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Noether's T heorem

links SYMMETRIES and conservation laws
for Euler Lagrange Systems.

What is a conservation law?
Answer: a divergence expression which is
zero on solutions of the system.

The heat equation

IS its own conservation law. Integrating,

0

E/Qu + (Fus)log =0

where we assume w is sufficiently nice that we
can interchange 0; and [, and we have
applied Stokes’ Theorem. In words:

Rate of change Net of comings and goings

of total heat in 2 across the boundary
Nno sources or sinks



The usual examples

Symmetry

leaves Ldxz invariant

translation in time

{t*=t+c

{xfzt—l—c

translation in space

xX* = Rx
rotation in space

’

a* = ¢(a,b)
< b* = +(a,b)
Gap — PptPa = 1
\ Particle relabelling

Conserved Quantity
the quantity behind
D
the Dr

in the Divergence

Energy
Linear Momenta

Angular Momenta

Potential vorticity



Variational Complexes 1-2-3 |
are locally exact

SMOOTH cf. P.J. Olver, Applications . ..

A3 S A

o o

Div

Jo
Jo

C_u>rl A2

DISCRETE Hydon and ELM, J. FoCM
A A d ~ d ~ d
— Ex? — Ex3 E) N1 E) N> E)

iy dm

AL o A2 9

Finite Element ELM and GRW Quispel, CRM Proc.

~ d d
T o N A



Exactness can be used to find conservation
laws for non Euler-Lagrange systems via
clever ansatze!

cf Hereman, Sanders, Sayers and Wang, CRM
Proceedings; Hydon J. Phys. A

Exactness is proved by the use of so-called
homotopy operators H;,

Div E
SN ZINTANT
Hq Hy
which satisfy
(DivH{ + HoE)w = w, all we A3

Thus if E(w) =0, then w = Div(H1(w)).

Idea: solve E(clever ansatz) = 0 for
parameters and arbitrary functions. Then you
have a conservation law using Hj.



More on d and =

SMOOTH

—

d(Ldz) = d (% (u% + U%L-) dl‘)
(uzdug + ugzdugzy)d
= (—uzzdu + uggzrdu)dz
+D£m <umdu — 2ugzdug + D%E (Umwdu)>
= E(L)dudz + 21,

General Formula, explicit, exact, symbolic, for

nr, kKnown.

E = wod, where « projects out the
divergence term.

More than one dependent variable

dL(z,u,v,...)dz = E%(L)dudzE?(L)dvdx

D
‘|‘an



More on d and =

DISCRETE
d(Ldz) = d (%u% + unun_|_1) JANY

= (undun —|— un_|_2dun + undun+2)An

(un + up4o + up—2)dunp
+(5 —id)(- )

General Formula, explicit, exact, symbolic, for
nr, known.

E = wod, where 7 projects out the total
difference term.

More than one dependent variable

d(LnAp) = E%(Lp)dunAp + EV(Lyp)dvp A
+A(nr,,)



Variational Symmetries

Symmetries arise from Lie group actions.

EXAMPLE: G = (R,+)

x
k k k
€-x =z = : e-u=u(z") =
1l —ex l —ex

Group Action Property

0-(e-x) =19 (1273@) — 1=

= 1 (ega)e — (¢t 0) @
and similarly for u(x).

Prolonged Group Action
Ox (1 — ex)?

T ozx
and

5"(1;;[; UQ’;

5'(€'Um)=(1_6(5.$))2=(1—(5+6)$)2




Action on Integrals

€ JoL(z,u,ug,...)dx

def'el.”n of = [oL(e-z,e-ue-ug, --)de -z
change of _ , , , de -z
variable = JoLle e e ug, )= —da

Use L2 theory to get that a variational
symmetry of a Lagrangian is a group action
such that

de - x

dx

L(x,u,ug,...) = L(e-x,€-u,e-ug, --)



Infinitesimal Action on Integrals

Since the symmetry invariance condition
de - x

dx
IS true all ¢, then if everything is sufficiently

L(x,u,ug,...) = L(e-x,€e-u,e-ug, --)

d .
smooth, applying d—|€:O to both sides, and
€
noting that when ¢ = 0 we have the identity
action,

0 = G+ G+ 5L+ + L&

L D§f>+§—ﬁcz+ BLD_Q_I__I_ac‘?L DQQ_I_W

- 8’U,$ Dz Uxx D33'2

where

d d
Q:¢_u$£7 ¢= a|€:0€'u7 £:£|€:06'$

and E% is the total derivative operator.

0 = DiV(LE) + Y07 %
J



Almost to the punchline

Let
0
Vo = R
@ EO;Q ou®
Then the prolongation is defined by
1,
vp =Y D/Q¥—
Ve = 2 BT,
Note
uG = Ou” = D7y”
8:1:‘1]1 e 8:1:#
Then
OL _
J —
Z (D Qa) 8_11% = prvg.dl

Recall that d is one of the two operators comprising
the Euler Lagrange operator, while the left hand side is

a divergence if @) is the characteristic of a symmetry.



THE PUNCHLINE

3 K aArmed

N, N,
L EY(L)du®dz
= d(L) + Div(ng)

-
DFVQJ

Q- E(L)

= vgod(L) + Div(prvgnr,)

If @@ is the characteristic of a symmetry, we
have that

vod(L) = Div(L¢)

and hence that

Q - E(L) = Div(something)



Non-trivial example

Semi-geostrophic equations

/

a* = ¢(a,b) PatPp — PpPa =1
b* = ¢¥(a,b)

h = (zayp — zpYa)

Invariants  { 0z = h(ypOa — YaOp)

Oy = h(—zy0q + za0p)

Group <

Y

DtZC — —iDth — gh
Equations [ 12 R A
| Dry = —%Dihy + $ha

The Lagrangian has 4 arbitary functions
which obey two conditions. The conserved

quantity is potential vorticity

2
% (f + %(hxw + hyy)%(hmhyy - hr%y))



DISCRETE Almost Punchline

This case is easier than the smooth case.

e Since n cannot vary in a smooth way, the “mesh
variables’ xz, are treated as dependent variables.

e The group action commutes with shift:
€5 (uy) = €Upt; = Sle - uy

SO no prolongation formulae are required.

For example,

Un Un+j
_—> € - un-l—j =

G'Unz

1 —ex, 1 —exyy;

The symmetry condition is:

Ln(CIZn, L4, Un,y 0 un—|—k)

p— Ln(x;'fu . . .x;_l_j’u;;, .« .u;l;_l_k)

where ()*=¢€- ().



Applying

d
& e=0
to both sides of the symmetry condition yields
oL, d oL, d
O — b S b S
Ek: 8xn+k de Gzoxn—l_k 8un_|_k de Gzoun+k
Setting
d d
r — * U — *
Cn = de e=0"" Cn = de e=0n
then since
xT _ Sk T U _ Sk U
n+k — (Qn)a n+k — (Qn)
the equation above can be written as
- 0
0 = XgdLn, Xo=Y 587(Q% e
o, J n—+J



DISCRETE Punchline

AEx2E Ex3 ™ AL — A2
W W

= d(Ln) + A(nyL,)
<_
XQ_I
Q- E(Ln) = Xgud(Ln) + A(Xg-n1,)
Again, we get that if
then
Q- E(Lp) = A(something),

that is, a total difference expression which is
zero on solutions of the discrete Euler
Lagrange system.



Nice example T.D. Lee, Difference Equations
and Conservation Laws, J. Stat. Phys., 46 (1987)

A difference model for f(%:i:Q — V(z))dt

Define
1 Tn
7(n) = / V(z)dz
In — pn—-17Tpn-1
and take
l (xp, — 21 2
Lp=|=(22—2==2| —V¥ tn — ty—
. L(tn_tn_1> ()| (b0 = tn_1)

The group action is t;, = tn + €, with z,
invariant. The conserved quantity is thus
“energy”. Now, QY = 1 for all n, and Q% = 0.
The equations become

as L, is a function of (tn, —t,_1).



It is easy to see in this case that

0= (S —id) (iLn)

Otn
is implied by the two equations, to vyield
l [x Tp_1 2
n — 4n— =
— Vin) =c
! <tn—tn_1> + V()

Note that the energy in the smooth case is

1/23° + V.

Can regard the EL eqn for the mesh variables
as an equation for a variable mesh.



INTERLUDE

If we know the group action for a particular
conservation law, we can ‘“design in” that
conservation law into a discretisation by
taking a Lagrangian composed of invariants.
These necesarily satisfy vg(l) =0 or

Xqg(In) = 0. The Fels and Olver formulation
of moving frames is particularly helpful here:
a sample theorem is

Discrete rotation invariants in z2
Let (zn,yn), (xm,ym) be two points in the
plane. Then

In,m = TnYn + TmYm, Jn,m — InYm — TmYn

are rotation invariants. Moreover, any disrete
rotation invariant is a function of these.



Made up example

Suppose

1 1
Lp = EJs,n+l — E(xnyn‘Fl - 'jc’n-l-ly"”'/)2
By
E;

Now,

Qn = (Q%, Q%) = (—yn,@n) = §p|,_, (@5 vh)
and thus

then

Jn,n—l—lyn—l—l - Jn—l,nyn—l

_Jn,n+ 1Tn+1 + Jn—l,nxn—l

Jn,n—l—l(_ynyn—I—l - xnwn+1)
+Jn—1,n(ynyn—1 + Tnx,—1)

— _Jn,n+1In,n+1 + Jn—l,nIn—l,n
= —(S— id)(Jn—l,nIn—l,n)
gives the conserved quantity.

Note that Inm = Im,n and Jnm = —Jmn



Less easy example

Hereman et al., Densities, Symmetries and Recursion

operators for nonlinear DDEs, CRM Proceedings

The Toda lattice in polynomial form is

{ Up = Up_1 — Un
Un = vn(Un — Up41)
The scaling symmetry is the basis for the
ansatz used to obtain the
differential-difference conservation laws,
which are of the form

D

— S—id)J, =0
Dtpn+( )n

for example

1
Pn — gug+un(vn—1_vn)7 Jn = Un_lun'Un_1+’U7%_1

These results use the ansatz plus homotopy
operator method outlined earlier.



Summary of the Pattern

{[ZV} {/\3} rod

— == Al —AZ2—
Ex3
W W
L o EY(L)du®

=d(L) + { P }nL
A
'UQ ]
XQ

Q-E(L):{ ‘Q }JaL+{ Div }{ e }JnL
X0 A X0

e the formula for n; is explicit, exact, symbolic

e the first summand is a total derivative or
difference by the symmetry condition



OK let’s try for a Neother’s Theorem
for Finite Element!

D. Arnold, Beijing ICM Plenary talk

Given a system of moments and sundry other
data, aka degrees of freedom, that yield
projection operators such that the diagram
commutes:

0 =R A9 Al A2 S A3 50
Mol Tl T2 T3]
0O—2R —F9 Fl w72 L F3 0

all relative to some triangulation.

Yields stability!! A Lagrangian is composed of
wedge products of 1-, 2- and 3- forms.
Choose the discretisation of each to be in the
relevant F;. Then commutativity implies
conditions for Brezzi's theorem to hold.



In one dimension: with en, = (zn,z,41), Mo to
piecewise linear, 1y to piecewise constant
with moment

anp = /$n-|-1 w(x)yYnp(x) dz

In

Commutativity of the diagram

U ﬂ) urdx
Mo 4 M
u|en = Apnxz+ B, — A, = ;fg“ u'(2)Yn(z) dz
implies

An = u(@n(@at - [

In

Ln+1

u(z),(z) dz
Note that

/fL’n+1 UYn(z) dr = 1.

In

IS required by the projection property.



A finite element Lagrangian is built up of
wedge products of forms in Fq, F1, Fo, F3.
Call this resulting space F3. In each
top-dimensional simplex, denoted 7, integrate
to get

L=YL(al,---ab)
T

where o is the jth degree of freedom in 7. L

can also depend on mesh data.

Can now take d which is the variation with
respect to the .



EXAMPLE In one dimension,
0R A0 4 Al 40
Mo | My 4
0-R = Fy & 7 =0

14 is to piecewise constant functions with
moment @(n) = [ "2 u(z)yn(z) dz where

Un
area|l=1

Tn Lpn+1 Tnp42

on (zn,T,42), While Mg is to piecewise linear
functions with moments
1 Ln+4+1
op = / T u(x) dz

that is, an, a,41 are used in (zn,x,42);

D%n+17n 4 Tpt1tTn42)
Tp42—Tn Ln4+2—TLn n
o Tp41+Tn

<wn+2—f’fn> ntl

u




Very simple example

[ Au2 dz projects to

Z/w o l”(u)an dr = 22 <(°‘2n a2n+1)° )

Lo2n+42 — L2n

Then

R - 8% 8% 1
dLo, = 4w22+2 "g (dao, — dag,41)

(87 — ADpy_1—X
— 4 2n 2n+1  X2p-—1 2n da2n
L2n427T2n L2n+1"T2n

+(S — id)(something)

The discrete Euler Lagrange equation is then,
after “integration”,
a2n — &Op41
Lo2n+42 — L2n -




Look now at the “Noether pattern” for the
Finite Element variational complex

~ ~ modof ~4 ~5
—Fo—=>F3 = Fi—=>Fs—

W
L~ E(LT) + 5(77L)
= dL,
<_
’UQT_I
where 6 is the mesh dependent coboundary
operator (recall 6(f)(7) = f(91)).

Step 1: find ng, Step 2: find vQ

If then v, d(L7) = é(something) we will
have that

0=Qr - E(L;y)+ §d(something).



Group actions on moments

The clue is the variational symmetry group
action on [ L(z,u,---)dz

Define

- J,u(@)r(x) do

= [, e u(z)pr(e- )L dx
Example Recall the projective action

u(x)

1l —ex 1l —ex
Then the induced action on the moments

Tn4+1 u(x) [T+l u(x)
3 dx, ﬁn—/ 4 dz

i

, e-ulx) =

€T —

an —

In In

€ 0On — An, G'Bn:Bn—Gan



In general for this action,

€ - fﬁg“ x"u(x) dz

— Ln+1 ™ ’LL(:E) dx
Tn (1—ex)™ 1—ex (l—ex)?

— Tn+1 Mu(x)
- fﬂ3n (1w_€;:)7£7£1—|—3 dz

THINK: if you want a coherent scheme which
maps to itself under this projective action,
and involves only a finite amount of data,
then take your moments to be

xn
+1u(;i)da:, m=3,4,...N.

Tn T



CONCLUSIONS

e The underlying algebraic pattern of the
exact variational complexes provide a
framework for generalisations of Noether’s
Theorem and conservation laws in
general.

e Symmetry-adapted moments would
appear to be necessary.

e Next: formulae for ny_ where

d(Lr) = E(L7) + é(nr,)

in terms of the mesh dependent
coboundary operator.



