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Abstract

Micro-Raman (µ-Raman) spectroscopy is used to measure residual stress in two sil-

icon carbide (SiC) poly-types: single-crystal, hexagonally symmetric 6H-SiC, and poly-

crystalline, cubic 3C-SiC thin films deposited on Si substrates. Both are used in micro-

electro-mechanical-systems (MEMS). The 6H-SiC structures are bulk micro-machined

by back etching a 250-µm-thick, single-crystal 6H-SiC wafer (p-type, 7 Ω-cm, 3.5◦ off-

axis) to form a 50-µm thick diaphragm. A Wheatstone bridge, patterned of piezoresistive

elements, is formed across the membrane from a 5-µm, 6H-SiC (n-type, doped 3.8 x

1018cm−3) epilayer; the output of the bridge is proportional to the flexure of the MEMS

diaphragm. For these samples, the µ-Raman spectroscopy is performed using a Renishaw

InVia Raman spectrometer with an argon-ion excitation source (λ = 514.5 nm, hν = 2.41

eV) with an approximate 1-µm2 spot size through the 50x objective. By employing an

incorporated piezoelectric stage with submicron positioning capabilities along with the

Raman spectral acquisition, spatial scans are performed to reveal areas in the MEMS

structures that contain residual stress. Shifts in the transverse optical (TO) Stokes peaks

of up to 1 cm−1 along the edge of the diaphragm and through the piezoresistors indicate

significant material strain induced by the MEMS fabrication process. The phonon defor-

mation potential in both SiC poly-types is measured to quantify the material stress as a

function of the shift in the Raman peak position. The line center of the TO Stokes peak

is shifted by applying a uniform stress to the sample using a four-point strain fixture and

monitoring the applied stress using a strain gauge, while the µ-Raman spectrum is be-

ing measured. A spectral analysis code tracks the shift of the Raman peak position with

respect to the line center of the Rayleigh peak to account for any thermal drift of the spec-

trometer during the time of the area scan. 3C-SiC films, with thicknesses ranging from

1.5-5 µm and are deposited by chemical vapor deposition on (100) Si substrates, are also

investigated to determine their residual stress via their Raman spectral characteristics. An
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ultraviolet excitation source (λ = 325 nm, hν = 3.82 eV) is determined to be more effective

for the detection of Raman shifts in these thin films than the 514-nm source, do to both

resonant Raman effects and since the absorption coefficient in SiC at 300 K at 325 nm

is 3660 cm−1, while that at 514 nm is less than 100 cm−1 (dependent on doping level).

In addition, the Si substrate is less Raman active at 325-nm excitation, leading to a lower

relative amplitude than that at 514.5 nm and increasing the signal-to-noise ratio (SNR) of

the SiC Raman spectrum. Since SNR is also increased by increasing absorption length,

the thicker films (5.5 µm) of the 3C-SiC are preferable for measuring Raman spectra than

the thinner films (1.5 µm).
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DETECTION OF RESIDUAL STRESS IN SiC MEMS USING

µ−RAMAN SPECTROSCOPY

I. Introduction

Silicon Carbide (SiC) mi cro-electro-mechanical-systems (MEMS) structures are

being studied by NASA Glenn Research Center researchers in conjunction with the Mu-

nitions Directorate, Air Force Research Laboratory (AFRL/MN) as engine pressure sen-

sors/accelerometers for munition fuzes. SiC is recognized for its superior mechanical,

electrical and chemical properties, making it a good choice for applications in the harsh

environments of these applicatons [5]. SiC is characterized as a semiconductor with a

"wide band gap, high acoustic velocity, high thermal conductivity, high electrical break-

down strength, and low chemical reactivity [6]." The characteristics of SiC that make

it useful in harsh environment applications also make it difficult to fabricate MEMS [7].

However, recent advances in fabrication technologies have enabled the micromachining

of SiC to a comparable level of sophistication as Si devices.

1.1 Motivation

The Air Force has an increasing demand for semiconductor devices that can with-

stand a wide range of harsh environments. For example, sensors are being developed for

the monitoring of parameters within gas turbine, rocket and internal combustion engines.

Also, hardened electronics and transducers are required for the space environment where

radiation effects and vast temperature differences exist. Current semiconductor devices

primarily require the use of Si-based electronics which are limited in their temperature

range of operation to less than 250 ◦C [7]. Due to many of the excellent material prop-

erties of SiC, SiC electronic and MEMS devices have the potential to replace Si in harsh

environment applications.
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1.1.1 Applications: SiC Electronic devices. SiC has a high breakdown electric

field which makes it ideal for high-power devices. Several different prototype electronic

devices have been fabricated from SiC and there are indications that they will see improved

success. There are four different classifications, which are described in Andrew Attwell’s

PhD. dissertation, [8]. The first one he describes is a junction field-effect transistor (JFET)

used in radiation environments such as space. The second is the metal-semiconductor

field-effect transistor (MESFET) designed for high frequency applications. The third

group is high-power devices which includes p-n junctions, Schottky barrier diodes and

power metal-oxide-semiconductor field-effect transistors (MOSFET). The last group is

SiC complementary MOSFET (CMOS) integrated circuits (IC’s) for harsh environment

applications. Other electronic applications are described in detail by Phil Neudeck in his

SiC technology reviews [9, 10].

The major limitations to all of these devices has been attributed to a large defect

density in the SiC wafers and the difficulty in obtaining consistently good ohmic contacts

to p-type SiC [8]. Recently, however, Nakamura et al. reported "a new method to reduce

the number of dislocations in SiC single-crystals by two to three orders of magnitude,

rendering them virtually dislocation-free [11]." The need for defect characterization is

still important to advance the use of SiC for electronics.

1.1.2 Applications: SiC MEMS. There are also several prototype SiC MEMS

devices which illustrate the advantages of using SiC materials. A range of sensors have

been fabricated and tested for the measurement of temperature, gas species, pressure, and

various other parameters in harsh environments [7]. One such device is the pressure sensor

in Figure 1.1. The center square is a flexible diaphragm, which flexes with increased

pressure, changing the conductivity of the material producing a measurable response.
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Figure 1.1 Pressure Sensor reported to exhibit stable operation at 500oC [3] .

A third application of SiC MEMS has been in the area of radio frequency (RF)

MEMS devices such as microfabricated switches, micromechanical resonators and filters

[6]. There have been efforts to improve Si-based resonators resulting in devices with

vibrational frequencies greater than 100 MHz. Even with the advances in Si technologies,

there still is increasing desire to develop material other than Si for MEMS devices that can

resonate at higher frequencies and still have a high quality factor (Q). SiC is one of the

most promising materials for these RF application due to its high acoustic velocity and

recent advances in fabrication technologies [6].

Another SiC MEMS application that has had considerable success is the SiC MEMS

atomizer for gas turbine engines depicted in Figure 1.2. The SiC atomizer has been tested

against a similar nickel atomizer for performance and erosion. While both atomizers

performed well in excess of 2.5 MPa, the SiC device exhibited higher erosion resistance

at those high pressures [12].
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Figure 1.2 Cross section of a typical gas turbine engine showing atomizer insertion
points [12].

An application of high interest and value is the development of SiC piezoresistive

MEMS accelerometers. The piezoresistive MEMS accelerometer is of great value as a

sensor for fuzes for pentrating weapons that see forces greater than 104 g’s. The fuze

was developed under the AFRL/MN in conjunction with NASA Glenn Research Center,

Cornell University, and Applied Research Associates (ARA) [13]. The first generation

device was tested and remained operational with over 40,000-g’s applied in a strong EM

field at temperatures reaching 600oC, all well beyond the capability of Si based fuzes [14].

1.2 Current technology limitations

Phil Neudeck [10], discribed the current technological limitions of SiC devices say-

ing:

Improvements in epilayer quality are needed as SiC electronics upscale
toward production integrated circuits, as there are presently many observable
defects present in state-of-the-art SiC homoepilayers. Non-ideal surface mor-
phological features, such as “growth pits”, 3C-SiC triangular inclusions (“tri-
angle defects”), are generally more prevalent in 4H-SiC epilayers than 6H-SiC
epilayers. Most of these features appear to be manifestations of non-optimal
“step flow” during epilayer growth arising from substrate defects, non-ideal
substrate surface finish, contamination, and/or unoptimized epitaxial growth
conditions. While by no means trivial, it is anticipated that SiC epilayer
surface morphology will greatly improve as refined substrate preparation and
epilayer growth processes are developed.
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In a 2002 IEEE paper, "Silicon Carbide for MEMS and NEMS-An Overview" the

authors C. Zorman and M. Mehrgany [5] from Case Western University, outline the state-

of-the-art fabrication techniques for SiC MEMS. In that paper, they stated some of the

limitations that fabricators are experiencing, saying:

Despite the initial success in fabricating devices using the multilayer mi-
cromolding process, several technical issues must be addressed before the
process is at the level of poly-Si surface micromachining. In terms of resid-
ual stress, the measured values for the atmospheric pressure chemical vapor
deposition (APCVD) poly-SiC films was not unreasonably high (140MPa).
However, the films suffered from excessive stress gradients, which leads to
significant bending of beams, especially for long, narrow structures. Such
bending had harmful effects on comb-drive actuators and other devices that
require coplanar structures [5].

1.3 Problem Statement and Research Objectives

The objective of this research is to determine a non-destructive evaluation (NDE)

method of identifying residual stress, stress gradients and defects in SiC MEMS. A corre-

lation between variations the Raman spectrum of SiC and stress in the crystal structure is

to be shown. An NDE technique that employs the spatial mapping of the Raman spectrum

across SiC MEMS will allow for visual identification of areas containing residual stress

and defects.

1.4 Thesis Organization

This thesis is broken into five chapters. Chapter II contains background informa-

tion including: a description of the basics of Raman spectroscopy, the causes of residual

stress, background on SiC MEMS, general knowledge about SiC crystals, and a thorough

literature review. In Chapter III, there is a description of the SiC samples that were investi-

gated. Chapter IV contains a brief description the experimental equipment and procedures.

Chapter V presents the results of the experiments and discusses the results. In Chapter VI,

the conclusions from the results are drawn and future work is laid out.
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II. Background Information

Chapter I gave an introduction to the problem being addressed by this work. This chapter

explains the background information on: (1) µ−Raman spectroscopy, (2) residual stress,

(3) the previous characterization of residual stress in Si using µ−Raman spectroscopy,

(4) basic knowledge of the material characteristics of SiC, and (5) a literature review on

important topics related to the detection of residual stress in SiC using µ−Raman spec-

troscopy.

2.1 µ−Raman Spectroscopy

µ−Raman was chosen to investigate residual stress in SiC MEMS because it is an

established technique for investigating crystal defects in SiC. According to E. Martin

et al., µ−Raman has been show capable of : "(i) micrometer size lateral resolution, (ii)

polytype identification, (iii) it is sensitive to crystal disorder, (iv) it is sensitive to stress,

and (v) it is sensitive to doping" [15].

Raman spectroscopy is a material characterization technique utilizing the third-

order nonlinear optical effect of Raman scattering depicted in Figure 2.1. Raman scatter-

ing is the diffraction of light due to vibrations in the lattice of a crystal. The momentum

of these vibrations is described by an optical phonon. When a photon of light interacts

with the vibration phonon, the light is scattered at a shifted frequency. The scattering of

light can be used to characterize crystalline and poly-crystalline materials. In addition,

residual stress in the lattice will also cause a shift in the phonon energies of the lattice

proportional to the strain in the lattice. The shift in frequency of the scattered light is used

to measure the stress in MEMS devices [13].
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Figure 2.1 Schematic depicting the Raman and Rayleigh scattering of an excitaion
source due to phonon or vibrational energy present between two atoms [16].

The classical approach to describing the Raman effect was developed by Ferraro et

al. in [17].

The electric field strength (E) of the electromagnetic wave (laser beam)
fluctuates with time (t) as shown by Eq. (2.1):

E = Eo cos 2πvot (2.1)

where Eo is the vibrational amplitude and vo is the frequency of the laser.
If a diatomic molecule is irradiated by this light, an electric dipole moment,
P, is induced:

P = αE = αEo cos 2πvot (2.2)

Here, α is a proportionality constant and is called polarizability. If the
molecule is vibrating with a frequency, vm, the nuclear displacement, q, is
written

q = qo cos 2πvmt, (2.3)

where qo is the vibrational amplitude . For a small amplitude of vibration,
α is a linear function of q. Thus, we can write

α = αo +
∂α

∂q
qo + ... (2.4)

Here, αo is the polarizability at the equilibrium position, and (∂α/∂q)o
is the rate of change of α with respect to the change in q, evaluated at the
equilibrium position.
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Combining (2.2) with (2.3) and (2.4), we obtain

P = αEo cos 2πvot

= αoEo cos 2πvot+
∂α

∂q o

qEo cos 2πvot

= αoEo cos 2πvot+
∂α

∂q o

qEo cos 2πvot cos 2πvmt

= αEo cos 2πvot

+
1

2

∂α

∂q o

qEo [cos 2π(vo + vm)t+ cos 2π(vo − vm) · t] (2.5)

According to classical theory, the first term represents an oscillating dipole
that radiates light of frequency, vo , (Rayleigh scattering), while the second
term corresponds to the Raman scattering of frequency, vo + vm (anti-Stokes)
and vo − vm (Stokes). If (∂α/∂q)o is zero, the vibration is not Raman-active.
Namely, to be Raman-active, the rate of change of polarizability (α) with the
vibration must not be zero.

In Figure 2.2, Raman shifts are depicted in terms of allowed energy states. The

infrared (IR) transitions are shown from the electronic ground state to the first vibrational

state, v1 . The Rayleigh frequency is equal to the excitation frequency, vo. For normal

Raman, the Rayleigh transitions occur between a virtual state (indicated by the dashed

line) and the electronic ground state (v = 0), with an energy level less than the first

electronic excited state (v� = 0). For the Stokes shift, vs, there is a transition from the

same virtual state as the Rayleigh line, however, the return transition ends at the first

vibrational state (v = 1). For the anti-Stokes frequency, vs, an excitation of carriers in

the first vibration state (v = 1) occurs and the return transition is to the electronic ground

state generating a slightly higher frequency than the excitation source. In addition, the

population density of the first vibrational state (v = 1) is much less than the ground state;

therefore, the anti-Stokes transitions are much less likely to occur [17].

Resonant Raman transitions occur when the excitation energy exceeds the band gap

energy causing transitions above the electronic excited state. In solid materials, such as

SiC, the vibrational levels above the excited state are broadened into a continuum of states.

Excitation into the continuum produces resonant effects, which can enhance Raman lines
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by a factor of 103or 104 relative to normal Raman (see reference [17]). Fluorescence

is another effect that can occur if a carrier is excited to an electronic state. In the case

of fluorescence, an excited carrier decays to the lowest excited state (v� = 0) and then

transitions to either the ground state or a vibrational level.

Figure 2.2 Energy levels for normal Raman, resonance Raman, and fluorescence spectra
[17].

The 6H-SiC material used to fabricate the bulk single-crystal MEMS devices has a

unique Raman shift that has been measured in previous experiments such as the results

seen in Table 2.1. The transverse optical (TO) phonons generate three Raman shifts in

6H-SiC, TO1 at 766 cm−1and TO2 at 788 cm−1 and 796 cm−1. The longitudinal optical

(LO) phonons generate a Raman shift in 6H-SiC at 966 cm−1 [18].

2.2 Residual Stress

Residual stress is the stress that occurs in a material due to the manufacturing

process. Residual stress in 3C-SiC structures deposited on Si comes from two main

sources: differing lattice constants and different thermal expansion coefficients. Other
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Table 2.1 Raman Shift peak locations for common polytypes of SiC [2]
Frequency (cm−1)

TA TO LA LO
3C(β) 796 972
2H 264 799 688

764
4H 204 796 610 964

767
6H 145 797 504 965

767 514
15R 167 797 569 965

173 785 577
769

sources include impurities introduced during the deposition process, variations in process,

and interstitial atoms or vacancies in the crystal lattice further discussed in Section 2.6 [5].

2.3 Detection of Residual Stress in poly-Si

Research into residual stress in SiC MEMS has many advantages including pro-

viding information that could help in the designing of reliable SiC MEMS fuze sensor.

Studies of the properties of both thin film 3C-SiC and 6H-SiC have been utilized by

MEMS developers and thus are the focus of this study. The measurement of residual

stress in MEMS structures was initially performed at the Air Force Institute of Technol-

ogy (AFIT) by Capt L. Starman in his dissertation, “Characterization of residual Stress in

Microelectromechanical Systems (MEMS) devices using Raman Spectroscopy" [16]. The

work done by Capt Starman, which includes methods for characterization and mitigation

of residual stress in poly-Si MEMS, was considered in the characterization of the residual

stress in both poly-SiC and bulk SiC MEMS.

Some of the results of Starman’s experiment [16] on stressed poly-Si MEMS can

be seen in Figure 2.3 which shows the shift in Raman peak signal of a poly-Si sample as

stress is applied. The error bars are representative of shifts in the peak Raman signal for

each applied stress over a series of three measurements. The variation was explained by
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the polycrystalline nature of the material. While the global stress was uniaxial, the stress

on the 30-nm grains simulated hydrostatic pressure. The Raman signal was measured

over several grains, thus slightly different Raman shifts were sampled. Note the linear

relation between applied stress and Raman shift.

Figure 2.3 "Frequency shift of the hydrostatic component for an applied uniaxial stress
applied along a 1.5 µm-thick Poly2 cantilever with dimensions of 200 µm-
wide by approximately 4000 µm-long" [16].

Once Starman found the phonon deformation potential corresponding to the poly-

Si, he was able to measure the residual stress in poly-Si MEMS structures such as beams

and cantilevers before and after they were released from the substrate. Figure 2.4 below

presents three different thicknesses of beams. Poly1 is 2.0-µm, Poly2 is 1.5-µm and Poly1-

Poly2 is 3.5-µm thick. The amount of stress clearly decreases after release. Therefore,

the structures where determined to be appropriate for testing methods of mitigating the

stress, such as ion implantation of the MEMS structures. For the thin-film SiC MEMS,

the same method should apply once the phonon deformation potential can be quantified.
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Figure 2.4 "Background residual stress profiles for a 100-µm-long by 10-µm-wide un-
released and released fixed-fixed beam. (a) Poly1 beam, (b) Poly2 beam and
(c) Poly1-Poly2 stacked beam" [16].

The following analytical model was developed in order to compare the results of the

Raman stress profiles measured on the test beams. Figure 2.5 shows the diagram used to

determine the residual stress profile for a fixed-fixed beam with a uniform load, g, due to

an applied force. R1 and R2 are the resultant forces, and M1 and M2 are the moments

about the beam [16].
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Figure 2.5 "Analytical stress model for a MEMS fixed-fixed beam" [16].

After the fixed-fixed beam is released, if a uniform distributed load is applied, then

residual stress can be calculated by the following equation [16],

σ =
M(x)y

I
(Pa) (2.6)

where M(x) is the moment about the beam and is given by [16]

M(x) =
g

12
(6lx− 6x2 − l2) (N/m) (2.7)

where g (N/m) is the distributed load, l (µm) is the beam length, and x (µm) is the selected

position along the length of the beam [16]. Figure 2.6 show the stress profile that was

plotted from the analytical model of the beam with a uniform load which matches the

results of the stress profile of the actual beams.
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Figure 2.6 "Analytical stress profile of a fixed-fixed beam with a uniform load [16]."

2.4 Background Information on SiC

In order to understand SiC as a material for microdevices, it is necessary to study

the properties of SiC. SiC possesses one-dimensional polymorphism which is known as

polytypism. The different polytypes of SiC have the same planar arrangement of Si and C

atoms. The only difference in the polytypes is in the stacking arrangement of the identical

planes along either the <111> or <0001> crystal axes. These different arrangements

result in more than 250 SiC polytypes. Even though there are 250+ polytypes, there are

only three crystalline structures: cubic, hexagonal, and rhombohedral. In the past, the

cubic phase of SiC was called beta-SiC, and the hexagonal and rhombohedral structures

were called alpha-SiC. The modern, more descriptive nomenclature has been adopted

that identifies both the crystalline symmetry and stacking periodicity (C = cubic, H =

hexigonal, and R = rhombdahedral). Using this system, beta-SiC is called 3C-SiC. 3C-

SiC is the only cubic polytype known to exist. The most common alpha-SiC polytypes

have hexagonal symmetries and are called 6H-SiC, 4H-SiC, and 2H-SiC [5] (see Figure

2.7).
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Figure 2.7 Lattice structure of cubic and hexagonal SiC [19].

The various polytypes of SiC are comprised of multiple arrangements of stacking

orders of Si-C double layers. The Si-C double layers form planar sheets of Si atoms and

planar sheets of C atoms. A plane of either of the double layers of Si and C atoms is

called the basal plane, the normal direction to the basal plane is named the c-axis, which

is designated the [0001] direction. Figure 2.8 shows the stacking order of the 6H-SiC

polytype. The unit cell is defined by six double layers of Si-C along the c-axis or [0001]

direction. The [11̄00] direction seen in Figure 2.8 is called the a-axis direction. The Si

atoms in Figure 2.8 that are labeled “h” or “k” indicate the Si-C double layers. SiC is a

considered a polar semiconductor because one surface that is normal to the c-axis is all Si

atoms while the next layer normal to the c-axis surface is all C atoms. As shown in Figure

2.8, these planes of Si or C are referred to as the “Si face” and “C face” surfaces [10].
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Figure 2.8 Representation of stacking order for 6H-SiC [10].

Even though the SiC polytypes are comprised of the same atomic composition, the

electrical properties are quite different and should be taken into account when designing

devices with these materials. From Table 2.2, the bandgap for 3C-SiC is 2.2 eV while

for 6H-SiC it is 2.9 eV. The 3C-SiC has a smaller bandgap, but it has a higher electron

mobility (1000 cm2/V-s) and a saturation drift velocity (107 cm/s) as a result of its cubic

crystalline symmetry [5].

2.5 Fabrication of SiC MEMS

The same techniques used for poly-Si MEMS, such as bulk micromachining, sur-

face micromachining and micromolding, can be applied in the design of SiC MEMS [5].
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Table 2.2 Material Properties of 3C and 6H SiC at 300K [3]
Property 3C-SiC 6H-SiC Si
Melting Point (◦C) 1825(sublimes) 1825(sublimes) 1414
Max. Operating Temp. (◦C) 873 1240 300
Thermal Conductivity (◦C) 4.9 4.9 1.5
Thermal Expansion Coeff. (*10−6 ◦C−1) 3.8 4.2 2.6
Young’s Modulus (GPa) 448 448 190
Physical Stability Excellent Excellent Good
Energy Gap (eV) 2.2 2.9 1.12
Electron Mobility (cm2/V − s) 1000 500 1350
Hole Mobility (cm2/V − s) 40 50 600
Sat. Electron Drift Vel (*107 cm/s) 2.5 2 1
Breakdown Voltage (*107 cm/s) 3 4-6 .3
Dielectric Constant 9.7 13.2 11.9
Lattice Constant (Å) 4.36 5.65 5.43

One such process that has been developed is known as the Multi-User Silicon Carbide

(MUSIC) process, which combines micromolding and micromachining techniques. The

MUSiC process is very similar to the Multi-User MEMS Processes (MUMPs) process

often used for micromachining poly-Si [5].

Bulk micromachining of SiC structures is normally done on 3C-SiC films on Si

substrates using Si bulk micromachining techniques. The technique is described as rel-

atively easy due to the chemical stability of SiC against Si anisotropic wet enchants like

KOH. However, for bulk micromachining of bulk SiC, no current anisotropic wet-etch

techniques have been identified [5].

With the limitations of bulk micromachining, SiC researchers have turned to micro-

molding techniques of poly-SiC to produce the same structures produced in Si MEMS.

Si molds are formed using deep reactive ion etching (DRIE), then coated with a thick

poly-SiC film deposited by chemical vapor deposition (CVD). The surface is then me-

chanically polished to remove the layer of poly-SiC exposing the Si mold. To release the

poly-SiC structure, the Si mold is chemically etched [5].
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Surface micromachining of SiC using chemical etching and RIE has proven difficult.

Developers have turned again to combinations of micromolding and mechanical polishing

to create microstructures such as lateral resonator structures and double layer micromotors

(see Figure 2.9 and Figure 2.10) [5].

Figure 2.9 "Cross-section schematic if a SiC micromotor fabricated using the MUSiC
process" [5].

Figure 2.10 “SEM micrograph of a SiC sallent-pole micromotor fabricated using the
MUSiC process" [5].
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The concept of micromolding has been developed further in the MUSiC process.

The process contains four poly-SiC layers for surface micromachining, which utilizes the

same design as for the MUMPs process, although the devices cannot be directly designed

using the same steps. The MUSiC process instead uses the previously described micro-

molding techniques [5].

2.6 Crystal Defects of SiC

Defects in SiC crystals are a major limiter in the realization of SiC electronics and

MEMS. Defects can be classified into four types: point, line, area and volume. It is

important to be able to characterize and understand the influence of defects in crystals

such as SiC because they effect its optical, electrical and mechanical properties [20]. They

are also of interest because they introduce stress into the crystal lattice.

2.6.1 Point Defects. There are four types of point defects, which are repre-

sented in Figure 2.11. One defect occurs when an impurity atom is located at a lattice site

(Figure 2.11 (a)) and another defect exists when an impurity is between lattice sites (Fig-

ure 2.11 (b)). If an atom is missing from a lattice site, it is called vacancy defect (Figure

2.11 (c)), and if an atom from the crystal moves out from its lattice site, it is considered

a Frenkel-type defect (Figure 2.11 (d)) [20]. For details on point defects in SiC and their

effects, see "Electron paramagnetic resonance of electronic grade SiC substrates" by M.

Zvanut [21].
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Figure 2.11 Point defects: (a) substitutional impurity; (b) interstitial impurity; (c)l lattice
vacancy; and (d) Frenkel-type defect [22] .

2.6.2 Line Defects. A line defect is typically called a dislocation. The two

types of line defects are screw and edge. An edge dislocation of a cubic lattice is shown in

Figure 2.12 (a) where an extra plane of atoms (AB) is present in a portion of the lattice. A

screw dislocation is represented in Figure 2.12 (b) showing that the crystal plane is shifted

one part of the crystal one space over [20].

Figure 2.12 (a) Edge and (b) screw dislocations in cubic crystals [23].
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2.6.3 Area Defects. Area defects are large areas of the crystal which are discon-

tinuous. Grain bounderies such as the ones in polycrystalline material can be considered

defects. Another defect which will be considered in the results of this thesis are stacking

faults in which the stacking periodicity of the atom planes changed. If a plane is missing,

it is called an intrinsic stacking fault. If an extra plane is present, it is called an extrinsic

stacking fault [20].

Figure 2.13 Stacking faults in semiconductors: (a) intrinsic stacking fault; and (b) ex-
trinsic stacking fault [22].

2.6.4 Volume Defects. Volume defects are formed from precipitants from im-

purities. When the crystal is formed, there exists a maximum concentration of impurities

that the crystal can allow. The impurities that exceed this level of concentration precipitate

and form the volume defects [20].

2.6.5 Micropipes. Micropipes are screw dislocations with a hollow core

which form hexagonal tube-like cavities that have diameters in the neighborhood of a few

µm, and form parallel to the c-axis of the hexagonal structure [24]. Most SiC experts

agree that micropipes are the most harmful defect in SiC. An image of an etched mi-

cropipe is shown in Figure 2.14. Under the current growth techniques used to produce

4H- and 6H-SiC wafers, there exist high densities of screw dislocations defects which,

like micropipes, cause a considerable amount of localized strain in the SiC. The strain will

effect the operation of both SiC MEMS and electronics [10].
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Figure 2.14 Etched micropipe in a SiC diaphragm [8].

2.7 Literature Review

There has been an on going effort in the materials research community to correlate

the Raman spectrum of SiC to defects and stress in the SiC. Initial studies into the Raman

spectrum of 6H-SiC using laser excitation sources date back to 1968 with Feldman et

al. [25]. Since that time, many advances have been made in 6H-SiC crystal quality and

Raman spectrum techniques. The Raman spectrum for 6H-SiC is well characterized and

the peaks are shown in Figure 2.15 for a comparison to the Raman spectrum collected in

this research. The folded transverse optical (FTO) lines are x = 1 at 766-cm−1, x = 1/3 at

788-cm−1, and x = 0 at 796-cm−1. The folded longitudinal optical (FLO) line is for x = 0

at 966-cm−1 [18].

Where according to Feldman et al.:

For long-wavelength phonons we need to consider only the axial direc-
tion of the large zone. (SiC polytype structures are characterized by a one-
dimensional stacking sequence of planes. Consequently, the large zone is
extended in only one direction, the axial direction, and all long wavelength
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modes are found on the large-zone axis.) The standard large zone for 6H-SiC
extends to 6π/c, where c is the axial dimension of the unit cell. Since 2π/c
is a reciprocal lattice vector, the pseudomomentum vectors q = 0, 2π/c, 4π/c,
and 6π/c are all equivalent to q = 0 in the Brillouin zone. Thus, if we define
a reduced momentum x = q/qmax, the values of x accessible to Raman scatter
measurements are x = 0, 0.33, and 1 [25].

Raman spectroscopy can only detect the fundamental modes of vibration that are at

the center of the Brillouin zone where the momentum vector is k = 0. For that reason,

only the fundamental modes of vibration that occur at x = 0, 0.33 and 1 can be measured

by using Raman techniques [17]. For convenience, the intense lines at 766-cm−1,788-

cm−1and 966-cm−1 will be called TO1, TO2 and LO, respectively.

Figure 2.15 Raman Spectrum of 6H-SiC using 266-nm and 488-nm excitation sources
[26].

According to Ferrero et al. [27], Figure 2.16 represents the Raman spectrum for

both 3C-SiC and 4H-SiC. The Raman peaks for the 4H-SiC were observed at 776 cm−1

for the FTO mode and at 964 cm−1 for the FLO mode. The Raman peaks for the 3C-SiC

were observed at 796 cm−1 for the FTO mode and 972 cm−1 for the FLO mode.
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Figure 2.16 Raman spectra, 3C-SiC [27].

Defect studies have been conducted extensively in 6H-SiC using Raman spectroscopy

in order to help improve crystal quality [15,27]. However, little has been done in the way

of residual stress measurements of 6H-SiC MEMS. The work focused on the characteri-

zation of defects has provided some basic information needed for the detection of residual

stress in SiC MEMS such as a measurement of the phonon deformation potential of 6H-

SiC at ultra high pressures by Liu et al. [28]. They demonstrated that for their 6H-SiC

crystal, the TO2 mode frequencies held the relationship that

ωTO2 = 789.2 + 3.11P − 0.009P 2 (2.8)

where, P is a positive compressive pressure measured in GPa. This information is a

useful reference to compare the results of the phonon deformation potential measured in

this work. (However, the 6H-SiC crystals were manufactured by different crystal growers

resulting in slight differences.)

In contrast, more work has been done in the way of detecting residual stress in 3C-

SiC thin films by Lee et al.. They were able to map the phonon deformation potential for

poly-crystalline 3C-SiC using a four-point bending fixture. The result is in the inset in

Figure 2.17. Spectrum (A) in Figure 2.17 shows the spectrum of the bulk poly-crystalline
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3C-SiC that was used to find the phonon deformation potential. Spectrum (B) shows the

spectrum of their thin film polycrystalline SiC samples on a (111) Si substrate [1].

Figure 2.17 The transversal optical (TO) mode of bulk poly-3C-SiC by Lee et al. [1].

Lee et al. were able to take the knowledge of the phonon deformation potential

in Figure 2.17 and map residual stress in thin-film structures as shown in Figure 2.18.

Figure 2.18 µ−stress maps collected of the epitaxially grown 3C-SiC film bt Lee et al.
[1].
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It should be noted that the TO mode frequency of the polycrystalline 3C-SiC recorded

by Lee et al. was red shifted 3 cm−1 from the crystalline 3C-SiC TO mode frequency of

796 cm−1. Lee et al. attributed the red shift to stacking faults in the polycrystalline SiC

based on the results from Romfeld et al. [29]. Romfeld et al. illustrated the TO peak

of polycrystalline 3C-SiC as deposited in Figure 2.19 (a). Then, by laser annealing the

sample, they were able to remove the stacking faults. Figure 2.19 (b) shows the narrowing

the line shape, removal of the shoulder and a blue shift in the peak to match the TO mode

frequency of crystalline 3C-SiC after the laser anneal. They further demonstrated the ef-

fects of stacking faults by computer simulation [29]. This information becomes important

because the Raman spectrum of the poly-SiC used for this work appears to have a large

amount of stacking faults with a red shift of the TO peak of 5 cm−1.

Figure 2.19 TO peak in 3C poly-SiC (a) as deposited and (b) after laser annealing at
1700 K [29].

2.8 Chapter Summary

Chapter I gave an introduction to the problem of detecting residual stress in SiC

MEMS. This chapter explained the background information necessary to understand the

problems faced in the characterization of residual stress in SiC MEMS. Chapter III will

introduce the specific SiC structures that were evaluated in this research.
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III. Samples

The introduction discussed the objective of this research, which is the detection of residual

stress in SiC MEMS. A review of the history and characteristics of SiC MEMS was also

covered. In this chapter, the materials that were investigated in this research are described.

The samples evaluated were fabricated from two different polytypes of SiC. The first

set of samples were MEMS fabricated from 6H-SiC and the second were thin films of

polycrystalline 3C-SiC deposited on (100) Si substrates (referred to as poly-SiC). This

chapter describes the structure of the samples.

3.1 NASA crystalline 6H-SiC accelerometer and pressure sensor

The NASA MEMS pressure sensors are described in detail to provide enough back-

ground to appreciate and understand the results of the experimental analysis. For a com-

plete description of the device function see references [8, 30].

3.1.1 Layout and Function. The design of the NASA MEMS pressure sen-

sor/accelerometer tested in this thesis is shown in Figure 3.1. Figure 3.1 (a) shows the

cross-section of the MEMS pressure sensor fabricated from a high resistivity (7 Ω-cm)

p-type SiC 6H-SiC 50-µm thick diaphragm, and the 250-µm thick edges. As a load is

applied normal to the diaphragm, both compressive and tensile forces can be monitored

by piezoresistive elements formed from an n-type epitaxial layer (3.8 x 1018 cm−3) on

the top surface of the diaphragm (see Figure 3.1 (c)). The piezoresistive elements are

arranged into a Wheatstone bridge (see Figure 3.1 (b)) so that a change in the resistance

of the piezoresistors, due to flexing of the diaphragm, results in a corresponding change

in voltage across the bridge. From Figure 3.1 (c), the (highlighted) resistors labeled #1

and #3 are identical in dimensions and they cross the edge of the diaphragm at the same

point. Likewise, resistors labeled #2 and #4 are identical and are placed at the mirrored

positions on the diaphragm. Therefore, the resistances of piezoresistors #1 and #3 and the

resistances of #2 and #4 are intended to be identical. Due to the matching of resistances,
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an enhancement of the output of the Wheatstone bridge should occur. In Figure 3.1 (c),

the diaphragm is apparent in the optical micrograph as a dark circle, due to the material’s

transparency. The rectangular dark regions that the resistive elements are connected to are

metal contacts. The device is packaged and the carrier leads are wire bonded to the metal

contacts [31]. There are two different devices that are tested: one with a diaphragm radius

of 650 µm, and an other with a diaphram radius of 550 µm.

Figure 3.1 (a) Cross-section of 6H-SiC MEMS diaphragm indicating points of stress
from a shock. (b) Layout of the resistive elements forming a Wheatstone
bridge. (c) Top view of the NASA 600 sample with highlights over the
piezoresistive elements [31].

3.1.2 Resistivity of the piezoresistors #2 and #4 . The 6H-SiC structures are bulk

micro-machined by back-etching a 250-µm thick single-crystal 6H-SiC wafer (p-type, 7

Ω-cm) that includes a plasma enhanced chemical vapor deposition (PECVD) deposited

6H-SiC 5-µm epitaxial film ("epi-layer") (n-type, doped 3.8 x 1018 cm−3) on the top sur-

face of the wafer. The length of the piezoresistors #2 and #4 is 400 µm and the cross-

sectional area is 40 µm× 5 µm. The dopant for the epitaxial layer is nitrogen (N) [32]. N
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is a shallow donor in 6H-SiC with ionization energies that have been measured between

0.085 and 0.125 eV [33].

According to Sze [20], the resistivity for an n-type semiconductor is defined as

ρ =
1

qnµn
(3.1)

where µn is electron Hall mobility in (cm2V −1s−1), q is the elementary charge, 1.602 ×
10−19C, and n is the electron or majority carrier concentration (cm−3). The resistance, R,

of an element of length, l, and area, A, is

R = ρ
l

A
=

1

Aqnµn
. (3.2)

With a donor dopant level ND = 3 × 1018cm−3 at T = 300◦K, the electron Hall

mobility is µn ≈ 100 − 300(cm2V −1s−1) (see Figure A.1). Since the donor ionization

energies are greater than 3 kT,where k is Boltzman’s constant, 1.38 × 10−23 J
K
, and T is

temprature (K), away from the conduction band (i.e., 0.085 eV > 3 kT = 0.075 eV ), the

dopants will not be fully ionized.

To determine the number of ionized majority carriers, the following equation from

Wolf et al. [34] must be balanced since

n+N−
A = p +N

+
D (3.3)

where p is the hole or minority carrier concentration (cm−3), n is the electron or majority

carrier concentration, N−
A is the number of fully ionized acceptors, andN+

D is the number

of fully ionized donors. From Sze [20],

n = Nce
−(EC−EF )/kT (3.4)

and
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p = Nve
−(Ef−Ev)/kT , (3.5)

whereNc is the density of states in the conduction band (cm−3),Nv is the density of states

in the valence band, Ef is the Fermi energy level (eV), Ev is the energy of top the edge

of the valance band, Ec is the energy of the bottom edge of the conduction band. From

Levinshtein et al. [33],

Nc ∼= 1.73× 1016 × T 3/2(cm−3) (3.6)

and

Nv ∼= 4.8× 1015 × T 3/2(cm−3). (3.7)

The number of ionized dopants are found by [34]

N−
A =

NA
1 + 4e(EA−Ef )/kT

(3.8)

and

N+
D =

ND
1 + 2e(Ef−ED)/kT

. (3.9)

Finally, the Varshney equation, which gives the energy gap as a function of lattice tempra-

ture, for 6H-SiC is [33]

Eg = Eg(0)− 6.5× 10−4 × T 2

T + 1200
(eV ). (3.10)

By substituting (3.4)-(3.9) into (3.3) [35]:

0 = Nve
−(Ef−Ev)/kT −Nce−(EC−Ef )/kT + ND

1 + 2e(Ef−ED)/kT
− NA
1 + 4e(EA−Ef )/kT

, (3.11)
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the value of Ef can be found relative to both Ec and Ev. By setting Ev = 0 and , then Ec =

Eg; Equation (3.11) becomes

0 = Nve
−Ef/kT −Nce(Ef−Eg)/kT + ND

1 + 2e(Ef−Eg+ED)/kT
− NA
1 + 4e(EA−Ef )/kT

. (3.12)

Ef is found by finding the roots of Equation (3.12). Equation (3.9) is solved to determine

the number of ionized majority carriers. By substituting the value of n = N−
D , ρ and

R can be found. Figure 3.2 is a plot of the ideal resistances for piezoresistors #2 and

#4 on the 550 NASA sample based on these equations and calculations. (Matlab code

is included in Appendix C. Measured resistances for these piezoresistors will be given in

Section 5.1.1)
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Figure 3.2 The resistance of piezoresistors #2 and #4, which are PECVD deposited 6H-
SiC strips of 5-µm epitaxial layers (n-type, doped 3.8 × 1018cm−3) on the
top surface of the wafer. The length of the resistors is l = 400 µm and the
cross-sectional area is A = 40µm × 5µm. The dopant for the epitaxial layer
is N.
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3.2 Cree 6H-SiC wafers

The NASA MEMS pressure sensors are fabricated from 3.52◦ off-axis Cree wafers

of 6H-SiC with an n-type epitaxial layer deposited on the top surface. In order to inves-

tigate the phonon deformation potential, two wafers of the 6H-SiC were acquired and are

depicted in Figure 3.3. The CR07809-43 wafer is cut at 0.39◦ off axis and was used for

the phonon deformation potential experimental determinations.

Figure 3.3 Layout and specifications of two Cree 6H-SiC wafers used to determine
phonon deformation potentials.

3.3 FLX poly-SiC Thin Films

Flx Micro Inc. produced the thin films of polycrystalline 3C-SiC (poly-SiC) de-

posited by low-pressure chemical vapor deposition (LPCVD) [36] on the (100) Si sub-

strates, used for evaluation by Raman spectroscopy in this research. Poly-SiC has an

advantage over single-crystal SiC in the fabrication of MEMS because it can be deposited
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on a sacrificial layer of Si dioxide (SiO2) or an electrically insulating layer of Si Nitride

(Si3N4) film [6]. Thus, the interest in measuring the Raman Shift for the characterization

of stresses in poly-SiC for MEMS structures was of interest here.

3.3.1 1.5-µm SiC on Si. A schematic cross-section of the 1.5-µm poly-SiC on

Si substrate is illustrated in Figure 3.4 (a). In Figure 3.4 (b), an optical micrograph was

taken displaying a metal mask of a comb drive that was deposited on top of the poly-SiC.

The magnification is 5X and the green dot in the middle is the laser spot of a 514-nm

argon-ion laser through the confocal microscope. (For more details on the microscope

setup, see the equipment chapter on the Raman spectrometer.)

Figure 3.4 (a) Cross-section of the 1.5-µm thick poly-SiC deposited by LPCVD [36] on
a Si substrate. (b) Microscope image of the top of the FLX Micro inc. 1.5-
µm poly-SiC on a Si substrate. The comb drive is a metal mask deposited
onto the thin film.

3.3.2 5.5-µm SiC on Si. A schematic cross-section of the 5.5-µm SiC thin

films is depicted in Figure 3.5 (a). After the films were deposited, the back side of the

wafers were anisotopically etched by potassium hydroxide (KOH), leaving a suspended

membrane of SiC. In 3.5 (b), an optical micrograph of the top surface of the 5.5-µm

thin film is shown. The membrane was fractured during transport and dropped below

the support structure (the dark shape in the middle of the picture). The picture is shown

to reveal the edge of the diaphragm. Intact samples were used for all Raman spectral
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analysis. The image was again taken through a 5X objective showing the suspended

membrane to be 1 mm x 1 mm.

Figure 3.5 (a) A cross-section of the 5.5-µm thick poly-SiC deposited by LPCVD [36]
on a Si substrate. The Si substrate is back-etched to produce a suspended
membrane of SiC. (b) Optical micrograph of the top surface of the 5.5-µm
thin film. The membrane was fractured during transport and dropped below
the support stucture. The image is shown to reveal the edge of the diaphragm.
Intact samples were used for all Raman measurements.

3.3.3 Optical Properties of SiC . One important factor to consider when de-

termining the Raman spectrum of SiC is the material’s absorption coefficient, α. At a

laser wavelength of λuv = 325 nm, the photon energy, Euv = 3.81 eV, is 1.45 eV above

the bandgap energy of 3C-SiC, Eg3C = 2.36 eV (see Figure A.5). Correspondingly, the

absorption, α = 3660 cm−1, is high (see Table A.1). Conversely, for a laser wavelength,

λgreen = 514 nm, the photon energy, Egreen = 2.4 eV, is only 0.04 eV above Eg3C . Due

to the fact that 3C-SiC is an indirect bandgap material and Egreen is only 0.04 eV, above

the Eg3C , its absorption is α ≈ 100 cm−1 at a wavelength, λgreen = 514-nm (see Figures

A.4 and A.5). In Figure 3.6, the amount of light that is transmitted through the SiC, T, is

plotted as a function of thickness, d. For both of the absorptions at 514-nm and at 325-nm

wavelengths (see Appendix C for .m file), the following relationship was used to produce

Figure 3.6:
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Figure 3.6 Percent of light transmitted as a function of thickness of SiC by the 325 nm
and 512 nm lasers for both 6H and 3C polytypes. 3C-SiC absorption val-
ues come from Figures A.1 and A.4. 6H-SiC absorption values come from
Figures A.2 and A.3.

T = e−αd (3.13)

The data become important when looking at thin films by Raman spectroscopy be-

cause it gives an indication of how much light will reach the Si substrate which is highly

Raman active for many wavelengths. Also included is the absoption of 6H-SiC for both

wavelengths at λ = 514 nm, α ≈ 20 cm−1(See Figure A.3) and at λ = 325 nm, α ≈ 5 ×
103 cm−1(See Figure A.2).

3.4 Chapter Summary

In this chapter, samples fabricated from two different polytypes of SiC that

were investigated were described. The first one was MEMS fabricated from 6H-SiC and
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the second set of samples were thin films of polycrystalline 3C-SiC deposited on (100)

Si substrates (referred to as poly-SiC). The next chapter describes the characterization

methods used to study the samples.
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IV. Equipment and Experiments

The equipment for characterization of the SiC samples described in Chapter III are intro-

duced in this section. More detailed information is available on most of the equipment

through the manufacturers. Experimental procedures are also outlined.

4.1 Probe Station

A four-point probe station seen in Figure 4.1 was used to measure the resistances of

the piezoresistive elements on both the NASA 550 and 650 MEMS pressure sensors. The

probe station is powered with a Hewlett Packard 41501A source/monitor unit (SMU) and

pulse generator expander, and the current-voltage (I-V) curves are recorded by a Hewlett

Packard 4155A semiconductor analyzer. (For more information see

http://www.home.agilent.com/upload/cmc_upload/All/55A90015.pdf)

Figure 4.1 Four-point probe station used to measure the resistance of piezoresistive ele-
ments.
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One probe needle was placed in contact with the metal contact pad on either side of

the piezoresistive element as illustrated in Figure 4.2. Once the contacts were in place,

the voltage was swept from 0 to 10 V and the corresponding current was recorded. The

resistance was in turn determined by the slope of the I-V line. Three measurements were

taken across each resistive element.

Figure 4.2 The text boxes label the measurement taken and the arrows indicate where
the probe needle for the resistance measurement was placed on the device.

4.2 Scanning Electron Microscope

The scanning electron microscope (SEM) creates images of surface features of the

NASA pressure sensors which look three-dimensional and help to investigate the visible

features. The SEM has the advantage over optical microscopy because of its large depth

of field and many different levels of magnifications. The SEM requires the samples to be

in a stable vacuum condition for the electron irradiation. To view insulating materials,
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a gold coating is needed to produce a conducting surface and to prevent electrical charge

effects. For SiC, the coating is not required because of its conduction properties [37].

4.2.1 AMRAY 1810 (1990). The AMRAY 1810 is considered a "bottom of

the range SEM but with the advantage of being of the new generation of digital imaging

instruments having many automatic features [37]." The AMRAY SEM has a resolution

of 5 nm with an efficient back scattered detector for the atomic number imaging. The

SEM has a personal computer (PC) controlled system and a thin window germanium de-

tector which can detect elements above beryllium in the periodic table. Several software

packages were available: SEMQUANT - quantitative bulk analysis, AUTOBEAM - basic

electron image acquisition, SPEEDMAP - high speed X-ray mapping, and IMQUANT -

image processing. The system PC runs on Windows NT 4.0, which allows the user to

capture and transfer digital images [37]. A digital image of the AMRAY 1810 can be seen

in Figure 4.3.

Figure 4.3 AMRAY 1810 SEM.
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4.3 Zygo Interferometer

The Zygo NewView was used to acquire three-dimensional surface structure data of

the pressure sensor for analysis. The system combines graphic images and high resolution

numerical analysis to accurately characterize the surface structure of the samples. The

NewView utilizes scanning white light interferometry in order to image and measure the

micro-structure and topography of surfaces in three dimensions [38]. A schematic of the

NewView Zygo interferometer system is shown in Figure 4.4.

Figure 4.4 Diagram of the New View Zygo interferometer system [38].

4.4 InVia Raman Spectrometer

A schematic of the InVia Raman specrometer, produced by Renishaw Inc., is shown

in Figure 4.5. The laser light enters the system and first passes through a beam expander

(labeled E) in order to collimate the light. The beam is guided through to the confocal

microscope where it is focused through by an objective onto the investigated sample (with

4-4



50X objective, the spot size is ∼1 µm in the focal plane). The samples are placed on

the piezoelectric stage in the focal plane of the microscope (labeled A). The light reflects

off the samples back through the microscope, and is passed through a notch filter (D)

to reduce the intensity of the Rayleigh line without affecting the Raman shift intensity.

The light then passes through the entrance slit (B) to the monochromator. Light reflects

off of the triangle mirror and is dispersed by a grating with a number of lines per mm

corresponding to the excitation wavelength. The dispersed light is then passed through the

50-µm exit slit onto a CCD array (F) [39].

Figure 4.5 Diagram of a Renishaw Raman spectrometer [39].

4.4.1 Spectral Resolution. The InVia Raman spectrometer is based on a single

monochromator. Therefore, the resolution of the spectrometer for the wavelengths of 325-

nm (UV) and 514-nm (green) may be calculated using the following equation:
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∆λ =
wa

fm
, (4.1)

where w is the slit width, a is grating tooth spacing, f is the focal length of the monochro-

mator and m is the diffraction order. Examples for some of the wavelengths relevant to

this work are worked out below using the data from Renishaw.

Example 1 λ = 325nm;

∆λ = a
fm
w = 1

200mm×2400(1/mm)50µm = 1. 041 7× 10−10m

∆ν = 1
λ2
∆λ = 1

(325nm)2
× 1. 041 7× 10−10m = 9. 862 2cm−1

Example 2 λ = 514nm;

∆λ = a
fm
w = 1

200mm×1800(1/mm)50µm = 1. 388 9× 10−10m

∆ν = 1
λ2
∆λ = 1

(514nm)2
× 1.3889× 10−10m = 5. 257 1cm−1

Example 3 λ = 1064 nm;

∆λ = a
fm
w = 1

200mm×1200(1/mm)50µm = 2. 083 3× 10−10m

∆ν = 1
λ2
∆λ = 1

(1064nm)2
× 2. 083 3× 10−10m = 1. 840 2cm−1

Table 4.1 shows some of the advertised capabilities of the InVia Raman spectrometer

found on the world wide web (http://www.renishaw.com/UserFiles/acrobat/UKEnglish/SPD-

TN-014.pdf ). It should be noted that the advertised spectral resolution is only for the con-

figuration with the infrared (IR) laser, and that the laser wavelengths used for the Raman

experiments (325 nm and 514 nm) do not provide the advertised spectral resolution. Four

different lasers with the following wavelengths; 830 nm, 633 nm, 514 nm and 325 nm, are

available at AFRL/ML. Renishaw Inc. has provided a spread sheet that will calculate the

spectral resolution and other important parameters. A snap shot of the results for 514-nm

and 325-nm wavelengths can be found in the Appendix B Figures B.3 and B.2. The spec-

tral resolution computed by the Renishaw’s spread sheet closely matches the results of the

spectral resolution based on the monochromator equations above.
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Table 4.1 Renishaw InVia Raman spectrometer advertised capabilities.
Description Renishaw’s inVia Raman microscope
Wavelength coverage ∼10 cm−1 to 9000 cm−1

Laser options multiple,from 244 nm to 830 nm
Detector Si CCD
Noise limitation signal shot noise limited
Microscope spatial resolution < 1 µm (depending on configuration)
Spectral resolution ∼1 cm−1(depending on configura-

tion)

4.4.2 Sampling Rate. The InVia Raman spectrometer has variable spectral reso-

lution based on the wavelength of the excitation source. Therefore, the sampling rate must

be dynamic. Raman spectra will be explained further in the results section, but Figure

4.6 (a) and (c) depict the two typical spectra. Figure 4.6 (a) is the Raman spectrum of

diamond powder, which has a main Raman peak with a line center at 1331 cm−1 relative

to the 325-nm laser line defined as 0 cm−1. Figure 4.6 (b) is a close up view of the Raman

line of the diamond powder showing only the data points collected which demonstrates

the sampling rate of the InVia Raman spectrometer using a 325-nm source to be 3 cm−1.

Figure 4.6 (c) is the Raman spectrum of 6H-SiC which has an LO Raman peak line center

at 966 cm−1 and is excited using a 514-nm laser. Figure 4.6 (d) is a close-up view of the

LO peak showing the sampling rate with a 514-nm source to be 2 cm−1.

4-7



Figure 4.6 (a) Raman spectrum of diamond powder using a 325-nm excitation source.
(b) Raman peak of diamond powder at 1331 cm−1 showing the range between
sampling points. (c) Raman spectrum of 6H-SiC using a 514-nm excitation
source. (d) LO peak of 6H-SiC a 966 cm−1 using a 325-nm excitation source.

4.5 Four-point Strain Fixture

Two methods were attempted to quantify the phonon deformation potential for the

6H-SiC. The first method utilized a four-point strain fixture (Figures 4.7 (a) and (b)) that

is similar to the methods used by Starman and Lee et al. [1, 16]. The dimensions can be

found in Appendix B, Figure B.1. Strips of 6H-SiC were cut from the CR07809-43 Cree

wafer as shown in Figure 3.3 and epoxied to a piece of Plexiglas along with a Vishay EA-

06-125AD-120 precision strain gauge using M-bond 200 epoxy, also from Vishay Inc.

The Plexiglas piece is placed above the V-shaped part and below the metal cross rods.

The V-shaped part is pushed upwards by a bolt (seen in the back of Figure 4.7 (b)). A

compressive force is applied to the Plexiglas piece between the two metal cross rods.

The strip of 6H-SiC and the strain gauge epoxied to the top surface of the Plexiglas are

also compressed, resulting in a strian that can be monitored by a P-3 strian indicator and

recorder, discussed in detail later.
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(a) (b)(a) (b)

Figure 4.7 (a) Top view of the four-point strain fixture. (b) Sideview of the four-point
strain fixture.

4.6 Vice

A second experimental setup to determine the phonon deformation potential of 6H-

SiC utilized a vice. A 1-cm2 sample of the CR07809-43 Cree wafer had an EA-06-

125AD-120 precision strain gauge was epoxied to the unpolished side of the sample using

M-bond 200. The sample was placed in a vice as shown in Figure 4.8. A stress was

applied directly to the crystal, and the strain on the crystal and strain gauge was monitored

by a P-3 strain indicator described in the next section. For each increment of stress applied

to the crystal, the corresponding Raman spectrum of the crystal was recorded and curve

fit to the line shape using Wire 2.0
R�

software to track the shift in the Raman peaks as a

function of the applied stress. Note, as the pressure was applied to the crystal the sample

slightly bucked upwards producing a tensile stress on the top surface. The buckling was

determined optically as a change in the focal plane of the microscope.

A third method for mapping the phonon deformation potential would be to use a

diamand anvil cell as reported by Liu et al. [28].
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1cm x 1cm 6H-
SiC Sample

Vice

Leads to 
Strain 
gauge

Figure 4.8 Vice setup used to apply stress to a 1-cm x 1-cm square of 6H-SiC with
a strain gauge epoxyed to the back side and used to measure the phonon
deformation potentials.

4.7 P-3 Strain Indicator and Recorder

The model P3 Strain Indicator and Recorder is an instrument that can measure the

strain placed on resistive strain gages. "Proprietary scaling and linearization algorithms

provide sophisticated data reduction for strain gauge measurements" [40]. In both exper-

iments used to determine the phonon deformation potential, the strain gauges were wired

to a model P-3 strain indicator and recorder (Figure 4.9). In the four-point strain fixture

setup, the P-3 was able to monitor the strain applied to the Plexiglas, the strain gauge and

the 6H-SiC sample. In the vice setup, it was also able to monitor the strain directly applied

to the 6H-SiC crystal 1-cm × 1-cm square.
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Figure 4.9 Photograph of the P-3 strain indicator and recorder from [40].

4.8 Chapter summary

The equipment and methods for characterization of the SiC samples described in

Chapter III were discussed in this Chapter. The next chapter will explain the results of

these experiments.
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V. Results and Data Analysis

The previous chapters introduced the idea that µ−Raman spectroscopy can be used as

a method of detecting residual stress in SiC MEMS. The different sample materials were

described in Chapter III. This chapter presents and discusses the results of the experiments

outlined in Chapter IV.

5.1 NASA 550 and 650 6H-SiC MEMS

The investigation of the NASA MEMS samples led to promising results that are

discribed in the following sections.

5.1.1 Resistance of piezoresistors. In order to determine whether the residual

stress measured in the NASA 550 pressure sensor piezoresistors had any effect on the

balance of the Wheatstone bridge, the resistances of the piezoresistors were determined

by measuring the current-voltage (I-V) relationship using the four-point-probe station (see

Section 4.1). From the I-V information, Ohms law,

V = i×R (5.1)

was used to back out the resistances. Three measurements were recorded and averaged

across each resistor.

Table 5.1 shows the average measured resistances of the four piezoresistors on the

NASA 550 and 650 pressure sensors. In Figure 4.2, it was shown where the measurements

were taken. On each resistor the resistace was measured three times and the standard

deviation was computed using the following spread sheet function

(x− _
x)2

(n− 1) (5.2)
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where x is the average and n is the sample size. The large standard deviation may be

attributed to the probe needles penetrating the metal contact pads. Although the range of

resistances measured is large, 611-1312 Ω, it does correspond to the resistances predicted

for these samples in Section 3.1.2.

Table 5.1 Measured resistances of the piezoressitors on the NASA 550 and 650 MEMS
sensors with the coresponding standarded deviation of the measurements.

Piezoresistors R1 (Ω) SD1(Ω) R2 (Ω) SD2(Ω) R3 (Ω) SD3(Ω) R4 (Ω) SD4(Ω)
NASA 650 1312 455 874 45.3 993 38.3 997 63
NASA 550 1256 6 806 223 611 80 646 173

5.1.2 SEM’s. SEM’s of the NASA 550 pressure sensor were taken to identify

any irregular features in the MEMS device, and to show some of the MEMS features

and packaging (Figure 5.1). Note in Figure 5.1 (a) that the NASA 550 MEMS structure

is epoxied into a package and the piezoresistors are wired to the package pins. The red

boxes indicate the location of the subsequent magnification. The MEMS devices that

were magnified and imaged were those that had been identified as having residual stress

through Raman spectroscopy (see Figures 5.14 and 5.15). Although a larger amount of

stress was identified in the section of resistor #4 (shown circled in red in Figure 5.1 (d))

no irregularities in the chip were found in that location by the SEM.
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Figure 5.1 (a) SEM of the NASA 550 pressure sensor in packaging at 11.3X magnifica-
tion. (b) SEM at 33.2X magnification (c) SEM of resistors #2 and #4 at 123X
magnification (d) Closeup of resistor #2 where a residual stress was identified
using Raman spectroscopy.

Figure 5.2 (a) shows an SEM of the third piezoresistor on the NASA 550 pres-

sure sensor in the location where it crosses the diaphragm. Figure 5.2 (b) shows this

location in relation to the rest of the chip. Considerable amounts of residual stress were

identified using the Raman spectrometer (see Figure 5.10), yet no visible signs of defor-

mation were observed in the SEM.
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(a) (b)(a) (b)(a) (b)(a) (b)

Figure 5.2 (a) SEM of resistor #3 on the NASA 550 pressure sensor in the location where
it crosses the diaphragm. (b) SEM of the NASA 550 pressure sensor showing
the location of (a)

5.1.3 Zygo Interferometer Data. An interferogram was made with a Zygo in-

terferometer to substantiate that a shift in the Raman spectrum of the resistive element

labeled #4 on the 550 NASA sample was caused by residual stress and not by an un-

even surface of that piezoresistor. The reason that the surface morphology is important

in Raman spectroscopy is that changes in the distance from the objective of the Raman

microscope to the object plane can cause a Raman shift if the laser is not refocused. The

Zygo, when operated properly, gives accurate measurements of the change in height of

the MEMS structures. In Figure 5.3, an interferometric measurement of resistors labeled

#2 and #4 (see Figure 3.1) were taken in an area identified as having residual stress by

Raman spectroscopy. It can be seen that there are only changes in their height where the

epilayer is grown, but that those structures are level on top and would not cause a Raman

shift. The two ellipses in green can be used as a reference to compare the interferogram

with the Raman map in Figure 5.15. Note that there are no visible defects in Figure 5.3

in the location of the residual stress shown in Figure 5.15, and that the area is completely

level from the interferogram.
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Figure 5.3 An interferogram and a optical micrograph of the resistors #2 and #4 on the
NASA 550 sample in a location where isolated residual stress was detected
using Raman analysis.

Another interferometric measurement was recorded on resistor # 3 on the NASA

550 pressure sensor as shown in Figure 5.4. By Raman analysis, it was shown that as the

piezoresistor crosses the edge of the diaphragm, a considerable amount of residual stress

was detected (see Figure 5.10) that can effect the operation of the device. However,

through simple evaluation of the morphology of the structure, no variations could be de-

tected.

Figure 5.4 An interferogram and an optical micrograph of resistor # 3 on the NASA
550 sample. Residual stress was identifed where the resistor crosses the
diaphragm by using Raman spectroscopy.

5-5



5.1.4 Raman Spectroscopy on the NASA 550 MEMS. Several steps were taken

to determine the best way to collect the Raman spectral analysis data on sections of the

NASA 550 sample. The successful results are outlined in this section.

5.1.4.1 325-nm versus 514-nm Excitation. In order to determine which

frequency of light would be better to perform Raman spectral measurements on the crys-

talline 6H-SiC MEMS, both an Ar-ion laser with a wavelength of 514 nm and an ultra-

violet (UV) laser with a wavelength of 325 nm were used. For the 514 nm laser, a

1800/mm grating is designated and, for the 325-nm laser, a 2400/mm grating is desig-

nated. Even though the spectral resolution increases when a grating with a higher density

of lines is used, the system configuration still has better spectral resolution by using a

514-nm laser than the setup using the 325-nm laser. In Figure 5.5 (a), the spectrum of

crystalline 6H-SiC was recorded using the 514-nm excitation source. The TO1 peak at

766-cm−1, the TO2 peak at 788-cm−1and the LO peak at 966-cm−1are clearly discernible.

Each subplot in Figure 5.5 is zoomed in closer onto the TO peaks. In Figure 5.5 (b), the

Raman spectrum of crystalline 6H-SiC with a 325-nm laser excitation source is shown.

Notice that the spectral lines are less clearly resolved. The two reasons for this are that

the spectral resolution of the monochromator in the Raman system is lower for the 325-nm

excitation source than for the 514-nm source, and the 325-nm source can cause fluores-

cence because it exceeds the 3.0 eV band gap of 6H-SiC.
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Figure 5.5 (a) Raman spectrum of crystalline 6H-SiC with a 514-nm excitation source
using the InVia Renishaw spectrometer. (b) Raman spectrum of crystalline
6H-SiC with a 325-nm excitation source.

5.1.4.2 Baseline Raman Spectra. In order to record the baseline Raman

shift of unstressed 6H-SiC, a spectral acquisition was collected on the edge of the 550

NASA sample, away from the diaphragm. The spectral lines match those reported by

Brink et al. [18]. The spectral lines of the baseline spectrum are labeled in Figure 5.6.

The Rayleigh line, also called the laser line, is the reference point for the Raman shift and

is centered at 0 cm−1. The folded transverse optical (FTO) lines are x = 1 at 766 cm−1, x

= 1/3 at 788 cm−1, and x = 0 at 796 cm−1. The folded longitudinal optical (FLO) line is

for x = 0 at 966 cm−1. (For convenience, the intense lines at 766 cm−1,788 cm−1and 966

cm−1 will be called TO1, TO2 and LO, respectively.)
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Figure 5.6 6H-SiC Raman spectrum from the edge of the NASA 550 pressure sensor.

5.1.5 Phonon Deformation Potential. The phonon deformation potential is a

relationship between strain in a material and the shift in its Raman spectrum. The results

show a linear correlation between strain and shift in the Raman spectrum.

5.1.5.1 Four-Point Strain Fixture. Attempts were made to use a four-

point strain fixture to determine the phonon deformation potential as described by Capt

Starman [16]. However, little or no measurable changes in the Raman spectrum of the

6H-SiC samples were observed when using this technique. One possibility for the failure

of this method may be due to the high Young’s modulus of SiC in comparison to that of Si

(see Table 2.2). Young’s modulus relates how much a material will deform under a given

stress. If the M-Bond 200 stretched before the SiC deformed no strain would be induced
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on the crystal. In Starman and Lee et al. [1,16] experiments, they used thin films (1-2 µm)

which typically have a lower Young’s modulus than bulk samples [41]. In comparison, the

crystals that were tested in this experiment were 250-µm thick.

5.1.5.2 Vice. Measurement of the phonon deformation potential was also

attempted by the vice technique described in Chapter IV. The 6H-SiC sample was ex-

perimentally determined to have a shift in the TO1, TO2 and LO peaks as a function of

applied stress. As tensile stress was applied to the crystal, the peaks shifted to a lower

wavenumber in a linear fashion as seen in Figures 5.7 and 5.8; the data points were indi-

cated by blue circles. One important fact to note is that the resolution of the InVia Raman

spectrometer is larger then the smallest measurement tracked when measuring the Raman

shift in SiC as a function of stress. Because the Raman system is oversampled (refer to

Section 4.4.2) and each spectral peak is statistically fit with a Voigt profile using Wire

2.0
R�
, the mean position of the peak is determined with resolution below the instrument

resolution. It is the mean positions that are plotted in Figures 5.7 and 5.8(top). The data

points were linearly fit using a least squares fit algorithm. The residuals chart (Figures

5.7 and 5.8 bottom) gives an indication of how closely the fit matched with the actual data

points. From the fit to the data shown in Figures 5.7 and 5.8, the TO1 and TO2 mode

frequencies are determined to be:

ωTO2(cm
−1) = −3.02P + 788.4

ωTO1(cm
−1) = −1.62P + 766.6 (5.3)

where P is a positive tensile pressure measured in GPa. The linearity of the TO2 mode

frequency is close to same as the results of Liu et al. [28]. The slight differences in the two

equations could be from different crystal faces, doping levels, crystal quality, experimental

setup or curve fitting techniques.
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Figure 5.7 The top graph shows the line center of the TO2 peak as a function of uniaxial
pressure applied normal to the c-axis of 6H-SiC. The bottom graph shows the
residuals of the linear least squares fit to the measured data points.

Figure 5.8 shows the line centers of the TO1 peak as a function of applied stress,

with a linear least squares fit and a plot of the corresponding residuals. By comparing the

slope of the TO1 line in Figure 5.8 with the slope of TO2 line in the Figure 5.7, it becomes

apparent that the TO2 line has a greater shift with respect to stress than the TO1 peak. The

fact that the TO1 peak shifts less than the TO2 peak was further confirmed in line scans

across the edge of the diaphragm of the NASA 550 pressure sensor, where the shift of the

line center of the two peaks was tracked separately (see Figure 5.10). From these results,

the TO2 peak is chosen to map areas of changes in the Raman shift due to residual stress.
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Figure 5.8 The top graph shows the line center of the TO1 peak as a function of uniaxial
pressure applied normal to the c-axis of 6H-SiC. The bottom graph shows the
residuals of the linear least squares fit to the measured data points.

5.1.5.3 Line Scans. Once the Raman spectra of 6H-SiC were determined

for unstressed and stressed crystals, measurements were performed by line scans to collect

the Raman spectra at each point on the sample in 5-µm steps using a computer controlled

piezoelectric stage. Figure 5.9 (a) shows the location of one line scan across resistor

#3. Figure 5.9 (b) shows where resistor #3 is located on the NASA 550 pressure sensor.

In Figure 5.9 it can be seen that the scan crosses the edge of the diaphragm which is

determined to be a location of residual stress from fabrication procedures.
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(a) (b)(a) (b)

Figure 5.9 (a) Location of line scan on resistor #3. (b) Location of resistor #3 on NASA
550 pressure sensor.

Figure 5.10 was reproduced from the Raman data collected in the line scan

depicted in Figure 5.9. At each spatial point, the Raman spectrum was curve fit using a

Matlab program (in Appendix C), and the line centers of each Stokes line were determined

in reference to the Rayleigh line. This was done to account for thermal drift of the

excitation source during the collection time of an experiment. Figure 5.10 shows the TO1

and TO2 mode frequencies as a function of the spatial position of the scan. By comparing

Figures 5.9 and 5.10 it can be observed that at an x-position of 80 µm, the scan begins to

cross the edge of the diaphragm generating a shift in the positions of both the TO1 and

TO2 mode frequencies. In the vice experiment, the change in TO1 mode frequency was

not as great as the change TO2 mode frequency. In this separate line scan experiment the

TO1 and TO2 mode frequencies changed at different rates from the strain confirming the

fact that the TO2 mode is more sensitive to stress (see Figures 5.8 and 5.7).
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Figure 5.10 The line center of the TO 1 and TO 2 6H-SiC Raman peaks as a function of
position.

In order to determine the amount of stress at each position, the linear relation-

ships given in Equation (5.3) were used to map the data shown in Figure 5.10 in terms of

residual stress shown in Figure 5.11. Because the fit to the phonon deformation poten-

tial data by both linear regressions had some variations, it was necessary to determine the

estimator for the variance given by [42]

σ̂2 =
SSE

n− 2 (5.4)

where SSE (sum of the squares error) is the sum of the squares of the residuals shown

graphically on the bottom of Figures 5.8 and 5.7 and n is the number of data points. The

standard deviation (STD) was computed as the square root of the variance. The STD was
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scaled using the Equation (5.3) and plotted as error bars at each data point seen in Figure

5.11. By inspection of the graphs in Figure 5.11, it is determined the TO2 mode frequency

is more accurate of an indicator of the true stress at each point in the line scan. Therefore,

any mapping of stresses will be done with the TO2 peak.

Figure 5.11 The estimated amount of residual stress as a function of position of the line
scan shown in Figure 5.9. The estimates where found using phonon defor-
mation potentials for the TO 1 and TO 2 peaks and mapping them to the
results shown in Figure 5.10.

The TO1 mode frequency had less reliable results for the tracking of residual stress

than the TO2 mode frequency. The main reason is that the baseline shown in Figure 5.12

was raised due to background noise from a foam layer behind the SiC sample (see Figure

4.8). The fact that the baseline was raised added some limitations into the curve fitting

5-14



performed by the Wire 2.0
R�

software. Fitting the smaller TO1 peak showed slightly

more ambiguity in the line center location than the more intense TO2 peak.

Figure 5.12 Typical Raman spectrum of the 6H-SiC as measured during the determi-
nation of the phonon deformation potential. The raised baseline is due to
background noise from a piece of foam the sample was placed on.

5.1.6 Raster Maps of Raman Shift. In order to determine if there is residual

stress along the entire edge of the diaphragm of the 550 NASA pressure sensor (see Figure

5.13 (b)) as previously indicated by the line scan across resistor #3, a raster scan was

performed on an edge of the diaphragm, which can be seen as a change in shade from light

to dark grey in Figure 5.13 (a). Using the piezoelectric micropositioning stage, the Raman

spectrum at each point was recorded stepping across the surface in 5-µm increments. The

Raman spectra were curve fit at each point using the Raman analysis program in Appendix

C to determine the line center of each Stokes peak in relation to the Rayleigh peak. The
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TO2 mode frequency was recorded at each spatial position and then converted to stress

units by Equation (5.3). A map of residual stress along the edge of the diaphragm was

then plotted as a function of spatial position as depicted in Figure 5.13 (c).

Figure 5.13 (a) Micrograph of diaphragm edge through a 20X objective with a coordi-
nate system that matches the raster map location in (c). (b) Micrograph of
the NASA 550 pressure sensor depicting the location of the edge of the di-
aphragm. (c) The residual stress measured using of a raster scan across the
edge of the diaphragm.

5.1.6.1 Raster Scans Across Piezoresistors. From the large variance in

resistance of the piezoresistors, the question arose whether residual stresses are playing a

part in those measurements. The residual stresses in resistors #2 and #4 were measured,

and are shown in Figures 5.14 and 5.15. The scan was performed on the sample (Figure
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5.14 (a)) where the red line is pointing to the optical micrograph of the NASA 550 pressure

sensor in Figure 5.14 (b). The scan revealed little residual stress in resistor #2.

Figure 5.14 (a) Micrograph of resistors #2 and #4 through a 20X objective with a coor-
dinate system that matches the raster map location in (c). (b) Micrograph of
the NASA 550 pressure sensor depicting the location of resistors #2 and #4
on the device. (c) The residual stress measured using of a raster scan across
resistor #2.

The Raman map of resistor #4 depicted in Figure 5.15 (c) was taken from the loca-

tion shown in Figure 5.15 (a) that is located where the red line is pointing to the optical

micrograph of the NASA 550 pressure sensor in Figure 5.15 (b). From this raster scan,

more residual stress was detected, particularly in the x-postion of 200 µm.

5-17



Figure 5.15 (a) Micrograph of resistors #2 and #4 through a 20X objective with a coor-
dinate system that matches the raster map location in (c). (b) Micrograph of
the NASA 550 pressure sensor depicting the location of resistors #2 and #4
on the device. (c) The results of a raster scan across resistor #4 showing the
amounts of residual stress in the resistor.

A raster scan also identified residual stress in the region around the x-position

of 200 µm shown in Figure 5.16 (a). This region is shown as a red box and is magnified

in Figure 5.16 (b) with a green oval around the area in which the stress was detected. Due

to the transparency of the 6H-SiC from which the piezoresistor was made, the focal plane

of the microscope was able to be moved below the piezoresistor top, and revealed a defect

in the structure below. The defect can be see as a change in shade circled in Figure 5.16

(c).
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(a)

(b) (c)

(a)

(b) (c)

Figure 5.16 (a) and (b) Zoom in on the defect location on resistor #4 identifed by Raman
mapping (c) Observation of the identified defect optically by changing the
depth of focus on the microscope and recording the image.

The technique of using Raman spectroscopy to detect residual stress and defects

in 6H-SiC MEMS has been proved to be effective. The phonon deformation potential

for the Cree Inc. 6H-SiC wafers that the NASA 550 MEMS structures were fabricated

from was demonstrated. Furthermore, the deformation potential are comparable to inde-

pendent measurements made by Lui et al. [28] on a 6H-SiC crystal. The mapping of the

residual stress was made possible by the InVia Raman spectrometer with an incorporated

piezoelectric stage. The TO2 mode frequency was determined to be the most statistically

reliable mode track for mapping the residual stress. With the capability to detect and quan-
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tify amounts of residual stress, the next step will be to determine a method of relieving the

stress from the fabrication processes.

5.2 Thin Film poly-SiC

Due to the nature of poly-SiC thin films (1.5 to 5 µm), the Raman spectra of the films

have proven to be more difficult to characterize than the Raman spectrum from the single-

crystal 6H-SiC MEMS devices provided by NASA. Attempts by Capt Stan Ness [39]

to identify residual stress in thin film poly-SiC by Raman spectroscopy using a 514-nm

excitation source on 1.5 to 2-µm films showed little success. In the experiments outlined in

this thesis, a 325-nm excitation source was used and 1.5–5-µm thick poly-SiC films were

investigated. The UV photons are well above the bandgap of SiC and are proven to be

highly absorptive (refer to in Figure A.1). This provides a resonant Raman effect, reduces

the amount of photons reaching the Si substrate, and therefore increases the signal-to-noise

ratio (SNR).

Several factors could influence the Raman spectra of the poly-SiC films including

possible stacking faults, grain boundaries, impurities and other polytypes found in the

poly-SiC. In addition, fluorescence of both the thin film of SiC and the Si substrate can

create background noise in the Raman spectrum and decrease the SNR.

5.2.1 325-nm versus 514-nm Excitation–Resonant Raman, Resolution and Lumi-

nescence. Raman spectroscopy of the same 1.5-µm poly-SiC thin films on (100) Si

substrate that Capt Ness [39] investigated with the 514-nm wavelength laser excitation

source was repeated. A cross-section of the sample is shown in Figure 3.4. The 514-nm

laser penetrates through the poly-SiC thin film with very little absorption or Raman ac-

tivity as shown in Figure 3.6, and much of the incident light is Raman scattered by the

Si substrate and shows up as the sharp peak at 521-cm−1 in Figure 5.17. Some of the

incident light is Raman scattered by the poly-SiC and shows up as broadened TO and LO

peaks.
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For the same 1.5-µm poly-SiC thin films on (100) Si substrate, the 325-nm laser

excitation source produced much narrower TO and LO Raman peaks. The Raman spec-

trum recorded from the poly-SiC is shown in red in Figure 5.17. The characteristic modes

of 3C-SiC, TO at 791-cm−1 and the LO at 958-cm−1 were apparent. The Si mode was

also significantly diminished. The improved results using the UV excitation source are

attributed to two effects. One effect is the increased absorption of the poly-SiC film pre-

venting much of the incident laser light from reaching the substrate, and therefore reducing

the amount of Raman scattering from the substrate. The other effect is a resonant Raman

effect which increases the amplitude and sharpens TO and LO intensities as explained in

the Section 2.1 for this thesis and further detailed in Introduction to Raman Spectroscopy,

by Ferraro et al. [17].
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Figure 5.17 The blue spectral lines are from the Raman spectrum of a 1.5-µm poly-SiC
layer on a (100) Si substrate measured using a 514-nm excitation source.
The red spectral lines are of the same 1.5-µm poly-SiC film with a 325-nm
excitation source.

5.2.2 UV Raman Spectroscopy: Si versus SiC on Si. To further substantiate that

the peak around 500 cm−1 was due to the Si substrate, the Raman spectrum of (100) Si
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was measured using the 325-nm excitation source and compared to the spectrum of the

poly-Si thin film discussed in the previous section. Both are plotted together in Figure

5.18. Points of interest include the correlation of the two peaks around 500 cm−1, and

the raised baseline of both samples that appears to be caused mainly by the Si substrate.

The excitation source was a 325-nm wavelength laser, which has a photon energy of 3.81-

eV that exceeds both the Si and 3C-SiC bandgap energies of 1.12-eV [20] and 2.36-eV

[33], respectively. Attempts were made to subtract the Si spectrum from the SiC-on-Si

spectrum, but the noise level could not be reduced.
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Figure 5.18 The Raman spectrum of a 1.5-µm poly-SiC on a Si (100) substrate is com-
pared with the Raman spectrum of Si (100) both of which were excited by
a 325-nm excitation source.

5.2.3 Film Thickness – Absorption. In order to investigate whether the thickness

of the poly-SiC film enhanced the Raman spectrum, the Raman spectrum of 1.5-µm and

5.5-µm-thick poly-SiC were compared (samples shown in Figures 3.4 and 3.5 were ana-

lyzed). The reason the thicker film enhances the Raman spectrum was that there would

be more of a resonant Raman effect and a reduction in the amount of photons that reach
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the Raman-active Si substrate. The Raman spectrum of the 5.5-µm poly-SiC was overlaid

with the 1.5-µm spectrum in Figure 5.19. Note that the TO and LO spectral lines sharpen

and intensify dramatically in the 5.5-µm thin film. However, the Si line also increased,

raising the question of whether the sample had a higher quality or the thickness of the

film increased the SNR. To understand if thickness is critical in increasing the SNR, more

samples with varying thickness would need to be tested. Increased SNR should make it

possible to track peaks with respect to an applied strain as demonstrated by Lee et al. [1].
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Figure 5.19 Raman spectum of poly-SiC films of thickness 1.5 µm and 5.5 µm using a
325-nm excitation source.

5.2.4 Substrate Raman Noise. After evaluating the Raman spectrum of the 5.5-

µm poly-SiC shown in Figure 5.19, FLX Micro Inc. provided the sample shown in Figure

5.20 (a). In addition, the Renishaw applications and support engineer for Raman products

re-calibrated the inVia Raman spectrometer increasing the SNR of every spectrum taken.

A 5.5-µm poly-SiC film was grown on a (100) Si substrate (Region 2 in Figure 5.20

(a)). Windows of the Si substrate were anisotropically back-etched producing suspended

membranes of poly-SiC (Region 1). Also, portions of the poly-SiC were delaminated,
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revealing the Si substrate (Region 3). The delaminated portions were used later in a strain

experiment. Region 1 was expected to have no Si underneath the membrane, however,

as seen in Figure 5.20 (b), the Raman spectrum of Region 1 and Region 2 were almost

identical. It is possible that the spectrum around 520 cm−1 is due to fluorescence from SiC,

but the Raman spectrum taken in region 3 of the Si substrate matches very closely with

these spectral peaks. Attempts were made to do x-ray diffraction on the delaminated films

to see if there was any Si present on the surface of the delaminated films. Inconclusive

results were obtained and should be further investigated.

Figure 5.20 (a) A cross-section of a 5.5-µm poly-SiC thin film grown on a (100) Si sub-
strate. Pyramidal pits of the Si substrate were anisotropically back-etched
creating suspended membranes of the poly-SiC (Region 1). Portions of the
poly-SiC delaminated revealing the Si substrate (Region 3). (b) The Raman
spectrum of the three regions shown in the cross-section (a) using a 325-nm
excitation source.
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5.2.5 Stacking Faults in poly-SiC. FLX Micro Inc. states that the poly-SiC films

are primarily 3C-SiC, however, a comparison of the 3C-SiC values with those measured

and recorded of the poly-SiC in Figure 5.20 (b) exhibited some mismatches. The FTO

mode frequency of 791 cm−1 is red shifted 5 cm−1 from crystalline 3C-SiC FTO mode

frequency and the FLO mode frequency of 958 cm−1 is red shifted 14 cm−1(see Figure

2.16). Even though the 325-nm source greatly improved the Raman spectrum, the spectral

lines were still broad when compared to crystalline 3C-SiC, and therefore the peak appears

as a shoulder on the left half of the FTO peak.

According to Rohmfeld et al. [29], the shift in the Raman spectrum, the broadened

line widths of the FTO and FLO peaks, and the shoulder to the left of the FTO peak are

all a result of stacking faults in poly-SiC thin films. Rohmfeld et al. shows how the

line width narrows, the shoulder is suppressed and the line center shifts to the crystalline

3C-SiC TO line center when the sample is laser annealed. A computer generated model

is used to support the effects of stacking faults. Figure 2.19 shows the TO peak in 3C

poly-SiC as deposited, and after laser annealing at 1700 K.

5.2.6 Delaminated poly-SiC . The Raman spectrum of the poly-SiC that delam-

inated from the (100) Si substrate was compared with the spectrum of the same film on

the (100) Si substrate. Note in Figure 5.21 that there was little if any difference between

the two spectra. The spectrum of the delaminated film indicates a Si spectral line, which

was unexpected and should be investigated further.
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Figure 5.21 The spectrum of 5.5-µm SiC on Si and SiC on Plexiglas.

The poly-SiC film was bonded, along with a strain gauge, to a piece of Plexiglas

glass using M-bond 200 adhesive. The assembly was then placed on the 4-point strain

fixture, and a uniform compressive stress was applied. The stress was measured by a

strain indicator and recorder. The TO, LO and laser line peaks were curve fit using Wire

2.0
R�

, and the center of the curves were tracked as a function of compressive stress. Unex-

pectedly, the peak centers did not shift as a function of stress (see Figure 5.22), indicating

that either no stress was felt by the film or the phonon modes are not sufficiently sensitive

to stress in this poly-SiC to monitor. More experiments should be made to identify the

phonon deformation potentials of the poly-SiC.
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Figure 5.22 The shift of peaks of 5.5-µm poly-SiC as a function of compressive stress

5.3 Chapter Summary

The results of the experiments performed in this research were presented in this

chapter showing that the single-crystal 6H-SiC MEMS can be evaluated for defects and

stress using Raman spectroscopy. The poly-SiC samples may also be evaluated using

similar methods, however more work is needed to develop reliable techniques. The next

chapter will presents some conclusions and recommendations as a result of this work.
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VI. Conclusions and Recommendations

The objective of this research, to determine a NDE method of identifying residual stress,

stress gradients and defects in SiC MEMS, was met. First the phonon deformation po-

tentials, that show a correlation between variations the Raman spectrum of SiC and stress

on the crystal structure, were determined. Then a NDE technique was developed that em-

ploys the spacial mapping of the Raman spectrum across SiC MEMS allowing for visual

identification of areas containing residual stress and defects.

6.1 Conclusions

The evolution of the stress states from raw materials to fabrication of SiC MEMS

is very important (i.e., process-induced changes in the microstucture). Baseline mea-

surements allow the understanding of the operation-based evolution of the microstructure

due to shock, high temperature, high voltage, ect. µ−Raman spectroscopy is becoming

important due to the repeated demonstrations of the ability to measure microstresses in

SiC materials. The experiments performed sought to address the underlying problem of

defects and microstress associated with SiC MEMS.

This research contributed to the state of the art in the detection and measurement

of residual stress in a variety of SiC-based MEMS structures. Raman spectroscopy pro-

vides the means to obtain microstructural information. The spectroscopic techniques

were adapted and applied to different crystal structures, both single crystalline and poly-

crystalline, and two different polytypes, 6H and 3C.

To the best of our knowledge, this work is the first study of residual stress corre-

sponding with defects in single crystal SiC MEMS devices. The work is also one of the

first studies on stress detection in polycrystalline SiC [20]. The results presented here are

important in the understanding of SiC materials. The measurement of deformation poten-

tial show linear results that correlate stress to Raman shift. Another important capability

of Raman spectroscopy is the mapping of residual stress states in MEMS devices. Defects
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and stress networks within the samples were identified by Raman maps. Stacking-fault

observations in polycrystalline Raman spectra were evidenced by broadening of the Stokes

peaks.

The pioneering work in SiC represents a significant improvement in understanding

this development of residual stress in a variety of crystal structures. Raman spectroscopy

provides a non-destructive evaluation capability to optimize process output in device fab-

rication by identifying defects in raw material.

6.2 Recommendations for Future Work

In the work cmpleted for this thesis, Raman spectroscopy has been determined to be

a excellent method of locating residual stress and defects in SiC MEMS. The magnitude

of residual stress is further quantified by the determination of the phonon deformation po-

tential for 6H-SiC MEMS. To better quantify the relationship between stress and Raman

shift for 6H-SiC, a diamond anvil cell setup similar to Liu et al. [28] should be used to

compare the phonon deformation potential of 3.51◦ and 0.49◦ off axis 6H-SiC. With the

capability to detect and quantify amounts of residual stress in SiC MEMS, the next step

will be to determine a method of relieving the stress induced in the fabrication processes.

Some ideas on how to relieve the residual stress in the MEMS structures are with ion

implantation, high temperature annealing or by nuclear radiation [43].

Efforts in this research have also indicated that MEMS fabricated from thin-film

polycrystalline 3C-SiC on (100) Si substrates can be evaluated for residual stress using

UV resonate µ−Raman techniques. Investigation should include the recording of the

Raman spectrum of 10-µm thick poly-SiC film on (100) Si and comparing those results to

the Raman spectra of the 5.5-µm and 1.5-µm films to understand if thickness is crutical

in increasing the SNR. The next step in the research into thin film SiC should follow

the outline of Capt. Starman’s method of characterization of residual stress in thin-film

MEMS (see Section 2.3). The phonon deformation potential for 3C-SiC determined by

Lee et al. [1] should be verified. Some suggested methods are (1) an air pressure device
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provided by FLX Micro Inc., (2) a 4-point bending fixture again (see [1]), (3) a vice to

induce stress as was used for the 6H-SiC or (4) the use of a diamond anvil cell. Once

this is complete, fix-fixed beams and cantilevers could be fabricated out of poly-SiC and

residual stress measured before and after release. Then, attempts to relieve stress could be

made using some of the techniques listed in the previous paragraph.

Another area of research interest is the identification of the cause of the strong Si

Raman mode detected in the delaminated thin films of poly-SiC (see Section 5.2.6). At-

tempts were made to do x-ray diffraction on the delaminated films to see if there was any

Si present on the surface of the film. Inconclusive results were obtained and should be

further investigated.

Another interesting area of research related to this work is the investigation of

MEMS made from other wide band gap semiconductor materials.

6-3



Appendix A. Properties of SiC

The Electron Hall Mobility shown in Figure A.1 is used in the calculation of the resistivity

of the piezoresistive elements #2 and #4 on the NASA 550 sample (see Section 3.1.2).

Figure A.1 Electron Hall mobility as a function of donor density [33]. Used to determine
resistivity of 6H-SiC piezoresistors.

The absorption coefficients as a function of photon energy shown in Figures A.2

and A.3 were used in Section 3.3.3 to determine the percent of Transmission of light in

6H-SiC as a function of material thickness.
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Figure A.2 Absorption coefficient of 6H-SiC as a function of photon energy [44]. Used
to determine transmision length of 325-nm photons in crystalline 6H-SiC
MEMS.

Figure A.3 Absorption coefficient of 6H-SiC as a function of photon energy [45]. Used
to determine transmision length of 514-nm photons in crystalline 6H-SiC
MEMS.
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The absorption coefficients as a function of photon energy shown in Figure A.4 and

Table A.1 were used in Section 3.3.3 to determine the percent of Transmission of light in

3C-SiC as a function of material thickness.

Figure A.4 "The absorption of 3C-SiC (1) and (2) at 300K. 3C-SiC (1) is relatively pure;
crystal (2) is strongly n-type (perhaps 1019/cm3 donors)" [46].

Table A.1 Absorption coefficients and depth penetration for 3C-SiC [4]
Wavelength(Å) Laser 3C-SiC

300K 2K
α(cm−1) α−1(µm) α(cm−1) α−1(µm)

3250 He-Cd 3660 2.7 3480 2.9
3336 Ar−ion 3190 3.1 3030 3.3
3371 N2 gas 2970 3.4 2860 3.5
3511 Ar ion 2260 3.4 2860 3.5
3540 He-Cd 2260 4.4 2160 4.6
3550 3xQ/Nd:YAG 2120 4.7 2030 4.9
3564 Kr− 2070 4.8 1980 5.1

The band diagram of 3C-SiC in Figure A.5 is referred to in Section 3.3.3 to illustrate

the absorption characteristics of 3C -SiC.
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Figure A.5 Band Structure of 3C-SiC. Important minima of the conduction band and
maxima of the valence band [47].
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Appendix B. Equipment

A diagram of the four-point strain fixture test as a method of inducing stress on the SiC

samples is shown in Figure B.1.

 

Figure B.1 Four Point Strain Fixture

Pertinent parameters of the InVia Raman Spectrometer for the 514-nm and 325-nm

excitations sources are shown in Figures B.2 and B.3.
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Figure B.2 Parameters of InVia Raman spectrometer configured for the 514-nm excita-
tion source

Figure B.3 Parameters of InVia Raman spectrometer configured for the 325-nm excita-
tion source
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Appendix C. Matlab Code

The following is a list of the Matlabs programs used for modeling characterisics of the

SiC samples and for spectral analysis of the Raman data.

C.1 Resistivity Program

%**************************************************************************
% Matlab code to determine carrier concetraion and the resitivity ranges

in
% n-type 6H-SiC dope with N 109418 dopants/cm943
%**************************************************************************
% Version 1.00
% Date: 5 NOV 2004
%
% Authors: Chris Zingarelli (1), and Michael Marciniak (2) Capt Kladitis

(3)
% (2) AFIT/ENG, michael.marciniak@afit.edu, (937) 255-3636 x 4529
%
% References:
% [1] Wolfe,Holnyak, and Stillman, Physical Properties of Simiconduc-

tors
%
% [2] Capt Paul E. Kladitis, PhD., Air Force Institute of Technology,
% EENG 596 Intergrated Circiut Technology class notes.
%
% [3] M. Levinshtein, et al., Properties of Advanced Semiconductor Ma-

terials
% GaN, AlN, InN, BN, SiC, SiGe,2001
clear
clc
k=1.38066e-23;%(J/K) boltzmans constant
h=6.62607e-34;%(J-s) planks const.
mo=.91094e-30;%(kg) mass of a electron
q=1.60218e23; %(C) elementaty charge
%6H-SiC contstants @ 300K from [3]
T=300;%(K)
Nd=0; Ed=0
Na=0; Ea=0
mn_t=.42*mo % transvers effective electron mass
%mn_l=2.0 % longitudanal effective electron mass
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mp=1; %effective hole mass
Eg0=3.0eV; a=6.5e-4; b=1200;
Eg=Eg0-a*T942/(T+b);%varshney equation
options=foptions;
disp(’Ef=Ef-Ev’)
Ef=fzero(’KFeqns’,[0 Eg],[],Nd,Ed,Na,Ea,Eg,T,mn_t,mp,N)

% % Authors: Chris Zingarelli (1), and Michael Marciniak (2) Capt Kla-
ditis (3)

%KFeqns.m
%This funtion is called by 6H_Si_resitivity
function F=Keqns(Ef,Nd,Ed,Na,Ea,Eg,T,mn_t,mp,N);
k=1.38066e-23;%(J/K) boltzmans constant
h=6.62607e-34;%(J-s) planks const.
q=1.60218e23; %(C) elementaty charge
Ev=0;
Ec=Eg;
Nc=1.73E16*T94(3/2);%cm94-3
Nv=4.8E15*T94(3/2);%cm94-3
n=Nc*exp((Ef-Ec)/(k*q)/T);
p=Nv*exp((Ev-Ef)/(k*q)/T);
Naa=Na./(1+4*exp((Ev+Ea-Ef)/(k*q)/T));
Ndd=Nd./(1+2*exp((Ef-(Ec-Ed))/(k*q)/T));
F=p-n+Ndd-Naa;

C.2 Transmission Program

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Plots the Transmission curves for 6H and 3C SiC
% By Chris Zingarelli
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
d=0:.1:1000;%um
%Style
set(0,’DefaultAxesFontName’,’times new roman’)
set(0,’DefaultAxesFontSize’,16)
set(0,’DefaultAxesFontWeight’,’normal’)
set(0,’DefaultAxesLineWidth’,2)
set(0,’DefaultTextFontName’,’times new roman’)
set(0,’DefaultTextFontSize’,16)
set(0,’DefaultTextFontWeight’,’normal’)
set(0,’DefaultLineLineWidth’,3)
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% Absoption (um94-1)
alpha_3C_325 = 3600e-4;
alpha_3C_514 = 1.0e-2;
alpha_6H_325 = 5000e-4;
alpha_6H_514 = 2e-3;
%transmission
T_3C_325=exp(-alpha_3C_325*d);
T_3C_514=exp(-alpha_3C_514*d);
T_6H_325=exp(-alpha_6H_325*d);
T_6H_514=exp(-alpha_6H_514*d);
semilogx(d,T_3C_325*100,’-’,d,T_3C_514*100,’-.’,d...
,T_6H_325*100,’:’,d,T_6H_514*100,’–’);
xlabel(’SiC film thickness (\mum)’);
ylabel(’Percent of light transmited’);
legend(’3C-SiC at 325nm’,’3C-SiC at 514nm’...
,’6H-SiC at 325nm’,’6H-SiC at 514nm’);

C.3 Raman Analysis Program

%***************************************************
% Micro-Raman Data Analysis Program (MRDAP)
%*****************************************************
% Version 2.10
% Date: 04 January 2005
% Changes: Add 3rd line in window, change tracking, add error analysis,
% use own LSQ code.
% S - folded (symmetry)
% 0 Rayleigh
% 126250 Fresnel lens line
% 766.00 sto x = 1
% 788.00 sto x = 1/3
% 796.00 sto x = 0 (zone-centered)
% 966.00 slo x = 0
% Authors: Jason Foley(1), Chris Zingarelli (2), and Michael Marciniak

(2)
% (1) AFRL/MNMF, jason.foley@eglin.af.mil, (850) 883-0584
% (2) AFIT/ENG, michael.marciniak@afit.edu, (937) 255-3636 x 4529
%
% References:
% [1] Timucin, Dogan A., 2004, "A new computational framework for
% atmospheric and surface remote sensing," Proc. ESTC 2004, B9P1,
% pp. 1-7.
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% [2] Puerta, Julio, and Martin, Pablo, 1981, "Three and four
% generalized Lorentzian approximations for the Voigt
% line shape," Appl. Opt., 20 (22), pp. 3923-3928.
% [3] Foley, Jason R., et al., 2005, "Data reduction for micro-Raman
% spectroscopy experiments," in preparation for submission to J.
% Raman Spectroscopy.
%
function main()
dbstop if error
clc;
clear all;
figure(1);
clf;
% Pseudocode
% 1. Data Import
% a. Baseline data file
% b. Comparative data file(s)
% 2. Plot
% 3. Curve fitting
% a. Gaussian + Lorentzian = Voigt!
%————————————————————————-%
% DATA IMPORT %
%————————————————————————-%
% File selection for data importation (GUI Codelet)
% Set the default directory
cd(’D:\Thesis\Zinger\Raman Spectrum’);
for idf = 1:2 % Two passes: once for baseline, once for the rest of the data
% Begin GUI codelet to select the data files
dirchange = true;
while dirchange
% Import data... dialog for file name
currdir = cd;
d = dir;
str = {d.name};
isdir = [d.isdir];
dirindices = find(isdir == true);
dialogstr = str;
for ii = 1:length(dirindices)
dialogstr(ii) = {[’<’,char(str(ii)),’>’]};
end
if idf == 1;
% SELECT BASELINE
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[s,v] = listdlg(’PromptString’,’Select BASELINE data file:’,...
’SelectionMode’,’single’,...
’ListString’,dialogstr);
else
% SELECT DATA FILES (allow multiple files)
[s,v] = listdlg(’PromptString’,’Select COMPARISON data file(s):’,...
’SelectionMode’,’multiple’,...
’ListString’,dialogstr);
end
if strcmp( ’..’,char(str(s)))
% Chosen is directory... want to go up a level
lastslash = max(findstr(currdir,’\’));
currdir(lastslash+1:end) = [];
cd(currdir);
elseif strcmp( ’.’,char(str(s)))
% Chosen is directory... want to refresh current directory... just
% don’t allow anything to happen, as it will repopulate at
% beginning of while loop
elseif isdir(s)
% Chosen is subdirectory... append to current path and start over
currdir = [currdir,’\’,char(str(s))];
cd(currdir);
else
dirchange = false;
end
end
% Read in data file(s)
for iis = 1:length(s)
filename{iis+idf-1} = d(s(iis)).name;
if idf == 1;
disp(sprintf(’Baseline file selected: %s.’,filename{iis+idf-1}));
else
disp(sprintf(’Comparison file selected: %s.’,filename{iis+idf-1}));
end
% Open the file
filecontents = importdata(filename{iis+idf-1});
% try
% head = file.textdata;
% filedata = file.data;
% colname = file.colheaders;
% catch
filedata = filecontents;
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% end
[nrows,ncols] = size(filedata);
switch ncols
case 2
% Point scan
scantype{iis+idf-1} = ’point’;
Nscans{iis+idf-1} = 1;
data{iis+idf-1} = filedata(end:-1:1,1:2);
case 4
% X
% Long vector of all positions...
xvec{iis+idf-1} = filedata(end:-1:1,1);
% Vector of unique positions (i.e., number of scans in the
% x-direction)
xscanpos{iis+idf-1} = unique(xvec{iis+idf-1});
% Number of x’s that comprise each scan
Nxscanpos{iis+idf-1} = length(xscanpos{iis+idf-1});
% Y
% Long vector of all positions...
yvec{iis+idf-1} = filedata(end:-1:1,2);
% Vector of unique positions (i.e., number of scans in the
% y-direction)
yscanpos{iis+idf-1} = unique(yvec{iis+idf-1});
% Number of y’s that comprise each scan
Nyscanpos{iis+idf-1} = length(yscanpos{iis+idf-1});
if Nxscanpos{iis+idf-1} == 1
% A vertical line
scantype{iis+idf-1} = ’yline’;
elseif Nyscanpos{iis+idf-1} == 1
% A horizontal line
scantype{iis+idf-1} = ’xline’;
else
% Area scan (raster, circle, or other)
scantype{iis+idf-1} = ’area’;
end
% And in summary...
Nscans{iis+idf-1} = Nxscanpos{iis+idf-1}*Nyscanpos{iis+idf-1};
data{iis+idf-1} = filedata(end:-1:1,3:4);
end
end
end
Ndatafiles = length(data);
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%————————————————————————-%
% END DATA IMPORT %
%————————————————————————-%
% plot(filedata(:,1),filedata(:,2))
% ribbon, waterfall, surf, surfl
% DATA ANALYSIS
% Algorithm for the data analysis
% For each data file...
% 1. Fit Rayleigh peak and calculate the relative wavenumber shift,
% which is stored as dkappaR
% 2. Shift the wavenumber component of the data by this quantity,
% i.e., kappa(i) <- kappa(i) + dkappaR.
%
for iis = 1:Ndatafiles
% For each scan within each data file...
Nds = Nscans{iis};
Nk = length(data{iis}(:,1))/Nds;
for isn = 1:Nds
kscan = data{iis}(1+(isn-1)*Nk:isn*Nk,1);
dscan = data{iis}(1+(isn-1)*Nk:isn*Nk,2);
%
plot(data{2}(:,1),data{2}(:,2));
xlabel(’Wavenumber k (m94{-1})’);
switch scantype{iis}
case ’point’
% No need to do anything special... just give it x = 0 and
% y = 0 coordinates.
xscan{iis,isn} = 0;
yscan{iis,isn} = 0;
case ’xline’
xscan{iis,isn} = xvec{iis}(1+(isn-1)*Nk,1);
yscan{iis,isn} = yvec{iis}(1,1);
case ’yline’
yscan{iis,isn} = yvec{iis}(1+(isn-1)*Nk,1);
xscan{iis,isn} = xvec{iis}(1,1);
case ’area’
xscan{iis,isn} = xvec{iis}(1+(isn-1)*Nk,1);
yscan{iis,isn} = yvec{iis}(1+(isn-1)*Nk,1);
end
% Scan structure
scanwin = {
% Peak N
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% kmin kmax Npeaks Name Center Sigma RelAmp
-50 50 1 ’Rayleigh’ 0 1 1 ...
” 0 1 0 ...
” 0 1 0
100 200 1 ’STA’ 150.5 3 1 ...
” 0 1 0 ...
” 0 1 0
680 860 3 ’STO I,x=1’ 766.0 2 0.4 ...
’STO II,x=1/3’ 788.0 2 1 ...
’STO III,x=0’ 796.0 3 0.3
900 1050 1 ’SLO’ 966.0 2 1 ...
” 0 1 0 ...
” 0 1 0
};
[Nwin,dum] = size(scanwin);
for iw = 1:Nwin;
% LINE WINDOW
kmin = cell2mat(scanwin(iw,1));% cm94-1
kmax = cell2mat(scanwin(iw,2)); % cm94-1
a = min( find( kscan > kmin ) );% minimum index
b = max( find( kscan < kmax ) );% maximum index
Npeaks = cell2mat(scanwin(iw,3));% Number of peaks
% PLOT DATA
% Add to quick plot
plot(kscan(a:b,1),dscan(a:b,1),’-r’);
% LINE DATA
k = kscan(a:b,1); % wavenumber data
d = dscan(a:b,1); % intensity data
% Estimate the noise in the sample from background data, i.e., the
% 10 pts near the ends of the window for this peak
idx = 10;
bgydata = [d(1:idx,1);d(end-idx:end)];
bgkdata = [k(1:idx,1);k(end-idx:end)];
sigmad = std(bgydata);
Rd = 1./sigmad;
% Also, estimate the background from these points
bgline = polyfit(bgkdata,bgydata,1);
bgslope = bgline(1);
bgoffset = bgline(2);
% Estimate the peak values...
pkpos = k(floor(mean(find(d == max(d))))); % finds middle of saturated

zone
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pkA = max(d);
% Set initial guesses and optimization parameters for the
% LINE(s)
params = {}; % Clear the params variable
for iin = 1:Npeaks
linename = char(scanwin(iw,4 + 4*(iin-1)));
k0 = cell2mat(scanwin(iw,5 + 4*(iin-1)));
sigmak0 = cell2mat(scanwin(iw,6 + 4*(iin-1)));
A0 = pkA*cell2mat(scanwin(iw,7 + 4*(iin-1)));
params(1+(iin-1)*4:iin*4,:) = {
% MIN MAX S(1) S(0) SIGMAS0 NAME
0 1e6 A0 A0 Inf [linename,’ amp’]
k0-sigmak0 k0-sigmak0 k0 k0 1 [linename,’ k0’]
0 50 5 5 0.5 [linename,’ sigmaG’]
0 2 1 1 0.5 [linename,’ sigmaL’]
};
end
smin{iis,isn,iw} = cell2mat(params(:,1));
smax{iis,isn,iw} = cell2mat(params(:,2));
Ns = length(smin{iis,isn,iw});
s1{iis,isn,iw} = cell2mat(params(:,3));
s0{iis,isn,iw} = cell2mat(params(:,4));
Rs0{iis,isn,iw} = 1./(cell2mat(params(:,5)));
sname{iis,isn,iw} = char(params(:,6));
% Use MARQUARDT function
lambda0 = 1e-4;
mincurv = 1e-5;
minstep = 8e-7;
maxiter = 100;
lambdamin = 1e-14;
opts = [lambda0 mincurv minstep maxiter lambdamin];
tic;
% [X, info, perf] = marquardt(fun, x0, opts, p1,p2,...)
% [fvec,dfds] = Rayleigh_LSQ_obj_func(s,k,d,Rdvec,s0r,Rs0vec);
disp(’Fitting peaks...’);
[strace{iis,isn,iw}, info{iis,isn,iw}, perf{iis,isn,iw}] =...
marquardt(@LSQ_obj_func,s1{iis,isn,iw}...
,opts,@linemodel,k,d,Rd,s0{iis,isn,iw},Rs0{iis,isn,iw},smin{iis,isn,iw}...
,smax{iis,isn,iw},Npeaks,bgoffset,bgslope);
shat{iis,isn,iw} = strace{iis,isn,iw}(:,end);
if info{iis,isn,iw}(6) == 1
disp(sprintf(’...fit complete by small gradient in %g s’,toc));
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elseif info{iis,isn,iw}(6) == 2
disp(sprintf(’...fit complete by small step in %g s’,toc));
elseif info{iis,isn,iw}(6) == 3
disp(sprintf(’...fit complete by max iterations in %g s’,toc));
end
[fhat{iis,isn,iw},Jhat{iis,isn,iw}] = LSQ_obj_func(shat{iis,isn,iw},...
@linemodel,k,d,Rd,s0{iis,isn,iw},Rs0{iis,isn,iw},...
smin{iis,isn,iw},smax{iis,isn,iw},Npeaks,bgoffset,bgslope);
% Perform error analysis
lastwarn(”);% clear all warnings
% Mean square error for a MAP estimator is...
MSE{iis,isn,iw} = inv( Jhat{iis,isn,iw}(1:end-Ns,:).’*Jhat{iis,isn,iw}(1:end-

Ns,:) + ...
diag(Rs0{iis,isn,iw}).’*diag(Rs0{iis,isn,iw}) );
if 126strcmp(lastwarn,”);
try
disp(sprintf(’MSE is not well-conditioned: %g’,cond(MSE)));
catch
try
MSE{iis,isn,iw} = pinv( Jhat{iis,isn,iw}(1:end-Ns,:).’*Jhatr{iis,isn,iw}(1:end-

Ns,:) + ...
diag(Rs0{iis,isn,iw}).’*diag(Rs0{iis,isn,iw}) );
catch
MSE{iis,isn,iw} = zeros(Ns,Ns);
end
end
end
scaled_covariance{iis,isn,iw} = MSE{iis,isn,iw};
sigmashat{iis,isn,iw} = diag(sqrt(MSE{iis,isn,iw}));
sigmashat{iis,isn,iw}(find(sigmashat{iis,isn,iw}==0),1) = eps;
for is = 1:Ns;
scaled_covariance{iis,isn,iw}(is,:) = ...
scaled_covariance{iis,isn,iw}(is,:)/sigmashat{iis,isn,iw}(is);
scaled_covariance{iis,isn,iw}(:,is) = ...
scaled_covariance{iis,isn,iw}(:,is)/sigmashat{iis,isn,iw}(is);
end
% Report estimation results
for is = 1:Ns
disp(sprintf(’%s = %g +/- %g; s(1) = %g.’,deblank(sname{iis,isn,iw}(is,:)),...
shat{iis,isn,iw}(is),sigmashat{iis,isn,iw}(is),s1{iis,isn,iw}(is)));
end
if iw == 1;
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% 2. Shift the wavenumber component of the data by this quantity,
% i.e., kappa(i) <- kappa(i) + dkappaR.
dkappaR{iis,isn,iw} = shat{iis,isn,iw}(2,1);
kscan = kscan - dkappaR{iis,isn,iw};% reloads each scan, so this is safe
end
end
end
end
%
% SAVE RESULTS
for iis = 2:Ndatafiles
% SAVE TO DATA FILE
Nds = Nscans{iis};
% Find the starting index of the file extension
strstart = findstr(filename{iis},’.’);
% Replace the file extension with a *.DAT file extension
datfilename = [filename{iis}(1:strstart),’dat’];
% Write the header, which contains:
% Line 1) the baseline data filename
fid = fopen(datfilename,’w’);
HeaderString = [’Baseline data file: ’,filename{1}];
fprintf(fid,’%s\n’,HeaderString);
fprintf(fid,’\n’);
% Line 2) the column headers
DataColumnHeaders{1} = ’x’;
DataColumnHeaders{2} = ’y’;
count = 3;
for iw = 1:Nwin;
Ns = length(smin{1,1,iw});
for is = 1:Ns
DataColumnHeaders{count} = deblank(sname{1,1,iw}(is,:));
count = count + 1;
end
end
%
for ilf = 1:(length(DataColumnHeaders)-1)
fprintf(fid,’%s, ’,DataColumnHeaders{ilf});
end
fprintf(fid,’%s’,DataColumnHeaders{ilf+1});% don’t need a comma
fprintf(fid,’\n’);
for isn = 1:Nds
DataColumnValues(1) = xscan{iis,isn};
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DataColumnValues(2) = yscan{iis,isn};
count = 3;
for iw = 1:Nwin;
Ns = length(smin{iis,isn,iw});
for is = 1:Ns
DataColumnValues(count) = shat{iis,isn,iw}(is,:);
count = count + 1;
end
end
for idv = 1:length(DataColumnValues)-1
fprintf(fid,’%g, ’,DataColumnValues(idv));
end
fprintf(fid,’%g\n’,DataColumnValues(end));
end % Loop over scans
fclose(fid);
edit(datfilename);
end
dbclear all
keyboard
return
%*********************************************************
%#####################################################
% LEAST SQUARES OBJECTIVE FUNCTION V 2.0
%
function [fvec,dfds] = LSQ_obj_func(s,func,k,d,Rdvec,s0,Rs0vec,...
smin,smax,Npeaks,bgoffset,bgslope);
% Bayesian maximum a posteriori (LSBMAP) vectorized objective func-

tion
% This function is the objective for the minimizer used to find the
% parameters for the Raman lines that match the provided data.
% X - Unknown optimization parameters
% K - Wavenumber coordinates
% Y - Spectral intensity data
% Input parameters
%
% Output parameters
% fvec : vectorized pdf of model with respect to the data
Nd = length(d);
Ns = length(s);
fvec = zeros(Ns + Nd,1);
dfds = zeros(Nd+Ns,Ns);
% M = Misfit function over all data sets
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% This hold since we assume the experiments are uncorrelated; the
% off-diagonal terms between subsequent experiments are identically zero.
[y0,r] = feval(func,s,k,d,Npeaks,bgoffset,bgslope);
fvec(1:Nd,1) = Rdvec.*r;
% S = Preference function
Ns = length(s);
method = ’pdp’;
switch method
case ’normprior’
% Normal (Gaussian) prior
fvec(Nd+1:Nd+Ns,1) = Rs0vec.*(s - s0);
case ’pdp’
% Partially diffuse prior
for is = 1:Ns
if (Rs0vec(is) == 0)
fvec(Nd+is,1) = 0;
else
sigmas(is) = 1./Rs0vec(is);
C = 1/(smax(is) - smin(is) + sqrt(2*pi)*sigmas(is));
if s(is) < smin(is)
fvec(Nd+is,1) = log(C) - 0.5*((s(is)-smin(is))942)/(sigmas(is)942);
dfds(Nd+is,is) = -((s(is)-smin(is)))/(sigmas(is)942);
elseif s(is) > smax(is)
fvec(Nd+is,1) = log(C) - 0.5*((s(is)-smax(is))942)/(sigmas(is)942);
dfds(Nd+is,is) = -((s(is)-smax(is)))/(sigmas(is)942);
else % s on interval (smin,smax)
fvec(Nd+is,1) = log(C);
dfds(Nd+is,is) = 0;
end
end
end
end
if nargout > 1
for is = 1:Ns
sp = s;
eps_s = 0.0001;
if sp(is,1) == 0;
ds = eps;
else
ds = eps_s*sp(is,1);
end
sp(is,1) = sp(is,1) + ds;
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[yp,rp] = feval(func,sp,k,d,Npeaks,bgoffset,bgslope);
dfds(1:Nd,is) = Rdvec.*(yp - y0)/ds;
end
end
%
return
%#####################################################
%#####################################################
function [y,r] = linemodel(s,k,d,Npeaks,bgoffset,bgslope);
% This function calculates the intensity profile of an arbitrary number of
% peaks (given the parameters S) over the wavenumber range specified by
% K. The residual (R) is also calculated by this code given the data
% vector D.
% Be sure to deal the estimated parameters into the right place
% s = [
% A % Nth peak amplitude
% k0 % Nth peak center
% sigmaG % Nth peak Gaussian width
% sigmaL % Nth peak Lorentzian width
%
% 0 % Baseline slope
% 0.05*max(ycomp{iis}) % Baseline offset
% ];
% Superposition of each of the spectral lines...
for Ni = 1:Npeaks
A = s(4*(Ni-1)+1);
k0 = s(4*(Ni-1)+2);
sigmaG = s(4*(Ni-1)+3);
sigmaL = s(4*(Ni-1)+4);
linei = voigt(k,k0,sigmaG,sigmaL,A);
lines(:,Ni) = linei(:);
end
% ...and the linear model of the background...
background = bgslope.*k + bgoffset;
% ...gives the net intensity distribution
y = sum(lines,2) + background(:);
% Apply a saturation filter to both the data and the Rayleigh line
satvalue = 90e3; % 75,000 counts
y( find( y > satvalue ) ) = satvalue;
d( find( d > satvalue ) ) = satvalue;
% Calculate the residual of the model with respect to the theory
r = ( y - d(:) );
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% Plot the results
plot(k,d,’ok’,k,y,’-r’);
xlabel(’Wavenumber (cm94{-1})’);
ylabel(’Intensity (A.U.)’);
pause(0.001);
return
%########################################################
%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
% VOIGT FUNCTION AND INTEGRAL
%————————————————————————–
function f = voigt(omega,omega0,sigmaG,sigmaL,A);
% This is the "outer" subroutine for the Voigt profile...
for iw = 1:length(omega)
method = ’approximation’;
switch method
case ’approximation’
% This is the approximation of the Voigt integral from Puerta and Martin,
% 1981, ’Three and four generalized Lorentzian approximations for the

Voigt
% line shape,’ Appl. Opt., 20 (22), pp. 3923-3928.
p = abs(sigmaL/sigmaG); % must be positive to be in upper half-plane.
d = ((omega(iw)-omega0)/sigmaG);
z = p + i*d;
f(iw) = 2*A*real(cef(i*z,10))/sqrt(pi);
% f(iw) = A*real(erfw(z))/sqrt(pi);
case ’integral’
omegamax = 2.5*sigmaG;
f(iw) = A*quadl(@voigtint,-omegamax,omegamax,[],[],...
omega(iw),omega0,sigmaG,sigmaL);
end
end
return
%————————————————————————–
% This is the integrand for the Voigt integral if used
function I = voigtint(omegastar,omega,omega0,sigmaG,sigmaL);
% I = exp( - ((omegastar - omega0).942)./(sigmaG.942) ) ./...
( (omegastar - omega - omega0).942 + sigmaL.942 );
I = exp( - ((omegastar).942)./(sigmaG.942) ) ./ ...
( ( (omega-omega0) - omegastar ).942 + sigmaL.942 );
return
%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
%
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% CEF %
% COMPLEX ERROR FUNCTION %
%——————————————————————-%
function w = cef(z,N)
% Computes the function w(z) = exp(-z942) erfc(-iz) using a rational
% series with N terms. It is assumed that Im(z) > 0 or Im(z) = 0.
%
% Andre Weideman, 1995
M = 2*N;M2 = 2*M; k = [-M+1:1:M-1]’;% M2 = no. of sampling points.
L = sqrt(N/sqrt(2));% Optimal choice of L.
theta = k*pi/M; t = L*tan(theta/2); % Define variables theta and t.
f = exp(-t.942).*(L942+t.942); f = [0; f];% Function to be transformed.
a = real(fft(fftshift(f)))/M2;% Coefficients of transform.
a = flipud(a(2:N+1));% Reorder coefficients.
Z = (L+i*z)./(L-i*z); p = polyval(a,Z);% Polynomial evaluation.
w = 2*p./(L-i*z).942+(1/sqrt(pi))./(L-i*z);% Evaluate w(z).
%——————————————————————-%
return % End CEF %
%
%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
function [X, info, perf] = marquardt(fun, x0, opts, varargin)
%MARQUARDT Levenberg-Marquardt’s method for least squares.
% Find xm = argmin{F(x)} , where x is an n-vector and
% F(x) = .5 * sum(f_i(x)942) .
% The functions f_i(x) (i=1,...,m) and the Jacobian matrix J(x)
% (with elements J(i,j) = Df_i/Dx_j ) must be given by a MATLAB
% function with declaration
% function [f, J] = fun(x,p1,p2,...)
% p1,p2,... are parameters of the function. In connection with
% nonlinear data fitting they may be arrays with coordinates of
% the data points.
%
% Call
% [X, info] = marquardt(fun, x0)
% [X, info] = marquardt(fun, x0, opts, p1,p2,...)
% [X, info, perf] = marquardt(.....)
%
% Input parameters
% fun : Handle to the function.
% x0 : Starting guess for xm .
% opts : Vector with five elements.
% opts(1) used in starting value for Marquardt parameter:
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% mu = opts(1) * max(A0(i,i)) with A0 = J(x0)’*J(x0)
% opts(2:4) used in stopping criteria:
% ||F’||inf <= opts(2) or
% ||dx||2 <= opts(3)*(opts(3) + ||x||2) or
% no. of iteration steps exceeds opts(4) .
% opts(5) lower bound on mu:
% mu = opts(5) * max(A(i,i)) with A = J(x)’*J(x)
% Default opts = [1e-3 1e-4 1e-8 100 1e-14]
% If the input opts has less than 5 elements, it is
% augmented by the default values.
% p1,p2,.. are passed directly to the function FUN .
%
% Output parameters
% X : If perf is present, then array, holding the iterates
% columnwise. Otherwise, computed solution vector.
% info : Performance information, vector with 6 elements:
% info(1:4) = final values of
% [F(x) ||F’||inf ||dx||2 mu/max(A(i,i))] ,
% where A = J(x)’*J(x) .
% info(5) = no. of iteration steps
% info(6) = 1 : Stopped by small gradient
% 2 : Stopped by small x-step
% 3 : No. of iteration steps exceeded
% -1 : x is not a real valued vector
% -2 : f is not a real valued column vector
% -3 : J is not a real valued matrix
% -4 : Dimension mismatch in x, f, J
% -5 : Overflow during computation
% perf : Array, holding
% perf(1,:) = values of F(x)
% perf(2,:) = values of || F’(x) ||inf
% perf(3,:) = mu-values.
%
% Method
% Gauss-Newton with Levenberg-Marquardt damping, see eg
% H.B. Nielsen, "Damping parameter in Marquardt’s method",
% IMM-REP-1999-05, IMM, DTU, April 1999.
% Version 04.05.18. hbn(a)imm.dtu.dk
% Check parameters and function call
if nargin < 3, opts = []; end
opts = checkopts(opts, [1e-3 1e-4 1e-8 100 1e-14]);
if nargin < 2, stop = -1;
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else
[stop x n] = checkx(x0);
if 126stop, [stop F f J] = checkfJ(fun,x0,varargin{:}); end
end
if 126stop
g = J’*f; ng = norm(g,inf); A = J’*J;
if isinf(ng) | isinf(norm(A(:),inf)), stop = -5; end
else
F = NaN; ng = NaN;
end
if stop
X = x0; perf = []; info = [F ng 0 opts(1) 0 stop];
return
end
% Finish initialization
mu = opts(1) * max(diag(A)); kmax = opts(4);
Trace = nargout > 2;
if Trace
X = repmat(x,1,kmax+1);
perf = repmat([F; ng; mu],1,kmax+1);
end
k = 1; nu = 2; nh = 0; stop = 0;
% Iterate
while 126stop
if ng <= opts(2), stop = 1;
else
mu = max(mu, opts(5)*max(diag(A)));
[h mu] = geth(A,g,mu);
nh = norm(h); nx = opts(3) + norm(x);
if nh <= opts(3)*nx, stop = 2; end
end
if 126stop
xnew = x + h; h = xnew - x; dL = (h’*(mu*h - g))/2;
[stop Fn fn Jn] = checkfJ(fun, xnew, varargin{:});
if 126stop
k = k + 1; dF = F - Fn;
if Trace
X(:,k) = xnew; perf(:,k) = [Fn norm(Jn’*fn,inf) mu]’; end
if (dL > 0) & (dF > 0) % Update x and modify mu
x = xnew; F = Fn; J = Jn; f = fn;
A = J’*J; g = J’*f; ng = norm(g,inf);
mu = mu * max(1/3, 1 - (2*dF/dL - 1)943); nu = 2;
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else % Same x, increase mu
mu = mu*nu; nu = 2*nu;
end
if k > kmax, stop = 3;
elseif isinf(ng) | isinf(norm(A(:),inf)), stop = -5; end
end
end
end
% Set return values
if Trace
X = X(:,1:k); perf = perf(:,1:k);
else, X = x; end
if stop < 0, F = NaN; ng = NaN; end
info = [F ng nh mu/max(diag(A)) k-1 stop];
return
%&&&&&&&&&&&&&&&&&&&&&&&&
function opts = checkopts(opts, default)
%CHECKOPTS Replace illegal values by default values.
% Version 04.01.25. hbn@imm.dtu.dk
a = default; la = length(a); lo = length(opts);
for i = 1 : min(la,lo)
oi = opts(i);
if isreal(oi) & 126isinf(oi) & 126isnan(oi) & oi > 0
a(i) = opts(i);
end
end
if lo > la, a = [a 1]; end % for linesearch purpose
opts = a;
return
%&&&&&&&&&&&&&&&&&&&&&&
function [err, x,n] = checkx(x0)
%CHECKX Check vector
% Version 04.01.25. hbn@imm.dtu.dk
err = 0; sx = size(x0); n = max(sx);
if (min(sx) 126= 1) | 126isreal(x0) | any(isnan(x0(:))) | isinf(norm(x0(:)))
err = -1; x = [];
else
x = x0(:);
end
return
%&&&&&&&&&&&&&&&&&&&&&&&&&
function [err, F,f,J] = checkfJ(fun,x,varargin)
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%CHECKFJ Check Matlab function which is called by a
% nonlinear least squares solver.
% Version 04.01.25. hbn@imm.dtu.dk
err = 0; F = NaN; n = length(x);
if nargout > 3 % Check f and J
[f J] = feval(fun,x,varargin{:});
sf = size(f); sJ = size(J);
if sf(2) 126= 1 | 126isreal(f) | any(isnan(f(:))) | any(isinf(f(:)))
err = -2; return, end
if 126isreal(J) | any(isnan(J(:))) | any(isinf(J(:)))
err = -3; return, end
if sJ(1) 126= sf(1) | sJ(2) 126= n
err = -4; return, end
else % only check f
f = feval(fun,x,varargin{:});
sf = size(f);
if sf(2) 126= 1 | 126isreal(f) | any(isnan(f(:))) | any(isinf(f(:)))
err = -2; return, end
end
% Objective function
F = (f’*f)/2;
if isinf(F), err = -5; end
return
%&&&&&&&&&&&&&&&&&&&&&&
function [h, mu] = geth(A,g,mu)
% Solve (Ah + mu*I)h = -g with possible adjustment of mu
% Version 04.01.24. hbn@imm.dtu.dk
% Factorize with check of pos. def.
n = size(A,1); chp = 1;
while chp
[R chp] = chol(A + mu*eye(n));
if chp == 0 % check for near singularity
chp = rcond(R) < 1e-15;
end
if chp, mu = 10*mu; end
end
% Solve (R’*R)h = -g
h = R \ (R’ \ (-g));
return
%&&&&&&&&&&&&&&&&&&&&&&&&
% % % % %
% TRASH %
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% % % % %
% % % %
% CAN %
% % % %
%################################################
% RAYLEIGH OBJECTIVE FUNCTION
%————————————————————————–
function F = rayobjfunc(x,k,y);
% This function is the objective for the minimizer used to find the
% parameters for the Raman lines that match the provided data.
% X - Unknown optimization parameters
% K - Wavenumber coordinates
% Y - Spectral intensity data
% Deal the estimated parameters into the right place
% s0 = [
% 1 % 1st peak amplitude
% 720 % 1st peak center
% 20 % 1st peak Gaussian width
% 10 % 1st peak Lorentzian width
%
% 0 % Baseline slope
% 0.05*max(ycomp{iis}) % Baseline offset
% ];
% Superposition of the Rayleigh line, modeled as a Voigt peak
A(1) = x(1);
k0(1) = x(2);
sigmaG(1) = x(3);
sigmaL(1) = x(4);
rayline = voigt(k,k0(1),sigmaG(1),sigmaL(1),A(1));
% ...and the linear model of the background...
background = x(5).*k + x(6);
% ...give the net intensity distribution
ytheory = rayline(:) + background(:);
% Apply a saturation filter to both the data and the Rayleigh line
satvalue = 75e3; % 75,000 counts
ytheory( find( ytheory > satvalue ) ) = satvalue;
y( find( y > satvalue ) ) = satvalue;
% Overall figure of merit is then least squares estimate for the fit to
% the data set we have calculated versus the provided data set.
r = y(:) - ytheory;
F = r.’*r;
figure(99);
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plot(k,y,’ok’,k,ytheory,’-r’);
xlabel(’Wavenumber (cm94{-1})’);
ylabel(’Intensity (A.U.)’);
pause(0.001);
return
%######################################
%######################################
function [y,r] = stokestripletmodel(s,k,d);
% This function calculates the intensity profile of a triplet of Stokes
% peaks (given the parameters X) over the wavenumber range specified

by K.
% The residual (R) is also calculated by this code given the D(ata) vector.
% Be sure to deal the estimated parameters into the right place
% s = [
% 1 % 1st peak amplitude
% 720 % 1st peak center
% 20 % 1st peak Gaussian width
% 10 % 1st peak Lorentzian width
%
% 1 % 2nd peak amplitude
% 600 % 2nd peak center
% 10 % 2nd peak Gaussian width
% 10 % 2nd peak Lorentzian width
%
% 1 % 3rd peak amplitude
% 600 % 3rd peak center
% 10 % 3rd peak Gaussian width
% 10 % 3rd peak Lorentzian width
%
% 0 % Baseline slope
% 0.05*max(ycomp{iis}) % Baseline offset
% ];
% Superposition of line 1,...
A(1) = s(1);
k0(1) = s(2);
sigmaG(1) = s(3);
sigmaL(1) = s(4);
line1 = voigt(k,k0(1),sigmaG(1),sigmaL(1),A(1));
% ...line 2,...
A(2) = s(5);
k0(2) = s(6);
sigmaG(2) = s(7);
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sigmaL(2) = s(8);
line2 = voigt(k,k0(2),sigmaG(2),sigmaL(2),A(2));
% ...line 3,...
A(3) = s(9);
k0(3) = s(10);
sigmaG(3) = s(11);
sigmaL(3) = s(12);
line3 = voigt(k,k0(3),sigmaG(3),sigmaL(3),A(3));
% ...and the linear model of the background...
background = s(13).*k + s(14);
% ...give the net intensity distribution
y = line1(:) + line2(:) + line3(:) + background(:);
% Apply a saturation filter to both the data and the Rayleigh line
satvalue = 90e3; % 75,000 counts
y( find( y > satvalue ) ) = satvalue;
d( find( d > satvalue ) ) = satvalue;
% Overall figure of merit is then least squares estimate for the fit to
% the data set we have calculated versus the provided data set.
r = d(:) - y;
plot(k,d,’ok’,k,y,’-r’);
xlabel(’Wavenumber (cm94{-1})’);
ylabel(’Intensity (A.U.)’);
pause(0.001);
return
%###################################
%###################################
function [y,r] = raymodel(s,k,d);
% This function calculates the intensity profile of the Rayleigh peak (given
% the parameters X) over the wavenumber range specified by K. The

residual
% (R) is also calculated by this code given the DATA vector.
% Be sure to deal the estimated parameters into the right place
% s = [
% 1 % 1st peak amplitude
% 720 % 1st peak center
% 20 % 1st peak Gaussian width
% 10 % 1st peak Lorentzian width
%
% 0 % Baseline slope
% 0.05*max(ycomp{iis}) % Baseline offset
% ];
% Superposition of the Rayleigh line, modeled as a Voigt peak
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A(1) = s(1);
k0(1) = s(2);
sigmaG(1) = s(3);
sigmaL(1) = s(4);
rayline = voigt(k,k0(1),sigmaG(1),sigmaL(1),A(1));
% ...and the linear model of the background...
background = s(5).*k + s(6);
% ...give the net intensity distribution
y = rayline(:) + background(:);
% Apply a saturation filter to both the data and the Rayleigh line
satvalue = 75e3; % 75,000 counts
y( find( y > satvalue ) ) = satvalue;
d( find( d > satvalue ) ) = satvalue;
% Overall figure of merit is then least squares estimate for the fit to
% the data set we have calculated versus the provided data set.
r = d(:) - y;
plot(k,d,’ok’,k,y,’-r’);
xlabel(’Wavenumber (cm94{-1})’);
ylabel(’Intensity (A.U.)’);
pause(0.001);
return
%#########################################
% ERFW (VOIGT OR COMPLEX SCALED ERROR FUNCTION)
%————————————————————————–
function erfw = erfw(z)
%ERFW Scaled error function for complex inputs
% f = erfw(z) is the scaled error function, also called
% the Faddeeva function, for the elements of z:
% erfw(z) = exp(z942)*(1-erf(z));
% Z may be complex and of any size.
%
% Original erfz code by Godfrey. Accuracy is better than 12
% significant digits.
%
% Usage: f = erfw(z)
%
% References:
% FADDEEVA, V. N., AND TERENT’EV, N. N. Tables of values of the
% function w(z) = e-Z2(1 + 2i/126f126et2 dr) for complex argument.
% Gosud. Izdat. Teh.-Teor. Lit., Moscow, 1954; English transl.,
% Pergamon Press, New York, 1961.
% POPPE, G. P. M., and WIJERS, C. M. J., 1990, ACM Trans. Math.
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% Software, 16 (1), pp 38-46.
% WEISSTEIN, E. W., 2004, "Erf." From MathWorld–A Wolfram Web

Resource.
% http://mathworld.wolfram.com/Erf.html
%
% Tested under version 6.5
%
% See also erfz, erf, erfc, erfcx, erfinc, erfcore
% Main author Paul Godfrey <pgodfrey@intersil.com>
% Small changes by Peter J. Acklam <jacklam@math.uio.no>
% 09-26-01
erfw = zeros(size(z));
smallz = find(abs(z) < 5);
erfw(smallz) = exp(z(smallz).942).*(1-erfz(z(smallz)));
% Asymptotic expansion; see Weisten Wolfram’s Mathworld Erf article
bigz = find(126(abs(z) < 5));
erfw(bigz) = (1/sqrt(pi)).*( z(bigz).94-1 - 0.5.*z(bigz).94-3 + 0.75.*z(bigz).94-

5 ...
- 15/8*z(bigz).94-7 + 105/16*z(bigz).94-9 );
% erfw = exp(z.942).*(1-erfz(z));
% %a demo of this function is
% x = -40:0.5:40;
% y = x;
% [X, Y] = meshgrid(x,y);
% z = complex(X, Y);
% f = erfw(z);
% af = abs(f);
% %let’s truncate for visibility
% p = find(af > 5);
% af(p) = 5;
% % mesh(x, y, af);
% surf(x, y, af);
% set(gcf, ’Renderer’, ’zbuffer’);
% view(-70, 40);
% rotate3d on;
%
% return
%&&&&&&&&&&&&&&&&&&&&&&&&&&&
%&&&&&&&&&&&&&&&&&&&&&&&&&&&
% ERFZ (COMPLEX ERROR FUNCTION)
%————————————————————
function f = erfz(zz)
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%ERFZ Error function for complex inputs
% f = erfz(z) is the error function for the elements of z.
% Z may be complex and of any size.
% Accuracy is better than 12 significant digits.
%
% Usage: f = erfz(z)
%
% Ref: Abramowitz & Stegun section 7.1
% equations 7.1.9, 7.1.23, and 7.1.29
%
% Tested under version 5.3.1
%
% See also erf, erfc, erfcx, erfinc, erfcore
% Main author Paul Godfrey <pgodfrey@intersil.com>
% Small changes by Peter J. Acklam <jacklam@math.uio.no>
% 09-26-01
error(nargchk(1, 1, nargin));
% quick exit for empty input
if isempty(zz)
f = zz;
return;
end
twopi = 2*pi;
sqrtpi=1.772453850905516027298;
f = zeros(size(zz));
ff=f;
az=abs(zz);
p1=find(az<=8);
p2=find(az> 8);
if 126isempty(p1)
z=zz(p1);
nn = 32;
x = real(z);
y = imag(z);
k1 = 2 / pi * exp(-x.*x);
k2 = exp(-i*2*x.*y);
s1 = erf(x);
s2 = zeros(size(x));
k = x 126= 0;% when x is non-zero
s2(k) = k1(k) ./ (4*x(k)) .* (1 - k2(k));
k = 126k;% when x is zero
s2(k) = i / pi * y(k);
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f = s1 + s2;
k = y 126= 0;% when y is non-zero
xk = x(k);
yk = y(k);
s5 = 0;
for n = 1 : nn
s3 = exp(-n*n/4) ./ (n*n + 4*xk.*xk);
s4 = 2*xk - k2(k).*(2*xk.*cosh(n*yk) - i*n*sinh(n*yk));
s5 = s5 + s3.*s4;
end
s6 = k1(k) .* s5;
f(k) = f(k) + s6;
ff(p1)=f;
end
if 126isempty(p2)
z=zz(p2);
pn=find(real(z)<0);
if 126isempty(pn)
z(pn)=-z(pn);
end
nmax=193;
s=1;
y=2*z.*z;
for n=nmax:-2:1
s=1-n.*(s./y);
end
f=1.0-s.*exp(-z.*z)./(sqrtpi*z);
if 126isempty(pn)
f(pn)=-f(pn);
end
pa=find(real(z)==0);
% fix along i axis problem
if 126isempty(pa)
f(pa)=f(pa)-1;
end
ff(p2)=f;
end
f=ff;
return
% %a demo of this function is
% x = -4:0.125:4;
% y = x;
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% [X, Y] = meshgrid(x,y);
% z = complex(X, Y);
% f = erfz(z);
% af = abs(f);
% %let’s truncate for visibility
% p = find(af > 5);
% af(p) = 5;
% mesh(x, y, af);
% view(-70, 40);
% rotate3d on;
%
% return
%&&&&&&&&&&&&&&&&&&&&&&&&&&&
%
%
% % STOKES LINES
% k = kscan(a:b,1);
% d = dscan(a:b,1);
%
% % Estimate the noise in the sample from the 10 pts near the ends
% idx = 10;
% sigmad = std([d(1:idx,1);d(end-idx:end)]);
% bgoff = mean([d(1:idx,1);d(end-idx:end)]);% background offset
% Rd = 1./sigmad;
% pkpos = kr(floor(mean(find(d == max(d))))); % finds middle of flat

peak
% pkAII = max(d); % strong STO x=1/3 peak
% pkAI = 0.4*pkAII;
% pkAIII = 0.1*pkAII;
%
%
% % Set initial guesses and optimization parameters for RAMAN PEAKS
% params = {
% % MIN MAX S(1) S(0) SIGMAS0 NAME
% % Stokes line I – 766 STO (x = 1)
% 0 1e6 pkAI pkAI Inf ’Stokes I [STO,x=1] line amplitude’
% kminr kmaxr 766 766 03 ’Stokes I [STO,x=1] line center wavenumber’
% 0 50 5 4 Inf ’Stokes I [STO,x=1] line Gaussian width’
% 0 50 1 1 Inf ’Stokes I [STO,x=1] line Lorentzian width’
% % Stokes line II – 788 STO (x = 1/3)
% 0 1e6 pkAII pkAII Inf ’Stokes II [STO,x=1/3] line amplitude’
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% kminr kmaxr 788 788 03 ’Stokes II [STO,x=1/3] line center wavenum-
ber’

% 0 50 5 4 Inf ’Stokes II [STO,x=1/3] line Gaussian width’
% 0 50 1 1 Inf ’Stokes II [STO,x=1/3] line Lorentzian width’
% % Stokes line III – 796 STO (x = 0)
% 0 1e6 pkAIII pkAIII Inf ’Stokes III [STO,x=0] line amplitude’
% kminr kmaxr 796 796 03 ’Stokes III [STO,x=0] line center wavenum-

ber’
% 0 50 5 4 Inf ’Stokes III [STO,x=0] line Gaussian width’
% 0 50 1 1 Inf ’Stokes III [STO,x=0] line Lorentzian width’
% % Background
% -Inf Inf 0 0 1 ’Stokes line background slope’
% -Inf Inf bgoff bgoff 0.1*bgoff ’Stokes line background offset’
% };
%
%
%
% smin{iis,isn} = cell2mat(params(:,1));
% smax{iis,isn} = cell2mat(params(:,2));
% Ns = length(smin{iis,isn});
% if iis == 1
% s1{iis,isn} = cell2mat(params(:,3));
% else
% s1{iis,isn} = shat{iis-1};
% end
% s0{iis,isn} = cell2mat(params(:,4));
% Rs0{iis,isn} = 1./(cell2mat(params(:,5)));
% sname{iis,isn} = char(params(:,6));
%
% % Use MARQUARDT function
% tic;
% % [X, info, perf] = marquardt(fun, x0, opts, p1,p2,...)
% % [fvec,dfds] = Rayleigh_LSQ_obj_func(s,k,d,Rdvec,s0r,Rs0vec);
% [strace{iis,isn}, info{iis,isn}, perf{iis,isn}] = marquardt...
(@LSQ_obj_func,s1{iis,isn}...
,opts,@linemodel,k,d,Rd,s0{iis,isn},Rs0{iis,isn},Npeaks);
% toc;
% shat{iis,isn} = strace{iis,isn}(:,end);
% [fhat{iis,isn},Jhat{iis,isn}] = LSQ_obj_func(shat{iis,isn},@linemodel,k,d...
,Rd,s0{iis,isn},Rs0{iis,isn},Npeaks);
% % Perform error analysis
% lastwarn(”);% clear all warnings
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% % Mean square error for a MAP estimator is...
% MSE{iis,isn} = inv( Jhat{iis,isn}(1:end-Nsr,:).’*Jhat{iis,isn}(1:end-Nsr,:)

+ ...
% diag(Rs0{iis,isn}).’*diag(Rs0{iis,isn}) );
% if 126strcmp(lastwarn,”);
% try
% disp(sprintf(’MSE is not well-conditioned: %g’,cond(MSE)));
% catch
% try
% MSE{iis,isn} = pinv( Jhat{iis,isn}(1:end-Nsr,:).’*Jhat{iis,isn}(1:end-

Nsr,:) + ...
% diag(Rs0{iis,isn}).’*diag(Rs0{iis,isn}) );
% catch
% MSE{iis,isn} = zeros(Ns,Ns);
% end
% end
% end
% scaled_covariance{iis,isn} = MSE{iis,isn};
% sigmashat{iis,isn} = diag(sqrt(MSE{iis,isn}));
% for is = 1:Ns;
% scaled_covariance{iis,isn}(is,:) = scaled_covariance{iis,isn}(is,:)...
/sigmashat{iis,isn}(is);
% scaled_covariance{iis,isn}(:,is) = scaled_covariance{iis,isn}(:,is)...
/sigmashat{iis,isn}(is);
% end
% % Report estimation results
% for is = 1:Ns
% disp(sprintf(’%s = %g +/- %g; s(1) = %g.’,deblank(sname{iis,isn}(is,:))...
,shat{iis,isn}(is),sigmashat{iis,isn}(is),s1{iis,isn}(is)));
% end
% %_LINE_1__LINE_1__LINE_1__LINE_1__
%
%
%
%
% % Peak centers are in 2 and 6... shift is then shat{1}(2)-shat{2+}(2)

etc.
% kramanshift1{iis,isn} = shat{iis,isn}(2) - shat{1,1}(2);
% disp(sprintf(’Shift for 1st peak from scan %g from %s is %g’...
,isn,filename{iis},kramanshift1{iis,isn}));
% kramanshift2{iis,isn} = shat{iis,isn}(6) - shat{1,1}(6);
% disp(sprintf(’Shift for 2nd peak from scan %g from %s is %g’...
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,isn,filename{iis},kramanshift2{iis,isn}));
% kramanshift3{iis,isn} = shat{iis,isn}(10) - shat{1,1}(10);
% disp(sprintf(’Shift for 3rd peak from scan %g from %s is %g’...
,isn,filename{iis},kramanshift2{iis,isn}));
% disp(’ ’);
%
%
% % PLOT THE INFORMATION
% switch scantype{iis}
% case ’point’
% % No plots
% case ’xline’
% % PLOT
% Nx = Nxscanpos{iis};
% for ix = 1:Nx
% xx(ix) = xscan{iis,ix};
% raman1(ix) = kramanshift1{iis,ix};
% raman2(ix) = kramanshift2{iis,ix};
% raman3(ix) = kramanshift3{iis,ix};
% end
% figure;
% plot(xx,raman1,xx,raman2,xx,raman3);
% xlabel(’x (\it\mu\rmm)’);
% ylabel(’Raman shift (cm94{-1})’);
% title(filename{iis},’Interpreter’,’none’);
% case ’yline’
% Ny = Nyscanpos{iis};
% for iy = 1:Ny
% yy(iy) = yscan{iis,iy};
% raman1(iy) = kramanshift1{iis,iy};
% raman2(iy) = kramanshift2{iis,iy};
% raman3(iy) = kramanshift3{iis,iy};
% end
% figure;
% plot(yy,raman1,yy,raman2,yy,raman3);
% xlabel(’x (\it\mu\rmm)’);
% ylabel(’Raman shift (cm94{-1})’);
% title(filename{iis},’Interpreter’,’none’);
% case ’area’
% Nx = Nxscanpos{iis};
% Ny = Nyscanpos{iis};
% for ix = 1:Nx
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% for iy = 1:Ny
% isn = iy + (ix-1)*Ny
% xx(iy,ix) = xscan{iis,isn};
% yy(iy,ix) = yscan{iis,isn};
% raman1(iy,ix) = kramanshift1{iis,isn};
% raman2(iy,ix) = kramanshift2{iis,isn};
% raman3(iy,ix) = kramanshift3{iis,isn};
% end
% end
% figure;
% surf(xx,yy,raman1);
% xlabel(’x (\it\mu\rmm)’);
% ylabel(’y (\it\mu\rmm)’);
% zlabel(’Raman shift (cm94{-1})’);
% title(filename{iis},’Interpreter’,’none’);
% end
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