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Abstract

While the use of relative orbit determination has made in reducing minimizing

the difficulties inherent in tracking geostationary satellites that are in close proximity,

the problem is often compounded by stationkeeping operations or unexpected maneu-

vers. If a maneuver occurs, observations will no longer fit predicted data, increasing

the risk of misidentification and cross-tagging.

The goal of this research was to develop a model that will estimate the mag-

nitude, direction, and time of a suspected maneuver performed by a collocated geo-

stationary satellite. Relative motion was modelled using Hill’s equations, and least

squares estimation was employed to create both a linear non-maneuver model and

non-linear maneuver model. Two sets of data for an actual satellite collocation were

obtained from the Air Force Maui Optical and Supercomputing (AMOS) site, con-

sisting of differential right ascension and declination. Studies conducted with these

observations, along with simulation studies, indicate that it is indeed possible to per-

form maneuver estimation. It was found, however, that the amount of data required

for successful convergence is much greater than that typically obtained for tracking

purposes.
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Maneuver Estimation Model for Relative Orbit

Determination

I. Introduction

1.1 Background

The concept of the geosynchronous orbit, and it’s more specific counterpart, the

geostationary orbit, has been around for more than a century. While Arthur C. Clark

became widely known for this concept in October of 1945, it was first proposed in

the early 1900’s by Russian theorist Konstantin Tsiolkovsky. This concept became a

reality in July of 1963, when Syncom 2 became the first operational geosynchronous

communications satellite [7].

Since then, the geosynchronous orbit (GEO) regime has proven to be an invalu-

able asset, so much so that the number of satellites placed in these orbits has risen

dramatically. While demand for this capability continues to increase, the available

number of orbital slot allocations continues to decrease. Consequently, many organi-

zations are choosing to collocate satellites in the same slot. In addition to intentional

collocation, cases now exist where satellites unwittingly have been placed in a position

where one stationkeeping box overlaps another, leading to an increased vulnerability

of unintentional close approaches [4]. And of course, as in any orbital regime, an in-

crease in space debris and malfunctioning vehicles lead to another potential for close

approaches and collisions.

Whether intentional or unintentional, collocation and close approaches increase

the difficulty of identifying individual satellites within clusters and create the potential

for misidentification and cross-tagging. While various identification methods exist,

increased orbit determination accuracy is a valuable way to monitor the extent of close

approaches, thus minimizing the need for expensive precautionary collision avoidance

maneuvers. Relative motion has emerged as a potential asset in supplying spacecraft
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identification information. By using relative metric data from optical sensors and

relative equations of motion, spacecraft separations can be estimated and predicted [5].

1.2 Problem Statement

While relative orbit determination has made improvements in minimizing the

inherent difficulties in tracking objects in close proximity, the problem is often com-

pounded by stationkeeping operations or unexpected maneuvers performed by one

or more satellites. If a maneuver takes place, the observations will no longer fit the

predicted data and misidentification and cross tagging are problems once again.

1.3 Method of Solution

The goal of this research is to create a model that will estimate the magnitude,

direction, and time of a suspected maneuver performed by a collocated satellite. Rel-

ative orbit determination and least squares estimation are employed to create both a

linear non-maneuver model and non-linear maneuver model. Observations, obtained

from the Air Force Maui Optical and Supercomputing (AMOS) site, consist of dif-

ferential right ascension and declination, and dynamics will be modelled using Hill’s

equations.
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II. Literature Review

2.1 Optical Observations

2.1.1 Fundamentals - Celestial Sphere Geometry. [8, 15]

Most celestial objects observed from Earth are at a distance many times greater than

that of the earth’s radius, giving each an apparent fixed position on the inner surface

of a celestial sphere. This discussion then, will begin with definitions associated with

the celestial sphere, see Figure 2.1.

Figure 2.1: Geometry of the Celestial Sphere

The celestial equator is the plane passing through the earth’s equator which

intersects the celestial sphere. The celestial poles are defined as the intersection of

the celestial sphere with the rotation axes of the earth, both north and south. A great

circle is the intersection of the celestial sphere with any plane passing through the

center of the sphere. An hour circle is one such great circle. Hour circles are defined

as great circles that pass through the celestial poles and are thus perpendicular to the

celestial equator.

Another important concept involves the revolution of the earth about the sun,

or as seen from the observer, the apparent motion of the sun about the earth. The
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mean plane of the earth’s orbit around the sun is called the ecliptic plane and is in-

clined approximately 23.5 deg with respect to the earth’s mean equator. The apparent

motion of the sun on the celestial sphere as seen from the earth follows the ecliptic

plane. The intersection of the earth’s equatorial plane with the ecliptic plane creates

a line connecting the equinoxes, or line of nodes. The point of intersection where

the apparent sun crosses the celestial equator from south to north is termed the first

point of Aries, or the vernal equinox.

This framework provides a method for defining the position of objects in space.

Using the celestial equator as the fundamental plane and the vernal equinox as a

reference point or principal direction, it is possible to define two angular coordinates

which uniquely determine the direction of an object with respect to the celestial

sphere. Two such angular coordinates are right ascension and declination. Right

ascension is the angle measured east from the vernal equinox to the particular hour

circle passing through the object being observed. Declination is the angle measured

from the celestial equator to the position of the object. [8, 15]

2.1.2 The Raven Telescope. The Raven telescope, developed by the Air

Force in 1995, is an optical sensor designed to provide high accuracy, deep space

observations. Made entirely of commercial-off-the-shelf (COTS) products and fully

automated, the .36m Raven performs ballistic tracking with subarcsecond accuracy.

The telescope captures images using a charge-coupled device (CCD) with a field of

view of 43 x 29 arcseconds. Given this field of view, it is possible to simultaneously

track multiple satellites in geosynchronous orbits [12]. CCD images of satellite clusters

provide more accurate metrics of vehicle separation since error sources introduced in

the observation process are common to each satellite in that frame. Satellite position

is then computed using astrometry techniques.

Originally, only one track mode, called sidereal mode, was used. By slewing the

telescope at the sidereal rate, stars would appear as points while satellites appeared as

streaks. The end points of each streak were then compared with the stellar background
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and the time of camera shutter opening or closing was recorded. While this method

allowed for accurate fits to the star field, satellite endpoint streak detection introduced

a lot of uncertainty. The next mode employed was called stare mode and involved

maintaining a stationary telescope position for the duration of the image. In this

mode, all of the stars as well as the non-geostationary satellites appeared as streaks,

resulting in undesired image clutter. In addition to this issue, stare mode did not

alleviate the streak endpoint detection uncertainty. The most recent tracking mode

development successfully employed by Raven is termed ballistic or rate track mode. In

this mode, the telescope follows the satellite for the duration of the image, producing

a point for the satellite and streaks for stars, thus replacing the endpoint detection

issue with a centroiding approach [3,12]. A Raven image obtained using this method

is shown in Figure 2.2.

Figure 2.2: Raven Image

2.1.3 Topocentric to Geocentric Conversion. When using optical observa-

tions it is essential to note the coordinate system in which they are expressed. A

geocentric coordinate system has its origin located at the center of the earth while a

topocentric coordinate system has its origin translated from the center of the earth

to the position of the telescope located on the surface of the earth. In addition to the
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translation of origins, the transformation between the two frames involves rotations

through the local sidereal time and the compliment of the geodetic latitude. Raven,

along with many other earth based optical telescopes, outputs observations expressed

in the topocentric frame. Geocentric observations are desirable for the purposes of this

research; consequently, it is necessary to perform the appropriate coordinate trans-

formation. The following formulation, shown in Vallado (taken from Orbital Motion

by Archie E. Roy), determines the geocentric values of right ascension (α) and dec-

lination (d) from the same values in the topocentric frame, αt and dt, respectively.

This formulation also requires the site position magnitude, rsite,and the slant range,

ρ. For the purposes of this research, ρ will be defined using an average range for a

geostationary satellite of 39149 km.

tan αt − α =

rsite

ρ
cos φgc sin αt − θLST

cos dt + rsite

ρ
cos φgc cos αt − θLST

(2.1)

where φgc is the geocentric latitude, measured positively north from the equator, and

θLST is the local mean sidereal time, measured positively to the east from the site.

The temporary variable γ is used to complete the formulation:

tan γ =
tan φgc cos

(

αt−α
2

)

cos
(

αt+α
2

− θLST

) (2.2)

tan dt − d =

rsite

ρ
sin φgc sin dt − γ

sin γ + rsite

ρ
sin φgc cos dt − γ

(2.3)

For a more rigorous derivation of the above equations, see Roy(1988,64-67) [15].

2.2 Least Squares Estimation

The motion of an orbiting body about the Earth is modeled using equations of

motion, the most basic of which is the two-body equation. This equation describes

an orbit using six orbital elements. Hence, when determining the path of an orbiting

body using optical measurements of right ascension and declination, it is necessary

to obtain at least three measurements - six known values result in six solvable values.
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Typically however, more than three observations are obtained, and all are assumed

to contain some error. This first became an issue in the early 1800’s. In response to

a mysterious data arc, later shown by Gauss’ methods to be the astroid Ceres, Gauss

developed the theory of probability, leading to the Principle of Maximum Likelihood

and the method of Least Squares in its full, non-linear form [17].

2.2.1 The Principle of Maximum Likelihood. [17]

Given N independent measurements xi of the value we want to know x0, the

joint probability is simply the product of the individual Gaussian distributions

P (x1, x2, . . . xN) = (2π)
−N

2

[

N
∏

i=1

σ−1
i

]

× exp

(

−
N

∑

i=1

(xi − x0)
2

2σ2
i

)

(2.4)

where σi is the standard deviation of each instrument used to obtain measurements.

Gauss then proposed that since the true value x0 is unobtainable, it is reasonable to

replace x0 with an estimate x̄.

P (x1, x2, . . . xN) = (2π)
−N

2

[

N
∏

i=1

σ−1
i

]

× exp

(

−
N

∑

i=1

(xi − x)2

2σ2
i

)

(2.5)

Subsequently, the closest value to the truth is found when the estimate maximizes the

probability of having gotten the true value. This is shown mathematically when the

argument of the exponential in Equation(2.5) is minimized, or its derivative is driven

to zero.
d

dx̄

N
∑

i=1

(xi − x̄)2

2σ2
i

= 0 (2.6)

Thus the name the method of least squares.

2.2.2 Linearized Dynamics and the State Transition Matrix. [17]

In most estimation problems, the estimate of multiple values is required. One portion

of this thesis, for example, is interested in determining the position and velocity

differences between two satellites. These values are typically organized in the form of
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a system state vector, x. How the state vector changes with time can be expressed

using the equations of motion
dx

dt
= g(x, t) (2.7)

or the explicit solution in terms of the initial state and time

x(t) = h(x(t0), t) (2.8)

Either of these equations specify how the true state x0, the estimated state x̄, and

any nearby trajectories change with time.

Assuming that the estimate of the true state is close to the actual state, it is

helpful to determine how two close orbits behave with respect to each other. This

allows x = x0 + δx to be substituted into the equations of motion. Equation (2.7)

then becomes
dx

dt
= g(x0 + δx, t) (2.9)

Expanding g in a Taylor series about the true trajectory yields

dx

dt
≈ g(x0, t) + ∇xg(x0, t)δx + O(2) (2.10)

leading to the well known Equations of Variation, expressed as

d

dt
δx = A(t)δx (2.11)

where

A(t) = ∇xg|x0(t) (2.12)

Because the Equations of Variation are linear ordinary differential equations, a

solution can be expressed as the sum of the components δxi of δx at t0 multiplied by
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each individual solution vector function ~φi:

δx(t) =
N

∑

i=1

δxi(t0)~φi(t) (2.13)

Equation (2.13) can now be simplified by combining the individual components δxi

into the vector δx(t0) and the associated individual solutions ~φi into the matrix Φ

yielding

δx(t) = Φ(t, t0)δx(t0) (2.14)

This equation then shows that the state transition matrix Φ describes how a change

in the initial conditions of the state propagates forward to the value of the state at

some time in the future. As stated above, the system dynamics can also be given in

the form of an actual solution in terms of the initial state and the time, Equation

(2.8). In this case, Φ can also be expressed as

Φ(t, t0) = ∇x(t0)h(x(t0), t) (2.15)

2.2.3 Linear Least Squares. [17]

When estimating the linear state of a system at the epoch time t0 it is necessary to

first look at the observations zi(ti) taken at each observation time ti. It is assumed

that each observation vector zi is independent of all other observation vectors and has

an associated instrumental covariance Qi measuring the degree of this independence.

Assuming also that there is a linear relationship between the system state and the

observations at any time ti, an observation could be expressed with the following

equation, called the observation relation

zi(ti) = Hix(ti) + ei (2.16)
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where ei is the true error in the observations. It is then possible to insert the system

dynamics into the observation relation

zi(ti) = HiΦ(ti, t0)x(t0) + ei (2.17)

Simplifying further,

zi(ti) = Tix(t0) + ei (2.18)

where Ti ≡ HiΦ(ti, t0).

It is then common to assemble all vectors and matrices for the N measurements

into larger matrices.

z ≡

















z1

z2

...

zN

















T ≡

















T1

T2

...

TN

















(2.19)

Q ≡

















Q1 0 · · · 0

0 Q2 · · · 0
...

...
. . .

...

0 0 · · · QN

















Using the method followed in Wiesel [17], the estimate of the state vector at the epoch

time x̄(t0) can be stated as follows

x̄(t0) = (T T Q−1T )−1T T Q−1z (2.20)
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with the measure of accuracy coming from the covariance matrix expressed as

Px̄(t0) = (T T Q−1T )−1 (2.21)

2.2.4 Nonlinear Least Squares. [17]

Most problems in the real world are in actuality nonlinear problems, either in their

dynamics, their observation relations, or both. Linear systems for these problems are

typically developed by making certain assumptions. While the linear system of equa-

tions may be sufficient for some applications, a more rigorous analysis is often required

prompting the usage of nonlinear dynamics and nonlinear observation geometry.

An explicit solution for the system dynamics can be represented as

x(t) = h(x(t0), t) (2.22)

As Wiesel explains, assuming the dynamics are deterministic, it should follow that

their linearization about a reference trajectory xref

δx(t) = Φ(t, t0)δx(t0) (2.23)

is valid, where δx is the desired change in the reference trajectory that will make

the reference trajectory equal to the true trajectory. Since the true trajectory x0 is

unobtainable, δx actually corrects the reference trajectory into the closest possible

estimate of the true trajectory. Also, the state transition matrix Φ, is defined as the

gradient of the solution with respect to the initial conditions

Φ(t, t0) = ∇xt0
h(x(t0), t) (2.24)

The observation relation, a function that will predict the observations given the state

vector, can be expressed as

zi(ti) = G(x(ti), ti) (2.25)
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where zi(ti) are the measurements taken at different observation times ti.

In any measurement a certain amount of error will be present. The value z0 is

the vector containing perfect measurements which would give the true state x0 and z

is the vector of actual measurements which would give the imperfect observed state

x. Assuming that the true error in the data goes to zero as the true error in the state

goes to zero, the true error in the actual data can be represented as

e = z − z0 = G(x, t) − G(x0, t)

= G(x0 + δx, t) − G(x0, t) (2.26)

≈ ∂G

∂x
δx(t)

where x = x0 + δx and the last line in this set of equations relates the error in the

state to the error in the reference trajectory. Since it is assumed that the residual r

will approximate the true error e, the equation for the residual becomes

ri = zi − G(xref (ti), ti) (2.27)

H is then defined as

Hi =
∂G

∂x
(xref (ti), ti) (2.28)

Using the same form as the last line in Equation (2.26), recognizing that the residual

is linearly related to δx, and recalling Equation (2.23), the equation for the residual

then becomes

ri ≈ Hiδx(ti) = HiΦ(ti, t0)δx(t0) (2.29)

= Tiδx(t0)

The final results, being in the same form as the linear least squares case, can

then be written as

δx(t0) = (T T Q−1T )−1T T Q−1r (2.30)

2-10



Pδx = (T T Q−1T )−1 (2.31)

and the final estimate of the trajectory is then

x̄(t0) = xref (t0) + δx(t0) (2.32)

2.3 Relative Motion

Relative motion describes the position of one satellite with respect to another.

With more satellites placed in the GEO belt, relative motion has become an increas-

ingly important tool for analysis of orbit determination and satellite position.

2.3.1 Equations of Motion. Relative equations of motion were developed

in 1878 when Hill derived a set of equations to describe the moon’s orbit around

the earth. These equations were then modified by Clohessy and Wiltshire in 1960

to describe relative motion in rendezvous operations. With the aid of several as-

sumptions, these equations are developed based on position and velocity differences

between two objects and can be solved analytically. The assumptions associated with

this formulation are as follows

1. The reference orbit is circular

2. Earth is spherically symmetric

3. The distance between objects is close when compared to their orbital radii

Due to the limiting assumptions associated with Hill’s equations, many other

sets of equations have been developed. One such set is know as the Cluster Orbits

With Perturbations Of Keplerian Elements (COWPOKE) equations. Using mean

Keplerian elements and element differences, a method of expressing the relative equa-

tions of motion for objects in non-circular orbits has been developed [13].

2.3.2 Differential Orbital Element Effects. [10]

When considering relative motion between two or more satellites, an understand-
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ing of the effects of differential orbital elements is helpful. The first consideration

in maintaining a formation of satellites is the semimajor axis a. Orbits with differ-

ent semimajor axes have different periods, resulting in rapid formation dispersion.

Avoiding this dispersion requires that the mean semimajor axis for each satellite be

the same. Next, inclination i differences result in out-of-plane separation at higher

latitudes. Because each orbit then passes over different portions of the earth, the

effects of J2 on each orbit will be slightly different as well, resulting in differences in

nodal precession rates. These differences cause orbital plane separation resulting in

increased formation separation. Differences in right ascension of the ascending node

Ω result in maximum satellite separation at the equator. Coplanar satellites achieve

along-track separation by differences in mean anomaly M , while satellites in eccentric

orbits can achieve radial separation by differences in the argument of perigee ω.

2.4 Relative Motion Applications in GEO

As organizations become aware of the slot allocation problem in GEO, more

research is being done on existing satellite clusters and unintentional close approach

encounters. This section will touch on a few such research efforts.

2.4.1 GEO Clusters. As technology develops and demand increases, avail-

able slots in the geosynchronous belt become more limited in number. Organizations

involved in communications who own one of the coveted slots look for ways to best

utilize and exploit the limited space they own. Consequently, more organizations

choose to collocate multiple satellites along the same longitude. EUTELSAT is one

such organization [9]. To ensure consistent radio and television broadcasting and

increase multi-mission capabilities, EUTELSAT has concentrated five satellites on

15 deg East. Given the system requirements, those associated with the orbit control

strategy provided the driving constraints. Two categories of constraints were identi-

fied. The first constraint, dealing with constraints due to the quality of RF service

provided, was easily simplified by coordinating the frequency plans of the satellites
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within the cluster. The second, and driving, constraint dealt with those associated

with orbit control.

2.4.1.1 Orbit Control and Stationkeeping Strategies. Several orbit con-

trol and formationkeeping strategies have been presented [3,9]. In deciding on which

strategy to employ, each organization must consider the constraints of their system.

As in the EUTELSAT system of vehicles, these constraints may include maintaining

control box parameters, propellant consumption, minimizing station keeping maneu-

vers, avoiding simultaneous maneuvers of satellites within the cluster, and addition

or removal of satellites. Many commercial communication satellites require a control

box of ±0.1 deg in both east/west and north/south directions.

Longitude Separation: This strategy involves separating the satellites by mean

longitude. For some applications, this technique is adequate. Sauer proposed this

to be the simplest way of collocating two satellites with independent missions. By

partitioning a stationkeeping deadband of ±0.1 deg into two smaller deadbands, one to

two additional satellites can be successfully collocated with an existing satellite with

minimal impact on existing stationkeeping operations [14]. Pattinson, on the other

hand, finds this technique inadequately susceptible to close approaches for clusters

consisting of several satellites with a stationkeeping cycle time of two weeks, as with

the EUTELSAT cluster located at 15 deg East [9].

Eccentricity Vector Separation: The eccentricity vector, as shown in Vallado,

can be mathematically described as,

~e =

(

v2 − µ

r

)

~r − (~r · ~v)~v

µ
(2.33)

This vector has a magnitude equal to the orbit eccentricity and always points from the

center of the Earth to the orbit perigee [15]. Eccentricity vector separation sets the

eccentricity vectors of collocated satellites in different directions while maintaining the

same longitude. This strategy produces radial separation over the orbit which may
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seem adequate, however, several problems may occur. When the satellites are sepa-

rated in the radial direction alone obstruction of one satellite by the other is possible,

leading to a disruption of mission operations. In addition to this, significant position

errors may develop due to orbit determination accuracies and maneuver performance

uncertainties which would then lead to unacceptable error ellipsoids.

Combined Eccentricity and Inclination Vector Separation: To deal with the prob-

lems created by eccentricity vector only separation, a difference in inclination is com-

monly added to the satellite cluster. As defined by Pattinson [9], the direction of

the inclination vector is determined by projecting the orbit pole onto the earth’s

equatorial plane. It is possible to orient the vector separation such that any occulta-

tions are avoided. This configuration, however, is undesirable since the risk of close

approaches is still prevalent when radial separation ceases to exist. Another configu-

ration places the inclination vector perpendicular to the eccentricity vector, allowing

for satellite separation in the north/south direction when radial separation does not

exist. While occultations are still possible, this configuration is preferred over the

previous configuration since close approach constraints are mandated while the prob-

ability of occultations is typically small. Given these two configurations, it is then

possible to optimize the orientation of the eccentricity and inclination vectors such

that the close approach constraint is met while minimizing occultations.

2.4.2 Close Approaches. Unintentional close approaches are becoming more

frequent as the GEO belt becomes more populated. Slot allocation, as determined

by the International Telecommunications Union, is based primarily on separation of

operational frequencies while physical proximity is often overlooked. This has placed

satellites, operated by different organizations, in slots with overlapping longitude

stationkeeping boxes [4]. In addition to slot allocation, there remains the ever present

possibility of vehicle failure resulting in uncontrollable drift. In August of 1997,

an uncontrolled communications satellite, Telstar 401, came within 12 kilometers of

GOES-10, an operational meteorological satellite used by the National Oceanic and
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Atmospheric Administration (NOAA) [11]. Since that time, Telstar 401 has had

over 100 close approaches with operational satellites, at distances as close as two

kilometers [1].

2.5 Chapter Outline

With this information established it is now possible to continue with the subse-

quent chapters.

Chapter Three gives the overall methodology for the non-maneuver and ma-

neuver models. Derivation of the observation function is explained, and the state

vector and dynamics for each model are discussed. The algorithm involved in each

estimation run is also presented.

Chapter Four discusses the simulation and real data sets used in this research.

Simulated data was created for one non-maneuver scenario and two maneuver scenar-

ios. In addition to simulated data, two sets of data from actual collocated satellites

are evaluated and analyzed.

Chapter Five summarizes the results of this study and offers recommendations

for future research.

2-15



III. Methodology

This chapter will discuss the process by which the relative separation between two

satellites will be estimated along with a possible maneuver and the maneuver time.

A discussion on coordinate transformations from a body-fixed frame to the geocentric

inertial frame is followed by the formulation of the observation matrix. Next the

system dynamics for both the linear and non-linear models is discussed. Finally the

algorithm implemented in the computer model is stated.

3.1 Coordinate Transformation

Geocentric inertial right ascension and declination are expressed in the earth

centered inertial frame, with unit vector n̂x pointing in the direction of the vernal

equinox, unit vector n̂z going through the North Pole, and unit vector n̂y completing

the right hand rule. Hill’s equations, on the other hand, are formulated using a

body fixed frame, with unit vector êr pointing radially away from the center of the

earth, unit vector êθ in the along track direction, and unit vector êz in the cross track

direction.

In order to properly formulate the observation function, consisting of differential

right ascension and differential declination, the position vectors of each satellite must

be expressed in the same frame. The transformation between these two frames consist

of rotations involving the right ascension of the ascending node Ω, inclination i, and

the argument of latitude u, defined as the angle measured between the ascending node

and the satellite position vector. The rotation matrix C from the body-fixed frame

to the geocentric inertial frame can be written as

C =











cos u sin u 0

− sin u cos u 0

0 0 1





















1 0 0

0 cos i sin i

0 − sin i cos i





















cos Ω sin Ω 0

− sin Ω cos Ω 0

0 0 1











(3.1)
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Performing the matrix operations gives the following expression for C

C =











cos u cos Ω − sin u cos i sin Ω cos u sin Ω + sin u cos i cos Ω sin u sin i

− sin u cos Ω − cos u cos i sin Ω − sin u sin Ω + cos u cos i cos Ω cos u sin i

sin i sin Ω − sin i cos Ω cos i











(3.2)

3.2 The Observation Function and Its Linearization

In determining the relative separation of two satellites, it is necessary to express

the given optical data, right ascension α and declination d, as a function of the system

state, current time, and observation geometry. This is achieved using the observation

function G. The following discussion shows the formulation of G.

The position vector for satellite one R̄1, originating from the center of the earth

and expressed in the geocentric inertial frame is

R̄1 = R1

(

cos α1cosd1 sin α1cosd1 sin d1

)











n̂x

n̂y

n̂z











(3.3)

where α is the geocentric right ascension and d is the geocentric declination. See

Figure (3.1). The position vector for satellite one can also be expressed in the body

Figure 3.1: Geocentric Inertial Frame
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Figure 3.2: Body Fixed Frame

frame as shown in Figure (3.2). Before this vector can be used, however, it must first

be rotated to the geocentric inertial frame

R̄sat1 =
(

r0 0 0
)











êr

êθ

êz











=
(

r0 0 0
)

C











n̂x

n̂y

n̂z











(3.4)

Setting these two expressions equal to each other yields

R̄1 = R̄sat1

R1











cos α1 cos d1

sin α1 cos d1

sin d1











=











r0C11

r0C12

r0C13











(3.5)

Similarly, the expressions for satellite two are

R̄2 = R2

(

cos α2cosd2 sin α2cosd2 sin d2

)











n̂x

n̂y

n̂z











(3.6)

R̄sat2 =
(

r0 + δr r0δθ δz

)











êr

êθ

êz











=
(

r0 + δr r0δθ δz

)

C











n̂x

n̂y

n̂z











(3.7)
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R̄2 = R̄sat2

R2











cos α2 cos d2

sin α2 cos d2

sin d2











=











(r0 + δr)C11 + r0δθC21 + δzC31

(r0 + δr)C12 + r0δθC22 + δzC32

(r0 + δr)C13 + r0δθC23 + δzC33











(3.8)

The differential position vector, and subsequently the differential right ascension and

declination, can then be found by subtracting equations (3.5) and (3.8)

R̄1 − R̄2 = R̄sat1 − R̄sat2 (3.9)

producing the following three equations

R2(cos α2 cos d2)−R1(cos α1 cos d1) = (r0 + δr)C12 + r0δθC21 + δzC31 −R1C11 (3.10)

R2(sin α2 cos d2)−R1(sin α1 cos d1) = (r0 + δr)C12 + r0δθC22 + δzC32 −R1C12 (3.11)

R2 sin d2 − R1 sin d1 = (r0 + δr)C13 + r0δθC23 + δzC33 − R1C13 (3.12)

Beginning with Equation (3.12), it is possible to obtain an expression for the

differential declination, δd. Recalling the following trigonometric formula for some

values A and B

sin A + B = sin A cos B + cos A sin B (3.13)

and setting R2 = R1 + δR and d2 = d1 + δd, the left side of Equation (3.12) becomes

(R1 + δR)(sin d1 cos δd + sin δd cos d1) − R1 sin d1 (3.14)
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Substituting this in for the left side of Equation (3.12) and using the small angle

assumption, the following equation results

R1 sin d1+sin d1δR+R1 cos d1δd−R1 sin d1 = R1C13+δRC13+R1δθC23+δzC33−R1C13

(3.15)

where R1 = r0 and δR = δr. Simplifying this equation yields

cos d1δd = − sin d1
δR

R1

+
δR

R1

C13 + δθC23 +
δz

R1

C33 (3.16)

But, recalling Equation (3.5), sin d1 = C13 so the δR terms cancel out. Consequently,

the following expression for δd results

δd =
cos u sin i

cos d1

δθ +
cos i

cos d1R1

δz (3.17)

Applying the same method, an expression for differential right ascension, δα,

can then be solved for using Equations (3.10) and (3.11).

cos α1 cos d1δR − R1 sin α1 cos d1δα − R1 cos α1 sin d1δd =

R1C11 + δRC11 + R1δθC21 + δzC31 − R1C11 (3.18)

sin α1 cos d1δR + R1 cos α1 cos d1δα − R1 sin α1 sin d1δd =

R1C12 + δRC12 + R1δθC22 + δzC32 − R1C12 (3.19)

Multiplying Equation (3.18) by sinα1, Equation (3.19) by cosα1, and subtracting

Equation (3.18) from (3.19) yields

R1 cos d1δα1 =

(C12 cos α1 − C11 sin α1)δR + (C22 cos α1 − C21 sin α1)R1δθ +

(C32 cos α1 − C31 sin α1)δz (3.20)
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Recalling again Equation (3.5),

cos α1 cos d1 = C11

sin α1 cos d1 = C12

and noting these expressions in the δR term of Equation (3.20)

C12 cos α1 − C11 sin α1 = 0 (3.21)

The expression for differential right ascension then becomes

δα =
1

cos d1

(

(C22 cos α1 − C21 sin α1)δθ + (C32 cos α1 − C31 sin α1)
δz

R1

)

(3.22)

This expression can be further reduced by recognizing again from Equation (3.5)

cos α1 =
C11

cos d1

sin α1 =
C12

cos d1

Considering the δθ component of equation (3.20)

C22 cos α1 − C21 sin α1 =
C22C11 − C21C12

cos d1

=
cos i

cos d1

(3.23)

Similarly, considering the z component of Equation (3.20)

C32 cos α1 − C31 sin α1 =
C32C11 − C31C12

cos d1

= −sin i cos u

cos d1R1

(3.24)

Finally, the expression for differential right ascension becomes

δα =
1

cos2 d1

(

cos (i)δθ − sin i cos u

R1

δz

)

(3.25)
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Having solved for δd and δα, the observation relation G is now written as

G =





δα

δd



 =





1
cos2 d1

(

cos (i)δθ − sin i cos u
R1

δz
)

cos u sin i
cos d1

δθ + cos i
cos d1R1

δz



 (3.26)

Due to the linearization about satellite one using Taylor series expansion in the de-

velopment of G, its linearization H is simply

H =
∂G

∂X
=





0 cos i
R1 cos2 d1

sin i cos u
R1 cos2 d1

0 0 0

0 cos u sin i
R1 cos d1

cos i
R1 cos d1

0 0 0



 (3.27)

where the state vector is defined as

X =
(

δr r0δθ δz δṙ r0δθ̇ δż

)T

(3.28)

3.3 Linear System Dynamics

The relative motion between two co-located satellites in geostationary orbit can

be described using Hill’s equations. Assuming a circular reference orbit and a small

distance between satellites, Hill’s equations take the following form:

δr̈ − 2nr0δθ̇ − 3n2δr = 0

r0δθ̈ + 2nδṙ = 0

δz̈ + n2δz = 0

(3.29)
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As Wiesel [16] explains, these equations can be solved analytically

δr(t) = −
(

2

n
r0δθ̇0 + 3δr0

)

cos nt +
δṙ0

n
sin nt + 4δr0 +

2

n
r0δθ̇0

δθ(t) = δθ0 −
(

3δθ̇0 +
6nδr0

r0

)

t +

(

4δθ̇0

n
+

6δr0

r0

)

sin nt +
2δṙ0

nr0

cos nt − 2

nr0

δṙ0

δz(t) = δz0 cos nt +
δż0

n
sin nt (3.30)

δṙ(t) =
(

2r0δθ̇0 + 3nδr0

)

sin nt + δṙ0 cos nt

δθ̇(t) =

(

−3δθ̇0 −
6nδr0

r0

)

+

(

6nδr0

r0

+ 4δθ̇0

)

cos nt − 2δṙ0

r0

sin nt

δż(t) = −δz0n sin nt + δż0 cos nt

The solution can then be put into matrix form, represented by the 6×6 matrix ΦHill.

ΦHill =





Φrr Φrv

Φvr Φvv



 (3.31)

The solution for each position component (δr, r0δθ, δz) is found by propagating the

initial position components (δr0, r0δθ0, δz0) forward using the 3 × 3 matrix Φrr and

the initial velocity components (δṙ0, r0δθ̇0, δż0) forward using Φrv. Similarly, the

solution for each velocity component (δṙ, r0δθ̇, δż) is found by propagating the initial

position components forward using Φvr and the initial velocity components forward

using Φvv. This can be shown in the following equations

δr = Φrrδr(t = 0) + Φrvδv(t = 0) (3.32)

δv = Φvrδr(t = 0) + Φvvδv(t = 0) (3.33)
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Referring back to Equation (3.31), the full state transition matrix is written as

ΦHill =





























4 − 3 cos ψ 0 0 1
n

sin ψ 2
n
(1 − cos ψ) 0

6(sin ψ − ψ) 1 0 2
n
(cos ψ − 1) 4

n
sin ψ − 3

n
ψ 0

0 0 cos ψ 0 0 1
n

sin ψ

3n sin ψ 0 0 cos ψ 2 sin ψ 0

6n(cos ψ − 1) 0 0 −2 sin ψ −3 + 4 cos ψ 0

0 0 −n sin ψ 0 0 cos ψ





























(3.34)

where n is the mean motion of the reference satellite and ψ = nt. The state vector

for the linear model is defined as

X =
(

δr r0δθ δz δṙ r0δθ̇ δż

)T

(3.35)

3.4 The Maneuver Model: Non-linear System Dynamics

If X0 is the initial state of the system, as defined in Equation (3.35), the state

of the system at any time t prior to a maneuver Xpre can be determined using the

state transition matrix given in Equation (3.34)

Xpre = ΦHill(t, t0)X0 (3.36)

The state immediately after a maneuver Xpost can then be defined as the initial state

propagated forward to the time of the maneuver tm plus the change in state caused

by the maneuver ∆X

Xpost = ΦHill(tm, t0)X0 + ∆X (3.37)

Note that because the satellite will not be instantaneously displaced, ∆X will only

consist of velocity components. Using this equation, the state of the system X at
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some time t after the maneuver can be written as

X = ΦHill(t, tm)Xpost

= ΦHill(t, tm)ΦHill(tm, t0)X0 + ΦHill(t, tm)∆X (3.38)

Simplifying, X becomes

X = ΦHill(t, t0)X0 + ΦHill(t, tm)∆X (3.39)

This can be expressed graphically as shown in Figure 3.3

Figure 3.3: Maneuver Dynamics

Because the goal of this research is to estimate the size and direction of the

maneuver as well as the maneuver time, the state vector in the non-linear maneuver

model will include the ∆X components as well as the change in maneuver time.

Xm = (δr, r0δθ, δz, δṙ, r0δθ̇, δż, ∆vr, ∆vθ, ∆vz, δtm)T (3.40)

where ∆vr, ∆vθ, and ∆vz are the changes in velocity in the δr, r0δθ, and δz directions

respectively, and δtm is the change in the estimate of the maneuver time.

The state transition matrix Φmaneuver then becomes a 10 × 10 matrix with the

upper 6 × 6 being the solution to Hill’s equations, ΦHill, as seen in Equation (3.34).
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The next 6 × 3 portion of Φmaneuver propagates ∆X forward in time. This will be

done using the 3 × 3 velocity matrices from the solution to Hill’s equations, Φrv and

Φvv as shown in Equation (3.31). The final 6 × 1 in the upper portion of Φmaneuver

propagates the estimate for the maneuver time. Recalling Equation (3.39) and Figure

3.3, this column is the partial derivative of ΦHill(t, tm) with respect to the maneuver

time, which is simply the partial derivatives of Φrv and Φvv (replacing the δṙ, r0δθ̇,

and δż components with ∆vr, ∆vθ, and ∆vz) with respect to the maneuver time. The

equations are shown below

δr

δtm
= −2r0∆vθ cos [n(t − tm)] − ∆vr cos [n(t − tm)]

r0δθ

δtm
= −4r0∆vθ cos [n(t − tm)] + 2∆vr sin [n(t − tm)] + 3r0∆vθ

δz

δtm
= −∆vz cos [n(t − tm)] (3.41)

δṙ

δtm
= −2r0∆vθ cos [n(t − tm)] + ∆vrn sin [n(t − tm)]

r0δθ̇

δtm
= 4r0∆vθn sin [n(t − tm)] + 2∆vrn cos [n(t − tm)]

δż

δtm
= ∆vzn sin [n(t − tm)]

The bottom 4×6 (rows 7 through 10, columns 1 through 6) are the partial derivatives

of the ∆v components and the maneuver time with respect to the position and velocity

components, which are all zero. The final 4×4 (rows 7 through 10, columns 7 through

10) are the partial derivatives of the ∆v components and the maneuver time with

respect to themselves, giving an identity matrix. The full Φmaneuver is shown below.
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Φmaneuver =





















































ΦHill

6 × 6

Φrv

3 × 3

Φvv

3 × 3

∂r̄
∂tm

∂v̄
∂tm

0

4 × 6

I

4 × 4





















































(3.42)

3.5 Algorithm

This section will outline the algorithm that was used in the estimation program

including the type of data used, initialization of the state vector and the reference

orbit, and the least squares method.

3.5.1 Data Files. As the telescope tracks two satellites, it records a data arc

for each vehicle consisting of n observations of right ascension and declination as well

as the time associated with each observation. Because relative equations of motion

solve for the separation between two objects, it is necessary to have the right ascension

and declination differences, δα and δd, respectively, for each time rather than the

absolute right ascension and declination for each satellite. Recalling Section 2.1.3,

Raven observations are expressed in the topocentric frame. Before the observations

are differenced, it is necessary to convert the observations from the topocentric frame

to the geocentric frame as explained in the same section. Once the conversion is

completed, the observations are differenced and compiled in an n × 2 matrix z. A

standard deviation of approximately 10 arcseconds, or 4.848×10−5 radians, is assigned

for each component of the relative observations. These values are then complied in

the instrumental covariance matrix Q, often referred to as the observation weighting
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matrix

Q =





(4.848 × 10−5)2 0

0 (4.848 × 10−5)2



 (3.43)

3.5.2 Initializing the State Vector. Recalling Equation (3.35), the state

vector for the linear non-maneuver model is

X = (δr, r0δθ, δz, δṙ, r0δθ̇, δż)T

Because the relative separation is assumed to be small, this state is initialized using

a zero vector.

Initialization for the non-linear maneuver model is less straight forward. Re-

calling Equation (3.40), the vector is

Xm = (δr, r0δθ, δz, δṙ, r0δθ̇, δż, ∆vr, ∆vθ, ∆vz, δtm)T

The first six components are still set with an initial value of zero along with δtm. To

initialize the ∆v components, it is necessary to recall the partial derivatives of position

and velocity with respect to δtm, as shown in Equation (3.41). It can be seen that

every component in these equations is dependent upon one of the ∆v components.

In order to avoid observability problems, it then follows that at least one of the

three ∆v components must be non-zero. Referring to the discussion in Section 2.4,

most stationkeeping maneuvers in GEO clusters are in the east-west or north-south

directions, equating to burns in the along-track, r0δθ, or cross-track, δz, directions.

Various values under 2 m/s are then used as initial values in either the r0δθ or δz

directions. The maneuver time itself tm is perhaps the most difficult parameter to

initialize. Without a priori information, the entire estimation process must be run for

different possible maneuver times. This is done by looping through the time vector,

using each observation time as an initial value for the maneuver time.
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3.5.3 Reference Orbit. The next step in the algorithm involves defining a

reference orbit for satellite one. This is done using the NORAD Two-Line Element set

(TLE). Six parameters are extracted from the TLE: inclination i, eccentricity e, right

ascension of the ascending node Ω, argument of perigee ω, mean anomaly M , and

mean motion n0. The semimajor axis a is solved for using the mean motion; however,

the typical two body conversion cannot be used. This is because the mean motion

given in the TLE n0 is actually the ”mean” mean motion. The following equations

recover a and n from the altered n0 given by the TLE:

a1 =

(

ke

n0

) 3

2

δ1 =
3k2

2a2
1

(3 cos2 i0 − 1)

(1 − e2
0)

3

2

a0 = a1

(

1 − 1

3
δ1 − δ2

1 −
134

81
δ3
1

)

(3.44)

δ0 =
3k2

2a2
0

(3 cos2 i0 − 1)

(1 − e2
0)

3

2

n =
n0

1 + δ0

a =
a0

1 − δ0

where ke =
√

GMe, with G defined as the universal gravitational constant and Me as

the mass of the earth, and k2 = 5.413080 × 10−4 [6].

Once the complete set of Classical Orbital Elements (COEs) for the reference

orbit and the mean motion have been obtained, it is possible to continue with the algo-

rithm. These values will be used to propagate the reference orbit to each observation

time and solve for α1 and d1 of satellite one, as described below.

3.5.4 Least Squares Algorithm. An observation, consisting of δα and δd, and

its associated time is read into the loop. X0 is propagated forward from the initial

3-14



time to the observation time using Hill’s equations expressed in ΦHill

X = ΦHillX0 (3.45)

The reference orbit is then propagated forward to the observation time using either

two-body dynamics M = M0 + ntob or the SGP4 propagator. The updated COEs are

converted to position r and velocity v vectors, which are then used to solve for the

right ascension and declination of satellite one, α1 and d1, respectively.

α1 = tan−1

(

r3

r1

)

(3.46)

d1 = sin−1

(

r3

|r|

)

(3.47)

These values are then used, along with i and u (recalling that u is defined as the angle

measured between the ascending node and the satellite position vector, or u = ω + ν

where ω is the argument of perigee and ν is the true anomaly), to calculate the

observation matrix G and its linearization H as defined in Equations (3.26) and

(3.27). Once G and H have been obtained the matrix operations of the least squares

method, as described in Section 2.2, are performed. These steps are listed briefly

below:

1. Solve for T , recalling Ti = HiΦ

2. Calculate the residuals, ri = zi − G(x)

3. Add new terms to the sums of the matrix

∑

i

T T
i Q−1

i Ti

and the vector
∑

i

T T
i Q−1

i ri
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This process is repeated until each observation has been processed. The remaining

steps are listed below.

1. Calculate the covariance matrix PδX

PδX =

(

∑

i

T T
i Q−1

i Ti

)

−1

2. Calculate the state correction vector at the epoch time

PδX

∑

i

T T
i Q−1

i ri

3. Calculate the new estimate of the reference trajectory

X0(t0) = X0(t0) + δX(t0)

This entire process is then repeated for a set number of iterations or until the sys-

tem has converged. Once this is accomplished, a new value is used to initialize the

maneuver time and the program is repeated.
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IV. Simulations and Real Data

4.1 Relative Orbit Determination Experiment

In July of 2003, Raven obtained images of the DirecTV 4S and AMC-4 spacecraft

collocation at 101 deg West longitude. Observations were taken during the nights

of 23 - 24 July and 29 July - 1 August. These observations were then used by

researchers at the Air Force Maui Optical and Supercomputing site to determine

if the relative separation between two satellites could be more accurately predicted

than the absolute position of each vehicle [5]. The relative motion of the satellites

was estimated using the COWPOKE equations, and the resulting differences in right

ascension and declination were compared to the differences based on the available TLE

from 27 July, referred to as TLE2. It was determined that the relative motion did

indeed fit the data better than the solution provided by the TLE. One such example

is shown in Figure 4.1.
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Figure 4.1: COWPOKE and TLE predictions for observations on 30,31 July

During the process of conducting the study, however, it was found that there was

an occasional unexplained shift away from the actual position in both the COWPOKE
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and TLE predictions. Looking further into the situation, it was determined to be

highly likely that stationkeeping maneuvers had taken place; AMC-4, referred to as

Sat 1, may have maneuvered sometime between 29 and 30 July, and DirecTV 4S,

referred to as Sat 2, may have maneuvered sometime between 31 July and 1 August.

Figure 4.2 shows the differences in right ascension and declination, in microradians,

between the two satellites. A solution was found using observations from 30 and 31

July and propagated forward through 1 August. As can be seen, the COWPOKE

solution fits the data from the 30th and 31st; however the observations from the 1st

have shifted away from the predicted values.
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Figure 4.2: Fit to 30th and 31st, Predict to 1st

4.2 Simulation Study

4.2.1 Non-maneuver Model Initial Simulation. The first simulation created

was intended to simply ensure the non-maneuver model was working properly. The

reference orbit for Sat 1 was taken from TLE2 while the initial state vector X0,

consisting of the position and velocity differences between the satellites, was chosen
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to have a separation of 1750m in the along-track or r0δθ direction.

X0 =
(

0 1750 0 0 0 0
)T

(4.1)

The simulation was then run for one day (86400s) with a step size of 600s. At each time

step the reference orbit was propagated forward, and the position and velocity vectors

of Sat 1 were computed. Using the method described in Section 3.5.4 and Equations

(3.46) and (3.47), the right ascension α1 and declination d1 were then calculated for

Sat 1. These values, along with i and u, were used to calculate the differential right

ascension and declination, δα and δd, respectively, using the observation function

found in Equation (3.26) and shown again below

G =





δα

δd



 =





1
cos2 d1

(

cos (i)δθ − sin i cos u
R1

δz
)

cos u sin i
cos d1

δθ + cos i
cos d1R1

δz



 (4.2)

The output of the observation function was then compiled in a file and read into the

non-maneuver, linear least squares estimation model.

Given the true X0 as shown in Equation (4.1) the estimate converged on the

correct value with near zero residuals. The root mean square of the residuals (rrms)

shown below

rrms =
rT r

r
(4.3)

was approximately 4.396 × 10−24. Figure 4.3 shows the trajectory that resulted from

the estimated state vector, propagated forward for one day, along with the simulated

observations.

4.2.2 Maneuver Model Initial Simulation. There are a number of constraints

inherent in dealing with operational optical systems. Most telescopes obtain obser-

vations only when the sky is dark and the satellites are illuminated by the sun. This

effectively limits operations to night time hours. Weather is another factor when

dealing with these systems since optical sensors cannot penetrate cloud cover. Due
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Figure 4.3: Estimated and Simulated Observations

to these constraints, a single telescope is not capable of tracking a satellite or clus-

ter of satellites over a complete revolution. This leads to periods of time (ranging

from hours to days) where observations are not available. While satellite motion is

deterministic, maneuvers can significantly alter a satellite’s orbit, requiring frequent

updates to the orbit determination prediction. The gaps between observations could

serve to inhibit this process by limiting the amount of necessary information available

to accurately determine the current orbit of the satellites.

With this in mind, two maneuver simulations were created. The first simula-

tion used simulated data with perfect observations in similar quantities and times to

that found in the real DirecTV 4S and AMC-4 collocation data files. Because two

maneuvers were suspected between 29 July and 1 August, this study will focus on

those four days. The second simulation used continuous simulated data with perfect

observations around the entire orbit for the duration of one day. Both simulations

were created with the same initial state vector, as shown here

X0 =
(

0 1750 0 0 0 0
)T

(4.4)
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Another important situation to explore is the behavior of the maneuver model

if a maneuver did not take place. Hence, the final simulation involved evaluating the

maneuver model when the non-maneuver simulated data, described in Section 4.2.1,

was used.

4.2.2.1 Simulated Non-Continuous Data. In order to simulate the

actual observations of the Direct TV 4S and AMC-4 satellite collocation, it was nec-

essary to determine the time and length of each data arc in the actual observation

files. Table 4.1 gives the approximate time (given in hour and minute of that day)

and length (shown in the number of observations) of each arc for the days of interest

as well as the time between observations within the arc, ∆t.

Table 4.1: Data Arc Time and Length for 29 July - 1 August

July/Aug Hour Minute Obs ∆t (s)
29 7 35-36 5 16

8 35-36 5 16
9 32-33 5 16
10 33-34 5 16

30 6 32-33 4 16
6 45-46 5 16

31 11 37-38 5 16
12 39-40 5 16
13 31-32 5 16

1 8 32-33 5 16
9 32-33 5 16
10 34-35 5 16
11 30-31 5 16
12 34-35 5 16
13 35-36 5 16

Three days of simulated data were then created to imitate the data arcs observed

in the real data. This was accomplished using the observation function G to produce

each pair of observations, δα and δd, within the arc. Table 4.2 gives the time and

length of each simulated arc as well as the time between observations within the arc.
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Table 4.2: Simulated Data Arc Time and Length

Day Hour Minute Obs ∆t (sec)
1 7 35-36 5 16

8 35-36 5 16
9 35-36 5 16
10 35-36 5 16

2 6 35-36 4 16
6 45-46 5 16

3 11 37-38 5 16
12 37-38 5 16
13 37-38 5 16

As in the real data files, the epoch of the estimation run, t = 0, is the time

of the first observation. For instance, the epoch time of this simulation was hour 7,

minute 35 on the first day. All times referred to hereafter will be seconds from t = 0

unless otherwise specified as the hour and minute of a particular day.

A change in velocity of 2 m/s was added at t = 90000 s (hour 8, minute 35 on

Day 2) to the state X(t = 90000) in the along-track or r0δθ direction.

X0 = X(t = 90000) +
(

0 0 0 0 2 0
)T

(4.5)

Note that there are no observations within five hours of the maneuver.

In order to determine the range of values for the initial maneuver time guess

that will result in convergence on the correct maneuver time, the estimation program

was looped through for tm equal to each observation time. Once a baseline range was

determined, the simulation was run again using a smaller time step for the initial tm

values. The state vector for each run was initialized using the truth state vector, that

used to create the simulated data:

X0 =
(

0 1750 0 0 0 0 0 2 0 0
)T

(4.6)
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Results: An initial guess for the maneuver time within approximately 3.5 hours

before 90000 and 2.5 hours after 90000 resulted in alternating convergence on the

correct value of tm = 90000 and the incorrect value of tm = 87138. The beginning

and end times associated with each span of initial maneuver times, the length of each

span, and the resulting maneuver time converged upon are shown in Table 4.3.

Table 4.3: Convergence Times and Values for Simulated Data Arcs

Begin (s) End (s) Span (min) tm (s)
74520 74760 4 90000
76200 76980 13 87138
77040 77460 7 90000
77520 80820 55 87138
81660 82560 15 90000
82620 87960 89 87138
88020 91800 63 90000
91860 95400 59 87138
95460 95940 8 90000
96420 98340 32 87138

In addition to the maneuver time, it is beneficial to look at the solution of the

state vector. Table 4.4 gives the truth state vector as well as the solution to the state

vector for each of the above tm convergence values, with the position components

given in meters, the velocity components given in meters per second, and the time

components given in seconds. Observing the state vector solutions, it becomes obvious

that tm = 90000 produces the correct solution. However, without a priori knowledge

of the truth state vector, it would be difficult if not impossible to determine which

solution is correct.

It is also worth noting the standard deviation, 1σ, of the maneuver time for each

solution. A maneuver time of 90000 produced a 1σ value of 26257 s (approximately

7 hrs and 20 min) while the tm = 87138 solution produced a 1σ value of 27430 s

(approximately 7 hrs and 35 min). This essentially says there a lot of uncertainty in

these solutions.
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Table 4.4: State Vector Solution for Convergence Times

X0 Truth tm = 90000 tm = 87138
δr 0 -3.0642e-010 1220.6

r0δθ 1750 1750 3722.8
δz 0 -1.0123e-014 -1.1215e-012
δṙ 0 7.5276e-015 -0.030211

r0δθ̇ 0 3.7526e-014 -0.14942
δż 0 -7.0333e-019 -2.788e-015

∆vr 0 -8.7235e-014 -0.79629
∆vθ 2 2 1.9714
∆vz 0 7.2749e-019 2.9755e-015
δtm 0 -1.2407e-009 -2.2473e-009

4.2.2.2 Simulated Continuous Data. The next simulation contained

continuous simulated data with perfect observations (no noise). This simulation began

with the same initial state vector X0 as used in the above simulations but spanned

one entire day with observations every 600 s (10 min). The orbit was propagated for

half of one day (43200 s) and a maneuver of 2 m/s was added at the end of this time

period (tm = 43200 s) in the along-track or r0δθ direction.

X0 = X(t = 43200) +
(

0 0 0 0 2 0
)T

(4.7)

The orbit was then propagated for another half day. Differential right ascension and

declination values were generated using the observation function G.

The truth state vector was used to initialize X0 in the estimation process, and

the range of values for the initial maneuver time guess that would result in conver-

gence on the correct maneuver time was determined, once again, by looping through

the algorithm for tm equal to each observation time. Once a baseline range was de-

termined, the simulation was run again using a smaller time step between the initial

tm values.

Results: For the continuous data simulation, it was found that the estimator

converged on the correct value for tm if its initial guess was within ±5 hours of the
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actual time, 43200s. These results produced a 1σ value of approximately 11 min with

the solution to the state vector shown in Table 4.5.

Table 4.5: State Vector Solution for Convergence Times

X0 Truth tm = 43200
δr 0 -1.996e-012

r0δθ 1750 1750
δz 0 2.5015e-016
δṙ 0 1.494e-016

r0δθ̇ 0 2.1308e-016
δż 0 -1.7876e-021

∆vr 0 5.039e-016
∆vθ 2 2
∆vz 0 6.8903e-020
δtm 0 6.1894e-013

4.2.2.3 Simulated Continuous Data - No Maneuver. The final simu-

lation involved running the non-maneuver data in the maneuver model. As stated in

Section 4.2.1, the initial state vector was chosen to have a separation of 1750m in the

along-track or r0δθ direction.

X0 =
(

0 1750 0 0 0 0
)T

(4.8)

The simulation was then run for one day (86400s) with a step size of 600s. No

maneuver was included in this simulated data.

The state vector was initialized using the truth position and velocity values,

that used to create the simulated data. A ∆v of 2 m/s in the along-track or r0δθ

direction was used to initialize the change in velocity values. The complete initial

state vector is shown in Equation (4.9).

X0 =
(

0 1750 0 0 0 0 0 2 0 0
)T

(4.9)
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As in the previous maneuver simulations, the range of values for the initial maneuver

time guess was determined by looping through the algorithm for tm equal to each

observation time.

Results: For the continuous non-maneuver data simulation, it was found that for

each initial maneuver time that produced a solution, the maneuver model converged

on the correct values for position, velocity, and ∆v with residuals on the order of

1 × 10−20. The model, however, was not able to produce a valid solution for the

maneuver time. This can be shown by noting that the state vector component δtm

was unable to converge. This makes sense, since there was no maneuver to begin

with. The state vector for one solution is shown in Table 4.6.

Table 4.6: State Vector Solution for No Maneuver Data Set in Maneuver Model

X0 Truth tm = 43200
δr 0 4.9931e-012

r0δθ 1750 1750
δz 0 6.8314e-017
δṙ 0 -1.623e-015

r0δθ̇ 0 -9.9941e-016
δż 0 4.6235e-021

∆vr 0 4.4057e-016
∆vθ 0 1.7448e-016
∆vz 0 -1.214e-019
δtm 0 -95371

4.3 Raven Data – 2003

Recalling the relative orbit determination experiment, discussed in Section 4.1,

two stationkeeping maneuvers were suspected. With a suspected maneuver for Sat 1

sometime between 29 and 30 July and another for Sat 2 sometime between 31 July

and 1 August, the observations were grouped into two sets of data, each consisting of

three days of observations. The first set of data contained the observations obtained

for 29 – 31 July, while the second set of data contained the observations obtained for

30 July – 1 August.
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4.3.1 Data Set 1: 29 – 31 July. The first set of data, consisting of observa-

tions obtained on 29 – 31 July, was used to examine a possible maneuver performed

by Sat 1 between the 29th and the 30th of July.

Running these observations through the non-maneuver model, Figure 4.4 shows

that the linear solution to Hill’s equations do not give an accurate fit. Along with the

inexact fit to the declination, note the curvature in the first set of arcs shown in the

right ascension plot. The state vector solution X0 is shown in Table 4.7.
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Figure 4.4: Non-maneuver Fit to 29 − 31 July

Table 4.7: State Vector Solution for Non-maneuver Fit to 29 − 31 July

X0 Solution
δr 7459.3

r0δθ -62665
δz 5062.6
δṙ -0.33898

r0δθ̇ -1.1306
δż -0.47661
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Valuable insight is also gained by looking at right ascension plotted versus dec-

lination, as shown in Figure 4.5. The observations from 29 July can be seen in the
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Figure 4.5: Non-maneuver Fit to 29 − 31 July

upper left corner of the plot, located at approximately -1600 microradians on the right

ascension axis and 150 microradians on the declination axis (-1600,150). Observations

from 30 July are seen at approximately (-1150,-230) and those from 31 July are at

(1050,40). This plot accentuates the inaccuracy of the linear non-maneuver model for

this data, noting particularly that the solution does not fit the observations from 29

or 30 July. Along with observing how well the solution fits the data, it is also possible

to examine various aspects of the orbital motion. Each ellipse in the solution plot

corresponds to the completion of one revolution of the satellites. The shift in these

ellipses are due to the secular drift in the along-track direction associated with each

orbit. Note that the size, orientation, and drift of each ellipse remains essentially

constant.

With the discrepancies in the linear model apparent, the data files are then input

into the maneuver model, and the least squares algorithm is run for initial maneuver
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time values. These values are obtained by stepping through the time vector at 60 s

increments.

Similar to the simulated data presented in Section 4.2.2.1, convergence was

achieved upon more than one solution. The first solution was tm = 79477 which

would be during hour 5 on 30 July. This solution was converged upon for initial

maneuver time values of approximately 7 hours and 30 min before the assumed ma-

neuver and approximately 2 hours and 7 minutes after the assumed maneuver. The

model alternated converging on the final two solutions, tm = 125340 (hour 18 on 30

July) and tm = 168380 (hour 6 on 31 July). The times of each convergence is shown

in Table 4.8 along with the length of each span, and the solution to the state vector

for each maneuver time is shown in Table 4.9.

Table 4.8: Convergence Times and Values for 29-31 July

Begin (s) End (s) Span (hr:min) tm (s)
52400 87140 9:39 79477
88480 93060 1:16 125340
93180 97260 1:08 168380
115420 120300 1:21 168380
120980 122840 0:31 168380
122960 145240 6:11 125340
152360 182420 8:21 168380

Table 4.9: State Vector Solution for Maneuver Fit to 29 − 31 July

X0 tm = 79477 tm = 125340 tm = 168380
δr 5380.3 5410.6 5529.2

r0δθ -65297 -65292 -65265
δz 5673.7 3903 3904.3
δṙ -0.67432 -0.67883 -0.69819

r0δθ̇ -0.84561 -0.84922 -0.86612
δż 0.17538 0.41519 0.41498

∆vr 0.30420 -0.2197 0.72159
∆vθ 0.028259 0.094944 -0.21518
∆vz -0.99232 1.1656 -1.1655
δtm -3.3343e-007 -0.00057244 0.00024853

4-13



Figure 4.6 shows how the solution for tm = 79477 fits the data versus time

along with the TLE solution and the non-maneuver solution. The maneuver is easily

identified in the declination plot at t ≈ 22 hrs.

The right ascension versus declination plot, as shown in Figure 4.7, is also eval-

uated. While this plot confirms that the solution converged upon with the maneuver

model fits the data much better than the non-maneuver model, it also reveals a con-

siderable maneuver, ∆vz ≈ −1 m/s, in the cross-track, δz, or N/S direction. The

magnitude and direction of the maneuver, as seen in the solution to the state vector

in Table 4.9, could be helpful in analyzing and identifying a particular vehicle.

The solution for tm = 125340 is shown in Figure 4.8. While the plots for right

ascension and declination versus time look reasonable, the right ascension versus

declination plot reveals that this solution does not fit the data as well as the solution

from tm = 79477, particularly in the first set of data arcs. This can be seen in Figure

4.9. Note also the magnitude of the maneuver in this solution: ∆vz ≈ 1.16 m/s.
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Figure 4.6: Maneuver Fit to 29 − 31 July, tm = 79477
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Figure 4.7: RA vs Dec for 29 − 31 July, tm = 79477
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Figure 4.8: Maneuver Fit to 29 − 31 July, tm = 125340
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Figure 4.9: RA vs Dec for 29 − 31 July, tm = 125340

The solution for the final convergence value tm = 168380 is shown in Figure 4.10.

This solution is unlikely due to the growing separation in the right ascension plot. This

growth can also be seen in the right ascension versus declination plot shown in Figure

4.11. Note that the solution does not give a good fit for the first set of observations

and completely misses the second set of observations. Note also the large magnitude

of the maneuver in two directions: ∆vr ≈ 0.72 and ∆vz ≈ 1.16 m/s. In many cases,

maneuver magnitude can be a useful discrimination tool. If information about a

particular collocated satellite is known (such as thruster type, amount of fuel, etc.)

it is possible to rule out any solutions that would exceed operational capabilities.

The issue of different solutions for different initial tm values, producing apparent

local minima, is an important issue to investigate. One possible explanation would

be noise inherent in the data. While this could have contributed, the fact that this

same phenomenon occurred in the simulated real data (using perfect observations),

presented in Section 4.2.2.1, suggests that noise is not the driving factor. Another

possible explanation could be that more than one maneuver has taken place. The
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plausibility of this situation is validated in another data set as presented in Section

4.4.2. Finally, the most likely explanation lies in the quantity and non-continuous

nature of the observations available. As shown by the maneuver simulation results,

observability could prove to be the largest obstacle in maneuver estimation. Given

the available solutions and analysis in the section above, however, tm = 79477 was

determined to be the most likely solution.
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Figure 4.10: Maneuver Fit to 29 − 31 July, tm = 168380

4.3.2 Data Set 2: 30 July - 1 August. The second set of data, consisting of

observations obtained on 30 July - 1 August, was used to examine a possible maneuver

performed by Sat 2 between the 31st of July and the 1st of August.

As seen in Figure 4.12, the solution produced by the linear non-maneuver model

does not give an accurate fit to these data arcs either. The declination prediction

seems to follow the trend in the data; however, the right ascension does not fit the

data arcs for 31 July or 1 August. The state vector solution X0 is shown in Table

4.10.

4-17



−2000 −1500 −1000 −500 0 500 1000 1500
−250

−200

−150

−100

−50

0

50

100

150

200

250

Right Ascension Difference (micro rad)

D
ec

lin
at

io
n 

D
iff

er
en

ce
 (

m
ic

ro
 r

ad
)

Non−maneuver
Maneuver
OBS

Figure 4.11: RA vs Dec for 29 − 31 July, tm = 168380

Table 4.10: State Vector Solution for Non-maneuver Fit to 30 July - 1 August

X0 Solution
δr 1478.5

r0δθ -45779
δz 1830.2
δṙ -0.17368

r0δθ̇ -0.19512
δż -0.68939

The data arcs were then run in the maneuver model, and as mentioned above,

the least squares algorithm was looped through for each observation time.

While the model produced numerous possible solutions, no convergence was

achieved with this data set. Referring back to Table 4.1, the data obtained on 30

July, the first day of this data set, consisted of only nine observations in two arcs

separated by 12 minutes. It is therefore most probable that there was not enough

data, particularly on the first day, for the estimator to converge upon a solution.
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Figure 4.12: Non-maneuver Fit to 31 July - 1 August

4.4 Raven Data - 2004

Data for the same collocation was obtained for 3 – 5 and 9 June of 2004. Two

maneuvers were suspected; one maneuver was suspected sometime between 3 and

4 June and another sometime between 5 and 9 June. Due to the unobservability

between 5 and 9 June, it was decided to focus primarily on the first three days of

observations. Similar to the process used for 29 July - 1 August 2003, this data was

broken into two different runs. The first data set consisted of 3 and 4 June, with

the second data set consisting of observations from 4 and 5 June. These three files

have approximately four times the number of observations than those from July 2003.

Table 4.11 gives the approximate time (given in hour and minute of that day) and

length (shown in the number of observations) of each arc for 3 June as well as the time

between observations within the arc, ∆t. The data set for 4 June is similar to that

of 3 June. It consists of 13 data arcs starting at hour 7 and going through hour 11.

There are 10 arcs having 5 observations each and three arcs having 4 observations.

Only two arcs were obtained for hour 9, however, one at the beginning of the hour
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Table 4.11: Data Arc Time and Length for 3 June

June Hour Minute Obs ∆t (s)
3 9 41-42 5 16

10 2-3 5 16
10 34-35 5 16
10 45-46 5 16
10 56-57 5 16
11 6-7 5 16
11 17-18 5 16
11 28-29 5 16
11 38-39 4 16
11 49-50 5 16
12 0-1 5 16
12 10-11 5 16
12 21-22 5 16
12 32-33 5 16
12 42-43 5 16
12 53-54 3 16
13 4-5 5 16
13 14-16 5 16
13 25-26 3 16

and one at the end of the hour. This break in data can be observed in the plots to

follow. The data set for 5 June consists of 18 arcs having 5 observations and one arc

with 4 observations starting at hour 9 and going through hour 11.

4.4.1 Data Set 1: 3 – 4 June. Using the same procedure as that described

in Section 4.3, the first step was to run these data arcs through the non-maneuver

model. The plots showing right ascension and declination versus time look as though

the model produced an accurate solution. See Figure 4.13. The right ascension versus

declination plot, however, reveals a slight discrepancy in declination, particularly in

the last set of arcs. See Figure 4.14.

The data was then run through the maneuver model using the same method as

stated above. Only one maneuver time and state vector completely converged. An

initial maneuver time guess between approximately 7 hours and 38 min before and 4
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hours after t = 80008 s resulted in convergence on the state vector shown in Table

4.12 with a maneuver time of tm = 80008 (hour 7, minute 55 on 4 June). Note that

Table 4.12: State Vector Solution for Maneuver Fit to 3-4 June

X0 tm = 80008
δr 7229.6

r0δθ -1.0327e+005
δz -25696
δṙ 0.49347

r0δθ̇ -1.095
δż -2.1298

∆vr -0.03253
∆vθ -0.0071178
∆vz 0.20463
δtm 4.6267e-010

the main component of the maneuver in the state vector solution is in the δz, or n-s

direction. This is consistent with a correction in declination.

Figure 4.15 shows right ascension and declination versus time. A slightly better

fit to the declination can be seen in the lower plot. A significant improvement, how-

ever, is discernable in the right ascension versus declination plot. Figure 4.16 confirms

the primary burn in the n-s direction results in a better fit to the second set of data

arcs from 4 June. While tm = 80008 was the only value converged upon for multiple

different values of initial maneuver time guesses, it should be noted that numerous

single state vector and maneuver time solutions produced reasonable answers. With-

out convergence, however, there is little confidence that these answers are legitimate

solutions.
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Figure 4.13: Non-maneuver Fit to 3-4 June
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Figure 4.14: Non-maneuver RA vs Dec for 3-4 June
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Figure 4.15: Maneuver Fit to 3 − 4 June, tm = 80008
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Figure 4.16: RA vs Dec for 3 − 4 June, tm = 80008
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4.4.2 Data Set 2: 4 – 5 June. Because the maneuver was suspected between

3 and 4 June, not 4 and 5 June, it would be expected that the solution from the

previous section would fit the observations from 5 June if propagated forward for an

additional day. As shown in Figure 4.17, this assumption was not validated. The

solution for 3 and 4 June did not fit the observations for the 5th. Note, however, that
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Figure 4.17: RA vs Dec Solution for 3 − 4 June Propagated to 5 June

the change in declination from 4 to 5 June (shown by an upward shift from the second

ellipse to the new observations) is equal to the change in declination from 3 to 4 June

(shown by an upward shift from the first ellipse to the second ellipse). This would

seem to indicate another maneuver.

Due to this discrepancy, it was necessary to revert back to running the data

from 4-5 June in the maneuver model. Similar to the previous results, one maneuver

time, tm = 87311, and state vector solution was converged upon. This solution can

be seen in Table 4.13.

As seen in Figure 4.18, not much useful information can be extracted from the

plot showing right ascension and declination versus time. Right ascension plotted
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Table 4.13: State Vector Solution for Maneuver Fit to 4-5 June

X0 tm = 87311
δr 3703.9

r0δθ -87686
δz -10936
δṙ 0.66135

r0δθ̇ -0.57611
δż -2.5168

∆vr -0.015592
∆vθ 0.005491
∆vz 0.21955
δtm 1.0763e-011

versus declination, however, reveals the maneuver model solution produced a more

accurate fit. This can be seen in Figure 4.19.
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Figure 4.18: Maneuver Fit to 4 − 5 June, tm = 87311

4-25



−3000 −2500 −2000 −1500
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Right Ascension Difference (micro rad)

D
ec

lin
at

io
n 

D
iff

er
en

ce
 (

m
ic

ro
 r

ad
)

Non−maneuver
Maneuver
OBS

Figure 4.19: RA vs Dec for 4 − 5 June, tm = 87311
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V. Conclusions

5.1 Summary

This thesis demonstrates the ability to estimate maneuvers of a collocated satel-

lite in geosynchronous orbit using optical observations and relative orbit determina-

tion. Based on the research conducted, it has been found that maneuver estimation

has great potential to become a valuable tool in satellite tracking and identification.

5.2 Conclusions

While this research has demonstrated the potential of maneuver estimation, it

did not result in an operationally competent model. Solutions were obtained for three

out of four real data sets; however, several issues may be contributing to less than

confident results.

5.2.1 Observability. Simulation studies with perfect data show that the

position, velocity, change in velocity, and time of maneuver can be correctly estimated

with a set of observations every ten minutes over the course of an orbit. On the other

hand, current amounts of data obtained for tracking satellites have been found to

be inadequate. The number of observations obtained for the first data set (29 July

– 1 August 2003) generated inconclusive results. The second data set (3 – 5 June

2004), however, was the result of a focused effort specifically designed to obtain more

observations. With approximately four times the number of observations, this data

set yielded promising results.

This study, therefore, has shown that if maneuver estimation is to be successful,

a concentrated effort must be employed and the cluster in question must be given

a higher priority so as to obtain more observations than that necessary to track a

regular satellite. The level of observability required to accurately estimate maneuvers

in GEO is far greater than the current methodology employed to simply track satellites

or clusters of satellites. Obtaining one or two arcs of data each hour for three to four

hours has been shown to be inadequate.
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5.2.2 Higher Order Error Sources. Another contribution to the inconclusive

maneuver results produced with running the real data in the maneuver model is higher

order error sources. If not monitored, small errors can build up and significantly alter a

satellite’s orbit, thus requiring frequent updates to the orbit determination prediction.

Combined with a relatively small number of observations over the course of an orbit,

error sources such as coordinate system errors, solar radiation pressure, and other

unmodeled dynamics could serve to inhibit convergence within the model.

5.2.3 Sequential Maneuvers. As mentioned in Section 4.4.2, sequential ma-

neuvers are also a possibility. Due to the recent developments in propulsion technol-

ogy many companies are moving towards the use of electric, or ion, thrusters. Ion

thrusters produce a higher specific impulse, or Isp, than their chemical counterparts,

allowing for a reduction in propellant mass and an increase in satellite lifetime [2].

This higher Isp usually equates to lower thrust which may lead to an increase in

the number of burns required for stationkeeping. The increased efficiency of these

thrusters, however, make maneuvers on successive days a possibility.

5.3 Future Work

Given the conclusions above, there are several areas of additional research which

would benefit the maneuver estimation process.

One such area is to study the effects of small errors to include solar radiation

pressure and other unmodeled dynamics, coordinate system errors, and higher order

stationkeeping perturbations. By systematically isolating different potential error

sources it may be possible to quantify the effects of these errors.

Another area of research involves determining the amount of data required to

obtain a confident solution. This would also include evaluating observation quantities

and available optical assets versus necessary optical assets across the globe.

Given the increased use of ion thrusters, the possibility of multiple maneuvers

within a data set should be investigated.
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Finally, a priori information on actual stationkeeping maneuvers, as well as

satellite capabilities, would greatly assist in the model validation process. This would

involve establishing working relationships with satellite owners and operators.
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