NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

DESTRUCTION NOTICE—Destroy this report when it is no longer needed. Do not return it to the originator.
Characterization of Jets From Exploding Bridge Wire Detonators

Daniel R. Scheffler, Matthew S. Burkins, and William P. Walters
Weapons and Materials Research Directorate, ARL
A combined experimental and numerical study was conducted to characterize the jets from small exploding bridge wire detonators, which are small shaped charges. Two- and three-dimensional numerical results are compared to the experimental data.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>iv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>v</td>
</tr>
<tr>
<td>Executive Summary</td>
<td>1</td>
</tr>
<tr>
<td>1. Background</td>
<td>3</td>
</tr>
<tr>
<td>2. Experiments</td>
<td>4</td>
</tr>
<tr>
<td>3. Simulation Setup</td>
<td>11</td>
</tr>
<tr>
<td>4. Results and Discussion</td>
<td>14</td>
</tr>
<tr>
<td>4.1 RP-1 SC EBW Simulation</td>
<td>14</td>
</tr>
<tr>
<td>4.2 RP-4 SC EBW Simulations</td>
<td>14</td>
</tr>
<tr>
<td>4.3 RP-4 SFF EBW Simulation</td>
<td>18</td>
</tr>
<tr>
<td>5. Conclusions</td>
<td>20</td>
</tr>
<tr>
<td>6. References</td>
<td>21</td>
</tr>
<tr>
<td>Appendix A. Input Deck for RP-1 SC EBW Simulation</td>
<td>23</td>
</tr>
<tr>
<td>Appendix B. Input Deck for RP-4 SC EBW Simulation</td>
<td>27</td>
</tr>
<tr>
<td>Appendix C. Input Deck for RP-4 SFF EBW Simulation</td>
<td>31</td>
</tr>
<tr>
<td>Appendix D. Input Deck for RP-4 SC EBW 3-D Simulation</td>
<td>35</td>
</tr>
<tr>
<td>Acronyms</td>
<td>39</td>
</tr>
<tr>
<td>Distribution List</td>
<td>40</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1. RP-1 SC EBW shaped charge PN 188-7355. (Parts description: 1. RP-1 standard detonator head; 2. bridgewire: gold, 0.0015 inch diameter, 0.040 inch long; 3. PETN pressed: 530 mg; 4. cone: copper; 5. sleeve: brass, 0.050 inch thick (2.).) ..3

Figure 2. RP-4 SC EBW shaped charge PN 188-7377. (Parts description: 1. RP-1 standard detonator head; 2. bridgewire: gold, 0.0015 inch diameter, 0.040 inch long; 3. initiating explosive: 92 mg of PETN; 4. high density explosive: 3.44 g of plasticized RDX; 5. sleeve; 6. liner: copper, 60 degrees by 0.020 inch thick (2.).) ..4

Figure 3. RP-4 SFF EBW self-forging fragment PN 188-7378. (Parts description: 1. RP-1 standard detonator head; 2. bridgewire: gold, 0.0015 inch diameter, 0.040 inch long; 3. initiating explosive: 92 mg of PETN; 4. high density explosive: 6.03 g of plasticized RDX; 5. sleeve; 6. liner: copper, 0.020 inch thick (2.).) ..4

Figure 4. RP-1 SC EBW shot No. 814. (X-ray flash times are 13.7, 23.6, and 33.6 μs.)5

Figure 5. RP-1 SC EBW shot No. 815. (X-ray flash times are 13.6, 23.5, and 33.5 μs.)6

Figure 6. RP-1 SC EBW shot No. 817. (X-ray flash times are 13.4, 23.4, and 33.5 μs.)7

Figure 7. RP-4 SC EBW shot No. 816. (X-ray flash times are 10.7, 18.7, and 23.6 μs.)8

Figure 8. RP-4 SFF EBW shot No. 779. (X-ray flash times are 15.1 and 30.7 μs.)9

Figure 9. RP-4 SFF EBW shot No. 778. (X-ray flash times are 50.6 and 75.5 μs.)10

Figure 10. RP-1 SC EBW geometry used for simulation. (Dimensions are in centimeters.)12

Figure 11. RP-4 SC EBW geometry used for simulation. (Dimensions are in centimeters.)13

Figure 12. RP-4 SFF EBW EFP geometry used for simulation. (Dimensions are in centimeters.) ... 13

Figure 13. RP-1 SC EBW jet formation at (a) 0 μs, (b) 13 μs, (c) 23 μs, and (d) 33 μs.15

Figure 14. RP-1 SC EBW axial jet velocity profile at 13 μs. ..16

Figure 15. RP-4 SC EBW jet formation at (a) 0 μs, (b) 11 μs, and (c) 19 μs.17

Figure 16. RP-4 SC EBW 3-D jet formation at (a) 0 μs and (b) 11 μs18

Figure 17. RP-4 SC EBW jet velocity profile shown 12 μs for (a) 2-D and (b) 3-D simulation ... 18

Figure 18. RP-4 SFF EBW EFP formation at (a) 0 μs, (b) 15 μs, (c) 31 μs, and (d) 50 μs.19

Figure 19. RP-4 SFF EBW axial EFP velocity profile at 15 μs. ...20

List of Tables

Table 1. Experimental results. ... 11
Acknowledgments

The authors would like to thank Mr. Kent D. Kimsey of the U.S. Army Research Laboratory for his thorough review of this report and many helpful comments and suggestions for improving it.
INTENTIONALLY LEFT BLANK
Executive Summary

A combined experimental and numerical program was conducted at the U.S. Army Research Laboratory to characterize jets formed by three different Reynolds Industries Systems, Inc., exploding bridge wire (EBW) detonators. The detonators were designated as RP-1 SC EBW, a small (10.41-mm diameter) shaped charge (SC) with a conical liner; RP-4 SFF EBW, a 25.65-mm overall diameter detonator with a self-forging fragment (SFF) or explosively formed penetrator (EFP) liner; and RP-4 SC EBW, a 25.65-mm overall diameter detonator with a conical liner. The experimental study was conducted to determine the jet tip speeds and jet shapes. CTH1 hydrocode simulations were also conducted to model the jet formation for each EBW detonator by means of an axis-symmetric (two-dimensional) mesh. A comparison between CTH two- and three-dimensional simulations for the RP-4 SC EBW was performed. Numerical and experimental results were compared.

1CTH is not an acronym.
INTENTIONALLY LEFT BLANK
1. Background

A combined numerical and experimental program was conducted at the U.S. Army Research Laboratory (ARL) to characterize small jets from conical liners and a small explosively formed penetrator (EFP) by three different off-the-shelf detonators from Reynolds Industries Systems, Inc. (RISI). The simulations were completed before the experiments. This report describes the modeling techniques used for both the conical shaped charge (SC) and EFP formation simulation. Three types of exploding bridge wire (EBW) detonators, provided by RISI, were investigated in this study. The RISI catalogue designations were RP-1 SC EBW shaped charge part number (PN) 167-8673, the RP-4 SC EBW shaped charge PN 188-7377, and the RP-4 SFF EBW self-forging fragment (SFF) PN 188-7378. The jet properties from these charges have never been characterized. Therefore, the focus of this study sought to characterize the jets (i.e., jet shape, velocity, etc.). Figure 1 depicts the RP-1 SC EBW detonator geometry. The liner was made from copper, the sleeve from brass, and the explosive fill was pressed pentaerythrite tetranitrate (PETN). Figure 2 depicts the RP-4 SC EBW detonator geometry. The liner was a 60-degree copper cone and the explosive fill was plasticized hexogen (RDX). Figure 3 shows the geometry of the RP-4 SFF EBW detonator. The liner was made from copper and the explosive fill was plasticized RDX. Details of the liners and detonator assemblies were provided by RISI and are discussed later. The detonators were to be used in another application, which necessitated the conical SC and EFP characteristics. The other application involves using the formation simulation results to obtain the performance characteristics of the jets from the conical and EFP liners against various target scenarios.

Figure 1. RP-1 SC EBW shaped charge PN 188-7355. (Parts description: 1. RP-1 standard detonator head; 2. bridgewire: gold, 0.0015 inch diameter, 0.040 inch long; 3. PETN pressed: 530 mg; 4. cone: copper; 5. sleeve: brass, 0.050 inch thick.)
2. Experiments

The testing was performed at ARL’s experimental facility 108 at Aberdeen Proving Ground, Maryland, since this was the only facility available for this program. Three 150-kilo-electron volt (keV) x-ray tubes were placed 4 inches (102 mm) apart along a horizontal axis. The charge was positioned so that it pointed perpendicular to the x-ray axis at the location of the middle x-ray head. Because of limitations of the experimental facility, only 10 inches (254 mm) of vertical film coverage was possible. For the RP1 SC EBW detonator, in particular, the radiographic measurements were extremely difficult to resolve because of the extremely small particle size produced by the charge.
The jet and EFP free flight flash radiographs are shown in figures 4 through 9. Figures 4 through 6 show the flash radiographs for the RP-1 SC EBW for shot numbers 814, 815, and 817, respectively. The radiographs show that the RP-1 SC EBW is not a well-formed shaped charge jet (SCJ) in that the jet particles were not collinear. In addition, the experimentally determined jet tip velocities vary significantly, as listed in table 1. The jet tip velocity was determined to range from 2,653 to 4,867 m/s plus or minus the error measurement. This is because of limitations of the experimental facility, the fact that the shaped charges were not precision manufactured, and difficulty in the determination of the exact location of the leading particle in the radiographs.

Figure 4. RP-1 SC EBW shot No. 814. (X-ray flash times are 13.7, 23.6, and 33.6 µs.)
Figure 5. RP-1 SC EBW shot No. 815. (X-ray flash times are 13.6, 23.5, and 33.5 µs.)
Figure 6. RP-1 SC EBW shot No. 817. (X-ray flash times are 13.4, 23.4, and 33.5 µs.)
Figure 7 shows the free flight jet for the RP-4 SC EBW at three radiograph flash times. The figure shows that the RP-4 SC EBW produces a well-formed jet. The jet remains relatively collinear and cohesive. At 23.6 µs, some necking near the rear of the jet is evident. The jet tip velocity was determined to be around 5,313 m/s (see table 1). The jet diameter for this charge was requested by RISI, and the measured jet diameter was 3.1 mm at the tip, 1.05 mm in the middle of the jet, and 3.0 mm at the tail. These values were measured at the latest flash time (23.6 µs), but the jet was still stretching.

Figure 7. RP-4 SC EBW shot No. 816. (X-ray flash times are 10.7, 18.7, and 23.6 µs.)
Figures 8 and 9 show the free flight EFP for the RP-4 SFF EBW charge with the radiograph flash times given in the figure captions, for shot numbers 779 and 778, respectively. Figure 8 shows the EFP in the early stages of formation and figure 9 shows the EFP at the later stages of formation. The velocity of the leading edge of both is between 2,900 and 3,000 m/s (see table 1). Figures 8 and 9 show that although the leading edge velocity of the EFP is fairly consistent, the EFP’s final shape can vary considerably.

Figure 8. RP-4 SFF EBW shot No. 779. (X-ray flash times are 15.1 and 30.7 µs.)
Figure 9. RP-4 SFF EBW shot No. 778. (X-ray flash times are 50.6 and 75.5 µs.)
Table 1. Experimental results.

<table>
<thead>
<tr>
<th>Shot No.</th>
<th>Jet Tip Velocity (m/s)</th>
<th>Error (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>814</td>
<td>4867 ±147</td>
<td></td>
</tr>
<tr>
<td>815</td>
<td>2653 ±53</td>
<td></td>
</tr>
<tr>
<td>817</td>
<td>4243 ±133</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shot No.</th>
<th>Jet Tip Velocity (m/s)</th>
<th>Error (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>816</td>
<td>5313 ±125</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shot No.</th>
<th>Tip Velocity (m/s)</th>
<th>Error (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>778</td>
<td>2984</td>
<td>±36</td>
</tr>
<tr>
<td>779</td>
<td>2953</td>
<td>±51</td>
</tr>
</tbody>
</table>

Any significant errors in the charge velocities can be attributed to three main sources of error: 1) placement of the charge with reference to the x-ray tubes, 2) measurements from the radiographs, and 3) the measurement of time between the x-ray flashes. The placement errors included translational errors in the X and Y planes, as well as rotational errors attributable to angular departure from perfectly plumb. These placement errors totaled approximately $\frac{1}{8}$ inch (3.2 mm) and contributed to changes in the correction factor used to remove the magnification of the radiographic images. The error for the film measurements was ±0.010 inch (0.25 mm) per measurement. The timing error was 1×10^{-7} seconds for each measurement. In general, we obtained the velocities by dividing a small distance by a short time, thereby magnifying the effect of the accumulated errors. Based on the errors just discussed, the jet tip or EFP velocities and associated errors are given in table 1.

3. Simulation Setup

Three two-dimensional (2-D) axis-symmetric simulations were conducted with a fine resolution mesh, one for each detonator type. An additional three-dimensional (3-D) simulation of the jet formation was performed for the RP-4 SC EBW SC with the same cell size of the coarse resolution mesh needed for 3-D simulations involving a target. Thus, the 3-D simulation would be used to determine whether the coarse mesh would still adequately model small jets.

The simulations were performed with the March 1999 version of the CTH hydrocode (2), which is a state-of-the-art, second order accurate, Eulerian hydrocode undergoing continuous development at the Sandia National Laboratories, Albuquerque, New Mexico. CTH is capable of solving complex problems in shock physics in one, two, or three dimensions. The code provides several constitutive models, including an elastic-perfectly plastic model with provisions for work hardening and thermal softening, the Johnson-Cook model (3), the Zerrilli-Armstrong model (4), the Steinberg-Guinan-Lund model (5, 6), an undocumented power-law model, and
others. High explosive detonation can be modeled via the programmed burn model, the Chapman-Jouguet volume burn models, or the history variable reactive burn model (7). Several equation-of-state (EOS) options are available, including tabular (i.e., SESAME\(^2\)), analytical equation of state (ANEOS), Mie-Grüneisen, and Jones-Wilkins-Lee (JWL) (8). Material failure occurs when a threshold value of tensile stress or hydrostatic pressure is exceeded. In addition, the Johnson-Cook fracture model (9) is available. When failure occurs in a cell, void is introduced until the stress state of the cell is reduced to zero. Recompression is permitted. To reduce the diffusion typically encountered in Eulerian simulations, several advanced material interface tracking algorithms are provided, including the high-resolution interface tracking algorithm (available for 2-D simulations only), the simple line interface calculation algorithm (10), and the Sandia-modified Young’s reconstruction algorithm (11).

Initial simulations of the SCJs and EFP were performed in 2-D axis-symmetric configuration. The RP-4 SC EBW was repeated with quarter symmetry in a 3-D model with a mesh resolution similar to that needed to model jet-target impacts. The detonator geometries used in the CTH simulations for the RP1 SC EBW, RP4 SC EBW, and RP4 SFF EBW were simplified from the drawings shown in figures 10 through 12. The origin of the coordinate system used in all simulations was placed at the base of the liner. For the axis-symmetric simulations, the mesh consisted of \(650 \times 6600\) cells for the RP1 SC EBW simulation and \(1500 \times 7500\) cells for both the RP4 SC EBW and RP4 SFF EBW simulations. The cell size for all axis-symmetric simulations was \(0.001 \times 0.001\) cm and was uniform throughout the meshes. The 3-D RP4 SC EBW mesh consisted of \(150 \times 750 \times 150\) cells having a uniform size of \(0.01 \times 0.01 \times 0.01\) cm with planes of symmetry at \(x = 0\) and \(z = 0\). A Lagrangian tracer particle was placed at the origin of the coordinate system of each simulation to capture the jet tip or EFP leading edge velocity.

![Figure 10. RP-1 SC EBW geometry used for simulation. (Dimensions are in centimeters.)](image)

\(^{2}\)Not an acronym
Figure 11. RP-4 SC EBW geometry used for simulation. (Dimensions are in centimeters.)

Figure 12. RP-4 SFF EBW EFP geometry used for simulation. (Dimensions are in centimeters.)
The copper liners were modeled with standard copper properties for the Johnson-Cook constitutive model and CTH library values for the Mie-Grüneisen EOS. The same holds true for the brass case for the RP1 SC EBW simulation. The aluminum case for the RP4 SC EBW and RP4 SFF EBW simulations was modeled with the Johnson-Cook constitutive model and the SESAME tabular EOS available in the CTH material library. Failure in the metals was modeled with a simple tensile pressure criterion so that failure for copper, brass, and aluminum would occur when the tensile pressure would exceed 0.345, 1.300, and 0.400 GPa, respectively. The explosives, PETN and plastic-bonded explosive (PBX) 9407, were treated as fluids (i.e., they do not support strength). The JWL EOS was used to model the pressure-volume-energy behavior of the detonation products with parameters reported by Dobratz (12). A simple programmed burn model was used to model explosive initiation. In the axis-symmetric simulations, the explosive was initiated along a line at the bottom of the explosive and in the 3-D simulation, the explosive was initiated at a disk at the bottom of the explosive. A complete listing of the CTH input for the axis-symmetric simulations for the RP1 SC EBW, RP4 SC EBW, and RP4 SFF EBW is given in appendices A through C, respectively. The CTH input for the 3-D simulation of the RP4 SC EBW is shown in appendix D.

4. Results and Discussion

4.1 RP-1 SC EBW Simulation

Figure 13 shows the jet formation of the RP-1 SC EBW charge at times that roughly correspond to the times shown in the flash radiographs in figures 4 through 6. Like the jet in the experiments, the jet particulates early. Figure 14 shows the axial velocity profile of the jet at 13 μs. The jet tip velocity is 3.3 km/s, which is within the range of tip velocities listed in table 1. The RP-1 SC EBW charge produced a poorly formed jet.

4.2 RP-4 SC EBW Simulations

Figure 15 shows the RP-4 SC EBW 2-D axis-symmetric simulation results at 0, 11, and 19 μs. These free flight times were chosen to roughly match the flash radiographs in figure 7. The general shape of the jet in both the experiment and the simulation agrees. However, there seems to be a time mismatching between the experiment and simulation. Time zero for the simulation corresponds to when the explosive was line initiated at the base of the explosive charge, as shown in figure 11. Time zero in the experiments corresponds to when an electrical current was applied to the standard detonator head (item 1 in figure 2). Thus, the time-zero offset suggests that the simulation times correspond to later experimental times. It is estimated that the difference between the experiments and simulation is about 5 μs.
Figure 13. RP-1 SC EBW jet formation at (a) 0 µs, (b) 13 µs, (c) 23 µs, and (d) 33 µs.

Figure 16 shows the RP-4 SC EBW 3-D simulation results at 0 and 11 µs. The purpose of this simulation was to determine whether a coarser 3-D mesh could accurately capture the jet formation and jet tip velocity, since a coarse mesh would be needed to model jet-target interactions. A comparison of figures 15(b) and 16(b) indicates little difference between the jet formation of the 2-D and 3-D simulations. Thus, the mesh for the 3-D simulation is adequate. Figure 17 shows the axial jet velocity profile of the RP-4 SC EBW charge at 12 µs for the 2-D and the 3-D simulations. Note that there are only minor differences in the velocity profile, most notably at the leading edge of the jet. The jet tip velocity was determined to be 5.7 km/s for the
2-D simulation, while it was 5.6 km/s for the 3-D simulation. Thus, the simulations over-predict the experimentally determined tip velocity, 5.313 ± 0.125 km/s, by approximately 7%. However, with only one experiment, the data scatter is unknown.

Figure 14. RP-1 SC EBW axial jet velocity profile at 13 µs.
Figure 15. RP-4 SC EBW jet formation at (a) 0 µs, (b) 11 µs, and (c) 19 µs.
4.3 RP-4 SFF EBW Simulation

Formation of the EFP is shown in figure 18 at times that roughly correspond to the experimental radiograph flash times in figures 8 and 9. Again, there is some difference in time because of the difference in time zero between the experiments and the simulation, with the simulation time being later than the experiments. The estimated time difference is about 5 µs. At 20 µs, a global velocity transformation was performed to subtract 2.9 km/s in the axial direction from the mesh to freeze the EFP’s forward motion while allowing it to continue to deform, thereby minimizing the size of the mesh needed to complete the simulation to 50 µs. The leading edge velocity
determined from the simulation was 2.8 km/s and agrees very well with the velocities determined from two experiments (see table 1). The EFP shape shown in figures 8 and 9 varies a great deal. These experiments show that the RP-4 SFF EBW detonator forms penetrators that fail to create a consistent shape. Thus, it is difficult to say how well the EFP shape determined from simulation agrees with the experiments.

Figure 18. RP-4 SFF EBW EFP formation at (a) 0 µs, (b) 15 µs, (c) 31 µs, and (d) 50 µs.
5. Conclusions

The results of numerical simulations of the free flight characteristics of two conical SC and one EFP were presented. The charges were on the order of 1 inch in diameter. The simulations were compared to experimental data and were performed in advance of the experiments. The 2-D jet formations were simulated with a very fine Eulerian computational mesh. A 3-D simulation involving a target impact scenario would require a much coarser computational mesh. The results for both the 2-D and 3-D simulations of the RP-4 SC EBW are in good agreement.

The off-the-shelf detonators were not precision manufactured devices, and thus, there was a lot of scatter in the experimental data. The RP-1 SC EBW jet particles do not remain collinear nor do they have a consistent jet tip velocity. The jet tip velocity obtained numerically fell within the scatter of the experimental data. The RP-4 SC EBW detonator produced a well-formed jet, as observed in the experiment and simulations. Based on one experiment for the RP-4 SC EBW detonator, free flight jet characteristics such as overall shape and tip velocity show good agreement between the experiment and simulations. The tip velocity of the EFP (RP-4 SFF EBW detonator) predicted by the simulation is also in good agreement with the limited experimental results.

Generally, the CTH simulations predicted jet characteristics that are in good agreement with the limited experimental data for off-the-shelf EBW detonators.

![Figure 19. RP-4 SFF EBW axial EFP velocity profile at 15 µs.](image)
6. References

12. Dobratz, B. M. *LLNL Explosives Handbook*; UCRL-5299; Lawrence Livermore Laboratory, University of California: Livermore, CA 1981.
Appendix A. Input Deck for RP-1 SC EBW Simulation

*
* id=1 - Starting baseline configuration
*
*eor*cgenin
*
ID=1: EBW Shaped Charge RP-1 SC
*
control
 ep
 mmp
endcontrol
*
mesh
 block geometry 2dc type e
 x0=0.0
 x1 n=650 dx=0.001 rat=1.
 endx
 y0=-2.5
 y1 n=6600 dyf=0.001 rat=1.
 endy
* xact=0.0,1.0
* yact=0.0,5.0
endblock
endmesh
*
insertion of material
 block 1
*
 package 'Cu Liner'
 material 1
 numsub 50
 insert circle
 center 0.0000 -0.4103
 radius 0.1524
 endinsert
 delete circle
 center 0.0000 -0.4103
 radius 0.1270
 enddelete
 delete uds
 p1 0.0000 0.0000
 p2 0.3835 0.0000
 p3 0.1320 -0.4865
 p4 0.1100 -0.4738
 p5 0.0000 -0.4738
 enddelete
endpackage
*
 package 'Cu Liner'
 material 1
 numsub 50

insert uds
 p1 0.3835 0.0000
 p2 0.3835 -0.0508
 p3 0.1320 -0.4865
 p4 0.1100 -0.4738
endinsert
endpackage
*
package 'PETN Explosive'
material 2
numsub 50
insert uds
 p1 0.3835 -0.0504
 p2 0.3835 -1.4111
 p3 0.0000 -1.4111
 p4 0.0000 -0.5627
 p5 0.1320 -0.4865
endi
delete circle
center 0.0000 -0.4103
radius 0.1524
enddelete
endpackage
*
package 'Brass Case'
material 3
numsub 50
insert box
 p1 0.3835 0.0000
 p2 0.5205 -1.4111
endi
endpackage
*
endblock
endinsertion
*
epdata
*
matep 1 johnson-cook copper poisson 0.340
matep 3 johnson-cook brass poisson 0.340
vpsave
mix 3
endep
*
eos
mat1 mgrun copper
mat2 jwl petn1
mat3 mgrun brass
endeos
*
heburn
material 2 d 5.17e5 pre 1.0e12
dline 0.0000 -1.4111 to 0.3835 -1.4111 ti 0.0 radius 0.05
endheburn
*
tracer
 add 0.0 0.0
endtracer
*
*eor*cthin
*
ID=1: EBW Shaped Charge RP-1 SC
*
control
tstop=50.e-6
cpshift=900.
rdumpf=3600
ntbad 100000000
endcontrol
*
restart
time=1.e-6
endr
*
cellthermo
 mmp2
endcell
*
convct
 convect=1
 interface=high
endc
*
discard
*
 material 1 density -.001 pressure 1.0e12 ton 1.1e-6
 material 2 density -0.01 pressure 5.0e6 ton 1.1e-6
 material 2 density 10.00 pressure 1.0e12 ton 2.8e-6 toff 2.9e-6
endd
*
edit
 shortt
time=0. dtf=10000.
ends
longt
time=0. dtf=10000.
endl
plott
time=0. dtf=0.05e-6
endp
plotdata
 volume
 mass
 temperature
 pressure
 velocity
endplotdata
restt
time=0 dtf=1.e-6
endr
histc
cycle=0 dcfreq=1
 htracer1
endh
endedit
*
 mindt
 time=0. dtmin=1.0e-13
 endm
 *
 fracts
 pressure
 pf1rac1=-3.45e9
 pf1rac2=-1e9
 pf1rac3=-13.00e9
 pfmix=-5.0E20
 pfvoid=-5.0E20
 endf
 *
 boundary
 bbydro
 block=1
 bxbot 0
 bxtop 2
 bybot 2
 bytop 2
 endb
 endh
 endb
 *
 *eor*pltin
 *

Appendix B. Input Deck for RP-4 SC EBW Simulation

*
* id=1 - Starting baseline configuration
*
eor*cgemin
*
ID=1: EBW Shaped Charge RP-4 SC
*
control
 ep
 mmp
endcontrol
*
mesh
 block geometry 2dc type e
 x0=0.0
 xl n=1500 dxf=0.001 rat=1.
endx
 y0=-2.5
 yl n=7500 dyf=0.001 rat=1.
endy
 *
 xact=0.0,1.0
 yact=0.0,5.0
endblock
endmesh
*
insertion of material
 block 1
*
 package 'Cu Liner'
 material 1
 numsub 50
 insert circle
 center 0.0000 -1.3958
 radius 0.1270
 endinsert
 delete circle
 center 0.0000 -1.3958
 radius 0.0762
 enddelete
 delete uds
 p1 0.0000 0.0000
 p2 0.9525 0.0000
 p3 0.8425 -1.4593
 p4 0.8279 -1.4339
 p5 0.0000 -1.4339
 enddelete
endpackage
*
 package 'Cu Liner'
 material 1
 numsub 50

insert uds
 p1 0.8938 0.0000
 p2 0.9525 0.0000
 p3 0.1100 -1.4593
 p4 0.0660 -1.4339
endinsert
endpackage

*package 'PBX 9407 Explosive'
material 2
numsub 50
insert uds
 p1 0.9525 0.0000
 p2 0.9525 -0.6653
 p3 0.4435 -1.9698
 p4 0.0000 -1.9698
 p5 0.0000 -1.5228
 p6 0.1100 -1.4593
endi
delete circle
center 0.0000 -1.3958
radius 0.1270
enddelete
endpackage

*package 'Aluminum Case'
material 3
numsub 50
insert uds
 p1 0.9525 0.0000
 p2 1.2825 0.0000
 p3 1.2825 -0.8131
 p4 0.9033 -1.7850
 p5 0.9033 -1.9698
 p6 0.4435 -1.9698
 p7 0.9225 -0.6653
endi
endpackage

*endblock
endinsertion

*epdata
*
mat1 johnson-cook copper poisson 0.340
mat2 johnson-cook aluminum poisson 0.330
vpsave
mix 3
endeep

*eos
mat1 mgrun copper
mat2 jwl pbx-9407
mat3 sesame aluminum feos='/ha/cta/unsupported/CTH/CTH_9903/data/sesame'
endeos

*heburn
material 2 d 7.91e5 pre 1.0e12
dline 0.0000 -1.9698 to 0.4435 -1.9698 ti 0.0 radius 0.05
endheburn
*
tracer
 add 0.0 0.0
endtracer
*
*eor*cthin
*
ID=1: EBW Shaped Charge RP-4 SC
*
control
tstop=50.e-6
cpshift=900.
rdumpf=3600
ntbad 100000000
endcontrol
*
*restart
* time=2.e-6
*endr
*
cellthermo
 mmp2
endcell
*
convct
 convect=1
 interface=high
endc
*
discard
* material 1 density -.001 pressure 1.0e12 ton 1.1e-6
 material 2 density -0.01 pressure 5.0e6 ton 2.1e-6
 material 2 density 10.00 pressure 1.0e12 ton 4.0e-6 toff 4.1e-6
 material 3 density 10.00 pressure 1.0e12 ton 4.0e-6 toff 4.1e-6
enda
*
edit
 shortt
 time=0. dtf=10000.
end
 longt
 time=0. dtf=10000.
endl
 plott
 time=0. dtf=0.05e-6
endp
plotdata
 volume
 mass
 temperature
 pressure
 velocity
endplotdata
restr
time=0 dtf=1.e-6
endr
histc
cycle=0 dcfreq=1
htracer1
endh
endedit
*
mindt
time=0. dtmin=1.0e-13
endm
*
fracts
pressure
pfrac1=-3.45e9
pfrac2= -1e9
pfrac3=-4.00e9
pfmix =-5.0E20
pfvoid=-5.0E20
endf
*
boundary
bhydro
block=1
bxbot 0
bxtop 2
bybot 2
bytop 2
endb
endh
endb
*
*eor*pltin
*
Appendix C. Input Deck for RP-4 SFF EBW Simulation

*
* id=1 - Starting baseline configuration
*
eor*cgenin
*
ID=1: EBW Shaped Forging Fragment RP-4 SFF
*
control
 ep
 mmp
endcontrol
*
mesh
 block geometry 2dc type e
 x0=0.0
 x1 n=1500 dxf=0.001 rat=1.
 endx
 y0=-2.5
 y1 n=7500 dyf=0.001 rat=1.
 endy
*
 xact=0.0,1.0
*
 yact=0.0,5.0
endblock
endmesh
*
insertion of material
 block 1
*
 package 'Cu Liner'
 material 1
 numsub 50
 insert circle
 center 0.0000 2.6941
 radius 2.9108
 endinsert
 delete circle
 center 0.0000 2.6941
 radius 2.8575
 enddelete
 delete box
 p1 0.0000 0.0000
 p2 10.0000 10.0000
 enddelete
 delete box
 p1 0.9525 -10.0000
 p2 10.0000 10.0000
 enddelete
 endpackage
*
 package 'PBX 9407 Explosive'
 material 2

31
numsub 50
insert uds
 p1 0.0000 0.0000
 p2 0.9525 0.0000
 p3 0.9525 -0.6653
 p4 0.4435 -1.9698
 p5 0.0000 -1.9698
endi
delete circle
 center 0.0000 2.6941
 radius 2.9108
enddelete
endpackage
*
package 'Aluminum Case'
material 3
numsub 50
insert uds
 p1 0.9525 0.0000
 p2 1.2825 0.0000
 p3 1.2825 -0.8131
 p4 0.9033 -1.7850
 p5 0.9033 -1.9698
 p6 0.4435 -1.9698
 p7 0.9225 -0.6653
endi
endpackage
*
endblock
endinsertion
*
epdata
*
matep 1 johnson-cook copper poisson 0.340
matep 3 johnson-cook aluminum poisson 0.330
vpsave
mix 3
endeo
*
eos
 mat1 mgrun copper
 mat2 jwl pbx-9407
 mat3 sesame aluminum feos='/ha/cta/unsupported/CTH/CTH_9903/data/sesame'
endeos
*
heburn
 material 2 d 7.91e5 pre 1.0e12
dline 0.0000 -1.9698 to 0.4435 -1.9698 ti 0.0 radius 0.05
endheburn
*
tracer
 add 0.0 0.0
endtracer
*
eor*cthin
*
ID=1: EBW Shaped Forging Fragment RP-4 SFF
*
control
tstop=50.e-6
cpshift=900.
nsccycle=110000
rdumpf=3600
ntbad 1000000000
endcontrol
*
*restart
time=19.e-6
*endr
*
cellthermo
mmp2
endcell
*
convct
conve=1
interface=high
endc
*
discard
* material 1 density -.001 pressure 1.0e12 ton 1.1e-6
material 2 density 0.01 pressure 5.0e6 ton 2.1e-6
material 2 density 10.00 pressure 1.0e12 ton 4.0e-6 toff 4.1e-6
material 3 density 10.00 pressure 1.0e12 ton 4.0e-6 toff 4.1e-6
endd
*
vadd
block=1
tadd 20e-6
yvel -2.9e5
endvadd
*
edt
shortt
time=0. dtf=10000.
ends
longt
time=0. dtf=10000.
endl
plott
time=0. dtf=0.05e-6
endp
plotdata
volume
mass
temperature
pressure
velocity
endplotdata
restt
time=0 dtf=1.e-6
endr
histc
cycle=0 dcfreq=1
htracer1
endh
dedite
*

time=0. dtmin=1.0e-13
dedm
*
fracts
pressure
pfrac1=-3.45e9
pfrac2= -1e9
pfrac3=-4.00e9
pfrac4 =-5.0E20
pfracv=-5.0E20
endf
*
boundary
bhydro
 block=1
 bxbot 0
 bxtop 2
 bybot 2
 bytop 2
endb
dedh
dedm
*
*eor*pltin
Appendix D. Input Deck for RP-4 SC EBW 3-D Simulation

* id=1 - Starting baseline configuration
* eor*cgenin
* ID=1: 3D EBW Shaped Charge RP-4 SC
* control
ep
mmp
endcontrol
* mesh
 block geometry 3dr type e
 x0=0.0
 x1 n=150 dx=0.01 rat=1.
 endx
 y0=-2.5
 y1 n=750 dy=0.01 rat=1.
 endy
 z0=0.0
 z1 n=150 dz=0.01 rat=1.
 endz
 * xact=0.0,1.0
 * yact=0.0,5.0
 endblock
endmesh
* insertion of material
 block 1
 *
 package 'Cu Liner'
 material 1
 numsub 10
 insert sphere
 center 0.0000 -1.3958 0.0000
 radius 0.1270
 endinsert
 delete sphere
 center 0.0000 -1.3958 0.0000
 radius 0.0762
 enddelete
delete r2dp
cel 0.0000 0.0000 0.0000
cel 0.0000 1.0000 0.0000
p1 0.0000 0.0000
p2 0.9525 0.0000
p3 0.8425 -1.4593
p4 0.8279 -1.4339
p5 0.0000 -1.4339
enddelete
endpackage
*
package 'Cu Liner'
material 1
numsub 10
insert r2dp
 ce1 0.0000 0.0000 0.0000
 ce2 0.0000 1.0000 0.0000
 p1 0.8938 0.0000
 p2 0.9525 0.0000
 p3 0.1100 -1.4593
 p4 0.0660 -1.4339
endinsert
endpackage
*
package 'PBX 9407 Explosive'
material 2
numsub 10
insert r2dp
 ce1 0.0000 0.0000 0.0000
 ce2 0.0000 1.0000 0.0000
 p1 0.9525 0.0000
 p2 0.9525 -0.6653
 p3 0.4435 -1.9698
 p4 0.0000 -1.9698
 p5 0.0000 -1.5228
 p6 0.1100 -1.4593
endi
delete sphere
 center 0.0000 -1.3958 0.0000
 radius 0.1270
enddelete
endpackage
*
package 'Aluminum Case'
material 3
numsub 10
insert r2dp
 ce1 0.0000 0.0000 0.0000
 ce2 0.0000 1.0000 0.0000
 p1 0.9525 0.0000
 p2 1.2825 0.0000
 p3 1.2825 -0.8131
 p4 0.9033 -1.7850
 p5 0.9033 -1.9698
 p6 0.4435 -1.9698
 p7 0.9225 -0.6653
endi
endpackage
*
endblock
endinsertion
*
epdata
*
 matep 1 johnson-cook copper poisson 0.340
 matep 3 johnson-cook aluminum poisson 0.330
vpsave
mix 3
endep
*

eos
mat1 mgrun copper
mat2 jwl pbx-9407
mat3 sesame aluminum feos=':/ha/cta/unsupported/CTH/CTH_9903/data/sesame'
endeos
*
heburn
 material 2 d 7.91e5 pre 1.0e12
ddisk 0.0000 -1.9697 0.0000
to 0.4435 -1.9697 0.0000
and 0.0000 -1.9697 0.4435
ti 0.0 radius 0.05
endheburn
*
tracer
 add 0.0 0.0 0.0
endtracer
*
*eor*cthin
*
ID=1: EBW Shaped Charge RP-4 SC
*
control
tstop=25.e-6
cpshift=900.
rdumpf=3600
ntbad 10000000000
endcontrol
*
restart
time=4.0e-6
* cycle=1911
endr
*
cellthermo
mmp2
endcell
*
convct
convect=1
interface=smyra
endc
*
discard
material 1 density -.001 pressure 1.0e12 ton 4.3e-6
material 2 density -0.01 pressure 5.0e6 ton 2.1e-6
material 2 density 10.00 pressure 1.0e12 ton 4.3e-6 toff 4.4e-6
material 3 density 10.00 pressure 1.0e12 ton 4.3e-6 toff 4.4e-6
endd
*
edi
t shortt
time=0. dtf=10000.
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-D</td>
<td>two-dimensional</td>
</tr>
<tr>
<td>3-D</td>
<td>three-dimensional</td>
</tr>
<tr>
<td>ANEOS</td>
<td>analytic equation of state package</td>
</tr>
<tr>
<td>ARL</td>
<td>U.S. Army Research Laboratory</td>
</tr>
<tr>
<td>EBW</td>
<td>exploding bridge wire</td>
</tr>
<tr>
<td>EFP</td>
<td>explosively formed penetrator</td>
</tr>
<tr>
<td>EOS</td>
<td>equation of state</td>
</tr>
<tr>
<td>JWL</td>
<td>Jones-Wilkins-Lee</td>
</tr>
<tr>
<td>RISI</td>
<td>Reynolds Industries Systems, Incorporated</td>
</tr>
<tr>
<td>SC</td>
<td>shaped charge</td>
</tr>
<tr>
<td>SCJ</td>
<td>shaped charge jet</td>
</tr>
<tr>
<td>SFF</td>
<td>self-forging fragment (old terminology for an EFP)</td>
</tr>
<tr>
<td>NO. OF COPIES</td>
<td>ORGANIZATION</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>COMMANDER</td>
</tr>
<tr>
<td>DIRECTOR</td>
<td>NAVAL WEAPONS CTR</td>
</tr>
<tr>
<td>US ARMY RSCH LABORATORY</td>
<td>ATTN N FASIG CODE 3261</td>
</tr>
<tr>
<td>1</td>
<td>CDR NAVAL SURF WARFARE CTR</td>
</tr>
<tr>
<td>DIRECTOR</td>
<td>DAHLGREN DIVISION</td>
</tr>
<tr>
<td>US ARMY RSCH LABORATORY</td>
<td>ATTN W E HOYE G02</td>
</tr>
<tr>
<td>2</td>
<td>CDR NAVAL SURF WARFARE CTR</td>
</tr>
<tr>
<td>DIRECTOR</td>
<td>DAHLGREN DIVISION</td>
</tr>
<tr>
<td>US ARMY RSCH LABORATORY</td>
<td>ATTN T SPIVAK G22</td>
</tr>
<tr>
<td>1</td>
<td>AIR FORCE ARMAMENT LAB</td>
</tr>
<tr>
<td>COMMANDER</td>
<td>ATTN AFATL DLJR D LAMBERT</td>
</tr>
<tr>
<td>2</td>
<td>DARPA</td>
</tr>
<tr>
<td>CDR NAVAL SURF WARFARE CTR</td>
<td>ATTN W SNOWDEN S WAX</td>
</tr>
<tr>
<td>2</td>
<td>LOS ALAMOS NATL LAB</td>
</tr>
<tr>
<td>CDR NAVAL SURF WARFARE CTR</td>
<td>ATTN P HOWE MS P915</td>
</tr>
<tr>
<td>2</td>
<td>LOS ALAMOS NATL LAB</td>
</tr>
<tr>
<td>CDR NAVAL SURF WARFARE CTR</td>
<td>ATTN L HULL MS A133</td>
</tr>
<tr>
<td>5</td>
<td>SANDIA NATL LAB</td>
</tr>
<tr>
<td>DIRECTOR</td>
<td>ATTN R BELL MS0836 9116</td>
</tr>
<tr>
<td>US ARMY RSCH LABORATORY</td>
<td>E HERTEL MS0836 9116</td>
</tr>
<tr>
<td>3</td>
<td>DIR LAWRENCE LIVERMORE NATL LAB</td>
</tr>
<tr>
<td>DIRECTOR</td>
<td>ATTN D BAUM L099</td>
</tr>
<tr>
<td>US ARMY RSCH LABORATORY</td>
<td>M MURPHY C SIMONSON MS</td>
</tr>
</tbody>
</table>

pdf file only
<table>
<thead>
<tr>
<th>NO. OF COPIES</th>
<th>ORGANIZATION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DIR LAWRENCE LIVERMORE NATL LAB</td>
<td>ATTN R VAROSH L149</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PO BOX 808</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LIVERMORE CA 90550</td>
</tr>
<tr>
<td>2</td>
<td>SOUTHWEST RSCH INST</td>
<td>ATTN C ANDERSON J WALKER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PO DRAWER 28510</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAN ANTONIO TX 78228-0510</td>
</tr>
<tr>
<td>2</td>
<td>AEROJET</td>
<td>ATTN J CARLEONE S KEY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PO BOX 13222</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SACRAMENTO CA 95813-6000</td>
</tr>
<tr>
<td>1</td>
<td>CMPTNL MECHS CNSLTNTS</td>
<td>ATTN J A ZUKAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PO BOX 11314</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BALTIMORE MD 21239-0314</td>
</tr>
<tr>
<td>3</td>
<td>DETK</td>
<td>ATTN R CICCARELLI W FLIS M MAJERUS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3620 HORIZON DR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KING OF PRUSSIA PA 19406</td>
</tr>
<tr>
<td>1</td>
<td>RAYTHEON MSL SYS CO</td>
<td>ATTN T STURGEON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLDG 805 MS D4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PO BOX 11337</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TUCSON AZ 85734-1337</td>
</tr>
<tr>
<td>1</td>
<td>TEXTRON DEFENSE SYSTEMS</td>
<td>ATTN C MILLER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>201 LOWELL ST</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WILMINGTON MA 01887-4113</td>
</tr>
<tr>
<td>1</td>
<td>D R KENNEDY & ASSOC INC</td>
<td>ATTN D KENNEDY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PO BOX 4003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MOUNTAIN VIEW CA 94040</td>
</tr>
<tr>
<td>1</td>
<td>LOCKHEED MARTIN ELECTRONICS & MISSILES</td>
<td>ATTN G W BROOKS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5600 SAND LAKE RD MP 544</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ORLANDO FL 32819-8907</td>
</tr>
<tr>
<td>4</td>
<td>GD OTS</td>
<td>ATTN C ENGLISH T GRAHAM D A MATUSKA J OSBORN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4565 COMMERCIAL DR A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NICEVILLE FL 32578</td>
</tr>
<tr>
<td>2</td>
<td>GD OTS</td>
<td>ATTN D BOEKA N OUYE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400 ESTUDILLO AVE STE 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAN LEANDRO CA 94577-0205</td>
</tr>
<tr>
<td>1</td>
<td>ZERNOW TECHNICAL SVS INC</td>
<td>ATTN L ZERNOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>425 W BONITA AVE STE 208</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAN DIMAS CA 91773</td>
</tr>
<tr>
<td>1</td>
<td>PM JAVELIN PO</td>
<td>ATTN SSAE FS AM EG C ALLEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REDSTONE ARSENAL AL 35898-5720</td>
</tr>
<tr>
<td>1</td>
<td>PM TOW</td>
<td>ATTN SSAE TS TO J BIER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REDSTONE ARSENAL AL 35898-5720</td>
</tr>
<tr>
<td>1</td>
<td>HALLIBURTON ENERGY SVCS</td>
<td>JET RESEARCH CENTER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN D LEIDEL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PO BOX 327</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ALVARADO TX 76009-9775</td>
</tr>
<tr>
<td>1</td>
<td>NORTHROP GRUMMAN</td>
<td>ATTN DR D PILLASCH B57 D3700</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PO BOX 296</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1100 W HOLLYVALE ST</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AZUSA CA 91702</td>
</tr>
<tr>
<td>1</td>
<td>INTRNTL RSRCH ASSOC</td>
<td>ATTN D ORPHAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4450 BLACK AVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLEASANTON CA 94566-6105</td>
</tr>
<tr>
<td>1</td>
<td>JIM VAROSH</td>
<td>TELEDYNE RISI INC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PO BOX 359</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRACY CA 95378</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ABERDEEN PROVING GROUND</td>
</tr>
<tr>
<td>1</td>
<td>DIRECTOR</td>
<td>US ARMY RSCH LABORATORY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATTN AMSRD ARL CI OK (TECH LIB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLDG 4600</td>
</tr>
<tr>
<td>1</td>
<td>US ARMY RESEARCH LABORATORY</td>
<td>ATTN AMSRD ARL WM J SMITH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLDG 4600</td>
</tr>
<tr>
<td>1</td>
<td>US ARMY RESEARCH LABORATORY</td>
<td>ATTN AMSRD ARL WM EG E SCHMIDT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLDG 4600</td>
</tr>
<tr>
<td>NO. OF COPIES</td>
<td>ORGANIZATION</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td></td>
</tr>
</tbody>
</table>
| 2 | US ARMY RESEARCH LABORATORY
ATTN AMSRD ARL WM MB W DEROSSET
R DOWDING
BLDG 4600 |
| 1 | US ARMY RESEARCH LABORATORY
ATTN AMSRD ARL WM T B BURNS
BLDG 309 |
| 1 | US ARMY RESEARCH LABORATORY
ATTN AMSRD ARL WM TA W GILICH
BLDG 309 |
| 11 | US ARMY RESEARCH LABORATORY
ATTN AMSRD ARL WM TA W GOOCH
M BURKINS (5 CYS) T HAVEL
M KEELE D KLEPONIS
J RUNYEON S SCHOENFELD
BLDG 393 |
| 4 | US ARMY RESEARCH LABORATORY
ATTN AMSRD ARL WM TB P BAKER
R BANTON R LOTTERO
J STARKENBERG
BLDG 309 |
| 24 | US ARMY RESEARCH LABORATORY
ATTN AMSRD ARL WM TC G BOYCE
R COATES T FARRAND
E KENNEDY K KIMSEY
L MAGNESS S SCHRAML
D SCHEFFLER (6 CYS)
B SORESEN R SUMMERS
C WILLIAMS W WALTERS (6 CYS)
R ANDERSON M FERMEN-COKER
BLDG 309 |
| 6 | US ARMY RESEARCH LABORATORY
ATTN AMSRD ARL WM TD Y HUANG
T WEERASOORIYA T W BJERKE
E RAPACKI S SEGLETES
M RAFTENBERG
BLDG 4600 |
| 1 | US ARMY RESEARCH LABORATORY
ATTN AMSRD ARL SL BE A PRAKASH
BLDG 390A |