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New theoretical methods are reported for obtaining the binding
energies of molecules and other chemical aggregates employing
the spectral eigenstates and related properties of their atomic
constituents. Wave function antisymmetry in the aggregate
atomic spectral-product basis is enforced by unitary transfor-
mation performed subsequent to formation of the Hamiltonian
matrix, greatly simplifying its construction. Spectral repre-
sentatives of the individual atomic number-density operators,
which can be determined once and for all and tabulated for fu-
ture use, provide the computational invariants of the develop-
ment. Calculations of the lowest-lying attractive and repulsive
states of the two-electron pair bond (H2) as functions of atomic
separation illustrate the nature of the formalism and its con-
vergence to values in accord with results obtained employing
conventional methods.
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Introduction

Adiabatic electronic wave functions (1) have long provided a useful starting
point for quantitative predictions of chemical structures and the pathways
of chemical reactions (2). Computational methods for such purposes com-
monly employ totally antisymmetric basis functions in repeated calculations
of the total electronic energy of a molecule or other chemical aggregate at
a large number of atomic configurations, with binding energies at stable
structures obtained in this way by subtracting the calculated energies of
the non-interacting constituent atoms. A similar approach is adopted in
density-functional methods (3), which cleverly circumvent determinations
of correlated many-electron wavefunctions but nevertheless calculate total
energies, rather than binding energies, over the relevant range of aggregate
geometries. Such methods have provided a great wealth of information on
structures and selected physical properties of molecules, but they are ar-
guably only computational prescriptions, rather than a quantum theory of
chemical bonding in which interaction energies are expressed in terms of
intrinsic atomic properties which can be determined once and for all (4).

Role of the Symmetric Group

A significant barrier to development of an atomic-interaction-based theory
of chemical bonding is found in the antisymmetry requirement placed on
physically admissible solutions of the Schr6dinger equation (5). Specifically,
the permutation symmetry group of a collection of N non-interacting atoms
is given by the direct product group S,,, ® S,•2 ... S,, of the electron per-
mutation groups S., IS.,"" S., of the individual atoms, which is a sub-
group of the permutation group SnotI (ntotal = ni + n2 + -.. +r nN) for the
entire aggregate (6). As a consequence, the outer product of atomic eigen-
states familiar from the perturbation theory of long-range interactions (7),
which is correct in the atomic separation limit and provides an appropri-
ately universal basis for describing chemical interactions (8,9), is reducible
in Smo•. and generally contains irreducible representations of Snottl other
than the desired totally antisymmetric representation (6,10). Moreover,
some of these non-totally-antisymmetric representations are known to con-
tain unphysical continua in which the physical Schr6dinger eigenstates can
be embedded (11,12). Outer-product reduction methods for isolating the
totally antisymmetric subspace of the atomic spectral-product basis (6) are
not generally suitable for this construction (10), and symmetry-adapted
perturbative approaches which adopt alternative strategies to accomplish
the required isolation of the totally antisymmetric subspace are either in-
effectual or are inappropriate for the large charge distortions consequent of
chemical bonding (12,13). Of course, the usual prior antisymmetrization of
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the basis does not allow the desired separation of the Hamiltonian matrix
into constituent atomic energies and their interactions in the aggregate,
and can give rise to linear dependence and related computational instabli-
ties. New approaches which can overcome the difficulties associated with
employing an atomic-product representation in studies of chemical interac-
tions, while retaining the conceptual and computational advantages of such
an interaction-energy-based approach, are clearly required.

Spectral Theory

In the ptesent report, a new theoretical approach to chemical bonding is
described based on the outer spectral-product representation of the inter-
acting atoms (7-9). The aforementioned symmetric-group issues are over-
come by deferring enforcement of wave function antisymmetry until after
the construction of the matrix representative of the Hamiltonian in the
spectral-product basis. The aggregate Hamiltonian matrix obtained in this
way is additive in the energies of the atomic constituents and in their pair-
wise interactions. The atomic interaction-energy matrices can be expressed
entirely in terms of spectral representatives of the electronic number-density
operators of the individual atoms, which provide the computational invari-
ants of the formalism. Since the required atomic spectral information can
be determined once and for all from conventional electronic structure cal-
culations, there is no need for the repeated evaluations of Hamiltonian
matrix elements as integrals over antisymmetric many-electron basis func-
tions required in standard molecular calculations (2,3). Construction and
storage of the potentially very large Hamiltonian matrix that can arise in
the spectral-product representation can be avoided by employing chemically
relevant test functions and recursion methods in performing a unitary trans-
formation to isolate its much smaller totally antisymmetric block. In this
way, a physical Hamiltonian matrix is obtained from the non-interacting
atomic energies, Heitler-London-like Coulomb and exchange terms, and
contributions from spectral excitations which correspond to dispersion and
polarization terms familiar from long-range pertubation theory (7).

Theoretical Formalism

The essential features of the formalism are described here for an aggre-
gate of n hydrogen atoms, with more general results reported elsewhere
(14). The orthonormal spectral-product basis in this case is the outer
product row vector •(1,2,...n) - { (1)(1) ®( (2)(2) ®... 4 (")(n)} of
n-electron product functions, each of which consists of products of n func-
tions, one each taken from the indicated one-electron spin-orbital row vec-
tors 4(1)(1), -(2)(2),... ý(n)(n). Although the n-electron functions so de-
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fined are not individually antisymmetric, the spectral-product basis is nev-
ertheless complete for representations of antisymmetric states (7,8), and
contains the totally antisymmetric representation once and only once (14).

The many-electron (Coulombic) Hamiltonian operator in the spectral-product
basis is

H(R) H('){ + T( 3 > a) V(P(a),(1)

where

H(') I(') ® I(2) ®... E() ®..I(n) (2)

and

V(a,) (Rao) =I(1) ® 1(2) ® ... v(aP) (R,) ®-... In) (3)

are the indicated outer matrix products. Here, R specifies the entire ag-
gregate atomic configuration, Rap is an atomic separation vector, and I(a)
is the unit matrix and EWa) the diagonal matrix of energies for the atom a.
As has been noted previously (14), the Hamiltonian matrix of Eq. (1) is
rigorously additive in the pairwise interaction-energy matrices V(a,O) (RapO)
of Eq. (3). In the latter equation

v(a,)3) (Rap,) = D(aPO)(ka)3)t -v(a'O)(Rp) • D(aP) (RM ), (4)

where D a, .O)lp) is comprised of products of rotation matrices (15,16)
at the sites a and fi, •ap is the angular orientation of atom ) relative to
the site a, Rap is the corresponding scalar separation, and v(1'1) (Ra) is
"a reduced interaction-energy matrix for the interacting pair oriented along
"a standard z coordinate axis. The latter matrix is given by the expression

v(a'6)(Rap) = 2- dkeik R.0 {a(k) ®8(k)t}, (5)

with

a(k) = (e/k) dra -y(a) (ra) { 1 - eikr}, (6)

where

_/(c) (r.) = (4(")(1) JPO (1 - r.)I-(a) (l)). (7)
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Equations (5) to (7), which follow from a Fourier representation of the
Coulombic interactions in the Hamiltonian operator (14), indicate that the
atomic transition density matrices (17) of Eq. (7) provide the computa-
tional invariants required for construction of both the (Coulombic) response
matrices of Eq. (6) and the reduced pair-interaction matrices of Eq. (5).
Use of the familiar Rayleigh plane-wave expansion and of standard expres-
sions for the resulting angular integrations (15) reduces evaluation of Eq.
(5) to a single quadrature over the scalar k, whereas the integrals of Eqs.
(6) and (7) can generally be evaluated in closed forms when Gaussian basis
orbitals are employed.

Antisymmetric Subspace

Although the eigenfunctions obtained from the Hamiltonian H(R) of Eq.
(1) span all irreducible representations of the symmetric group S,, they do
not necessarily transform irreducibly under the symmetry group defined by
the complete set of commuting observables, and they are highly degenerate
(14). To demonstrate formally that the totally antisymmetric or physical
block of H(R) can be isolated and solutions obtained in symmetry-adapted
form, the unitary transformation

Us(R)t.- H(R). Us(R)_÷(HP)(R) -s)(R)o ) (8)

is employed. Here, the transformation Us (R) is obtained from the diago-
nalization

J(P() 0
Us(R)t - S(R) -Us(R) -+ n! (0 0(r)), (9)

where

S(R) = (n!). 2 ( 2.....n)IPAI4(1,2,...,n)) (10)

is the matrix representative of the antisymmetrizer PA (5), n! is the, re-
dundancy of the spectral-product basis when antisymmetrized, (p) and (r)
refer, respectively, to physical and remainder subspaces of (i, 2, ... n),
I(P) and 0 (r) are the unit and null matrices in the indicated subspaces, and
the right-hand sides of Eqs. (8) and (9) are reached in the closure limit. In
this limit, the eigenvalues and functions obtained from H(P) (R) converge to
values obtained in the prior antisymmetrized basis 15A 4' (i,2, ... n) when
its (n! - 1) redundant components are are removed (7,14).
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Although Eqs. (8) to (10) provide formal expressions to isolate the phys-
ical eigenstates from the unphysical states in which they can be embed-
ded, and to correspondingly demonstrate equivalence with results obtained
from prior antisymmetry (14), an efficient recursive scheme using appropri-
ately chosen antisymmetrized starting functions is sufficient to construct
H(P (R). Specifically, a transformation of the Hamiltonian matrix equiva-
lent to that of Eq. (8) is obtained from the recurrence equations (18)

/3j(R) vj+i(R) (H(+)(R) - aj(R) 1) vj(R) - /3-,(R) vj 1 (R), (11)

where the column vectors vj(R) for j = 1, 2,.. .p define a set of p or-
thonormal Krylov-Lanczos functions in the spectral-product basis, the re-
currence coefficients a• (R) and Pj (R) give the diagonal and off-diagonal
terms, respectively, of a p-dimensional tri-diagonal matrix which is unitar-
ily equivalent to the Hamiltonian matrix H(P) (R) of Eq. (8), and H(+) (R)
is the spectral-product Hamiltonian matrix supplemented with an addi-
tional row and column. The latter is constructed with an asymptotically
(R -+ co) correct antisymmetrized-product test function which insures that
the totally antisymmetric subspace of the spectral-product representation
is isolated in the Krylov-Lanczos basis, that the correct number of multiplet
states and their exchange splittings are included in the atomic separation
limit, and that an appropriate starting vector is provided for the recurrence
of Eq. (11) (14). This iterative approach requires only sequential calcula-
tions of individual rows of the potentially very large Hamiltonian matrix
in the spectral-product basis, avoiding construction and tabulation of the
entire matrix at one time. Moreover, the resulting unitary transformation
provides a much lower-dimension physically significant Hamiltonian matrix
from the zeroth-order non-interacting atomic energies, first-order Coulomb
and exchange terms, and higher-order contributions which correspond to
dispersion and polarization terms familiar from long-range pertubation the-
ory (7,14).

Computational Applications

Calculations of the lowest-lying attractive and repulsive states of the two-
electron pair bond (H2 ) illustrate the attributes of the formalism and the
convergence achieved. In this case (ntotai = 2), the spin functions factor
out, there are no unphysical irreducible representations to contend with,
and the development deals only with spatial functions which are symmetric
(singlet) or antisymmetric (triplet) under electron transposition (6). The
spectral-product representation spans these spatially symmetric and anti-
symmetric representations of the group S2 once and only once, whereas the
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symmetric or antisymmetric forms of the basis are 2-fold redundant in the
limit of closure. The absence of unphysical irreducible representations in
this special case allows construction of solutions by direct diagonalization
of the Hamiltonian matrix of Eq. (1) for comparisons with results obtained
from the unitary-transformation [Eqs. (8) to (10)] and recursion [Eq. (11)]
methods described above.

The spectral-product basis in this case corresponds formally to all products
of discrete and continuum hydrogenic orbitals for the two atoms. To avoid
dealing explicitly with continuum hydrogenic states, denumerable represen-
tational basis sets are employed in the calculations in the usual -way (2).
Even-tempered Gaussian functions (s, p, d, f,...) having exponents chosen
to represent the lowest-lying atomic hydrogen orbitals accurately, and to
span the corresponding Rydberg states and low-lying continua in the form
of spectral packets (18), are employed in evaluating the matrix elements
required in forming the spectral-product Hamiltonian matrix and the other
integrals needed to implement the development.

Table I. Spectral Energies for Atomic Hydrogen.a

s-basisb p-basisb d-basisb f-basisb

-0.499991 -0.124998 -0.055256 -0.026707
-0.124994 -0.053439 -0.011199 0.028807
-0.048465 0.025060 0.108901 0.187597

0.088668 0.274825 0.450236 0.617389
0.563368 0.986192 1.361055 1.748440
1.951139 2.880038 3.708833 4.791877
5.660465 7.854649 9.719458

15.152536 21.314359 25.786063
38.982050
98.333482

249.224098
657.488778
a Orbital energies (a.u.) obtained from diagonalization of the atomic hy-

drogen Hamiltonian employing the indicated basis sets.
b Basis sets employed are the most diffuse (12s8p8d6f) hydrogenic orbitals
constructed from 12 regularized even-tempered primitive Gaussian orbitals
of each angular momentum symmetry (19), supplemented with two addi-
tional diffuse functions having exponents of 0.02786 and 0.01156.

In Table I are shown the spectra of atomic energies obtained for s, p, d and f
orbitals constructed in even-tempered Gaussian basis sets (19), with orbital
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exponents chosen so the discrete and lower continuum states are spanned
by the numbers of orbitals shown for each angular momentum value. Al-
though no systematic studies of orbital selection are reported here, it should
be noted that considerable experience has been gained in this connection
through previous studies of the discrete and continuum states of atoms and
polyatomic molecules (18). The spectra of Table I are judged to be suitable
for describing the charge distortions accompanying chemical bond forma-
tion in H2 in the interval R - I to 5 a0 , to correctly describe wavefunction
antisymmetry in this interval in the absence of explicit electron exchange
terms, and to otherwise approximate spectral closure in this interval. Con-
sequently, the atomic basis sets so devised are seen to be significantly larger
than those commonly employed in molecular electronic structure calulations
(2). This use of larger atomic basis sets in the spectral theory is ameliorated
by the need to perform the electronic integral calculations of Eq. (7) once
and only once, and by the associated avoidance of repeated evaluations of
molecular integrals over antisymmetric basis states required in conventional
developments.

In Figure 1 are shown as an example selected eigenvalues s. of the metric
matrix S(R) of Eq. (10) for H2 , evaluated employing the [sp] basis sets
indicated in Table I. Only the fifty largest (si ; 2) and the fifty smallest
(si ; 0) eigenvalues are shown as functions of the interatomic separation.
The eigenstates of S(R) corresponding to eigenvalues si '-. 2 refer to ap-
proximately antisymmetric states in the spectral-product basis, whereas
those correponding to si • 0 refer to approximately symmetric states. On
the other hand, states constructed in the prior antisymmetrized basis cor-
responding to the si ; 2 values refer to linearly independent spatially
antisymmetric states, while those corresponding to si P 0 values refer to
linearly dependent combinations of the prior antisymmetrized basis. When
the two-electron symmetric projector is employed in place of the antisym-
metrizer, results identical to the foregoing are obtained, but with the states
previously corresponding to si • 2 and si : 0 interchanging their identities.

A significant number of the eigenvalues of S(R) depicted in Figure 1 evi-
dently maintain their extreme values (si - 0 or 2) over the chemical inter-
action region (R P 1 to 5 ao), whereas only a very few of these survive into
the van der Waals region (R z 5 to 10 ao). These behaviors are entirely in
accord with the spatial characteristics of the spectral states corresponding
to the eigenvalues of Table I employed in constructing S(R), which have
relatively small amplitudes at distances - 5 to 10 ao from the atomic ori-
gins. Accordingly, the basis of Table I can be expected to give converged
results in the chemical interaction region, and particularly at the equilib-
rium interatomic separation (R = 1.40 ao), whereas alternative basis sets
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Figure 1-Eigenvalues si of the metric matrix of Eq. (10) for H2, constructed
in the [sp] basis set of Table I as functions of interatomic separation R(ao).
Values si z 2 refer to approximately antisymmetric eigenfunctions of elec-
tron coordinates constructed in the spectral-product basis, whereas values
si ; 0 refer to approximately symmetric functions of electron coordinates,
as is discussed more fully in the text.
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will likely be required to achieve closure at larger interatomic separations.
These can be devised employing more diffuse Gaussian basis sets following
previously described selection criteria (18).

Table II. Electron Pair-Bond Calculations.a

Basisb Energy(a.u.)c Binding(eV)c (P12)c (I (HL) 12)c

E+ state
.9

[s] -1.0096 +0.2618 +0.5255 +0.8052
[sp] -1.0691 +1.8809 +0.8409 +0.9469
[spd] -1.1140 +3.1027 +0.9525 +0.9872
[spdf] -1.1384 +3.7667 +0.9847 +0.9967

Exact (20) -1.1745 +4.7478 +1.0000 +1.0000

32+ state

[s] -0.5586 -12.0109 -0.6226 +0.2950
[sp] -0.6641 -9.1400 -0.6905 +0.8078
[spd] -0.7249 -7.4856 -0.9317 +0.9538
[spdf] -0.7524 -6.7372 -0.9801 +0.9870

Exact (20) -0.7842 -5.8737 -1.0000 +1.0000

a Values at R = 1.40 ao obtained from diagonalization of the Hamilto-

nian matrix of Eqs. (1) to (3) for H2 , or, equivalently, from the unitary
transformation of Eqs. (8) to (10) in the text.
b Denotes the portion of the (12s8p8d6f) basis set indicated in Table I
employed in the calculation.
I Total and binding energies as indicated; (P 12) refers to the expectation
value of the electron transposition operator P 12 ; I(I(HL) 12 is the norm of
the Heitler-London function as represented in the spectral-product basis.

The spectra of Table I are employed in calculations of energies and expec-
tation values for the lowest-lying 'E+ and 3E+ states in H2 at the equil-
brium interatomic separation following the development of Eqs. (1) to (10).
The total energies, binding energies, and expectation values of the electron
transposition operator P 12 for both states, shown in Table II, evidently
converge monotonically to known values with increase in basis-set angular
momentum. Similarly, the norms of the familiar singlet and triplet Heitler-
London functions (4) represented in the spectral-product basis, also shown
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in Table II, give additional indication of the closure achieved for exchange
terms in this case. As indicated above, the values shown in Table II can be
obtained directly from diagonalization of the spectral-product Hamiltonian
of Eq. (1) or from the unitary transformation of Eqs. (8) to (10), with iden-
tical values resulting from the two procedures in the limit of closure. It is
found in the smaller basis sets ([s], [sp]) indicated in Table I, however, that
a relatively large block of the transformed Hamiltonian matrix of Eq. (8)
is required in order to reproduce accurately the results obtained from the
complete spectral-product Hamiltonian matrix. That is, the totally sym-
metric subspace in these cases is not completely isolated into a physical
block H(s) (R) in Eq. (8) which is necessarily small relative'to the original
spectral-product Hamiltonian matrix of Eq. (1). These observations serve
to emphasize that the development of Eqs. (8) to (10) provides a formal
proof of the convergence of the spectral method in the closure limit, rather
than an optimal computational implementation of the approach.

The rate of convergence of the results of Table II with increasing angular
momentum in the atomic basis is related to the nature of the charge distor-
tions in H2 consequent of bond and antibond formation at the equilibrium
interatomic separation. In Figure 2 is shown the one-electron charge dis-
tribution in the plane of the two nuclei for the IE• ground state obtained
as indicated in the figure, with the undisturbed atomic charges of the two
atoms in their ls states subtracted out. Evidently, there is a distinct line of
electronic charge connecting the two nuclei in this density difference map
which provides sufficient attraction to form the bond in this case, in ac-
cordance with the predictions of the Hellmann-Feynman theorem. This
additional "exchange charge," in an integrated amount equal to ; 0.25
electrons gathered from the outer-lying regions and concentrated between
the two nuclei, is represented in the spectral-product basis by single-center
overlap factors in the charge-density expression

p(r) = ( w )(), (r)* + ZE jj j r, (r)¢9, (r) , (12)

where Fri' and rjj, form the one-electron density matrix in the orbital-
product basis, with two-center differential overlap factors absent conse-
quent of the orthonormality of the spectral-product fucntions. The ex-
change charge confined between the two atoms depicted in Figure 2 evi-
dently requires the higher angular momentum functions of Table I for an
accurate description of this accumulation upon bond formation, and also
for corresponding convergence in the total energy and exchange factors of
Table II.
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Figure 2-Charge-density difference map for H 2 in the plane of the two nu-
clei, depicting the accumulation of charge between the two atoms upon bond
formation in the ground 'E+ state. The quantity plotted is the total one-
electron molecular change density obtained from a configuration-interaction
calculation using the [sp] basis of Table I, minus the charge density corre-
sponding to the two unperturbed H atoms in their is ground states. The
H 2 bond length is fixed at 1.40 a0. The outermost solid contour represents
a zero charge-density difference; successive solid contours are at charge-
density difference intervals of 0.02 a.u., with the innermost solid contour
representing a charge-density difference of 0.1 a.u.; the outermost dashed
contour corresponds to -0.003 a.u. and the innermost dashed contour to
-0.006 a.u.; a total of -- 0.25 additional electrons are accumulated in the
bond.
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The recursive projection procedure described above provides an alterna-
tive and potentially more efficient method for obtaining eigenstates than
does the development of Eqs. (8) to (10). In the two-electron case, this
procedure serves to separate the symmetric and antisymmetric subspaces
spanned in the absence of unphysical representations, and can accelerate the
convergence relative to that of Table II through incorporation of explicitly
symmetric or antisymmetric test functions. In Figure 3 are shown 1E+ and
3E+ potential energy curves in H2 obtained from the recursive development
and the basis states of Table I employing Heitler-London test functions in
each case. These functions serve as appropriate chemical reference states
at all interatomic separations, and also provide the starting functions re-
quired to generate recursively the correct permutation symmetries in the
spectral-product subspaces. Evidently, the spectral-theory potential curves
of Figure 3 converge rapidly in the chemical region (R z 1 to 5 ao) as
larger angular momentum values are included in the basis, the [sp] limit
already providing ; 90% of the chemical bonding energy at the equilibrium
interatomic separation, and the [spd] limit providing ; 96% of this value.
Finally, although the basis of Table I is insufficient to accurately determine
the exchange energy splitting in the van der Waals region (R ; 5 to 10 ao),
the average value of the singlet and triplet energies obtained in the basis
in this region is found to give accurate results for the leading (C6 , C8 ,...)
van der Waals coeffcients.

Concluding Remarks

A new method is reported for calculating the adiabatic electronic wave
functions and energies of molecules and other chemical aggregates. The
spectral-product basis, formally comprising all simple products of the phys-
ical eigenstates of the individual atoms in the aggregate, gives a Hamilto-
nian matrix that is rigorously additive in pairwise-atomic interaction-energy
matrices, greatly simplifying its evaluation relative to conventional meth-
ods which employ antisymmetrized basis states (2,3). In this approach,
atomic structure calculations of electronic transition density matrices em-
ployed in constructing the Hamiltonian matrix need be performed once
and only once, avoiding the repeated evaluations of many-electron matrix
elements over antisymmetric molecular basis functions required in conven-
tional potential-energy surface determinations. Procedures for isolating the
totally antisymmetric subspace of the spectral-product basis are described
which avoid construction and storage of the entire Hamiltonian matrix at
one time, and which also largely overcome the symmetric-group compli-
cations which have hindered previous developments employing the atomic
spectral-product representation (7-13).
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Figure 3-Potential energy (a.u.) curves for the 'E+ and 'E+ states of H2
as functions of atomic separation R(ao). Light solid lines refer to Heitler-
London values (4) and heavy solid lines to previously determined accurate
values (20), w- hereas the dashed lines give the present results obtained from
the recursion procedure indicated in the text employing the [s], [sp], and
[spdj basis states of Table I and Heitler-London test functions in each case.
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Applications of the formalism to the lowest-lying singlet and triplet states of
H2 illustrate the convergence achieved to results obtained from conventional
methods, and demonstrate that prior basis-set antisymmetry is not neces-
sarily required in ab initio molecular electronic structure calculations. The
Hamiltonian matrix for any aggregate of interacting hydrogen atoms can
be constructed from the calculated H2 interaction-energy matrix employing
the expressions of Eqs. (1) to (4) and explicit computational algorithims
devised for their evaluation (14). Although applications to more complex
many-electron atoms can encounter elaborate multiplet spectra, and possi-
bly more significant charge distortions upon chemical bond formation, the
algorithims for construction of the Hamiltonian matrix and isolation of its
totally antisymmetric block described here for interacting hydrogen atoms
are also applicable in such cases once the atomic matrices of Eqs. (5) to
(7) have been evaluated.

The spectral theory offers an atomic-interaction-based strategy for con-
structing potential-energy surfaces which may provide a viable alternative
to the largely unending series of molecular electronic structure calculations
currently performed employing conventional methods. Additional studies
are clearly required to develop the theory into a generally applicable com-
putational approach to molecular structure determinations which can be
employed to accurately predict the electronic energy changes and charge
distortions consequent of chemical bonding in complex systems. Partic-
ularly required are methods for obtaining optimal representations of the
atomic spectral eigenstates upon which the development is based, for the
efficient assembly of individual elements of the Hamiltonian matrix in the
spectral product basis, and for isolating its totaly antisymmetric subspace.
These and related issues are presently under study, and progress in this
program of research will be reported in due course elsewhere.
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