the empty ERE
(no words), so ¬∅ means “anything”.

2

283

goodelle
Rectangle



Sen and Roşu

Previous approaches to ERE membership testing [14,23,31,21,16] have fo-
cussed on developing techniques that are polynomial in both the size of the
word and the size of the formulae. The best known result in these approaches
is described in [21] where they can check if a word satisfies an ERE in time
O(m ·n2) and space O(m ·m+k ·n2), where m is the size of the ERE, n is the
length of the word, and k is the number of negation/intersection operators.
These algorithms, unfortunately, cannot be used for the purpose of monitor-
ing. This is because they are not incremental. They assume the entire word
is available before their execution. Additionally, their running time and space
requirements are quadratic in the size of the trace. This is unacceptable when
one has a long trace of events and wants to monitor a small ERE, as it is
typically the case. This problem is removed in [27] where traces are checked
against EREs through incremental rewriting. At present, we do not know if
the technique in [27] is optimal or not.

A simple, straightforward, and practical approach is to generate optimal
deterministic finite automata (DFA) from EREs [15]. This process involves the
conversion of each negative sub-component of the ERE to a non-deterministic
finite automaton (NFA), determinization of the NFA into a DFA, comple-
mentation of the DFA, and then its minimization. The algorithm runs in a
bottom-up fashion starting from the innermost negative ERE sub components.
This method, although generates the minimal automata, is too complex and
cumbersome in practice. Its space requirements can be non-elementarily larger
than the initial regular ERE, because negation involves an NFA-to-DFA trans-
lation, which implies an exponential blow-up; since negations can be nested,
the size of such NFAs or DFAs could be highly exponential.

Our approach is to generate the minimal DFA from an ERE using coinduc-
tive techniques. In this paper, the DFA thus generated is called the optimal
monitor for the given ERE. A number of related approaches for simple regular
expressions can be found in [30]. Our algorithm extends these approaches for
simple regular expressions to EREs; further, we make the algorithm efficient
by intelligent book keeping. The complexity of our algorithm seems to be
hard to evaluate, because it depends on the size of the minimal DFA asso-
ciated to an ERE and we are not aware of any lower bound results in this
direction. However, experiments are very encouraging. Our implementation,
which is available for evaluation on the internet via a CGI server reachable
from http://fsl.cs.uiuc.edu/rv/, rarely took longer than one second to gen-
erate a DFA, and it took only 18 minutes to generate the minimal 107 state
DFA for the ERE in Example 5.3 which was used to show the exponential
space lower bound of ERE monitoring in [27].

In a nutshell, in our approach we use the concept of derivatives of an ERE,
as described in Subsection 2.2. For a given ERE one generates all possible
derivatives of the ERE for all possible sequences of events. The size of this
set of derivatives depends upon the size of the initial ERE. However, several
of these derivative EREs can be equivalent to each other. One can check the

3

284

goodelle
Rectangle



Sen and Roşu

equivalence of EREs using coinductive technique as described in Section 3, that
generates a set of equivalent EREs, called circularities. In Section 4, we show
how circularities can be used to construct an efficient algorithm that generates
optimal DFAs from EREs. In Section 5, we describe an implementation of this
algorithm and give performance analysis results. We also made available on
the internet a CGI interface to this algorithm.

2 Extended Regular Expressions and Derivatives

In this section we recall extended regular expressions and their derivatives.

2.1 Extended Regular Expressions

Extended regular expressions (ERE) define languages by inductively apply-
ing union (+), concatenation (·), Kleene Closure (∗), intersection (∩), and
complementation (¬). More precisely, for an alphabet E, whose elements are
called events in this paper, an ERE over E is defined as follows, where a ∈ E:

R ::= ∅ | ε | a | R + R | R ·R | R∗ | R ∩R | ¬R.

The language defined by an expression R, denoted by L(R), is defined
inductively as

L(∅) = ∅,
L(ε) = {ε},
L(A) = {A},

L(R1 + R2) = L(R1) ∪ L(R2),

L(R1 ·R2) = {w1 · w2 | w1 ∈ L(R1) and w2 ∈ L(R2)},
L(R∗) = (L(R))∗,

L(R1 ∩R2) = L(R1) ∩ L(R2),

L(¬R) = Σ∗ \ L(R).

Given an ERE, as defined above using union, concatenation, Kleene Clo-
sure, intersection and complementation, one can translate it into an equivalent
expression that does not have any intersection operation, by applying De Mor-
gan’s Law: R1 ∩R2 = ¬(¬R1 +¬R2). The translation only results in a linear
blowup in size. Therefore, in the rest of the paper we do not consider expres-
sions containing intersection. More precisely, we only consider EREs of the
form

R ::= R + R | R ·R | R∗ | ¬R | a | ε | ∅.
4

285

goodelle
Rectangle



Sen and Roşu

2.2 Derivatives

In this subsection we recall the notion of derivative, or “residual” (see [2,1],
where several interesting properties of derivatives are also presented). It is
based on the idea of “event consumption”, in the sense that an extended reg-
ular expression R and an event a produce another extended regular expression,
denoted R{a}, with the property that for any trace w, aw ∈ R if and only if
w ∈ R{a}.

In the rest of the paper assume defined the typical operators on EREs and
consider that the operator + is associative and commutative and that the
operator · is associative. In other words, reasoning is performed modulo
the equations:

(R1 + R2) + R3 = R1 + (R2 + R3),

R1 + R2 = R2 + R1,

(R1 ·R2) ·R3 = R1 · (R2 ·R3).

We next consider an operation { } which takes an ERE and an event, and
give several equations which define its operational semantics recursively, on
the structure of regular expressions:

(R1 + R2){a} = R1{a}+ R2{a} (1)

(R1 ·R2){a} = (R1{a}) ·R2 + if (ε ∈ R1) then R2{a} else ∅ fi (2)

(R∗){a} = (R{a}) ·R∗ (3)

(¬R){a} = ¬(R{a}) (4)

b{a} = if (b == a) then ε else ∅ fi (5)

ε{a} = ∅ (6)

∅{a} = ∅ (7)

The right-hand sides of these equations use operations which we describe
next. “if ( ) then else fi” takes a boolean term and two EREs as
arguments and has the expected meaning defined by two equations:

if (true) then R1 else R2 fi = R1

if (false) then R1 else R2 fi = R2

(8)

(9)

We assume a set of equations that properly define boolean expressions and
reasoning. Boolean expressions include the constants true and false, as well as
the usual connectors ∧ , ∨ , and not. Testing for empty trace membership
(which is used by (2)) can be defined via the following equations:

5

286

goodelle
Rectangle



Sen and Roşu

ε ∈ (R1 + R2) = (ε ∈ R1) ∨ (ε ∈ R2)

ε ∈ (R1 ·R2) = (ε ∈ R1) ∧ (ε ∈ R2)

ε ∈ (R∗) = true

ε ∈ (¬R) = not(ε ∈ R)

ε ∈ b = false

ε ∈ ε = true

ε ∈ ∅ = false

(10)

(11)

(12)

(13)

(14)

(15)

(16)

The 16 equations above are natural and intuitive. [27] shows that these
equations, when regarded as rewriting rules are terminating and ground
Church-Rosser (modulo associativity and commutativity of + and modulo
associativity of · ), so they can be used as a functional procedure to calcu-
late derivatives. Due to the fact that the 16 equations defining the derivatives
can generate useless terms, in order to keep EREs compact we also propose
defining several simplifying equations, including at least the following:

∅+ R = R,

∅ ·R = ∅,
ε ·R = R,

R + R = R.

The following result (see, e.g., [27] for a proof) gives a simple procedure,
based on derivatives, to test whether a word belongs to the language of an
ERE:

Theorem 2.1 For any ERE R and any events a, a1, a2, ..., an in A, the
following hold:

1) a1a2...an ∈ L(R{a}) if and only if aa1a2...an ∈ L(R); and

2) a1a2...an ∈ L(R) if and only if ε ∈ R{a1}{a2}...{an}.

3 Hidden Logic and Coinduction

We use circular coinduction, defined rigorously in the context of hidden logics
and implemented in the BOBJ system [26,8,9], to test whether two EREs are
equivalent, that is, if they have the same language. Since the goal of this
paper is to translate an ERE into a minimal DFA, standard techniques for
checking equivalence, such as translating the two expressions into DFAs and
then comparing those, do not make sense in this framework. A particularly
appealing aspect of circular coinduction in the framework of EREs is that it
does not only show that two EREs are equivalent, but also generates a larger

6

287

goodelle
Rectangle



Sen and Roşu

set of equivalent EREs which will all be used in order to generate the target
DFA.

Hidden logic is a natural extension of algebraic specification which benefits
of a series of generalizations in order to capture various natural notions of
behavioral equivalence found in the literature. It distinguishes visible sorts
for data from hidden sorts for states, with states behaviorally equivalent if and
only if they are indistinguishable under a formally given set of experiments.
To keep the presentation simple and self contained, in this section we define
an oversimplified version of hidden logic together with its associated circular
coinduction proof rule, still general enough to support defining and proving
EREs behaviorally equivalent.

3.1 Algebraic Preliminaries

The reader is assumed familiar with basic equational logic and algebra in
this section. We recall a few notions in order to just make our notational
conventions precise. An S-sorted signature Σ is a set of sorts/types S together
with operational symbols on those, and a Σ-algebra A is a collection of sets
{As | s ∈ S} and a collection of functions appropriately defined on those
sets, one for each operational symbol. Given an S-sorted signature Σ and
an S-indexed set of variables Z, let TΣ(Z) denote the Σ-term algebra over
variables in Z. If V ⊆ S then Σ¹V is a V -sorted signature consisting of all
those operations in Σ with sorts entirely in V . We may let σ(X) denote the
term σ(x1, ..., xn) when the number of arguments of σ and their order and
sorts are not important. If only one argument is important, then to simplify
writing we place it at the beginning; for example, σ(t,X) is a term having σ
as root with only variables as arguments except one, and we do not care which
one, which is t. If t is a Σ-term of sort s′ over a special variable ∗ of sort s
and A is a Σ-algebra, then At : As → As′ is the usual interpretation of t in
A.

3.2 Behavioral Equivalence, Satisfaction and Specification

Given disjoint sets V, H called visible and hidden sorts, a hidden (V, H)-
signature, say Σ, is a many sorted (V ∪H)-signature. A hidden subsignature
of Σ is a hidden (V,H)-signature Γ with Γ ⊆ Σ and Γ¹V = Σ¹V . The data sig-
nature is Σ¹V . An operation of visible result not in Σ¹V is called an attribute,
and a hidden sorted operation is called a method.

Unless otherwise stated, the rest of this section assumes fixed a hidden
signature Σ with a fixed subsignature Γ. Informally, Σ-algebras are universes
of possible states of a system, i.e., “black boxes,” where one is only concerned
with behavior under experiments with operations in Γ, where an experiment
is an observation of a system attribute after perturbation; this is formalized
below.

A Γ-context for sort s ∈ V ∪H is a term in TΓ({∗ : s}) with one occurrence

7

288

goodelle
Rectangle



Sen and Roşu

of ∗. A Γ-context of visible result sort is called a Γ-experiment. If c is a
context for sort h and t ∈ TΣ,h then c[t] denotes the term obtained from c by
substituting t for ∗; we may also write c[∗] for the context itself.

Given a hidden Σ-algebra A with a hidden subsignature Γ, for sorts s ∈
(V ∪ H), we define Γ-behavioral equivalence of a, a′ ∈ As by a ≡Γ

Σ a′ iff
Ac(a) = Ac(a

′) for all Γ-experiments c; we may write ≡ instead of ≡Γ
Σ when

Σ and Γ can be inferred from context. We require that all operations in Σ
are compatible with ≡Γ

Σ. Note that behavioral equivalence is the identity on
visible sorts, since the trivial contexts ∗ : v are experiments for all v ∈ V .
A major result in hidden logics, underlying the foundations of coinduction, is
that Γ-behavioral equivalence is the largest equivalence which is identity on
visible sorts and which is compatible with the operations in Γ.

Behavioral satisfaction of equations can now be naturally defined in terms
of behavioral equivalence. A hidden Σ-algebra A Γ-behaviorally satisfies a Σ-
equation (∀X) t = t′, say e, iff for each θ : X → A, θ(t) ≡Γ

Σ θ(t′); in this case
we write A |≡Γ

Σ e. If E is a set of Σ-equations we then write A |≡Γ
Σ E when A

Γ-behaviorally satisfies each Σ-equation in E. We may omit Σ and/or Γ from
|≡Γ

Σ when they are clear.

A behavioral Σ-specification is a triple (Σ, Γ, E) where Σ is a hidden signa-
ture, Γ is a hidden subsignature of Σ, and E is a set of Σ-sentences equations.
Non-data Γ-operations (i.e., in Γ−Σ¹V ) are called behavioral. A Σ-algebra A
behaviorally satisfies a behavioral specification B = (Σ, Γ, E) iff A |≡Γ

Σ E, in
which case we write A |≡ B; also B |≡ e iff A |≡ B implies A |≡Γ

Σ e.

EREs can be very naturally defined as a behavioral specification. The
enormous benefit of doing so is that the behavioral inference, including most
importantly coinduction, provide a decision procedure for equivalence of EREs.
[8] shows how standard regular expressions (without negation) can be defined
as a behavioral specification, a BOBJ implementation, and also how BOBJ
with its circular coinductive rewriting algorithm can prove automatically sev-
eral equivalences of regular expressions. Related interesting work can also be
found in [28]. In this paper we extend that to general EREs, generate minimal
observer monitors, and also give several other examples.

Example 3.1 A behavioral specification of EREs defines a set of two visi-
ble sorts V = {Bool , Event}, one hidden sort H = {Ere}, one behavioral
attribute ε ∈ : Ere → Bool and one behavioral method, the derivative,
{ } : Ere × Event → Ere, together with all the other operations in Subsec-

tion 2.1 defining EREs, including the events in E which are defined as visible
constants of sort Event, and all the equations in Subsection 2.2. We call it the
ERE behavioral specification and let BERE denote it.

Since the only behavioral operators are the test for ε membership and
the derivative, it follows that the experiments have exactly the form ε ∈
∗{a1}{a2}...{an}, for any events a1, a2, ..., an. In other words, an experiment
consists of a series of derivations followed by an ε membership test, and there-

8

289

goodelle
Rectangle



Sen and Roşu

fore two regular expressions are behavioral equivalent if and only if they cannot
be distinguished by such experiments. Notice that the above reasoning applies
within any algebra satisfying the presented behavioral specification. The one
we are interested in is, of course, the free one, whose set carriers contain ex-
actly the extended regular expressions as presented in Subsection 2.1, and the
operations have the obvious interpretations. We informally call it the ERE
algebra.

Letting ≡ denote the behavioral equivalence relation generated on the ERE
algebra, then Theorem 2.1 immediately yields the following important result.

Theorem 3.2 If R1 and R2 are two EREs then R1 ≡ R2 if and only if
L(R1) = L(R2).

This theorem allows us to prove equivalence of EREs by making use of
behavioral inference in the ERE behavioral specification, from now on simply
referred to by B, including (especially) circular coinduction. The next section
shows how circular coinduction works and how it can be used to show EREs
equivalent.

3.3 Circular Coinduction as an Inference Rule

In the simplified version of hidden logics defined above, the usual equational
inference rules, i.e., reflexivity, symmetry, transitivity, substitution and con-
gruence [26] are all sound for behavioral satisfaction. However, equational
reasoning can derive only a very limited amount of interesting behavioral
equalities. For that reason, circular coinduction has been developed as a
very powerful automated technique to show behavioral equivalence. We let ±
denote the relation being defined by the equational rules plus circular coin-
duction, for deduction from a specification to an equation.

Before we present circular coinduction formally, we give the reader some
intuitions by duality to structural induction. The reader who is only inter-
ested in using the presented procedure or who is not familiar with structural
induction, can skip this paragraph. Inductive proofs show equality of terms
t(x), t′(x) over a given variable x (seen as a constant) by showing t(σ(x))
equals t′(σ(x)) for all σ in a basis, while circular coinduction shows terms t, t′

behaviorally equivalent by showing equivalence of δ(t) and δ(t′) for all behav-
ioral operations δ. Coinduction applies behavioral operations at the top, while
structural induction applies generator/constructor operations at the bottom.
Both induction and circular coinduction assume some “frozen” instances of
t, t′ equal when checking the inductive/coinductive step: for induction, the
terms are frozen at the bottom by replacing the induction variable by a con-
stant, so that no other terms can be placed beneath the induction variable,
while for coinduction, the terms are frozen at the top, so that they cannot be
used as subterms of other terms (with some important but subtle exceptions
which are not needed here; see [9]).

9

290

goodelle
Rectangle



Sen and Roşu

Freezing terms at the top is elegantly handled by a simple trick. Suppose
every specification has a special visible sort b, and for each (hidden or visible)
sort s in the specification, a special operation [ ] : s → b. No equations are
assumed for these operations and no user defined sentence can refer to them;
they are there for technical reasons. Thus, with just the equational inference
rules, for any behavioral specification B and any equation (∀X) t = t′, it is
necessarily the case that B ± (∀X) t = t′ iff B ± (∀X) [t] = [t′]. The rule
below preserves this property. Let the sort of t, t′ be hidden; then

Circular Coinduction:

B ∪ {(∀X) [t] = [t′]} ± (∀X, W ) [δ(t, W )] = [δ(t′,W )], for all appropriate δ ∈ Γ

B ± (∀X) t = t′

We call the equation (∀X) [t] = [t′] added to B a circularity; it could just
as well have been called a coinduction hypothesis or a co-hypothesis, but we
find the first name more intuitive because from a coalgebraic point of view,
coinduction is all about finding circularities.

Theorem 3.3 The usual equational inference rules together with Circular
Coinduction are sound. That means that if B ± (∀X) t = t′ and sort(t, t′) 6= b,
or if B ± (∀X) [t] = [t′], then B |≡ (∀X) t = t′.

Example 3.4 Suppose that we want to show that the EREs (a + b)∗ and
(a∗b∗)∗ admit the same language. By Theorem 3.2, we can instead show that
BERE |≡ (∀∅) (a + b)∗ = (a∗b∗)∗. Notice that a and b are treated as constant
events here; one can also prove the result when a and b are variables, but
one would need to first make use of the theorem of hidden constants [26]. To
simplify writing, we omit the empty quantifier of equations. By the Circular
Coinduction rule, one generates the following three proof obligations

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗]} ± [ε ∈ (a + b)∗] = [ε ∈ (a∗b∗)∗],

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗]} ± [(a + b)∗{a}] = [(a∗b∗)∗{a}],
BERE ∪ {[(a + b)∗] = [(a∗b∗)∗]} ± [(a + b)∗{b}] = [(a∗b∗)∗{b}].

The first proof task follows immediately by using the equations in B as rewrit-
ing rules, while the other two tasks reduce to

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗]} ± [(a + b)∗] = [a∗(a∗b∗)∗],

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗]} ± [(a + b)∗] = [b∗(a∗b∗)∗].

By applying Circular Coinduction twice, after simplifying the two obvious proof
tasks stating the ε membership, one gets the following four proof obligations

10

291

goodelle
Rectangle



Sen and Roşu

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗], [(a + b)∗] = [a∗(a∗b∗)∗]} ± [(a + b)∗]{a} = [a∗(a∗b∗)∗{a}],
BERE ∪ {[(a + b)∗] = [(a∗b∗)∗], [(a + b)∗] = [a∗(a∗b∗)∗]} ± [(a + b)∗]{b} = [a∗(a∗b∗)∗{b}],
BERE ∪ {[(a + b)∗] = [(a∗b∗)∗], [(a + b)∗] = [b∗(a∗b∗)∗]} ± [(a + b)∗]{a} = [b∗(a∗b∗)∗{a}],
BERE ∪ {[(a + b)∗] = [(a∗b∗)∗], [(a + b)∗] = [b∗(a∗b∗)∗]} ± [(a + b)∗]{b} = [b∗(a∗b∗)∗{b}],

which, after simplification translate into

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗], [(a + b)∗] = [a∗(a∗b∗)∗]} ± [(a + b)∗] = [a∗(a∗b∗)∗],

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗], [(a + b)∗] = [a∗(a∗b∗)∗]} ± [(a + b)∗] = [b∗(a∗b∗)∗],

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗], [(a + b)∗] = [b∗(a∗b∗)∗]} ± [(a + b)∗] = [a∗(a∗b∗)∗],

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗], [(a + b)∗] = [b∗(a∗b∗)∗]} ± [(a + b)∗] = [b∗(a∗b∗)∗],

Again by applying circular coinduction we get

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗], [(a + b)∗] = [a∗(a∗b∗)∗], [(a + b)∗] = [b∗(a∗b∗)∗]} ±

[(a + b)∗] = [a∗(a∗b∗)∗],

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗], [(a + b)∗] = [a∗(a∗b∗)∗], [(a + b)∗] = [b∗(a∗b∗)∗]} ±

[(a + b)∗] = [b∗(a∗b∗)∗],

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗], [(a + b)∗] = [b∗(a∗b∗)∗], [(a + b)∗] = [a∗(a∗b∗)∗]} ±

[(a + b)∗] = [a∗(a∗b∗)∗],

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗], [(a + b)∗] = [b∗(a∗b∗)∗], [(a + b)∗] = [a∗(a∗b∗)∗]} ±

[(a + b)∗] = [b∗(a∗b∗)∗],

which now follow all immediately. Notice that BOBJ uses the newly added
(to BERE ) equations as rewriting rules when it applies its circular coinductive
rewriting algorithm, so the proof above is done slightly differently, but entirely
automatically.

Example 3.5 Suppose now that one wants to show that ¬(a∗b) ≡ ε + a∗ +
(a + b)∗b(a + b)(a + b)∗. One can also do it entirely automatically by circular
coinduction as above, generating the following list of circularities:

[¬(a∗b)] = [ε + a∗ + (a + b)∗b(a + b)(a + b)∗],

[¬(ε)] = [(a + b)∗b(a + b)(a + b)∗ + (a + b)(a + b)∗],

[¬(∅)] = [(a + b)∗b(a + b)(a + b)∗ + (a + b)∗],

[¬(∅)] = [(a + b)∗b(a + b)(a + b)∗ + (a + b)(a + b)∗ + (a + b)∗].

11

292

goodelle
Rectangle



Sen and Roşu

Example 3.6 One can also show by circular coinduction that concrete EREs
satisfy systems of guarded equations. This is an interesting but unrelated
subject, so we do not discuss it in depth here. However, we show how easily one
can prove by coinduction that a∗b is the solution of the equation R = a ·R+b.
This equation can be given by adding a new ERE constant r to BERE , together
with the equations ε ∈ r = false, r{a} = r, and r{b} = ε. Circular Coinduction
applied on the goal r = a∗b generates the proof tasks:

BERE ∪ {[r] = [a∗b]} ± [ε ∈ r] = [ε ∈ a∗b],

BERE ∪ {[r] = [a∗b]} ± [r{a}] = [a∗b{a}],
BERE ∪ {[r] = [a∗b]} ± [r{b}] = [a∗b{b}],

which all follow immediately.

The following says that circular coinduction provides a decision procedure for
equivalence of EREs.

Theorem 3.7 If R1 and R2 are two EREs, then L(R1) = L(R2) if and only
if BERE ± R1 = R2. Moreover, since the rules in BERE are ground Church-
Rosser and terminating, circular coinductive rewriting[8,9], which iteratively
rewrites proof tasks to their normal forms followed by a one step coinduction
if needed, gives a decision procedure for ERE equivalence.

4 Generating Minimal DFA Monitors by Coinduction

In this section we show how one can use the set of circularities generated by
applying the circular coinduction rules in order to generate a minimal DFA
from any ERE. This DFA can then be used as an optimal monitor for that
ERE. The main idea here is to associate states in DFA to EREs obtained
by deriving the initial ERE; when a new ERE is generated, it is tested for
equivalence with all the other already generated EREs by using the coinduc-
tive procedure presented in the previous section. A crucial observation which
significantly reduces the complexity of our procedure is that, once an equiva-
lence is proved by circular coinductive rewriting, the entire set of circularities
accumulated represent equivalent EREs. These can be used to later quickly
infer the other equivalences, without having to generate the same circularities
over and over again.

Since BOBJ does not (yet) provide any mechanism to return the set of
circularities accumulated after proving a given behavioral equivalence, we were
unable to use BOBJ to implement our optimal monitor generator. Instead, we
have implemented our own version of coinductive rewriting engine for EREs,
which is described below.

We are given an initial ERE R0 over alphabet A and from that we want
to generate the equivalent minimal DFA D = (S, A, δ, s0, F ), where S is the

12

293

goodelle
Rectangle



Sen and Roşu

set of states, δ : S × A → S is the transition function, s0 is the initial state,
and F ⊆ S is the set of final states. The coinductive rewriting engine explic-
itly accumulates the proven circularities in a set. The set is initialized to an
empty set at the beginning of the algorithm. It is updated with the accumu-
lated circularities whenever we prove equivalence of two regular expressions
in the algorithm. The algorithm maintains the set of states S in the form
of non-equivalent EREs. At the beginning of the algorithm S is initialized
with a single element, which is the given ERE R0. Next, we generate all the
derivatives of the initial ERE one by one in a depth first manner. A derivative
Rx = R{x} is added to the set S, if the set does not contain any ERE equiv-
alent to the derivative Rx. We then extend the transition function by setting
δ(R, x) = Rx. If an ERE R′ equivalent to the derivative already exists in the
set S, we extend the transition function by setting δ(R, x) = R′. To check if
an ERE equivalent to the derivative Rx already exists in the set S, we sequen-
tially go through all the elements of the set S and try to prove its equivalence
with Rx. In testing the equivalence we first add the set of circularities to the
initial B. Then we invoke the coinductive procedure. If for some ERE R′ ∈ S,
we are able to prove that R′ ≡ Rx i.e B ∪ Eqall ∪ Eqnew ± R′ = Rx , then we
add the new equivalences Eqnew, created by the coinductive procedure, to the
set of circularities. Thus we reuse the already proven equivalences in future
proofs.

The derivatives of the initial ERE R0 with respect to all events in the
alphabet A are generated in a depth first fashion. The pseudo code for the
whole algorithm is given in Figure 1.

dfs(R)
begin

foreach x ∈ A do
Rx ← R{x};
if ∃R′ ∈ S such that B ∪ Eqall ∪ Eqnew ± R′ = Rx then

δ(R, x) = R′; Eqall ← Eqall ∪ Eqnew

else S ← S ∪ {Rx}; δ(R, x) = Rx; dfs(Rx); fi
endfor

end

Fig. 1. ERE to minimal DFA generation algorithm

In the procedure dfs the set of final states F consists of the EREs from S
which contain ε. This can be tested efficiently using the equations (10-16) in
Subsection 2.2. The DFA generated by the procedure dfs may now contain
some states which are non-final and from which the DFA can never reach a
final state. We remove these redundant states by doing a breadth first search
in backward direction from the final states. This can be done in time linear
in the size of the DFA.

13

294

goodelle
Rectangle



Sen and Roşu

Theorem 4.1 If D is the DFA generated for a given ERE R by the above
algorithm then

1) L(D) = L(R),

2) D is the minimal DFA accepting L(R).

Proof:

1) Suppose a1a2 . . . an ∈ L(R). Then ε ∈ R{a1}{a2} . . . {an}. Let Ri =
R{a1}{a2} . . . {ai}; then Ri+1 = Ri{ai+1}. To prove that a1a2 . . . an ∈
L(D), we use induction to show that for each 1 ≤ i ≤ n, Ri ≡
δ(R, a1a2 . . . ai). For the base case if R1 ≡ R{a1} then dfs extends the
transition function by setting δ(R, a1) = R. Therefore, R1 ≡ R = δ(R, a1).
If R1 6≡ R then dfs extends δ by setting δ(R, a1) = R1. So R1 ≡ δ(R, a1)
holds in this case also. For the induction step let us assume that
Ri ≡ R′ = δ(R, a1a2 . . . ai). If δ(R′, ai+1) = R′′ then from the dfs pro-
cedure we can see that R′′ ≡ R′{ai+1}. However, Ri{ai+1} ≡ R′{ai+1}.
So Ri+1 ≡ R′′ = δ(R′, ai+1) = δ(R, a1a2 . . . ai+1). Also notice ε ∈ Rn ≡
δ(R, a1a2 . . . an); this implies that δ(R, a1a2 . . . an) is a final state and hence
a1a2 . . . an ∈ L(D).

Now suppose a1a2 . . . an ∈ L(D). The proof that a1a2 . . . an ∈ L(R) goes
in a similar way by showing that Ri ≡ δ(R, a1, a2 . . . ai).

2) If DFA D is not minimal then there exists at least two states p and q
in D such that p and q are equivalent [15] i.e. ∀w ∈ A∗ : δ(p, w) ∈
F iff δ(q, w) ∈ F, where F is the set of final states. This means, if R1 and
R2 are the EREs associated with p and q respectively in dfs then L(R1) =
L(R2) i.e. R1 ≡ R2. But dfs ensures that no two EREs representing the
states of the DFA are equivalent. So we get a contradiction.

2

5 Implementation and Evaluation

We have implemented the coinductive rewriting engine in the rewriting spec-
ification language Maude 2.0 [4]. The interested readers can download the
implementation from the website http://fsl.cs.uiuc.edu/rv/. The opera-
tions on extended regular languages that are supported by our implementation
are ~ for negation, * for Kleene Closure, for concatenation, & for
intersection, and + for union in increasing order of precedence. Here, the
intersection operator & is a syntactic sugar and is translated to an ERE
containing union and negation using De Morgan’s Law:

eq R1 & R2 = ~ (~ R1 + ~ R2) .

To evaluate the performance of the algorithm we have generated the minimal
DFA for all possible EREs of size up to 9. Surprisingly, the size of any DFA
for EREs of size up to 9 did not exceed 9. Here the number of states gives the

14

295

goodelle
Rectangle



Sen and Roşu

size of a DFA. The following table shows the performance of our procedure for
the worst EREs of a given size. The code is executed on a Pentium 4 2.4GHz,
4 GB RAM linux machine.

Size ERE no. of states in DFA Time (ms) Rewrites

4 ¬ (a b) 4 < 1 863

5 (a ¬ b) * 4 < 1 1370

6 ¬ ((a ¬ b) *) 4 1 1453

7 ¬ (a ¬ a a) 6 1 2261

8 ¬ ((a ¬ b) * b) 7 1 3778

9 ¬ (a ¬ a b) b 9 5 9717

Example 5.1 In particular, for the ERE ¬ (a ¬ a b) b the generated minimal
DFA is given in Figure 2.

4

3

a

5b

6

b

a

7

b

8
a

0

b

1

a
b

2

a

b

a

b

aa

bb

a

Fig. 2. ¬ (a ¬ a b) b

Example 5.2 The ERE ¬ ((¬ empty) (green red) (¬ empty) ) states the
safety property that it should not be the case that in any trace of a traffic
light we see green and red consecutively at any point. The set of events
are assumed to be { green, red, yellow}. We think that this is the most
intuitive and natural expression for this safety property. The implementation
took 1ms and 1663 rewrites to generate the minimal DFA with 2 states. The
DFA is given in Figure 3.

However for large EREs the algorithm may take a long time to generate
a minimal DFA. The size of the generated DFA may grow non-elementarily
in the worst case. We generated DFAs for some complex EREs of larger sizes
and got relatively promising results. One such sample result is as follows.

Example 5.3 Let us consider the following ERE of size 110

15

296

goodelle
Rectangle



Sen and Roşu

0

red

yellow

1
green

yellow

green

Fig. 3. ¬ ((¬ empty) (green red) (¬ empty))

(¬$)∗$(¬$)∗∩
(0 + 1 + #)∗#(

((0 + 1)0#(0 + 1 + #)∗$(0 + 1)0 + (0 + 1)1#(0 + 1 + #)∗$(0 + 1)1)
∩(0(0 + 1)#(0 + 1 + #)∗$0(0 + 1) + 1(0 + 1)#(0 + 1 + #)∗$1(0 + 1))).

This ERE accepts the language L2, where

Lk = {σ#w#σ′$w | w ∈ {0, 1}k and σ, σ′ ∈ {0, 1, #}∗}
The language Lk was first introduced in [3] to show the power of alterna-

tion, used in [27] to show an exponential lower bound on ERE monitoring, and
in [19,20] to show the lower bounds for model checking. Our implementation
took almost 18 minutes to generate the minimal DFA of size 107 and in the
process it performed 1,374,089,220 rewrites.

The above example shows that the procedure can take a large amount of
time and space to generate DFAs for large EREs. To avoid the computation
associated with the generation of minimal DFA we plan to maintain a database
of EREs and their corresponding minimal DFAs on the internet. Whenever
someone wants to generate the minimal DFA for a given ERE he/she can look
up the internet database for the minimal DFA. If the ERE and the corre-
sponding DFA exists in the database he/she can retrieve the corresponding
DFA and use it as a monitor. Otherwise, he/she can generate the minimal
DFA for the ERE and submit it to the internet database to create a new en-
try. The database will check the equivalence of the submitted ERE and the
corresponding minimal DFA and insert it in the database. In this way one
can avoid the computation of generating minimal DFA if it is already done by
someone else. To further reduce the computation, circularities could also be
stored in the database.

5.1 Online Monitor Generation and Visualization

We have extended our implementation to create an internet server for
optimal monitor generation that can be accessed from the the url
http://fsl.cs.uiuc.edu/rv/. Given an ERE the server generates the opti-
mal DFA monitor for a user. The user submits the ERE through a web based

16

297

goodelle
Rectangle



Sen and Roşu

form. A CGI script handling the web form takes the submitted ERE as an
input, invokes the Maude implementation to generate the minimal DFA, and
presents it to the user either as a graphical or a textual representation. To
generate the graphical representation of the DFA we are currently using the
GraphViz tool [6].

6 Conclusion and Future Work

We presented a new technique to generate optimal monitors for extended
regular expressions, which avoids the traditional technique based on comple-
mentation of automata, that we think is quite complex and not necessary.
Instead, we have considered the (co)algebraic definition of EREs and applied
coinductive inferencing techniques in an innovative way to generate the mini-
mal DFA. Our approach to store already proven equivalences has resulted into
a very efficient and straightforward algorithm to generate minimal DFA. We
have evaluated our implementation on several hundreds EREs and have got
promising results in terms of running time. Finally, we have installed a server
on the internet which can generate the optimal DFA for a given ERE.

At least two major contributions have been made. Firstly, we have shown
that coinduction is a viable and quite practical method to prove equivalence
of extended regular expressions. Previously this was done only for regular
expressions without complementation. Secondly, building on the coinduc-
tive technique, we have devised an algorithm to generate minimal DFAs from
EREs. At present we have no bound for the size of the optimal DFA, but
we know for sure that the DFAs we generate are indeed optimal. However
we know that the size of an optimal DFA is bounded by some exponential in
the size of the ERE. As future work, it seems interesting to investigate the
size of minimal DFAs generated from EREs, and also to apply our coinductive
techniques to generate monitors for other logics, such as temporal logics.

References

[1] V. M. Antimirov. Partial derivatives of regular expressions and finite automaton
constructions. Theoretical Computer Science, 155(2):291–319, 1996.

[2] V. M. Antimirov and P. D. Mosses. Rewriting extended regular expressions.
Theoretical Computer Science, 143(1):51–72, 1995.

[3] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of
the ACM, 28(1):114–133, 1981.

[4] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
J. F. Quesada. Towards Maude 2.0. In 3rd International Workshop on
Rewriting Logic and its Applications (WRLA’00), volume 36 of Electronic Notes
in Theoretical Computer Science. Elsevier, 2000.

17

298

goodelle
Rectangle



Sen and Roşu

[5] D. Drusinsky. The Temporal Rover and the ATG Rover. In SPIN Model
Checking and Software Verification, volume 1885 of Lecture Notes in Computer
Science, pages 323–330. Springer, 2000.

[6] E. R. Gansner and S. C. North. An open graph visualization system and
its applications to software engineering. Software Practice and Experience,
30(1):1203–1233, September 2000.

[7] D. Giannakopoulou and K. Havelund. Automata-Based Verification of
Temporal Properties on Running Programs. In Proceedings, International
Conference on Automated Software Engineering (ASE’01), pages 412–416.
Institute of Electrical and Electronics Engineers, 2001. Coronado Island,
California.

[8] J. Goguen, K. Lin, and G. Roşu. Circular coinductive rewriting. In Proceedings,
Automated Software Engineering ’00, pages 123–131. IEEE, 2000. (Grenoble,
France).

[9] J. Goguen, K. Lin, and G. Rosu. Conditional circular coinductive rewriting
with case analysis. In Recent Trends in Algebraic Development Techniques
(WADT’02), Lecture Notes in Computer Science, to appear, Frauenchiemsee,
Germany, September 2002. Springer-Verlag.

[10] K. Havelund and G. Roşu. Java PathExplorer – A Runtime Verification Tool.
In The 6th International Symposium on Artificial Intelligence, Robotics and
Automation in Space: A New Space Odyssey, Montreal, Canada, June 18 - 21,
2001.

[11] K. Havelund and G. Roşu. Monitoring Programs using Rewriting. In
Proceedings, International Conference on Automated Software Engineering
(ASE’01), pages 135–143. Institute of Electrical and Electronics Engineers,
2001. Coronado Island, California.

[12] K. Havelund and G. Roşu. Runtime Verification 2002, volume 70(4) of
Electronic Notes in Theoretical Computer Science. Elsevier Science, 2002.
Proceedings of a Computer Aided Verification (CAV’02) satellite workshop.

[13] K. Havelund and G. Roşu. Synthesizing monitors for safety properties. In Tools
and Algorithms for Construction and Analysis of Systems (TACAS’02), volume
2280 of Lecture Notes in Computer Science, pages 342–356. Springer, 2002.

[14] S. Hirst. A new algorithm solving membership of extended regular expressions.
Technical report, The University of Sydney, 1989.

[15] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison Wesley, 1979.

[16] L. Ilie, B. Shan, and S. Yu. Fast algorithms for extended regular expression
matching and searching. In H. Alt and M. Habib, editors, Proceedings of the
20th International Symposium on Theoretical Aspects of Computer (STACS 03),
volume 2607 of Lecture Notes in Computer Science, page 179. Springer-Verlag,
Berlin, 2003.

18

299

goodelle
Rectangle



Sen and Roşu

[17] M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a Run-time Assurance
Tool for Java. In Proceedings of Runtime Verification (RV’01), volume 55 of
Electronic Notes in Theoretical Computer Science. Elsevier Science, 2001.

[18] J. Knight and E. Myers. Super-pattern matching. Algorithmica, 13(1/2):211–
243, 1995.

[19] O. Kupferman and M. Y. Vardi. Freedom, Weakness, and Determinism: From
linear-time to branching-time. In Proceedings of the IEEE Symposium on Logic
in Computer Science, pages 81–92, 1998.

[20] O. Kupferman and M. Y. Vardi. Model Checking of Safety Properties. In
Proceedings of the Conference on Computer-Aided Verification, 1999.

[21] O. Kupferman and S. Zuhovitzky. An Improved Algorithm for the Membership
Problem for Extended Regular Expressions. In Proceedings of the International
Symposium on Mathematical Foundations of Computer Science, 2002.

[22] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime
Assurance Based on Formal Specifications. In Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and Applications,
1999.

[23] G. Myers. A four russians algorithm for regular expression pattern matching.
Journal of the ACM, 39(4):430–448, 1992.

[24] T. O’Malley, D. Richardson, and L. Dillon. Efficient Specification-Based Oracles
for Critical Systems. In In Proceedings of the California Software Symposium,
1996.

[25] D. J. Richardson, S. L. Aha, and T. O. O’Malley. Specification-Based Test
Oracles for Reactive Systems. In Proceedings of the Fourteenth International
Conference on Software Engineering, Melbourne, Australia, pages 105–118,
1992.

[26] G. Roşu. Hidden Logic. PhD thesis, University of California at San Diego,
2000.

[27] G. Roşu and M. Viswanathan. Testing extended regular language membership
incrementally by rewriting. In Rewriting Techniques and Applications
(RTA’03), Lecture Notes in Computer Science, to appear. Springer-Verlag,
2003.

[28] J. J. M. M. Rutten. Automata and coinduction (an exercise in coalgebra).
In Proceedings of the 9th International Conference on Concurrency Theory
(CONCUR 98), volume 1466 of Lecture Notes in Computer Science, pages 194–
218. Springer-Verlag, 1998.

[29] K. Sen, G. Roşu, and G. Agha. Runtime safety analysis of multithreaded
programs. Technical Report UIUCDCS-R-2003-2334, University of Illinois at
Urnaba Champaign, April 2003.

19

300

goodelle
Rectangle



Sen and Roşu

[30] B. Watson. A taxonomy of deterministic finite automata minimization
algorithms. Technical Report ISSN 0926-4515, Eindhoven University of
Technology, Eindhoven, The Netherlands, 1993.

[31] H. Yamamoto. An automata-based recognition algorithm for semi-extended
regular expressions. In Proceedings of the International Symposium on
Mathematical Foundations of Computer Science, pages 699–708, 2000.

20

301

goodelle
Rectangle



�������� � 	
��� �� ���� �� � �������

������� ���	
�� ��������� ���� ��	��� ������ ������ ��	��

�	�	� ���� ��� ����

���� �����	� 
�������� ������	��� � �	����� �������

���������� � ������� �� ����������	�����

������	
� ����� ������ � �	�
�	�� �
��!� �����"
�#�	�
#���

��������

�� ������� � 	�
����
�� ���� �� � ������ �� ��	���
� �
��� �
���
� ������ �� � �������� ���
���� ���� �� �����	���� ����
 ������� ���	��� �� ����
�� ����� �� �Æ������� �� 	�������� ����� ����������
� ����
�������� ��� �� 	������� �� ������������� �����
������ ���� ��� �� ����� �� �� ����	�� �� �
������ ������ 	������
�� ����
	 ������ ����� ���� ��� �� 
����
� �� ������������ ���� ����
������ ������������ ���
������ ��	� �� 
�	��� �������� ����
������� �� �Æ������� 	�
��
� ����
 �����
�� 
�������� �� ���
 ��� ����������� �� ������ �����	���� ����
 ����� �������� �� ����
 ��

�������� ��
	�
������
� �� �������� ��� �� ��
 ��
� ��� �� ����� �� �� ��
��� �� �� ����������� �����
����� ���
����� �� �� ������ �� ��� ����
������� ��� ��� ��� �������
 ��
������ ��� ����������� ���� ��� 	��
�� ��
���  � �� ���� ���� �� ���	�
��� �� ���
����� ��� ���� �� ���� ����������� ��� ���� �� �
�
 �� �����	����
��� ��� �� ����� ��
� ����������� �� ����� ��
��� �� ��� ��	���� �� ���������� ������� �� ����! �������
���������� �������������� �� ��� �������� �������� ����� �� ���������� ������� �� ���
��� ����� ��
��� ���
��������

�
������� ������� ��
��� ��������� ���������� �������� ����� ���
�������� ����� ��������

� ���������	�� 
 ���	��	��

� ���������� ���������� �����	 
����	� ���
�
�� 	 
������ ������� 	� ���	� �	
���� �� �����
�������� 
������� 	�� 	�	������ 
	�� ����������
�		���
�� ������ �		
���� 	�� �������� ��	������
	�����	��� ��� ���� �� 	�����
��� ��
	���� �����
����� ��� �� ��	�������� ����� ����� �� ����
�	�� ���� 	� ������ ���� 	�����	���� �� 	 �	����
�� ��������� ����� ���� 	� ����� ����	������ ���� ��
�	���� �������	���� �����	���	���� 	�� �	����	���
����� 
�������� ����� ���� �	� ���������	��� �	��
��	��� 	� ���� 	� �������� �� 	���
����� ����	������
��
����� 
������	�� 
��������  � �	�����	� 	 �����	�
��� �� �!������ ���� ���	�� ������� ���� 	�� �����
	�	�� "��� ����� ������� �	�� ��� ����� ��� �����
��
��� 	�� ��
� 	 #���	�$ %������ �� ��� ����& ��
����� ��� ����� 	������ 
	� ���� �� �� �	���� � ���
�� 	��� �!������ ���� ��
� ��������	
��� �	�	���
����
��	� ��	��� �� �� ��

����	�� ���� ���� ���� 	��'�

��� ����� � �	������� ������� ���� ��

����	����
��	���� 	 ��� �� �	�� 	� 	����� �� ��� ����
	����
��	� �� ��� ���	� �� �� � ��	� ��� ��� ����
	���� ���
������� 	��������� �� ���(� �������

"���� ����� �� 	���
����� ���� 
������ #�����	����
	 ��� �� ��������� 	��'� ���	
��	��� 	����� �	���
	� �� ��� ��	
���� 	����$� ����� ���� ���� �� ������
	 ������������ ��� �� �����	���� �� ���� ������	�
	�� ��

����	���� �������� ��� ���� 	��� ����
�� �� 	��� �� ��

����	�� 	�� �����	�� ���� �	��
����� ���� �����	���� �	� 	��� ��
 
���� 	��
����� ��	� ���� ��	� ��� �� �	�� ����(� �	� #������
���� 	����	���$ �� ��	����� ���
������ �� 	�	�������
	�� ���	
��	��� �������	������!�� ���� �	���� ����
�	���� ����� ��
 �� �����	���� #������	����$ ��
	��� �	�� ��	������� �����	���� #������������ ������
�	����$�

)�� 	�� ����� �� ���� �	� �� �	���	��� �������
��� 	���
�* ����� ����� ��	� 	� �
����� ���������

�������� ������

+

302

goodelle
Text Box
Appendix Z:

goodelle
Rectangle



��������� ���� 
������ ����� ��� !�	���� �� �	��

�������� 	���
� �� ��� ���	� ������ ,������ ��
��� �	���� �� �����
 ��	�	������� ������	������ 	��
���������� ����	������ ��
���� 	�� 	�����
��� ���

	���� �������� 	� ����� �������� �������� 	�� 
	��
��	������ "� 	� ��������� �� ���� ��	� 	� ���
�
����� ��������� 	�� ��	� �	�� ��� 	������ �� 
	��
���� ��� ��������� �� �	� ��
�� ���� 	������ �� 	��
����
��� �������� 
	���� ����� %!�	����& ���� �� ��
��������� 	�
������� 	���
� �� ��� ���	�� ��
����
������� ����� �� ��� ����� "� 	� 	��� 	���
��� �����
�� ����	� ������� � ���� 	 ��
���� ����	� �������  �
�	�����	� ��� ��������� �� ��� ���� ��	� �	�� ���
��������� ��� �� ����	�� 	���
�� �� �� ��	� ��������
������ �� �	� ���� ��
�� 	�� �� �� 	��
���	���� 	� 	
���	�� ����� ��	 ��

����	���� ���� ���� �����

-�
� �� ��� �����
� ��	� �	�� ���� �����������
������� �� ��� ������� �� ���� ������� 
����� ��	��
���� 	�� ���.��� ��������� 	�� ��������� #���� �����
/0 12� /3�12� � /4�52$� "�	� �	� �	�� ��������
	��� ���� 	�������� �� 
������� 	�� 	�	����� �� ���
�	��������� ��	��������� ���	���� �� ���� ������ 	�
	������ ,����� �� ����� �� ��
� �����	� 	������	���

������� �		���
� 	������ �� ����� �	
���� 
���
��� �� 	��������	���� ������	���� 	�� ��� ��������	�
	���� 	�����
��

��� ��� �� ��� �	�� �� ��	����� 	� ��������  �
��� �� ���� 	 ���������� �����
 ��
��	����� �����
���� ��
� ��
�������� 	�� �.��� �� ��
� �� ��� 
	��
	���
������ �� �� 
������� �	
����� ��� ����	�
�	� �� ��� �	��� ������� ��� �� �����	��� �� �������
����� 	�� ���������� ��
� �� ��� 
��� ����	� ������
�		
���� �� ��� 
���� � ����� ���	����� �� 
���
����� �	���� 	�� ��� ������	���� 	�� 	�����
���
���������
	����� "� ������� ��
� �������� ����������
�� ��� 
������� �	
���� �� ��� 	�� ���.� ��

	�
��� �� ���

� ������� �������	��

 � ���� �������� �� ��� ���.� ������� ��� 
���� 	� 	
���� �����6 ��	� 	� ��� ���� ����� �� 	���
������
���� ��������	��� 	�� 	� 	 ������ 
�����	���� �����

���� 	 ��

�� ��	�� ��� �� 
���� ����� ��	��� 	��
��� �� 
���� ���� ��	������ 	�� 
���	���
� ��
	���
�������� ���� ��	��� "� 	��� �������� ��� ����
���	� ��
������� 	���� ��� �	�� "� �������� ���
������� ���� 	 ���� ���������� 	���� ��� 
	�� 	���
��

����� 
	�� �� �� 
����� 	�� ��
� �� ���� �
����	�
������

� ���������� �� � ���� ����� �� 	���
����� 	
���	�� ��
���� 
������ � ���� 	� 	�� ��
���	���� ��
�������	���� �����	���	���� �	��� ��������� 	��'�
�	��� ��������	����� "� 
���� ���� 
������ ���� 	
���������� �� � ��
����
 ����
� ������ �� �������
����� �� 	 ��
	���� ��������� �� ��� 
�� ��

�� ���
���� �� 	 
	���
 � �� 	������� �� �	���� ����� 	�  4

	� 	��� ��� ��� ����� 	 �
	�� ���	� ����� �� �����
���� ��	� 
	� � 
	� ��� ������� %�	� �	����&� ��� ��
����������� ���� ����� ��������� 7	�� ������� �����
� �	� 	 ���	
��	��� ��	����� �	��� 	�����	��� ���� ���
8�#�$� ��  4 
	� �� ��	��� � 
������ � 
�����  4 ��
	� 	�� ��
� ���� �� �� ��
������� 	�� ���!���� ��������
�� ��� �������� 	�� �������� ������� ��#�$ 	�� ��#�$� ��
����������� 	�� ��� �	��� 8�#�$� � ��� �� �� ����� ��
��� ����� �� ����	�� ��� ��� �������� ��� �� �����
�
��� 	� 
��� �� �	��� �� �	����  4� 	� ��������� ���
���	� 	
���� �� �	��� �� 	���
�� �� �� ������� 	� 	��
��
��� 1����!������� ��� ���� 
	� ��� �� ��
����
��� �� ���� ��
���� ������� ��� �������	
��� ����
�������� ��� 
��� ���� �����	�� 	�� �������	���
���!�� ���  4� �� ��� �� �������� �Æ������� 	� 	
�����
�

�� ��� ����
�� �� ���� �� �� ������	����� �	��
��� 	��� ������� 	�����
����� 	��� 	���
��� ��
����	� ������ � ���� ������� 
���	���
�� �������
�� 	����� ����
�� �� ��� ��	����	��� ������	����

������ ��� ���� ��	� 	� ��� ��	��� ���� ���� ��
�������� ��	���� ������ �	������� #��
��	��� �
��
	������$ ���� 	�����
� 	� 	������ ����
��� ���
������� ��

����	���� 	���� �� ��� ����������
��

����	����� 	 ���������	�� 
���� ����
�� �!���	�
���� �� 	 ����	����� 
����� ���� 	 �������� ����
�����
	��'� ����� ��������� �� ��� %����&�  �� �������
���� 	� ����	� ��	��� 	�� ��9���� ����� �� %����
�����& 	�����	��� ���� �	�� ��	��� 	�� �� ��� 	���� ��
��

����	���� �� ��������	��� ������ ���� ��� 
	� ���
���� �� �������� 
	�� �� ��� ����	
���	� ��	�������
�� ���������� ��
���	���� 	�� ��

����	����� ����
	� ���	
�� ��	�� �������� 	�� ���� ��
	���� ����
��
�� ���������� ��������� �	������ ��
��� �� ���	�
��������	� � ���� ��������� 	�� ���� �
����	������
	�� ���� ������ #���� ����� /�752$�

����� ��
 	� ��������	� ���(� ����������� ���
��	� �� �� 
	��
��� ��� ��� �������� �� �������� 	� 
	��
������� ������ 	�� �����
��� 	� 
��� �� ���� �	��� 	�
��������� ���� �� 	���
������� �� ��������� 	 ���	��

�	
 �
��
 ���
 ��
 ���� ���� ��
�
 � �� �
�
��� ���

�
�� ������ ��
 ��
�� �

���� ��������� �� ���� ������� 	
����� ��

������ ���� � � ������
� �������� �� � ��� ���� �� 
���� 
�
���� ��� ������
� �� �� ��������� �� ����� ���� !

:

303

goodelle
Rectangle



����� ���� � ���	
��	��� ��	����� #	�	��	���$ ���
������	 ���	���� �
�	
���� ���� ��	���� �	� �� �����
���� �� 	� 	�����	�� ��������	 ���	���� ����
����
;�� ��	� ��� �� ������� 	� ���� 	� ���� �� �� �������
����	� ������� ��� ��� �� ������ ��	� ����� ��
������
����� �� ��	
��� �� ���� ������� ����	� �� 	 �!���� ��
	 ����� ��� �� <��� 	 ����� ��
�� ����* �� ���� ��
!���� ��
�� ��
 	 ��	�� ����� ����
	�� �� 	�����
��� �� ���������� ��� ������� ��� ���� �	�� �� 	�	��
��� ��� ����� ���	��� 	�� ��
��� ���� ��� ��	��(�
������� ������� �� 	 ������ ������ �� ��� ��������	�
	�����
��

=�
 	 �����
(� ����������� �� ��� ���� �	��� ��
�� ��� �������������� �� ��� ����� 
������ ��	� 
	����
� ��� ��� �	����	���� �� ��������	� 	������ ,�� ��
�	���	�� ��� ��������	� ��������� ���� ��� ����	� �������

	��
��	���� �� ��� �	
���� ����� �� ����	�� ����
�����	���� 	�� ��
�������� 	� �� �� ��������� �� 	
��	�������� �����
��� ����������� �����
 /1�)2� "�
	����� ����� ������ ��������� ���� �� �����	���
����
��	���� �	��� �	
���� �� 
������� ��� 
���
����� �� ��� ����	� ���
� /�>-2�

"� �������� ���� ������� ���� ��	���� ��
� �	���
	���
������ 
	�� ���� �� ��� 	������	��� ��� 
����
�������� ������ 	�� �� �� ��
��	���� ��	���
 �	���
�� ���� 
������ >�� �
���	�� 	���
����� ���	���
�� ��� �	��� �� 
���� =���� ��� ��
� ����� 	� ����
����� -������ �� 	���
� ��� ��������� �� 
�� ���	
���� 	��� �������� ���	 
���� ��� ���	 ���� �����
�� �������� �	�� �� 	 ����	� �	���������	��� �������
	�� �� 	��� 	���
� ��	� 	�� ���� 	� 	�� ��
� �	�� 	�
����	��	����� 	����� �� ���� ����	� ������ ��� 	���
��
���� 	���� ����	� ��
� �� #�	�����$ 
	�� �� 
��� �� ���
��� �� ���� ���� ��� ��������� �� 	 ����	� ����� ��
�	��� �� �	����� "������ ��� 
������� 	�� 	�	�����
�� �������� ���������� �����
� ����
�� �������	���

�� ��Æ����� ��� ���� 	� 	���
�� �� ��

����	��
���� ��� 	����� #�� ���� 	�����	���� ���� ��� ����	�
������$ ����������� ��	 ����	�� �	������ "� 	��� 	��
��
� ��	� 	�� ��

����	���� �� �������� ������������
 � �� ���������� ��	� ��� 
�� �	������ 	���
����� ��
	���������� ��

����	���� ����� 
	�� �
���	��
���������� ������	���� 	�� 	���
��� �����
� ���

	��� �������	��� /�752�

� �����	�� ����� �����

�����	��	�� �� ������� 

"� ��� ������� �� ��
� ���	�� ��	� �� ������� �� ��
��� 
��� �����	� ������ �		
���� �� �� 	������	���

���� �� ���� �� 	 
������	�� 
������� ��� �		
�
���� �� ������� ������� 	��� �� ��� ��
�� �� ����
�� ��� ��
�� ��  4�� ����� 	����� ��

����	����
	����� 	 ������ �� 	 ������	���� 
���� 	�� ��	�����
	 
���� �� ���(� ��������	� ���	��� ��	���� #�� ��
������������ ����	��� ���� ���� 	� ������������
	���� �
�	
�����$� 
����� �� ���� ��������	� 	�� ����
��
 	�	�
	���
��� 	�� 	 ������ �� ��� 
���� �� ����(
��������� �� ���� ������
��� � ���� 	� ������ ����
��������� �� ���	� � ����	�� ������ � ������ ����

?�� �� ��	�� ��
��	������ �� ����� ����� �� ����
������6 !�	����	���� 
����� �� ������� ������� 
�����
�� ��������	� ���(� 	�����
�� 	�� ��� ������	����

������

$# � �	���� ����� �% &�' �����

>� 
���� �� ���� �� 	 
������ �
��	����� ��� ��	��
����������� �� ���� 	� 	������ ���� 	� ��� 
����
.���� 	���� 	�� ����� �� 	���� ��������� ���� ���
	����� � ���� ���� ����	����� ��� 	� 	���	��� ���
��� �� 	���
����� ��
� ��� �� �	���� ���� �� 
���� ��
����� �� �	���� �		���
� ������ ��� ���	� 
�����
��	����� 	�� ����	��� 	����	��� �����
�� @	���
	��
��	���� 	��� ��	� �	���� 
���� �� ����� 	� ����	���
�� ���
����
��  ���
�	��
 �	
���	�
��� �� �� ����
��
� /A>32� �� ���� �	��� �� 	������� �� �������
	 ��
�� �� ������	� 	�� ��

����	���� �����	�����
	��� 	� ��!��
��� � �
��
� ����
��� ��	� ���� ����� ��

	��
���� "� ������� ��
� �������� �	�� �� �	���
�	���� ���� ����� �� 
	��
��� ������� ���� ���(� �����
����	� ���������
	���� ��	������ �� ��� ���� ��������
=���� ������� �� ������� �� !�	����	���� 
���� ��
����( �	����

�� �� ��	� �� �� �	���� ���� 	����� �� ������
��� ������������ 	�� ������ ���	
�� ������
�����
���� ��� 	�� �	��� ���� �� #�$ �������	�� � #��$ �����
	��	� �� ��
�� 	�� ����� �� ����	�� �� ����	� ������
�� 	�	��	��� �� ������ �	�� ��� ���� ��� ����
	����
	���� �	�� �� ��� �	���� 	 �	��	� ��	���� ����� �� ��
!���� �� !�	����� ��� 
������ �������������� �� �� �����
��� 	 ��
��� "�	�
�
	
��� ������ �� 	 
	��� "� 	��� ����

���� ���
 �� ��� ��� ��������� ��� ��
 
"�
���
���� �
���� 

 �#�$ !
�%� ������������ �
 �
�� ��
 �&����� �� �����
 ��
 ���������� ����
��
 ��� ������������ ���
� &�
� �� �&
��
� �����
 ��

��
 
�������
��� ��������� &�� ��� �����
� �� ��� ���� �� � ��������� ��� � �� ����������
 ������ �
�
��
� ���� ��
 
�������
��!
���� &� ��
�� �� �� �
�
���� ��������������� ��������&�
� � 
�
� �� �
������'
� �
����� &
��� � ���������� �
�
����'����� �� ��


�
��()���� ������������ �������� � �������!

B

304

goodelle
Rectangle



	 ��
��� 
���� �� �������� ������������ �� ��9����
�	���� ��� �	��� �	�� �� �� ������� �� �� 
���� �� 	�
��
����
 ����
�

-���� ��� 	�� �	���� � ������� ������� 	� ������	�
��� ��� �	
�� ��� ��
��� �	� �� �	���� ���� ������
������� �� �� 	����� 	 ��
����������� �	��� ���������
8�#�$� �� �	�� ������� ����� �� + � � � � � "���
	 ��� �������� 	�  4� �� ���� 	��	���� �� ��� �	����
����
��� 	 ��� �� 	�	� �� ��� � 
��  4� 	� 	
����� ��
� ���� #�� ����� �	���� ������ �����  4�� �
���	��� ��
� ���� ��� �	� ��	��	�� ���  4�( ���	�
����� 	�� #����
	���$ �	����$� ��� ��� ����� �� ���
���� �����  4 �� ������� ���
 	

�	�
��� �� ��� ���
��������� �� ���� ����	� ��� �� ����� �� �	��������
������	���� 
������ ��� ��� ���� ����������� ��

	����� ��� � ��� ����� � �	������� ������ ��	� ��
�� �������� �� �� �����

"��� 	 ��� 	���� �� 	�  4(� ���	���� #� ������
	 �������� �
	�� ����	��� ��
 ��$� �� ��	�� �����
���
��� �	���� ������ ����	���� ��� ��� ������� � �	��9�
���� �	��� �� �����
�� 	� ��
� 	��� ��  � �� ��
��	�
����� #��� /C�)2$� � �	� 	���
�� �� �� 	 �����	��* ��
����	�� �	���� 
����� ���� � 
	� ������ �� ��
��
���(� ����� 	� 	��'�  4(� ����� �� 	� ���� �������
�����

�� ������	�� ��� ����	� ���������� �� ��� �������
��  4� 	�� ���� �	�� ����
����� �� ������ ��� �����	�
�	��� 	� ��	
�����

=���� ���(� 	���
� ��	� ���� 	� �� 	 �������	���

������� ��	� ��� �	��  4 #� 	 ��� ��  4�$ ����� ��
�� �������� ���	������ -�
� ������ #��������� ��
 4�$ 
	� �� �� �
���	�� ��	� ���� �!��� �������
#����� ��� � 
�� ���� �������	��� ������� � ���
����� �� ���� ��������$ 	� 	�� ��
��� ��� ��
��� �	�
�� ������� ��	� �� �� 
���� �� �� 
	�� ��� ��������
8�#�$ ����������� �� ��
�6 ���� ������ ��
� ����
	� %�����
���& ��� �	��� �� ���� 	�  4� ����� �����
����( ������� �� ����	����� ���  4(� �	��� 	���	��� ��	�
��� �	
�� ������ 	������ ��	� �����  4� ���� ����
	��	����������  � ��
�  4� ���� �� �� �������� ����
����	��� ��� �� ��� �!��� ��	������ �������	���� ����
��� �������� 8�#�$ �� ���� 	�  4 � �	� �� 
	�� ����
����6 ���� 	 ��� 	���� �� �� ��� �	��� ��	�� �����
���� ����� ��� ��	���* 	��� ��
� ��
�� �� ��
�
������ ��� �	��� <�
�� �	�� �� 	�	��� ������ 
	��
��� � #
��$ 	��	����� 	�	��� 	�� ���� ��
����� ���
���� �� ��
� �	�� �� ����  4�

��� ������ ��	
��� �� �� ������� 	�  4 ��	� ��
	� 	���	� �	���� >��� ��� ���	���� �	� ���� �������
���� ��� � 
�� ���� 	���	�� ���� �	���� >���
	 �	�����	 ���� ��� ���� ������ ��
� �����������

����	��� ��
 ��� �	���� ���� ���	������ 
� ��� ���
�����
�� ��� �	���(� ����� �	��� 	� ����� ���� ����
	������ 
�� ��	� ��� 8� �� ����  4 ���� �� ��� �� ���
��
� ����� 	�� ��� ���(� �	��9 ����	��� 	���������
���� ���	������ 
�� ����	�� ���� ���	������ + � 
��
�� %
�����& ��� �	���� �� ��	� ��� �	��� 8� �
	���
��	������ "����� ��� ��� �� ��	�� %	� ��� �	�
���& � �� ��� ��
� ���� ���������� �� ��� �����
��
� �� 	� 
	�� ��
� ����� 	� �� ������ �� 	 ������� ��
����� 	� ��9���� ������������� ��	� �	� �� 
������
���� ��9���� ������� �� ��� ���(� ��������	� ���	���
����������

"�	� 	�� ����� ��� ����	� �������� �� ��������
8� 	�� ��	� �		
���� ���� �� ������ ����D �� ��
�
���� � E +� ��� �	��� 8�#� E +$ ��  4 � �	� �� �	����
	��� �������� �� ������ �� ��� �	��� 	� ��� �������
��
� ����� 8�#�$� ��� ��
�� �� ���� �������� ����
 4 	� ��
� �� ��	� �� ������ �� ��#�$� 	�� ��� �	���
�����
����� 	��� ��  � 	�������� ��� �	��� ��������

	� ���������� ������ �� ��
�� =� ����	���� �� ���
�������	��� ��	
��� 	����� ��� �		
���� 8�#�$� �
	�� ��#�$ 	���� �	���� �	���� 	 <�
� �� 8�#� E +$
�	��� ��� �� ��
� ��
 �� 	����� ����� ��� ����	�
��
 �� ���  4 �	��� ��������� �� 	� ��������� �� �	�
�� ������ 	�

8�#�E +$ F � #8�#�$ ��#�$ ����#�$ �$

�� ��
� ��������	���� � �	���	���� �������� � � �
�	�����	 ������ �� 8 ��	� �� �	�� ����������� �����
�
����� ���� /C�)2 ��

8�
� #�E +$ F ����8�

� #�$� � � ��#�$ G��

���� � �� 	� ������ �����	��� "���� ���� �	�����	
 4 �	��� �������� �� 	��	�� ������	����� �� 	��� ����
���� 8#�$ ��	� �	� �� ���	����* ���� �	��� ���������
	� ������ ������� ��� ������ �� 
���� ���	�� ��
����� ��	� ���� ������ ����� �� 	���� � ���� 	�� �����
�	������ ������ �� ��� 
������ 	�	 �� ������ 	���	�
�	���� -�
��	��� ��� 	��  4 �	��� ��������� ���� ��
�������	���� �� ��
� ���� 8�

� ��* ��������� �� ��	�
���� ��  4� 	� 
������� �	��� ��������� 
	� �� ����
��� �� ��� ����� ������� � �������	���� �� ��
�� 	��
��� �����

$#! ������ �% &�' �������

 � ��� �� 	�� ���� �� ��
�����
 ������� �� �� ����
������ 	�
������� 	���
�� ���� �	�� �� �� �	�	���
�� 	�
������� �������� �	���� ������� ����� 	�����
�	��� �� 	 ��
	� � ���� ������� ���	��� "� ����
���� 	 ��
��� 
���� �� 	�����
� 	�����	��� �� ����
��	� ����� ���� ���� ���� 	�����
��� 	������
	����� �� 	 ���	�� �	��� �������� ����� ���� 	�

H

305

goodelle
Rectangle



��	������� ��������� ���� ������ ���� ��	�� �� ������
��� �	����  � �� 
������� �	
����� �	��� 	� �����
	� ������� ������ 	�� ����� ������� ���	����� �����
�� �����
� 	� 
��� �� ������� ������( �	�� 	� �	��
	� ��������� �� �� 	���
� ��	� 	 ������ ��� �	� ����
��
� �	��� ��
 	� 
��� ���  4 	� 	�� ������ ��
� �����
��� !������� 	����6 	
��� ����	� �	����	��  4�� ���
������ 	 ��� ������ �� ��	� ��� �� �� �� ����� �����
 4�D �������� �� �	� �� 	���� ��	� �	�� ��� �	���
	� ����� ��������� ������� =� ��
�������� �� ����
���� 	 ��
������ ������ �� ���	
�� ������ �����������
	�� ���� 	��� ����� 	 ��� �� ������� ������ ����� ���
��� ��������� 	�� #����
	���$ �	���� 	� ����� �� 	
�	�����	 ���� �����  4 	
��� ����� ������ ������
��� ��� ������ �� ����� ���D

"� 
���� ��� ��������	� ���(� 	�����
���
���������
	���� ���� ���(� ��������	 ���	���� �����

����� ;�� I���� 	 ��� ��  4� ���� ���� ����� ���
������� 	�� �	������ 	 ��� �� ��	��	��� ��� ���	���
�������� ;� ��	� ����� ��� ����� �� �� ���  4 ��	��
�� ��� ��� ������� ��	�  4 	� ��� ���� �	�� �� �������
���� ������ �� �������� � �� 
	��
��� ��� ��
��	
��
�����	�� �� ���(� �
��
�� �������� �	�� ��� �� 	��
��
�� �� ���	�� �������� ,������ 	 ��	� �	���� ��
����� ��	������ �	� �� �������� ��	 ��9���� �������
�� ��� ��������� ;��

-�
� �	�	���� ��	� ��������	� ���	��� ���������
�	� �� �������� �� ������ �� 	� ��� ���(� ����	���
��
 ��� �����  4� ���  4(� ����� �	��� #� ��� �����

	��$� 	�� ��� ����
	��� ��
�������� �� ��	�  4 	��
��� �	��� � ����� ��� ��
�� �� ���� ���� �� ���  4(�
��������� 5�� ��#�$ �� ��� �������� ��  4 � 	� ��
� ��
	�� ��� ���� �� ��� ���	� ��
�� �� ���� ������ ���
����	��� � ��
  4 �� ���� ��� ��	�� �� 
����� �� ���
	��� ���(� �	��� ��������� ��	���� �� �������� ��

;�#�$ F ������������ �#8�  ���� � �� �� ���� �$�

���� � �� 	� ��������	���� �������� ��	� �� ����	��
��� �� 8� 	�� �������	���� �� ����	��� �� ��� ���
��
 ���  4 � ����� �� ����#�$ � ��#�$��� ���� ��������
�������� ��	�  4 ������ ��� �� ���� 	� ��� ����
	���
�������
 ����
	� ������� )����� ��	�� �� ��
��������
��	
��� �����
� �� 	 ��� ���� ������ �� ��� �����
��� ����� �� ��� �	��� ���� 	������� >�� ��	
��� ��
	 ��
��� ����� ��������	� ���	��� ��	� ��� ��� �����
���������� ��

;�#�$ F ������������ /
���������������
��	�����
������

2��

���� �� �� 	���
�� ��	� ��� 
���
	� ����	��� �� 	��
��� ��
 	��  4 �� ������� ���������

7�������� �	�� ���� �	 	���� ����( ��������	�
���	��� ��	������ ���� �� ��� 	���
����� ��	� �	��
��� 	��� ������� ��������� 	�� �	���� �������������
#������ �� ��� ���������� �� ;� �� ����$ ��
 ��	�
���� ���� ��� >��� ���������� ��

����	����
	�� ������	���� 	� �	��� ���� 	������� 
�������
���(� 	�����
��� 	���� ���	��� ����
�� 
�� ��
�
�����  � �	�����	� �� 	������� �� ��� 	��	�� 
���
������ �		
����� �	�� ;�#�$ ����� �� �������� ��
	��� ������ �� 
�� ��
 �� ����	��� 
�	
 ��
� #�$ �	�
�������� ���� �
��� #�$� 	� ��
� ����� �� � �� "�
������� ��
� 
����� �� ��� ������	���� �����

$#$ ������ �% &�' �����	��	�

"� ��� ������� ��
� �������� ������ ������� �� 
���
����� ���������� ������	�����

�� ��� ����
�� 	 ������ ��� ����
�� ��� %����
��	��&� 	�� ���� ��	�� ���� ��	��	��� �� ���� ����
��	� �� �	��� ���
 �� ��� �����	���� ��� ��	�� �� ���
���
 ��� ��	� ������� ��� � 
��  4� �� 	 �	�����
�	 ����� �� ��� ������� 	��	�  � �	�� �� 	 ��� #����
��� � 
�� ���� 	������� ���� ��	�
 �� ��	������
��
���	�������$� ��� ��� �� ����� 	������� �� ��
�
����������� ��� #����� ��� ��� ���� ��� ������ �����
����$� ����
��� ��� ���������� ��

����	���� 	�
���� �� ��������� 	�� �� ��� �	������� 	�	��	������ ��
��� 	� ������ ����� ���������	�� ����	�� �� ��� ��
��	
�� 	 ����	����� ������ 
����� ��� ��� ��9����� ��
��	� ��� ��	��(� ��������� 	���� ��� ������
���� ��
����	�� �	� �� �������� �� �� ����
����� 	��'� �
�
������ #����� �����$� 	�� ��	� ���� ��������� �� ������
�� ���	
��	��� ��	��� �� ����� ��������	��� �	���

"���� ��� ���������	�� 
���� �� ���	�� ��� ��
�
����� �� 	�	���� 	�� ��	������ �	�� �� ��
��	��� �� 	���
��9�� ��
 	 ��
�� �� ������
����� ����� �����
��
���� �	� �� ������� ���� ��� ����	� �	��������
>�� �	����� 	� ��� ���	� �����
� ���� ����	�����
� !�	�������	����� ������ 
������ ���� 	� %���	���
���& ���	�	���� #��� �� 	 ������ ����� �� �	����$� 	��
��� �������� ��

����	���� ���������� 	� ��� ��	��
����� ��� ������ �	����� �� �������	� ������� �� ���
����	 �� 	�� ����	���� ���� 	 ������ ��	�� �� ������
%<��� 	����� 	����&� ����� ������ � ��

����	�
���� ����� ����� �� �����	���� ����� ���	� 	�� ��������
����� %������ �� ��� ����& �� �
����� ���� �������
���� ���� ������ ���	�� ���� 	����� �	�� 
�� 	����
	�� ��������� � 
�� ���	��� ������ 	�� ��� ����� ���

�*� ��
 �� ������ ������� ����
�� �
������
 ����� &
 ��� �

�
�!
�+�
 ��,���
 ������������� ����
 �������� �����
 ��
�
�
� ��� ����
 � ��&����
� ��� ��� ��������� �����
 ( ����� � ��


��
 ��� ��� 
"����
� ��
 ����
�
� �� ��
 
����
 ����� ��
� � �
 ���� ��
 ����
�
� �� ��
 ���(��(��� ������������� ����
!

J

306

goodelle
Rectangle



�	����	���� ��������� �������� �	� �� ������ 
���	�
���
� �� ���� ��� ���� �� %�	�� �	��& �� ���� ��	��
��� ��� 	��� �� ��� 	� ��� ��
%��� �� ���� �� ��
	��� �� ������ �������� ������� ���� ��� ��	��� 	��� ��
���� ��� ���	
��	��� �������� ������ 	�� ����� 	 ���
��	���

�� ��� ���� ����
�� �� ������� 
����� ����
���� �� �� �������� �	�������� ������	�����  � �����

������ ��� ���� �� ��� ����� ���� �� ���� 	��
����
���� ��� 	��� �	�� ��������	� ��� ������ ����
�����
 	��� 	� 	� ������� 	�����
��� 	�����  � ����
����� �	�� ��� ��
��� ������� ��� ��� ��	���� �� ��
��
������ ��� ��������	 ���	���� ����
���� ����������
�� ��	� ����� ��� ���� ��������	� ���	��� �������� ��
��� 	����(� ��	���� �� 
	��
����� ��� ��� ��������	�
�	��9� ��� ���� 
	� ����� ���� �� ��

����	�� ����
��� 	������ ��� ���� �� �� �������� ������	���� 	� ��
��� �� 	���
����� ��� 
������ 
�� �Æ�������� ��� ��
�������	������!�� �	���� ���� "����� �� ��� �������
�� ��������	� ������� 
	��
��	���� ���� ����	���� 
	�
�� ��������� 	 ���	��� ����	��� �� ���� �� 	� 	� ���
��
� �� ��� 
�� 	�����	��� !���
 �
��
� �	
�����
���� 	�� ���� �	�� 	 ������ 
������ �� 	���
������
	�� ���� ��� �������������� �� ��� ����� �����
 ��
	���
�������� ��	� 
������ � 	��� ��	� ��	� �� ���
��������	� �������� � �� ��	� 
	���� /�>-2� ���� ���
%�� ��	������� �����	����& ����	�� �	� ���� 	� 	
�	� ����� ���� ������ �� ����� ��� �9���������� ��
�	���� ������	���� ��	������ �	� �� 
�	�����

 � ������� ��� ��� ����	���� ����
�� � ��� ��	���
�	��� ������	���� �� ���� 	�� ��� �� �������� ������
�	���� 
���� �� ��� ���� �	�� � 	� 
	�� ����
����
	�� �	���� 	�� 
	�� �������� ������	���� ��	�������
����� ����
���	�� ������	���� 
����� 	�� �����	����

�� .������ ��� 	��� 
�� ��
���� ��	� ��� ��	���
�	��� 	���	����� "� ��� �� ���� ��	� ��	�� �� ���

������	
� ������	���� ��	������ 	� �	������ �������
�	
��� ������	

5�� �� ��

	��� ��	���� ��� �������� ������� ��
	 ������	���� 
����� 	�� ��� �	���9� ����� �������
���	��� "������ 	�� �������� ��	������� ������	�����
�	�� ��� ������� ��� ���� ����������� #��� ��������
	�	��	���$ ��������	� ���	��� ��	����� ��� �		
�
���� �� ���� ��	����� ���	����	��� �� �	�� ���(� ���
������	 ���	���� ����
���� 	� ������� �� ��� �����
��
���� ���� �� ��� #�������� �����$ �	�	 	���� ���
������
��� �	����� �� ��� �������(� ������� �� ���
���(� ��������� �� ��� %�����	� ��	��&� 	�� �� ���
��

����	���� ���� ���� ���� 	��'� ��� �����
������ ��	� ����� ��� ��� �	���	��� ������ 	�� 	����

�������� ����������� 	�� ��� ����� I�	������� ������
�	����� ����� ���	��� ��9���� ���� ���	����	��� �	��
��� ��� ��
��	��� � ��
	������� 	�	���� 
���� ���
������	 ���	���� �
�	
������ 	�� �� ����� ����� ��	�
���� �	�� �	���� 	� 	���
��� ���� ���� ���� ����
����� �� �� ������  � ����	�� ������	���� ������ 	��
��� �����
 �� �� ������ 	�� ������� 	�� �	���	���
������	���� ��	���� ������ �� ��������� ����� ���
�	
� 
������ 	�� ��� �	
� ��� �� �	��� 	�� ���� �����
��
��� �		
����� �� ����
 	� ��	�� 	� ���� 	� ���
����������� ������	��������� ����� 	�����
���
��������	� ���	��� ��	����� ���� ��������� �	� ����
����
�� �� ��
� �������� ����	��� ��	� �� �	��
��
��	��� /C�)2� "� ���.� 	��� �� �	�� �� 	 ��	��
�	������ �� �� ��	�
 ��	���� ��� �������� ������� ��

�� ��	������� �������	
���� ����
��� �������� ��
��	��� ��

����	���� 	�� 	����(� ������ ���������
�� ��� ������
��� � ��� �����	��� ���	������ 	���
��
����� �� �	����� � 	�� 
���� �� ��	��������� ������	�
���� �
������ 	� ��� ��� ��	��� ��
� ���%���� ��	�����
����� 
�� ����
	���� 	�	��	��� �� �	�� ��� ��	� ��	�
�� ������� �� ��� ���(� ������ 	�� ��

����	����
	���� �������� ���.���� 	���� @�� ����
	����� ��
��� ���� �	�� #	�� ��	���� 	���� �� ��� 
�
��� ���
������ �� ��

����	����� ���	�� 	�� ��������� ����
��	��$� ������ ��� 
	�� ��� �����
 � ��� ��
�������
�� 	�� ���� ��	� ������� ��	� 	�������	� ����
	�
����� >��� ��� 	���
������ �� ������ ��������� 	����
���  4� 	�� ������ ��

����	���� ����� 	� �������
������� ��� �����
 �� �������� ��� ���� ������	�
���� ��	���� ����
�� ���� ����������� 	�� 	�	�����	���
�������
���� 	�� ������� �� ���� �� ��	�� �� ��	�
�	��� ���� �� �� ���������� �� ��
���� ��
��	����
	�� ������� �����
���	���� �� �	���� ����	����

"� 	��� ����� ��� ��	�� ���������� �� ��� 	���
��
����� 	���� ���	������ �� ��

����	���� ����� 	��
����( ������� 	�� ������	���� ������	��� �!����

�� ��

����	���� � 	��� �� ��� �	� ����� ��

��
���	���� ���� ��� ��
� �� ����  � 	��� 
�	�� ��	�
��� 	����� �	�� �� ������� 	� 	�����	�� ������	�
���� 
���	���
� ����� 
	� 
�	� 	 �������	��� ��
�
���	����	� �����	� � �������� ������������ ������ �� 	
�	����
� 	�����	����� ����� �� ����	�� ��� �	� ������
	 �	���9 ������� ��� 	
���� 	�� �	��� �� ������
�	����� 	�� ��� ���	 ���� �� ���� ������	����� ,�����
�� ��	
���� �� ����� ����	��� ���� ��	������� ���
����	���� �� �������� � �����
���	��� ����� �� ��
�� 	 ������ ������� �� ��� >��	
(� K	�� ��������� ���
��
��� 	�� ���� ������ ��	������ ���� �� �������� ���
����	���� ����� ������ �� ����	����

�-�� ��� �������� �� �� ����
�
������� �� � ������� �� 
��� �� ��

 ���

 ���
����
 �� ������������ ���
� �#�$ !

L

307

goodelle
Rectangle



! "��� ������ ����

"� ��� ������� ��
� �������� ���������� �� ��� 	�����
�	��� 
������� �	
���� �������� �� ��� �������
��������� K��	���� ��� �	��� �� �	���� �� 	�������
�� ��� ������� ������( �	����� �� ������� ����������
��9����  4 
����� ���� �	��	��� ������� ��� 
����
�� ��	� �� �	� �	���� 
�� ������������ ����	����
���� ���� ���� 	��  4� 	� ���
�������	�� 	��� ��
�	�����	� ��� ���� ����
� �����	�����6 	 ��� �	�
�	���� ���� �����  4� ��	� 	� �� 	 ��
�	����� �����

�� �
���	�� �
	�� ��	���� �� 	 �������	���

���� ���������� �� ��	� �������� �� �	��  4 �� ���
8� �� 	���
�� �� ������� ��� �(� ��� #����� ��<���
����$ �	���� ���������� �� ����� ��� 
	� ���  4 ��
	�� ��
 ��� �	 	�	�� ��	� ��� ��� �	��� 	���
��
���� �� ��	�� ���� 	�  4 �� ��������� �� ��� ����� 	��
��� ���� ��� 	� 	�	� �� ����  4(� ��������� �

��
��	���� 	��� ���� ��� �&	�
 ����� �	���� ���� ������

���%���� 	���
����� �	� �� 	�����	���� ��	��� ��
��� �	�� �� ��� 
����(� �	���
� ��� 
�� �	���	���
	���
����� �� ��	� �	�� ��� �	� ��� ���� ��	 	��
��������
 ����
	�� �� 8� �� �����  4� � ��	� ��� ���
����� 	�����  � �	�� �� �
������ 	��'� ����
�����
���	� ��������� �� ��� �	���� �	�� ���(� ��������	�
���	��� ��������� ;�� �	��	��� ����
�� ���	���������
����� ���� 	� �!���� �� 
	�� ��������� �� ��� ����
���� �� �����	�����  � �	�����	� ;� �� ��� 	 ��������
�� 	� ��
��	
�� 	

�	�
������� �� �	��  4 � ��	� ��� ��
�� 	�	� ��� 	��� ��	� �� ��� ��	�� 	���	� �	��� 8� 	�
���� 	���	� �	���� �� ����	�� ���� ��� �� ����� �� ���
������� �� ���������
	���� ���� �����	���� �� �����
��������� ��� �� ��� �	��
	�� �� 
��� 	�����
���
	����� ��� ���� �� ��� ����	��� /4�K2�

# "���� 

"� �	�� �������� 	� 	������	��� 	���	�� �� 
�����
��� ���� �� 	 
������ 
	�� �� 
������� �	���� ����
�
��� �� �
��� ������� ��� ���� ��	� 
	�� �����
���� ��		�������� �� 	�����
��� 	������ ���� 	� ��	��
������������ ���	���������� ��� 	������ �� 	9��� 	��
�� 	9����� �� ��� ������
���� 	�����
��� ���������

	���� ���� �����	����� 	�� ���������� ��

����
�	����� ������	���� 	�� �����	����� ��� ����� �
�
��	��� �� �� 
������� �� �� ��
� ��
��� ��� ����������
��	���� �� 	�����
��� 	���� ���	��� ��	������ 	�� ��
��	������� 	���� ������	�����  � �� �� ���� ��	�

����� ���������� 	�� �
����
���� �� ��� 
�������
�	
���� �������� �������� 	�� ��
��	����� ������
�� ��
��	 
������ ���� ����	�� ��� ������	����� 	��
���	��� ����� ������ �� ���� 	�����
��� ���� 	��
���� ����������� ��������� 	�� 
�����	���� �����
� ��
����	��

������	�������� "�� �������� �������
�	� �������� �� ��� �� !� "!#$ #��% !���
����� ����	�� ��
�� &�'('��''���'�)(�

'������	���

/0 12 �� 0������ 5� 4	��������� &>� ����
	� �����
�	���� ���.��� ��������� �� 	� �	Æ� 
	�	��
���
�����
�&�  777 �	���  ���������� �	�����	����
-����
�� ���� +� ?��� :GGG

/1�)2 ?� ,� 1	������ & �������� 1����� -�	���
���� =� ?������� 4����
� "��� 4		
���� �����
�	������&� 4��?� ������� ����� ��  ������� ��	�	�
1�	
�	���� +MNJ

/=K�2 -� =	������ �� I	����� % � �� 	� ������
� <��� 	 4��	
D � �	����
� �� ������
���
������&� 4��� B�  ��(� "������ �� ����� ��������
����������� O 5	���	���� -���������	�� +MML

/C�)2 @� C	��� -� K����� 4� ������ 5� 1����
I� ���	� %�� ������	��� -�
��	���� �� @�����
��� 1�����	���� 	
��� ����&� ���
����� �� +J��
7��� -�
��	���� -�
�����
 O 7���������� ?����� ���
)�����	���� :GGB

/3�12 C� 3� 3���	� 5� 1� A	��� &� ����� ��
���.��� ��������� 	�� ��������� 
������� 
������&�
 777 �	���  ���������� �	������ -����
�� ���� +�
?��� :GGG

/4�52 5� 4	��������� 7� @� =���� �� 0������ &1���
.��� K��������� 4����
� �� �� �	Æ� @	�	��
���
-����
� -����� "��� @����  ����� 4��	

���&�
 777 �	���  ���������� �	������ -����
�� ���� B�
)�� +� @	�� :GG:

/4�K2 -� 4	����� @� "��������� %I	
� �����
	�� ?������� ����� �� @���������� -����
�&� ���
@�-� )�� J� :GG:� 3���� ��	��
�� 4��������

/�752 I�	�� ���� & ���������� �� ?���������
�������
�&� :�� ���� 1	
����� ����� 4���� :GGG

/�>-2 4� ������ @� C	��� I� ���	� %1����	���
>���
��	���� =	
���� �� ��� -������	��� @���
���� 4����
&� �� ���		����

/A>32 @� A����� 3� ,�	�	
	� %�������
� ��
?��������� 1����	��� -	����	�����6 � �����&� ���
@�-� ���� B� )�� :� :GGG

P

308

goodelle
Rectangle



Runtime Safety Analysis of Multithreaded Programs

Koushik Sen
∗

Dept. of Computer Science
University of Illinois at Urbana

ksen@uiuc.edu

Grigore Roşu
†

Dept. of Computer Science
University of Illinois at Urbana

grosu@uiuc.edu

Gul Agha
‡

Dept. of Computer Science
University of Illinois at Urbana

agha@uiuc.edu

ABSTRACT
Foundational and scalable techniques for runtime safety
analysis of multithreaded programs are explored in this pa-
per. A technique based on vector clocks to extract the causal
dependency order on state updates from a running multi-
threaded program is presented, together with algorithms to
analyze a multithreaded computation against safety prop-
erties expressed using temporal logics. A prototype tool
implementing our techniques, is also presented, together
with examples where it can predict safety errors in multi-
threaded programs from successful executions of those pro-
grams. This tool is called Java MultiPathExplorer (JM-
PaX), and available for download on the web. To the best
of our knowledge, JMPaX is the first tool of its kind.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation

General Terms
Verification

Keywords
LTL, predictive analysis, safety analysis, runtime monitor-
ing, vector clock, multithreaded program, JMPaX, Java

∗Supported in part by the Defense Advanced Research
Projects Agency (Contract numbers: F30602-00-2-0586 and
F33615-01-C-1907) and the ONR Grant N00014-02-1-0715.
†Supported in part by joint NSF/NASA grant CCR-0234524
‡Supported in part by the Defense Advanced Research
Projects Agency (Contract numbers: F30602-00-2-0586 and
F33615-01-C-1907) and the ONR Grant N00014-02-1-0715.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’03,September 1–5, 2003, Helsinki, Finland.
Copyright 2003 ACM 1-58113-743-5/03/0009 ...$5.00.

1. INTRODUCTION
The purpose of this paper is to investigate foundational,

scalable techniques for runtime safety analysis of multi-
threaded programs, i.e., programs in which several execution
threads communicate with each other via shared variables
and synchronization points, as well as to introduce a pro-
totype tool, called Java MultiPathExplorer (JMPaX – see
Figure 1), based on our foundational techniques, which can
reveal errors in multithreaded programs that are hard or
impossible to detect otherwise. The user of JMPaX spec-
ifies safety properties of interest, using a past time tem-
poral logic, regarding the global state of a multithreaded
program, which is already assumed in compiled form, calls
an instrumentation script which automatically instruments
the executable multithreaded program to emit relevant state
update events to an external observer, and finally runs the
program on any JVM and analyzes the safety violation mes-
sages reported by the observer. A particularly appealing
aspect of our approach is that, despite the fact that a sin-
gle execution, or interleaving, of a multithreaded program
can be observed, a comprehensive analysis of all possible
executions is performed; a possible execution is any execu-
tion which does not violate the observed causal dependency
partial order on state update events. Thus, tools built on
our techniques, including JMPaX, have the ability to pre-
dict safety violation errors in multithreaded programs by
observing successful executions.

The work in this paper falls under the area recently called
runtime verification [11, 10], a major goal of which is to
combine testing and formal methods techniques. Testing
scales well, and is by far the most used technique in prac-
tice to validate software systems. By merging testing and
temporal logic specification, we aim to achieve the bene-
fits of both approaches, while avoiding some of the pitfalls
of ad hoc testing and the complexity of full-blown theorem
proving and model checking. Of course, there is a price to
be paid in order to obtain a scalable technique: the loss
of coverage. The suggested framework can only be used to
examine single execution traces, and therefore can not be
used to prove a system correct. However, a single execu-
tion trace typically contains much more information than
what appears at first sight. In this paper, we show how one
can analyze all the other multithreaded executions that are
hidden behind a particular observed execution. Our work
is based on the belief that software engineers are willing to
trade coverage for scalability, so our goals are to provide
tools that use formal methods techniques in a lightweight
manner, use unmodified programming languages or under-

309

goodelle
Text Box
Appendix AA:



Specification

Java

Multithreaded

Program

Bytecode

Compile

Instrumentor

Instrumented

Bytecode

Translator

SpecificationImpl

LTL Monitor

Execute

Level 0

Level 5

Level 4

Level 3

Level 2

Level 1

Computation Lattice

Monitor

Execution
Program Execution

JVM

Instrument

Event Stream

Instrumentation

Module
Monitoring

Module

Figure 1: JMPaX Architecture

lying executional engines (such as JVMs), are completely
automatic, implement very efficient algorithms and eventu-
ally find many errors in programs. A longer term goal is to
explore the use of conformance with a formal specification
to achieve error recovery. The idea is that a predicted fail-
ure may trigger an error-avoidance or recovery action in the
monitored program.

The closest works in spirit to ours are NASA’s PathEx-
plorer (PaX) and its Java instance JPaX [10, 9], which is a
runtime verification system developed at NASA Ames, and
UPENN’s MaC and its instance Java MaC [14, 15]. It is
actually the latter’s limitations that motivated us to pursue
our current research. The major limitation of these systems
with regards to safety analysis is that they only analyze the
observed run. Therefore, they can only detect existing er-
rors in current executions; they do not have the ability to
predict possible errors from successful runs. To be more pre-
cise in our claim, let us consider a real-life example where
JMPaX was able to detect a violation of a safety property
from a single execution of the program. However, the likeli-
hood of detecting this bug only by monitoring the observed
run, as JPaX and Java-MAC do, is very low. The example
consists of a two threaded program to control the landing of
an airplane. It has three variables landing, approved, and
radio; their values are 1 when the plane is landing, landing
has been approved, and radio signal is live, and 0 otherwise.
The safety property that we want to verify is “If the plane
has started landing, then it is the case that landing has been
approved and since the approval the radio signal has never
been down.” As shown in Subsection 3.1, this property can
be formally written in our extension of past time linear tem-
poral logic as the formula

↑landing→ [approved, ↓radio)s.

The code snippet for a naive implementation of this control
program is given as follows:

int landing = 0, approved = 0, radio = 1;
void thread1(){

askLandingApproval();
if(approved==1){

print("Landing approved");
landing = 1;
print("Landing started");

} else {
print("Landing not approved");

}
}

void askLandingApproval(){
if(radio==0) approved = 0;
else approved = 1;

}

void thread2(){
while(radio){checkRadio();} }

void checkRadio(){
randomly change value of radio;

}

The above code uses some dummy functions, namely
askLandingApproval and checkRadio, which can be imple-
mented in their entirety in a real scenario. The program
has a serious problem which cannot be detected easily from
a single run. The problem is as follows. Suppose the plane
has received approval for landing and just before it started
landing the radio signal went off. In this situation, the plane
must abort landing. But this situation will very rarely arise
in an execution: namely, when radio is set to 0 between the
approval of landing and the start of actual landing. So a
simple observer will not probably detect the bug. However,
note that even if the radio goes off after the landing has
started, JMPaX can still construct a possible run in which
radio goes off between landing and approval. Thus JMPaX
will be able to predict the safety violation from a single suc-
cessful execution of the program. This example shows the
power of our runtime verification technique as compared to
JPaX and Java-MaC.

Other related approaches include model checking [6], es-
pecially Java bytecode model checking [8], and debugging
of distributed systems. It is important to observe that, un-
like model checking where all possible code interleavings are
analyzed, in our approach to runtime safety analysis one
actually runs the program and extracts causal dependen-
cies among updates of the multithreaded program state, and
then analyzes all possible interleavings that do not violate
the causal dependency. At the expense of a lower coverage,
our approach analyzes a significantly lower amount of thread
interleavings than a typical model checker would normally
do, so it scales up better. The safety properties that we
analyze are more general than the simpler state predicates
that are typically considered in the literature on debugging
distributed systems (see for example [19, 4, 3]). We allow
any past time linear temporal logic formula built on state
predicates, so our safety properties can refer to the entire
past history of states. An important practical aspect of our
algorithm is that, despite the fact that there can be a po-
tentially exponential number of runs (in the length of the
runs), they can all be analyzed in parallel, by generating
and traversing the computation lattice extracted from the

310



observed multithreaded execution on a level-by-level basis.
The relevant information regarding the previous levels can
be encoded compactly, so those levels do not need to be
stored, thus allowing the memory to be reused.

We can think of at least three major contributions of the
work presented in this paper. First, we nontrivially extend
the runtime safety analysis capabilities of systems like JPaX
and Java Mac, by providing the ability to predict safety er-
rors from successful executions; we are not aware of any
other efforts in this direction. Second, we underlie the foun-
dations of relevant causality in multithreaded systems with
shared variables and synchronization points, which one can
use to instrument multithreaded programs to emit to exter-
nal observers a causal dependency partial relation on global
state updates via relevant events timestamped with appro-
priate vector clocks; this is done in Section 2, where, due to
its foundational aspect, all the proofs of the claimed results
are provided. Finally, a modular implementation of a pro-
totype runtime analysis system, JMPaX, is given, showing
that, despite their theoretical flavor, all the concepts pre-
sented in the paper are in fact quite practical and can lead
to new scalable verification tools.

2. RELEVANT CAUSALITY IN
MULTITHREADED SYSTEMS

We consider multithreaded systems in which several
threads communicate with each other via a set of shared
variables. The theme of this paper is to show how such a
system can be analyzed for safety by an external observer
that obtains relevant information about the system from
messages sent by the system after appropriate instrumenta-
tion. The safety formulae refer to sets of shared variables,
so these messages contain update information about those
variables. A crucial observation here is that some variable
updates can causally depend on others. For example, if a
thread writes a variable x and then another thread writes y
due to a statement y = x + 1, then the update of y causally
depends upon the update of x. In this section we present an
algorithm which, given an executing multithreaded system,
generates appropriate messages to be sent to an external
observer. The observer, in order to perform its more elabo-
rated safety analysis, extracts the state update information
from such messages together with the causality partial order
order among the updates.

Formally, given n threads p1, p2, ..., pn, a multithreaded
execution is abstracted as a sequence of events e1e2 . . . er,
each belonging to one of the n threads and being of type ei-
ther internal or read or write of a shared variable. We use ej

i

to represent the j-th event generated by thread pi since the
start of its execution. From now on in this section we assume
an arbitrary but fixed multithreaded execution. When the
process or the position of an event is not important then we
can refer to the event generically, such as e, e′, etc.; we may
write e ∈ pi when event e is generated by thread pi. Let S
be the set of shared variables. There is an immediate notion
of variable access precedence for each shared variable x ∈ S:
we say that e x-precedes e′, written e <x e′, if and only if
e and e′ are variable access events (reads or writes) to the
same variable x, and e “happens before” e′; this “happen-
before” relation can be easily realized by keeping a counter
for each shared variable which is increased by each access
to it. Let E be the set of all the events of a multithreaded

execution, and let ≺ be the partial order on E defined as
follows:

• ek
i ≺ el

i if k < l;

• e ≺ e′ if there is some x ∈ S such that e <x e′ and
atleast one of e, e′ is a write.

• e ≺ e′′ if e ≺ e′ and e′ ≺ e′′.

We write e||e′ when it is not the case that e ≺ e′ or
e′ ≺ e. A partial order on events ≺ defined above is
called a multithreaded computation associated with the orig-
inal multithreaded execution. As shown in Subsection 3.3,
synchronization can be treated very elegantly by generating
appropriate read/write events, so that the notion of mul-
tithreaded computation as defined above is as general as
currently needed. Note that the original multithreaded ex-
ecution was used only to provide a total ordering on the
read/write accesses of each shared variable.1 A permuta-
tion of all the events e1, e2, ..., er which does not violate
the multithreaded computation is called a consistent multi-
threaded run, or simply, a multithreaded run.

Intuitively, e ≺ e′, read as e′ causally depends upon e, if
and only if e occurred before e′ in the given multithreaded
execution and a change of their order does not generate a
consistent multithreaded run. We argue that the notion of
multithreaded computation defined above is the weakest as-
sumption that an omniscient observer of the multithreaded
execution can make about the program. Intuitively, this is
because an external observer cannot disregard the order in
which the same variable is modified and used within the
observed execution, because this order can be part of the
intrinsic logic of the multithreaded program. However, mul-
tiple consecutive reads of the same variable can be permuted,
and the particular order observed in the given execution is
not critical; it can be, for example, a result of a particu-
lar thread scheduling algorithm. By allowing an observer to
analyze multithreaded computations rather than just multi-
threaded run, one gets the benefit of not only properly deal-
ing with potential reordering of delivered messages (for ex-
ample, due to using multiple channels in order to reduce the
monitoring overhead), but also of predicting errors from an-
alyzing successful executions, errors which can occur under
a different thread scheduling.

Not all the variable in S are needed to evaluate the safety
formula to be checked. To minimize number of messages
sent to an observer, and for technical reasons discussed later,
we consider a subset R ⊆ E of relevant events. Then we
define the R-relevant causality on E as the relation / :=≺
∩(R×R), so that e / e′ if and only if e, e′ ∈ R and e ≺ e′.
We provide a technique based on vector clocks [7, 17] that
correctly implements the relevant causality relation.

Let Vi be an n-dimensional vector of natural numbers for
thread pi, for each 1 ≤ i ≤ n, and let V a

x and V w
x be two

additional n-dimensional vectors for each shared variable x;
we call the former access vector clock and the latter write
vector clock. All the vector clocks are initialized to 0 at the
beginning of computation. For two n-dimensional vectors we
say that V ≤ V ′ if and only if V [j] ≤ V ′[j] for all 1 ≤ j ≤ n,
and we say that V < V ′ iff V ≤ V ′ and there is some
1 ≤ j ≤ n such that V [j] < V ′[j]; also, max{V, V ′} is

1One could have defined a multithreaded computation more
abstractly but less intuitively, by starting with a total order
<x on the subset of events accessing each shared variable x.

311



the vector with max{V, V ′}[j] = max{V [j], V ′[j]} for each
1 ≤ j ≤ n. Whenever a thread pi with current vector clock
Vi processes event ek

i , the following vector clock algorithm
is executed:

1. if ek
i is relevant, i.e., if ek

i ∈ R, then
Vi[i] ← Vi[i] + 1

2. if ek
i is a read of a variable x then
Vi ← max{Vi, V

w
x }

V a
x ← max{V a

x , Vi}
3. if ek

i is a write of a variable x then
V w

x ← V a
x ← Vi ← max{V a

x , Vi}
4. if ek

i is relevant then
send message 〈ek

i , i, Vi〉 to observer.

Then the following crucial results hold:

Lemma 1. After event ek
i is processed by thread pi,

a. Vi[j] equals the number of relevant events of pj that
causally precede ek

i ; if j = i and ek
i is relevant then this

number also includes ek
i ;

b. V a
x [j] equals the number of relevant events of pj that

causally precede the most recent event that accessed (read
or wrote) x; if i = j and ek

i is a relevant read or write of
x event then this number also includes ek

i ;

c. V w
x [j] equals the number of relevant events of pj that

causally precede the most recent write event of x; if i = j
and ek

i is a relevant write of x then this number also in-
cludes ek

i .

Theorem 2. If 〈e, i, V 〉 and 〈e′, j, V ′〉 are two messages
sent by our algorithm, then e / e′ if and only if V [i] ≤ V ′[i].
If i and j are not given, then e / e′ if and only if V < V ′.

In a summary, the above theorem states that the vec-
tor clock algorithm correctly implements causality in multi-
threaded programs. The detailed proofs of the above results
are given in [18].

Consider what happens at the observer’s site. The ob-
server receives messages of the form 〈e, i, V 〉 in any possible
order. We let R denote the set of received relevant events,
which we simply call events in what follows. By using The-
orem 2, the observer can infer the causal dependency be-
tween the relevant events emitted by the multithreaded sys-
tem. Inspired by similar definitions at the multithreaded
system’s [2], we define the important notions of relevant
multithreaded computation and run as follows. A relevant
multithreaded computation, simply called multithreaded com-
putation from now on, is the partial order on events that the
observer can infer, which is nothing but the relation /. A
relevant multithreaded run, also simply called multithreaded
run from now on, is any permutation of the received events
which does not violate the multithreaded computation. Our
purpose in this paper is to check safety requirements against
all (relevant) multithreaded runs of a multithreaded system.

We assume that the relevant events are only writes of
shared variables that appear in the safety formulae to be
monitored, and that these events contain a pair of the name
of the corresponding variable and the value which was writ-
ten to it. We call these variables relevant variables. Note
that events can change the state of the multithreaded sys-
tem as seen by the observer; this is formalized next. A
relevant program state, or simply a program state is a map

from relevant variables to concrete values. Any permutation
of events generates a sequence of program states in the ob-
vious way, however, not all permutations of events are valid
multithreaded runs. A program state is called consistent
if and only if there is a multithreaded run containing that
state in its sequence of generated program states. We next
formalize these concepts.

For a given permutation of (relevant) events in R, say
e1e2 . . . e|R|, we can let ek

i denote the k-th event of thread
pi for each 1 ≤ i ≤ n. Then the relevant program state
after the events ek1

1 , ek2
2 , ..., ekn

n is called a relevant global
multithreaded state, or simply a relevant global state or even
just state, and is denoted by Σk1k2...kn . A state Σk1k2...kn

is called consistent if and only if for any 1 ≤ i ≤ n and
any li ≤ ki, it is the case that lj ≤ kj for any 1 ≤ j ≤ n

and any lj such that e
lj
j / eli

i . Let ΣK0 be the initial global

state, Σ00...0. An important observation is that e1e2 . . . e|R|
is a multithreaded run if and only if it generates a sequence
of global states ΣK0ΣK1 . . . ΣK|R| such that each ΣKr is
consistent and for any two consecutive ΣKr and ΣKr+1 , Kr

and Kr+1 differ in exactly one index, say i, where the i-
th element in Kr+1 is larger by 1 than the i-th element in
Kr. For that reason, we will identify the sequences of states
ΣK0ΣK1 . . . ΣK|R| as above with multithreaded runs, and
simply call them runs. We say that Σ leads-to Σ′, written
Σ ; Σ′, when there is some run in which Σ and Σ′ are
consecutive states. The set of all consistent global states
together with the relation ; forms a lattice. The lattice
has n mutually orthogonal axis representing each thread.
For a state Σk1k2...kn , we call k1 + k1 + · · · kn its level. A
path in the lattice is a sequence of consistent global states
on increasing level, where the level increases by 1 between
any two consecutive states in the path. Therefore, a run is
just a path starting with Σ00...0 and ending with Σr1r2...rn ,
where ri is the total number of events of thread i for each
1 ≤ i ≤ n. Therefore, a multithreaded computation can be
seen as a lattice; we call this lattice a computation lattice.

Example 1. Suppose that one wants to monitor some
safety property of the multithreaded program below. The
program involves relevant variables x, y and z:

Initially: x = −1; y = 0; z = 0;

thread T1{
...
x++;
...
y = x + 1;
...

}

thread T2{
...
z = x + 1;
...
x++;
...

}

The ellipses (...) indicate code that is not relevant, i.e.,
that does not access the variables x, y and z. This multi-
threaded program, after appropriate instrumentation, sends
messages to an observer whenever the relevant variables are
updated. A possible execution of the program to be sent to
the observer, described in terms of relevant variable updates,
can be

{x = −1, y = 0, z = 0}, {x = 0}, {z = 1}, {y = 1}, {x = 1}
The first message to observer sends the initial state of the
whole system as a set of variable-value pairs. The second
event is generated when the value of x is incremented by
the first thread. The above execution corresponds to the

312



sequence of program states

(−1, 0, 0), (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)

where the tuple (−1, 0, 0) denotes the state in which x =
−1, y = 0, z = 0. Following the vector clock algorithm, we
can deduce that the observer will receive the multithreaded
computation in Figure 2 which generates the computation
lattice shown in the same figure.

S
0,0

x = -1, y = 0, z = 0

S
2,2

x = 1, y = 1, z = 1

S
2,1

x = 0, y = 1, z = 1

S
2,0

x = 0, y = 1, z = 0

S
1,1

x = 0, y = 0, z = 1

S
1,0

x = 0, y = 0, z = 0

e1:<x=0, T1,(1,0)>

e4:<x=1, T2,(1,2)>

e2:<z=1,T2,(1,1)>
e3:<y=1,T1,(2,0)>

e2:<z=1,T2,(1,1)>
e3:<y=1,T1,(2,0)>

e1:<x=0, T1,(1,0)>

e2:<z=1,T2,(1,1)>

e3:<y=1,T1,(2,0)>

e4:<x=1, T2,(1,2)>

T1

T2

S
1,2

x = 1, y = 0, z = 1

e4:<x=1, T2,(1,2)>

e3:<y=1,T1,(2,0)>

Figure 2: Computation lattice and three runs.

Notice that the observed multithreaded execution corre-
sponds to just one particular multithreaded run out of the
three possible. We will show that it is often possible that
the observed run does not violate any safety property, but
the run nevertheless shows that there are other possible runs
that are not safe. We will propose an algorithm that will
detect safety violations in any possible run, even though the
violation was not revealed by the particular observed run.
An appealing aspect of our algorithm is that, despite the
fact that there can be a potentially exponential number of
runs (in the maximum width of a level), they can all be an-
alyzed in parallel, by generating and traversing the lattice
on a level-by-level basis; the previous levels are not needed,
so memory can be reused.

3. MULTITHREADED SAFETY ANALYSIS
In this section, we first introduce the past time temporal

logic that we use to express safety properties, then we recall
an algorithm to monitor such properties efficiently against

a single run, and finally we show how this algorithm non-
trivially extends to monitoring multithreaded computations
given as partial orders.

3.1 Safety in Temporal Logics
We use past time Linear Temporal Logic (ptLTL )[16] to

express our safety properties. Our choice of past time linear
temporal logic is motivated by two considerations:

1. It is powerful enough to express safety properties of
concurrent systems;

2. The monitors for a safety formula written in ptLTL are
very efficient; they perform linearly in the size of the
formula in the worst case [12].

Now we briefly introduce the basic notions of ptLTL , and
describe some new operators that are particularly useful for
runtime monitoring. The syntax of ptLTL is given as follows:

F ::= true | false | a ∈ A | ¬F | F op F Propositional ops
¯F | ♦· F | ¡F | FSsF | FSwF Standard operators
↑F | ↓F | [F, F )s | [F, F )w Monitoring ops

where op are the standard binary operators, namely ∧,
∨, →, ↔, and ¯F should be read as “previously”, ♦· F as
“eventually in the past”, ¡F as “always in the past”, F1SsF2

as “F1 strong since F2”, F1SwF2 as “F1 weak since F2”, ↑F
as “start F”, ↓F as “end F”, [F1, F2)s as “strong interval
F1, F2”, and [F1, F2)w as “weak interval F1, F2”.

The logic is interpreted on a finite sequence of states or
a run. If ρ = s1s2 . . . sn is a run then we let ρi denote the
prefix run s1s2 . . . si for each 1 ≤ i ≤ n. The semantics of
the different operators is given in Table 1.

The monitoring operators ↑, ↓, [, )s, and [, )w were intro-
duced in [12, 15]. These operators have been found to be
very intuitive and useful in specifying properties for runtime
monitoring. Informally, ↑F is true if and only if F starts to
be true in the current state, ↓F is true if and only if F ends
being true in the current state, and [F1, F2)s is true if and
only if F2 was never true since the last time F1 was observed
to be true, including the state when F1 was true; the interval
operator has a strong and a weak version. For example, if
boot and down are predicates on the state of a web server to
be monitored, say for the last 24 hours, then [boot, down)s is
a property stating that the server was rebooted recently and
the since then it was not down, while [boot, down)w say that
server was not unexpectedly down recently, meaning that
it was either not down at all recently or it was rebooted
recently and since then it was not down.

In runtime monitoring, we start the process of monitoring
from the point the first event is generated and it continues
as long as the events are generated. Thus given a ptLTL
formula F we check whether ρi |= F for all 1 ≤ i ≤ n, where
ρ = s1s2 . . . sn is a finite run constructed from the events.

3.2 Checking Safety Against a Single Run
We describe an algorithm for monitoring the multi-

threaded execution or the observed run of a multithreaded
computation, which is just one path in the computation lat-
tice, and illustrate it through an example. This algorithm is
a modified version of the algorithm presented in [12]. The
algorithm computes the boolean value of the formula to be
monitored, by recursively evaluating the boolean value of

313



ρ |= true is true for all ρ,
ρ |= a iff a holds in the state sn,
ρ |= ¬F iff ρ 2 F ,
ρ |= F1 op F2 iff ρ |= F1 and/or/implies/iff ρ |= F2, when op is ∧/ ∨ / → / ↔,
ρ |= ¯F iff ρ′ |= F , where ρ′ = ρn−1 if n > 1 and ρ′ = ρ if n = 1,
ρ |= ♦· F iff ρi |= F for some 1 ≤ i ≤ n,
ρ |= ¡F iff ρi |= F for all 1 ≤ i ≤ n,
ρ |= F1SsF2 iff ρj |= F2 for some 1 ≤ j ≤ n and ρi |= F1 for all 1 ≤ i ≤ n,
ρ |= F1SwF2 iff ρ |= F1SsF2 or ρ |= ¡F1,
ρ |= ↑F iff ρ |= F and it is not the case that ρ |= ¯F ,
ρ |= ↓F iff ρ |= ¯F and it is not the case that ρ |= F ,
ρ |= [F1, F2)s iff ρj |= F1 for some 1 ≤ j ≤ n and ρi 2 F2 for all j ≤ i ≤ n,
ρ |= [F1, F2)w iff [F1, F2)s or ρ |= ¡¬F2,

Table 1: Semantics of ptLTL

each of its subformulae in the current state. In the process
it also uses the boolean value of certain subformulae eval-
uated in the previous state. Next we define this recursive
function eval. The recursive nature of the temporal oper-
ators in ptLTL enables us to define the boolean value of a
formula in the current state in terms of its boolean value in
the previous state and the boolean value of its subformulae
in the current state. For example we can define:

ρ |= ♦· F iff ρ |= F or (n > 1 and ρn−1 |= ♦· F )
ρ |= ¡F iff ρ |= F and (n > 1 implies ρn−1 |= ¡F )
ρ |= F1SsF2 iff ρ |= F2 or

(n > 1 and ρ |= F1 and ρn−1 |= F1SsF2)
ρ |= F1SwF2 iff ρ |= F2 or

(ρ |= F1 and (n > 1 and ρn−1 |= F1SwF2))
ρ |= [F1, F2)s iff ρ 2 F2 and

(ρ |= F1 or (n > 1 and ρn−1 |= [F1, F2)s))
ρ |= [F1, F2)w iff ρ 2 F2 and

(ρ |= F1 or (n > 1 implies ρn−1 |= [F1, F2)w))

These definitions correspond to the code for the cases of
the operators ♦· , ¡, Ss, Sw, [, )s, and [, )w in the function
eval. The function op(f) returns the operator of the formula
f , binary(op(f)) returns true if op(f) is binary, unary(op(f))
returns true if op(f) is true, left(f) returns the left subfor-
mula of f , right(f) returns the right subformula of f , and
subformula(f) returns the subformula of f .

boolean

eval(Formula f,State s,array now,array pre, int index){
if binary(op(f)) then{

lval ← eval(left(f), now, pre, index);

rval ← eval(right(f), now, pre, index); }
else if unary(op(f)) then

val ← eval(subformula(f), now, pre, index);

case(op(f)) of{
p : return p(s); true : return true; false : return false;

op : return rval op lval; ¬ : return not val;

Ss,Sw : now[++index] ← lval or rval;

return (pre[index] and lval) or rval;

[, )s, [, )w :

now[++index] ← (not rval) and (pre[index] or lval);

return (not rval) and (pre[index] or lval);

↑ : now[++index] ← val;

return (not pre[index]) and val;

↓ : now[++index] ← val;

return pre[index] and (not val);

¡ : now[++index] ← val; return pre[index] and val;

♦· : now[++index] ← val; return pre[index] or val;

¯ : now[++index] ← val; return pre[index];

}
}

Here, the pre array passed as an argument contains the
boolean values of all subformulae in the previous state, that
will be required in the current state. While the now array,
after the evaluation of eval function, will contain the boolean
values of all subformulae in the current state that will be
required in the next state. Note, here the now array is
passed as reference, and its value is set in the function eval.
The function eval, however, cannot be used to evaluate the
boolean value of a formula for the first state in a run, as
the recursion handles the case n = 1 in a different way. We
define the function init to handle this special case as follows:

boolean init(Formula f,State s,array now, int index){
if binary(op(f)) then{

lval ← init(left(f), now, index);

rval ← eval(right(f), now, index); }
else if unary(op(f)) then

val ← init(subformula(f), now, index);

case(op(f)) of{
p : return p(s); true : return true; false : return false;

op : return rval op lval; ¬ : return not val;

Ss : now[++index] ← rval; return rval;

Sw : now[++index] ← lval or rval; return lval or rval;

[, )s : now[++index] ← (not rval) and lval;

return (not rval) and lval;

[, )w : now[++index] ← (not rval); return (not rval);

↑, ↓ : now[++index] ← val; return false;

¡, ♦· ,¯ : now[++index] ← val; return val;

}
}

For a given formula f , we define the function monitor, that
at each iteration, consumes an event in the run, generates
the next state from that event, and evaluates the formula
for the state generated:

monitor(Formula f, Run r = e1e2 . . . en){
State state ← {}; array now, pre;

state ← update(state, e1);

val ← init(f, state, now, 0);

314



if (not val) then output(‘property violated’);

for i = 2 to n do{
pre ← now;

state ← update(state, ei);

val ← eval(f, state, now, pre, 0);

if (not val) then output(‘property violated’);

}
}

In the initialization phase, the state variable is created
from the event e1. The now array is then calculated by
calling the function init on the current state. After the cal-
culation the result of init is checked for falsity, and an error
message is issued if the result is false. Otherwise, the main
loop is started. The main loop goes through the run, start-
ing from the second event. At each iteration, now is copied
to pre, the current state is generated by consuming an event
from the run, the formula f is evaluated in the current state
using the function eval, the result of evaluation is tested for
falsity and an error message is generated if the result is false.

The time complexity of this algorithm is Θ(mn), where m
is the size of the original formula and n is the length of the
run. However, memory required by the algorithm2 is 2m′,
m′ being the number of temporal and monitor operators in
the formula.

We now go back to the Example 1. Suppose that
one want to monitor the safety property (x > 0) →
[(x = 0), y > z)s on that program. The formula states that
“if (x > 0), then (x = 0) has been true in the past, and since
then (y > z) was always false.”

For the possible execution or the observed run of the pro-
gram mentioned in Section 2, we have the following sequence
of global states,

(−1, 0, 0), (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)

where the tuple (−1, 0, 0) denotes the state in which x =
−1, y = 0, z = 0. The formula is satisfied in all the states
of the sequence and so we say that the property specified
by the formula is not violated by the given run. However,
another possible run of the same computation is,

{x = −1, y = 0, z = 0}, {x = 0}, {y = 1}, {z = 1}, {x = 1}
This run corresponds to the sequence of states

(−1, 0, 0), (0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 1, 1)

The formula is clearly violated in the last state of this se-
quence. This is because, x > 0 in the 5th state. This means
that from 2nd state, in which x = 0, up to 5th state y > z
must be false. However, y > z in the 3rd state. This vio-
lates the formula. Therefore, the monitoring algorithm that
considers only the observed run presented in this subsection
fails to detect this violation. In the next subsection we pro-
pose an algorithm that will detect such a potential bug from
the original successful run.

3.3 Checking Safety Against All Runs
The algorithm, presented in the previous subsection, can

only monitor a single run. As noticed earlier, monitoring one

2Here we assume that the recursive version is properly con-
verted into an iterative algorithm using cps transform.

run may not reveal a bug that might be present in other pos-
sible runs. Our algorithm removes this limitation by moni-
toring all the possible runs of a multithreaded computation.
The major hurdle in monitoring all possible runs is that the
number of possible runs can be exponential in the length of
the computation. We avoid this problem in our algorithm
by traversing the computation lattice level by level. The
events are generated by the algorithm presented in Section
2. The monitoring module consumes these events one by
one, and monitors the safety formula on the computation
lattice constructed from the events. We now describe the
monitoring module in more details.

The monitoring module maintains a queue of events.
Whenever an event arrives from the running multithreaded
program, it enqueues it in the event queue (Q). The module
also maintains a set of global states (CurrentLevel), that are
present in the current level of the lattice. For each event e in
the event queue, it tries to construct a global state from the
set of states in the current level and the event e. If the global
state is created successfully it is added to the set of global
states (NextLevel) for the next level of the lattice. Once a
global state in the current level becomes unnecessary, it is
removed from the set of global states in the current level.
When the set of global states in the current level becomes
empty, we say that the set of global states for the next level
is complete. At that time the module checks the safety for-
mula (by calling monitorAll(NextLevel)) for the set of states
in the next level. If the formula is not violated it marks the
set of global states for the next level as the set of states for
the current level, removes unnecessary events from the event
queue, and restarts the iteration. The pseudocode for the
process is given below:

for each (e ∈ Q){
if ∃s ∈ CurrentLevel s.t. isNextState(s, e) then

NextLevel ← addToSet(NextLevel, createState(s, e));

if isUnnecessary(s) then remove(s, CurrentLevel);

if isEmpty(CurrentLevel) then{
monitorAll(NextLevel);

CurrentLevel ← NextLevel; NextLevel ← {};
Q ← removeUnnecessaryEvents(CurrentLevel, Q);

}
}

Every global state s contains the value of all relevant
shared variables in the program, a n-dimensional vector
clock VC(s) to represent the latest events from each thread
that resulted in that global state, and a vector of boolean
values called flags. Each component of flags is initially set
to false. Here the predicate isNextState(s,e), checks if the
event e can convert the state s to a state s′ in the next level
of the lattice. The pseudocode for the predicate is given
below:

boolean isNextState(s, e){
i ← threadId(e);

if V C(s)[i] = V C(e)[i] + 1 then{
flags(s)[i] = true;

if (∀ 1 ≤ j ≤ n, j 6= i) V C(s)[j] ≥ V C(e)[j] then

return true; else return false; }
else return false;

}

where n is the number of threads, threadId(e) returns the

315



index of the thread that generated the event e, VC(s) re-
turns the vector clock of global state s, VC(e) returns the
vector clock of event e, and flags(s) returns the vector flags
associated with s. Note, here flags(s)[i] is set to true if
V C(s)[i] = V C(e)[i] + 1. This means that e is the only
event from thread i that can possibly take state s to a state
s′ in the next level. When all the components of the vector
flags(s) become true, we say that the state s is unnecessary.
Thus the function isUnnecessary(s) checks if (∀ 1 ≤ i ≤ n)
flags(s)[i] = true, where n is the number of threads.

The function createState(s,e) creates a new global state s′,
where s′ is a possible global state that can result from s after
the event e. For the purpose of monitoring we maintain,
with every global state, a set of pre arrays called PreSet,
and a set of now arrays called NowSet. In the function
createState we set the PreSet of s′ with the NowSet of s.
The pseudocode for createState is as follows:

State createState(s, e){
s′ ← new copy of s;

j ← threadId(e); V C(s′)[j] ← V C(s)[j] + 1;

for i = 1 to n {flags(s′)[i] ← false; }
state(s′)[var(e) ← value(e)]; return s′;
PreSet(s′) ← NowSet(s);

}

Here state(s’) returns the value of all relevant shared vari-
ables in state s′, var(e) returns the name of the relevant
variable that is written at the time of event e, value(e) is
the value that is written to var(e), and state(s’)[var(e) ←
value(e)] means that in state(s’), var(e) is updated with
value(e).

The function addToSet(NextLevel,s) adds the global state
s to the set NextLevel. If s is already present in NextLevel,
it updates the existing states’ PreSet with the union of the
existing states’ PreSet and the PreSet of s. Two global
states are same if their vector clocks are equal. The function
removeUnnecessaryEvents(CurrentLevel,Q) removes from Q
the events that cannot contribute to the construction of any
state at the next level. To do so, it creates a vector clock
Vmin whose each component is the minimum of the cor-
responding component of the vector clocks of all the global
states in the set CurrentLevel. It then removes all the events
in Q whose vector clocks are less than or equal to Vmin. This
function makes sure that we do not store the unnecessary
events.

The function monitorAll performs the actual monitoring
of the formula. In this function, for each state s in the set
NextLevel, we invoke the function eval (as discussed in the
previous section) on s, for each pre array in the set Pre-
Set. If eval returns false, we issue a ‘property violation’

warning. The now array that resulted from the invocation
of eval is added to the set NowSet of s. The pseudocode for
the function monitorAll is given as follows:

monitorAll(NextLevel){
for each s ∈ NextLevel{

for each pre ∈ PreSet(s){
now ← {}; result ← eval(f, s, now, pre, 0);

if not result then output(‘property violated’);

NowSet(s) ← NowSet(s) ∪ {now}; }
}

}
If the multithreaded program has synchronization blocks,

then we introduce, during instrumentation, a dummy shared
variable that is read whenever we enter the synchronization
block and is written when we exit the block. This makes
sure that all the events in one execution of the block are
causally dependent on the events in another execution of the
same block, so that the interleaving between them becomes
impossible.

Here the size of each pre array or now array is m′, where
m′ is the number of temporal operators in the formula.
Therefore, the size of the set PreSet or the set NowSet can

be atmost 2m′ . This implies that the memory required for

each state in the lattice is O(2m′). If the maximum width
of the lattice is w, then the total memory required by the

program is O(w2m′). The time taken by the algorithm at
each iteration is O(w2m), where m is the size of the formula.
However, if the threads in a program have very few depen-
dency or synchronization points, then the number of valid
permutations of the events can be very large, and there-
fore the width of the lattice can become large. To handle
those situations we can add a parameter to the algorithm
which specifies the maximum width of the lattice. Then, if
the number of states in a level of the lattice becomes larger
than the maximum width, the algorithm can be modified to
consider only the most probable states in the level. We can
specify different heuristics to calculate the most probable
states in a given level of the lattice.

4. IMPLEMENTATION
We have implemented our monitoring algorithm, in a tool

called Java Multi PathExplorer (JMPaX)[1], which has been
designed to monitor multithreaded Java programs. The
current implementation, see Figure 1, is written in Java
and it assumes that all the shared variables of the multi-
threaded program are static variables of type int. The tool
has two main modules, the instrumentation module and the
monitoring module. The instrumentation program, named
instrument, takes a specification file, a port number, and a
list of class files as command line arguments. An example
of such command is

java instrument spec server 7777 A.class B.class

C.class

where the specification file spec contains a list of named
formulae. The specification for the example discussed in
Section 2 looks as follows:

F = (A.x > 0) -> [(A.x = 0),(A.y > A.z))s

where A is the class containing the shared variables x, y
and z as static fields. The program instrument instruments
the classes, provided in the argument, as follows:

i) It adds access and write vector clocks as static fields for
each shared variable;

ii) It adds code to create a vector clock whenever a thread
is created;

iii) For each read and write access of the shared variables in
the class files, it adds codes to update the vector clocks
according to the algorithm mentioned in Section 2;

iv) It adds codes to send messages to the server at the
port number 7777 for all writes of relevant variables.

316



To do so, the instrument program extracts the relevant
variables from the specification file.

The instrumentation module uses BCEL [5] Java library
to modify Java class files. We use the BCEL library to
get a better handle for a Java classfile. It enables us to
insert vector clocks as static member fields in a class, that
is otherwise not possible with the tool JTrek [13]. We also
make the update of vector clocks associated with a read or
write, atomic through synchronization. For this we need
to add Java bytecode both before and after the instructions
getstatic and putstatic, that access the shared variables.
This task is easier in BCEL as compared to JTrek.

A translator, which is part of monitoring module, reads
the specification and generates a single Java class file,
named SpecificationImpl.class. The monitoring mod-
ule starts a server to listen events from the instrumented
program, parses them, enqueues them in a queue, executes
translator to generate SpecificationImpl.class, dynam-
ically loads the class SpecificationImpl.class, and starts
monitoring the formulae on the queue of events. It issues a
warning whenever a formula is violated.

One of the test cases that we have implemented is the
landing example described in Section 1. JMPaX was able to
detect violation of a safety property from a single execution
of the program. The safety property that we verified was:

↑landing→ [approved, ↓radio)s.

From a single execution of the code in which the radio
went off after the landing, JMPaX constructed a possible
run in which radio goes off between landing and approval,
and hence it detected the safety violation. This example
shows the power of our runtime verification technique.

5. CONCLUSION AND FUTURE WORK
We have investigated the problem of runtime analysis of

multithreaded systems from a fundamental perspective. We
have developed scalable techniques for extracting relevant
events and their causal dependency from an executing mul-
tithreaded program. We have proposed and implemented
algorithms to check safety properties against the compu-
tation lattice of a multithreaded computation. We have
also briefly presented our prototype tool Java MultiPathEx-
plorer, abbreviated JMPaX, which, at our knowledge, is the
first tool that can predict violations of safety properties ex-
pressed in temporal logics from correct executions of multi-
threaded programs. We have also shown that, despite the
fact that our safety properties can refer to any state in the
past and that there is a potentially exponential number of
multithreaded runs to be analyzed, one does not need to
actually store the previous states; one can analyze all the
multithreaded runs in parallel, by traversing the computa-
tion lattice top down, level-by-level.

Three major contributions have been made. First, we
have nontrivially extended the capabilities of systems like
JPaX and Java Mac, by providing the ability to predict
safety errors from successful executions; we regard safety
prediction as an important trade-off towards avoiding the in-
herent complexity of full-blown theorem proving and model
checking; we are not aware of any other efforts in this di-
rection. Second, we have defined the notion of relevant
causality in multithreaded systems with shared variables

and synchronization points and we have provided a tech-
nique of implementing relevant causality based on vector
clocks. Finally, we have implemented a modular prototype
runtime analysis system, JMPaX; modularity comes from
the fact that its instrumentation module can be used to-
gether with other computation lattice analysis tools, while
its safety computation analysis module can be used in any
event based setting, for example a distributed system. In
fact, we intend to soon extend our work to analyzing ar-
bitrary distributed systems at runtime for not only safety
but also other properties of interest. There are also plans
on developing a predictive analysis runtime environment for
both multithreaded and distributed systems, as well as de-
veloping a GUI for JMPaX that would make it easy to use
and understand by ordinary software engineers. Since our
work is partly sponsored by NASA, we also intend to soon
use JMPaX on real-world NASA-related large applications.

6. REFERENCES
[1] Java Multi PathEXplorer, March 2003.

http://fsl.cs.uiuc.edu/jmpax/.

[2] H. W. Cain and M. H. Lipasti. Verifying sequential
consistency using vector clocks. In Proceedings of the
14th annual ACM symposium on Parallel algorithms
and Architectures, pages 153–154. ACM, 2002.

[3] C. M. Chase and V. K. Garg. Detection of global
predicates: Techniques and their limitations.
Distributed Computing, 11(4):191–201, 1998.

[4] R. Cooper and K. Marzullo. Consistent detection of
global predicates. ACM SIGPLAN Notices,
26(12):167–174, 1991. Proceedings of the ACM/ONR
Workshop on Parallel and Distributed Debugging.

[5] M. Dahm. Byte code engineering with the bcel api.
Technical Report B-17-98, Freie Universit at Berlin,
Institut für Informatik, April 2001.

[6] J. E. M. Clarke, O. Grumberg, and D. A. Peled.
Model checking. MIT Press, 1999.

[7] C. J. Fidge. Partial orders for parallel debugging. In
Proceedings of the 1988 ACM SIGPLAN and SIGOPS
workshop on Parallel and Distributed debugging, pages
183–194. ACM, 1988.

[8] K. Havelund and T. Pressburger. Model Checking
Java Programs using Java PathFinder. International
Journal on Software Tools for Technology Transfer,
2(4):366–381, Apr. 2000.

[9] K. Havelund and G. Roşu. Monitoring Java Programs
with Java PathExplorer. In Proceedings of Runtime
Verification (RV’01), volume 55 of Electronic Notes in
Theoretical Computer Science. Elsevier Science, 2001.

[10] K. Havelund and G. Roşu. Monitoring Programs using
Rewriting. In Proceedings, International Conference
on Automated Software Engineering (ASE’01), pages
135–143. IEEE, 2001.

[11] K. Havelund and G. Roşu. Runtime Verification 2001,
volume 55 of Electronic Notes in Theoretical
Computer Science. Elsevier Science, 2001. Proceedings
of a Computer Aided Verification (CAV’01) satellite
workshop.

[12] K. Havelund and G. Rosu. Synthesizing monitors for
safety properties. In Proceedings Tools and Algorithms
for Construction and Analysis of Systems
(TACAS’02), pages 342–356, 2002.

317



[13] JTrek Compaq Corp.
www.digital.com/java/download/jtrek/.

[14] M. Kim, S. Kannan, I. Lee, and O. Sokolsky.
Java-MaC: a Run-time Assurance Tool for Java. In
Proceedings of Runtime Verification (RV’01),
volume 55 of Electronic Notes in Theoretical
Computer Science. Elsevier Science, 2001.

[15] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and
M. Viswanathan. Runtime assurance based on formal
specifications. In Proceedings of the International
Conference on Parallel and Distributed Processing
Techniques and Applications, 1999.

[16] Z. Manna and A. Pnueli. Temporal verification of
reactive systems: Safety. Springer-Verlag N.Y., Inc.,
1995.

*

[17] F. Mattern. Virtual time and global states of
distributed systems. In M. C. et. al., editor, Parallel
and Distributed Algorithms: proceedings of the
International Workshop on Parallel and Distributed
Algorithms, pages 215–226. Elsevier science, 1989.

[18] K. Sen, G. Roşu, and G. Agha. Runtime safety
analysis of multithreaded programs. Technical Report
UIUCDCS-R-2003-2334, University of Illinois at
Urnaba Champaign, April 2003.

[19] S. D. Stoller. Detecting global predicates in
distributed systems with clocks. In Proceedings of the
11th International Workshop on Distributed
Algorithms (WDAG’97), pages 185–199, 1997.

318



���������
	��	���	������������������������ "!#�$�&%(')�*�+	,�*�.-/	0'1�*�2���3��4
5 �6	879�$��	:�1!<;=�>�� * *�0?@	,�> 

ACBED�F)BEG�H9I�JLKNMPO>Q RTSVUXW@YZH\[)G
]6^L_N`ba>c*dfeg_Nhid�j)kmlLnpoqkmefnpogc RVr _s^�ktofefhu_N`>evnpwyx�nzh/^|{+ef_so�a�}�~�_N`|}�_

� `+~��p_so�df~�e�c�npw1������~�`�nz~�d3kme � ofl|k�`|km��x��|k�hu^�kt~��z`
�+���f� JLKNMPO��XG�H\[)G,�L��OzK���UXMPUXO���D�FXU

���p�������s f�
¡L¢�£E¢�¤�¥§¦�¨�© ª�«g¬�¥¤§®q¯X°X±P¡+²+³´¨g¬µ¢�¨�¶�¥§«g©·«µªf¸�¹�¥£s°�ºN¥¬µ¢µ»�¦�©·¨g°P°«½¼¾¢�¿g«g© À#¤�¥§«g£Á¨�¬�¸�°P¤�«
¦�®�¨�°P¤�¥§¦/«�ºN¤§¥¯X¥ÃÂ�¨g¤�¥§«g£<¤Ä¢µ¦�®q£s¥§Å�Às¢�°�ÆÇ ®�¢)¤§®q¬µ¢P¢y¶È¨g°P¥§¦y«�º�¢�¬È¨g¤§¥§«g£s°)¥£É¡�²Ê¨g¬µ¢X°�¢�©Ã¢µ¦�¤�¥§«g£�Ë|¯XÀ#¹¤�¨�¤�¥§«g£É¨�£Á»�¦�¬µ«�°P°�«g¿g¢�¬
Æ�ÌE¼´¤§®�¢�°�¢y¤Í®q¬µ¢P¢�Ë\Î+¢$¨�¬�ªgÀs¢�¤§®#¨g¤«g£�©Ï¸Ð¤§®�¢$¦�¬È«g°P°�«g¿g¢�¬1¥°y¨vÀ#£s¥§Å�ÀN¢�©Ï¸2¡�²Ñ«Pº�¢�¬È¨g¤�¥§«g£ÁÆuÒv¢«½Ó\¢�¬´¨g© ¤Ä¢�¬�£N¨g¤�¥¿g¢X¥Í£�¤Ä¢�¬�ºN¬µ¢�¤�¨�¤�¥§«g£s°X«½¼)¤§®�¢y¶µ¨�°P¥§¦@¡+²Ê«�ºN¹¢�¬È¨g¤§¥§«g£s°µË�¨g£Á»y¤§®�¢�£)¼�«
¦�À#°�«g£Ð®�«gÎ¾¤§®�¢0°�º�¢P¢µ»�«½¼�¦P«g£�¿f¢�¬�¹ª#¢�£Á¦�¢L¦�®�¨g£qª#¢�°�Î>¥¤§®X¤§®�¢\¦�®#¨g£#ªq¢L¥£�¦�¬È«g°µ°�«g¿f¢�¬m¼P¬P¢ÈÅ�Às¢�£N¦�¸¥£V¦P¨g°�¢C«Ä¼�°�«�¯y¢2°P¥¯\ºN©Ô¢vº�¨g¤§¤Ä¢�¬�£�©Ã¢È¨g¬�£s¥£#ª�ºN¬È«q¶�©Ô¢�¯X°�ÆÌ�À#¬´º�«g°P¥¤�¥§«g£/¥°@¤§®#¨g¤1«g£s© ¸2¤§®�«g°�¢�¦P«�¯y¶�¥£Á¨g¤�«g¬�¥§¨g©,«�ºN¤�¥¹¯X¥ÔÂ
¨g¤§¥�«�£Õ¨g£N»�°�¢È¨g¬È¦�®�ºN¬È«q¶�©Ô¢�¯X°yÎz®�¢�¬P¢�¦�¬µ«�°P°�«g¿g¢�¬�°1°P¥·ªg¹£s¥ Ö�¦P¨g£s¤§©Ï¸v¨½Ó\¢µ¦�¤*º�¢�¬Í¼�«g¬�¯1¨g£Á¦P¢1Î�¨g¬�¬È¨g£s¤,¨g£C¨�ºfºN©Ï¥§¦P¨�¤�¥§«g£«½¼�¡�²i¥£s°µ¤Ä¢µ¨�»�«½¼�°P¥¯\ºN©Ã¢�¬|¬È¨g£Á»�«�¯×°�¢µ¨g¬È¦�®1¨Pº�ºN¬È«
¨�¦�®�¢�°�Æ
Ø@Ù�ÚtÛ)Ü �gÝ��fÞ ª#¢�£E¢�¤§¥§¦�¨g© ªq«g¬�¥¤§®�¯X°µË´°P¤�«
¦�®�¨g°P¤§¥§¦6«�ºN¤�¥¹¯X¥ÔÂ
¨g¤§¥�«�£�Ëtº�¨g¤§¤Ä¢�¬�£3©Ô¢µ¨g¬�£s¥£qª

ß à9á�â�ã)ä(å*æ@ç�á|è�é2ê2ë\ç|â�è@æ.ç�èíìïî
ð�ñ�òpñ�ó�ôÄõÕö#÷ øsùqú
ô�ó�û�ü�ýuþ�ðLÿ��������	��
	�������������������������� �"!#����$

��%&�'��()��%+*,%&-.����%&��/���/)01�����2��3!����+4����%+��!)*,�5%+/)��(6%���.0�798�7#%&���+��4�8
��/)0:� %&/;(6�����%&��<)����.� �>=?���&<@��%+��/'��/)0'/#����<@"���6���.�+�.�>��%&��/:A1ðLÿB!#�.=��
�C��<)/)0D/ <)*,�>���<)�E�2(#(#�+%&�.����%&��/)��%+/F��/9<#*�7G�>H���	()���7#�&��*I0)��$
*;��%&/)�KJL!)����M�Êú�öqòON�ùqü�ô�Pfñ"NV÷Ãùfõ�ö#÷�ý�ñ�öqú�õ�ûQ���,��!#�1(6��"��*,�>���>
��(R���.��%&�S��()(#�&%&�.��7#�&��AUT9��*,�V�>W)��*5(6�+�.�X���Y��<)�3!Z��()(#�&%&�.����%+��/)�[����
=����%+��<)�	(6���������/K0)����������%+��/\��/#0K����.��4�/)%+��%&��/K()���7#�&��*,��� ]2
^��/#0
��"��%&/)%&/)4_��!)�	J���%&4�!?���X���`�����%+a#��%����G/#��<@"���:/)���bJ����c �5� d�
eA

ðLÿF7O�.�+��/)4,���f�,�.�&�����S����ñ3g#ù#÷ihÁó�ôÄùqòpöqú3j2ö#÷ ø�ùqú
ô�ó�û�ü@ý�kl��!)�V����$
�&<@��%&��/Z���m�,(6�����%&��<)����L(#���76�+�.*n%+�[����<)4�!?�S=@%��,��=����+=@%+/)4'�,(O��()$
<#�&����%&��/����S��4���/?���EoC��>(#�������/9����0����,�p���>�_���L�����%&/)4��_���L4���/)�.�3q
�r���*s��/)�L4���/#�>"����%+��/,������!)�L/)��W �.�9<)/?��%&�t�@��������l����*_�S/9<#*�7G�>����
4��./)�>"����%&��/#���?��!)�X0)����%+���0fu9<#���+%+�b85���6��!)�U(G��(6<)�&����%&��/,%&�m��.���"!#��0GA
v !#�[4�� � 0)/)�.�������G%&/)0)%+=@%+0#<#���R���4?��/)%&��*_���#���^J����&�O���^�./?��%+��S(O��()$
<#�&����%&��/#����%+�mu9<#��/?��%+a#��0w7 8w��/_��()()���()�%��2���mx|ó�òpñ�ý�ýOy"hNòpõ�ó�ô�ùqò	��=���
��!#�	4���/)�������%&/)4���A

v !#�^��!@�����76����%+�X��(G�>"����%+��/)�m%+/¾ðLÿz��%&/_���.�����0#��/)����JL%���!5��!)�
���%&4�%+/#���G76%+���&��4�%&�.���:%+/)��(6%�"����%&��/:�6����z�����+�&��0Éý�ñ�÷Ãñ�õ�ó�ôÄùqò#{|ü_hÁó½ö#ó�ôÄùqò
��/)0uõ�ú�ùqý�ý�ù�gqñ�ú3A

|zñ�÷Ãñ�õ�ó�ôÄùqò}������<@����U��!#���.�@��*,��/)45��!)�[��<@���./?�U(O� ���R���:4��./)�����
��!#������4���/)�~(R�2�������/)��JL!)�����Hx�ó�òpñ
ý�ý'%+�E����*_(6��"�276��8D!)%&4�!�����
*,����S�&%+c��.��8,����7G�Xc?��()��%+/f��!)�S/)�>W �^4��./)�>"����%&��/'4��./)�L(O� ���#��!#��/
��!#�[4��./)�S(6�������>�/#�^���:�&��J��>�a)��/#������Am�b/'��!)�S�.��/?���>W �U���:����� �"!#����$
��%&�S��()��%&*,%+-�����%+��/G�9��!#�f��*,�.=?�.���w����"!)��%&���.�l��!#����!#�.=?�L(#��90#<)���.0
*,�����0)�.��%�"��7#�&����<@������*,���_%+/1��!)�'(6�����,�����*_������&%�c?�.��8\���p7O�
�3!)������/K%&/p��!)�5�C<@��<@��5��!#��/p��!)�����5*,��=?���	��	�"!#��%&���.�[��!#���	!#�.=���&��0H���,�&�����L�C�.=?��"�276�+����<@���.��*,�.��A

� hEó½ö#ó�ô�ùqò�%&����"��/)0)��*H� �b8 (#%&�.���&��8;��*;���+�R(O�>���<@�7R�2��%&��/;��!#���
%+/?���� 0)<#�����,����*,��"��/)0#��*,%&-.����%&��/Q%&/?���~��!)�H���.����"!GAM���_����/�7G�
= %&�>J��.0M���;�~=?�>���%&��/M���'���#%�(#(#%+/#4\�p76%�����ot��.�l%&/M��!)%+�,�����������
4��./)�2qm%+/'4���/#�S���.u9<)�./)���.�^���:����*_��� "��/#0)��*_�+8;���.�+�.�>���.0G�Y�����4���/@$
%+��*,����()������./?��%+/~��!)�5�.<@����/9�	4���/)��"�2��%&��/GA��F!)%+�&�_���r����/~0)�����%�$
*_�./?�"���6%&/'�.�����[���G%&/)0)%+=@%+0#<#���R�&%+= %&/)4w���4?��/#%+��*,���)*w<@�"����%+��/)���.��/
��/)��<@���*;��%+/?�"��%&/)%&/)4[��`��=?��/w����.����%&/)4S����*,��øsñ�ò�ñ�ó�ôÄõ[Nqôrg#ñ
ú
ý�ô�ótj^%+/
(O��(#<)���2��%&��/)���?���YJ��^0)%&����<#���Y%&/;�>� AY�b/V(6�����%&��<)����.��%&/V��!)�^�.��/?���>W �
���O�����9�3!#������%+�S��(#��%+*,%&-.����%+��/G�9*w<@�"����%&��/)�l!)���+(;%&/;�>W (#�&���%+/)4�*,����
������!)�;��������"!���(6�����f��!#��/�JL!#���VJ���<)�&0\7O�;�b89(6%+�����&�+8��>W (#�&����.0
JL%���!H���.�+�.�>��%&��/E��/)0E�>���������=�����L��/)�+8R�.A

�+ú�ùqý�ý�ù�g#ñ
ú�%&�^��/;��(O��"�2��%&��/;�"!#��"���>�����%+����%&�L���O��!)�yý�ñ"��hmö#÷mú�ñ��
� ú�ù�N�hmõ�ó�ôÄùqò)k��bJ���0)%+�O�>��./?�;4���/)�H����u9<)��/)�.���;����H�����&��������0G����/)0
��!)��/D�2(#()���()�%&�����.��8��3!)������/D��<@7#����u?<#��/)�.���'��W@�"!#��/)4���0:A v ! <)�
��!)���bJ��f���"!)%&�&0@���/)�[���.u9<)�./)���.��%&/)!)���%��Y����*,�^��� ��!)�.%�Y4��./)�����r���*
�.���"!����l��!)�,�bJ��H(6�����/?�����`!)��J��>=?�>.����!)�����;�"!)%&�&0@���/G�`������<)*,%+/)4
/)��/?���%�=@%����R��<@7#����u?<#��/)�.���U!#�.=?�S7O�.��/f�����������0���=?�>.�)����z���&���50)%&��$
�r�����/?�������*��.���"!_���#��!#��%+`(6�����/9�������`J����&�#���m�r���*���/#�U��/)����!)��.A
���l!6���l7O���./f���4�<#��0;��!#���.�9%+/f�.�����S���R��!)�L/6�2��<)"���6��=?���&<@��%&��/f��/)0
*,��/?85�����9�3!#������%+�U��()��%&*,%+-��2��%&��/5()���7#�&��*,�����+%+c?������!)�U%&/?���>"���>��%&��/
���O��!#�����L��!@����L76����%&�S��(O��"�2��%&��/)����/)0;��!)�S��8@/)���4�8f��*,��/)4V��!)�.*
%+�^JL!#����*;��c?���@ðLÿ�(O��J�����r<)�O%&/fa#/)0)%&/)45!)%&4�!fa)��/)�.���������+<)��%+��/)���
��/#0���!#���L�>���������=?�>��X(#���.8H�_���./?��"���G����+��%+/H��!)%&�X��8@/)�>�4�8?A

�b/V��!#%+��(R�2(G�>.��J��^*;��%+/#��8V�C� ��<)�Y��/w��!)�l����+�����@��!#�^�>���������=���
��(G�>"����%+��/Gk5!)��Js��!#�;����/?=?�>�4���/#���f���X��ð�ÿs%&�w���O�.�>���.0\������!#�õ
ú�ùqý�ý�ù�g#ñ
ú�ú�ö#ó½ñX%&�L=����%&��0G�O��/)0G�R%&/E(6�����%&��<)����.�R���S%+�[��()()��?���"!)�.�
-��>��)A_���;���4�<)�_��!#���V�>���������=���V%&�	��!)�,��/)�+8K��*,��/)4H��!)�_7R����%&�ð�ÿM��(O�>"����%&��/#�`��!#����%&�m���<)�+8_�z��(O�.��%+a#�U�C�.����<@��X���O4��./)�>��%&�X���&4���$
�%���!)*,���)"����!)��U��!#��/Z�_�C��*,%&�+%���L��(O��"�2��%&��/��r���*�����!)��X"��/#0)��*
���.����"!~��/)0p*;���"!)%&/)�w�&�.���/)%&/)4;���.�"!)/#%&u9<)�.���R��/)�+8Q��%+/~0)%+��4�<)%&�����)A
v !#���l/)��/@$e/)�.4��&%&4�%+7#�&�S�r��.u9<)�./)�>8_���O����������.=?����^%+��u?<#%����L�������./?��%&���
�r��	��<)�.���.�����r<)����()��%&*_%&-.����%&��/~= %���ð�ÿ�%+/�����*_�,�.���������:JL!#%+�&�,�r��
���&��()"���>��%&�.����(6<@�(O�������z����������.=?����	����5��������4��>��!#�>z<)/)/#�����.�������8
%+/F����!)�>.�z%+�E%+�&�+<#����"�2���.0DJL%���!�����*,����%+*_(#�&�K(6�������>�/F�+�����/)%+/#4
�>W)��*5(6�+�.��A�T9��*_�'�&��������/)�50@"�.JL/1�r���*���<@5��W (O�>�%&*,��/?���Hot0)%+��$
��<)�����.0~%&/1�3]?qL����5��!#���,ot%CqX��!)�5�3!)��%+�.�5���m��!#�_���>��<6���`�>���������=���
�����u?<#��/)��8��X%&/D�.�����~���	��!#�����p()���7#�&��*,�'JL!)����p�>���������=?�>��E����
<)�����C<)���U%+�'�+%+c?���+8�����7O�Z���[<)��*_�����'%+*_(O����"��/)�.�Z�r��f��!)�E��(O�.��0
���^�.��/?=?�>�4���/)�.�,���l��!#�_%&/)%+��%&���m(O��(#<)������%+��/K������!#�_��/)�,���^*;��W9$
%+*;���Ya)��/#����������/#0~��!#���;ot%+%CqL��!)�_4�� � 0~����������.=?��V��/)0K*w<@�"����%+��/
�����u?<#��/)�.%+�.�,ot��V�����u?<#��/)��8Z"��/#4��.�3q[�.��/K7O�_0)��(O��/)0#��/?�V��/���/)�
��/#����!#�>.A v !#�w*;��%+/~�&��������/p��!#���[J��5��*_(#!#����%&-��5!)�����%&/p%+�[��!#���
ot%+%&%rqS%+�l��!)�¾ðLÿ�����/?=?���4��./)���_"�2���.������_%&/)0)��(O��/)0#��/?�����/)�������8
%+/)0#�>(O�./)0)��/9�Y���@��!)�^�>���������=?�>`"������������!#��/V��!)��(#���76�+�.*��2�`!#��/)0
%+�U/)���X�54��9� 0�ð�ÿ��2(#(#�+%&�.����%&��/G�)%+/'(R�2���%&��<#�&��.�@J��z0)��0)<#���z�r���*
��!)���>W)��*_(#�&����%&/,�3]���!6�2�Uot%�=6qO%&�)�U(R�2���%&��<#�&��´ðLÿ\0)� ����u9<)%+����J����&�
%+/H�w4�%+=?��/�����/?���>W ��JL!)��/'��!)�S()���76��7#%&�+%+�b8'���������������=?�>��U%&��c���()�

�"�G�3���e�3� ���3¡��e¢2�3£¤�¥ �e£�¦i� �e§ ¨3©��e¢�¦iªG�2«�«�¬S�2�3�:�3§ G��¨�ªG®�«Y�e¢2«`���3ªe«�¯6®2¡.���>°i�e«��S«��2�3¡2±>¢S¦ �G¦iª�².�e¢2«m³��"�e«����e¦i�3§�®�«��2« ´��eª��3° £��>��¬2�>µ�µl¡��e�"�e¦i�>�2ªG¬2« ³�« �2¬[�3�S�e¢�«`���>����£�« �e«`³2£��3®2§i«�µ
�3��¢2�>��¬z�>��¬[¦ �eª�£�« ³2£�«�ªe« ���e�"�e¦i�>�?©��e¢2«m³��3³2¡2§i�3�e¦i�3�Sªe¦i¶ «3©2�>�2¬S�e¢�«[·e±>« �2« �e¦i�`¬2¦ ¸>« £�ªe¦ �C¨.¹��>° �e¢2«m¦i��¦ �e¦i�>§)º&¡2ªe¡2�3§i§ ¨L£��>�2¬��>µU§ ¨L��¢2�>ª�«���»R³��3³2¡2§i�"�e¦i�>�?¼

�319

goodelle
Text Box
Appendix AB:

goodelle
Rectangle



=?���8'��*;���&�G��X��=��./����>�X���5-.�>��)�@��!)��/H�¾ð�ÿ�$�76�����.0E��()()��?���"!H%&�
�&%+c��.��8,��/K����=?�>�c@%&�+�&�	�C��m��!#���m(6�����%+�.<)�&���()���7#�&��*���/)0�����^��()(#�&%�$
������%+��/�0)��*;��%+/:A��z<)�_���H��(6���.�,����/)����"��%&/?������%&/K��!)�,0)%+���.<)����%&��/
���S��<@,��W9(G�>�%&*_�./?���_%&/D�3]ZJ���*,��������81�C� ��<)�,��/ ot%+%&%Cq�$"ot%�=6qw��/#0
��/)�+8'7#�%+���)8'��>�#�.�>�L��/���!)������!#�>X(O��%&/?���S��7O��=?��A
� å*æ@ç�ã)á��2á|ã0ç|âgæ��íìïî 	
�Éã)á��1ç|â�è�æ�

���s/)�>W � 7#�%+���)8 0)%&����<)��� ��!)����!)�����76����%&� ð�ÿ ��(G�>"��$
��%&��/)��A`�\�X%&/?���>�()����l��/)0,�3!#��"�������>�%&-��X���.�+�.�>��%&��/:�?*w<@�"����%+��/f��/#0
����������.=?��5%&/\���>�*,�w������!)�;76����%&�f����/)�.�>()���w�r���* ÷ñ�öqú
òmô�òNø'��/#0
ù � ó�ô�ü@ô&Pfö#ó�ôÄùqò)A��S<),*;��%&/�(O��%&/?�,%&�_��!#���.��JL!#%+�&�����.�+�.�>��%&��/Q��/#0
*w<@�"����%&��/G�^%&/���<@,=@%+��J��l�.��/�7O�'�����0)%+�+81<)/)0#�>������ � 0�JL%���!)��<@�
��/?8K��.�r�����/)�.�,���H7#%&���+��4�8��`/#����<@"���l�>=?���+<)��%+��/\��w4��./)�>��%&�f���+4���$
�%+��!)*,� � ñ�ú�ý�ñ>�L��!)�~�>���������=?�>H��(O��"�2��%&��/B%&�'(O�.��<)�&%&����+8�� ðLÿ
��(O��"����%+��/GA v !)������C������6��%&/)���5��/?8H()���7#�&��* ��!#���S����/E7O�V������=?�.0
7 8�ðLÿ ����/p���&���;7O�V�����+=��.0Z798E����!)�>["��/#0)��*_%&-��.0Z�&� �.�������.����3!
���.�"!)/#%&u9<)�.������/#��8	��!)�����l()���7#�&��*,��JL!)�>����L/)��/@$e/)�.4��+%&4�%�7#�&�^()���7)$
��7#%&�&%��b8����U�>���������=?�>��w*;�2c?�.�w�E����/)��%&0)�>"��7#�&�;(O����r���*;��/)���;0#%+�r$
�C�>��./)�����G���<)�+8p0)�������=��_���'7O�5�.��/)��%+0#�>���0 ðLÿ���()(6�+%&�.����%&��/#��A��
�%&4������<#�`*;����!)��*;����%+�����@�r���*w<)���2��%&��/5���)��!)�^��!)����^76����%+��������()$
��"����%+��/)�L�.��/H7O�	�C��<)/)0G�6��A 4@A&�#%+/��+ûÁö � ó½ñ�úz���V���U� ]2
�A

���wa)Wp����*,�,/)���"����%+��/K��/)0~�����*,%+/)���&��4�8~<)���.0~��!@���<)4�!)��<@�
��!#��(6��(O��.A��#��`����/)����>����/#���������;��4��./)���S%&�Y�X��8@*V7O���9�����* ��%+��!)�>
��!#�L���>�/6�2�8f���+(#!#��7O�>��������� ��!#"?�9���%+���l7#%&/#���8;��<@7#��������������"?A
v !#�'�����4?��/)%&��*_���5��U��4���/?���U����S4���%+/#4V���V7O�L���()������./?����0����^a)$
/#%����L�����%&/)4��l���R4��./)���l��=?�>l��!)�S���+(#!#��7O���.A v !)�L��=����&<#����%+��/,�C<)/)��$
��%&��/Z%+/(ðLÿ %+�S�����&�&��0;x�ó�òpñ�ý�ý"�O%+/Z��<@[���������6%+�S*;��(#�S����*,��a6/)%����
���������O7#%&/#���8;��^���>�/#���8;�����%+/#4���%&/?���5�	7G��<#/)0)��0'���������G%&/?���.4���
=����+<)�.��A��S=���"��4��Va)��/#�����[�����f4��./)�>"����%&��/Z�������4?��/)%&��*,�[%&�[��%+*_$
(6��8Z��!)�_���%���!)*,����%+�5*_����/~�������&�`%+/)0#%�=@%&0)<#���`���4?��/)%&��*,�%$Oa)��/)�.���
=����+<)�.��A��\�~��!#���&�[<)���~7#%&���&��4�8��S*,����!)�.*;�2��%&���H��/)0D����*_(#<@����
���.%+�./)���X���>�*,%&/)���+��4�%&���l%+/9���>��"!6��/#4�����7#��8_��!@���<)4�!)��<@����!#�U(6��(O�>.�
�C��Y%&/)���"��/)�.������!)�l�����*_�0ùqúÄøsöqòmô§ý�ü_�tögø�ñ�òtót�Áô�òONqôrgfô�N�htö#÷.��/#03ý
ó�ú
ô§òNø
þµù�y)ø�ñ�òpñ
ý$ùqúyý"j#ü &�ù#÷Ïý��[����	<#����0E��8@/)��/?8@*,��<)���+8H!)�>���JL%���!GA
' �)( *�D*WµD*O � MµJ,+
|zñ�÷Ãñ�õ�ó�ôÄùqò�%&�,��!)�ZðLÿ}JU�.8����z���"!)%&�>=@%&/)4�ú�ñ�ô§ò�y�ùqú�õ�ñ
ü3ñ�òmóX��Éñ����
� ÷ùqô�ó½ö#ó�ôÄùqò_���:��!)�z0)����%+"��7#�&�[(#���(G�>���%&���^��!#���U!6��=?�	���������0)8;7O�.��/
0#%+���.�.=?�����0GAU�b/Z��<@[��%+*_(#�&�w*_� 0)�.�����m�����&������%+��/G�R4�%+=?��/p�,�����+�&����$
��%&��/V���@�����%&/)4��`��/#0���!)��%+Y%&/)0)%+= %&0)<#���?a#��/)������=����&<)��������/#�l��Y*,����
�&��J a#��/)�����[�����%&/)4��z����5�"!)������/p���;7G�w0)%&���.���0)�.0G�:��/#0Z��>(#�������.0
7 8E����(#%&���[���`��!)�V����*,�w/9<)*V7O�>z���m!)%+4�!Za#��/)�����[�����%+/)4���A v !9<#���
��!#�L��%+-.�S���O��!)�X(O��(#<)���2��%&��/,��.*;��%&/)�l��!)�L����*,���97#<@�^%+���V��4��./)�>��%&�
u9<#���&%���%&�����K����'%+*_()���=?��01= %��Z���.�+�.�>��%&��/:A v !)�./14���/)����%+�'��(G�>"��$
��%&��/)�,���[*w<@�"����%&��/���/)0Q�>���������=���f����H(O�>��C���*,��0M��/���!#�>��>7 8
%&*_()���=?��0H(G��(6<)�&����%&��/GA
- �����4���/)��"���+�+8��z���.�+�.�>��%&��/�%+�Z��*,���3!#��/)%&��* ��!6�2�E��/#��<@����

��!6�2�	��!)�5*,����5a)�	%&/)0)%+=@%+0#<#���+������w���'()���(6��4?�2���5��!)�.%��ø�ñ�òpñ�ó�ôÄõü3ö#ó½ñ�ú
ô�ö#÷Y������!)�E�r<)��<@��E4���/#�>"����%+��/)�,JL%+��!Q!)%&4�!)�>f()���76��7#%&�+%+�b8
��!6��/H��!)���+�.���Ua#�L%+/)0#%�=@%&0)<#���+��A,.[��/#�����#�����&������%+��/H����/�7G�z=@%+��J���0
���	��ú�ñ�ô�ò.y�ùqú�õ�ñ�üvñ�òtó,ü3ñ�õ�ûÁöqòmô§ý�ü_kL4��9� 0p4���/)�w(6���������/)���O%&/p4��./@$
��"���t�6���./)0H���;7O�����%&/)�r����.��0E�r���* ��/)�w4��./)�>"����%&��/E���,��!)��/#�>W �.�
JL!#�>��.���Y�&��J1a)��/)�.���Y4���/)�l(R�2�������/)�Y!#�.=��U�X7G���&�.JX$��.=?�>"��4��^()���7)$
��7#%&�&%��b8_���R��<@�=@%+=����@%&/_�����3!_4���/)��"����%+��/,��/)0G�9����/)����u?<#��/?���+8��?����/)0
���,0)%&����()(O���2z���+����4��>��!)��X%&/���!#�	�&��/#4_�<)/�� � �0/2
�A

' � ' 1 U � G � MÈJ2+
v !#�>��X����U���`�&�.�����`�bJ��z0)%+�O�����/?�m����&���`���6*w<@�"����%+��/)���9��/)0_!)��/#���
�bJ��\0)%��G�>���/9�_JU�.8@�,���S%&/?���>�()�����%+/#4~��!)�.*HA��S/)�E%+�,��!)����*;���&�
(G�>���<@�76����%&��/�=@%+��J�k5%+/����0)��V���E()��>=?�./?�V��!)�'���+4����%���!#* �����*
4�������%+/)4Q������<)�"c ��oC798?�����.8���()���*;����<@��.��8K����/?=?���4�%&/)4E���E�H�&� �.���

��(#��%+*w<)*'q"���~"��/)0)��* *w<@�"����%+��/�7)����2c@�,��!)�H��<)����/?�;�.u9<)%&�&%�7)$
�%+<)* <)/9��%+������=��./?��<#���&��8?�������<)�+8~4��&��7R���&�+8~���"��7#�&�,�.��/@a#4�<@"����%+��/
%+�`������3!)��0:A3�[/)����!)�>m����&�U���R*w<@�"����%&��/#�m%&�`��!6�2�m��!#�>8w�./#��7#�+�U��!#�
�>W (#�&��"����%&��/;���O��!#�����L(6������^���O��!#�L�.��/@a#4�<@"����%+��/f��(6�����L��!#���.� %+/
�.�����;����76��0��&<)��c�JL%���!\��!)�f%+/)%+��%����^����/@a#4�<@"����%&��/G�`J���<#�+0�!#�.=?�
/)�>=?�>l7O�.��/;��.���"!#��0f�����&���+8_=@%��	��!)�S�����&������%+��/f��/)0f�����������=?�>���()$
�>"����%+��/)��A4� ��%&*5(6�+�	�>W)��*_(#�&�z%+�X��/���()��%&*_%&-.����%&��/'()���7#�+�.* ��=?�>
���>�/#���85���+(#!#��7O�>�5������� ��!#"XJL!)�>��U��!)�U�����%&/)4���/)�.�90#%+/)4	���O��/98
4��&��76���+�+8,��()��%&*;���R�����+<)��%+��/f%&/)���&<)0)�.�l��!#�L��8@*V7O���6!5�98?���l��!)�S%&/)%�$
��%&���U(O��(#<)������%+��/Q���[�����%&/)4��;%&/)�.�+<)0#���;��8@*V7O���+�7� ��/)0�� ��/)��8?A
8^�+���2��+8��@JL%+��!)��<@�S�5/)��/)-�����_()���76��7#%+�&%+�b8'����*w<@�"����%&��/E�����.%���!#�>
� ���� %&/?���9!_�)/#�,���.u9<)�./)�������Y�����&������%+��/Z��/)0E�����������=?�>S��(O�>�$
�2��%&��/)�@ö#÷ùqò�ñLJ���<)�&0p��=?�>S7O�5��7#�+�w���;��.���3!p�;4��&��76���+�+8Z��(#��%+*;���
����/@a#4�<@"����%&��/:A

v !9<)���^JL!#%+�&�E�����&���>��%&��/�()���=@%+0)�.� ñ�� � ÷Ãùqô�ó½ö#ó�ôÄùqò\���S��!)�H4�� � 0
��"��%+���U%&/H��!)�z()������./?�S4��./)�>"����%&��/G�)*w<@�"����%&��/)�U(#��.=@%&0)�Ðú�öqòON�ùqü,�ô&Pfö#ó�ôÄùqò)����!)����>798M�>W (6��/)0#%+/)4\��!)�E��������"!B��/)0Q��/6�276�+%&/)4Vñ"� � ÷Ãù��ú�ö#ó�ô�ùqòK���X��!)�����'�.��/@a#4�<@"����%+��/)�5��!#���_����!)�>�JL%&���'*;�.8\7O�'%&/#���>$
��������%+7#�&��A'�b/�7#%+���&��4�%&�.���m�����*,����JL!)%+�&�,��!)�;�����&���>��%&��/\��(G�>"����%+��/G�
: <)���,���5%&/��.�����'���yò�ö#óthÁú�ö#÷Lý�ñ�÷ñ�õ�ó�ôÄùqò)�l�t��=?����5��!)�'��<@�=@%�=������m��>$
()�� 0)<)�>��%&��/'��/)0'<)�+��%+*;�����S/9<#*_���%+�����R0)��*,%+/#��/)�.�[���O��!)�Sa)���������.�
��!)�	*w<@�"����%&��/E��(G�>"����%+��/E��/6�276�+�.�X����.����%+��/E��/)0E�&��/)4�$����>�*}(O�>�$
��%+�����./)������� � ù � hE÷Ãö#ó�ô�ùqò\NqôCgqñ�ú
ý�ô�ótj�A

' �<; =ÉBEJLKNKsJ?>\D>BA@CBD+XM)E�U)D*WGF SVY
�D!)%&�&�E�����&������%+��/�%&�f��*,� 0)���L���[���%&/)�C����.��*,��/9�'��/)0�*w<@�"����%+��/�;�C���* ���m"��/)0)��*n(G�>���<@�76����%&��/G�G�>W (#����%&/)%&/)4¾õ�ú�ùqý�ý�ù�gqñ�úL%&/Z��!#�
���>�*,�,�C��*,%+�&%��2,���\��/M��/)4�%&/)����,��f�K����*_(#<@�"����%+��/#���X���.%+�./?��%+���
JL%���!5/)�zc /#�.JL�&��0#4��U���)76%+���&��4�8w%&�`*w<)�3!_*,������3!#���+�&��/#4�%&/)4)A3HU%&��$
�+��4�%+�����+�+8�������������.=?���������X�S(O�.��<)�&%&����C�.����<@������*ý�ñ"��hmö#÷Áú�ñ � ú�ù2N�hmõ��ó�ô�ùqò#A`�D!#%+�&�[����%&/)4��&�S�>���������=?�>���(O��"�2��%&��/;7O���bJ�����/;�bJ��V�����%&/)4��
���^��8@*�7G���&�V�.��/K%&/K()�%+/#��%+(#�+�f����JU�.8@�	7O�_��%&*w<)�&�����.0K=@%��H��/���()$
()���()�%&�����X����u?<#��/)�.�X���R��%&/)4��+��$e��8@*�7G���6*w<@�"����%&��/)���?��!#%+��0#�9�.��/)���
�+����0_���V�	/#����<@"���)%&/?�����()��>�"����%&��/;���R�>���������=?�>��l%&/_�����*,�����R*w<@$
�"�2��%&��/)��A Iz��*,���+8���*w<@�"����%&��/#�V����,��<)()(O������0\����7G�,%&/)�����u9<)��/?�.�
"��/#0)��*��Y��/#0K%&/)0)��(O��/)0#��/?�V���^��/)�;��/#����!#�>.�:"����!)��z��!6��/K=?�>�8
����*,*_��/KJ ��/#0G�z%+/D��!)�K�������K���9$ *w<@�"����%&��/#�%$X��%&*V<#�&����%&/)4���!#�
����*,�;��%&/)4��+�f�>���������=?�>.�Y!)%&4�!)�+8K*w<@��<#���&��8��.�����.�&�����.0\��/)0\/)��/@$
"��/#0)��*�L�A���l!#���m7O���./;�2�4�<)�.0_��!#������!)�X(O��J��>l���,ðLÿM������*,��()�%&*;�2�%&�+8
�����* ��!)��(O��J��>,���S�>���������=?�>��~� ]2
eA��\����>(6!@"��������!)%&�57 8��2�$
4�<#%+/)4f%&/��>]5��!#���L��!#����� ð�ÿ �2(#(#�+%&�.����%&��/)�L��!#���S<#���V�&%+�����+�V��S/#�
�>���������=�������L��/#00�2��'(O�>��C���* %&/)0)�>(G��/)0)�./?���+8M���[��!)�Z�>���������=���
()���76��7#%+�&%+��%+�.���[����p/#���H4���/9<)%&/)�<ð�ÿz�U%+/B��!#���'��!#�p<#/)0)�>��+8@%+/#4
()���7#�+�.*,�z����/~7O�w�����0)%+�+8~��/)0 : <)�������	�NM;��%&��/?���+8p������=?�.0~JL%���!@$
��<)�L4��./)�>��%&�����+4����%���!#*_�[���+����4��>��!)��.A

O PQ�´ç�ç�ã)á�æSR/ã���á�æ2âgæT�VUDWX��YZ�\[�ã��
�\�V/)��J 0)�.���>�%+7O�V��<@z�>W (O�>�%&*,��/?�����R��<@���&%&/)����!)�V*;��%&/Z�C�.��$

��<@����X������!#�[�bJ��_(6�������>�/H�+���2�/#%+/)4_()���7#�+�.*,�UJ��	!#�.=?�	����<)0#%+�.0G�
()������./?�L����*_��������!)�	�>W (O���%+*,��/9�"���G�����<#�������6��/)0H��!)��/H�C� ��<)�X��/
��!)��%+L%+/9���>�()����"�2��%&��/E��/)0E%+*_(#�&%&�.����%+��/)��A

�b/;7O����!;(#���76�+�.*_��� ��!)�_ot%+/#%���%����rqm�����%&/)4�ot��^]Èõ
û�ú�ùqü3ùqý�ùqüvñ`_�q
�+�./)4���!p%&�z�.%+4�!?�.AV�b/p��!)�wa)��������>�	���l��<)	��%+*_(#�&�5(6���������/p�&�.���/@$
%+/)4��>W (O���%+*,��/9��������!)�Z4��?���S%+�;�����>=?����=?�p��(O��(#<)���2��%&��/����	���$
4���/)%&��*,�S��[��4���/?���S���,��!)�V��/#��JL!)�>��V�.���3!p��4��./?�.�#���()������./?����0
���z�;7#%&/#���8Z�����%+/#4'��=?�>[��!)�_���+(#!#��7O���������a��"?�O�.��/?�"��%+/)�z%&/p%����
��>()��.����/?�"����%&��/��.���"!1���X��!)�����'��!@����f(6���������/)��kb�����V�,�����f�
��/#0c�����fAd�[%�=?�./��D�����%+/)4)�_%����~a)��/#�����K%&�K%&/)�>���������0 798 �
�r��K��!)��()������./)���M���f�����3!����;��!)�.������!@����M��<@7#�����%&/)4���A v !)�
��JU���0�%&��4�%+=?��/�%����.��(O������%�=?�M���,��!#�1/ <)*V7O�>\���,���(O�>��%+��%+��/)���

eaf �[³2£��3� �e¦i��«3©.�e¢2«m��£��3ªeªe��¸>«�£G£��3�e«�ª:�3£�«m¡2ª�¡2�>§i§ ¨L®>¨S�3��§i«��3ª��:�>��«m�>£�¬2«�£G�>°@µU�3±>�2¦ �e¡�¬2«m¢�¦i±>¢2«�£O�e¢2�>�S�e¢2«mµl¡��e�3�e¦i�3�[£��"�e«�ª�¼g f �2¬2« «�¬?©3¦i�^� �>ªe«R�>°2®2¦i�2�>£t¨��3§i³2¢2�3®�«b�eª�©3ª�¡2��¢^µl¡��e�3�e¦i�3�2ª)�3£�«O¡2�2¦ih�¡2«�§ ¨�¬�« �e«�£�µU¦i�2« ¬l�>�2� «O�e¢2«R�CO�`ªt�e£�¦i�2±>ª �e�Y®�«O��£��>ª�ªe«�¬���¸>«�£ ©>�3�2¬ j kml�npo�q�rtsuk`qwv6xzy{q}|w|zq�~%n{y�j ©¢2��¸>«�®�«�«��[��¢2�>ª�«��?¼

�320

goodelle
Rectangle



��! <)���za)��/)�.���E���#������������� %&�E��/)��8�������/)0����M%&�H��!#���E���
�#�����#�������;A^T?���%+/#4 �����#��������� %&�m���#a)��/)�����l� ��JL!)����.���
�����%&/)4������#��������� !#���[a)��/)�.����] Az�b/p����� �"!#������%&�5��(#��%+*,%&-.��$
��%&��/E���>�*,���6��!)��a#��/)�����S�C<)/)�>��%&��/E��.���"!#���S%����[4��+��76����*;��W@%+*w<)*
�C��V�����%&/)4��V��<)�"!1�������#�����#����� �27G�.=?��Af�b/K��!)�_��.%+/#�r�������$
*,�./?�L�&�.���/)%&/)4,���>�*,���@��!#�z(O��(#<)������%+��/)�S����	%+���>"����%+=��.��8'��"��%&/)�.0
���B�+�����/���!#���Z��!)��*,�����p0)�.��%�"��7#�&������/@a64�<)"�2��%&��/)�~�������!#�����
��<#�"!1�����#���#���������V��4�� � 0�7#<@�w��<@7O��()��%&*,������!)�����;��<)�3!����
�#���#�����������V�SJL!)%&�+� �����#�������#����� %&�H��<@���%&4�!?�E76��0
ot-.�>��5a)��/)�.���3q"Am�\�z�.���&�O��!)%&��(6�������>�/��&�.���/)%&/)4_�"����c � ���7#�&��* ��A

�b/V��!)�^���.����/)05���>�`���)��W9(G�>�%&*_�./?��������!)�^��()��%&*;��� 4���/#�^�����%+/)4��
����_��!)�����_JL!)�����2÷ÃùqòNø�ñ�ý
ó´ö#÷§÷ ��ÿ ý"hp&�ý�ó�ú
ô�òNøqýz����,���l�&��/)4���!��r��<@.A
v !6�2�[%&���R�����%&/)4��S��<#�"!~��� �������#������� �� �������������#� ����
4��&��76���+�+8���(#��%+*;����ot*;��WOA`a)��/#�����[]�q"�@JL!#%+�&���#��A 4)A+�K���#�����������
��/)0 �#�������������V�:JL%���!���W)��������8~��!@����;��/)0Ka)=?�;�.��/#������<)��%�=?�
�S��%+/	��!#��%+L÷ùqòsøsñ�ý�ó��Pö#÷§÷ ��ÿ<ý"hp&�ý
ó�ú
ô§òNø#ý��������(O�.�>��%+=?���+8�������l������%&4�/#��0
a#��/)�����	�9�6��!#�V�����%+/#4��SJL%���!Z��W)��������8��bJ��f��[��%�WE����/)���.��<@��%+=?���S�
����U������%&4�/)��05a)��/)�.���U������/)0,���+�@����!)�>`�����%&/)4��m��������)a)��/)�.���`-.�>��)A
���z����C�>X���_��!)%&�X(6�������>�/H�&�.���/)%&/)4_(#���76�+�.* ��� � ���7#�&��* �9A

� �>�w<#�w*,��/?��%&��/�����*,�'���U��!)�;*;��%&/1�r������<@����w������!)�.���;�bJ��
(#���76�+�.*_��A����l!#����7O���./;�������./,������������.0pot��A 4)A+�#�>]z%+/~� ]2
CqY��!#���$ðLÿ
��!#�.J���!)��%+[������./)4���!Z���f��!)�w�r<)�&�&�����z�>W ���./?�[%&/uü5hE÷·ó�ôC�½üvù2N�ö#÷)��()$
��%&*,%+-�����%+��/H(#���76�+�.*_�S��!#���.�#%&/p��0#0)%���%&��/H���;��/)�V��S*,����V4��+��76���
��()��%&*;�@�����&����!#�.=?�_���>=?�>"���`�&� �.���Y��()��%&*;� A��#�����<)�3!~()���7#�+�.*,���
%+�_!#���w7O�.��/����4�<)��01��!#���ÉðLÿ 0)%&����%&/)4�<)%+��!1��!)�.*,�����+=��.�_��*,��/)4
����!)��V"��/)0)��*,%+-.��01���.����"!\���.�"!)/#%&u9<)�.�V�r��w��!)�.%�5��7#%&�&%��b8K���Z4��>�
��<@�l���R�&�9�����+�+85��()��%&*;���#�����&<@��%+��/)�^��/#0_����&%��276��8_�>=?��/?��<6���&�+8w��.���3!
4��&��76���+�+8���()��%&*,���[����/@a#4�<@"����%&��/#��A �#�����!)�p�����%&/)4��&��/#4���!#�'���
�.%+4�!?�L��U4�����2����.� 7O����!�������<@U()���7#�&��*,�L���&�&�.J ���>=?�>"���G4��&��76���+�+8
��()��%&*;���:�����&<@��%&��/#��A2�[/E�>W)��*_(#�+�V���`�_�&� �.���&��8H��(#��%+*;���������&<@��%&��/
%&/E�.������������<@L()���7#�&��*,�XJ���<#�+0E7O���_�����%&/)4,����a)��/)�����z�VJL!#�����
a#��/)�����U�.��/)/#���U7O�[%&/)����.������0'���,]�798;�6%�()(6%+/)4,�5��%+/)4��&�z4���/)��Am�b/
��!#���.�����'��� � ���7#�&��*I���������%&/)4 �����#���#����� %&�5�&� �.���+�+8���()$
��%&*;���m%&/K��!)%&�	���./)����A � ���7#�+�.*��9����/K��!)�,����!#�>�!6��/#0G��*;�.8~��
*;�.8\/)���5!#�.=?�'��<)�"!1�&� �.���l*;��W@%+*;�@�m0)�>(G��/)0)%&/)4p��/���!)�f�����%&/)4
�&��/#4���!:A��F!)%&�+�������5o<�������	q��w%&�[�;�����%+���S�+� ������*;��W@%+*w<)* �C��
�����%&/)4w�&��/)4���!)�^d����Z]foCJL!)�>��	��
 � �"�`���������q"�?��!)����[�2��S/)�w%+/?�����$
�.����%+/#4V�+� �����6��()��%&*;���C��^����!)��^�����%&/)4V�&��/)4���!)��� %&/)�.�+<)0#%+/)4w�+�./)4���!
� ��!#���mJ��U!#�.=?�U<)���.0,%+/_*,���������6��<@��>W (O���%+*,��/9������AY�b/)0#����0:�?�C��
�&��/#4���!)$e��%&4�!9�U�����%&/)4����)��/?8f���������%�=?�.��8f4�� � 0f7#<@�U4��&��76���+�+8f��<@7O��()$
��%&*;���������%&/)4Z��<)�"!1�����Y��A 4)A&�3���#�����������f�Y�.��/�7O�,*;��0)�f��()$
��%&*;����798H�#%+()(#%&/)4'�;��%+/#4��&�w��8@*V7O����A v !#���[%+���O/)�f��<#�"!p4��&��76���+�+8
��<)7O��()��%+*;���S�����%+/#4�%+�f/)��/?���%+= %����+�+8M�&� �.���&��8Q��(#��%+*;���L�C�� � ���7)$
�&��* � �6���X��!)�>��V����V���+JU�.8@�L�����%+/#4��LJL%���!H!#%+4�!)��La)��/)�.���UJL%+��!)%&/
.z��*,*,%+/#4w0)%&���"��/)���5�S�r���* %��.A v !)������C������ ��/#�[*,�.8;%&/?��<)%+��%�=?���+8
��W (O�����X��!#���3ðLÿFJ���<)�&0H(O����r���*�7O�������>L%&/ � ���7#�&��* �	��!#��/E%&/
� ���7#�&��* � AH�b�5��0)��%&/)4E7O�������>��E*,����/#����!6�2�5�H�b8 (#%&�.���l4��./)�>��%&�
���&4����%+��!)*�J���<)�&0G�m��/���=?��"��4����m����/?=?���4��'�t�������>5%+/��.�����'���L��/
%&/)���"��/)�.�[��� � ���7#�&��* �S��!#��/'%+/'�.�����[�����w����*_(6��"�276�+�[%&/)���"��/)���
��� � ���7#�&��* � �#��!)%&�L�.��/ : �.�>��<@�����<@�/)�S��<@�L���,7O��JX���/)4)�R���S��<@
��W (O�>�%&*,��/?�"���9��.��<)�+���`%&/)0)%&�.������A3�Q7O�>������`*,�.����<@��U���)��!)�U��()(#�&%�$
����7#%+�&%+�b8'��/)0�<)���.�r<#�+/)�.���U���)ðLÿ�$�76������0H�&�.���/)%&/)4)�)%+/���<@U=@%+��J��@%&�
��!#��=����%&��7#%&�+%+�b8E���`(O�>��C���*;��/#����JL%+��!E��.��(O�����S���,��!)�fhNòmô��>hmñ�÷ij��ðLÿF(6��"��*,�>����.�@��!)���>���������=?�>L"�2����A

����<)����0Q�p��%&*5(6�+���l��%&/)4��&�>$�(O��%&/?�;�>���������=���,��(O�>"������.A\�\�
0#%+0 ���&�&�.J ��!)%&����(O��"�����������7O�~/#��/)$e��8 *,*,�>���%&���z%&/D��!#������!)�
�&��/#4���!#�X������!)�����O��()�%&/)4,�����%&/)4��L����<)�&0E0)%+�O�>L�r���*}��!)���+�./)4���!)�
���m��!#��%+[(6����./?����A	�b/p��!)�5�.�����5��� � ���7#�&��* � �O��!)%&�[JU���[<)�����>��+8
%+�����&�>=���/?�Y$G/)���`��<@�()�%&��%&/)4���8?��4�%+=?��/V��!6�2�m�>���������=�����Y��!)�.*,�����+=��.�
!6��0\=?�>�8K�+%+�����&����%+�X��/98���%&*_(6���>�V��!)�>���A9.[��J��>=?�>.����!)%+�V�C�.����<@��
JU���w��7#�����&<@�����+8K���<)��%����m�C��w���&�+��JL%&/)4Z�H��.������/#��7#�+8~"��(#%&0��.��/@$
=?���4��./)����%+/ � ���7#�&��* �;ot���.�z7O�.�+��Jzq"A

� ö &�÷Ãñ
ý����w�K(O�>��"��%&/	���L��!)�l�>W (O���%+*,�./?�����r�� � ���7#�&��*,���^��/#0
� �m�����(O�.�>��%+=��.��8?�`�C��_��*;���&�l(O��(#<)������%+��/1��%&-��.��AZ�\�'!#�.=?�;���.������0

�57)��?��0H"��/)4������Y�>���������=?�>z��/)0E*w<@�"����%&��/H"�����z=����&<)�.���6���L��<@
�r� ��<#�V%+�w��/\0#�>(O�./)0)��/#���f������!)�f��(O�.��0����U����/?=?�>�4���/#���f��/\��!#�
�>���������=���U"�������@J��z��!)��J�����*,�z�����<)�+���U�C��Ua)W@��0�*w<@�"����%+��/�"�����
���m���fA

� ö &�÷Ãñ������,ú�ù &�÷Ãñ�ü���þ � ù � hÁ÷Ãö#ó�ôÄùqò��	�� "�
*w<@�"����%+��/H"������k ! ���`��4���/?����k ! ���Y�>W (O���%+*,�./?�"���

"$# 
F��� �&% �<)/)��kD/'%'%
�����������=?�> *_����/ ���"��/)0#���0
"������� "�( 0)�>=@%�����%+��/
% A*)'% ��)'%@A+)'% ��,�,9Ai]��
% A � % ��� � A*,'- ����) A+-@�
% A.,/% -'- A.,/% /�-9A /@�
% A*-'% d?] A /'% ]@��A*-�]
% A /'% ]�] A d � �@��A+%?]
% A d / ]�� A*-�- ���9A*)�-
% A d�% ]�] A ]�d �@��A+%�-
% A ]u/ ]/%@A d / ���9A d �
% A ]'% ] ��A ]�- ��]9A � �
% A �u/ �') A /�] �@��A*-@�
% A �'% ] ��A���� ��d@A��&%
% A���/ ]2d)A /�] ]'% A ��d
% A��&% ]') A ]�) ]@��A ��]
% A+% / /�,9A /u/ /��9A d0-
% A+%?� � %@A���� � ]9A ���
% A+%)� �&%?� A d0- ���&%@A+)'%
%@A %�%)� �1)�� A&��� �u/�,9A+-�)
% A+%�% �'%0,9Ai]�d ]'%?� A � %

� ö &�÷Ãñ��2���,ú�ù &�÷Ãñ�ü
�¾þ � ù � hÁ÷Ãö#ó�ôÄùqò��	�� "�
*w<@�"����%+��/H"������k ! ���`��4���/?����k ! ���Y�>W (O���%+*,�./?�"���

"$# 
F��� �&% �<)/)��kD/'%'%
�����������=?�> *_����/ ���"��/)0#���0
"������� "�( 0)�>=@%�����%+��/
��A+%�% �1,9A d � �1)9A.,/%
% A*)'% �&- A+% � �1-9A*)��
% A � % � � A � � � � A*)�,
% A.,/% �&) A*-'% �@��A*-u/
% A*-'% �1,9A*)@� �@��A���d
% A /'% � � A*) � � � A����
% A d�% � � A.,2d �1)9A � �
% A ]'% � � A��1- �1)9A d9�
% A �'% �1,9A*)@� �1)9A.,'-
% A��&% �&) A���� � � A d�,
% A+%)� � � A*-�d �1)9A*-�)
% A+%�% � � A���] �1)9A.,'-

� ö &�÷Ãñ�ý43?�65 ��!)��J ��!)�V*,�.��/E"�������S���`����/?=?�>�4��./)���w��/)0E��!#�
���"��/#0#���0'0)��= %�����%+��/)��JL!)��/'��!)�S(O��(#<)������%+��/'��%&-��.�U����[%&/)����.������0
�����*s�&%X����/'%@A �[�:��!)�l�����&������%+��/V*,�.�"!#��/)%&��* JU����c?�>()����!#������*,�
o�����%+/#4��&�SJ�������������%+/#4w%&/'�V4�%+=?��/f4��./)�>"����%&��/'%+����=����JX�%������./,7 8
�f����(98p���l�'��%&/)4��&�w7O�.���	�����%&/)4 q"�O��!)�5�.��/9=����4���/)�.�5%&�z���&�.J����%+/
�.�����	����7#%+4�4��>L(O��(#<)������%+��/E��%&-������R���L��/)�zJ���<)�&0E�>W (O�.�>�.A

� ö &�÷Ãñ73����,ú�ù &�÷Ãñ�ü���þ � ù � hÁ÷Ãö#ó�ôÄùqò��980 "�
*w<@�"����%+��/H"������k ! ���`��4���/?����k ! ���Y�>W (O���%+*,�./?�"���

"$# 
 �:� /'% �<)/)��k �&%'%
�����������=?�> *_����/ ���"��/)0#���0
"������� "�( 0)�>=@%�����%+��/
% A*-'% ���u/ Ai/�) ]u/ � Ai/u/
% A /'% )2d)A d � /��9A ��,
% A d / ,',9A / � ��)9A+% �
% A d�% ,�] A���] �1)9A d0)
% A ]u/ -�,9A ��� � � A /'%
% A ]'% -�,9A��:, �1-9A ] �
% A �u/ -�] A � ] ��]9A., �
% A �'% - / A d9� �:,?A��1)
% A���/ -2d)A d / �:,?A*)�,
% A��&% -'- A ] � ��d@A ]�)
% A+% / ,�� A.,�� ]�]9A /�,
% A+%?� )�] A /�] -��9A*-��
% A+%)� �&%�- A*,�] )'% A*)��
%@A %�%)� �@� � A&�:, ]@��d)A*,2d
% A+%�% ]'%�- Ai]�- -���- Ai/ �

;< �2«^� �>�z¸�¦i« ~�Sªt�e£�¦i�2±Lªe¡2��¢	�>ª>=?=?=?=@=?=?=?=��3ª`�X�e£�¦ ¸.¦i�>§ §i�.���>§9µU�BA.¦iµ^¡�µ[©?¦i�	�Lªe«��2ª�«l�e¢��3�Y�e¢�«l´2�e�2«�ª�ª`�3°6ª�¡2��¢��Sªt�e£�¦i�2±L���>���2�3�Y®�«l¦iµU³2£���¸>«�¬	®>¨
C�¦i³2³2¦i�2±EDt¡2ª����3�2«m�>° �e¢2«m±3«��2«�ª ¼GF���O« ¸>«�£ ©2O«m¬2�3��H �����>��ªe¦i¬2«�£G�>�>¨Sª�¡2�b¢[¶�«�£��"¯�´��e�2«�ªeªG«IA.�>µU³2§i«`�>�[¦i�>�e«�£�«�ªt�e¦i�2±�§i�.� �>§i§ ¨X�3³��e¦iµU�>§?ª��>§i¡��e¦i�3�?¼

]321

goodelle
Rectangle



� ö &�÷Ãñ 5 � �\ú�ù &�÷Ãñ�ü �Éþ � ù � hÁ÷ö#ó�ô�ùqò��980 "�
*w<@�"����%&��/�"������k ! ���Y��4���/9����k ! ������W (O�>�%&*,��/?�"���
" # 
F��� //% �<)/#��k �&%�%
����������.=?�� *,�.��/ ���"��/)0#���0
"������� "�( 0)��=@%&����%&��/
��A+%�% d � A+-�, ] A*-�]
%@A*)'% d0) A %�) d)A*)�-
%@A � % d0) Ai�u/ ] A*-@�
%@A.,/% d � A � d ] A*-�,
%@A*-'% d � A d9] ] A ]��
%@A /'% d � A+-�] ] A+% /
%@A d�% d � Ai/�] ] A d�,
%@A ]'% d0) A %�% ] A��1)
%@A �'% d0) Ai]�� d)A*)��
%@A��&% d � A*,') ] A /@�
%@A+%�% d0) A d�d ] A ��d

�b/V��!)�^�.��������� � ���7#�+�.* �������Y��!)�l�����������=?�>`"�����^��()(#������3!)���
-.�>��)����!)�^�.��/9=����4���/)�.�^���+��JL�`0)��JL/w�.��/#��%+0)��"��7#��8?������7G����! � ö &�÷ñ
� ��/)0 � ö &�÷Ãñ 3}%&/)0)%&�.������A v !)%+�[0)�>(G��/)0)�./)���w��/Z��!)�V�>���������=?�>
"����� "G( %+�Y!)%&4�!)��8�/)��/)�&%&/)�.��`%&/��bJ��L"��/)4��.��k:JL!#��/ "G( ��()(#������3!)���-.�>��)�`��/)0\��/)�.�,��!)�;�>���������=?�>V(#���7R�276%+�&%��b8\�>W@�.����0#�	��!)�;<@()(O��
7G��<#/)0����	��/��>W (O�>�%&*,��/?�"���&��8M��7)�"��%&/)��0s��4��9� 0M"��/)4��.�@A v !)%&�
4�� � 0p"��/)4��_��� "�( =����+<#���z0)��(O��/#0)�	��/~��!)�5(O��(#<)���2��%&��/~��%&-���k[%&/
� ö &�÷Ãñ �2�Z��!)�V��(O�.��0E���`����/?=?���4��./)���V���"������X"��(#%&0)��8E0)�.�>��.����%&/)4
��/)�.� "G( ��W@�����.0)�Y��7O��<@�>%2�i/'% � %2�+-'%@��JL!)%&�+����%+/ � ö &�÷Ãñ 3��X��!)%+��(#!)��$
/#��*,�./)��/Z%+�L��7#�����=?��0Z��/)��� "�( ��W �.���.0)��%2� ]u/ � %2� d�% A^�\�	(O��%&/?�
��<@�^��!6�2�^��!)�S4��9� 0f�����(#��%+*;���6"��/)4��S�r�� "G( � %+/���0#0)%���%&��/f������!)�
(G��(6<)�&����%&��/'��%&-����@%&�����&���50)�>(G��/)0)�./?�U��/f��!)�[*w<@�"����%+��/f"������� "$# A
�F!)%&�+�~*w<)�3!D���	��!)�VðLÿ �+%+���>"����<@��Z��.����*,*,��/)0)� "�( ���<)4�!)�+8
JL%+��!)%&/;��!)�L"��/)4��_� %2�+-'% � %2�*)/%�
mot�������9��A 4)A&�6�3]�%&/K� ]2
tq"�9%&/Éö#÷§÷����G��<@
��W (O�>�%&*,��/?���wot%+/#���&<)0)%&/)4,*;��/?8�/#���X(#�������/9����0E!)�>��.%+/Oq"�#��/)0E�C��
���&�`*w<@�"����%&��/~"�������[J��_!#�.=?�5���������.0�oC���<)4�!)�+8p�r���* �&%0�n0)��JL/
���9%2���:�_q"����!#�^�t�����������`����/?=?�>�4���/#����!#����7O���./V�b8 (#%&�.���&��8V��7#�"��%&/)�.0
�C���=����+<)�.����� "�( J��.�+�m7G���&�.J %2�+-'%@A7�z%+�O�����/?�V(O��(#<)������%+��/\��%&-��.�
��/)0,0)%��G�>���/9�`=����&<)���m��� "$# !#�.=?��7O�.��/50)�.*,��/#����"�2���.05���z�&�.��05���
0#%��O�����/?�,� �R�2�U���4�%+��/)���5%&/ "G( �C���JL!)%&�"!f��!#�[�.��/9=����4���/)�.�S"�2���.�
����V���L��S�����<#/)0H��!)�	��()��%&*w<)*HA

�b/B��!)�p�������p��� � ���7#�&��* � �L4�%+=��./���!#�p�����&������%+��/D����"�2���.4�8
��/)0F��!#�K*w<@�"����%&��/F(#���7R�276%+�&%��b8?�[��!#�K*,�.��/��.��/9=����4���/)�.�~"�����
%&�V/)�������8�����/)���"��/?�VJL%+��!������(O�.�>�����E�3!#��/)4����V%&/���!#�,�>���������=?�>
(#���7R�276%+�&%��b8?A v !)%&�V!#���&0)�w�C��5���+��(O��(#<#�&����%&��/���%+-.���V7O���bJ�����/��&%
��/)0 //%Z��!#���wJ��'!6��=?�'�>W (O���%+*,�./?����0�JL%���!:A~�b/��������f���X�����4���
(G��(6<)�&����%&��/)�Ho � ö &�÷Ãñ�59q"�`��!)���.=?�>"��4��'��(O�.��01���X�.��/?=?�>�4���/)�.�'%&�
���&%&4�!9����8�%+*_()���=?��0K7 8p��.0)<)�.%+/)4H��!)�,*w<@�"����%&��/�()���76��7#%+�&%+�b8 " #�r���* ��� 0)��JL/F��� %����:� ot/#���E��!)��JL/ ��7O��=?�2q"�w!)��J��>=?�>.�z��!)�
��=?�>"���&�Y7O�.!#�.=@%+��z���*;��%+/)� : <)�������H���6�����fJL%+��!p�����(O�.�>�z���)�G%�A ��A+�
7R����%&�.���&��8Z%&/)0)��(O��/)0#��/?�z���b�O��/98E�3!#��/)4����[%&/E��!#�V����������.=?��["�2����A
� �>�,<#�,���&���K/#����%&������!#���.�l%&/ � ���7#�&��* �9�l��!)��=����%���/)���E���>������
0#%��O�����/?�_��W (O�>�%&*,��/?�"���l�<)/)�_0)�.�>��.�����.�5����/)��%&0)�>"��7#�+8\JL%���!���/
%&/)����.������%+/H��!)�	(O��(#<)������%+��/E��%+-.��A
�[/#����!#�> %&/?�����������%&/)4I��76���>�=�����%&��/ %+� ��!6�2�.�}JL!)�./ ��!)�

����������.=?����\�������.u9<)%+���0 ���D()�� 0)<)�.�M���O��()�%&/)4F���;��!)�M����*_�
�����%&/)4V�&��/#4���!'������!)�.%�l(6����./?�����9��!)�X(G�>��C���*;��/)�.�L%+/ � ���7#�+�.*n�
4��./)�>"���&��8M����/)0)�;���\0#�>���>�%&��"�����E0@"��*;����%+�����&�+8�A �S/Q��!)�Z����!)�>
!6��/#0G�w�&�>����%&/)4�����*,�������%&/)4��~4���.J ���B��7O��<@���%�$����Q4���/)�.�p%&/
�&��/#4���!D��()(R�2��./?���+8Q��/#��7#�&���'*w<@�"����%+��/)�H��/)0B�>���������=?�>��f�����.��$
a6��%&��/?���+8f��=?���+=?�[��<#�"!H�+��/)4��>,���"!)���*,������*,�����,%+/9���w��!)�z��()��%&*,���
�����&<@��%&��/#�,��!#���,����/?�"��%&/Q���&����!@��.��0)�.��%���.0�(R�2�������/)��A �[/)����!)�>
(G������%+7#�&�Q� a#W �K�C��,��!)�����&��J ����/?=?�>�4���/#���H%+/ � ���7#�&��* ��%&�_���
�.��/)��%+0#�>;��!)�H����*,�E4������U(6���������/)�;��/)0Q��8@*_*,�����%+�E�>���������=?�>��
��/)�+8��#7#<@�S�r��wot����/)���"��/?�>q^�����%&/)4,�&��/)4���!)�L4���.�����>X��!#��/H�.%+4�!?�.A

�b/D��/)����!)�>'����8Q�>W)��*_(#�+���U��!)�p4��?���SJU���;���1*;��c��~�\(O��()$
<#�&����%&��/ ���&�.���/)�E��!#���w��()��%+*;���l�����%&/)4��V��<)4�!?�w���E�.��/?�"��%+/\7O����!
(R�2�������/)�7����� ��/#0 ���#��$V7#<@�f(6�������>�/ ������JU���f����/)��%&0@$
�����0�%����.�+��=���/?����!)%+�	��%&*,��A'T?�"����%+����%&�.���&��8?�:��!)�_(O����r���*;��/)���,�C��
��!#%+���R*,� 0)%+a#��0Z=?�>���%&��/Z��� � ���7#�&��*�����<@�/)��0Z��<@�S���,7O��"����!)�>
��%&*,%+��������'��!6�2���C�� � ���7#�+�.* �fJL%+��!~��!)�_����*,�,����������(O��/)0#%+/)4

(O��(#<)���2��%&��/E��%&-��.�S��/)0E=����&<)���L��� " # A��b/H(6�����%&��<)����.�l���&�.���/)%&/)4��
����� ���#��� %+/,��!)�L��(6�����S���@xY��ñ"N��½÷ñ
òNø�ó�û9�µñ�ôÃø#ûsó#76%+/#���8_�����%&/)4��
= %������B��./)0)�>��.0;�>���������=?�>��^��7O��<@� : <)�������l%+�����&�>=���/9�^�����&�.���/@$
%+/)4 ������� 0)%+0:A

�\�[����/)���&<)0)�[��!)%&�^7)�%&������/)0�/)���.���������%&��8f%&/)����*_(#�&�>���z��/#���+89$
��%+�	JL%���!K����*,�_���*;���c ����/~��!)�,%+*_(6���>�V������!)�_*w<@�"����%&��/~"�������
"$# A3�[���>W (O�.�>����0:���&���4��>�(O��(#<)������%+��/)���9%&/,4���/)��"������(#����C�>l�+��J��>
"$# A,.[��J��>=?��.�)��!)%&�L0)�>(G��/)0)�./)����%&�L/)���L�&%+/#�.��.A,�#��L7G����!H()���7)$
�+�.*_���l�"!6��/#4�%&/)4 " # �r���* ��� �����:� %+/������������L�&���4��>_(O��(#<@$
�&����%&��/~��%&-��.�z!#��0K�f7#%+4�4��>�%+*_(6���>�	��/p��!)�w"�����5���l����/?=?�>�4���/#���
��!#��/E���0)<)�.%+/#4 "$# �r���* �:�}0)��JL/Z��� %2�&�:�fA �`%+/#0)%+/#4'��/p��()��%�$
*,���:��X���&�����z���_��()��%&*;��� " # %+�U(6�����%&��<)�������8�%&*_(O����"��/9�X%&/H�.�����
���`��!)�w��=���"���+��7O�>������S7O��!#�.=?��0 � ���7#�+�.* �9�RJL!)�������!#����.�&����%+=?�
��%+4�/)%+a#�.��/)�.�;����*w<@�"����%+��/)�V%&�V!)%+4�!)��.�Y4�%�=?��/���!)�;%+�����&�>=���/)���;���
�>���������=������A3�`%+/6���&�+8���%&/w�������U��� � ���7#�&��*}����*w<@��<#���@0)��(O��/)0#��/)�.�
7O�>�bJ��.��/ "G( ��/#0 "$# !#���X7O�.��/E��W (O�>�%&*,��/?�"���&��8H����/@a)�*,��0:�R0)<)�
���S��(6����������/)����"��%&/?������J����+���.=��^��!)�U��/#����8@��%&�Y���@��!#%+�`0)��(O��/)0#��/)�.�
�r��S��/)����!)�>L� �.�.����%+��/GA
� �9è�æ�ë [gêT�+â�è�æT�
�[��/#�>��%&�z���&4����%���!)*,�X����z�w<#�����C<)�O�.��*_(#<)�"�2��%&��/#���R(6��"��0#%+4�*

�r����z=����%+���b8_���O��()��%&*,%+-�����%+��/'��/#0;�����2��3!;()���7#�&��*,��Am�b/,(R�2���%&�>$
<)�&��.�+ð�ÿM�.��/_7O�U<#����0,���O������%�=?�.��8w%&/,*;��/98w(6�������>�/_�������4�/)%+��%+��/
��/#0�(6�������>�/V�+�����/)%+/#4S��()(6�+%&�.����%&��/#��A .[��J��>=?��.���>=?�./V%+�)�3ðLÿ���()$
()��?���3!�����/	7O�l<)����0V�r�����!)��4�%+=?��/�()���7#�+�.* ��/)0w�U���������%�=?���+8	�C�����
����/?=?�>�4���/#���X�.��/,7O�U��.���"!#��0G�?J��S���4�<#�U��!#������!)%&������%+�&�#0#�9�.��/)���
%+*_(#�+8	��!#���XðLÿ\/)�.���.�����2�%&�+8 ý�ûÁù�hE÷+NZ7O�l<)����0w%&/�(#�������l���@��%&*_(#�+��
���.����"!H�����3!)/)%�u9<)����Al�F!)�>��!)��S�_4�%+=��./H()���7#�&��*����<#��8'JU���"��/?���ð�ÿ��.��/�7O�^*,�.����<@���0:��%&/V��<@Y= %&�>J���798	��!#������&�>=���/)���l��� ��!#�l��%&/@$
4��&��<)/)%�u?<#���+8Cð�ÿ1��(O�>"����%&��/G��=@%&-�A&����!)���>���������=���.A v !9<)���9�L()���7)$
�+�.* ��!#�������u?<#%���.�w�E/)��/@$e/)�.4��&%&4�%+7#�&�;()���76��7#%&�+%+�b8����U�>���������=�����
��/#0;JL!)�>��L��!)�[����/?=?�>�4��./)���S"�2���.������L0#�>(O�./)0)��/9����/'�>���������=���
"�2���.�^0)�������=?���^����7G�L�.��/)��%+0#�>���0H��J������!98ÕðLÿD�2(#(#�+%&�.����%&��/GAm�b/
����/?��"�����.���S()���7#�&��*�%+/#����/)��%+��%�=?�����z�>���������=���`"���������?��/)0 : <)�������
�NM;��%&��/?���+8K������=��276�+�,798K���.�+�.�>��%&��/���/#0�*w<@�"����%&��/)�V���&��/)���`���	J��
�����w%��.�R0#�9�.�[/)���SJU�2�"��/?�[��!#�V<#���V���yðLÿzA6���V!6��=?�w%&�+�&<)����"������0
��!)�����p(O��%&/?���'JL%���!D����*,�~��%&*5(6�+�~(6�������>�/D�+���2�/#%+/)41()���7#�&��*,���
������*,%&/)4���81u9<)%+���'��%+*,%&�&��_���p��/)����/)����!)��.�`8?�>�5JL!)�>���%+/1����*,�
�.���������.��/?=?�>�4���/)�.�[�>�%+��%+�����+�+8;0)��(O��/#0)����/f��!)�[����������.=?���(#���7R�2$
7#%+�&%+�b8��OJL!)%&�+�5%&/~����!)����S��!)�5�"!)��%&���5���m��!)�5����������.=?��z"�����V��<@�/)�
��<)�5���p7O�'()"������%+�����&�+8\%+�����&�>=���/?�.A �[��/#�>"���+%&-�%&/)4~��!)��������%&*_(#�+�
�>W)��*5(6�+�.����/)0fa#/)0#%+/)4_��/#���+8 ��%+�����R�"!6�2"�������>�%&-.����%+��/)�����G��!)�S�bJ��
����/?�"����%+=��5�.�&�������.�	����(6�������>�/~�&�.���/)%&/)4�()���7#�&��*,����()(O����z���'7G�
J������!98'�C<@��<@��	��������2��3!E��/)0)���.=������A

�����
	
�������
�����	������������2���4���.�����+8	%&/)0)��7)����0w�����[�&����.0
.[<@7#�&�>[o{8^��/?������C�� 8^��*_(#�&�>WfT?8@������*,���S�����.����3!Rq"�9��/)0,J��L���&���
��%+/)�.�>��.��8p��!6��/)c��S��-.�! R%&���.%���/)0#"	%+�%&�+� - ���3!)%+���.=Qo{�S(O��/1T98 ��$
����*,� � �27G��"�������86q"�����&�@�����*%$[/#%�=?�>���%+�b8w���6�b�&�+%&/)��%+���?�C��`��!)�.%�l����$
��%+���"��/)�.����/)05�r�.��0@76���"cRA v !#�lJ����c�()��.����/?���.0w!)�����%&/VJU���Y(6�������8
��<@()(O�������0Z798H��!)�'&��)()*+�-,.*0/'12/3�54768*:9��;��9=<����R����/@$
��"�����X/9<#*�7G�>?>A@;B;C;B�DFEGB;BEGDFEHB�IKJ;CGA

LNM�O � M �;��9=<;PRQ�S
���3
C.[���+����/)0G�KT)A .wA&�uð�ñ�ò�ñ�ó�ôÄõ´ÿ)÷ øsùqú
ô�ó�û�ü@ýyöqòONÐó�ûÁñ�U � ó�ô�üvö#÷ÿ)÷§÷Ãùfõ�ö#ó�ôÄùqòÕù�y � ú
ôÄö#÷Ïý"�~T9�G� - T)A68^��*_(:A&�R� �\�1)�,�]
� ��
 �5AKVLA6�[���+0@7G�>�4)�(ð�ñ�ò�ñ�ó�ôÄõyÿ)÷ ø�ùqú
ô�ó�û�ü�ýyô§òp|zñ�öqú�õ�û?{WU � �ó�ô§ü@ô&Pfö#ó�ôÄùqò¾öqòON � ö�õ
û�ô�òpñYX�ñ�öqú
òEô�òNø���[0)0#%+����/@$��\�.���+��8����1) � )
� ]�
 � �����OT6A .wA&� � A � ����/)4Zot��0GA�q"��ð�ñ�ò�ñ�ó�ôÄõ1ÿ)÷ øsùqú
ô�ó�û�ü�ýmy�ùqú

�0ö#ó�ó½ñ�ú
ò[Z�ñ�õ�ù�øqòmô�ó�ô�ùqò#�C8\��8 � ����������&)�)�-
� d�
9�wA]T)A ��A�=���/N�L� ��% : � � A`8SA]T?��%&/G�]�VA � A]T���!#/)����/G��^�ñ>hNú�ö#÷

^yñ�ó`_\ùqúGa � ú�öqô�òEô�òNøcb*ý�ô�òsøÉð0ñ�òpñ�ó�ôÄõ1ÿX÷ ø�ùqú
ô�ó�û�ü@ý�� - ���3!)%+/#� � �>�$
���>(#��%+��/ed
�S���%+a#�.%&���^�b/?���.�+�&%+4��./)�����Y=?����A���-9� �\����&0MT ��%&��/?��%+a#�
� <)7#�+%&��!)%&/)4X8^�)A+���1)�)'-

� /�
f �A - %+�3!#���+��JL%+�.-��"ð�ñ�ò�ñ�ó�ôÄõ$ÿX÷ øsùqú
ô�ó�û�ü@ý)gih$ö#ó½ö�|tó�ú3htõ>�
óthNú�ñ�ý:jlk�g#ù#÷ihÁó�ôÄùqò �\ú�ù�øqú�öqü�ý"�pT?()�%&/)4��>�$nml�>�����4)���1)')��

d322

goodelle
Rectangle



AN ACTOR-BASED SIMULATION FOR STUDYING UAV COORDINATION 
 

Myeong-Wuk Jang, Smitha Reddy, Predrag Tosic, Liping Chen, Gul Agha 
Department of Computer Science 

University of Illinois at Urbana-Champaign 
Urbana, IL 61801, USA 

E-mail: { mjang, sreddy1, p-tosic, lchen2, agha } @cs.uiuc.edu 
 
 
 
KEYWORDS 
Actor, Simulation, Unmanned Aerial Vehicle (UAV), 
Coordination. 
 
ABSTRACT 

The effectiveness of Unmanned Aerial Vehicles 
(UAVs) is being increased to reduce the cost and risk 
of a mission [Doherty et al. 2000]. Since the advent of 
small sized but high performance UAVs, the use of a 
group of UAVs for performing a joint mission is of 
major interest. However, the development of a UAV is 
expensive, and a small error in automatic control 
results in a crash. Therefore, it is useful to develop and 
verify the coordination behavior of UAVs through 
software simulation prior to real testing. We describe 
how an actor-based simulation platform supports 
distributed simulators, and present three cooperation 
strategies: self-interested UAVs, sharing-based 
cooperation, and team-based coordination. Our 
experimental results show how communication among 
UAVs improves the overall performance of a 
collection of UAVs on a joint mission. 
 
1. INTRODUCTION 

The effectiveness of Unmanned Aerial Vehicles 
(UAVs) is being increased to reduce the cost and risk 
of a mission [Doherty et al. 2000]. Some military 
UAVs, such as the Predator and the Global Hawk, 
were already used during the wars in Afghanistan and 
Iraq. Decreasing size of the UAVs and increased 
demand for more intelligent and autonomous behavior 
of UAVs are paving the way for consideration of a 
group of UAVs performing a joint mission. While the 
cost of UAVs is lower than that of real planes, the 
development cost of a UAV is still very high, and a 
small error in automatic control may result in a crash. 
Therefore, when we consider a large number of UAVs 
working together, it is necessary to design and verify 
the behavior of UAVs through software simulation 
prior to real testing. 

Many simulators have been developed as single 
process simulators. However, a single process 
simulator has several limitations. First, the 
performance of a simulation depends on the 
computational power of one computer. Second, a 
single process simulator has an extensibility issue 
when a special component requires its own specific 
process. For example, if we want to simulate the 

coordination behavior of many virtual UAVs with a 
few real UAVs, each real UAV is working as an 
independent process. In this kind of simulation, a 
single process simulator cannot work well. Therefore, 
a concurrent object-based distributed simulator 
provides a better simulation environment.  

It is commonplace to say that human beings are 
disposed to cooperate. Biology and ethology show that 
“kin-altruism” and “reciprocal-altruism” can ground 
cooperative behavior in animals, such as wolves 
surrounding prey, termites nest building, and birds 
flocking. Drawing a parallel, intelligent UAVs that 
cooperate with one another are of high interest for 
their ability to search, detect, identify, and handle 
targets together. The old age tenets of pre-planning 
and central control have to be reexamined, giving way 
to the idea of coordinated execution. In this paper, we 
describe and analyze three different strategies to 
coordinate tasks among UAVs in a dynamic 
environment to achieve their goals. 

The outline of this paper is as follows. Section 2 
sketches a simulation scenario and explains basic 
concepts about the actor model and the metrics in our 
simulation. Section 3 describes architecture for our 
simulation, and three cooperation strategies for a joint 
mission are presented in Section 4. Section 5 explains 
our implementation and experimental results. Then, in 
Section 6 and 7, we discuss related work and our 
future work. Finally, we conclude this paper with a 
summary of our simulation framework and our major 
contributions. 
 
2. TERMINOLOGY 

2.1 UAV Simulation Scenario 

Prior to embarking on the architecture of our UAV 
simulator, we present a simple scenario in order to 
explain the meaning of basic terms. The application of 
our simulation is a UAV surveillance mission. For 
example, 50 UAVs might be launched into a certain 
area by Ground Control System (GCS) to detect 
targets in the area. For example, targets may be 
civilians to be rescued. In the simulation, UAVs have 
the autonomy to perform their mission without 
interaction with the GCS, except during the initial 
stage when message exchange is necessary to get each 
UAV started by sending them some default air routes. 
When UAVs are launched, the UAVs do not have any 
information about locations of targets. However, each 

 

593

Proceedings 15 the European simulation symposium 
Alexander Verbraeck, Vlatka Hlupic (Eds.) 
(c) SCS European Council / SCS Europe BVBA, 2003 
ISBN 3-936150-28-1 (book) / 3-936150-29-X (CD) 

323

goodelle
Rectangle

goodelle
Text Box
Appendix AC:

goodelle
Rectangle



UAV is equipped with some sensors which can detect 
objects within the certain range. We assume that all 
UAVs start from the same location, called an air base. 
Controlling the sequence of takeoffs and landings of 
UAVs is managed by the control center, called Air 
Base System (ABS). The main task of a UAV is to 
detect locations of targets in a mission area and 
investigate them. Therefore, even though they 
navigate according to the given air routes, they can 
change their trajectories to handle targets once they 
detect those targets. In addition, when UAVs 
encounter obstacles, such as tall towers or airplanes, 
they should change their air routes to avoid a collision. 
Therefore, in our UAV simulation, there are five types 
of important components: Ground Control System 
(GCS), Air Base System (ABS), Unmanned Aerial 
Vehicles (UAVs), targets, and obstacles.  

 
2.2 Actor 

Our UAV simulator is based on the Actor system, a 
concurrent object-based distributed system, and hence, 
we use the actor model to describe each component in 
the simulation. An actor is a self-contained active 
object which has its own control thread and 
communicates with other actors through asynchronous 
message passing [Agha 1986; Agha et al. 1997]. In 
addition, an actor can create other actors, just as an 
object can create other objects. In our UAV simulator, 
each component, such as a UAV or a target, is 
implemented as an actor. Since these components in 
real situations operate concurrently and communicate 
with one another, their behavior can be captured very 
well by the actor model. Each software component in 
the simulation progresses its state independently of the 
progress of others in response to the environment 
information gathered either through its own sensor or 
by communicating with others. 
 
2.3 Attractive Force Value and Utility Value 

In our UAV simulation, each target has its own value. 
This value could be interpreted in several different 
ways. The value might correspond to the number of 
soldiers or the importance of a building. Also, we can 
consider this value as the time required to investigate a 
target by a UAV. For the simplicity of our simulation, 
we use a single numeric value instead of symbolic 
information or time information about a target. 

In our simulation, we make the following 
assumptions. A UAV handles only one target at a time, 
although the UAV holds and manages information 
about several targets. In the advent of multiple targets 
to be handled, the UAV should select one of them. For 
this purpose, a UAV uses the attractiveness function to 
decide on a target. The attractiveness function maps 
the value of a target to the attractive force value, 
which represents a UAV’s preference. This function 
depends on the value of the target and the distance 
between itself and the UAV, and is used to select the 
best target as follows: 

 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−

Π
=Θ

)()(
)(

maxarg)(
ttx

t
t

ji

j

ji ψ
 

 
where )(tjΠ  denotes the value of target j at time t, 

 is the location of UAV i at time t, and )(txi )(tjψ is 
the location of target j at time t. If target j is stationary, 

)(tjψ  is always the same regardless of time. The 
value between braces is called the attractive force 
value of target j, and )(tiΘ  returns the index of the 
target that has the maximum attractive force value to 
UAV i at time t.  

As a UAV approaches a target, the UAV starts 
consuming the value of the target once the UAV is 
within a certain distance of the target. We call the 
value consumed by the UAV the utility value. The 
utility value function and the target value function of 
the target i at time step t+1 are defined as follows: 

 
)1()0()1( +Π−Π=+ ttU iii  

 
{ }0),()(max)1( tndtt iii ⋅−Π=+Π  

 
where  means the utility value of the target i at 
time t, d is a discount factor, and  is the number 
of UAVs which are near to the target i at time t. 
Therefore, in our simulation, when several UAVs are 
within the range of a target, the value of the target is 
consumed more quickly. 

)(tUi

)(tni

After a UAV reaches a target, it will fly around 
the target until the whole value of the target is 
consumed, either by the UAV alone or in conjunction 
with a group of UAVs. In our UAV simulation, one 
purpose of collective behavior of UAVs is to 
maximize the accumulated utility value within as short 
a time as possible. Here, the accumulated utility value 
means the whole value of targets consumed by all the 
UAVs. 
 
3. SIMULATION ARCHITECTURE 

Our distributed simulation is comprised of three 
layers: user interface, UAV simulator, and actor-based 
distributed platform (Figure 1). The user interface 
layer consists of two programs: Configuration 
Interface Program and Simulation Viewer. 
Configuration Interface Program provides an easy 
means of defining important attributes for the 
simulation. Simulation Viewer is a tool to check and 
verify the simulation results. All task oriented 
components, such as UAVs and targets, and simulation 
oriented components, such as Simulation Control 
Manager (SCM) and Active Broker (AB), are 
implemented as actors in the UAV simulator layer, 
which will be further explained in section 3.2.2. Each 
actor has its own thread to progress its state. The 
thread execution and communication of actors are 

 

594

324

goodelle
Rectangle



controlled by the Actor Foundry, an actor-based 
distributed platform.  
 

 

User Interface 
Configuration Interface 

– set up parameters 
Simulation Viewer 

– show the result 
 

 

UAV Simulator 
Task oriented components 

– UAVs, targets, obstacles, etc 
Simulation oriented components 

– SCM, AB, etc 
 

 

Actor-based Distributed Platform 
Actor Foundry 

– actor thread control 
– communication among actors 
– actor migration 

 

 
Figure 1: Three-layered Architecture for Distributed 

Simulation 
 

The actor-based distributed platform is a 
middleware to support several distributed applications 
and is not tailor made for a specific simulation, such 
as a UAV simulation. The UAV simulator defines 
specific behaviors of UAVs, but does not include all 
the parameters to test and verify a behavior. These 
parameters are defined in user interface programs by a 
user and used in the UAV simulator. The functions of 
each layer are explained in detail below. 
 
3.1 Actor-based Distributed Platform 

The Actor Foundry is implemented in the Java 
programming language, and supports actor execution, 
communication between actors, and actor migration 
[Astlery 1999; Clausen 1998]. 

In the Actor Foundry, an actor is created by 
another actor or by a user. When an actor is created, 
the actor name of the new actor is returned. This name 
would be used to refer to the receiver actor in message 
passing or deliver the reference of another actor to the 
receiver actor. The actor name is unique in the actor 
world. Therefore, even though an actor migrates from 
one host to another, the name is always transparent to 
other actors, and hence, other actors can continuously 
use the same name to refer to the given actor 
irrespective of that actor’s current location, thereby 
providing a means for location transparency. 

An actor in the Actor Foundry is running as a 
Java thread, and an actor communicates with other 
actors through asynchronous message passing. This is 
the main difference between the Actor Foundry and 
other object-based distributed platforms, such as 
CORBA and DCOM [Grimes 1997; OMG 2002]. In 
other object-based distributed platforms, one thread 
control is assumed: when an object is called by 
another object, the caller object is blocked until the 
called object returns the thread control. In the Actor 
Foundry, since every actor has its own control thread 

to perform its operation and communicates with others 
through the asynchronous communication, the 
execution of an actor does not depend on those of 
others. Due to these features, we can easily use the 
power of distributed systems. Simulation components 
implemented as actors run on different computers 
independently, and they can communicate with others 
through the unique actor name, even though the 
distributed platform migrates some components from 
one host to another. 

When distributed components interact with each 
other through asynchronous communication, 
analyzing the delivery sequence of communication 
messages is burdensome because asynchronous 
communication does not guarantee the message 
delivery order requirements, such as FIFO order, 
causal order, or total order [Hadzilacos and Toueg 
1993]. Our distributed platform makes a log for 
message passing among actors, so that users can easily 
analyze the delivery sequence of messages. 
 
3.2 UAV Simulator 

All simulation components in our UAV Simulator can 
be classified into two categories: task oriented 
components and simulation oriented components 
(Figure 2). Task oriented components simulate objects 
in real situations. For example, a UAV component 
maps to a UAV object in a real situation while a target 
component maps to a target object. For the purpose of 
simulation, we need some virtual components, such as 
Simulation Control Manager and Active Broker. The 
following sub-sections explain these two categories of 
components in detail. 
 

 
 

Figure 2: Simulation Components in UAV Simulator 

Task Oriented Components 

Ground Control 
System 

Air Base 
System 

U
Aeri

nmanned 
al Vehicle 

Un
Ae

manned 
rial Vehicle 

Unmanned 
Aerial Vehicle

Static 
rget Ta

S
T

tatic
arget

Static 
Target 

M
T

obile 
arget 

M
T

obile 
arget 

Mobile 
Target 

S
Obs

tatic 
tacle

S
Ob

tatic 
stacle

Static 
Obstacle

Mo
Obst

bile 
acle

Mo
Obst

bile 
acle 

Mobile 
Obstacle 

Simulation Oriented Components 

Simulation 
Control 
Manager 

Sensor 
Simulator

Active 
Broker 

 

595

325

goodelle
Rectangle



 
3.2.1 Task Oriented Components 

Task oriented components in our UAV simulator 
consist of five types: Ground Control System (GCS), 
Air Base System (ABS), Unmanned Aerial Vehicles 
(UAVs), obstacles, and targets. GCS is a central 
manager of UAVs and is aware of the mission area so 
as to indicate each UAV its air route in the area. 
However, GCS may not communicate continuously 
with UAVs to decide behavior of the UAVs at each 
time step because UAVs are supposed to perform their 
mission autonomously. ABS represents a control center 
of an air base and controls the sequence of take-offs 
and landings of UAVs. UAVs perform a given mission 
autonomously within certain restrictions, such as their 
kinematics and communication capability. Obstacles 
represent objects in which UAVs are not interested and 
with which a collision can happen. According to 
whether an obstacle can move or not, they are 
classified into two classes: a mobile obstacle, such as 
an airplane, and a static obstacle, such as a tall tower 
or a building. Targets represent objects of interest for 
the UAVs, such as, civilians to be rescued. According 
to its mobility characteristics, there are mobile targets 
and static targets. 
 
3.2.2 Simulation Oriented Components 

3.2.2.1 Simulation Control Manager.  
Each component manages its virtual time because 
each actor has its own control thread. However, this 
situation can cause inconsistency in virtual times of 
components. To maintain consistency between virtual 
times, Simulation Control Manager (SCM) manages 
local virtual times of the simulation components. 
When every component starts its execution, the initial 
value of each local virtual time is set to 0. After every 
component starts, SCM broadcasts a virtual time clock 
message to the other components. When a component 
receives the message, the component increases its 
local time and performs a small portion of its task that 
should be completed during the predefined time slice 
unit. For example, when a UAV receives the message, 
it updates its location and direction vector, and also 
checks whether or not new objects, such as other 
UAVs, targets, or obstacles, are detected. If a new 
neighboring UAV is detected, the UAV might 
exchange some information with the new neighboring 
UAV. After a component finishes its computation, it 
sends a reply message to SCM. When SCM receives 
reply messages from all the other components, SCM 
increases its virtual time, and rebroadcasts another 
virtual time clock message. 

 
3.2.2.2 Active Broker 
In order for a UAV to perform a group mission, the 
UAV needs to communicate with its neighboring 
UAVs through local broadcasting. Active Broker 
simulates a local broadcasting mechanism. In general, 
the brokering service supports attribute-based 

communication. For example, if every UAV registers 
information about its current flying area with its actor 
name on a shared space, then when a UAV requests a 
broker for a message passing with a template that 
describes a certain area, the broker delivers the 
message to other UAVs which are in the area. 
However, this approach is not very accurate for 
finding the neighboring UAVs. Therefore, we have 
extended the function of the brokering service. In the 
active brokering service, every UAV registers 
information about its current location with its actor 
name on the shared space, and a UAV sends a special 
object instead of the template to request a message 
delivery to Active Broker. The object includes a 
specific method to be called by Active Broker. The 
method computes the distance between the location of 
the sender UAV and other UAVs and selects some 
which are within the local communication range. 
When the method returns actor names of neighboring 
UAVs, Active Broker delivers to them the message 
received from the sender UAV. 

 
3.2.2.3 Sensor Simulator 
Although each real UAV is supposed to be equipped 
with its own radar sensor, the radar sensors of all 
UAVs is simulated by a single simulation oriented 
component, Sensor Simulator. In the simulation, 
UAVs, targets, and obstacles register their current 
locations on a shared space every second in virtual 
time. Sensor Simulator periodically computes the 
distance between any two objects. If some components 
are within the sensor range of a UAV, Sensor 
Simulator reports information about these components 
to the UAV. Each UAV regards this information as its 
sensor input. 

 
3.2.3 UAV Architecture 

The most important simulation component is a UAV 
component. Therefore, we explain the architecture and 
the main behavior of a UAV in this subsection. A UAV 
is comprised of four modules: the physical process 
module, the trajectory planning module, the 
cooperative module, and the global control module 
(Figure 3). 

 

 
 

Figure 3: The Architecture of the Unmanned Aerial 
Vehicle Actor 

 

 

physical process module 

 
trajectory 
planning 
module

target 
handling

obstacle 
handling

 
 

cooperative 
module 

global control module 

sensor

UAV 

GCS

UAV

global 
waypoints

local waypoints

next waypoints request 

local information, next waypoint request 

 

596

326

goodelle
Rectangle



When a UAV starts its mission, it does not have 
any

3.3 User Interface 

If we have to modify the UAV simulator whenever we 

3.3. onfiguration Interface Program 

rs, we have 

 information about its air route or the mission area. 
In our simulation, an air route is defined as a set of 
waypoints that need to be traversed by the UAV. 
Therefore, the first task of a UAV is to request the 
waypoints from GCS. The global control module of a 
UAV takes charge in communicating with GCS and 
managing the waypoints received. We call these 
waypoints global waypoints. When a UAV detects 
targets or/and obstacles, this information is delivered 
to the trajectory planning module from Sensor 
Simulator. The trajectory planning module handles 
them according to the predefined rules. For example, 
when a UAV detects several targets, it selects one 
target which has the best attractive force value, and 
then modifies its air route to reach the target. This 
function is performed by adding a waypoint to the list 
of UAV’s current waypoints. The set of waypoints 
used inclusive of the additional waypoints are called 
local waypoints. The cooperative module is used when 
several UAVs want to handle a set of targets. To 
decide which UAV handles which target, the UAVs 
communicate with each other through the cooperative 
module. The kinematics of a UAV is implemented in 
the physical process module. Therefore, whenever this 
module receives a virtual time clock message, the 
physical process module computes the next location 
and the next direction of the UAV. When a UAV 
reaches the current waypoint, this module starts a turn 
toward the next waypoint according to the predefined 
kinematics. 

 

execute it with different parameters, it is quite 
burdensome. Besides, modification at the code level 
requires comprehension making it hard for novice 
users to modify the code. In our architecture of UAV 
simulation, we separate the parameter modification 
part from the UAV simulator code as the user interface 
layer. Moreover, we separate the simulation checking 
part from simulator code. Therefore, the user interface 
layer consists of two programs: Configuration 
Interface Program and Simulation Viewer.  

 
1 C

For the convenience of novice use
separated the configuration for UAV simulation 
parameters from the simulator code as a configuration 
file. This file can be modified by the Configuration 
Interface Program (Figure 4). Therefore, although a 
user does not look at and understand the source code 
for UAV simulation, they can change important 
parameters of simulation and run it without 
recompiling the source code. With this program a user 
can set up the number of UAVs, the size of mission 
area, the attributes of targets and obstacles, maximum 
simulation time, and the size of simulation time slice 
unit.  

 

 
 

Figure 4: Configuration Interface Program 
 

.3.2 Simulation Viewer 

eristics of large scale 

r UAV simulator is running according to 
the 

3

Because of the charact
simulations whose durations may sometimes be so 
long that we cannot monitor the simulation results 
continuously, we have separated the simulation 
checking from the simulation execution. Therefore, we 
look at and check the simulation results through 
Simulation Viewer (Figure 5). Another advantage of 
this approach is that the simulation results can be 
viewed back and forth with respect to the simulation 
virtual time. 

While ou
given parameters, the simulator generates 

simulation results on data files. The data files contain 
the locations and directions of UAVs, targets, and 
obstacles at every simulation virtual time step. The 
Simulation Viewer is used to check and verify the 
simulation results. 
 

 
 

Figure 5: Sim ation Viewer 
 

ul

 

597

327

goodelle
Rectangle



4. COOPERATION AND COORDINATION 

Coop  UAVs is essential in directing 

4.1 Self-interested UAVs 

In the self-interested UAV strategy, a UAV senses a 

4.2 aring-based Cooperation 

has discovered and 

4.3 am-based Coordination 

In the team-based coordination strategy, certain UAV 

. EXPERIMENTAL RESULT 

We have developed the UAV simulator and two 

ize of the simulation 
area

stigate how different cooperation 
stra

AMONG UAVS 

eration among the
the adjustment of policies in the globally most 
beneficial direction. In addition to cooperative 
dissemination of information, coordination of actions 
in larger teams is essential. With elements of 
uncertainty existing in the environment, coordination 
among UAVs has to be adaptive. The UAVs need to 
dynamically allocate responsibilities for different 
subtasks depending on the changing circumstances of 
the overall situation. For example, if additional targets 
are detected during a group mission, a team of UAVs 
needs to be able to handle them either by recruiting 
new member UAVs or changing the previous 
assignment of targets. In our UAV simulation, we use 
three strategies: the self-interested UAV strategy, the 
sharing-based cooperation strategy, and the team-
based coordination strategy.  

 

target and approaches it with the intention of 
consuming its entire value. When another UAV 
detects the same target, it also proceeds to consume 
the value of the target, irrespectively of what other 
UAVs do. Incessant polling of the target value till such 
time it is consumed completely serves as a means of 
interaction among the UAVs. It is not unusual to have 
more than one UAV concentrated on a target resulting 
in quicker consumption of its value, but also possibly 
in duplication of service. 

 
Sh

In this strategy, once a UAV 
located a target, it broadcasts this information so that 
other UAVs could direct their attention to the 
remaining targets. Reception of such information will 
result in the UAVs purging the targets that were 
advertised. This approach allows for a larger set of 
targets to be visited in a given time interval and is thus 
expected to be faster in accomplishing the mission 
goal. Exchange of information between UAVs 
referring to the same target will result in a UAV with a 
lower identification number to determine the UAV that 
would be responsible for this target based on 
parameters such as the distance from the target. 

 
Te

takes on the mantle of the leader of its team and 
dictates course of action to the other UAVs about the 
targets they need to visit. A team is dynamically 
formed and changed according to the set of targets 
detected; i.e. when a UAV detects more than one target, 
the UAV tries to handle the targets together with its 
neighboring UAVs. At this time, the main concern is 

how to select an optimum UAV and decide the number 
of UAVs required to accomplish a task, when there are 
a sufficient number of neighboring UAVs. As the basic 
coordination protocol, we use the Contract Net 
protocol [Smith 1980; Smith and Davis 1981]. The 
UAV initiating the group mission works as the group 
leader UAV, and the other participant UAVs are called 
member UAVs. When a member UAV detects another 
target, the UAV delivers information about the new 
target to the leader UAV, and the leader UAV will add 
the target to the set of targets to be handled. The leader 
UAV considers the distance between a target detected 
and neighboring UAVs to assign the target. When a 
member UAV consumes the entire value of a target the 
UAV secedes from its group. 
 
5

interface programs in Java programming language. 
Our UAV simulator is running on the Actor Foundry, 
but interface programs do not require the Actor 
Foundry. In order to simulate the flying and turning 
behavior of UAVs, we use the basic kinematics model 
of airplanes, but we abstract away the detailed 
dynamics and kinetics of aircraft. 

For the UAV simulation, the s
 is set to 1,000,000 × 800,000 × 8,000 cubic feet 

(length × width × altitude), size of the mission area to 
400,000 × 500,000 × 8,000 cubic feet, the radius of 
local broadcast communication of a UAV to 50,000 
feet, and the radius of radar sensor to 25,000 feet. 
There are 50 targets in the mission area, and they are 
normally distributed. Half of the targets are static and 
the others are dynamic targets. When a UAV is within 
1,000 feet from a target, the UAV consumes the value 
of the target. The initial value of each target is 100, 
and the discount factor d in the target value function is 
5 per second. 

To inve
tegies influence the performance of a joint mission, 

we use Average Service Cost (ASC) defined as 
follows: 

 

n

MNTNT
ASC

n

i
i∑ −

=
)(

 

 
whe n is the number of UAVs, NT  means navigation 

ost for three 
diff

re i
time of UAV i, MNT (Minimum Navigation Time) 
means average navigation time of all UAVs required 
for a mission when there are no targets.  

Figure 6 shows Average Service C
erent cooperation strategies. When the number of 

UAVs is increased, ASC is decreased in every case. 
However, the sharing-based cooperation strategy and 
the team-based coordination strategy are better than 
the self-contained UAV strategy. From this result, we 
conclude that communication of UAVs is useful to 
handle targets, even though UAVs in the self-

 

598

328

goodelle
Rectangle



contained UAV strategy consumes quickly the value of 
a target when they handle the target together. Another 
interesting result is the performance of the team-based 
coordination strategy is similar to that of the sharing-
based cooperation strategy, even though the algorithm 
of the sharing-based cooperation strategy is much 
simpler. The overall ASC of the team-based 
coordination strategy is 3 or 5 seconds faster than that 
of the sharing-based cooperation strategy. When ni(t) 
in the target value function is not used, the 
performances of the sharing-based cooperation 
strategy and the team-based coordination strategy are 
not changed very much while that of the self-
interested UAV strategy is decreased (Figure 7). 

 

0

50

100

150

200

250

300

350

400

20 25 30 35 40 45 50

Number of UAVs

A
S
C

Self-interested
UAVs

Sharing-based
Cooperation

Team-based
Coordination

 
 

Figure 6: Average Servi e Cost (ASC) for three 

 

c
different coordination strategies. 

0

50

100

150

200

250

300

350

400

20 25 30 35 40 45 50

Number of UAVs

A
S

C

Self-interested
UAVs

Sharing-based
Cooperation

Team-based
Coordination

 
 

Figure 7: Average Service Cost when n (t) is not used. 

. RELATED WORK 

sent a flight simulation tool for 

nt an agent 
base

. FUTURE WORK  

orts distributed computational 

em of the current actor system is the 
exis

re looking to merge a 
few

ulation, we use Contract Net Protocol. 
It m

i
 
6

Johnson and Mishra pre
GTMax (Georgia Tech R-Max VTOL UAV) [Johnson 
and Mishra 2002]. Barney Pell and his colleagues 
describe the NMRA (New Millennium Remote Agent), 
architecture for a UAV. The NMRA integrates real-
time monitoring and control with planning and 
scheduling, handles fault recovery and reconfiguration 
of component models, and simulates the autonomy of 
a UAV [Pell et al. 1997]. However, the type of the 

GTMax UAV is a helicopter, and both papers do not 
handle cooperation among UAVs. 

Altenburg and his colleagues prese
d simulator to simulate UAV cooperative control 

[Altenburg et al. 2002]. In their approach, agents are 
reactive agents while UAV components in our 
simulation are deliberative agents. Therefore, their 
agents directly respond to signals from environment, 
while our agents change their intention about targets 
and automatically and proactively select a different 
action. Also, their agents communicate with others 
indirectly through the environment while our agents 
communicate with each others directly. Kolek and his 
colleagues present a simulation framework to evaluate 
the performance of real time tactical radio networks 
with a UAV [Kolek et al. 1998]. In this paper, the 
authors explain how much distributed simulation 
could be applied to solve military problems, but they 
do not handle the autonomy of UAVs and 
coordination among UAVs. 
 
7

The Actor system supp
environment and actor mobility. In the current 
platform, it is the programmer’s role to determine 
actor placement. However, this is hard to do when we 
do not know the CPU speed and the communication 
speed among different machines. Specifically, when 
the communication pattern among actors is changed, 
the initial placement of actors might prove to be a 
deterrent to cross boundary communication. For this, 
we are developing dynamic actor reconfiguration 
algorithm. In the new actor platform, the 
communication pattern among actors will be 
monitored, and actors will be dynamically reallocated 
by the platform.  

Another probl
tence of Simulation Control Manager (SCM) to 

control the virtual times of UAVs globally. This 
component may be a bottleneck of the distributed 
simulation, and if this component were to fail, the 
simulation would collapse completely. To counter this, 
the Jefferson’s virtual time [Jefferson 1985] based 
actor platform can be used. In this actor platform, each 
actor maintains its own virtual time, and when an actor 
communicates with another actor and the time 
difference is more than the given threshold, the 
platform performs the rollback. 

As another extension, we a
 real UAVs into UAV simulation. That is, we are 

going to build a UAV simulator with the possibility of 
real time input from real UAVs and virtual UAVs. In 
this simulation, a real UAV can communicate with 
other real UAVs and virtual UAVs to perform a virtual 
task. This approach can overcome the problem of 
computer simulation, such as the inaccuracy of UAV 
kinematics and the communication delay defined by 
programmers. 

In our sim
eans if a UAV accepts the order from a leader UAV, 

 

599

329

goodelle
Rectangle



the UAV must handle the target. However, the belief 
about environment changes when UAVs detects more 
targets or additional UAVs become available after 
having consumed value of their respective targets. 
Therefore, when any change in the environment is 
detected or any UAV becomes available, this 
information is delivered to the leader UAV, and the 
leader UAV may reconsider and change the target 
assignment. Also, a member UAV may secede from its 
team to handle a new target with a more attractive 
force value. This idea is motivated from the leveled 
commitment in Contract Net Protocol [Sandholm and 
Lesser 1995]. 
 
8. CONCLUSIONS 

In this paper, we have described the design and 

lator is working on an actor-based 
dist

CKNOWLEDGEMENT 

the Defense Advanced 

development of a distributed UAV simulator using an 
actor-based platform, a utility function, and Contract 
Net Protocol. The three layered architecture for our 
UAV simulation is presented: the actor-based 
distributed platform, the UAV simulator, and the user 
interface layer. We have described three strategies to 
perform a joint mission: the self-interested UAVs 
strategy, the sharing-based coordination strategy, and 
team-based cooperation strategy. This has been 
supplemented by our experimental results and outline 
of the future work. 

Our UAV simu
ributed platform, and hence, it naturally adapts to 

the behavior of a distributed and concurrent situation. 
We can easily improvise the execution environment 
without changing the UAV simulator by separating the 
distributed platform from the simulator. For example, 
we can migrate some actors from a computer to 
another during the execution time. Other possible 
means for improvising the working environment have 
been presented in the future work section. When we 
consider multiple UAVs working together, their 
cooperation mechanisms are of utmost importance. In 
this paper, we have presented three different 
approaches, and compared and contrasted them. The 
experimental results suggest that cooperation and 
coordination strategies are better than the self-
interested UAV strategy. Last but not least, we have 
introduced the active brokering service to support 
application oriented searching. 
 
A

This research is sponsored by 
Research Projects Agency under contract number 
F30602-00-2-0586. Views and conclusions contained 
in this document are those of the authors and should 
not be interpreted as representing official policies, 
either expressed or implied, of the Defense Advanced 
Research Projects Agency or the United States 
Government. 
 

REFERENCES 

Agha, G.A. 1986. Actors: A Model of Concurrent 
Computation in Distributed Systems. MIT Press, 
Cambridge, Mass. 

Agha G.A.; I.A. Mason; S.F. Smith; and C.L. Talcott. 1997. 
“A Foundation for Actor Computation.” Journal of 
Functional Programming, Vol. 7, No. 1, 1-69. 

Altenburg K.; J. Schlecht; and K. Nygard. 2002. “An Agent-
based Simulation for Modeling Intelligent Munitions.” 
In Proceedings of the Second WSEAS International 
Conference on Simulation, Modeling and Optimization, 
Skiathos, Greece (Sep). Available at 
http://www.cs.ndsu.nodak.edu/~nygard/research/munit
ions.pdf 

Astlery M. 1999. Actor Foundry. Department of Computer 
Science, University of Illinois at Urbana-Champaign, 
IL (Feb. 9). Available at 
http://yangtze.cs.uiuc.edu/foundry 

Clausen T.H. 1998. Actor Foundry – a QuickStart. 
Department of Computer Science, Institute of 
Electronic Systems, Denmark (Nov. 9). Available at 
http://yangtze.cs.uiuc.edu/foundry 

Doherty P.; G. Granlund; K. Kuchcinski; E. Sandewall; K. 
Nordberg; E. Skarman; and J. Wiklund. 2000. “The 
WITAS Unmanned Aerial Vehicle Project.” In 
Proceedings of the 14th European Conference on 
Artificial Intelligence (ECAI 2000), Berlin, Germany 
(Aug), 747-755. 

Grimes R. 1997. Professional DCOM Programming. Olton, 
Birmingham, Canada, Wrox Press.  

Hadzilacos V. and S. Toueg. 1993. “Fault-Tolerant 
Broadcasting and Related Problems.” In Distributed 
Systems, S. Mullender (Ed.). ACM Press, New York, 
97-145. 

Jefferson D. 1995. “Virtual Time.” ACM Transactions on 
Programming Languages and Systems, Vol. 7, No. 3 
(Jul), 404-425. 

Johnson E.N and S. Mishra. 2002. “Flight Simulation for the 
Development of an Experimental UAV.” In Proceeding 
of the AIAA Modeling and Simulation Technologies 
Conference and Exhibit, Monterey California, CA 
(Aug), 5-8. 

Kolek S.R.; S.J. Rak; and P.J. Christensen. 1998. “Battlefield 
Communication Network Modeling.” The DIS 
Workshop on Simulation Standards. Available at 
http://dss.ll.mit.edu/dss.web/98F-SIW-143.html 

OMG. 2002. The Common Object Request Broker 
Architecture: Core Specification. Version 3.0.2 (Dec). 

Pell B.; D.E. Bernard; S.A. Chien; E. Gat; N. Muscettola; P.P. 
Nayak; M.D. Wagner; and B.C. Williams. 1997. “An 
Autonomous Spacecraft Agent Prototype.” In 
Proceedings of the First International Conference on 
Autonomous Agents, Marina del Rey, CA, 253-261. 

Sandholm T. and V. Lesser. 1995. “Issues in Automated 
Negotiation and Electronic Commerce: Extending the 
Contract Net Framework.” In Proceedings of the 1st 
International Conference on Multiagent Systems, San 
Francisco, CA, 328-335. 

Smith R.G. 1980. “The Contract Net Protocol: High-Level 
Communication and Control in a Distributed Problem 
Solver.” IEEE Transactions on Computers, Vol. 29, No. 
12, 1104-1113. 

Smith R.G. and R. Davis. 1980. “Frameworks for 
Cooperation in Distributed Problem Solving.” IEEE 
Transactions on Systems, Man and Cybernetics, Vol. 
11, No. 1, 61-70. 

 

600

330

goodelle
Rectangle



 
AUTHOR BIOGRAPHIES 
 
MYEONG-WUK JANG is a doctoral candidate and 
research assistant in the Open Systems Laboratory at 
the University of Illinois at Urbana-Champaign. His 
research interests include multi-agent system and task 
allocation in open distributed computing. He received 
a BS in Computer Science from Korea University in 
1990 and an MS in Computer Science from KAIST 
(Korea Advanced Institute of Science and Technology) 
in 1992. He worked for ETRI (Electronics and 
Telecommunications Research Institute), Korea, until 
1998. His web page can be found at 
http://www.uiuc.edu/~mjang/. 
 
SMITHA REDDY is a Master/PhD student and 
research assistant in the Open Systems Laboratory at 
the University of Illinois at Urbana-Champaign. Her 
research interests include distributed systems, high 
speed networks, and dynamic resource sharing. She 
received a BE in Computer Science from University of 
Pune in 1999.  
 
PREDRAG TOSIC is a doctoral candidate and 
research assistant in the Open Systems Laboratory at 
the University of Illinois at Urbana-Champaign. He 
received a BS in Mathematics and Physics and an MS 
in Applied Mathematics, both at University of 
Maryland Baltimore County, UMBC, in 1994 and 
1995, respectively, and also holds an MS in pure 
Mathematics from University of Illinois at Urbana-
Champaign in 1997.  
 
LIPING CHEN is a doctoral candidate and research 
assistant in the Open Systems Laboratory at the 
University of Illinois at Urbana-Champaign.  
 
GUL A. AGHA is Director of the Open Systems 
Laboratory at the University of Illinois at Urbana-
Champaign and Professor in the Department of 
Computer Science. His research interests include 
models, languages, and tools for parallel computing 
and open distributed systems. He received a BS in an 
interdisciplinary program from the California Institute 
of Technology, an MA in Psychology from the 
University of Michigan, Ann Arbor, and an MS and 
PhD in Computer and Communication Science, from 
the University of Michigan, Ann Arbor.  
 
 
 
Update History: 
 
We have corrected an error in the utility value function 
and reduced the size of arrows in Figure 3.  

- November 19, 2003 
 

 

601

331

goodelle
Rectangle



A Rewriting Based Model for Probabilistic
Distributed Object Systems

Nirman Kumar, Koushik Sen, José Meseguer, Gul Agha
Department of Computer Science,

University of Illinois at Urbana-Champaign.
{nkumar5,ksen,meseguer,agha}@cs.uiuc.edu

Abstract. Concurrent and distributed systems have traditionally been
modelled using nondeterministic transitions over configurations. The
nondeterminism provides an abstraction over scheduling, network delays,
failures and randomization. However a probabilistic model can capture
these sources of nondeterminism more precisely and enable statistical
analysis, simulations and reasoning. We have developed a general seman-
tic framework for probabilistic systems using probabilistic rewriting. Our
framework also allows nondeterminism in the system. In this paper, we
briefly describe the framework and its application to concurrent object
based systems such as actors. We also identify a sufficiently expressive
fragment of the general framework and describe its implementation. The
concepts are illustrated by a simple client-server example.

Keywords: Rewrite theory, probability, actors, Maude, nondeterminism.

1 Introduction

A number of factors, such as processor scheduling and network delays, failures,
and explicit randomization, generally result in nondeterministic execution in
concurrent and distributed systems. A well known consequence of such non-
determinism is an exponential number of possible interactions which in turn
makes it difficult to reason rigorously about concurrent systems. For example,
it is infeasible to use techniques such as model checking to verify any large-scale
distributed systems. In fact, some distributed systems may not even have a finite
state model: in particular, networked embedded systems involving continuously
changing parameters such as time, temperature or available battery power are
infinite state.

We believe that a large class of concurrent systems may become amenable
to a rigorous analysis if we are able to quantify some of the probabilities of
transitions. For example, network delays can be represented by variables from
a probabilistic distribution that depends on some function of the system state.
Similarly, available battery power, failure rates, etc., may also have a proba-
bilistic behavior. A probabilistic model can capture the statistical regularities in
such systems and enable us to make probabilistic guarantees about its behavior.

332

goodelle
Text Box
Appendix AD: 



We have developed a model based on rewriting logic [11] where the rewrite
rules are enriched with probability information. Note that rewriting logic pro-
vides a natural model for object-based systems [12]. The local computation of
each object is modelled by rewrite rules for that object and one can reason about
the global properties that result from the interaction between objects: such inter-
actions may be asynchronous as in actors, or synchronous as in the π-calculus. In
[9] we show how several well known models of probabilistic and nondeterministic
systems can be expressed as special cases of probabilistic rewrite theories. We
also propose a temporal logic to express properties of interest in probabilistic
systems. In this paper we show how probabilistic object systems can be modelled
in our framework. Our probabilistic rewriting model is illustrated using a client-
server example. The example also shows how nondeterminism, for which we do
not have the probability distributions, is represented naturally in our model.
Nondeterminism is eventually removed by the system adversary and converted
into probabilities in order to define a probability space over computation paths.

The Actor model of computation [1] is widely used to model and reason
about object-based distributed systems. Actors have previously been modelled
as rewrite theories [12]. Probabilistic rewrite theories can be used to model and
reason about actor systems where actors may fail and messages may be dropped
or delayed and the associated probability distributions are known (see Section 3).

The rest of this paper is organized as follows. Section 2 provides some back-
ground material on membership equational logic [13] and rewriting [11] as well as
probability theory. Section 3 starts by giving an intuitive understanding of how
a step of computation occurs in a probabilistic rewrite theory. We then introduce
an example to motivate the modelling power of our framework and formalize the
various concepts. In Section 4 we define an important subclass of probabilistic
rewrite theories, and in Section 5, we describe its Maude implementation. The
final section discusses some directions for future research.

2 Background and Notation

A membership equational theory [13] is a pair (Σ,E), with Σ a signature con-
sisting of a set K of kinds, for each k ∈ K a set Sk of sorts, a set of operator
declarations of the form f : k1 . . . kn → k, with k, k1, . . . , kn ∈ K and with E a
set of conditional Σ-equations and Σ-memberships of the form

(∀−→x ) t = t′ ⇐ u1 = v1 ∧ . . . ∧ un = vn ∧ w1 : s1 ∧ . . . ∧ wm : sm

(∀−→x ) t : s ⇐ u1 = v1 ∧ . . . ∧ un = vn ∧ w1 : s1 ∧ . . . ∧ wm : sm

The −→x denote variables in the terms t, t′, ui, vi and wj above. A membership
w : s with w a Σ-term of kind k and s ∈ Sk asserts that w has sort s. Terms
that do not have a sort are considered error terms. This allows membership
equational theories to specify partial functions within a total framework. A Σ-
algebra B consists of a K-indexed family of sets X = {Bk}k∈K , together with

1. for each f : k1 . . . kn → k in Σ a function fB : Bk1 × . . .×Bkn → Bk

333



2. for each k ∈ K and each s ∈ Sk a subset Bs ⊆ Bk.

We denote the algebra of terms of a membership equational theory by TΣ . The
models of a membership equational theory (Σ,E) are those Σ-algebras that
satisfy the equations E. The inference rules of membership equational logic are
sound and complete [13]. Any membership equational theory (Σ, E) has an ini-
tial algebra of terms denoted TΣ/E which, using the inference rules of member-
ship equational logic and assuming Σ unambiguous [13], is defined as a quotient
of the term algebra TΣ by

• t ≡E t′ ⇔ E ` (∀∅) t = t′

• [t]≡E ∈ TΣ/E,s ⇔ E ` (∀∅) t : s

In [2] the usual results about equational simplification, confluence, termination,
and sort-decreasingness are extended in a natural way to membership equational
theories . Under those assumptions a membership equational theory can be exe-
cuted by equational simplification using the equations from left to right, perhaps
modulo some structural (e.g. associativity, commutativity and identity) axioms
A. We denote the algebra of terms simplified by equations and structural axioms
as TΣ,E∪A and the isomorphic algebra of equivalence classes modulo axioms A,
of equationally simplified terms by CanΣ,E/A. The notation [t]A represents the
equivalence class of a term t fully simplified by the equations.

In a standard rewrite theory [11], transitions in a system are described by
labelled rewrite rules of the form

l : t(−→x ) −→ t′(−→x ) if C(−→x )

Intuitively, a rule of this form specifies a pattern t(−→x ) such that if some fragment
of the system’s state matches that pattern and satisfies the condition C, then
a local transition of that state fragment, changing into the pattern t′(−→x ) can
take place. In a probabilistic rewrite rule we add probability information to such
rules. Specifically, our proposed probabilistic rules are of the form,

l : t(−→x ) −→ t′(−→x ,−→y ) if C(−→x ) with probability π(−→x ).

In the above, the set of variables in the left-hand side term t(−→x ) is −→x , while some
new variables −→y may be present in the term t′(−→x ,−→y ) on the right-hand side.
Of course it is not necessary that all of the variables in −→x occur in t′(−→x ,−→y ).
The rule will match a state fragment if there is a substitution θ for the variables−→x that makes θ(t) equal to that state fragment and the condition θ(C) is true.
Because the right-hand side t′(−→x ,−→y ) may have new variables−→y , the next state is
not uniquely determined: it depends on the choice of an additional substitution ρ
for the variables −→y . The choice of ρ is made according to the probability function
π(θ), where π is not a fixed probability function, but a family of functions: one
for each match θ of the variables −→x .

The Maude system [4,5] provides an execution environment for membership
equational and rewrite theories. The Full Maude [6] library built on top of the
Core Maude environment allows users to specify object oriented modules in a

334



convenient syntax. Several examples in [12,5] show specifications of object based
systems in Maude. The code for our example in Section 3 is written in the syntax
of Maude 2.0 [5].

To succinctly define probabilistic rewrite theories, we use a few basic notions
from axiomatic probability theory. A σ-algebra on a set X is a collection F of
subsets of X, containing X itself and closed under complementation and finite
or countably infinite unions. For example the power set P(X) of a set X is a
σ-algebra on X. The elements of a σ-algebra are called events. We denote by
BR the smallest σ-algebra on R containing the sets (−∞, x] for all x ∈ R. We
also remind the reader that a probability space is a triple (X,F , π) with F a
σ-algebra on X and π a probability measure function, defined on the σ-algebra
F which evaluates to 1 on X and distributes by addition over finite or countably
infinite union of disjoint events. For a given σ-algebra F on X, we denote by
PFun(X,F) the set

{π | (X,F , π) is a probability space}

Definition 1 (F-cover). For a σ-algebra F on X, an F-cover is a function
α : X → F , such that ∀x ∈ X x ∈ α(x).

Let π be a probability measure function defined on a σ-algebra F on X, and
suppose α is an F-cover. Then notice that π ◦ α naturally defines a function
from X to [0, 1]. Thus, for example, for X = R and F = BR, we can define α
to be the function that maps the real number x to the set (−∞, x]. With X a
finite set and F = P(X), the power set of X, it is natural to define α to be the
function that maps x ∈ X to the singleton {x}.

3 Probabilistic Rewrite Theories

A probabilistic rewrite theory has an interleaving execution semantics. A step of
computation changes a term [u]A to [v]A by the application of a single rewrite
rule on some subterm of the given canonical term [u]A. Recall the form of a
probabilistic rewrite rule as described in the previous section. Firstly, all con-
text, rule, substitution (for the variables −→x ) triples arising from possible ap-
plications of rewrite rules (see definition 6) to [u]A are computed. One of them
([C]A, r, [θ]A) (for the justification of the A subscript see definitions 2, 3 and 5) is
chosen nondeterministically. This step essentially represents the nondeterminism
in the system. After that has been done, a particular substitution [ρ]A is chosen
probabilistically for the new variables −→y and [ρ]A along with [θ]A, is applied to
the term t′(−→x ,−→y ) and placed inside the context C to obtain the term [v]A. The
choice of the new substitution [ρ]A is from the set of possible substitutions for−→y . The probabilities are defined as a function of [θ]A. This gives the framework
great expressive power. Our framework can model both nondeterminism and
probability in the system. Next we describe our example, model it as an object
based rewrite theory and indicate how the rewrite rules model the probabilities
and nondeterminism.

335



pmod QOS-MODEL is
. . .
vars L N m1 m2: Nat.
vars Cl Sr Nw: Oid.
var i: Bit.
vars C Q: Configuration.
var M: Msg.
op ← : Oid Nat → Msg.
class Client |sent:Nat, svc1:Nat, svc2:Nat.
class Network |soup:Configuration.
class Server |queue:Configuration.
ops H Nt S1 S2: → Oid.
ops acq1 acq2: → Msg.
prl [req]:〈Cl:Client|sent:N , svc1:m1, svc2:m2〉〈Nw: Network|soup:C〉⇒
〈Cl: Client|sent:(N + 1), svc1:m1, svc2:m2〉〈Nw: Network|soup:C (Sr ← L)〉.

cprl [acq]:〈Cl:Client|svc1:m1, svc2:m2〉〈Nw:Network|soup:M C〉⇒
〈Cl:client|svc1:m1 + δ(i, M, 1), svc2:m2 + δ(i, M, 2)〉〈Nw:Network|soup:C〉
if acq(M).

prl [deliver]:〈Nw:Network|soup:(Sr ← L) C〉〈Sr:Server|queue:Q〉⇒
〈Nw:Network|soup:C〉〈Sr:Server|queue:Q M〉.

prl [process]:〈Sr:Server|queue:(Sr ← L) Q〉〈Nw:Network|soup:C〉 ⇒
〈Sr:Server|queue:Q〉〈Nw:Network|soup:C M〉.

endpm

Fig. 1. A client-server example

A Client-Server Example : Our example is a situation where a client is send-
ing computational jobs to servers across a network. There are two servers S1 and
S2. S1 is computationally more powerful than S2, but the network connectivity
to S2 is better (more reliable) than that to S1 and packets to S1 may be dropped
without being delivered, more frequently than packets to S2. The servers may
also drop requests if the load increases beyond a certain threshold. The compu-
tationally more powerful server S1 drops packets with a lower probability than
S2. We would like to reason about a good randomized policy for the client. The
question here is: which server is it better to send packets to, so that a larger
fraction of packets are processed rather than dropped? Four objects model the
system. One of them, the client, sends packets to the two server objects deciding
probabilistically before each send which server to send the packet to. The other
object models a network, which can either transmit the packets correctly, drop
them or deliver them out of order. The remaining two objects are server objects
which either drop a request or process it and send an acknowledgement mes-
sage. The relevant fragment of code specifying the example is given in Figure
1. The client object named H maintains the total number of requests sent in a
variable sent and those which were successfully processed by servers S1, S2 in
variables svc1 and svc2 respectively. Notice that for example in svc1 : m1 the m1

is the value of the variable named svc1. An example term representing a possible
system state is

336



〈 H : Client | sent : 3, svc1 : 1, svc2 : 0 〉 〈 Nt : Network | soup : (S1 ← 10) 〉
〈 S1 : Server | queue : nil 〉 〈 S2 : Server | queue : (S2 ← 5) 〉

The term above of sort Configuration (collection of objects and messages)
represents a multiset of objects combined with an empty syntax (juxtaposition)
multiset union operator that is declared associative and commutative. The client
has sent 3 requests in total, out of which one has already been serviced by S1,
one is yet to be delivered and one request is yet pending at the server S2. The
numbers 10 and 5 represent the measure of the loads in the respective requests.

We discuss the rules labelled req and acq. Henceforward we refer to a rule by
its label. Though not shown in Figure 1, a probabilistic rewrite theory associates
some functions with the rules, defining the probabilities. The rule req models
the client sending a request to one of the servers by putting a message into the
network object’s variable soup. The rule involves two new variables Sr and L
on the right-hand side. Sr is the name of the server to which the request is sent
and L is the message load. A probability function πreq (Cl, N, m1, m2, Nw, C)
associated with the rule req (see definition 4) will decide the distribution of
the new variables Sr and L, and thus the randomized policy of the client. For
example, it can assign higher probability values to substitutions with Sr = S1,
if it finds that m1 > m2; this would model a heuristic policy which sends more
work to the server which is performing better. In this way the probabilities
can depend on the values of m1,m2 (and thus the state of the system). In the
rule labelled acq there is only one new variable i on the right-hand side. That
variable can only assume two values 0, 1 with nonzero probability. 0 means a
message drop, so that δ(0,M, 1) = δ(0,M, 2) = 0, while if i = 1 then the
appropriate svc variable is incremented. The distribution of i as decided by the
function πacq (. . . , M) could depend on M , effectively modelling the network
connectivity. The network drops messages more frequently for M = acq1 (an
acq message from server S1) than it does for M = acq2. Having the distribution
of new variables depend on the substitution gives us the ability to model general
distributions. The associativity and commutativity attribute of the juxtaposition
operator for the sort Configuration essentially allows nondeterminism in the
order of message delivery by the network (since it chooses a message to process,
from the associative commutative soup of messages) and the order of messages
processed by the servers.

The more frequently the rewrite rules for the network object are applied
(which allow it to process the messages in it soup), the more frequently the
acq messages will be delivered. Likewise, the more frequently the rewrite rules
for a particular server are applied, the more quickly will it process its messages.
Thus, during a computation the values m1,m2, which determine the client’s ran-
domized policy, will actually depend not only on the probability that a server
correctly processes the packets and the network correctly delivers requests and
acknowledgments, but also on how frequently the appropriate rewrite rules are
applied. However, the exact frequency of application depends on the nonde-
terministic choices made. We can now see how the nondeterminism effectively
influences the probabilities in the system. As explained later, the nondetermin-

337



ism is removed (converted into probabilities) by what is called an adversary of
the system. In essence the adversary is like a scheduler which determines the
rate of progress of each component. The choice of adversary is important for
the behavior of the system. For example, we may assume a fair adversary that
chooses between its nondeterministic choices equally frequently. At an intuitive
level this would mean that the different parts of the system compute at the
same rate. Thus, it must be understood that the model defined by a probabilis-
tic rewrite theory is parameterized on the adversary. The system modeler must
define the adversary based on an understanding of how frequently different ob-
jects in the system advance. Model checking of probabilistic systems quantifies
over adversaries, whereas a simulation has to fix an adversary.

We now define our framework formally.

Definition 2 (E/A-canonical ground substitution). An E/A-canonical
ground substitution is a substitution θ : −→x → TΣ,E∪A.

Intuitively an E/A-canonical ground substitution represents a substitution of
ground terms from the term algebra TΣ for variables of the corresponding sorts,
so that all of the terms have already been reduced as much as possible by the
equations E and the structural axioms A. For example the substitution 10×2 to
a variable of sort Nat is not a canonical ground substitution, but a substitution
of 20 for the same variable is a canonical ground substitution.

Definition 3 (A-equivalent substitution). Two E/A-canonical ground sub-
stitution θ, ρ : −→x → TΣ,E∪A are A-equivalent if and only if ∀x ∈ −→x [θ(x)]A =
[ρ(x)]A.

We use CanGSubstE/A(−→x ) to denote the set of all E/A-canonical ground
substitutions for the set of variables −→x . It is easy to see that the rela-
tion of A-equivalence as defined above is an equivalence relation on the set
CanGSubstE/A(−→x ). When the set of variables −→x is understood, we use [θ]A to
denote the equivalence class containing θ ∈ CanGSubstE/A(−→x ).

Definition 4 (Probabilistic rewrite theory). A probabilistic rewrite theory
is a 4-tuple R = (Σ, E ∪ A,R, π), with (Σ, E ∪ A,R) a rewrite theory with the
rules r ∈ R of the form

l : t(−→x ) → t′(−→x ,−→y ) if C(−→x )

where

• −→x is the set of variables in t.
• −→y is the set of variables in t′ that are not in t. Thus t′ might have variables

coming from the set −→x ∪ −→y but it is not necessary that all variables in −→x
occur in t′.

• C is a condition of the form (
∧

j uj = vj) ∧ (
∧

k wk : sk) , that is, C is a
conjunction of equations and memberships;

338



and π is a function assigning to each rewrite rule r ∈ R a function

πr : [[C]] → PFun(CanGSubstE/A(−→y ),Fr)

where [[C]] = {[µ]A ∈ CanGSubstE/A(−→x ) | E ∪ A ` µ(C)} is the set of E/A-
canonical substitutions for −→x satisfying the condition C, and Fr is a σ-algebra
on CanGSubstE/A(−→y ). We denote a rule r together with its associated function
πr, by the notation

l : t(−→x ) → t′(−→x ,−→y ) if C(−→x ) with probability πr(−→x )

We denote the class of probabilistic rewrite theories by PRwTh . Notice the
following points in the definition

1. Rewrite rules may have new variables −→y on the right-hand side.
2. The condition C(−→x ) on the right-hand side depends only on the variables−→x occurring in the term t(−→x ) on the left-hand side.
3. The condition C(−→x ) is simply a conjunction of equations and memberships

(but no rewrites).
4. πr(−→x ) specifies, for each substitution θ for the variables −→x , the probability

of choosing a substitution ρ for the −→y . In the next section we explain how
this is done.

3.1 Semantics of Probabilistic Rewrite Theories

Let R = (Σ,E ∪A,R, π) be a probabilistic rewrite theory such that:

1. E is confluent, terminating and sort-decreasing modulo A [2].
2. the rules R are coherent with E modulo A [4].

We also assume a choice for each rule r of an Fr-cover αr : CanGSubstE/A(−→y ) →
Fr. This Fr-cover will be used to assign probabilities to rewrite steps. Its choice
will depend on the particular problem under consideration.

Definition 5 (Context). A context C is a Σ-term with a single occurrence of
a single variable, ¯, called the hole. Two contexts C and C′ are A-equivalent if
and only if A ` (∀¯) C = C′.
Notice that the relation of A-equivalence for contexts as defined above, is an
equivalence relation on the set of contexts. We use [C]A for the equivalence class
containing context C. For example the term

¯ 〈 Nt : Network | soup : (S1 ← 10) 〉
〈 S1 : Server | queue : nil 〉 〈 S2 : Server | queue : (S2 ← 5) 〉

is a context.

Definition 6 (R/A-matches). Given [u]A ∈ CanΣ,E/A, its R/A-matches are
triples ([C]A, r, [θ]A), where if r ∈ R is a rule

l : t(−→x ) → t′(−→x ,−→y ) if C(−→x ) with probability πr(−→x )

then [θ]A ∈ [[C]], that is [θ]A satisfies condition C and [u]A = [C(¯ ← θ(t))]A,
so [u]A is the same as θ applied to the term t(−→x ) and placed in the context.

339



Consider the canonical-term

〈 H : Client | sent : 3, svc1 : 1, svc2 : 0 〉 〈 Nt : Network | soup : (S1 ← 10) 〉
〈 S1 : Server | queue : nil 〉 〈 S2 : Server | queue : (S2 ← 5) 〉

Looking at the code in Figure 1, one of the R/A-matches for the equivalence
class of the above term is the triple ([C]A, req, [θ]A) such that

C = ¯ 〈 Nt : Network | soup : (S1 ← 10) 〉
〈 S1 : Server | queue : nil 〉 〈 S2 : Server | queue : (S2 ← 5) 〉

and θ is such that

θ(Cl) = H, θ(N) = 3, θ(m1) = 1, θ(m2) = 0.

Definition 7 (E/A-canonical one-step R-rewrite). An E/A-canonical one-
step R-rewrite is a labelled transition of the form,

[u]A
([C]A,r,[θ]A,[ρ]A)−−−−−−−−−−−→ [v]A

where

1. [u]A, [v]A ∈ CanΣ,E/A

2. ([C]A, r, [θ]A) is an R/A-match of [u]A
3. [ρ]A ∈ CanGSubstE/A(−→y )
4. [v]A = [C(¯ ← t′(θ(−→x ), ρ(−→y )))]A, where {θ, ρ}|−→x = θ and {θ, ρ}|−→y = ρ.

We associate the probability πr(αr(ρ)) with this transition. We can now see why
the Fr cover αr was needed. The nondeterminism associated with the choice of
the R/A-match must be removed in order to associate a probability space over
the space of computations (which are infinite sequences of canonical one step R-
rewrites). The nondeterminism is removed by what is called an adversary of the
system, which defines a probability distribution over the set of R/A-matches. In
[9] a probability space is associated over the set of computation paths. To do this,
an adversary for the system is fixed. We have also shown in [9] that probabilistic
rewrite theories have great expressive power. They can express various known
models of probabilistic systems like Continuous Time Markov Chains [8], Markov
Decision Processes [10] and even Generalized Semi Markov Processes [7]. We
also propose a temporal logic, to express properties of interest in probabilistic
systems. The details can be found in [9].

Probabilistic rewrite theories can be used to model probabilistic actor sys-
tems [1]. Actors, which are inherently asynchronous, can be modelled natu-
rally using object based rewriting. In probabilistic actor systems we may be
interested in modelling message delay distributions among other probabilis-
tic entities. However because time acts as a global synchronization parame-
ter the natural encoding using objects, computing by their own rewrite rules
is insufficient. The technique of delayed messages helps us to correctly encode

340



time in actors. Actor failures and message drops can also be encoded. Due to
space constraints we do not indicate our encoding in this paper. The file at
http://maude.cs.uiuc.edu/pmaude/at.maude presents our technique.

A special subclass of PRwTh, called finitary probabilistic rewrite theories,
while fairly general, are easier to implement. We describe them below.

4 Finitary Probabilistic Rewrite Theories

Observe that there are two kinds of nondeterministic choice involved in rewriting.
First, the selection of the rule and second, the exact substitution-context pair.
Instead of having to think of nondeterminism from both these sources, it is easier
to think in terms of rewrite rules with same left-hand side term as representing
the computation of some part of the system, say an object, and thus representing
one nondeterministic choice. Of course the substitution and context also have to
be chosen to fix a nondeterministic choice. After nondeterministically selecting a
rewrite rule, instantiated with a given substitution in a given context, different
probabilistic choices arise for different right-hand sides of rules having the same
left-hand side as that of the chosen rule, and which can apply in the chosen
context with the chosen substitution. To assign probabilities, we assign rate
functions to rules with the same left-hand side and normalize them. The rates,
which depend on the chosen substitution, correspond to the frequency with which
the RHS’s are selected. Moreover, not having new variables on the right-hand
sides of rules makes the implementation much simpler. Such theories are called
finitary probabilistic rewrite theories. We define them formally below.

Definition 8 (Finitary probabilistic rewrite theory). A finitary proba-
bilistic rewrite theory is a 4-tuple Rf = (Σ, E ∪ A,R, γ), with (Σ, E ∪ A, R) a
rewrite theory and γ : R → TΣ,E/A,PosRat (X) a function associating to each
rewrite rule in R a term γ(r) ∈ TΣ,E/A,PosRat (X), with some variables from the
set X, and of sort PosRat, where PosRat is a sort in (Σ, E ∪ A) corresponding
to the positive rationals. The term γ(r) represents the rate function associated
with rule r ∈ R. If l : t(−→x ) → t′(−→x ) if C(−→x ) is a rule in R involving variables−→x , then γ maps the rule to a term of the form γr(−→x ) possibly involving some
of the variables in −→x . We then use the notation

l : t(−→x ) → t′(−→x ) if C(−→x ) [ rate γr(−→x ) ]

for the γ-annotated rule. Notice that t′ does not have any new variables. Thus,
all variables in t′ are also variables in t. Furthermore, we require that all rules
labelled by l have the same left-hand side and are of the form

l : t → t′1 if C1 [ rate γr1(
−→x ) ]

· · · (1)
l : t → t′n if Cn [ rate γrn

(−→x ) ]

where

341

http://maude.cs.uiuc.edu/pmaude/at.maude�


1. −→x = fvars(t) ⊇ ⋃
1≤i≤n fvars(t′i) ∪ fvars(Ci), that is the terms t′i and the

conditions Ci do not have any variables other than −→x , the set of variables
in t.

2. Ci is of the form (
∧

j uij = vij) ∧ (
∧

k wik : sik) , that is, condition Ci is a
conjunction of equations and memberships.1

We denote the class of finitary probabilistic rewrite theories by FPRTh.

4.1 Semantics of Finitary Probabilistic Rewrite Theories

Given a finitary probabilistic rewrite theory Rf = (Σ, E ∪ A, R, γ), we can
express it as a probabilistic rewrite theoryR•f , by defining a map FR : Rf 7→ R•f ,
with R•f = (Σ•, E• ∪A,R•, π•) and (Σ, E ∪A) ⊆ (Σ•, E• ∪A), in the following
way. We encode each group of rules in R with label l of the form 1 above by a
single probabilistic rewrite rule2

t(−→x ) → proj (i, (t′1(
−→x ), . . . , t′n(−→x ))) if C̃1(−→x ) or . . . or C̃n(−→x ) = true

with probability πr(−→x )

in R•. Corresponding to each such rule, we add to Σ• the sort [1 : n], with con-
stants 1, . . . , n :→ [1 : n], and the projection operator proj : [1 : n] k . . . k → k.
We also add to E• the equations proj (i, t1, . . . , tn) = ti for each i ∈ {1, . . . , n}.
Note that the only new variable on the righthand side is i, and therefore
CanGSubstE/A(i) ∼= {1, . . . , n}. We consider the σ-algebra P({1, . . . , n}) on
{1, . . . , n}. Then πr is a function

πr : [[C]] → PFun({1, . . . , n},P({1, . . . , n}))

defined as follows. If θ is such that C̃1(θ(−→x )) or . . . or C̃n(θ(−→x )) = true, then
πθ = πr(θ) defined as

πθ({i}) =
?γri(θ(

−→x ))
?γr1(θ(

−→x ))+?γr2(θ(
−→x )) + · · ·+?γrn(θ(−→x ))

where, if C̃i(θ(−→x )) = true, then ?γri
(θ(−→x )) = γri

(θ(−→x )) and ?γri
(θ(−→x )) = 0

otherwise. The semantics of Rf computations is now defined in terms of its
associated theory R•f in the standard way, by choosing the singleton F-cover
αr : {1, . . . , n} → P({1, . . . , n}) mapping each i to {i}.
1 The requirement fvars(Ci) ⊆ fvars(t) can be relaxed by allowing new variables in

Ci to be introduced in “matching equations” in the sense of [4]. Then these new
variables can also appear in t′i.

2 By the assumption that (Σ, E ∪ A) is confluent, sort-decreasing, and terminating
modulo A, and by a metatheorem of Bergstra and Tucker, any condition C of the
form (

∧
i ui = vi ∧

∧
j wj : sj) can be replaced in an appropriate protecting en-

richment (Σ̃, Ẽ ∪ A) of (Σ, E ∪ A) by a semantically equivalent Boolean condition

C̃ = true.

342



5 The PMaude Tool

We have developed an interpreter called PMaude , which provides a frame-
work for specification and execution of finitary probabilistic rewrite theories.
The PMaude interpreter has been built on top of Maude 2.0 [4,3] using the
Full-Maude library [6]. We describe below how a finitary probabilistic rewrite
theory is specified in our implemented framework and discuss some of the im-
plementation details.

Consider a finitary probabilistic rewrite theory with k distinct rewrite labels
and with ni rewrite rules for the ith distinct label, for i = 1, 2, . . . , k.

l1 : t1 → t′11 if C11 [ rate γ11(
−→x ) ]

· · ·
l1 : t1 → t′1n1 if C1n1 [ rate γ1n1(

−→x ) ]

· · ·
lk : tk → t′k1 if Ck1 [ rate γk1(

−→x ) ]

· · ·
lk : tk → t′knk

if Cknk [ rate γknk (−→x ) ]

At one level we want all rewrite rules in the specification to have distinct la-
bels, so that we have low level control over these rules, while at the conceptual
level, groups of rules must have the same label. We achieve this by giving two
labels: one, common to a group and corresponding to the group’s label l at the
beginning, and another, unique for each rule, at the end. The above finitary
probabilistic rewrite theory can be specified as follows in PMaude.

pmod FINITARY-EXAMPLE is
cprl [l1] : t1 ⇒ t′11 if C11 [rate γ11(x1, . . . ) ] [metadata “l11 . . . ” ] .
. . .
cprl [l1] : t1 ⇒ t′1n1 if C1n1 [rate γ1n1(x1, . . . ) ] [metadata “l1n1 . . . ” ] .
. . .
cprl [lk] : tk ⇒ t′k1 if Ck1 [rate γk1(x1, . . . ) ] [metadata “lk1 . . . ” ] .
. . .
cprl [lk] : tk ⇒ t′knk

if Cknk [rate γknk (x1, . . . ) ] [metadata “lknk . . . ” ] .
endpm

User input and output are supported as in Full Maude using the LOOP-MODE
module. PMaude extends the Full Maude functions for parsing modules and
any terms entered later by the user for rewriting purposes. Currently PMaude
supports four user commands. Two of these are low level commands used to
change seeds of pseudo-random generators. We shall not describe the imple-
mentation of those two commands here. The other two commands are rewrite
commands. Their syntax is as follows:

(prew t .)
(prew -[n] t .)

The default module M in which these commands are interpreted is the last read
probabilistic module. The prew command is an instruction to the interpreter

343



to probabilistically rewrite the term t in the default module M , till no further
rewrites are possible. Notice that this command may fail to terminate. The
prew -[n] command takes a natural number n specifying the maximum number of
probabilistic rewrites to perform on the term t. This command always terminates
in at most n steps of rewriting. Both commands report the final term (if prew
terminates).

The implementation of these commands is as follows. When the interpreter
is given one of these commands, all possible one-step rewrites for t in the default
module M are computed. Out of all possible groups l1, l2, .., lk in which some
rewrite rule applies, one is chosen, uniformly at random. For the chosen group
li, all the rewrite rules li1, li2, .., lini associated with li, are guaranteed to have
the same left-hand side ti(x1, x2, ..). From all possible canonical substitution,
context pairs ([θ]A, [C]A) for the variables xj , representing successful matches of
ti(x1, x2, ..) with the given term t, that is, matches that also satisfy one of the
conditions Cij , one of the matches is chosen uniformly at random. The two steps
above also define the exact adversary we associate to a given finitary probabilistic
rewrite theory in our implementation. If there are m groups, li1 , . . . , lim , in which
some rule applies and vj matches in total for group lij then the adversary chooses
a match in group lij with probability 1

mvj
. To choose the exact rewrite rule lij

to apply, use of the rate functions is made. The values of the various rates
γip are calculated for those rules lip such that [θ]A satisfies the condition of
the rule lip. Then these rates are normalized and the choice of the rule lij is
made probabilistically, based on the calculated rates. This rewrite rule is then
applied to the term t, in the chosen context with the chosen substitution. If the
interpreter finds no successful matches for a given term, or if it has completed
the maximum number of rewrites specified, it immediately reports that term
as the answer. Since rates can depend on the substitution, this allows users to
specify systems where probabilities are determined by the state.

PMaude can be used as a simulator for finitary probabilistic rewrite theories.
The programmer must supply the system specification as a PMaude module
and a start term to rewrite. To obtain different results the seeds for the random
number generators must be changed at each invocation. This can be done by
using a scripting language to call the interpreter repeatedly but with different
seeds before each execution.

We have specified the client-server example discussed in Section 3 in
PMaude with the following parameters: The client only sends two kinds of
packets, loads 5 and 10, with equal probability. The request messages for S1, S2

are dropped with probabilities 2/7 and 1/6 respectively, while acknowledgement
messages for S1, S2 are dropped with probabilities 1/6, 1/11 respectively. We
also chose S1 to drop processing of a request with probability 1/7 as opposed to
3/23 when its load was at least 100, while for S2 the load limit was 40 but the
probabilities of dropping requests were 1/7 and 3/19. We performed some simu-
lations and, after a number of runs, we computed the ratio (svc1 + svc2)/sent as
a measure of the quality of service for the client. Simulations showed that among
static policies, namely those where the client did not adapt sending probabilities

344



on the fly, that of sending twice as often to server S2 than to S1 was better than
most others.

The complete code for the PMaude interpreter, as well as several other
example files, can be found at http:/maude.cs.uiuc.edu/pmaude/pmaude.html.

6 Conclusions and Future Work

Probabilistic rewrite theories provide a general semantic framework supporting
high level probabilistic specification of systems; in fact, we have shown how var-
ious well known probabilistic models can be expressed in our framework [9].
The present work shows how our framework applies to concurrent object based
systems. For a fairly general subclass, namely finitary probabilistic rewrite the-
ories, we have implemented a simulator PMaude and have exercised it on some
simple examples. We are currently carrying out more case studies. We have also
identified several aspects of the theory and the PMaude tool that need further
development.

On the more theoretical side, we feel research is needed in three areas. First, it
is important to develop a general model of probabilistic systems with concurrent
probabilistic actions, as opposed to the current interleaving semantics. Second,
deductive and analytic methods for property verification of probabilistic systems,
based on our current framework is an important open problem. Algorithms to
translate appropriate subclasses to appropriate representations enabling use of
existing model checkers, should be developed and implemented.

Third, we think that allowing the probability function πr to depend not only
on the substitution, but also on the context would give us more modelling power.
Specifically, it would enable us to represent applications where the probability
distributions of certain variables, such as message delays, depend on functions
of the entire state of the system, for example, on the congestion in the network.
Such situations can also be modelled in our current framework but at the expense
of using rewrite rules at the top-level, whose substitutions capture global system
parameters. Such rules can modify the entire system at once as opposed to just
modifying local fragments, but at the cost of violating the modularity principle
of concurrent objects or actors.

On the implementation side, an extension of the PMaude framework to
enable specification of more general classes of probabilistic rewrite theories and
adversaries is highly desirable. This will allow the generation of simulation traces
for the system under consideration and can be used as a tool to implement the
model independent Monte-Carlo simulation and acceptance sampling methods
for probabilistic validation of properties [14]. As an application of our theory,
we believe that it will be fruitful to model networked embedded systems, where
apart from time, there are other continuous state variables, such as battery power
or temperature, whose behavior may be stochastic. Moreover, the properties of
interest are often a statistical aggregation of many observations.

345

http://maude.cs.uiuc.edu/pmaude/pmaude.html�


7 Acknowledgement

The work is supported in part by the Defense Advanced Research Projects
Agency (the DARPA IPTO TASK Program, contract number F30602-00-2-0586
and the DARPA IXO NEST Program, contract number F33615-01-C-1907) and
the ONR Grant N00014-02-1-0715. We would like to thank Wooyoung Kim for
reading a previous version of this paper and giving us valuable feedback and
Joost-Pieter Katoen for very helpful discussions and pointers to references.

References

1. G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor
computation. Journal of Functional Programming, 7(1):1–72, 1997.

2. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in mem-
bership equational logic. Theoretical Computer Science, 236(1–2):35–132, 2000.

3. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-
sada. Towards maude 2.0. In K. Futatsugi, editor, Electronic Notes in Theoretical
Computer Science, volume 36. Elsevier, 2001.

4. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-
sada. Maude: specification and programming in rewriting logic. Theoretical Com-
puter Science, 285:187–243, 2002.

5. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. Maude 2.0 Manual, Version 1.0, june 2003. http://maude.cs.uiuc.edu/

manual/maude-manual.pdf.
6. F. Durán and J. Meseguer. Parameterized theories and views in full maude 2.0. In

K. Futatsugi, editor, Electronic Notes in Theoretical Computer Science, volume 36.
Elsevier, 2001.

7. P. Glynn. The role of generalized semi-Markov processes in simulation output
analysis, 1983.

8. J.-P. Katoen, M. Kwiatkowska, G. Norman, and D. Parker. Faster and symbolic
CTMC model checking. Lecture Notes in Computer Science, 2165, 2001.

9. N. Kumar, K. Sen, J. Meseguer, and G. Agha. Probabilistic rewrite theories: Unify-
ing models, logics and tools. Technical Report UIUCDCS-R-2003-2347, University
of Illinois at Urbana-Champaign, May 2003.

10. M. Z. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic symbolic
model checker, 2002.

11. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96:73–155, 1992.

12. J. Meseguer. A logical theory of concurrent objects and its realization in the Maude
language. In G. Agha, P. Wegner, and A. Yonezawa, editors, Research Directions
in Concurrent Object-Oriented Programming, pages 314–390. MIT Press, 1993.

13. J. Meseguer. Membership algebra as a logical framework for equational specifica-
tion. In F. Parisi-Presicce, editor, Proc. WADT’97, pages 18–61. Springer LNCS
1376, 1998.

14. H. L. S. Younes and R. G. Simmons. Probabilistic verification of discrete event
systems using acceptance sampling. In E. Brinksma and K. G. Larsen, editors,
Proceedings of the 14th International Conference on Computer Aided Verification,
volume 2404 of Lecture Notes in Computer Science, pages 223–235, Copenhagen,
Denmark, July 2002. Springer.

346

http://maude.cs.uiuc.edu/manual/maude-manual.pdf�
http://maude.cs.uiuc.edu/manual/maude-manual.pdf�


Electronic Notes in Theoretical Computer Science 71 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume71.html 21 pages

An Executable Specification of Asynchronous
Pi-Calculus Semantics and May Testing in

Maude 2.0

Prasanna Thati Koushik Sen

Department of Computer Science
University of Illinois at Urbana-Champaign

{thati,ksen}@cs.uiuc.edu

Narciso Mart́ı-Oliet

Dpto. de Sistemas Informáticos y Programación
Universidad Complutense de Madrid, Spain

narciso@sip.ucm.es

Abstract

We describe an executable specification of the operational semantics of an asyn-
chronous version of the π-calculus in Maude by means of conditional rewrite rules
with rewrites in the conditions. We also present an executable specification of the
may testing equivalence on non-recursive asynchronous π-calculus processes, using
the Maude metalevel. Specifically, we describe our use of the metaSearch opera-
tion to both calculate the set of all finite traces of a non-recursive process, and to
compare the trace sets of two processes according to a preorder relation that char-
acterizes may testing in asynchronous π-calculus. Thus, in both the specification of
the operational semantics and the may testing, we make heavy use of new features
introduced in version 2.0 of the Maude language and system.

Key words: π-calculus, asynchrony, may testing, traces, Maude.

1 Introduction

Since its introduction in the seminal paper [11] by Milner, Parrow, and Walker,
the π-calculus has become one of the most studied calculus for name-based
mobility of processes, where processes are able to exchange names over chan-
nels so that the communication topology can change during the computation.
The operational semantics of the π-calculus has been defined for several differ-
ent versions of the calculus following two main styles. The first is the labelled
transition system style according to the SOS approach introduced by Plotkin

c©2003 Published by Elsevier Science B. V.

347

http://www.elsevier.nl/locate/entcs/volume71.html�
goodelle
Text Box
Appendix AE: 



Thati, Sen, and Mart́ı-Oliet

[13]. The second is the reduction style, where first an equivalence is imposed
on syntactic processes (typically to make syntax more abstract with respect
to properties of associativity and/or commutativity of some operators), and
then some reduction or rewrite rules express how the computation proceeds
by communication between processes.

The first specification of the π-calculus operational semantics in rewriting
logic was developed by Viry in [19], in a reduction style making use of de
Bruijn indexes, explicit substitutions, and reduction strategies in Elan [6].
This presentation was later improved by Stehr [14] by making use of a generic
calculus for explicit substitutions, known as CINNI, which combines the best
of the approaches based on standard variables and de Bruijn indices, and that
has been implemented in Maude.

Our work took the work described above as a starting point, together
with recent work by Verdejo and Mart́ı-Oliet [18] showing how to use the new
features of Maude 2.0 in the implementation of a semantics in the labelled
transition system style for CCS. This work makes essential use of conditional
rewrite rules with rewrites in the conditions, so that an inference rule in the
labelled transition system of the form

P1 → Q1 . . . Pn → Qn

P0 → Q0

becomes a conditional rewrite rule of the form

P0 −→ Q0 if P1 −→ Q1 ∧ . . . ∧ Pn −→ Qn,

where the condition includes rewrites. These rules are executable in version 2.0
of the Maude language and system [7]. However, this is not enough, because
it is necessary to have some control on the application of rules. Typically,
rewrite rules can be applied anywhere in a term, while the transitions in the
operational semantics for CCS or the π-calculus in the SOS style only take
place at the top. The new frozen attribute available in Maude 2.0 makes this
possible, because the declaration of an operator as frozen forbids rewriting its
arguments, thus providing another way of controlling the rewriting process.
Rewrite conditions when applying conditional rules are solved by means of
an implicit search process, which is also available to the user both at the
command level and at the metalevel. The search command looks for all the
rewrites of a given term that match a given pattern satisfying some condition.
Search is reified at the metalevel as an operation metaSearch.

In this way, our first contribution is a fully executable specification of
an operational semantics in the labelled transition system style for an asyn-
chronous version of the π-calculus (the semantics for the synchronous case is
obtained as a simple modification). This specification uses conditional rewrite
rules with rewrites in conditions and the CINNI calculus [14] for managing
names and bindings in the π-calculus. However, these two ingredients are not
enough to obtain a fully executable specification. A central problem to over-
come is that the transitions of a term can be infinitely branching. For instance,

2

348

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

the term x(y).P can evolve via an input action to one of an infinite family of
terms depending on the name received in the input at channel x. Our solution
is to define the transitions of a process relative to an execution environment.
The environment is represented abstractly as a set of free (global) names that
the environment may use while interacting with the process, and transitions
are modelled as rewrite rules over a pair consisting of a set of environment
names together with a process.

Our next contribution is to implement the verification of the may-testing
preorder [12,3,5] between finitary (non-recursive) asynchronous π-calculus pro-
cesses, using again ideas from [18] to calculate the set of all finite traces of a
process. May testing is a specific instance of the notion of behavioral equiv-
alence on π-calculus processes; in may testing, two processes are said to be
equivalent if they have the same success properties in all experiments. An
experiment consists of an observing process that runs in parallel and interacts
with the process being tested, and success is defined as the observer signalling
a special event. Viewing the occurrence of an event as something bad hap-
pening, may testing can be used to reason about safety properties [4].

Since the definition of may testing involves a universal quantification over
all observers, it is difficult to establish process equivalences directly from the
definition. As a solution, alternate characterizations of the equivalence that
do not resort to quantification over observers have been found. It is known
that the trace semantics is an alternate characterization of may testing in
(synchronous) π-calculus [3], while a variant of the trace semantics has been
shown to characterize may testing in an asynchronous setting [5]. Specifically,
in both these cases, comparing two processes according to the may-testing
preorder amounts to comparing the set of all finite traces they exhibit. We
have implemented for finite asynchronous processes, the comparison of trace
sets proposed in [5]. We stress that our choice of specifying an asynchronous
version rather than the synchronous π-calculus, is because the characterization
of may testing for the asynchronous case is more interesting and difficult. The
synchronous version can be specified in an executable way using similar but
simpler techniques.

Our first step in obtaining an executable specification of may testing is
to obtain the set of all finite traces of a given process. This is done at the
Maude metalevel by using the metaSearch operation to collect all results of
rewriting a given term. The second step is to specify a preorder relation
between traces that characterizes may testing. We have represented the trace
preorder relation as a rewriting relation, i.e. the rules of inference that define
the trace preorder are again modeled as conditional rewrite rules. The final
step is to check if two processes are related by the may preorder, i.e. whether
a statement of the form P v Q is true or not. This step involves computing
the closure of a trace under the trace-preorder relation, again by means of the
metaSearch operation. Thus, our work demonstrates the utility of the new
metalevel facilities available in Maude 2.0.

3

349

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

The structure of the paper follows the steps in the description above. Sec-
tion 2 describes the syntax of the asynchronous version of the π-calculus that
we consider, together with the corresponding CINNI operations we use. Sec-
tion 3 describes the operational semantics specified by means of conditional
rewrite rules. Sections 4 and 5 define traces and the preorder on traces, re-
spectively. Finally, Section 6 contains the specification of the may testing on
processes as described above. Section 7 concludes the paper along with a brief
discussion of future work.

Although this paper includes some information on the π-calculus and may
testing to make it as self contained as possible, we refer the reader to the
papers [5,3,11] for complete details on these subjects. In the same way, the
interested reader can find a detailed explanation about the new features of
Maude 2.0 in [7], and about their use in the implementation of operational
semantics in the companion paper [18].

2 Asynchronous π-Calculus Syntax

The following is a brief and informal review of a version of asynchronous π-
calculus that is equipped with a conditional construct for matching names. An
infinite set of channel names is assumed, and u, v, w, x, y, z, . . . are assumed to
range over it. The set of processes, ranged over by P, Q,R, is defined by the
following grammar:

P := xy |
∑
i∈I

αi.Pi | P1|P2 | (νx)P | [x = y](P1, P2) | !P

where α can be x(y) or τ .

The output term xy denotes an asynchronous message with target x and
content y. The summation

∑
i∈I αi.Pi non-deterministically chooses an αi,

and if αi = τ it evolves internally to Pi, and if αi = x(y) it receives an
arbitrary name z at channel x and then behaves like P{z/y}. The process
P{z/y} is the result of the substitution of free occurrences of y in P by z,
with the usual renaming of bound names to avoid accidental captures (thus
substitution is defined only modulo α-equivalence). The argument y in x(y).P
binds all free occurrences of y in P . The composition P1|P2 consists of P1 and
P2 acting in parallel. The components can act independently, and also interact
with each other. The restriction (νx)P behaves like P except that it can not
exchange messages targeted to x, with its environment. The restriction binds
free occurrences of x in P . The conditional [x = y](P1, P2) behaves like P1

if x and y are identical, and like P2 otherwise. The replication !P provides
an infinite number of copies of P . The functions for free names fn(.), bound
names bn(.) and names n(.), of a process, are defined as expected.

In the Maude specification for the π-calculus syntax that follows, the sort
Chan is used to represent channel names and each of the non-constant syn-
tax constructors is declared as frozen, so that the corresponding arguments

4

350

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

cannot be rewritten by rules; this will be justified at the end of Section 3.

sort Chan .
sorts Guard GuardedTrm SumTrm Trm .
subsort GuardedTrm < SumTrm .
subsort SumTrm < Trm .

op _(_) : Chan Qid -> Guard .
op tau : -> Guard .
op nil : -> Trm .
op _<_> : Chan Chan -> Trm [frozen] .
op _._ : Guard Trm -> GuardedTrm [frozen] .
op _+_ : SumTrm SumTrm -> SumTrm [frozen assoc comm] .
op _|_ : Trm Trm -> Trm [frozen assoc comm] .
op new[_]_ : Qid Trm -> Trm [frozen] .
op if_=_then_else_fi : Chan Chan Trm Trm -> Trm [frozen] .
op !_ : Trm -> Trm [frozen] .

Note that the syntactic form
∑

i∈I αi.Pi has been split into three cases:

(i) nil represents the case where I = ∅,
(ii) a term of sort GuardedTrm represents the case where I = {1}, and

(iii) a term of sort SumTrm represents the case where I = [1..n] for n > 1. Since
the constructor + is associative and the sort GuardedTrm is a subsort of
SumTrm, we can represent a finite sum

∑
i∈I αi.Pi as (. . . (α1.P1 +α2.P2)+

· · ·αn.Pn).

To represent substitution on π-calculus processes (and traces, see Sec-
tion 4) at the language level we use CINNI as a calculus for explicit substitu-
tions [14]. This gives a first-order representation of terms with bindings and
capture-free substitutions, instead of going to the metalevel to handle names
and bindings. The main idea in such a representation is to keep the bound
names inside the binders as it is, but to replace its use by the name followed
by an index which is a count of the number of binders with the same name it
jumps before it reaches the place of use. Following this idea, we define terms
of sort Chan as indexed names as follows.

sort Chan .
op _{_} : Qid Nat -> Chan [prec 1] .

We introduce a sort of substitutions Subst together with the following
operations:

op [_:=_] : Qid Chan -> Subst .
op [shiftup_] : Qid -> Subst .
op [shiftdown_] : Qid -> Subst .
op [lift__] : Qid Subst -> Subst .

The first two substitutions are basic substitutions representing simple and
shiftup substitutions; the third substitution is a special case of simple substi-
tution; the last one represents complex substitution where a substitution can
be lifted using the operator lift. The intuitive meaning of these operations

5

351

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

[a := x] [shiftup a] [shiftdown a] [lift a S]

a{0} 7→ x a{0} 7→ a{1} a{0} 7→ a{0} a{0} 7→ [shiftup a] (S a{0})
a{1} 7→ a{0} a{1} 7→ a{2} a{1} 7→ a{0} a{1} 7→ [shiftup a] (S a{1})

· · · · · · · · · · · ·
a{n+1} 7→ a{n} a{n} 7→ a{n+1} a{n+1} 7→ a{n} a{n} 7→ [shiftup a] (S a{n})
b{m} 7→ b{m} b{m} 7→ b{m} b{m} 7→ b{m} b{m} 7→ [shiftup a] (S b{m})

Table 1
The CINNI operations.

is described in Table 1 (see [14] for more details). Using these, explicit sub-
stitutions for π-calculus processes are defined equationally. Some interesting
equations are the following:

eq S (P + Q) = (S P) + (S Q) .
eq S (CX(Y) . P ) = (S CX)(Y) . ([lift Y S] P) .
eq S (new [X] P) = new [X] ([lift X S] P) .

3 Operational Semantics

A labelled transition system (see Table 2) is used to give an operational se-
mantics for the calculus as in [5]. The transition system is defined modulo
α-equivalence on processes in that α-equivalent processes have the same tran-
sitions. The rules COM, CLOSE, and PAR have symmetric versions that are
not shown in the table.

Transition labels, which are also called actions, can be of five forms: τ (a
silent action), xy (free output of a message with target x and content y), x(y)
(bound output), xy (free input of a message), and x(y) (bound input). The
functions fn(.), bn(.) and n(.) are defined on actions as expected. The set of
all visible (non-τ) actions is denoted by L, and α is assumed to range over
L. As a uniform notation for free and bound actions the following notational
convention is adopted: (∅)xy = xy, ({y})xy = x(y), and similarly for input
actions. The variable ẑ is assumed to range over {∅, {z}}. The term (νẑ)P is
(νz)P if ẑ = {z}, and P otherwise.

We define the sort Action and the corresponding operations as follows:

sorts Action ActionType .
ops i o : -> ActionType .
op f : ActionType Chan Chan -> Action .
op b : ActionType Chan Qid -> Action .
op tauAct : -> Action .

The operators f and b are used to construct free and bound actions re-
spectively. Name substitution on actions is defined equationally as expected.

The inference rules in Table 2 are modelled as conditional rewrite rules

6

352

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

INP:
∑

i∈I αi.Pi
xjz−→ Pj{z/y} j ∈ I, αj = xj(y)

TAU:
∑

i∈I αi.Pi
τ−→ Pj j ∈ I, αj = τ

OUT: xy
xy−→ 0

BINP:
P

xy−→ P ′

P
x(y)−→ P ′

y /∈ fn(P )

PAR:
P1

α−→ P ′
1

P1|P2
α−→ P ′

1|P2

bn(α) ∩ fn(P2) = ∅ COM:
P1

xy−→ P ′
1 P2

xy−→ P ′
2

P1|P2
τ−→ P ′

1|P ′
2

RES:
P

α−→ P ′

(νy)P
α−→ (νy)P ′

y /∈ n(α) OPEN:
P

xy−→ P ′

(νy)P
x(y)−→ P ′

x 6= y

CLOSE:
P1

x(y)−→ P ′
1 P2

xy−→ P ′
2

P1|P2
τ−→ (νy)(P ′

1|P ′
2)

y /∈ fn(P2) REP:
P |!P α−→ P ′

!P
α−→ P ′

IF:
P

α−→ P ′

[x = x](P, Q)
α−→ P ′

ELSE:
Q

α−→ Q′

[x = y](P, Q)
α−→ Q′

x 6= y

Table 2
A labelled transition system for asynchronous π-calculus.

with the premises as conditions of the rule. 1 Since rewrites do not have labels
unlike the labelled transitions, we make the label a part of the resulting term;
thus rewrites corresponding to transitions in the operational semantics are of
the form P ⇒ {α}Q.

Because of the INP and OPEN rules, the transitions of a term can be
infinitely branching. Specifically, in case of the INP rule there is one branch
for every possible name that can be received in the input. In case of the OPEN
rule, there is one branch for every name that is chosen to denote the private
channel that is being emitted (note that the transition rules are defined only
modulo α-equivalence). To overcome this problem, we define transitions over
pairs of the form [CS] P, where CS is a set of channel names containing all the
names that the environment with which the process interacts, knows about.
The set CS expands during bound input and output interactions when private
names are exchanged between the process and its environment.

The infinite branching due to the INP rule is avoided by allowing only the
names in the environment set CS to be received in free inputs. Since CS is
assumed to contain all the free names in the environment, an input argument
that is not in CS would be a private name of the environment. Now, since
the identifier chosen to denote the fresh name is irrelevant, all bound input

1 The symmetric versions missing in the table need not be implemented because the process
constructors + and | have been declared as commutative.

7

353

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

transitions can be identified to a single input. With these simplifications,
the number of input transitions of a term become finite. Similarly, in the
OPEN rule, since the identifier chosen to denote the private name emitted is
irrelevant, instances of the rule that differ only in the chosen name are not
distinguished.

We discuss in detail the implementation of only a few of the inference rules;
the reader is referred to the appendix for a complete list of all the rewrite rules
for Table 2.

sorts EnvTrm TraceTrm .
subsort EnvTrm < TraceTrm .
op [_]_ : Chanset Trm -> EnvTrm [frozen] .
op {_}_ : Action TraceTrm -> TraceTrm [frozen] .

Note that the two operators are also declared above with the frozen at-
tribute, forbidding in this way rewriting of their arguments, as justified at the
end of this section.

The following non-conditional rule is for free inputs.

rl [Inp] : [CY CS] ((CX(X) . P) + SUM) =>
{f(i,CX,CY)} ([CY CS] ([X := CY] P)) .

The next rule we consider is the one for bound inputs. Since the identifier
chosen to denote the bound argument is irrelevant, we use the constant ’U

for all bound inputs, and thus ’U{0} denotes the fresh channel received. Note
that in contrast to the BINP rule of Table 2, we do not check if ’U{0} is in the
free names of the process performing the input, and instead we shift up the
channel indices appropriately, in both the set of environment names CS and
the process P in the righthand side and condition of the rule. This is justified
because the transition target is within the scope of the bound name in the
input action. Note also that the channel CX in the action is not shifted down
because it is out of the scope of the bound argument. The set of environment
names is expanded by adding the received channel ’U{0} to it. Finally, we
use a special constant flag of sort Chan, to ensure termination. We add an
instance of flag to the environment set of the rewrite in condition, so that
the BINP rule is not fired again while evaluating the condition. Without this
check, we will have a non-terminating execution in which the BINP rule is
repeatedly fired.

crl [BInp] : [CS] P => {b(i,CX,’U)} [’U{0} [shiftup ’U] CS] P1
if (not flag in CS) /\

CS1 := flag ’U{0} [shiftup ’U] CS /\
[CS1] [shiftup ’U] P => {f(i,CX,’U{0})} [CS1] P1 .

The following rule treats the case of bound outputs.

crl [Open] : [CS] (new [X] P) => {[shiftdown X] b(o,CY,X)} [X{0} CS1] P1
if CS1 := [shiftup X] CS /\

[CS1] P => {f(o,CY,X{0})} [CS1] P1 /\ X{0} =/= CY .

Like in the case of bound inputs, we identify all bound outputs to a single

8

354

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

instance in which the identifier X that appears in the restriction is chosen as
the bound argument name. Note that in both the righthand side of the rule
and in the condition, the indices of the channels in CS are shifted up, because
they are effectively moved across the restriction. Similarly, the channel indices
in the action in the righthand side of the rule are shifted down since the action
is now moved out of the restriction. Note also that the exported name is added
to the set of environment names, because the environment that receives this
exported name can use it in subsequent interactions.

The PAR inference rule is implemented by two rewrite rules, one for the
case where the performed action is free, and the other where the action is
bound. The rewrite rule for the latter case is discussed next, while the one for
the former case is simpler and appears in the appendix.

var IO : ActionType
crl [Par] : [CS] (P | Q) =>

{b(IO,CX,Y)} [Y{0} ([shiftup Y] CS)] (P1 | [shiftup Y] Q)
if [CS] P => {b(IO,CX,Y)} ([CS1] P1) .

Note that the side condition of the PAR rule in Table 2, which avoids
confusion of the emitted bound name with free names in Q, is achieved by
shifting up channel indices in Q. This is justified because the righthand side of
the rule is under the scope of the bound output action. Similarly, the channel
indices in the environment are also shifted up. Further, the set of environment
names is expanded by adding the exported channel Y{0}.

Finally, we consider the rewrite rule for CLOSE. The process P emits a
bound name Y, which is received by process Q. Since the scope of Y after the
transition includes Q, the rewrite involving Q in the second condition of the
rule is carried out within the scope of the bound name that is emitted. This
is achieved by adding the channel Y{0} to the set of environment names and
shifting up the channel indices in both CS and Q in the rewrite. Note that
since the private name being exchanged is not emitted to the environment,
we neither expand the set CS in the righthand side of the rule nor shift up the
channel indices in it.

crl [Close] : [CS] (P | Q) => {tauAct} [CS] new [Y] (P1 | Q1)
if [CS] P => {b(o,CX,Y)} [CS1] P1 /\

[Y{0} [shiftup Y] CS] [shiftup Y] Q =>
{f(i,CX,Y{0})} [CS2] Q1 .

We conclude this section with the following note. The operator { } is
declared frozen because further rewrites of the process term encapsulated
in a term of sort TraceTrm are useless. This is because all the conditions of
the transition rules only involve one step rewrites (the righthand side of these
rewrites can only match a term of sort TraceTrm with a single action prefix).
Further note that, to prevent rewrites of a term to a non well-formed term, all
the constructors for π-calculus terms (Section 2) have been declared frozen;
in the absence of this declaration we would have for instance rewrites of the
form P | Q => {A}.P1 | Q to a non well-formed term.

9

355

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

4 Trace Semantics

The set L∗ is the set of traces. The functions fn(.), bn(.) and n(.) are extended
to L∗ in the obvious way. The relation of α-equivalence on traces is defined
as expected, and α-equivalent traces are not distinguished. The relation =⇒
denotes the reflexive transitive closure of

τ−→, and
β

=⇒ denotes =⇒ β−→=⇒.

For s = l.s′, we inductively define P
s

=⇒ P ′ as P
l

=⇒ s′
=⇒ P ′. We use P

s
=⇒

as an abbreviation for P
s

=⇒ P ′ for some P ′. The set of traces that a process
exhibits is then [|P |] = {s | P

s
=⇒}.

In the implementation, we introduce a sort Trace as supersort of Action
to specify traces.

subsort Action < Trace .
op epsilon : -> Trace .
op _._ : Trace Trace -> Trace [assoc id: epsilon] .
op [_] : Trace -> TTrace .

We define the operator [ ] to represent a complete trace. The motivation
for doing so is to restrict the equations and rewrite rules defined over traces to
operate only on a complete trace instead of a part of it. The following equation
defines α-equivalence on traces. Note that in a trace TR1.b(IO,CX,Y).TR2 the
action b(IO,CX,Y) binds the identifier Y in TR2.

ceq [TR1 . b(IO,CX,Y) . TR2] =
[TR1 . b(IO,CX,’U) . [Y := ’U{0}] [shiftup ’U] TR2]

if Y =/= ’U .

Because the operator op { } : Action TraceTrm -> TraceTrm is declared
as frozen, a term of sort EnvTrm can rewrite only once, and so we cannot ob-
tain the set of finite traces of a process by simply rewriting it multiple times in
all possible ways. The problem is solved as in [18], by specifying the trace se-
mantics using rules that generate the transitive closure of one step transitions
as follows:

sort TTrm .
op [_] : EnvTrm -> TTrm [frozen] .
var TT : TraceTrm .

crl [reflx] : [ P ] => {A} Q if P => {A} Q .
crl [trans] : [ P ] => {A} TT

if P => {A} Q /\ [ Q ] => TT /\ [ Q ] =/= TT .

We use the operator [ ] to prevent infinite loops while evaluating the
conditions of the rules above. If this operator were not used, then the lefthand
side of the rewrite in the condition would match the lefthand side of the rule
itself, and so the rule itself could be used in order to solve its condition. This
operator is also declared as frozen to prevent useless rewrites inside [ ].

We can now use the search command of Maude 2.0 to find all possible
traces of a process. The traces appear as prefix of the one-step successors
of a TTrm of the form [[CS] P]. For instance, the set of all traces exhibited

10

356

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

by [mt] new [’y] (’x0 < ’y0 > | ’x0(’u) . nil) (where mt denotes the
empty channel set), can be obtained by using the following search command.

Maude> search [ [mt] new [’y] (’x{0} < ’y{0} > | ’x{0}(’u) . nil) ] =>!
X:TraceTrm .
search in APITRACESET : [[mt]new[’y](’x{0} < ’y{0} > | ’x{0}(’u) . nil)] =>!
X:TraceTrm .

Solution 1 (state 1)
states: 7 rewrites: 17344 in 110ms cpu (150ms real) (157672 rewrites/second)
X:TraceTrm --> {b(i, ’x{0}, ’u)}[’u{0}]new[’y](nil | ’x{0} < ’y{0} >)

Solution 2 (state 2)
states: 7 rewrites: 17344 in 110ms cpu (170ms real) (157672 rewrites/second)
X:TraceTrm --> {tauAct}[mt]new[’y](nil | nil)

Solution 3 (state 3)
states: 7 rewrites: 17344 in 110ms cpu (170ms real) (157672 rewrites/second)
X:TraceTrm --> {b(o, ’x{0}, ’y)}[’y{0}]nil | ’x{0}(’u) . nil

Solution 4 (state 4)
states: 7 rewrites: 17344 in 110ms cpu (170ms real) (157672 rewrites/second)
X:TraceTrm --> {b(i, ’x{0}, ’u)}{b(o, ’x{0}, ’y)}[’y{0} ’u{0}]nil | nil

Solution 5 (state 5)
states: 7 rewrites: 17344 in 110ms cpu (170ms real) (157672 rewrites/second)
X:TraceTrm --> {b(o, ’x{0}, ’y)}{b(i, ’x{0}, ’u)}[’y{0} ’u{0}]nil | nil

Solution 6 (state 6)
states: 7 rewrites: 17344 in 110ms cpu (170ms real) (157672 rewrites/second)
X:TraceTrm --> {b(o, ’x{0}, ’y)}{f(i, ’x{0}, ’y{0})}[’y{0}]nil | nil

No more solutions.
states: 7 rewrites: 17344 in 110ms cpu (170ms real) (157672 rewrites/second)

The command returns all TraceTrms that can be reached from the given
TTrm, and that are terminating (the ‘!’ in =>! specifies that the target should
be terminating). The required set of traces can be obtained by simply extract-
ing from each solution {a1}...{an}TT the sequence a1...an and removing
all tauActs in it. Thus, we have obtained an executable specification of the
trace semantics of asynchronous π-calculus.

5 A Trace Based Characterization of May Testing

The may-testing framework [12] is instantiated on asynchronous π-calculus as
follows. Observers are processes that can emit a special message µµ. We say

that an observer O accepts a trace s if O
s̄.µµ
=⇒, where s̄ is the trace obtained by

complementing the actions in s, i.e. converting input actions to output actions
and vice versa. The may preorder v over processes is defined as: P v Q if for

every observer O, P |O µµ
=⇒ implies Q|O µµ

=⇒. We say that P and Q are may-

11

357

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

(Drop) s1.(ŷ)s2 ≺ s1.(ŷ)xy.s2 if (ŷ)s2 6= ⊥
(Delay) s1.(ŷ)(α.xy.s2) ≺ s1.(ŷ)xy.α.s2 if (ŷ)(α.xy.s2) 6= ⊥

(Annihilate) s1.(ŷ)s2 ≺ s1.(ŷ)xy.xy.s2 if (ŷ)s2 6= ⊥
Table 3

A preorder relation on traces.

equivalent, i.e. P = Q, if P v Q and Q v P . The universal quantification
on contexts in this definition makes it very hard to prove equalities directly
from the definition, and makes mechanical checking impossible. To circumvent
this problem, a trace based alternate characterization of the may equivalence
is proposed in [5]. We now summarize this characterization and discuss our
implementation of it.

The preorder ¹ on traces is defined as the reflexive transitive closure of
the laws shown in Table 3, where the notation (ŷ)· is extended to traces as
follows.

(ŷ)s =





s if ŷ = ∅ or b 6∈ fn(s)

s1.x(y).s2 if ŷ = {y} and there are s1, s2, x such that

s = s1.xy.s2 and y 6∈ n(s1) ∪ {x}
⊥ otherwise

For sets of traces R and S, we define R - S, if for every s ∈ S there is
an r ∈ R such that r ¹ s. The may preorder is then characterized in [5] as:
P v Q if and only if [|Q|] - [|P |].

The main intuition behind the preorder ¹ is that if an observer accepts
a trace s, then it also accepts any trace r ¹ s. The first two laws state that
an observer cannot force inputs on the process being tested. Since outputs
are asynchronous, the actions following an output in a trace exhibited by the
observer need not causally depend on the output. Hence the observer’s output
can be delayed until a causally dependent action, or dropped if there are no
such actions. The annihilation law states that an observer can consume its
own outputs unless there are subsequent actions that depend on the output.
The reader is referred to [5] for further details on this characterization.

We encode the trace preorder as rewrite rules on terms of the sort TTrace
of complete traces; specifically, the relation r ≺ s if cond, is encoded as s

=> r if cond. The reason for this form of representation will be justified
in Section 6. The function ({y})· on traces is defined equationally by the
operation bind. The constant bot of sort Trace is used by the bind operation
to signal error.

op bind : Qid Trace -> Trace .
op bot : -> Trace .
var TR : Trace . var IO : ActionType.

12

358

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

ceq TR . bot = bot if t =/= epsilon .
ceq bot . TR = bot if t =/= epsilon .

eq bind(X , epsilon) = epsilon .

eq bind(X , f(i,CX,CY) . TR ) = if CX =/= X{0} then
if CY == X{0} then ([shiftdown X] b(i, CX , X)) . TR

else ([shiftdown X] f(i, CX , CY)) . bind(X , TR) fi
else bot fi .

eq bind(X , b(IO,CX,Y) . TR) = if CX =/= X{0} then
if X =/= Y then ([shiftdown X] b(i, CX , Y)) . bind(X , TR)

else ([shiftdown X] b(IO, CX , Y)) . bind(X , swap(X,TR)) fi
else bot fi .

The equation for the case where the second argument to bind begins with
a free output is not shown as it is similar. Note that the channel indices
in actions until the first occurrence of X{0} as the argument of a free input
are shifted down as these move out of the scope of the binder X. Further,
when a bound action with X as the bound argument is encountered, the swap

operation is applied to the remaining suffix of the trace. The swap operation
simply changes the channel indices in the suffix so that the binding relation
is unchanged even as the binder X is moved across the bound action. This is
accomplished by simultaneously substituting X{0} with X{1}, and X{1} with
X{0}. Finally, note that when X{0} is encountered as the argument of a free
input, the input is converted to a bound input. If X{0} is first encountered at
any other place, an error is signalled by returning the constant bot.

The encoding of the preorder relation on traces is now straightforward.

crl [Drop] : [ TR1 . b(i,CX,Y) . TR2 ] => [ TR1 . bind(Y , TR2) ]
if bind(Y , TR2) =/= bot .

rl [Delay] : [ ( TR1 . f(i,CX,CY) . b(IO,CU,V) . TR2 ) ] =>
[ ( TR1 . b(IO,CU,V) . ([shiftup V] f(i, CX , CY)) . TR2 ) ] .

crl [Delay] : [ ( TR1 . b(i,CX,Y) . f(IO,CU,CV) . TR2 ) ] =>
[ ( TR1 . bind(Y , f(IO,CU,CV) . f(i,CX,Y{0}) . TR2) ) ]

if bind(Y , f(IO,CU,CV) . f(i,CX,Y{0}) . TR2) =/= bot .

crl [Annihilate] : [ ( TR1 . b(i,CX,Y) . f(o,CX,Y{0}) . TR2 ) ] =>
[ TR1 . bind(Y , TR2) ]

if bind(Y , TR2) =/= bot .

Note that in the first Delay rule, the channel indices of the free input
action are shifted up when it is delayed across a bound action, since it gets
into the scope of the bound argument. Similarly, in the second Delay rule,
when the bound input action is delayed across a free input/output action,
the channel indices of the free action are shifted down by the bind operation.
The other two subcases of the Delay rule, namely, where a free input is to
be delayed across a free input or output, and where a bound input is to be
delayed across a bound input or output, are not shown as they are similar.

13

359

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

Similarly, for Annihilate, the case where a free input is to be annihilated
with a free output is not shown.

6 Verifying the May Preorder between Finite Processes

We now describe our implementation of verification of the may preorder be-
tween finite processes, i.e. processes without replication, by exploiting the
trace-based characterization of may testing discussed in Section 5. The finite-
ness of a process P only implies that the length of traces in [|P |] is bounded,
but the number of traces in [|P |] can be infinite (even modulo α-equivalence)
because the INP rule is infinitely branching. To avoid the problem of having
to compare infinite sets, we observe that

[|Q|] - [|P |] if and only if [|Q|]fn(P,Q) - [|P |]fn(P,Q),

where for a set of traces S and a set of names ρ we define Sρ = {s ∈ S |
fn(s) ⊆ ρ}. Now, since the traces in [|P |] and [|Q|] are finite in length, it
follows that the sets of traces [|P |]fn(P,Q) and [|Q|]fn(P,Q) are finite modulo α-
equivalence. In fact, the set of traces generated for [[fn(P,Q)] P] by our
implementation described in Section 3, contains exactly one representative
from each α-equivalence class of [|P |]fn(P,Q).

Given processes P and Q, we generate the set of all traces (modulo α-
equivalence) of [[fn(P,Q)] P] and [[fn(P,Q)] Q] using the metalevel fa-
cilities of Maude 2.0. As mentioned in Section 4, these terms, which are
of sort TTrm, can be rewritten only once. The term of sort TraceTrm ob-
tained by rewriting contains a finite trace as a prefix. To create the set of all
traces, we compute all possible one-step rewrites. This computation is done at
the metalevel by the function TTrmtoNormalTraceSet that uses two auxiliary
functions TTrmtoTraceSet and TraceSettoNormalTraceSet.

op TTrmtoTraceSet : Term -> TermSet .
op TraceSettoNormalTraceSet : TermSet -> TermSet .
op TTrmtoNormalTraceSet : Term -> TermSet .

eq TTrmtoNormalTraceSet(T) = TraceSettoNormalTraceSet(TTrmtoTraceSet(T)) .

The function TTrmTraceSet uses the function allOneStepAux(T,N) that
returns the set of all one-step rewrites (according to the rules in Sections 3
and 4, which are defined in modules named APISEMANTICS and APITRACE, see
Figure A.1 in appendix) of the term T which is the metarepresentation of a
term of sort TTrm, skipping the first N solutions. In the following equations,
the operator u stands for set union.

Notice the use of the operation metaSearch, which receives as arguments
the metarepresented module to work in, the starting term for search, the
pattern to search for, a side condition (empty in this case), the kind of search
(which may be ’* for zero or more rewrites, ’+ for one or more rewrites, and
’! for only matching normal forms), the depth of search, and the required
solution number. It returns the term matching the pattern, its type, and

14

360

goodelle
Rectangle

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

the substitution produced by the match; to keep only the term, we use the
projection getTerm.

op APITRACE-MOD : -> Module .
eq APITRACE-MOD = [’APITRACE] .
var N : MachineInt . vars T X : Term .

op allOneStepAux : Term MachineInt Term -> TermSet .
op TraceTermToTrace : Term -> Term .

eq TTrmtoTraceSet(T) = allOneStepAux(T,0,’X:TraceTrm) .
eq allOneStepAux(T,N,X) =

if metaSearch(APITRACE-MOD,T,X,nil,’+,1,N) == failure
then ’epsilon.Trace
else TraceTermToTrace(getTerm(metaSearch(APITRACE-MOD,T,X,nil,’+,1,N)))

u allOneStepAux(T,N + 1,X) fi .

The function TraceTrmToTrace (whose equations are not shown), used
in allOneStepAux, extracts the trace a1.a2...an out of a metarepresenta-
tion of a term of sort TraceTrm of the form {a1}{a2}...{an}TT. The function
TraceSettoNormalTraceSet uses the metalevel operation metaReduce to con-
vert each trace in a trace set to its α-normal form. The operation metaReduce

takes as arguments a metarepresented module and a metarepresented term
in that module, and returns the metarepresentation of the fully reduced form
of the given term using the equations in the given module, together with its
corresponding sort or kind. Again, the projection getTerm leaves only the
resulting term.

eq TraceSettoNormalTraceSet(mt) = mt .
eq TraceSettoNormalTraceSet(T u TS) =

getTerm(metaReduce(TRACE-MOD,’‘[_‘] [ T ]))
u TraceSettoNormalTraceSet(TS) .

We implement the relation - on sets defined in Section 5 as the predicate
<<. We check if P v Q by computing this predicate on the metarepresented
trace sets [|P |]fn(P,Q) and [|Q|]fn(P,Q) as follows. For each (metarepresented)
trace T in [|P |]fn(P,Q), we compute the reflexive transitive closure of T with
respect to the laws shown in Table 3. The laws are implemented as rewrite
rules in the module TRACE-PREORDER. We then use the fact that [|Q|]fn(P,Q) -
[|P |]fn(P,Q) if and only if for every trace T in [|P |]fn(P,Q) the closure of T and
[|Q|]fn(P,Q) have a common element.

op TRACE-PREORDER-MOD : -> Module .
eq TRACE-PREORDER-MOD = [’TRACE-PREORDER] .
var N : MachineInt . vars T T1 T2 X : Term .
var TS TS1 TS2 : TermSet .

op _<<_ : TermSet TermSet -> Bool .
op _<<<_ : TermSet Term -> Bool .
op TTraceClosure : Term -> TermSet .
op TTraceClosureAux : Term Term MachineInt -> TermSet .
op _maypre_ : Term Term -> Bool .

15

361

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

eq TS2 << mt = true .
eq TS2 << (T1 u TS1) = TS2 <<< T1 and TS2 << TS1 .
eq TS2 <<< T1 = not disjoint?(TS2 , TTraceClosure(T1)) .
eq T1 maypre T2 = TTrmtoNormalTraceSet(T2) << TTrmtoNormalTraceSet(T1) .

The computation of the closure of T is done by the function TTraceClosure.
It uses TTraceClosureAux to compute all possible (multi-step) rewrites of the
term T using the rules defined in the module TRACE-PREORDER, again by means
of the metalevel operation metaSearch.

eq TTraceClosure(T) = TTraceClosureAux(T,’TT:TTrace,0) .
eq TTraceClosureAux(T,X,N) =

if metaSearch(TRACE-PREORDER-MOD,T,X,nil,’*,maxMachineInt,N) == failure
then mt
else getTerm(metaSearch(TRACE-PREORDER-MOD,T,X,nil,’*,maxMachineInt,N))

u TTraceClosureAux(T,X,N + 1) fi .

This computation is terminating as the number of traces to which a trace
can rewrite using the trace preorder laws is finite modulo α-equivalence. This
follows from the fact that the length of a trace is non-increasing across rewrites,
and the free names in the target of a rewrite are also free names in the source.
Since the closure of a trace is finite, metaSearch can be used to enumerate all
the traces in the closure. Note that although the closure of a trace is finite, it
is possible to have an infinite rewrite that loops within a subset of the closure.
Further, since T is a metarepresentation of a trace, metaSearch can be applied
directly to T inside the function TTraceClosureAux(T,X,N).

We end this section with a small example, which checks for the may-testing
preorder between the processes P = a(u).b(v).(νw)(wv|au)+b(u).a(v).(bu|bw)
and Q = b(u).(bu|bw). We define constants TP and TQ of sort TTrm, along with
the following equations:

eq TP = [[’a{0} ’b{0} ’w{0}]
’a{0}(’u) . ’b{0}(’v) . new[’w](’w{0} < ’v{0} > | ’a{0} < ’u{0} >)

+ ’b{0}(’u) . ’a{0}(’v) . (’b{0} < ’u{0} > | ’b{0} < ’w{0} >)]

eq TQ = [[’a{0} ’b{0} ’w{0}]
’b{0}(’u) . (’b{0} < ’u{0} > | ’b{0} < ’w{0} >)]

The metarepresentation of these TTrms can now be obtained by using
’TP.TTrm and ’TQ.TTrm, and we can then check for the may-testing preorder
between the given processes as follows:

Maude> red ’TP.TTrm maypre ’TQ.TTrm .
reduce in APITRACESET : ’TP.TTrm maypre ’TQ.TTrm .
rewrites: 791690 in 2140ms cpu (2160ms real) (361422 rewrites/second)
result Bool: true
Maude> red ’TQ.TTrm maypre ’TP.TTrm .
reduce in APITRACESET : ’TQ.TTrm maypre ’TP.TTrm .
rewrites: 664833 in 1620ms cpu (1640ms real) (410390 rewrites/second)
result Bool: false

Thus, we have P v Q, but Q /v P . The reader can check that indeed,
[|Q|]fn(P,Q) - [|P |]fn(P,Q), but [|P |]fn(P,Q) /- [|Q|]fn(P,Q).

16

362

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

7 Conclusions and Future Work

In this paper, we have described an executable specification in Maude of the
operational semantics of an asynchronous version of the π-calculus using con-
ditional rewrite rules with rewrites in the conditions as proposed by Verdejo
and Mart́ı-Oliet in [18], and the CINNI calculus proposed by Stehr in [14]
for managing names and their binding. In addition, we also implemented
the may-testing preorder for π-calculus processes using the Maude metalevel,
where we use the metaSearch operation to calculate the set of all traces for a
process and then compare two sets of traces according to a preorder relation
between traces. As emphasized throughout the paper, the new features intro-
duced in Maude 2.0 have been essential for the development of this executable
specification, including rewrites in conditions, the frozen attribute, and the
metaSearch operation.

An interesting direction of further work is to extend our implementation
to the various typed variants of π-calculus. Two specific typed asynchronous
π-calculi for which the work is under way are the local π-calculus (Lπ) [10]
and the Actor model [1,15]. Both of these formal systems have been used
extensively in formal specification and analysis of concurrent object-oriented
languages [2,8], and open distributed and mobile systems [9]. The alternate
characterization of may testing for both of these typed calculi was recently
published [16,17]. We are extending the work presented here to account for
the type systems for these calculi, and modifications to the trace based char-
acterization of may testing. We are also looking for interesting concrete appli-
cations to which this can be applied; such experiments may require extending
our implementation to extensions of π-calculus with higher level constructs,
although these may just be syntactic sugar.

Acknowledgements

This research has been supported in part by the Defense Advanced Research
Projects Agency (contract numbers F30602-00-2-0586 and F33615-01-C-1907),
the ONR MURI Project A Logical Framework for Adaptive System Inter-
operability, and the Spanish CICYT project Desarrollo Formal de Sistemas
Basados en Agentes Móviles (TIC2000–0701–C02–01). This work was done
while the last author was visiting the Department of Computer Science in
the University of Illinois at Urbana-Champaign, for whose hospitality he is
very grateful. We would like to thank José Meseguer for encouraging us to
put together several complementary lines of work in order to get the results
described in this paper.

References

[1] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, 1986.

17

363

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

[2] G. Agha. Concurrent object-oriented programming. Communications of the
ACM, 33(9):125–141, September 1990.

[3] M. Boreale and R. De Nicola. Testing equivalence for mobile processes.
Information and Computation, 120:279–303, 1995.

[4] M. Boreale, R. De Nicola, and R. Pugliese. Proof techniques for cryptographic
processes. In Proceedings 14th IEEE Symposium on Logic in Computer Science,
LICS’99, Trento, Italy, July 2–5, 1999, pages 157–166. IEEE Computer Society
Press, 1999.

[5] M. Boreale, R. De Nicola, and R. Pugliese. Trace and testing equivalence on
asynchronous processes. Information and Computation, 172(2):139–164, 2002.

[6] P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and M. Vittek.
ELAN: A logical framework based on computational systems. In J. Meseguer,
editor, Proceedings First International Workshop on Rewriting Logic and its
Applications, WRLA’96, Asilomar, California, September 3–6, 1996, volume 4
of Electronic Notes in Theoretical Computer Science, pages 35–50. Elsevier,
1996. http://www.elsevier.nl/locate/entcs/volume4.html.

[7] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J.
F. Quesada. Towards Maude 2.0. In K. Futatsugi, editor, Proceedings Third
International Workshop on Rewriting Logic and its Applications, WRLA 2000,
Kanazawa, Japan, September 18–20, 2000, volume 36 of Electronic Notes in
Theoretical Computer Science, pages 297–318. Elsevier, 2000. http://www.
elsevier.nl/locate/entcs/volume36.html.

[8] I. A. Mason and C. Talcott. A semantically sound actor translation. In
P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, editors, Automata,
Languages and Programming, 24th International Colloquium, ICALP’97,
Bologna, Italy, July 7–11, 1997, Proceedings, volume 1256 of Lecture Notes
in Computer Science, pages 369–378. Springer-Verlag, 1997.

[9] M. Merro, J. Kleist, and U. Nestmann. Local π-calculus at work: Mobile objects
as mobile processes. In J. van Leeuwen et al., editors, Theoretical Computer
Science: Exploring New Frontiers of Theoretical Informatics, International
Conference IFIP TCS 2000 Sendai, Japan, August 17–19, 2000, Proceedings,
volume 1872 of Lecture Notes in Computer Science, pages 390–408. Springer-
Verlag, 2000.

[10] M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. In
K. G. Larsen, S. Skyum, and G. Winskel, editors, Automata, Languages and
Programming, 25th International Colloquium, ICALP’98, Aalborg, Denmark,
July 13–17, 1998, Proceedings, volume 1443 of Lecture Notes in Computer
Science, pages 856–867. Springer-Verlag, 1998.

[11] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (Parts I
and II). Information and Computation, 100:1–77, 1992.

[12] R. De Nicola and M. Hennessy. Testing equivalence for processes. Theoretical
Computer Science, 34:83–133, 1984.

18

364

http://www.elsevier.nl/locate/entcs/volume4.html�
http://www.elsevier.nl/locate/entcs/volume36.html�
http://www.elsevier.nl/locate/entcs/volume36.html�
goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

[13] G. D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Computer Science Dept., Aarhus University, September
1981.

[14] M.-O. Stehr. CINNI — A generic calculus of explicit substitutions and its
application to λ-, ς- and π-calculi. In K. Futatsugi, editor, Proceedings Third
International Workshop on Rewriting Logic and its Applications, WRLA 2000,
Kanazawa, Japan, September 18–20, 2000, volume 36 of Electronic Notes in
Theoretical Computer Science, pages 71–92. Elsevier, 2000. http://www.
elsevier.nl/locate/entcs/volume36.html.

[15] C. Talcott. An actor rewriting theory. In J. Meseguer, editor, Proceedings First
International Workshop on Rewriting Logic and its Applications, WRLA’96,
Asilomar, California, September 3–6, 1996, volume 4 of Electronic Notes in
Theoretical Computer Science, pages 360–383. Elsevier, 1996. http://www.
elsevier.nl/locate/entcs/volume4.html.

[16] P. Thati, R. Ziaei, and G. Agha. A theory of may testing for actors. In B. Jacobs
and A. Rensink, editors, Proceedings IFIP TC6/WG6.1 Fifth International
Conference on Formal Methods for Open Object-Based Distributed Systems
(FMOODS 2002), March 20-22, 2002, Enschede, The Netherlands, pages 147–
162. Kluwer Academic Publishers, 2002.

[17] P. Thati, R. Ziaei, and G. Agha. A theory of may testing for asynchronous
calculi with locality and no name matching. In H. Kirchner and C. Ringeissen,
editors, Algebraic Methodology and Software Technology, 9th International
Conference, AMAST 2002, Saint-Gilles-les-Bains, Reunion Island, France,
September 9-13, 2002, Proceedings, volume 2422 of Lecture Notes in Computer
Science. Springer-Verlag, 2002.

[18] A. Verdejo and N. Mart́ı-Oliet. Implementing CCS in Maude 2. In U.
Montanari, editor, Proceedings Fourth International Workshop on Rewriting
Logic and its Applications, WRLA 2002, Pisa, Italy, September 19–21, 2002,
volume 71 of Electronic Notes in Theoretical Computer Science. Elsevier, 2002.
(This volume.) http://www.elsevier.nl/locate/entcs/volume71.html.

[19] P. Viry. Input/output for ELAN. In J. Meseguer, editor, Proceedings First
International Workshop on Rewriting Logic and its Applications, WRLA’96,
Asilomar, California, September 3–6, 1996, volume 4 of Electronic Notes in
Theoretical Computer Science, pages 51–64. Elsevier, 1996. http://www.
elsevier.nl/locate/entcs/volume4.html.

A Appendix

The diagram in Figure A.1 illustrates the graph of module importation in our
implementation that closely follows the structure of the paper. The complete
code is available at http://osl.cs.uiuc.edu/~ksen/api/. Here we only
show the module that contains the rewrite rules for the operational semantics

19

365

http://www.elsevier.nl/locate/entcs/volume36.html�
http://www.elsevier.nl/locate/entcs/volume36.html�
http://www.elsevier.nl/locate/entcs/volume4.html�
http://www.elsevier.nl/locate/entcs/volume4.html�
http://www.elsevier.nl/locate/entcs/volume71.html�
http://www.elsevier.nl/locate/entcs/volume4.html�
http://www.elsevier.nl/locate/entcs/volume4.html�
http://osl.cs.uiuc.edu/~ksen/api/�
goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

NAT QID
³³³³³³

CHAN

CINNI STRING
³³³³³

CHANSET

TRACE
PPPPPP

APISYNTAX

TRACE-PREORDER
Q

Q
Q

Q
Q

Q
QQ

APISEMANTICS META-LEVEL

APITRACE TERMSET
©©©©

APITRACESET

Fig. A.1. The graph of module importation in the implementation.

of asynchronous π-calculus (Table 2). The function genQid used in the condi-
tion of the last Res rule generates an identifier that is fresh, i.e. an identifier
not used to construct channel names in the set passed as the argument to the
function.

mod APISEMANTICS is
inc APISYNTAX .
inc CHANSET .
inc TRACE .
sorts EnvTrm TraceTrm .
subsort EnvTrm < TraceTrm .

op [_]_ : Chanset Trm -> EnvTrm [frozen] .
op {_}_ : Action TraceTrm -> TraceTrm [frozen] .
op notinfn : Qid Trm -> Prop .

vars N : Nat . vars X Y Z : Qid .
vars CX CY : Chan . var CS CS1 CS2 : Chanset .
vars A : Action . vars P1 Q1 P Q : Trm .
var SUM : SumTrm . var IO : ActionType .

eq notinfn(X,P) = not X{0} in freenames(P) .

rl [Inp] : [CY CS] (CX(X) . P) =>
{f(i,CX,CY)} ([CY CS] ([X := CY] P)) .

rl [Inp] : [CY CS] ((CX(X) . P) + SUM) =>
{f(i,CX,CY)} ([CY CS] ([X := CY] P)) .

rl [Tau] : [CS] (tau . P) => { tauAct } ([CS] P) .

rl [Tau] : [CS] ((tau . P) + SUM) => { tauAct } ([CS] P) .

20

366

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

crl [BInp] : [CS] P => {b(i,CX,’u)} [’u{0} [shiftup ’u] CS] P1
if (not flag in CS) /\

CS1 := flag ’u{0} [shiftup ’u] CS /\
[CS1] [shiftup ’u] P => {f(i,CX,’u{0})} [CS1] P1 .

rl [Out] : [CS] CX < CY > => { f(o,CX,CY) } ([CS] nil) .

crl [Par] : [CS] (P | Q) => {f(IO,CX,CY)} ([CS] (P1 | Q))
if [CS] P => {f(IO,CX,CY)} ([CS] P1) .

crl [Par] : [CS] (P | Q) =>
{b(IO,CX,Y)} [Y{0} ([shiftup Y] CS)] (P1 | [shiftup Y] Q)

if [CS] P => {b(IO,CX,Y)} ([CS1] P1) .

crl [Com] : [CS] (P | Q) => {tauAct} ([CS] (P1 | Q1))
if [CS] P => {f(o,CX,CY)} ([CS] P1) /\

[CY CS] Q => {f(i,CX,CY)} ([CY CS] Q1) .

crl [Close] : [CS] (P | Q) => {tauAct} [CS] new [Y] (P1 | Q1)
if [CS] P => {b(o,CX,Y)} [CS1] P1 /\

[Y{0} [shiftup Y] CS] [shiftup Y] Q =>
{f(i,CX,Y{0})} [CS2] Q1 .

crl [Res] : [CS] (new [X] P) =>
{[shiftdown X] f(IO,CX,CY)} [CS] (new [X] P1)

if CS1 := [shiftup X] CS /\
[CS1] P => {f(IO,CX,CY)} [CS1] P1 /\
(not X{0} in (CX CY)) .

crl [Res] : [CS] (new [X] P) => {tauAct} [CS] (new [X] P1)
if [CS] P => {tauAct} [CS] P1 .

crl [Res] : [CS] (new [X] P) =>
{[shiftdown X] b(o,CX,Z)} [Z{0} CS] new[X]([ Y := Z{0} ] P1)
if Z := genQid(X{0} CS freenames(P)) /\

[[shiftup X] CS] P => {b(o,CX,Y)} [CS1] P1 /\
X{0} =/= CX .

crl [Open] : [CS] (new[X] P) => {[shiftdown X] b(o,CY,X)} [X{0} CS1] P1
if CS1 := [shiftup X] CS /\

[CS1] P => {f(o,CY,X{0})} [CS1] P1 /\ X{0} =/= CY .

crl [If] : [CS1] (if CX = CX then P else Q fi) => {A} [CS2] P1
if [CS1] P => {A} [CS2] P1 .

crl [Else] : [CS1] (if CX = CY then P else Q fi) => {A} [CS2] Q1
if CX =/= CY /\ [CS1] Q => {A} [CS2] Q1 .

crl [Rep] : [CS1] (! P) => {A} [CS2] P1
if [CS1] (P | (! P)) => {A} [CS2] P1 .

endm

21

367

goodelle
Rectangle



Generating Optimal Linear Temporal Logic
Monitors by Coinduction

Koushik Sen, Grigore Roşu, Gul Agha
Department of Computer Science,

University of Illinois at Urbana-Champaign.
{ksen,grosu,agha}@cs.uiuc.edu

Abstract. A coinduction-based technique to generate an optimal mon-
itor from a Linear Temporal Logic (LTL) formula is presented in this
paper. Such a monitor receives a sequence of states (one at a time) from
a running process, checks them against a requirements specification ex-
pressed as an LTL formula, and determines whether the formula has
been violated or validated. It can also say whether the LTL formula
is not monitorable any longer, i.e., that the formula can in the future
neither be violated nor be validated. A Web interface for the presented
algorithm adapted to extended regular expressions is available.

1 Introduction
Linear Temporal Logic (LTL) [19] is a widely used logic for specifying properties
of reactive and concurrent systems. The models of LTL are infinite execution
traces, reflecting the behavior of such systems as ideally always being ready
to respond to requests, operating system being typical example. LTL has been
mainly used to specify properties of finite-state reactive and concurrent systems,
so that the full correctness of the system can be verified automatically, using
model checking or theorem proving. Model checking of programs has received an
increased attention from the formal methods community within the last couple
of years, and several tools have emerged that directly model check source code
written in Java or C [7, 26, 27]. Unfortunately, such formal verification techniques
are not scalable to real-sized systems without exerting a substantial effort to
abstract the system more or less manually to a model that can be analyzed.

Testing scales well, and in practice it is by far the technique most used to
validate software systems. Our approach follows research which merges testing
and temporal logic specification in order to achieve some of the benefits of both
approaches; we avoid some of the pitfalls of ad hoc testing as well as the com-
plexity of full-blown theorem proving and model checking. While this merger
provides a scalable technique, it does result in a loss of coverage: the technique
may be used to examine a single execution trace at a time, and may not be used
to prove a system correct. Our work is based on the observation that software
engineers are willing to trade coverage for scalability, so our goals is relatively
conservative: we provide tools that use formal methods in a lightweight manner,
use traditional programming languages or underlying executional engines (such
as JVMs), are completely automatic, implement very efficient algorithms, and
can help find many errors in programs.

Recent trends suggest that the software analysis community is interested
in scalable techniques for software verification. Earlier work by Havelund and

368

goodelle
Text Box
Appendix AF: 



Roşu [10] proposed a method based on merging temporal logics and testing.
The Temporal Rover tool (TR) and its successor DB Rover by Drusinsky [2]
have been commercialized. These tools instrument the Java code so that it can
check the satisfaction of temporal logic properties at runtime. The MaC tool by
Lee et al. [14, 17] has been developed to monitor safety properties in interval
past time temporal logic. In works by O’Malley et al. and Richardson et al. [20,
21], various algorithms to generate testing automata from temporal logic formu-
lae, are described. Java PathExplorer [8] is a runtime verification environment
currently under development at NASA Ames. It can analyze a single execution
trace. The Java MultiPathExplorer tool [25] proposes a technique to monitor all
equivalent traces that can be extracted from a given execution, thus increasing
the coverage of monitoring. Giannakopoulou et al. and Havelund et al. in [4, 9]
propose efficient algorithms for monitoring future time temporal logic formulae,
while Havelund et al. in [11] gives a technique to synthesize efficient monitors
from past time temporal formulae. Roşu et al. in [23] shows use of rewriting
to perform runtime monitoring of extended regular expressions. An approach
similar to this paper is used to generate optimal monitors for extended regular
expressions in work by Sen et al. [24].

In this paper, we present a new technique based on the modern coalgebraic
method to generate optimal monitors for LTL formulae. In fact, such monitors
are the minimal deterministic finite automata required to do the monitoring. Our
current work makes two major contributions. First, we give a coalgebraic formal-
ization of LTL and show that coinduction is a viable and reasonably practical
method to prove monitoring-equivalences of LTL formulae. Second, building on
the coinductive technique, we present an algorithm to directly generate mini-
mal deterministic automata from an LTL formula. Such an automaton may be
used to monitor good or bad prefixes of an execution trace (this notion will be
rigorously formalized in subsequent sections).

We describe the monitoring as synchronous and deterministic to obtain min-
imal good or bad prefixes. However, if the cost of such monitoring is deemed too
high in some application, and one is willing to tolerate some delay in discovering
violations, the same technique could be applied on the traces intermittently –
in which case one would not get minimal good or bad prefixes but could either
bound the delay in discovering violations, or guarantee eventual discovery. We
also give lower and upper bounds on the size of such automata.

The closely related work by Geilen [3] builds monitors to detect a subclass
of bad and good prefixes, which are called informative bad and good prefixes.
Using a tableau-based technique, [3] can generate monitors of exponential size
for informative prefixes. In our approach, we generate minimal monitors for
detecting all kinds of bad and good prefixes. This generality comes at a price:
the size of our monitors can be doubly exponential in the worst case, and this
complexity cannot be avoided.

One standard way to generate an optimal monitor is to use the Büchi au-
tomata construction [16] for LTL to generate a non-deterministic finite automa-
ton, determinize it and then to minimize it. In this method, one checks only

369



the syntactic equivalence of LTL formulae. In the coalgebraic technique that we
propose as an alternative method, we make use of the monitoring equivalence
(defined in subsequent sections) of LTL formulae. We thus obtain the minimal
automaton in a single go and minimize the usage of computational space. More-
over, our technique is completely based on deductive methods and can be applied
to any logic or algebra for which there is a suitable behavioral specification. A
related application can be found in [24] in which the minimal deterministic finite
automata for extended regular expressions is generated.

2 Linear Temporal Logic and Derivatives
In order to make the paper self-contained, we briefly describe classical Linear
Temporal Logic over infinite traces. We use the classical definition of Linear
Temporal Logic and assume a finite set AP of atomic propositions. The syntax
of LTL is as follows:

φ ::= true | false | a ∈ AP | ¬φ | φ ∧ φ | φ ∨ φ | φ → φ | φ ≡ φ | φ⊕ φ propositional
φ U φ | dφ | ¤φ | ♦φ temporal

The semantics of LTL is given for infinite traces. An infinite trace is an infinite
sequence of program states, each state denoting the set of atomic propositions
that hold at that state. The atomic propositions that hold in a given state s is
given by AP (s). We denote an infinite trace by ρ; ρ(i) denotes the i-th state in
the trace and ρi denotes the suffix of the trace ρ starting from the i-th state.
The notion that an infinite trace ρ satisfies a formula φ is denoted by ρ |= φ,
and is defined inductively as follows:

ρ |= true for all ρ ρ 2 false for all ρ
ρ |= a iff a ∈ AP (ρ(1)) ρ |= ¬φ iff ρ 2 φ
ρ |= φ1 ∨ φ2 iff ρ |= φ1 or ρ |= φ2 ρ |= φ1 ∧ φ2 iff ρ |= φ1 and ρ |= φ2

ρ |= φ1 ⊕ φ2 iff ρ |= φ1 exclusive or ρ |= φ2 ρ |= φ1 → φ2 iff ρ |= φ1 implies ρ |= φ2

ρ |= φ1 ≡ φ2 iff ρ |= φ1 iff ρ |= φ2 ρ |= dφ iff ρ2 |= φ
ρ |= ¤φ iff ∀ j ≥ 1 ρj |= φ ρ |= ♦φ iff ∃ j ≥ 1 such that ρj |= φ
ρ |= φ1 U φ2 iff there exists a j ≥ 1 such that ρj |= φ2 and ∀ 1 ≤ i < j : ρi |= φ1

The set of all infinite traces that satisfy the formula φ is called the language
expressed by the formula φ and is denoted by Lφ. Thus, ρ ∈ Lφ if and only if
ρ |= φ. The language Lφ is also called the property expressed by the formula φ.
We informally say that an infinite trace ρ satisfies a property φ iff ρ |= φ.

A property in LTL can be seen as the intersection of a safety property and
a liveness property [1]. A property is a liveness property if for every finite trace
α there exists an infinite trace ρ such that α.ρ satisfies the property. A property
is a safety property if for every infinite trace ρ not satisfying the property, there
exists a finite prefix α such that for all infinite traces ρ′, α.ρ′ does not satisfy
the property. The prefix α is called a bad prefix [3]. Thus, we say that a finite
prefix α is a bad prefix for a property if for all infinite traces ρ, α.ρ does not
satisfy the property. On the other hand, a good prefix for a property is a prefix
α such that for all infinite traces ρ, α.ρ satisfies the property. A bad or a good
prefix can also be minimal. We say that a bad (or a good prefix) α is minimal if
α is a bad (or good) prefix and no finite prefix α′ of α is bad (or good) prefix.

370



We use a novel coinduction-based technique to generate an optimal monitor
that can detect good and bad prefixes incrementally for a given trace. The es-
sential idea is to process, one by one, the states of a trace as these states are
generated; at each step the process checks if the finite trace that we have already
generated is a minimal good prefix or a minimal bad prefix. At any point, if we
find that the finite trace is a minimal bad prefix, we say that the property is
violated. If the finite trace is a minimal good prefix then we stop monitoring for
that particular trace and say that the property holds for that trace.

At any step, we will also detect if it is not possible to monitor a formula any
longer. We may stop monitoring at that point and say the trace is no longer
monitorable and save the monitoring overhead. Otherwise, we continue by pro-
cessing one more state and appending that state to the finite trace. We will see
in the subsequent sections that these monitors can report a message as soon as
a good or a bad prefix is encountered; therefore, the monitors are synchronous.
Two more variants of the optimal monitor are also proposed; these variants can
be used to efficiently monitor either bad prefixes or good prefixes (rather than
both). Except in degenerate cases, such monitors have smaller sizes than the
monitors that can detect both bad and good prefixes.

In order to generate the minimal monitor for an LTL formula, we will use
several notions of equivalence for LTL:
Definition 1 (≡). We say that two LTL formulae φ1 and φ2 are equivalent i.e.
φ1 ≡ φ2 if and only if Lφ1 = Lφ2 .
Definition 2 (≡B). For a finite trace α we say that α 2 φ iff α is bad prefix
for φ i.e. for every infinite trace ρ it is the case that α.ρ 6∈ Lφ. Given two LTL
formulae φ1 and φ2, φ1 and φ2 are said to be bad prefix equivalent i.e. φ1 ≡B φ2

if and only if for every finite trace α, α 2 φ1 iff α 2 φ2.
Definition 3 (≡G). For a finite trace α we say that α |= φ iff α is good prefix
for φ i.e. for every infinite trace ρ it is that case that α.ρ ∈ Lφ. Given two
LTL formulae φ1 and φ2, φ1 and φ2 are said to be good prefix equivalent i.e.
φ1 ≡G φ2 if and only if for every finite trace α, α |= φ1 iff α |= φ2.
Definition 4 (≡GB). We say that φ1 and φ2 are good-bad prefix equivalent
i.e. φ1 ≡GB φ2 if and only if φ1 ≡B φ2 and φ1 ≡G φ2.
Thus, for our purpose, the two non equivalent formulae ¤♦φ and ♦¤φ are good-
bad prefix equivalent since they do not have any good or bad prefixes. Such
formula are not monitorable. Note that the equivalence relation ≡ is included
in the equivalence relation ≡GB , which is in turn included in both ≡G and ≡B .
We will use the equivalences ≡G ,≡B , and ≡GB to generate optimal monitors
that detect good prefixes only, bad prefixes only and both bad and good prefixes
respectively. We call these three equivalences monitoring equivalences.

2.1 Derivatives
We describe the notion of derivatives for LTL [9, 10] based on the idea of state
consumption: an LTL formula φ and a state s generate another LTL formula,
denoted by φ{s}, with the property that for any finite trace α, sα 2 φ if and
only if α 2 φ{s} and sα |= φ if and only if α |= φ{s}. We define the operator
{ } recursively through the following equations:

371



false {s} = false true {s} = true
p{s} = if p ∈ AP (s) then true else false (¬φ){s} = ¬(φ{s})
(φ1 ∨ φ2){s} = φ1{s} ∨ φ2{s} (φ1 ∧ φ2){s} = φ1{s} ∧ φ2{s}
(φ1 → φ2){s} = φ1{s} → φ2{s} (φ1 ⊕ φ2){s} = φ1{s} ⊕ φ2{s}
(♦φ){s} = φ{s} ∨ ♦φ (¤φ){s} = φ{s} ∧¤φ
(φ1 U φ2){s} = φ2{s} ∨ (φ1{s} ∧ φ1 U φ2)

We use the decision procedure for propositional calculus by Hsiang [13] to get a
canonical form for a propositional formula. The procedure reduces a tautological
formula to the constant true, a false formula to the constant false, and all other
formulae to canonical forms modulo associativity and commutativity. An unusual
aspect of this procedure is that the canonical forms consist of exclusive or (⊕)
of conjunctions. The procedure is given below using equations that are shown to
be Church-Rosser and terminating modulo associativity and commutativity.

true ∧ φ = φ false ∧ φ = false
φ ∧ φ = φ false ⊕ φ = φ
φ⊕ φ = false ¬φ = true ⊕ φ
φ1 ∧ (φ2 ⊕ φ3) = (φ1 ∧ φ2)⊕ (φ1 ∧ φ3) φ1 ∨ φ2 = (φ1 ∧ φ2)⊕ φ1 ⊕ φ2

φ1 → φ2 = true⊕ φ1 ⊕ (φ1 ∧ φ2) φ1 ≡ φ2 = true⊕ φ1 ⊕ φ2

The exclusive or operator ⊕ and the ∧ operator are defined as commutative
and associative. The equations Derivative and Propositional Calculus
when regarded as rewriting rules are terminating and Church-Rosser (modulo
associativity and commutativity of ∧ and ⊕), so they can be used as a functional
procedure to calculate derivatives.

In the rest of the paper, at several places we need to check if an LTL formula
is equivalent to true or false. This can be done using the tableau-based proof
method for LTL; the STeP tool at Stanford [18] has such an implementation.

The following result gives a way to determine if a prefix is good or bad for a
formula through derivations.
Theorem 1. a) For any LTL formula φ and for any finite trace α = s1s2 . . . sn,
α is a bad prefix for φ if and only if φ{s1}{s2} . . . {sn} ≡ false. Similarly, α is
a good prefix for φ if and only if φ{s1}{s2} . . . {sn} ≡ true. b) The formula
φ{s1}{s2} . . . {sn} needs O(2size(φ)) space to be stored.
Proof. b): Due to the Boolean ring equations above regarded as simplification
rules, any LTL formula is kept in a canonical form, which is an exclusive disjunc-
tion of conjunctions, where conjuncts have temporal operators at top. Moreover,
after a series of applications of derivatives s1, s2, ..., sn, the conjuncts in the nor-
mal form φ{s1}{s2}...{sn} are subterms of the initial formula φ, each having a
temporal operator at its top. Since there are at most size(φ) such subformulae, it
follows that there are at most 2size(φ) possibilities to combine them in a conjunc-
tion. Therefore, one needs space O(2size(φ)) to store any exclusive disjunction of
such conjunctions. This reasoning only applies on “idealistic” rewriting engines,
which carefully optimize space needs during rewriting.ut
In order to effectively generate optimal monitors, it is crucial to detect efficiently
and as early as possible when two derivatives are equivalent. In the rest of
the paper we use coinductive techniques to solve this problem. We define the

372



operators G : LTL → {true, false} and B : LTL → {true, false} that return
true if an LTL formula is equivalent (≡) to true or false respectively, and return
false otherwise. We define an operator GB : LTL → {0, 1, ?} that checks if an
LTL formula φ is equivalent to false or true and returns 0 or 1, respectively, and
returns ? if the formula is not equivalent to either true or false.

3 Hidden Logic and Coinduction

We use circular coinduction, defined rigorously in the context of hidden logics
and implemented in the BOBJ system [22, 5, 6], to test whether two LTL formu-
lae are good-bad prefix equivalent. A particularly appealing aspect of circular
coinduction in the framework of LTL formula is that it not only shows that two
LTL formulae are good-bad prefix equivalent, but also generates a larger set of
good-bad prefix equivalent LTL formulae which will all be used in order to gen-
erate the target monitor. Readers familiar with circular coinduction may assume
the result in Theorem 4 and read Section 4 concurrently.

Hidden logic is a natural extension of algebraic specification which benefits of
a series of generalizations in order to capture various natural notions of behav-
ioral equivalence found in the literature. It distinguishes visible sorts for data
from hidden sorts for states, with states behaviorally equivalent if and only if
they are indistinguishable under a formally given set of experiments. In order to
keep the presentation simple and self-contained, we define a simplified version of
hidden logic together with its associated circular coinduction proof rule which is
nevertheless general enough to support the definition of LTL formulae and prove
that they are behaviorally good and/or bad prefix equivalent.

3.1 Algebraic Preliminaries

We assume that the reader is familiar with basic equational logic and algebra but
recall a few notions in order to just make our notational conventions precise. An
S-sorted signature Σ is a set of sorts/types S together with operational symbols
on those, and a Σ-algebra A is a collection of sets {As | s ∈ S} and a collection
of functions appropriately defined on those sets, one for each operational symbol.
Given an S-sorted signature Σ and an S-indexed set of variables Z, let TΣ(Z)
denote the Σ-term algebra over variables in Z. If V ⊆ S then Σ¹V is a V -sorted
signature consisting of all those operations in Σ with sorts entirely in V . We
may let σ(X) denote the term σ(x1, ..., xn) when the number of arguments of σ
and their order and sorts are not important. If only one argument is important,
then to simplify writing we place it at the beginning; for example, σ(t,X) is a
term having σ as root with no important variables as arguments except one, in
this case t. If t is a Σ-term of sort s′ over a special variable ∗ of sort s and A is
a Σ-algebra, then At : As → As′ is the usual interpretation of t in A.

3.2 Behavioral Equivalence, Satisfaction and Specification

Given disjoint sets V, H called visible and hidden sorts, a hidden (V, H)-signature,
say Σ, is a many sorted (V ∪H)-signature. A hidden subsignature of Σ is a hidden
(V, H)-signature Γ with Γ ⊆ Σ and Γ¹V = Σ¹V . The data signature is Σ¹V . An

373



operation of visible result not in Σ¹V is called an attribute, and a hidden sorted
operation is called a method.

Unless otherwise stated, the rest of this section assumes fixed a hidden sig-
nature Σ with a fixed subsignature Γ . Informally, Σ-algebras are universes of
possible states of a system, i.e., “black boxes,” for which one is only concerned
with behavior under experiments with operations in Γ , where an experiment is
an observation of a system attribute after perturbation.

A Γ -context for sort s ∈ V ∪H is a term in TΓ ({∗ : s}) with one occurrence of
∗. A Γ -context of visible result sort is called a Γ -experiment. If c is a context for
sort h and t ∈ TΣ,h then c[t] denotes the term obtained from c by substituting
t for ∗; we may also write c[∗] for the context itself.

Given a hidden Σ-algebra A with a hidden subsignature Γ , for sorts s ∈
(V ∪H), we define Γ -behavioral equivalence of a, a′ ∈ As by a ≡Γ

Σ a′ iff Ac(a) =
Ac(a′) for all Γ -experiments c; we may write ≡ instead of ≡Γ

Σ when Σ and Γ
can be inferred from context. We require that all operations in Σ are compatible
with ≡Γ

Σ . Note that behavioral equivalence is the identity on visible sorts, since
the trivial contexts ∗ : v are experiments for all v ∈ V . A major result in
hidden logics, underlying the foundations of coinduction, is that Γ -behavioral
equivalence is the largest equivalence which is identity on visible sorts and which
is compatible with the operations in Γ .

Behavioral satisfaction of equations can now be naturally defined in terms
of behavioral equivalence. A hidden Σ-algebra A Γ -behaviorally satisfies a Σ-
equation (∀X) t = t′, say e, iff for each θ : X → A, θ(t) ≡Γ

Σ θ(t′); in this case
we write A |≡Γ

Σ e. If E is a set of Σ-equations we then write A |≡Γ
Σ E when A

Γ -behaviorally satisfies each Σ-equation in E. We may omit Σ and/or Γ from
|≡Γ

Σ when they are clear.
A behavioral Σ-specification is a triple (Σ, Γ,E) where Σ is a hidden signa-

ture, Γ is a hidden subsignature of Σ, and E is a set of Σ-sentences equations.
Non-data Γ -operations (i.e., in Γ − Σ¹V ) are called behavioral. A Σ-algebra A
behaviorally satisfies a behavioral specification B = (Σ, Γ,E) iff A |≡Γ

Σ E, in
which case we write A |≡ B; also B |≡ e iff A |≡ B implies A |≡Γ

Σ e.
LTL can be very naturally defined as a behavioral specification. The enor-

mous benefit of doing so is that the behavioral inference, including most impor-
tantly coinduction, provide a decision procedure for good-bad prefix equivalence.

Example 1. A behavioral specification of LTL defines a set of two visible sorts
V = {Triple, State}, one hidden sort H = {Ltl}, one behavioral attribute
GB : Ltl → Triple (defined as an operator in Subsection 2.1) and one behavioral
method, the derivative, { } : Ltl × State → Ltl , together with all the other
operations in Section 2 defining LTL, including the states in S which are defined
as visible constants of sort State, and all the equations in Subsection 2.1. The
sort Triple consists of three constants 0, 1, and ?. We call this the LTL behavioral
specification and we use BLTL/GB to denote it.

Since the only behavioral operators are the test for equivalence to true and
false and the derivative, it follows that the experiments have exactly the form
GB(∗{s1}{s2}...{sn}), for any states s1, s2, ..., sn. In other words, an experi-

374



ment consists of a series of derivations followed by an application of the operator
GB , and therefore two LTL formulae are behavioral equivalent if and only if they
cannot be distinguished by such experiments. Such behavioral equivalence is ex-
actly same as good-bad prefix equivalence. In the specification of BLTL/GB if
we replace the attribute GB by B (or G), as defined in Subsection 2.1, the be-
havioral equivalence becomes same as bad prefix (or good prefix) equivalence.
We denote such specifications by BLTL/B (or BLTL/G). Notice that the above
reasoning applies within any algebra satisfying the presented behavioral specifi-
cation. The one we are interested in is, of course, the free one, whose set carriers
contain exactly the LTL formulae as presented in Section 2, and the operations
have the obvious interpretations. We informally call it the LTL algebra.
Letting ≡b denote the behavioral equivalence relation generated on the LTL
algebra, then Theorem 1 immediately yields the following important result.
Theorem 2. If φ1 and φ2 are two LTL formulae then φ1 ≡b φ2 in BLTL/GB

iff φ1 and φ2 are good-bad prefix equivalent. Similarly, φ1 ≡b φ2 in BLTL/B (or
BLTL/G) if and only if φ1 and φ2 are bad prefix (or good prefix) equivalent.
This theorem allows us to prove good-bad prefix equivalence (or bad prefix or
good prefix equivalence) of LTL formulae by making use of behavioral inference
in the LTL behavioral specification BLTL/GB (or BLTL/B or BLTL/G) including
(especially) circular coinduction. The next section shows how circular coinduc-
tion works and how it can be used to show LTL formulae good-bad prefix equiv-
alent (or bad prefix equivalent or good prefix equivalent). From now onwards we
will refer BLTL/GB simply by B.

3.3 Circular Coinduction as an Inference Rule

In the simplified version of hidden logics defined above, the usual equational in-
ference rules, i.e., reflexivity, symmetry, transitivity, substitution and congruence
[22] are all sound for behavioral satisfaction. However, equational reasoning can
derive only a very limited amount of interesting behavioral equalities. For that
reason, circular coinduction has been developed as a very powerful automated
technique to show behavioral equivalence. We let ± denote the relation being
defined by the equational rules plus circular coinduction, for deduction from a
specification to an equation.

Before formally defining circular coinduction, we give the reader some intu-
itions by duality to structural induction. The reader who is only interested in
using the presented procedure or who is not familiar with structural induction,
can skip this paragraph. Inductive proofs show equality of terms t(x), t′(x) over
a given variable x (seen as a constant) by showing t(σ(x)) equals t′(σ(x)) for
all σ in a basis, while circular coinduction shows terms t, t′ behaviorally equiv-
alent by showing equivalence of δ(t) and δ(t′) for all behavioral operations δ.
Coinduction applies behavioral operations at the top, while structural induction
applies generator/constructor operations at the bottom. Both induction and cir-
cular coinduction assume some “frozen” instances of t, t′ equal when checking
the inductive/coinductive step: for induction, the terms are frozen at the bottom
by replacing the induction variable by a constant, so that no other terms can
be placed beneath the induction variable, while for coinduction, the terms are

375



frozen at the top, so that they cannot be used as subterms of other terms (with
some important but subtle exceptions which are not needed here; see [6]).

Freezing terms at the top is elegantly handled by a simple trick. Suppose
every specification has a special visible sort b, and for each (hidden or visible)
sort s in the specification, a special operation [ ] : s → b. No equations are
assumed for these operations and no user defined sentence can refer to them;
they are there for technical reasons. Thus, with just the equational inference
rules, for any behavioral specification B and any equation (∀X) t = t′, it is
necessarily the case that B ± (∀X) t = t′ iff B ± (∀X) [t] = [t′]. The rule
below preserves this property. Let the sort of t, t′ be hidden; then
Circular Coinduction:
B ∪ {(∀X) [t] = [t′]} ± (∀X, W ) [δ(t, W )] = [δ(t′, W )], for all appropriate δ ∈ Γ

B ± (∀X) t = t′

We call the equation (∀X) [t] = [t′] added to B a circularity; it could just as
well have been called a coinduction hypothesis or a co-hypothesis, but we find the
first name more intuitive because from a coalgebraic point of view, coinduction
is all about finding circularities.
Theorem 3. The usual equational inference rules together with Circular Coin-
duction are sound. That means that if B ± (∀X) t = t′ and sort(t, t′) 6= b, or if
B ± (∀X) [t] = [t′], then B |≡ (∀X) t = t′.
Circular coinductive rewriting[5, 6] iteratively rewrites proof tasks to their normal
forms followed by an one step coinduction if needed. Since the rules in BLTL/GB ,
BLTL/B , and BLTL/G are ground Church-Rosser and terminating, this provides
us with a decision procedure for good-bad prefix equivalence, bad prefix equiv-
alence, and good prefix equivalence of LTL formulae respectively.
Theorem 4. If φ1 and φ2 are two LTL formulae, then φ1 ≡GB φ2 if and only
if BLTL/GB ± φ1 = φ2. Similarly, if φ1 and φ2 are two LTL formulae, then
φ1 ≡B φ2 (or φ1 ≡G φ2) if and only if BLTL/B ± φ1 = φ2 ( or BLTL/G ±
φ1 = φ2). Moreover, circular coinductive rewriting provides us with a decision
procedure for good-bad prefix equivalence, bad prefix equivalence, and good prefix
equivalence of LTL formulae.
Proof. By soundness of behavioral reasoning (Theorem 3), one implication fol-
lows immediately via Theorem 2. For the other implication, assume that φ1 and
φ2 are good-bad prefix equivalent (or good prefix or bad prefix equivalent, respec-
tively) and that the equality φ1 = φ2 is not derivable from BLTL/GB (or BLTL/G

or BLTL/B , respectively). By Theorem 1, the number of formulae into which
any LTL formula can be derived via a sequence of events is finite, which means
that the total number of equalities φ′1 = φ′2 that can be derived via the circular
coinduction rule is also finite. That implies that the only reason for which the
equality φ1 = φ2 cannot be proved by circular coinduction is because it is in fact
disproved by some experiment, which implies the existence of some events a1,
..., an such that GB(φ1{a1} · · · {an}) 6= GB(φ2{a1} · · · {an}) (or the equivalent
ones for B or G). However, this is obviously a contradiction because if φ1 and
φ2 are good-bad (or good or bad) prefix equivalent that so are φ1{a1} · · · {an}
and φ2{a1} · · · {an}, and GB (or G or B) preserve this equivalence.

376



4 Generating Optimal Monitors by Coinduction

We now show how one can use the set of circularities generated by applying
the circular coinduction rules in order to generate, from any LTL formula, an
optimal monitor that can detect both good and bad prefixes. The optimal mon-
itor thus generated will be a minimal deterministic finite automaton containing
two final states true and false. We call such a monitor GB-automaton. We con-
clude the section by modifying the algorithm to generate smaller monitors that
can detect either bad or good prefixes. We call such monitors B-automaton and
G-automaton respectively. The main idea behind the algorithm is to associate
states in GB-automaton to LTL formulae obtained by deriving the initial LTL
formula; when a new LTL formula is generated, it is tested for good-bad pre-
fix equivalence with all the other already generated LTL formulae by using the
coinductive procedure presented in the previous section. A crucial observation
which significantly reduces the complexity of our procedure is that once a good-
bad prefix equivalence is proved by circular coinductive rewriting, the entire set
of circularities accumulated represent good-bad prefix equivalent LTL formu-
lae. These can be used to quickly infer the other good-bad prefix equivalences,
without having to generate the same circularities over and over again.

Since BOBJ does not (yet) provide any mechanism to return the set of circu-
larities accumulated after proving a given behavioral equivalence, we were unable
to use BOBJ to implement our optimal monitor generator. Instead, we have im-
plemented our own version of coinductive rewriting engine for LTL formulae,
which is described below.

We are given an initial LTL formula φ0 over atomic propositions P . Then
σ = 2P is the set of possible states that can appear in an execution trace; note
that σ will be the set of alphabets in the GB-automaton. Now, from φ0 we want
to generate a GB-automaton D = (S, σ, δ, s0, {true, false}), where S is the set of
states of the GB-automaton, δ : S × σ → S is the transition function, s0 is the
initial state of the GB-automaton, and {true, false} ⊆ S is the set of final states
of the DFA. The coinductive rewriting engine explicitly accumulates the proven
circularities in a set. The set is initialized to an empty set at the beginning of the
algorithm. It is updated with the accumulated circularities whenever we prove
good-bad prefix equivalence of two LTL formulae in the algorithm. The algorithm
maintains the set of states S in the form of non good-bad prefix equivalent LTL
formulae. At the beginning of the algorithm S is initialized with two elements,
the constant formulae true and false. Then, we check if the initial LTL formula
φ0 is equivalent to true or false. If φ0 is equivalent to true or false, we set s0 to
true or false respectively and return D as the GB-automaton. Otherwise, we set
s0 to φ0, add φ0 to the set S, and invoke the procedure dfs (see Fig 1) on φ0.

The procedure dfs generates the derivatives of a given formula φ for all
x ∈ σ one by one. A derivative φx = φ{x} is added to the set S, if the set does
not contain any LTL formula good-bad prefix equivalent to the derivative φx.
We then extend the transition function by setting δ(φ, x) = φx and recursively
invoke dfs on φx. On the other hand, if an LTL formula φ′ equivalent to the
derivative already exists in the set S, we extend the transition function by setting

377



δ(φ, x) = φ′. To check if an LTL formula, good-bad prefix equivalent to the
derivative φx, already exists in the set S, we sequentially go through all the
elements of the set S and try to prove its good-bad prefix equivalence with φx. In
testing the equivalence we first add the set of circularities to the initial BLTL/GB .
Then we invoke the coinductive procedure. If for some LTL formula φ′ ∈ S, we
are able to prove that φ′ ≡GB φx i.e BLTL/GB∪Eqall∪Eqnew ± φ′ = φx , then we
add the new equivalences Eqnew, created by the coinductive procedure, to the set
of circularities. Thus we reuse the already proven good-bad prefix equivalences
in future proofs.

S ← {true, false}
dfs(φ)
begin

foreach x ∈ σ do
φx ← φ{x};
if ∃φ′ ∈ S such that BLTL/GB ∪ Eqall ∪ Eqnew ± φ′ = φx then

δ(φ, x) = φ′; Eqall ← Eqall ∪ Eqnew

else S ← S ∪ {φx}; δ(φ, x) = φx; dfs(φx); fi
endfor

end

Fig. 1. LTL to optimal monitor generation algorithm

The GB-automaton generated by the procedure dfs may now contain some states
which are non-final and from which the GB-automaton can never reach a final
state. We remove these redundant states by doing a breadth first search in back-
ward direction from the final states. This can be done in time linear in the size
of the GB-automaton. If the resultant GB-automaton contains the initial state
s0 then we say that the LTL formula is monitorable. That is for the LTL formula
to be monitorable there must be path from the initial state to a final state i.e.
to true or false state. Note that the GB-automaton may now contain non-final
states from which there may be no transition for some x ∈ σ. Also note that no
transitions are possible from the final states.

The correctness of the algorithm is given by the following theorem.

Theorem 5. If D is the GB-automaton generated for a given LTL formula φ
by the above algorithm then
1) L(D) is the language of good and bad prefixes of φ,
2) D is the minimal deterministic finite automaton accepting the good and bad

prefixes of φ.

Proof. 1) Suppose s1s2 . . . sn be a good or bad prefix of φ. Then by Theorem
1, GB(φ{s1}{s2} . . . {sn}) ∈ {0, 1}. Let φi = φ{s1}{s2} . . . {si}; then φi+1 =
φi{ai+1}. To prove that s1s2 . . . sn ∈ L(D), we use induction to show that for
each 1 ≤ i ≤ n, φi ≡GB δ(φ, s1s2 . . . si). For the base case if φ1 ≡GB φ{s1} then
dfs extends the transition function by setting δ(φ, s1) = φ. Therefore, φ1 ≡GB

φ = δ(φ, s1). If φ1 6≡GB φ then dfs extends δ by setting δ(φ, s1) = φ1. So φ1 ≡GB

δ(φ, s1) holds in this case also. For the induction step let us assume that φi ≡GB

φ′ = δ(φ, s1s2 . . . si). If δ(φ′, si+1) = φ′′ then from the dfs procedure we can see

378



that φ′′ ≡GB φ′{si+1}. However, φi{si+1} ≡GB φ′{si+1}, since φi ≡GB φ′ by
induction hypothesis. So φi+1 ≡GB φ′′ = δ(φ′, si+1) = δ(φ, s1s2 . . . si+1). Also
notice GB(φn ≡GB δ(φ, s1s2 . . . sn)) ∈ {0, 1}; this implies that δ(φ, s1s2 . . . sn)
is a final state and hence s1s2 . . . sn ∈ L(D).

Now suppose s1s2 . . . sn ∈ L(D). The proof that s1s2 . . . sn is a good or bad
prefix of φ goes in a similar way by showing that φi ≡GB δ(φ, s1s2 . . . si).
2) If the automaton D is not minimal then there exists at least two states p and
q in D such that p and q are equivalent [12] i.e. ∀w ∈ σ∗ : δ(p, w) ∈ F if and only
if δ(q, w) ∈ F , where F is the set of final states. This means, if φ1 and φ2 are the
LTL formulae associated with p and q respectively in dfs then φ1 ≡GB φ2. But
dfs ensures that no two LTL formulae representing the states of the automaton
are good-bad prefix equivalent. So we get a contradiction. ut

The GB-automaton thus generated can be used as a monitor for the given
LTL formula. If at any point of monitoring we reach the state true in the GB-
automaton we say that the monitored finite trace satisfies the LTL formula.
If we reach the state false we say that the monitored trace violates the LTL
formula. If we get stuck at some state i.e. we cannot take a transition, we say
that the monitored trace is not monitorable. Otherwise we continue monitoring
by consuming another state of the trace.

In the above procedure if we use the specification BLTL/B (or BLTL/G) instead
of BLTL/GB and consider false (or true) as the only final state, we get a B-
automaton (or G-automaton). These automata can detect either bad or good
prefixes. Since the final state is either false or true the procedure to remove
redundant states will result in smaller automata compared to the corresponding
GB-automaton.

We have an implementation of the algorithm adapted to extended regular
expressions which is available for evaluation on the internet via a CGI server
reachable from http://fsl.cs.uiuc.edu/rv/.

5 Time and Space Complexity
Any possible derivative of an LTL formula φ, in its normal form, is an exclusive
or of conjunctions of temporal subformulae (subformulae having temporal oper-
ators at the top) in φ. The number of such temporal subformulae is O(m), where
m is the size of φ. Hence, by counting argument, the number of possible con-
juncts is O(2m). The number of possible exclusive ors of these conjuncts is then
O(22m

). Therefore, the number of possible distinct derivatives of φ is O(22m

).
Since the number states of the GB-automaton accepting good and bad prefixes
of φ cannot be greater than the number of derivatives, 22m

is an upper bound
on the number of possible states of the GB-automaton. Hence, the size of the
GB-automaton is O(22m

). Thus we get the following lemma:

Lemma 1. The size of the minimal GB-automaton accepting the good and bad
prefixes of any LTL formula of size m is O(22m

).

For the lower bound on the size of the automata we consider the language

Lk = {σ#w#σ′$w | w ∈ {0, 1}k and σ, σ′ ∈ {0, 1, #}∗}.

379



This language was previously used in several works [15, 16, 23] to prove lower
bounds. The language can be expressed by the LTL formula [16] of size O(k2):

φk = [(¬$) U ($ U d¤(¬$))]∧♦[#∧ dn+1#∧
n∧

i=1

(( di0∧¤($ → di0))∨( di1∧¤($ → di1)))].

For this LTL formula the following result holds.

Lemma 2. Any GB-automaton accepting good and bad prefixes of φk will have
size Ω(22k

).

Proof: In order to prove the lower bound, the following equivalence relation
on strings over (0 + 1 + #)? is useful. For a string σ ∈ (0 + 1 + #)?, define
S(σ) = {w ∈ (0 + 1)k | ∃λ1, λ2. λ1#w#λ2 = σ}. We will say that σ1 ≡k σ2 iff
S(σ1) = S(σ2). Now observe that the number of equivalence classes of ≡k is 22k

;
this is because for any S ⊆ (0 + 1)k, there is a σ such that S(σ) = S.

We will prove this lower bound by contradiction. Suppose A is a GB-
automaton that has a number of states less than 22k

for the LTL formula φk.
Since the number of equivalence classes of ≡k is 22k

, by pigeon hole princi-
ple, there must be two strings σ1 6≡k σ2 such that the state of A after read-
ing σ1$ is the same as the state after reading σ2$. In other words, A will
reach the same state after reading inputs of the form σ1$w and σ2$w. Now
since σ1 6≡k σ2, it follows that (S(σ1) \ S(σ2) ∪ (S(σ2) \ S(σ1)) 6= ∅. Take
w ∈ (S(σ1) \ S(σ2) ∪ (S(σ2) \ S(σ1)). Then clearly, exactly one out of σ1$w
and σ2$w is in Lk, and so A gives the wrong answer on one of these inputs.
Therefore, A is not a correct GB-automaton. ut

Combining the above two results we get the following theorem.

Theorem 6. The size of the minimal GB-automaton accepting the good and bad
prefixes of any LTL formula of size m is O(22m

) and Ω(22
√

m

).

The space and time complexity of the algorithm is given by the following:

Theorem 7. The LTL to optimal monitor generation algorithm requires 2O(2m)

space and c2O(2m) time for some constant c.

Proof: The number of distinct derivatives of an LTL formula of size m can be
O(22m

). Each such derivative can be encoded in space O(2m). So the number
of circularities that are generated in the algorithm can consume O(22m

2m2m)
space. The space required by the algorithm is thus 2O(2m). ut

The number of iterations that the algorithm makes is less than the number of
distinct derivatives. In each iteration the algorithm generates a set of circularities
that can be at most 2O(2m). So the total time taken by the algorithm is c2O(2m)

for some constant c.

6 Conclusion and Future Work

In this paper we give a behavioral specification for LTL, which has the appealing
property that two LTL formulae are equivalent with respect to monitoring if and

380



only if they are indistinguishable under carefully chosen experiments. To our
knowledge, this is the first coalgebraic formalization of LTL. The major bene-
fit of this formalization is that one can use coinduction to prove LTL formulae
monitoring-equivalent, which can further be used to generate optimal LTL mon-
itors on a single go. As future work we want to apply our coinductive techniques
to generate monitors for other logics.

7 Acknowledgements

The work is supported in part by the Defense Advanced Research Projects Agency (the
DARPA IPTO TASK Program, contract number F30602-00-2-0586, the DARPA IXO
NEST Program, contract number F33615-01-C-1907), the ONR Grant N00014-02-1-
0715, the Motorola Grant MOTOROLA RPS #23 ANT, and the joint NSF/NASA
grant CCR-0234524. We would like to thank Klaus Havelund and Predrag Tosic for
reading a previous version of this paper and giving us valuable feedback and Howard
Barringer for very helpful discussions, valuable feedback on the paper and pointers to
references.

References

1. B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters,
21(4), 1985.

2. D. Drusinsky. The Temporal Rover and the ATG Rover. In SPIN Model Checking
and Software Verification, volume 1885 of LNCS. Springer, 2000.

3. M. Geilen. On the construction of monitors for temporal logic properties. In
ENTCS, volume 55. Elsevier, 2001.

4. D. Giannakopoulou and K. Havelund. Automata-Based Verification of Temporal
Properties on Running Programs. In Proceedings, International Conference on Au-
tomated Software Engineering (ASE’01). IEEE, 2001. Coronado Island, California.

5. J. Goguen, K. Lin, and G. Roşu. Circular coinductive rewriting. In Proceedings,
International Conference on Automated Software Engineering (ASE’00). IEEE,
2000. (Grenoble, France).

6. J. Goguen, K. Lin, and G. Rosu. Conditional circular coinductive rewriting with
case analysis. In Recent Trends in Algebraic Development Techniques (WADT’02),
LNCS, Frauenchiemsee, Germany, September 2002. Springer.

7. K. Havelund and T. Pressburger. Model Checking Java Programs using Java
PathFinder. International Journal on Software Tools for Technology Transfer,
2(4), Apr. 2000.

8. K. Havelund and G. Roşu. Java PathExplorer – A Runtime Verification Tool. In
The 6th International Symposium on Artificial Intelligence, Robotics and Automa-
tion in Space: A New Space Odyssey, Montreal, Canada, June 18 - 21, 2001.

9. K. Havelund and G. Roşu. Monitoring Programs using Rewriting. In Proceedings,
International Conference on Automated Software Engineering (ASE’01). IEEE,
2001. Coronado Island, California.

10. K. Havelund and G. Roşu. Runtime Verification 2002, volume 70(4) of ENTCS.
Elsevier, 2002. Proceedings of a Computer Aided Verification (CAV’02) satellite
workshop.

381



11. K. Havelund and G. Roşu. Synthesizing monitors for safety properties. In Tools
and Algorithms for Construction and Analysis of Systems (TACAS’02), volume
2280 of LNCS. Springer, 2002.

12. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison Wesley, 1979.

13. J. Hsiang. Refutational theorem proving using term rewriting systems. Artificial
Intelligence, 25, 1985.

14. M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a Run-time Assurance Tool
for Java. In Proceedings of Runtime Verification (RV’01), volume 55 of ENTCS.
Elsevier, 2001.

15. O. Kupferman and M. Y. Vardi. Freedom, Weakness, and Determinism: From
linear-time to branching-time. In Proceedings of the IEEE Symposium on Logic in
Computer Science (LICS’98), 1998.

16. O. Kupferman and M. Y. Vardi. Model Checking of Safety Properties. In Proceed-
ings of the Conference on Computer-Aided Verification (CAV’99), 1999.

17. I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime Assurance
Based on Formal Specifications. In Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications, 1999.

18. Z. Manna, N. Bjørner, and A. B. et al. An update on STeP: Deductive-algorithmic
verification of reactive systems. In Tool Support for System Specification, Devel-
opment and Verification, LNCS. Springer, 1998.

19. Z. Manna and A. Pnueli. Temporal verification of reactive systems: Safety.
Springer-Verlag N.Y., Inc., 1995.

20. T. O’Malley, D. Richardson, and L. Dillon. Efficient Specification-Based Oracles
for Critical Systems. In Proceedings of the California Software Symposium, 1996.

21. D. J. Richardson, S. L. Aha, and T. O. O’Malley. Specification-Based Test Oracles
for Reactive Systems. In Proceedings of the Fourteenth International Conference
on Software Engineering (ICSE’92), 1992.

22. G. Roşu. Hidden Logic. PhD thesis, University of California at San Diego, 2000.
23. G. Roşu and M. Viswanathan. Testing extended regular language membership

incrementally by rewriting. In Rewriting Techniques and Applications (RTA’03),
LNCS. Springer, 2003.

24. K. Sen and G. Roşu. Generating Optimal Monitors for Extended Regular Expres-
sions. In Proceedings of Runtime Verification (RV’03) (To appear), volume 89(2)
of ENTCS. Elsevier, 2003.

25. K. Sen, G. Roşu, and G. Agha. Runtime Safety Analysis of Multithreaded Pro-
grams. In ACM SIGSOFT Conference on the Foundations of Software Engineering
/ European Software Engineering Conference (FSE / ESEC ’03), Helsinki, Finland,
2003.

26. S. D. Stoller. Model-Checking Multi-threaded Distributed Java Programs. In SPIN
Model Checking and Software Verification, volume 1885 of LNCS. Springer, 2000.

27. W. Visser, K. Havelund, G. Brat, and S. Park. Model Checking Programs. In
Proceedings, The 15th IEEE International Conference on Automated Software En-
gineering (ASE’00). IEEE CS Press, Sept. 2000.

382



Electronic Notes in Theoretical Computer Science 71 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume71.html 21 pages

An Executable Specification of Asynchronous
Pi-Calculus Semantics and May Testing in

Maude 2.0

Prasanna Thati Koushik Sen

Department of Computer Science
University of Illinois at Urbana-Champaign

{thati,ksen}@cs.uiuc.edu

Narciso Mart́ı-Oliet

Dpto. de Sistemas Informáticos y Programación
Universidad Complutense de Madrid, Spain

narciso@sip.ucm.es

Abstract

We describe an executable specification of the operational semantics of an asyn-
chronous version of the π-calculus in Maude by means of conditional rewrite rules
with rewrites in the conditions. We also present an executable specification of the
may testing equivalence on non-recursive asynchronous π-calculus processes, using
the Maude metalevel. Specifically, we describe our use of the metaSearch opera-
tion to both calculate the set of all finite traces of a non-recursive process, and to
compare the trace sets of two processes according to a preorder relation that char-
acterizes may testing in asynchronous π-calculus. Thus, in both the specification of
the operational semantics and the may testing, we make heavy use of new features
introduced in version 2.0 of the Maude language and system.

Key words: π-calculus, asynchrony, may testing, traces, Maude.

1 Introduction

Since its introduction in the seminal paper [11] by Milner, Parrow, and Walker,
the π-calculus has become one of the most studied calculus for name-based
mobility of processes, where processes are able to exchange names over chan-
nels so that the communication topology can change during the computation.
The operational semantics of the π-calculus has been defined for several differ-
ent versions of the calculus following two main styles. The first is the labelled
transition system style according to the SOS approach introduced by Plotkin

c©2003 Published by Elsevier Science B. V.

383

http://www.elsevier.nl/locate/entcs/volume71.html�
goodelle
Text Box
Appendix AG: 



Thati, Sen, and Mart́ı-Oliet

[13]. The second is the reduction style, where first an equivalence is imposed
on syntactic processes (typically to make syntax more abstract with respect
to properties of associativity and/or commutativity of some operators), and
then some reduction or rewrite rules express how the computation proceeds
by communication between processes.

The first specification of the π-calculus operational semantics in rewriting
logic was developed by Viry in [19], in a reduction style making use of de
Bruijn indexes, explicit substitutions, and reduction strategies in Elan [6].
This presentation was later improved by Stehr [14] by making use of a generic
calculus for explicit substitutions, known as CINNI, which combines the best
of the approaches based on standard variables and de Bruijn indices, and that
has been implemented in Maude.

Our work took the work described above as a starting point, together
with recent work by Verdejo and Mart́ı-Oliet [18] showing how to use the new
features of Maude 2.0 in the implementation of a semantics in the labelled
transition system style for CCS. This work makes essential use of conditional
rewrite rules with rewrites in the conditions, so that an inference rule in the
labelled transition system of the form

P1 → Q1 . . . Pn → Qn

P0 → Q0

becomes a conditional rewrite rule of the form

P0 −→ Q0 if P1 −→ Q1 ∧ . . . ∧ Pn −→ Qn,

where the condition includes rewrites. These rules are executable in version 2.0
of the Maude language and system [7]. However, this is not enough, because
it is necessary to have some control on the application of rules. Typically,
rewrite rules can be applied anywhere in a term, while the transitions in the
operational semantics for CCS or the π-calculus in the SOS style only take
place at the top. The new frozen attribute available in Maude 2.0 makes this
possible, because the declaration of an operator as frozen forbids rewriting its
arguments, thus providing another way of controlling the rewriting process.
Rewrite conditions when applying conditional rules are solved by means of
an implicit search process, which is also available to the user both at the
command level and at the metalevel. The search command looks for all the
rewrites of a given term that match a given pattern satisfying some condition.
Search is reified at the metalevel as an operation metaSearch.

In this way, our first contribution is a fully executable specification of
an operational semantics in the labelled transition system style for an asyn-
chronous version of the π-calculus (the semantics for the synchronous case is
obtained as a simple modification). This specification uses conditional rewrite
rules with rewrites in conditions and the CINNI calculus [14] for managing
names and bindings in the π-calculus. However, these two ingredients are not
enough to obtain a fully executable specification. A central problem to over-
come is that the transitions of a term can be infinitely branching. For instance,

2

384

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

the term x(y).P can evolve via an input action to one of an infinite family of
terms depending on the name received in the input at channel x. Our solution
is to define the transitions of a process relative to an execution environment.
The environment is represented abstractly as a set of free (global) names that
the environment may use while interacting with the process, and transitions
are modelled as rewrite rules over a pair consisting of a set of environment
names together with a process.

Our next contribution is to implement the verification of the may-testing
preorder [12,3,5] between finitary (non-recursive) asynchronous π-calculus pro-
cesses, using again ideas from [18] to calculate the set of all finite traces of a
process. May testing is a specific instance of the notion of behavioral equiv-
alence on π-calculus processes; in may testing, two processes are said to be
equivalent if they have the same success properties in all experiments. An
experiment consists of an observing process that runs in parallel and interacts
with the process being tested, and success is defined as the observer signalling
a special event. Viewing the occurrence of an event as something bad hap-
pening, may testing can be used to reason about safety properties [4].

Since the definition of may testing involves a universal quantification over
all observers, it is difficult to establish process equivalences directly from the
definition. As a solution, alternate characterizations of the equivalence that
do not resort to quantification over observers have been found. It is known
that the trace semantics is an alternate characterization of may testing in
(synchronous) π-calculus [3], while a variant of the trace semantics has been
shown to characterize may testing in an asynchronous setting [5]. Specifically,
in both these cases, comparing two processes according to the may-testing
preorder amounts to comparing the set of all finite traces they exhibit. We
have implemented for finite asynchronous processes, the comparison of trace
sets proposed in [5]. We stress that our choice of specifying an asynchronous
version rather than the synchronous π-calculus, is because the characterization
of may testing for the asynchronous case is more interesting and difficult. The
synchronous version can be specified in an executable way using similar but
simpler techniques.

Our first step in obtaining an executable specification of may testing is
to obtain the set of all finite traces of a given process. This is done at the
Maude metalevel by using the metaSearch operation to collect all results of
rewriting a given term. The second step is to specify a preorder relation
between traces that characterizes may testing. We have represented the trace
preorder relation as a rewriting relation, i.e. the rules of inference that define
the trace preorder are again modeled as conditional rewrite rules. The final
step is to check if two processes are related by the may preorder, i.e. whether
a statement of the form P v Q is true or not. This step involves computing
the closure of a trace under the trace-preorder relation, again by means of the
metaSearch operation. Thus, our work demonstrates the utility of the new
metalevel facilities available in Maude 2.0.

3

385

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

The structure of the paper follows the steps in the description above. Sec-
tion 2 describes the syntax of the asynchronous version of the π-calculus that
we consider, together with the corresponding CINNI operations we use. Sec-
tion 3 describes the operational semantics specified by means of conditional
rewrite rules. Sections 4 and 5 define traces and the preorder on traces, re-
spectively. Finally, Section 6 contains the specification of the may testing on
processes as described above. Section 7 concludes the paper along with a brief
discussion of future work.

Although this paper includes some information on the π-calculus and may
testing to make it as self contained as possible, we refer the reader to the
papers [5,3,11] for complete details on these subjects. In the same way, the
interested reader can find a detailed explanation about the new features of
Maude 2.0 in [7], and about their use in the implementation of operational
semantics in the companion paper [18].

2 Asynchronous π-Calculus Syntax

The following is a brief and informal review of a version of asynchronous π-
calculus that is equipped with a conditional construct for matching names. An
infinite set of channel names is assumed, and u, v, w, x, y, z, . . . are assumed to
range over it. The set of processes, ranged over by P, Q,R, is defined by the
following grammar:

P := xy |
∑
i∈I

αi.Pi | P1|P2 | (νx)P | [x = y](P1, P2) | !P

where α can be x(y) or τ .

The output term xy denotes an asynchronous message with target x and
content y. The summation

∑
i∈I αi.Pi non-deterministically chooses an αi,

and if αi = τ it evolves internally to Pi, and if αi = x(y) it receives an
arbitrary name z at channel x and then behaves like P{z/y}. The process
P{z/y} is the result of the substitution of free occurrences of y in P by z,
with the usual renaming of bound names to avoid accidental captures (thus
substitution is defined only modulo α-equivalence). The argument y in x(y).P
binds all free occurrences of y in P . The composition P1|P2 consists of P1 and
P2 acting in parallel. The components can act independently, and also interact
with each other. The restriction (νx)P behaves like P except that it can not
exchange messages targeted to x, with its environment. The restriction binds
free occurrences of x in P . The conditional [x = y](P1, P2) behaves like P1

if x and y are identical, and like P2 otherwise. The replication !P provides
an infinite number of copies of P . The functions for free names fn(.), bound
names bn(.) and names n(.), of a process, are defined as expected.

In the Maude specification for the π-calculus syntax that follows, the sort
Chan is used to represent channel names and each of the non-constant syn-
tax constructors is declared as frozen, so that the corresponding arguments

4

386

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

cannot be rewritten by rules; this will be justified at the end of Section 3.

sort Chan .
sorts Guard GuardedTrm SumTrm Trm .
subsort GuardedTrm < SumTrm .
subsort SumTrm < Trm .

op _(_) : Chan Qid -> Guard .
op tau : -> Guard .
op nil : -> Trm .
op _<_> : Chan Chan -> Trm [frozen] .
op _._ : Guard Trm -> GuardedTrm [frozen] .
op _+_ : SumTrm SumTrm -> SumTrm [frozen assoc comm] .
op _|_ : Trm Trm -> Trm [frozen assoc comm] .
op new[_]_ : Qid Trm -> Trm [frozen] .
op if_=_then_else_fi : Chan Chan Trm Trm -> Trm [frozen] .
op !_ : Trm -> Trm [frozen] .

Note that the syntactic form
∑

i∈I αi.Pi has been split into three cases:

(i) nil represents the case where I = ∅,
(ii) a term of sort GuardedTrm represents the case where I = {1}, and

(iii) a term of sort SumTrm represents the case where I = [1..n] for n > 1. Since
the constructor + is associative and the sort GuardedTrm is a subsort of
SumTrm, we can represent a finite sum

∑
i∈I αi.Pi as (. . . (α1.P1 +α2.P2)+

· · ·αn.Pn).

To represent substitution on π-calculus processes (and traces, see Sec-
tion 4) at the language level we use CINNI as a calculus for explicit substitu-
tions [14]. This gives a first-order representation of terms with bindings and
capture-free substitutions, instead of going to the metalevel to handle names
and bindings. The main idea in such a representation is to keep the bound
names inside the binders as it is, but to replace its use by the name followed
by an index which is a count of the number of binders with the same name it
jumps before it reaches the place of use. Following this idea, we define terms
of sort Chan as indexed names as follows.

sort Chan .
op _{_} : Qid Nat -> Chan [prec 1] .

We introduce a sort of substitutions Subst together with the following
operations:

op [_:=_] : Qid Chan -> Subst .
op [shiftup_] : Qid -> Subst .
op [shiftdown_] : Qid -> Subst .
op [lift__] : Qid Subst -> Subst .

The first two substitutions are basic substitutions representing simple and
shiftup substitutions; the third substitution is a special case of simple substi-
tution; the last one represents complex substitution where a substitution can
be lifted using the operator lift. The intuitive meaning of these operations

5

387

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

[a := x] [shiftup a] [shiftdown a] [lift a S]

a{0} 7→ x a{0} 7→ a{1} a{0} 7→ a{0} a{0} 7→ [shiftup a] (S a{0})
a{1} 7→ a{0} a{1} 7→ a{2} a{1} 7→ a{0} a{1} 7→ [shiftup a] (S a{1})

· · · · · · · · · · · ·
a{n+1} 7→ a{n} a{n} 7→ a{n+1} a{n+1} 7→ a{n} a{n} 7→ [shiftup a] (S a{n})
b{m} 7→ b{m} b{m} 7→ b{m} b{m} 7→ b{m} b{m} 7→ [shiftup a] (S b{m})

Table 1
The CINNI operations.

is described in Table 1 (see [14] for more details). Using these, explicit sub-
stitutions for π-calculus processes are defined equationally. Some interesting
equations are the following:

eq S (P + Q) = (S P) + (S Q) .
eq S (CX(Y) . P ) = (S CX)(Y) . ([lift Y S] P) .
eq S (new [X] P) = new [X] ([lift X S] P) .

3 Operational Semantics

A labelled transition system (see Table 2) is used to give an operational se-
mantics for the calculus as in [5]. The transition system is defined modulo
α-equivalence on processes in that α-equivalent processes have the same tran-
sitions. The rules COM, CLOSE, and PAR have symmetric versions that are
not shown in the table.

Transition labels, which are also called actions, can be of five forms: τ (a
silent action), xy (free output of a message with target x and content y), x(y)
(bound output), xy (free input of a message), and x(y) (bound input). The
functions fn(.), bn(.) and n(.) are defined on actions as expected. The set of
all visible (non-τ) actions is denoted by L, and α is assumed to range over
L. As a uniform notation for free and bound actions the following notational
convention is adopted: (∅)xy = xy, ({y})xy = x(y), and similarly for input
actions. The variable ẑ is assumed to range over {∅, {z}}. The term (νẑ)P is
(νz)P if ẑ = {z}, and P otherwise.

We define the sort Action and the corresponding operations as follows:

sorts Action ActionType .
ops i o : -> ActionType .
op f : ActionType Chan Chan -> Action .
op b : ActionType Chan Qid -> Action .
op tauAct : -> Action .

The operators f and b are used to construct free and bound actions re-
spectively. Name substitution on actions is defined equationally as expected.

The inference rules in Table 2 are modelled as conditional rewrite rules

6

388

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

INP:
∑

i∈I αi.Pi
xjz−→ Pj{z/y} j ∈ I, αj = xj(y)

TAU:
∑

i∈I αi.Pi
τ−→ Pj j ∈ I, αj = τ

OUT: xy
xy−→ 0

BINP:
P

xy−→ P ′

P
x(y)−→ P ′

y /∈ fn(P )

PAR:
P1

α−→ P ′
1

P1|P2
α−→ P ′

1|P2

bn(α) ∩ fn(P2) = ∅ COM:
P1

xy−→ P ′
1 P2

xy−→ P ′
2

P1|P2
τ−→ P ′

1|P ′
2

RES:
P

α−→ P ′

(νy)P
α−→ (νy)P ′

y /∈ n(α) OPEN:
P

xy−→ P ′

(νy)P
x(y)−→ P ′

x 6= y

CLOSE:
P1

x(y)−→ P ′
1 P2

xy−→ P ′
2

P1|P2
τ−→ (νy)(P ′

1|P ′
2)

y /∈ fn(P2) REP:
P |!P α−→ P ′

!P
α−→ P ′

IF:
P

α−→ P ′

[x = x](P, Q)
α−→ P ′

ELSE:
Q

α−→ Q′

[x = y](P, Q)
α−→ Q′

x 6= y

Table 2
A labelled transition system for asynchronous π-calculus.

with the premises as conditions of the rule. 1 Since rewrites do not have labels
unlike the labelled transitions, we make the label a part of the resulting term;
thus rewrites corresponding to transitions in the operational semantics are of
the form P ⇒ {α}Q.

Because of the INP and OPEN rules, the transitions of a term can be
infinitely branching. Specifically, in case of the INP rule there is one branch
for every possible name that can be received in the input. In case of the OPEN
rule, there is one branch for every name that is chosen to denote the private
channel that is being emitted (note that the transition rules are defined only
modulo α-equivalence). To overcome this problem, we define transitions over
pairs of the form [CS] P, where CS is a set of channel names containing all the
names that the environment with which the process interacts, knows about.
The set CS expands during bound input and output interactions when private
names are exchanged between the process and its environment.

The infinite branching due to the INP rule is avoided by allowing only the
names in the environment set CS to be received in free inputs. Since CS is
assumed to contain all the free names in the environment, an input argument
that is not in CS would be a private name of the environment. Now, since
the identifier chosen to denote the fresh name is irrelevant, all bound input

1 The symmetric versions missing in the table need not be implemented because the process
constructors + and | have been declared as commutative.

7

389

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

transitions can be identified to a single input. With these simplifications,
the number of input transitions of a term become finite. Similarly, in the
OPEN rule, since the identifier chosen to denote the private name emitted is
irrelevant, instances of the rule that differ only in the chosen name are not
distinguished.

We discuss in detail the implementation of only a few of the inference rules;
the reader is referred to the appendix for a complete list of all the rewrite rules
for Table 2.

sorts EnvTrm TraceTrm .
subsort EnvTrm < TraceTrm .
op [_]_ : Chanset Trm -> EnvTrm [frozen] .
op {_}_ : Action TraceTrm -> TraceTrm [frozen] .

Note that the two operators are also declared above with the frozen at-
tribute, forbidding in this way rewriting of their arguments, as justified at the
end of this section.

The following non-conditional rule is for free inputs.

rl [Inp] : [CY CS] ((CX(X) . P) + SUM) =>
{f(i,CX,CY)} ([CY CS] ([X := CY] P)) .

The next rule we consider is the one for bound inputs. Since the identifier
chosen to denote the bound argument is irrelevant, we use the constant ’U

for all bound inputs, and thus ’U{0} denotes the fresh channel received. Note
that in contrast to the BINP rule of Table 2, we do not check if ’U{0} is in the
free names of the process performing the input, and instead we shift up the
channel indices appropriately, in both the set of environment names CS and
the process P in the righthand side and condition of the rule. This is justified
because the transition target is within the scope of the bound name in the
input action. Note also that the channel CX in the action is not shifted down
because it is out of the scope of the bound argument. The set of environment
names is expanded by adding the received channel ’U{0} to it. Finally, we
use a special constant flag of sort Chan, to ensure termination. We add an
instance of flag to the environment set of the rewrite in condition, so that
the BINP rule is not fired again while evaluating the condition. Without this
check, we will have a non-terminating execution in which the BINP rule is
repeatedly fired.

crl [BInp] : [CS] P => {b(i,CX,’U)} [’U{0} [shiftup ’U] CS] P1
if (not flag in CS) /\

CS1 := flag ’U{0} [shiftup ’U] CS /\
[CS1] [shiftup ’U] P => {f(i,CX,’U{0})} [CS1] P1 .

The following rule treats the case of bound outputs.

crl [Open] : [CS] (new [X] P) => {[shiftdown X] b(o,CY,X)} [X{0} CS1] P1
if CS1 := [shiftup X] CS /\

[CS1] P => {f(o,CY,X{0})} [CS1] P1 /\ X{0} =/= CY .

Like in the case of bound inputs, we identify all bound outputs to a single

8

390

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

instance in which the identifier X that appears in the restriction is chosen as
the bound argument name. Note that in both the righthand side of the rule
and in the condition, the indices of the channels in CS are shifted up, because
they are effectively moved across the restriction. Similarly, the channel indices
in the action in the righthand side of the rule are shifted down since the action
is now moved out of the restriction. Note also that the exported name is added
to the set of environment names, because the environment that receives this
exported name can use it in subsequent interactions.

The PAR inference rule is implemented by two rewrite rules, one for the
case where the performed action is free, and the other where the action is
bound. The rewrite rule for the latter case is discussed next, while the one for
the former case is simpler and appears in the appendix.

var IO : ActionType
crl [Par] : [CS] (P | Q) =>

{b(IO,CX,Y)} [Y{0} ([shiftup Y] CS)] (P1 | [shiftup Y] Q)
if [CS] P => {b(IO,CX,Y)} ([CS1] P1) .

Note that the side condition of the PAR rule in Table 2, which avoids
confusion of the emitted bound name with free names in Q, is achieved by
shifting up channel indices in Q. This is justified because the righthand side of
the rule is under the scope of the bound output action. Similarly, the channel
indices in the environment are also shifted up. Further, the set of environment
names is expanded by adding the exported channel Y{0}.

Finally, we consider the rewrite rule for CLOSE. The process P emits a
bound name Y, which is received by process Q. Since the scope of Y after the
transition includes Q, the rewrite involving Q in the second condition of the
rule is carried out within the scope of the bound name that is emitted. This
is achieved by adding the channel Y{0} to the set of environment names and
shifting up the channel indices in both CS and Q in the rewrite. Note that
since the private name being exchanged is not emitted to the environment,
we neither expand the set CS in the righthand side of the rule nor shift up the
channel indices in it.

crl [Close] : [CS] (P | Q) => {tauAct} [CS] new [Y] (P1 | Q1)
if [CS] P => {b(o,CX,Y)} [CS1] P1 /\

[Y{0} [shiftup Y] CS] [shiftup Y] Q =>
{f(i,CX,Y{0})} [CS2] Q1 .

We conclude this section with the following note. The operator { } is
declared frozen because further rewrites of the process term encapsulated
in a term of sort TraceTrm are useless. This is because all the conditions of
the transition rules only involve one step rewrites (the righthand side of these
rewrites can only match a term of sort TraceTrm with a single action prefix).
Further note that, to prevent rewrites of a term to a non well-formed term, all
the constructors for π-calculus terms (Section 2) have been declared frozen;
in the absence of this declaration we would have for instance rewrites of the
form P | Q => {A}.P1 | Q to a non well-formed term.

9

391

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

4 Trace Semantics

The set L∗ is the set of traces. The functions fn(.), bn(.) and n(.) are extended
to L∗ in the obvious way. The relation of α-equivalence on traces is defined
as expected, and α-equivalent traces are not distinguished. The relation =⇒
denotes the reflexive transitive closure of

τ−→, and
β

=⇒ denotes =⇒ β−→=⇒.

For s = l.s′, we inductively define P
s

=⇒ P ′ as P
l

=⇒ s′
=⇒ P ′. We use P

s
=⇒

as an abbreviation for P
s

=⇒ P ′ for some P ′. The set of traces that a process
exhibits is then [|P |] = {s | P

s
=⇒}.

In the implementation, we introduce a sort Trace as supersort of Action
to specify traces.

subsort Action < Trace .
op epsilon : -> Trace .
op _._ : Trace Trace -> Trace [assoc id: epsilon] .
op [_] : Trace -> TTrace .

We define the operator [ ] to represent a complete trace. The motivation
for doing so is to restrict the equations and rewrite rules defined over traces to
operate only on a complete trace instead of a part of it. The following equation
defines α-equivalence on traces. Note that in a trace TR1.b(IO,CX,Y).TR2 the
action b(IO,CX,Y) binds the identifier Y in TR2.

ceq [TR1 . b(IO,CX,Y) . TR2] =
[TR1 . b(IO,CX,’U) . [Y := ’U{0}] [shiftup ’U] TR2]

if Y =/= ’U .

Because the operator op { } : Action TraceTrm -> TraceTrm is declared
as frozen, a term of sort EnvTrm can rewrite only once, and so we cannot ob-
tain the set of finite traces of a process by simply rewriting it multiple times in
all possible ways. The problem is solved as in [18], by specifying the trace se-
mantics using rules that generate the transitive closure of one step transitions
as follows:

sort TTrm .
op [_] : EnvTrm -> TTrm [frozen] .
var TT : TraceTrm .

crl [reflx] : [ P ] => {A} Q if P => {A} Q .
crl [trans] : [ P ] => {A} TT

if P => {A} Q /\ [ Q ] => TT /\ [ Q ] =/= TT .

We use the operator [ ] to prevent infinite loops while evaluating the
conditions of the rules above. If this operator were not used, then the lefthand
side of the rewrite in the condition would match the lefthand side of the rule
itself, and so the rule itself could be used in order to solve its condition. This
operator is also declared as frozen to prevent useless rewrites inside [ ].

We can now use the search command of Maude 2.0 to find all possible
traces of a process. The traces appear as prefix of the one-step successors
of a TTrm of the form [[CS] P]. For instance, the set of all traces exhibited

10

392

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

by [mt] new [’y] (’x0 < ’y0 > | ’x0(’u) . nil) (where mt denotes the
empty channel set), can be obtained by using the following search command.

Maude> search [ [mt] new [’y] (’x{0} < ’y{0} > | ’x{0}(’u) . nil) ] =>!
X:TraceTrm .
search in APITRACESET : [[mt]new[’y](’x{0} < ’y{0} > | ’x{0}(’u) . nil)] =>!
X:TraceTrm .

Solution 1 (state 1)
states: 7 rewrites: 17344 in 110ms cpu (150ms real) (157672 rewrites/second)
X:TraceTrm --> {b(i, ’x{0}, ’u)}[’u{0}]new[’y](nil | ’x{0} < ’y{0} >)

Solution 2 (state 2)
states: 7 rewrites: 17344 in 110ms cpu (170ms real) (157672 rewrites/second)
X:TraceTrm --> {tauAct}[mt]new[’y](nil | nil)

Solution 3 (state 3)
states: 7 rewrites: 17344 in 110ms cpu (170ms real) (157672 rewrites/second)
X:TraceTrm --> {b(o, ’x{0}, ’y)}[’y{0}]nil | ’x{0}(’u) . nil

Solution 4 (state 4)
states: 7 rewrites: 17344 in 110ms cpu (170ms real) (157672 rewrites/second)
X:TraceTrm --> {b(i, ’x{0}, ’u)}{b(o, ’x{0}, ’y)}[’y{0} ’u{0}]nil | nil

Solution 5 (state 5)
states: 7 rewrites: 17344 in 110ms cpu (170ms real) (157672 rewrites/second)
X:TraceTrm --> {b(o, ’x{0}, ’y)}{b(i, ’x{0}, ’u)}[’y{0} ’u{0}]nil | nil

Solution 6 (state 6)
states: 7 rewrites: 17344 in 110ms cpu (170ms real) (157672 rewrites/second)
X:TraceTrm --> {b(o, ’x{0}, ’y)}{f(i, ’x{0}, ’y{0})}[’y{0}]nil | nil

No more solutions.
states: 7 rewrites: 17344 in 110ms cpu (170ms real) (157672 rewrites/second)

The command returns all TraceTrms that can be reached from the given
TTrm, and that are terminating (the ‘!’ in =>! specifies that the target should
be terminating). The required set of traces can be obtained by simply extract-
ing from each solution {a1}...{an}TT the sequence a1...an and removing
all tauActs in it. Thus, we have obtained an executable specification of the
trace semantics of asynchronous π-calculus.

5 A Trace Based Characterization of May Testing

The may-testing framework [12] is instantiated on asynchronous π-calculus as
follows. Observers are processes that can emit a special message µµ. We say

that an observer O accepts a trace s if O
s̄.µµ
=⇒, where s̄ is the trace obtained by

complementing the actions in s, i.e. converting input actions to output actions
and vice versa. The may preorder v over processes is defined as: P v Q if for

every observer O, P |O µµ
=⇒ implies Q|O µµ

=⇒. We say that P and Q are may-

11

393

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

(Drop) s1.(ŷ)s2 ≺ s1.(ŷ)xy.s2 if (ŷ)s2 6= ⊥
(Delay) s1.(ŷ)(α.xy.s2) ≺ s1.(ŷ)xy.α.s2 if (ŷ)(α.xy.s2) 6= ⊥

(Annihilate) s1.(ŷ)s2 ≺ s1.(ŷ)xy.xy.s2 if (ŷ)s2 6= ⊥
Table 3

A preorder relation on traces.

equivalent, i.e. P = Q, if P v Q and Q v P . The universal quantification
on contexts in this definition makes it very hard to prove equalities directly
from the definition, and makes mechanical checking impossible. To circumvent
this problem, a trace based alternate characterization of the may equivalence
is proposed in [5]. We now summarize this characterization and discuss our
implementation of it.

The preorder ¹ on traces is defined as the reflexive transitive closure of
the laws shown in Table 3, where the notation (ŷ)· is extended to traces as
follows.

(ŷ)s =





s if ŷ = ∅ or b 6∈ fn(s)

s1.x(y).s2 if ŷ = {y} and there are s1, s2, x such that

s = s1.xy.s2 and y 6∈ n(s1) ∪ {x}
⊥ otherwise

For sets of traces R and S, we define R - S, if for every s ∈ S there is
an r ∈ R such that r ¹ s. The may preorder is then characterized in [5] as:
P v Q if and only if [|Q|] - [|P |].

The main intuition behind the preorder ¹ is that if an observer accepts
a trace s, then it also accepts any trace r ¹ s. The first two laws state that
an observer cannot force inputs on the process being tested. Since outputs
are asynchronous, the actions following an output in a trace exhibited by the
observer need not causally depend on the output. Hence the observer’s output
can be delayed until a causally dependent action, or dropped if there are no
such actions. The annihilation law states that an observer can consume its
own outputs unless there are subsequent actions that depend on the output.
The reader is referred to [5] for further details on this characterization.

We encode the trace preorder as rewrite rules on terms of the sort TTrace
of complete traces; specifically, the relation r ≺ s if cond, is encoded as s

=> r if cond. The reason for this form of representation will be justified
in Section 6. The function ({y})· on traces is defined equationally by the
operation bind. The constant bot of sort Trace is used by the bind operation
to signal error.

op bind : Qid Trace -> Trace .
op bot : -> Trace .
var TR : Trace . var IO : ActionType.

12

394

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

ceq TR . bot = bot if t =/= epsilon .
ceq bot . TR = bot if t =/= epsilon .

eq bind(X , epsilon) = epsilon .

eq bind(X , f(i,CX,CY) . TR ) = if CX =/= X{0} then
if CY == X{0} then ([shiftdown X] b(i, CX , X)) . TR

else ([shiftdown X] f(i, CX , CY)) . bind(X , TR) fi
else bot fi .

eq bind(X , b(IO,CX,Y) . TR) = if CX =/= X{0} then
if X =/= Y then ([shiftdown X] b(i, CX , Y)) . bind(X , TR)

else ([shiftdown X] b(IO, CX , Y)) . bind(X , swap(X,TR)) fi
else bot fi .

The equation for the case where the second argument to bind begins with
a free output is not shown as it is similar. Note that the channel indices
in actions until the first occurrence of X{0} as the argument of a free input
are shifted down as these move out of the scope of the binder X. Further,
when a bound action with X as the bound argument is encountered, the swap

operation is applied to the remaining suffix of the trace. The swap operation
simply changes the channel indices in the suffix so that the binding relation
is unchanged even as the binder X is moved across the bound action. This is
accomplished by simultaneously substituting X{0} with X{1}, and X{1} with
X{0}. Finally, note that when X{0} is encountered as the argument of a free
input, the input is converted to a bound input. If X{0} is first encountered at
any other place, an error is signalled by returning the constant bot.

The encoding of the preorder relation on traces is now straightforward.

crl [Drop] : [ TR1 . b(i,CX,Y) . TR2 ] => [ TR1 . bind(Y , TR2) ]
if bind(Y , TR2) =/= bot .

rl [Delay] : [ ( TR1 . f(i,CX,CY) . b(IO,CU,V) . TR2 ) ] =>
[ ( TR1 . b(IO,CU,V) . ([shiftup V] f(i, CX , CY)) . TR2 ) ] .

crl [Delay] : [ ( TR1 . b(i,CX,Y) . f(IO,CU,CV) . TR2 ) ] =>
[ ( TR1 . bind(Y , f(IO,CU,CV) . f(i,CX,Y{0}) . TR2) ) ]

if bind(Y , f(IO,CU,CV) . f(i,CX,Y{0}) . TR2) =/= bot .

crl [Annihilate] : [ ( TR1 . b(i,CX,Y) . f(o,CX,Y{0}) . TR2 ) ] =>
[ TR1 . bind(Y , TR2) ]

if bind(Y , TR2) =/= bot .

Note that in the first Delay rule, the channel indices of the free input
action are shifted up when it is delayed across a bound action, since it gets
into the scope of the bound argument. Similarly, in the second Delay rule,
when the bound input action is delayed across a free input/output action,
the channel indices of the free action are shifted down by the bind operation.
The other two subcases of the Delay rule, namely, where a free input is to
be delayed across a free input or output, and where a bound input is to be
delayed across a bound input or output, are not shown as they are similar.

13

395

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

Similarly, for Annihilate, the case where a free input is to be annihilated
with a free output is not shown.

6 Verifying the May Preorder between Finite Processes

We now describe our implementation of verification of the may preorder be-
tween finite processes, i.e. processes without replication, by exploiting the
trace-based characterization of may testing discussed in Section 5. The finite-
ness of a process P only implies that the length of traces in [|P |] is bounded,
but the number of traces in [|P |] can be infinite (even modulo α-equivalence)
because the INP rule is infinitely branching. To avoid the problem of having
to compare infinite sets, we observe that

[|Q|] - [|P |] if and only if [|Q|]fn(P,Q) - [|P |]fn(P,Q),

where for a set of traces S and a set of names ρ we define Sρ = {s ∈ S |
fn(s) ⊆ ρ}. Now, since the traces in [|P |] and [|Q|] are finite in length, it
follows that the sets of traces [|P |]fn(P,Q) and [|Q|]fn(P,Q) are finite modulo α-
equivalence. In fact, the set of traces generated for [[fn(P,Q)] P] by our
implementation described in Section 3, contains exactly one representative
from each α-equivalence class of [|P |]fn(P,Q).

Given processes P and Q, we generate the set of all traces (modulo α-
equivalence) of [[fn(P,Q)] P] and [[fn(P,Q)] Q] using the metalevel fa-
cilities of Maude 2.0. As mentioned in Section 4, these terms, which are
of sort TTrm, can be rewritten only once. The term of sort TraceTrm ob-
tained by rewriting contains a finite trace as a prefix. To create the set of all
traces, we compute all possible one-step rewrites. This computation is done at
the metalevel by the function TTrmtoNormalTraceSet that uses two auxiliary
functions TTrmtoTraceSet and TraceSettoNormalTraceSet.

op TTrmtoTraceSet : Term -> TermSet .
op TraceSettoNormalTraceSet : TermSet -> TermSet .
op TTrmtoNormalTraceSet : Term -> TermSet .

eq TTrmtoNormalTraceSet(T) = TraceSettoNormalTraceSet(TTrmtoTraceSet(T)) .

The function TTrmTraceSet uses the function allOneStepAux(T,N) that
returns the set of all one-step rewrites (according to the rules in Sections 3
and 4, which are defined in modules named APISEMANTICS and APITRACE, see
Figure A.1 in appendix) of the term T which is the metarepresentation of a
term of sort TTrm, skipping the first N solutions. In the following equations,
the operator u stands for set union.

Notice the use of the operation metaSearch, which receives as arguments
the metarepresented module to work in, the starting term for search, the
pattern to search for, a side condition (empty in this case), the kind of search
(which may be ’* for zero or more rewrites, ’+ for one or more rewrites, and
’! for only matching normal forms), the depth of search, and the required
solution number. It returns the term matching the pattern, its type, and

14

396

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

the substitution produced by the match; to keep only the term, we use the
projection getTerm.

op APITRACE-MOD : -> Module .
eq APITRACE-MOD = [’APITRACE] .
var N : MachineInt . vars T X : Term .

op allOneStepAux : Term MachineInt Term -> TermSet .
op TraceTermToTrace : Term -> Term .

eq TTrmtoTraceSet(T) = allOneStepAux(T,0,’X:TraceTrm) .
eq allOneStepAux(T,N,X) =

if metaSearch(APITRACE-MOD,T,X,nil,’+,1,N) == failure
then ’epsilon.Trace
else TraceTermToTrace(getTerm(metaSearch(APITRACE-MOD,T,X,nil,’+,1,N)))

u allOneStepAux(T,N + 1,X) fi .

The function TraceTrmToTrace (whose equations are not shown), used
in allOneStepAux, extracts the trace a1.a2...an out of a metarepresenta-
tion of a term of sort TraceTrm of the form {a1}{a2}...{an}TT. The function
TraceSettoNormalTraceSet uses the metalevel operation metaReduce to con-
vert each trace in a trace set to its α-normal form. The operation metaReduce

takes as arguments a metarepresented module and a metarepresented term
in that module, and returns the metarepresentation of the fully reduced form
of the given term using the equations in the given module, together with its
corresponding sort or kind. Again, the projection getTerm leaves only the
resulting term.

eq TraceSettoNormalTraceSet(mt) = mt .
eq TraceSettoNormalTraceSet(T u TS) =

getTerm(metaReduce(TRACE-MOD,’‘[_‘] [ T ]))
u TraceSettoNormalTraceSet(TS) .

We implement the relation - on sets defined in Section 5 as the predicate
<<. We check if P v Q by computing this predicate on the metarepresented
trace sets [|P |]fn(P,Q) and [|Q|]fn(P,Q) as follows. For each (metarepresented)
trace T in [|P |]fn(P,Q), we compute the reflexive transitive closure of T with
respect to the laws shown in Table 3. The laws are implemented as rewrite
rules in the module TRACE-PREORDER. We then use the fact that [|Q|]fn(P,Q) -
[|P |]fn(P,Q) if and only if for every trace T in [|P |]fn(P,Q) the closure of T and
[|Q|]fn(P,Q) have a common element.

op TRACE-PREORDER-MOD : -> Module .
eq TRACE-PREORDER-MOD = [’TRACE-PREORDER] .
var N : MachineInt . vars T T1 T2 X : Term .
var TS TS1 TS2 : TermSet .

op _<<_ : TermSet TermSet -> Bool .
op _<<<_ : TermSet Term -> Bool .
op TTraceClosure : Term -> TermSet .
op TTraceClosureAux : Term Term MachineInt -> TermSet .
op _maypre_ : Term Term -> Bool .

15

397

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

eq TS2 << mt = true .
eq TS2 << (T1 u TS1) = TS2 <<< T1 and TS2 << TS1 .
eq TS2 <<< T1 = not disjoint?(TS2 , TTraceClosure(T1)) .
eq T1 maypre T2 = TTrmtoNormalTraceSet(T2) << TTrmtoNormalTraceSet(T1) .

The computation of the closure of T is done by the function TTraceClosure.
It uses TTraceClosureAux to compute all possible (multi-step) rewrites of the
term T using the rules defined in the module TRACE-PREORDER, again by means
of the metalevel operation metaSearch.

eq TTraceClosure(T) = TTraceClosureAux(T,’TT:TTrace,0) .
eq TTraceClosureAux(T,X,N) =

if metaSearch(TRACE-PREORDER-MOD,T,X,nil,’*,maxMachineInt,N) == failure
then mt
else getTerm(metaSearch(TRACE-PREORDER-MOD,T,X,nil,’*,maxMachineInt,N))

u TTraceClosureAux(T,X,N + 1) fi .

This computation is terminating as the number of traces to which a trace
can rewrite using the trace preorder laws is finite modulo α-equivalence. This
follows from the fact that the length of a trace is non-increasing across rewrites,
and the free names in the target of a rewrite are also free names in the source.
Since the closure of a trace is finite, metaSearch can be used to enumerate all
the traces in the closure. Note that although the closure of a trace is finite, it
is possible to have an infinite rewrite that loops within a subset of the closure.
Further, since T is a metarepresentation of a trace, metaSearch can be applied
directly to T inside the function TTraceClosureAux(T,X,N).

We end this section with a small example, which checks for the may-testing
preorder between the processes P = a(u).b(v).(νw)(wv|au)+b(u).a(v).(bu|bw)
and Q = b(u).(bu|bw). We define constants TP and TQ of sort TTrm, along with
the following equations:

eq TP = [[’a{0} ’b{0} ’w{0}]
’a{0}(’u) . ’b{0}(’v) . new[’w](’w{0} < ’v{0} > | ’a{0} < ’u{0} >)

+ ’b{0}(’u) . ’a{0}(’v) . (’b{0} < ’u{0} > | ’b{0} < ’w{0} >)]

eq TQ = [[’a{0} ’b{0} ’w{0}]
’b{0}(’u) . (’b{0} < ’u{0} > | ’b{0} < ’w{0} >)]

The metarepresentation of these TTrms can now be obtained by using
’TP.TTrm and ’TQ.TTrm, and we can then check for the may-testing preorder
between the given processes as follows:

Maude> red ’TP.TTrm maypre ’TQ.TTrm .
reduce in APITRACESET : ’TP.TTrm maypre ’TQ.TTrm .
rewrites: 791690 in 2140ms cpu (2160ms real) (361422 rewrites/second)
result Bool: true
Maude> red ’TQ.TTrm maypre ’TP.TTrm .
reduce in APITRACESET : ’TQ.TTrm maypre ’TP.TTrm .
rewrites: 664833 in 1620ms cpu (1640ms real) (410390 rewrites/second)
result Bool: false

Thus, we have P v Q, but Q /v P . The reader can check that indeed,
[|Q|]fn(P,Q) - [|P |]fn(P,Q), but [|P |]fn(P,Q) /- [|Q|]fn(P,Q).

16

398

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

7 Conclusions and Future Work

In this paper, we have described an executable specification in Maude of the
operational semantics of an asynchronous version of the π-calculus using con-
ditional rewrite rules with rewrites in the conditions as proposed by Verdejo
and Mart́ı-Oliet in [18], and the CINNI calculus proposed by Stehr in [14]
for managing names and their binding. In addition, we also implemented
the may-testing preorder for π-calculus processes using the Maude metalevel,
where we use the metaSearch operation to calculate the set of all traces for a
process and then compare two sets of traces according to a preorder relation
between traces. As emphasized throughout the paper, the new features intro-
duced in Maude 2.0 have been essential for the development of this executable
specification, including rewrites in conditions, the frozen attribute, and the
metaSearch operation.

An interesting direction of further work is to extend our implementation
to the various typed variants of π-calculus. Two specific typed asynchronous
π-calculi for which the work is under way are the local π-calculus (Lπ) [10]
and the Actor model [1,15]. Both of these formal systems have been used
extensively in formal specification and analysis of concurrent object-oriented
languages [2,8], and open distributed and mobile systems [9]. The alternate
characterization of may testing for both of these typed calculi was recently
published [16,17]. We are extending the work presented here to account for
the type systems for these calculi, and modifications to the trace based char-
acterization of may testing. We are also looking for interesting concrete appli-
cations to which this can be applied; such experiments may require extending
our implementation to extensions of π-calculus with higher level constructs,
although these may just be syntactic sugar.

Acknowledgements

This research has been supported in part by the Defense Advanced Research
Projects Agency (contract numbers F30602-00-2-0586 and F33615-01-C-1907),
the ONR MURI Project A Logical Framework for Adaptive System Inter-
operability, and the Spanish CICYT project Desarrollo Formal de Sistemas
Basados en Agentes Móviles (TIC2000–0701–C02–01). This work was done
while the last author was visiting the Department of Computer Science in
the University of Illinois at Urbana-Champaign, for whose hospitality he is
very grateful. We would like to thank José Meseguer for encouraging us to
put together several complementary lines of work in order to get the results
described in this paper.

References

[1] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, 1986.

17

399

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

[2] G. Agha. Concurrent object-oriented programming. Communications of the
ACM, 33(9):125–141, September 1990.

[3] M. Boreale and R. De Nicola. Testing equivalence for mobile processes.
Information and Computation, 120:279–303, 1995.

[4] M. Boreale, R. De Nicola, and R. Pugliese. Proof techniques for cryptographic
processes. In Proceedings 14th IEEE Symposium on Logic in Computer Science,
LICS’99, Trento, Italy, July 2–5, 1999, pages 157–166. IEEE Computer Society
Press, 1999.

[5] M. Boreale, R. De Nicola, and R. Pugliese. Trace and testing equivalence on
asynchronous processes. Information and Computation, 172(2):139–164, 2002.

[6] P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and M. Vittek.
ELAN: A logical framework based on computational systems. In J. Meseguer,
editor, Proceedings First International Workshop on Rewriting Logic and its
Applications, WRLA’96, Asilomar, California, September 3–6, 1996, volume 4
of Electronic Notes in Theoretical Computer Science, pages 35–50. Elsevier,
1996. http://www.elsevier.nl/locate/entcs/volume4.html.

[7] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J.
F. Quesada. Towards Maude 2.0. In K. Futatsugi, editor, Proceedings Third
International Workshop on Rewriting Logic and its Applications, WRLA 2000,
Kanazawa, Japan, September 18–20, 2000, volume 36 of Electronic Notes in
Theoretical Computer Science, pages 297–318. Elsevier, 2000. http://www.
elsevier.nl/locate/entcs/volume36.html.

[8] I. A. Mason and C. Talcott. A semantically sound actor translation. In
P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, editors, Automata,
Languages and Programming, 24th International Colloquium, ICALP’97,
Bologna, Italy, July 7–11, 1997, Proceedings, volume 1256 of Lecture Notes
in Computer Science, pages 369–378. Springer-Verlag, 1997.

[9] M. Merro, J. Kleist, and U. Nestmann. Local π-calculus at work: Mobile objects
as mobile processes. In J. van Leeuwen et al., editors, Theoretical Computer
Science: Exploring New Frontiers of Theoretical Informatics, International
Conference IFIP TCS 2000 Sendai, Japan, August 17–19, 2000, Proceedings,
volume 1872 of Lecture Notes in Computer Science, pages 390–408. Springer-
Verlag, 2000.

[10] M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. In
K. G. Larsen, S. Skyum, and G. Winskel, editors, Automata, Languages and
Programming, 25th International Colloquium, ICALP’98, Aalborg, Denmark,
July 13–17, 1998, Proceedings, volume 1443 of Lecture Notes in Computer
Science, pages 856–867. Springer-Verlag, 1998.

[11] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (Parts I
and II). Information and Computation, 100:1–77, 1992.

[12] R. De Nicola and M. Hennessy. Testing equivalence for processes. Theoretical
Computer Science, 34:83–133, 1984.

18

400

http://www.elsevier.nl/locate/entcs/volume4.html�
http://www.elsevier.nl/locate/entcs/volume36.html�
http://www.elsevier.nl/locate/entcs/volume36.html�
goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

[13] G. D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Computer Science Dept., Aarhus University, September
1981.

[14] M.-O. Stehr. CINNI — A generic calculus of explicit substitutions and its
application to λ-, ς- and π-calculi. In K. Futatsugi, editor, Proceedings Third
International Workshop on Rewriting Logic and its Applications, WRLA 2000,
Kanazawa, Japan, September 18–20, 2000, volume 36 of Electronic Notes in
Theoretical Computer Science, pages 71–92. Elsevier, 2000. http://www.
elsevier.nl/locate/entcs/volume36.html.

[15] C. Talcott. An actor rewriting theory. In J. Meseguer, editor, Proceedings First
International Workshop on Rewriting Logic and its Applications, WRLA’96,
Asilomar, California, September 3–6, 1996, volume 4 of Electronic Notes in
Theoretical Computer Science, pages 360–383. Elsevier, 1996. http://www.
elsevier.nl/locate/entcs/volume4.html.

[16] P. Thati, R. Ziaei, and G. Agha. A theory of may testing for actors. In B. Jacobs
and A. Rensink, editors, Proceedings IFIP TC6/WG6.1 Fifth International
Conference on Formal Methods for Open Object-Based Distributed Systems
(FMOODS 2002), March 20-22, 2002, Enschede, The Netherlands, pages 147–
162. Kluwer Academic Publishers, 2002.

[17] P. Thati, R. Ziaei, and G. Agha. A theory of may testing for asynchronous
calculi with locality and no name matching. In H. Kirchner and C. Ringeissen,
editors, Algebraic Methodology and Software Technology, 9th International
Conference, AMAST 2002, Saint-Gilles-les-Bains, Reunion Island, France,
September 9-13, 2002, Proceedings, volume 2422 of Lecture Notes in Computer
Science. Springer-Verlag, 2002.

[18] A. Verdejo and N. Mart́ı-Oliet. Implementing CCS in Maude 2. In U.
Montanari, editor, Proceedings Fourth International Workshop on Rewriting
Logic and its Applications, WRLA 2002, Pisa, Italy, September 19–21, 2002,
volume 71 of Electronic Notes in Theoretical Computer Science. Elsevier, 2002.
(This volume.) http://www.elsevier.nl/locate/entcs/volume71.html.

[19] P. Viry. Input/output for ELAN. In J. Meseguer, editor, Proceedings First
International Workshop on Rewriting Logic and its Applications, WRLA’96,
Asilomar, California, September 3–6, 1996, volume 4 of Electronic Notes in
Theoretical Computer Science, pages 51–64. Elsevier, 1996. http://www.
elsevier.nl/locate/entcs/volume4.html.

A Appendix

The diagram in Figure A.1 illustrates the graph of module importation in our
implementation that closely follows the structure of the paper. The complete
code is available at http://osl.cs.uiuc.edu/~ksen/api/. Here we only
show the module that contains the rewrite rules for the operational semantics

19

401

http://www.elsevier.nl/locate/entcs/volume36.html�
http://www.elsevier.nl/locate/entcs/volume36.html�
http://www.elsevier.nl/locate/entcs/volume4.html�
http://www.elsevier.nl/locate/entcs/volume4.html�
http://www.elsevier.nl/locate/entcs/volume71.html�
http://www.elsevier.nl/locate/entcs/volume4.html�
http://www.elsevier.nl/locate/entcs/volume4.html�
http://osl.cs.uiuc.edu/~ksen/api/�
goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

NAT QID
³³³³³³

CHAN

CINNI STRING
³³³³³

CHANSET

TRACE
PPPPPP

APISYNTAX

TRACE-PREORDER
Q

Q
Q

Q
Q

Q
QQ

APISEMANTICS META-LEVEL

APITRACE TERMSET
©©©©

APITRACESET

Fig. A.1. The graph of module importation in the implementation.

of asynchronous π-calculus (Table 2). The function genQid used in the condi-
tion of the last Res rule generates an identifier that is fresh, i.e. an identifier
not used to construct channel names in the set passed as the argument to the
function.

mod APISEMANTICS is
inc APISYNTAX .
inc CHANSET .
inc TRACE .
sorts EnvTrm TraceTrm .
subsort EnvTrm < TraceTrm .

op [_]_ : Chanset Trm -> EnvTrm [frozen] .
op {_}_ : Action TraceTrm -> TraceTrm [frozen] .
op notinfn : Qid Trm -> Prop .

vars N : Nat . vars X Y Z : Qid .
vars CX CY : Chan . var CS CS1 CS2 : Chanset .
vars A : Action . vars P1 Q1 P Q : Trm .
var SUM : SumTrm . var IO : ActionType .

eq notinfn(X,P) = not X{0} in freenames(P) .

rl [Inp] : [CY CS] (CX(X) . P) =>
{f(i,CX,CY)} ([CY CS] ([X := CY] P)) .

rl [Inp] : [CY CS] ((CX(X) . P) + SUM) =>
{f(i,CX,CY)} ([CY CS] ([X := CY] P)) .

rl [Tau] : [CS] (tau . P) => { tauAct } ([CS] P) .

rl [Tau] : [CS] ((tau . P) + SUM) => { tauAct } ([CS] P) .

20

402

goodelle
Rectangle



Thati, Sen, and Mart́ı-Oliet

crl [BInp] : [CS] P => {b(i,CX,’u)} [’u{0} [shiftup ’u] CS] P1
if (not flag in CS) /\

CS1 := flag ’u{0} [shiftup ’u] CS /\
[CS1] [shiftup ’u] P => {f(i,CX,’u{0})} [CS1] P1 .

rl [Out] : [CS] CX < CY > => { f(o,CX,CY) } ([CS] nil) .

crl [Par] : [CS] (P | Q) => {f(IO,CX,CY)} ([CS] (P1 | Q))
if [CS] P => {f(IO,CX,CY)} ([CS] P1) .

crl [Par] : [CS] (P | Q) =>
{b(IO,CX,Y)} [Y{0} ([shiftup Y] CS)] (P1 | [shiftup Y] Q)

if [CS] P => {b(IO,CX,Y)} ([CS1] P1) .

crl [Com] : [CS] (P | Q) => {tauAct} ([CS] (P1 | Q1))
if [CS] P => {f(o,CX,CY)} ([CS] P1) /\

[CY CS] Q => {f(i,CX,CY)} ([CY CS] Q1) .

crl [Close] : [CS] (P | Q) => {tauAct} [CS] new [Y] (P1 | Q1)
if [CS] P => {b(o,CX,Y)} [CS1] P1 /\

[Y{0} [shiftup Y] CS] [shiftup Y] Q =>
{f(i,CX,Y{0})} [CS2] Q1 .

crl [Res] : [CS] (new [X] P) =>
{[shiftdown X] f(IO,CX,CY)} [CS] (new [X] P1)

if CS1 := [shiftup X] CS /\
[CS1] P => {f(IO,CX,CY)} [CS1] P1 /\
(not X{0} in (CX CY)) .

crl [Res] : [CS] (new [X] P) => {tauAct} [CS] (new [X] P1)
if [CS] P => {tauAct} [CS] P1 .

crl [Res] : [CS] (new [X] P) =>
{[shiftdown X] b(o,CX,Z)} [Z{0} CS] new[X]([ Y := Z{0} ] P1)
if Z := genQid(X{0} CS freenames(P)) /\

[[shiftup X] CS] P => {b(o,CX,Y)} [CS1] P1 /\
X{0} =/= CX .

crl [Open] : [CS] (new[X] P) => {[shiftdown X] b(o,CY,X)} [X{0} CS1] P1
if CS1 := [shiftup X] CS /\

[CS1] P => {f(o,CY,X{0})} [CS1] P1 /\ X{0} =/= CY .

crl [If] : [CS1] (if CX = CX then P else Q fi) => {A} [CS2] P1
if [CS1] P => {A} [CS2] P1 .

crl [Else] : [CS1] (if CX = CY then P else Q fi) => {A} [CS2] Q1
if CX =/= CY /\ [CS1] Q => {A} [CS2] Q1 .

crl [Rep] : [CS1] (! P) => {A} [CS2] P1
if [CS1] (P | (! P)) => {A} [CS2] P1 .

endm

21

403

goodelle
Rectangle



13
Thin Middleware for

Ubiquitous Computing

Koushik Sen
Gul Agha

13.1 INTRODUCTION

As Donald Norman put it in his popular book Invisible Computers [12], “a good
technology is a disappearing technology.” A good technology seamlessly permeates
into our lives in such a way that we use it without noticing its presence. It is invisible
until it is not available. Ever since the invention of microprocessors, many computer
researchers have strived to make computer technology a “good” technology.

Advances in chip fabrication technology have reached a point where we can physi-
cally make computing devices disappear. Bulkier machines have given way to smaller
yet more powerful personal computers. It has become possible to implant a complete
package of a microprocessor with wireless communication, storage, and a sensor on
a cubic millimeter silicon die [8]. Specialized printers print out computer chips on
a piece of plastic paper [6]. Computer chips are woven into on a piece of fabric [9].
“Smart labels” (a.k.a passive RFID tags) [7] will soon be attached to every product
in the market.

The growth of devices with embedded computers will provide task-oriented, simple
services which are highly optimized for their operating environment. More user
oriented, human friendly services may be created by networking the embedded nodes,
and coordinating their software services.

Composing existing component services to create higher-level services has been
promoted by CORBA, DCOM, Jini, and similar middleware platforms. However,
these middleware services were designed without paying much attention to resource
management issues pertinent to embedded nodes: the middlewares tend to have large

201

404

goodelle
Text Box
Appendix AH: 

goodelle
Rectangle



footprints that do not fit into the typically small memories of tiny embedded com-
puters. Thus there is a need for a middleware which allows components to be glued
together without a large overhead.

Embedded nodes are autonomous and self contained. They have their own state
and a single thread of control, and a well defined interface for interaction. Interaction
between nodes is asynchronous in nature. The operating environment for these de-
vices may be unreliable. For these reasons, the interaction between different devices
must be arms-length – the failure of one device should not affect another. For exam-
ple, consider an intelligent home where the clock is networked to the coffee maker
and an alarm also triggers the coffee maker. An incorrectly operating coffee maker
should not cause the alarm clock to fail to operate. The autonomy and asynchrony in
the model we describe helps ensure such fault containment.

Embedded nodes are typically resource constrained – they have small communi-
cation range, far less storage, limited power supply, etc. These resource limitations
have a number of consequences. Small memory means that not every piece of code
that may be required over the lifetime of a node can be pre-loaded onto the node.
Limited power supply means that certain abstractions, such as those requiring busy
waiting to implement, may be too expensive to be practical.

We propose thin middleware as a model for network-centric, resource-constrained
embedded systems. There are two aspects to the thin middleware model. First, we
represent component services as Actors [1, 3]. The need for autonomy and asynchrony
in resource-constrained networks of embedded nodes makes Actors an appropriate
model to abstractly represent services provided by such systems. Service interac-
tions in the thin middleware are modeled as asynchronous communications between
actors. Second, we introduce the notion of meta-actors for service composition and
customization. Meta-actors represent system level behavior and interact with actors
using an event-based signal/notify model.

13.2 ACTORS

Actors [1, 3] were developed as a basis for modeling distributed systems. An actor
encapsulates a state, a set of procedures which manipulate the state, and a thread of
control. Each actor has a unique mail address and a mail buffer to receive messages.
Actors compute by serially processing messages queued in their mail buffers. An
actor waits if its mail buffer is empty. Actors interact by sending messages to each
other.

In response to a message, an actor carries out a local computation (which may
be represented by any computer program) and three basic kinds of actions (see Fig-
ure 13.1):

Send messages: an actor may send messages to other actors. Communication is
point-to-point and is assumed to be weakly fair: executing a send eventually
causes the message to be buffered in the mail queue of the recipient. Moreover,
messages are by default asynchronous and may arrive in an order different from
the one in which they were sent.

Create actors: An actor may create new actors with specified behaviors. Initially,
only the creating actor knows the name of the new actor. However, actor names
are first class entities which may be communicated in messages; this means

202

405

goodelle
Rectangle



Communication

Behaviour

Mail Queue Transmitter

Methods

State

Actor

. . .

Fig. 13.1 Actor Model: Actors are concurrent objects that interact via asynchronous mes-
sages.

that coordination patterns between actors may be dynamic and the system is
extensible.

Become ready to accept a message: The actor becomes ready to process the next
message in its mail queue. If there is no message in its mail queue, the actor
waits until a new message arrives and processes it.

Asynchronous message passing is the distributed analog of method invocation in
sequential object-oriented languages. The send and create operations can be thought
of as explicit requests, while the ready operation is implicit at the end of a method.
That is, actors do not explicitly indicate that they are ready to receive the next message.
Rather, the system automatically invokes ready when an actor method completes.

Actor computations are abstractly represented using actor event diagrams as illus-
trated in Figure 13.2. Two kinds of objects are represented in such diagrams: actors
and messages. An actor is identified with a vertical line which represents the life-line
of the actor. The darker parts on the line represent the processing of a message by the
actor. The actor may create new actors (dotted lines) and may send messages (solid
lines) to other actors. The messages arrive at their target actors after arbitrary but
finite delay and get enqueued at the target actor’s mail queue.

Note that the nondeterminism in actor systems results from possible shuffles of the
order in which messages are processed. There are two causes of this nondeterminism.
First, the time taken by a message to reach the target actor depends on factors such as
the route taken by the message, network traffic load, and the fault-tolerance protocols
used. Second, the order in which messages are sent may itself be affected by the
processing speed at a node and the scheduling of actors on a given node. Nondeter-
minism in the order of processing messages abstracts over possible communication
and scheduling delays.

203

406

goodelle
Rectangle



Create Actor

Computation

Messages

Fig. 13.2 Actor event diagram

The nondeterministic model of concurrency provides a loose specification. Prop-
erties expressed in this model state what may, or what must, eventually happen. In
reality, the probability that, for example, a message sent at a given time will be re-
ceived after a million years is practically infinitesimal. One way to express constraints
on the arbitrary interleavings resulting from a purely nondeterministic model is by
using a probabilistic model. In such a model, we associate a probability with each
transition which may depend on the current state of the system. Our specifications
then say something about when something may happen with a given probability. We
discuss a probabilistic model in some more detail below.

13.2.1 Probabilistic Discrete Real-time Model

Traditional models of concurrent computation do not assume a unique global clock
– rather each actor is asynchronous (for example, see [3, 2]). However, when mod-
eling interaction of the physical world with distributed computation, it is essential to
consider guarantees in real-time. Such guarantees are expressed in terms of a unique
global time or wall clock and the behavior of all devices and nodes is modeled in
terms of this reference time (for example, see [11, 14, 13, 10]). This amounts to a
synchronous model of actors and it implies a ’tight coupling’ in the implementation
of actors; network and scheduling delays, as well as clock drift on the nodes, must be
severely restricted.

In network embedded systems, a number of factors make a tight coupling in the
implementation of actors infeasible. For example, the operation of some embedded
devices may be unreliable, and message delivery may have nondeterministic delays
due to transmission failures, collisions, and message loss. So in large network embed-

204

407

goodelle
Rectangle



1ms

0 ms

2 ms

Actor 1 Actor 2 Actor 3

Computations

p=0.3

p=0.1

p=0.2

p=07

p=0.8

p=0.5

p=0.9

Create Actor

Messages

Fig. 13.3 Probabilities to capture nondeterminism in computation and communication

ded systems, it is not feasible to maintain a unique reference clock. The introduction
of probability in the operations can be thought of as an intermediate synchronization
model. In a probabilistic model, we assume that the embedded nodes agree on a global
clock, but their drift from the clock is only probabilistically bound. Such probabilities
replace the qualitative nondeterminism in computation and communication.

We assume the actors and the messages in transit form a soup. The components
of the system follow a reference clock with some probability. The global time of
the whole system (soup) advances in discrete time steps. The time steps can be
compressed and stretched, depending on the kind of property we want to express. For
example, the time step can be set to one second or it may be set to one millisecond. The
global time of the system advances by one step when all the actions (computation
and communication) that are possible in that time step have happened (see Figure
13.3). We associate a local clock with each actor and it advances with every global
time step. However, it is reset to zero when the actor consumes a message. The clock
remains zero when the actor is idle.

At a given time step an actor may be in one of three states:
� ready to process a message from its mail queue,
� busy computing, or
� waiting, because there is no message in mail queue.

If the actor is in either of the first two states, it can take the following actions:
� complete the computation in its current time step; or,
� delay its computation by one time step.

205

408

goodelle
Rectangle



In the first case, the local clock of the actor remains same and so it is open to other
actions in that time step. However, for the second action the local clock of the actor
advances by one time step and hence, all possible actions of that actor get disabled for
that time step. The two actions get enabled once the global time advances to the next
time step. As a function of the state of the system, we associate different probabilities
with each of the two actions.

Similarly, at a given time step a message can take three actions:

� it can get enqueued at the target actor,
� it can get lost and thus removed from the soup, or
� it can get delayed, in transit, by one time step.

If a message is delayed in transit, the local time of the message advances by one
time step and so the message cannot take any more actions in that global time step.
However, all the three actions will get enabled once the global time advances to the
next step. Probabilities are associated with each action. The probabilities depend on
factors such as the message density in the route taken by the message, the time for
which it has been delayed (value of local clock of the message), and the number of
messages sharing the same communication channel.

A computation path is defined as a sequence of states that the system has seen in the
course of its computation. Note that the system retains the same computation paths
as it would have in a nondeterministic model of concurrency. The probability that a
particular finite sequence of states in a path will occur is obtained by multiplying the
probabilities of all the actions in that sequence of states. Some of these probabilities
will grow sufficiently small that they will no longer be relevant to the proof of some
properties of our interest.

Using the above model, we can express properties of the form: “Within time
�
,

the system will reach a state which satisfies a property � with probability � .” For
example:

� the alarm clock will ring at 7:00 a.m. with probability 0.99.
� the microwave will complete popping 95% of the popcorn by 10 a.m. with

probability 0.98.

In implementing probabilistic timing specifications, one constrains the system level
behavior which involves networks of heterogeneous nodes. A middleware provides
a uniform interface to access such nodes. We represent the middleware itself as a
collection of actors. The model we describe enables dynamic customizability of the
execution environment of an actor in order to satisfy properties such as timing and
security.

13.3 REFLECTIVE MIDDLEWARE

A key requirement for middleware is that it must enable dynamic customization – so
that services can be pushed in and pulled out at runtime. This scheme of pushing-
in and pulling-out of services allows the middleware to keep on a node only those
services that are required by an application. The result is a light weight middleware.

206

409

goodelle
Rectangle



Application

Image of application

Middleware

Image of middleware components

Reify
(inspect 
middleware)

(modify
Reflect

components)
middleware

Fig. 13.4 Reflection: Application can inspect and modify middleware components.

Because an application may be aware of system level requirements for timing,
security, or messaging protocols, it needs to have access to the underlying system.
We support the ability of an application to modify its system level requirements by
dynamically changing the middleware through the use of computational reflection.

A reflective middleware provides a representation of its different components to
the applications running on top of it. The applications can inspect this representation
and modify it. The modifications made to the components are immediately mirrored
to the application. In this way, applications can dynamically customize the different
components of the middleware through reflection (see Figure 13.4).

We use the meta-actor extension of actors to provide a mechanism of architectural
customization [5]. A system is composed of two kinds of actors: base actors and
meta-actors. Base actors carry out application-level computation, while meta-level
actors are part of the runtime system (middleware) that manages system resources
and controls the base-actor’s runtime semantics.

13.3.1 Meta-architecture

From a systems point of view, actors do not directly interact with each other: instead,
actors make system method calls which request the middleware to perform a particular
action. A system method call which implements an actor operation is always ’block-
ing’: the actor waits till the system signals that the operation is complete. Middleware
components which handle system method calls are called meta-actors. A meta-actor
executes a method invoked by another actor and returns on the completion of the
execution. The requisite synchronization between an actor and its meta-actor is fa-
cilitated by treating the meta-actor as a passive object: it does not have its own thread
of control. Instead, the calling object is suspended. In other words, an actor and its

207

410

goodelle
Rectangle



Actor

Meta
Actor

Meta
Actor

System Method
Invocation Path

Single Thread

Actor

Meta
Actor

Meta
Actor

System Method
Invocation Path

Single Thread

System

   Node

Meta−level stacks

Message queue
Message queue

Fig. 13.5 Stacks of meta-level actors in an embedded node.

meta-actor are not concurrent – the latter represents the system level interpretation of
the behavior of the former.

A meta-actor is capable of customizing the behavior of another actor by executing
the method invoked by it. An actor customized in this fashion is referred to as the base
actor relative to its meta-actor. To provide the most primitive model of customization
a meta-actor can customize a single base-actor. However, multiple customizations
may be applied to a single actor by building a meta-level stack, where a meta-level
stack consists of a single actor and a stack of meta-actors (see Figure 13.5). Each
meta-actor customizes the actor which is just below it in the stack. Messages received
by an actor in a meta-level stack are always delegated to the top of the stack so that
the meta-actor always controls the delivery of messages to its base-actor. Similarly
messages sent by an actor pass through all the meta-actors in the stack.

We identify each operation of a base-actor as a system method call as follows.

� send(msg): This operation invokes the system method transmit with msg
(msg is the message sent by the actor) as argument. If the actor has a meta-
actor on its top it calls the transmit method of the meta-actor and wait for its

208

411

goodelle
Rectangle



transmit(msg) create(beh) ready()

Meta−actor

ready()create(beh)send(msg)

msg
beh

()

Base Actor

 ()  a

msg

Fig. 13.6 Interaction between meta-actor and base actor

return. The method returns without any value. Otherwise, if the actor is not
customized by a meta-actor, it passes the message to the system for sending.

� create(beh): This operation invokes the system method create with the
given beh (beh is the behavior with which the newly created actor will be
instantiated) as argument. If there is a meta-actor on top of the actor, it calls the
create method of the meta-actor and waits for its return. The method returns
the address a of the new actor. Otherwise, the actor passes the create request
to the system.

� ready(): The system method ready is invoked when an actor has completed
processing the current message and is waiting for another message. If the actor
has a meta-actor on top it calls the ready method of the meta-actor and waits
for its return. The method returns a message to the base-actor. Otherwise, the
actor picks up a message from its mail queue and processes it. Notice, there is
a single mail-queue for a given meta-level stack.

The method call-return mechanism for different actor operations and the availabil-
ity of a single queue for a meta-level stack makes the execution of a meta-level stack
single threaded. So explicit scheduling of each actor in the stack is not required. The
meta-actors behave as reactive passive objects which respond only when a system
method is invoked by its base actor. The single thread implementation of a meta-level
stack is important, as most of the embedded devices can have a single thread only.
An example of such a embedded OS is TinyOS which runs on motes.

Every meta-actor has a default implementation of the three system methods. These
implementations may be described as follows:

209

412

goodelle
Rectangle



� transmit(msg): If there is a meta-actor on its top, it calls transmit(msg)
method of that meta-actor and waits for it to return. Otherwise, it asks the
system to send the message to the target and returns.

� create(beh): If the actor has a meta-actor at its top, it calls create(beh)
method of that meta-actor and waits for the actor to return with an actor address.
Otherwise, the actor passes the create request to the system and waits till it gets
an actor address from the system. After receiving new actor address, the actor
returns it to the base actor.

� ready(): If there is a meta-actor on top of it, it calls ready() method of
that meta-actor and waits for it to return a message. Otherwise, the actor, by
definition located at the top of the meta-level stack, dequeues a message from
the mail queue. After getting the message, the actor returns the message to the
base actor.

actor Encrypt(actor receiver)
�

// Encrypt outgoing
// messages if they
// are targeted to
// the receiver
method transmit(Msg msg)

�

actor target = msg.dest;
if (target == receiver)

target � encrypt(msg);
else

target � msg;
return;�

�

actor Decrypt()
�

// Decrypt incoming messages
// targeted for
// base actor (if necessary)
method ready()

�

Msg msg = ready();
if (encrypted(msg))

return(decrypt(msg));
else

return(msg);�
�

Fig. 13.7 Meta-Level Implementation of Encryption: The Encrypt meta-actor inter-
cepts transmit signals and encrypts outgoing messages. The Decrypt policy actor inter-
cepts messages targeted for the receiver (via the rcv method) and, if necessary, decrypts an
incoming message before delivering it.

As an example of how we may customize actors under this model, consider the
encryption of messages between a pair of actors. Figure 13.7 gives pseudo-code for
a pair of meta-actors which may be installed at each endpoint. The Encrypt meta-
actor implements the transmit method which is called by the base-actor while
sending a message. Within transmit, a message is encrypted before it is sent to
its target. The Decrypt meta-actor implements the ready method which is called
when the base actor is ready to process a message. Method ready decrypts the
message before returning the message to the base-actor.

The abstraction of the middleware in terms of meta-actors gives the power of
dynamic customization. Meta-actors can be installed or pulled out dynamically. This
pushing in and pulling out of meta-actors by the application itself makes it capable of
customizing the middleware. It also makes it possible to have only those middleware
components which are required by services of the current application – facilitating
our goal of thin middleware.

210

413

goodelle
Rectangle



Encrypt1
Meta
Actor

Encrypt1
Meta
Actor

Encrypt1
Pulling out Pushing in

Encrypt2

Before
After

Encrypt2
Meta
Actor

Encrypt2
Meta
Actor

Actor Actor

SystemSystem

Fig. 13.8 Dynamic Customization: Pulling out and pushing in a new meta-actor for the
implementation of encryption algorithm

13.4 DISCUSSION

We have described some preliminary work on a model of reflective middleware. We
believe that further development of thin middleware will be central to the future
integration of computing and the physical world [4]. However, many important
problems have to be addressed before such an integration can be realized. We describe
two areas to illustrate the problems. These areas relate, respectively, to the model and
implementation of middleware.

A formal model of the interaction of the properties of actors and meta-actors
has been developed in terms of a two-level semantics [15]. This model needs to
be extended to its probabilistic real-time counterpart. For example, methods for
composition of transition probabilities for actors and their meta-actors have not been
developed.

More research is required in the implementation of thin middleware. Current
implementation of reflective actor middleware has been based on high-level languages
– which necessarily assume a large infrastructure. An alternate implementation would
be in terms of a very efficient and small virtual machine which allows enforcement of
timing properties. Related problems are incrementally compiling high-level code to
such a virtual machine and supporting the mobility of actors executing on the virtual
machine.

In our view, the solution to these and related problems define an ambitious research
agenda for the coming decade.

211

414

goodelle
Rectangle



13.5 ACKNOWLEDGMENTS

The research described here has been supported in part by the Defense Advanced
Research Projects Agency (Contract numbers: F30602-00-2-0586 and F33615-01-
C-1907). We would like to thank Nadeem Jamali and Nirman Kumar for reviewing
previous versions of this paper and giving feedback.

REFERENCES

1. G. Agha. Actors: A Model of Concurrent Computation. MIT Press, 1986.

2. G. Agha. Modeling Concurrent Systems: Actors, Nets, and the Problem of
Abstraction and Composition. In 17th International Conference on Application
and Theory of Petri Nets, Osaka, Japan, June 1996.

3. G. Agha, I. A. Mason., S. F. Smith, and C. L. Talcott. A foundation for actor
computation. Journal of Functional Programming, 7:1–72, 1997.

4. Gul A. Agha. Adaptive middleware. Communications of the ACM, 45(6):30–32,
June 2002.

5. M. Astley and G. Agha. Customization and composition of distributed objects:
Middleware abstractions for policy management. In Proceedings of the Sixth
International Symposium of Foundations of Software Engineering, pages 1–9,
1998.

6. S. B. Fuller, E. J. Wilhelm, and J. M. Jacobson. Ink-jet printed nanoparticle
microelectromechanical systems. Journal of Microelectromechanical Systems,
11(1):54–60, 2002. http://www.media.mit.edu/molecular/projects.html.

7. AIM. Inc. http://www.aimglobal.org/technologies/rfid/.

8. J. M. Kahn, R. H. Katz, and K. S. J. Pister. Mobile Networking for Smart Dust.
In ACM/IEEE Intl. Conf. on Mobile Computing and Networking (MobiCom 99),
Seattle, WA, August 1999. http://robotics.eecs.berkeley.edu/ pister/SmartDust/.

9. MIT Media Lab. http://lcs.www.media.mit.edu/projects/wearables/.

10. B. Nielsen and G. Agha. Semantics for an Actor-Based Real-Time Language.
In 4th International Workshop on Parallel and Distributed Real-Time Systems
(WPDRTS). Submitted. Naval Surface Warfare Center Dahlgren Division/IEEE,
April 1995. In conjunction with 10th IEEE Int. Parallel Processing Symposium
(IPPS), Honolulu, Hawaii, USA.

11. B. Nielsen and G. Agha. Towards reusable real-time objects. Annals of Software
Engineering: Special Volume on Real-Time Software Engineering, 7:257–282,
1999.

12. D. Norman. The Invisible Computer. The MIT Press, Cambridge, MA, USA,
1998.

212

415

goodelle
Rectangle



13. S. Ren. An Actor-Based Framework for Real-Time Coordination. PhD thesis,
Department Computer Science. University of Illinois at Urbana-Champaign,
1997. PhD. Thesis.

14. S. Ren, G. Agha, and M. Saito. A modular approach for programming distributed
real-time systems. Journal of Parallel and Distributed Computing, 36(1):4–12,
1996. Also published in School on Embedded Systems, European Educational
Forum 1996, pp 52–72.

15. Nalini Venkatasubramanian and Carolyn L. Talcott. Reasoning about meta level
activities in open distributed systems. In Symposium on Principles of Distributed
Computing, pages 144–152, 1995.

Author(s) affiliation:
� Koushik Sen, and Gul Agha

Department of Computer Science
University of Illinois at Urbana-Champaign
Email: [ksen,agha]@uiuc.edu

213

416

goodelle
Rectangle


	Task Final Report.pdf
	1 Objective 
	2  Approach 
	3  Accomplishments 
	3.1 Formal Analysis of Agent Systems 
	3.1.1 Reasoning about Agent Specifications Using Probabilistic Rewrite Theory 
	3.1.2 Monitoring and Verification of Deployed Agent Systems 

	3.2  Multi-agent Modeling 
	3.2.1 The Constraint Optimization Framework 
	3.2.2 The Dynamic Distributed Task Assignment Framework 
	3.2.3 Cellular Automata-based Modeling 

	3.3  Coordination Framework: The Dynamic Forward/ Reverse Auctioning Scheme 
	3.4 Large-scale Multi-agent Simulation: The Adaptive Actor Architecture 
	3.4.1 Adaptive Agent Distribution 
	3.4.2 Application Agent-oriented Middle Agent Services 
	3.4.3 Message Passing for Mobile Agents 
	3.4.4 AAA for UAV Simulation 
	3.4.5 Experimental Results 

	3.5  Hardware Realization: The August 2004 Demo 
	4  Publications  
	4.1 2005 
	4.2  2004 
	4.3  2003 
	4.4  2002 



	overall1_paged.pdf
	overall2_paged.pdf
	overall3_paged.pdf
	overall4_paged.pdf



