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Abstract
Summarized is a method to count the number of invariants in a lattice-

gas automata. A simple calculation proves that a deterministic FHP
lattice-gas with a definite chirality, possesses only three invariants: the
total mass and the two components of momentum. This model in some-
what simpler than FHP and is time reversible.

1 Introduction

The discovery that a very simple cellular automaton model, the Frisch, Hass-
lacher, and Pomeau (FHP) model [1], using only six bits of memory at each
point in space reproduces hydrodynamics in its macroscopic limit has stim-
ulated many investigations of the new domain of discrete kinetic equations.
This domain, broadly termed lattice-gas dynamics, has to date expanded its
scope beyond incompressible hydrodynamics to thermodynamics, multiphase
phenomena, magnetohydrodynamics, reaction-diffusion systems, and seems to
be continuing its growth. Given the conceptual importance of a simple lattice-
gas model with its ability to simulate so many, the question arises if their exists
a lattice-gas cellular automaton model even simpler than FHP that yet has no
more than three invariants: the total mass and the two components of momen-
tum. A very simple calculation, similar to that previous done [2], shows there
indeed exists a simpler model.

It is well known that symmetric 3-body collisions must be included along
with the FHP model’s even and odd chirality 2-body collisions to achieve the
correct macroscopic limit1. However, the fact that both even and odd 2-body
collision possibilities are present, dictates when a 2-body collision occurs, a coin
toss must also occur to determine the outgoing state. This coin toss makes the
FHP model irreversible. Clearly if the model is constrained to have a definite
chirality, say for example 2-body collisions generated by π

3 rotations are retained
while 2π

3 collisions are discarded, then the lattice-gas would be strictly reversible.
But does this additional constraint of a fixed chirality engender any spurious
invariants? The answer is no, see the results given in §3.2 for the proof.

1Anitsymmetric 3-body collisions, 2-body collision with a spectator particle, could also be
included but this is not necessary.
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2 Some Preliminaries

Symbols used

Spatial Unit : l

T emporal Unit : τ

Particle Speed : c =
l

τ
# Momentum Directions : B

Lattice V ectors : êa

a = 1, 2, . . . , B

Distribution Function : fa

Collision Operator : Ωa

Jacobian Matrix : Jab

It should be understood that whenever the single particle distribution function
is written, its subscripted index is taken modulo B

fa+b = f mod B(a+b). (1)

The lattice Boltzmann equation is

∂tfa + ceai∂ifa = Ωa. (2)

A general collision operator is constructed as follows

Ωa =
∑
{ζi}

αQa({ζi}), (3)

where {ζi} is a set of occupied particle states and α = ±1 is a scalar coefficient
and where each term in the sum is written in factorized form as

Qa(i1, . . . , ik) =
fa+i1

1 − fa+i1

· · · fa+ik

1 − fa+ik

B∏
j=1

(1 − fa+j). (4)

We expand the distribution function about its equilibrium value, f eq

fa = f eq + δfa (5)

so that, to first order, we have

Ωa(f eq) =
∑

b

∂Ωa

∂fb
δfb. (6)

The l.h.s. of (6) must vanish, since the particle distribution is non-changing
under equilibrium conditions. The eigenvalues of the Jacobian of the collision
operator,

Jab =
∂Ωa

∂fb
, (7)
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can be calculated and the number of these that vanish must equal the number
of invariant quantities in the lattice-gas dynamics. Because of the finite-point
group symmetry of the spatial lattice, the Jacobian matrix will be circulant and
therefore its elements can be specified by the difference of their indices, Jab =
Ja−b. This property of the Jacobian simplifies the solution of the eigenvalue
equation ∑

b

Ja−bξ
k
b = λkξk

a , (8)

where k = 1, . . . , B. Let us make the ansatz that the eigenvectors have the
following form

ξk
a = e2πiak/B . (9)

Then inserting (9) into (8) and taking m = a − b, gives

λk =
∑
m

Jme2πimk/B . (10)

3 Triangular Lattice: B=6

3.1 Eigenvectors

Using (9), the eigenvectors of the Jacobian matrix are

ξ0 = (1, 1, 1, 1, 1, 1) (11)
ξ1 = (ε, ε∗,−1, ε, ε∗, 1) (12)
ξ2 = (ε∗, ε, 1, ε∗, ε, 1) (13)
ξ3 = (−1, 1,−1, 1,−1, 1) (14)
ξ4 = (ε, ε∗, 1, ε, ε∗, 1) (15)
ξ5 = (ε∗, ε,−1, ε∗, ε, 1), (16)

where ε = ei π
3 .

3.2 Definite Chirality Models

Even chirality:

Ωa = Qa(1, 4) − Qa(0, 3) + Qa(1, 3, 5) − Qa(0, 2, 4) (17)

Ω0 = − (f0 (1 − f1) (1 − f2) f3 (1 − f4) (1 − f5)) +
(1 − f0) f1 (1 − f2) (1 − f3) f4 (1 − f5) −
f0 (1 − f1) f2 (1 − f3) f4 (1 − f5) +
(1 − f0) f1 (1 − f2) f3 (1 − f4) f5

J = circ[(−1 + f)2 f2,−
(
(−1 + f)2 f2

)
, (−1 + f)2 f3

(1 − 2 f) (−1 + f)2 f2, (−1 + f)2 f2 (−1 + 2 f) ,−
(
(−1 + f)2 f3

)
]
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λ0 = 0
λ1 = 0
λ2 = 2 ε (1 + ε) (−1 + f)3 f2

λ3 = −6 (−1 + f)2 f3

λ4 = 2 ε (1 + ε) (1 − f)3 f2

λ5 = 0

There are only three zero eigenvalues, so this even chirality model is sufficient.
Odd chirality:

Ωa = Qa(2, 5) − Qa(0, 3) + Qa(1, 3, 5) − Qa(0, 2, 4) (18)

Ω0 = − (f0 (1 − f1) (1 − f2) f3 (1 − f4) (1 − f5)) −
f0 (1 − f1) f2 (1 − f3) f4 (1 − f5) +
(1 − f0) (1 − f1) f2 (1 − f3) (1 − f4) f5 +
(1 − f0) f1 (1 − f2) f3 (1 − f4) f5

J = circ[(−1 + f)2 f2,−
(
(−1 + f)2 f3

)
, (−1 + f)2 f2 (−1 + 2 f) ,

(1 − 2 f) (−1 + f)2 f2, (−1 + f)2 f3,−
(
(−1 + f)2 f2

)
]

λ0 = 0
λ1 = 0
λ2 = 2 (1 + ε) (−1 + f)3 f2

λ3 = −6 (−1 + f)2 f3

λ4 = 2 (1 + ε)2 (−1 + f)3 f2

λ5 = 0

There are only three zero eigenvalues, so this odd chirality model is sufficient.

3.3 FHP

Ωa =
1
2
Qa(1, 4) +

1
2
Qa(2, 5) − Qa(0, 3) + Qa(1, 3, 5) − Qa(0, 2, 4) (19)

Ω0 = − (f0 (1 − f1) (1 − f2) f3 (1 − f4) (1 − f5)) +
(1 − f0) f1 (1 − f2) (1 − f3) f4 (1 − f5)

2
−

f0 (1 − f1) f2 (1 − f3) f4 (1 − f5) +
(1 − f0) (1 − f1) f2 (1 − f3) (1 − f4) f5

2
+

(1 − f0) f1 (1 − f2) f3 (1 − f4) f5
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J = circ[(−1 + f)2 f2,
−

(
(−1 + f)2 f2 (1 + f)

)

2
,
(−1 + f)2 f2 (−1 + 3 f)

2
,

(1 − 2 f) (−1 + f)2 f2,
(−1 + f)2 f2 (−1 + 3 f)

2
,
−

(
(−1 + f)2 f2 (1 + f)

)

2
]

λ0 = 0
λ1 = 0
λ2 = (1 + ε)2 (−1 + f)3 f2

λ3 = −6 (−1 + f)2 f3

λ4 = (1 + ε) (1 + 2 ε) (−1 + f)3 f2

λ5 = 0

There are only three zero eigenvalues, so as is well known the FHP model is
sufficient.

3.4 FHP Without 3-Body Collisions

Ωa =
1
2
Qa(1, 4) +

1
2
Qa(2, 5) − Qa(0, 3) (20)

Ω0 = − (f0 (1 − f1) (1 − f2) f3 (1 − f4) (1 − f5)) +
(1 − f0) f1 (1 − f2) (1 − f3) f4 (1 − f5)

2
−

(1 − f0) (1 − f1) f2 (1 − f3) (1 − f4) f5

2

J = circ[(1 − f)3 f2,
(−1 + f)3 f2

2
,
(−1 + f)3 f2

2
, (1 − f)3 f2,

(−1 + f)3 f2

2
,
(−1 + f)3 f2

2
]

λ0 = 0
λ1 = 0
λ2 = (1 + ε)2 (−1 + f)3 f2

λ3 = 0
λ4 = (1 + ε) (1 + 2 ε) (−1 + f)3 f2

λ5 = 0

There are four zero eigenvalues, one to many, so as is well known the FHP model
without 3-body collisions is insufficient.
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4 Conclusion

A simpler model than the original two-dimensional FHP lattice-gas automaton
for simulating subsonic, viscous hydrodynamics does exist. It is interesting that
although the chirality of its collisions is definite, no spurious invariants appear in
the macroscopic limit and, furthermore, that this lattice-gas automaton is time
reversible invariant. The observation that a fixed chirality lattice-gas model
can have the correct macroscopic limit is interesting for the two-dimensional
hexagonal lattice. However, in the case of the three-dimensional face-centered
hypercubic (fchc) lattice [3], this observation should have more practical value
in helping to reduce the number of collisions. The are 24 nearest neighbors in
fchc, so a full collision table has 224 entries. For parallel computers such as
the CAM-8 and CM-5, implementing such a large collision table is inefficient.
Compression of the fchc collision table has been explored[4]. Fixing the fchc
collision table chirality should allow additional compression.

I would like to thank Dr Bruce Boghosian of Thinking Machines Corporation
for a related discussion.
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