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IV. Scientific Progress and Accomplishments 

 
We have developed a dipole-based model for wideband induction data, 

appropriate for both frequency- and time-domain data. In particular, for rotationally 
symmetric targets, with axis of rotation aligned along the z axis, we have demonstrated 
that the EMI magnetization tensor can be expressed as 
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where mz(0) and mp(0) are respectively the longitudinal and transverse components of the 
static magnetic response (each zero for non-ferrous targets); ω represents the angular 
frequency; zkjω  represents the kth z-directed EMI dipole resonant frequency, with pijω  
similarly defined for the dipoles perpendicular to z; the EMI dipole-moment strengths are 
denoted mzk and mpi ; and x, y and z represent x-, y- and z-directed unit vectors. In this 
model each of the principal axes (parallel and perpendicular to z) are represented in terms 
of characteristic dipoles (often only the lowest-order dipole mode in each direction is 
important, although above we represent a summation of such modes), with each dipole 
represented by an associated imaginary resonant frequency. When one converts the above 
frequency-domain magnetization to the time domain, the imaginary resonant poles yield 
the damped-exponential time-domain response characteristic of a transient EMI system. 
This parametric representation is well suited to signal processing, since the model 
parameters extracted from measured data are applicable to a Bayesian processor. 



 
Our model has been applied thus far to simple, isolated UXO. There are many 

cases for which one would be interested in more-complicated targets. In the context of 
individual UXO, many ordnance are composed of multiple parts (body, rings, fins, etc.) 
each of which may contribute its own dipole response to the composite signature. In the 
proposed research we will extend the above EMI resonant-dipole model to the case of 
targets with multiple parts. In general each target component will have an associated EMI 
dipole, each with a unique physical location (tied to the position of the part). In our initial 
model, developed to date for simpler targets, the dipoles have implicitly been positioned 
at or near the target center. The situation is more complicated when considering UXO of 
more-general composition. 
 
 For the wideband induction data, either in the frequency- or time-domain, we 
utilize the model in (1) to extract EMI features from the data. In particular, features of 
interest include ratios of the dipole moments mzk and mpi, the dipole resonant frequencies, 
and the goodness of fit (GOF) of the model to the data. While extracting these features 
from the spatial EMI data, one is often beset by problems associated with local minima. 
In other words, multiple realizations of the EMI model yield good fits to the data. 
However, by constraining the EMI inversion (model fit) by the results of the 
magnetometer inversion (e.g. depth), we significantly improve overall inversion 
performance. 
 
 Assume that the features from the model are denoted by the vector x, with these 
features extracted from the magnetometer and wideband EMI models, as discussed 
above. We perform classification of the target by employing the likelihood ratio 
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where )H( 1xp  and )H( 0xp  represent the likelihood that the features x came from a 
target (hypothesis H1)  and from clutter (hypothesis H0), respectively. 
 
 With regard to modeling the likelihoods )H( 1xp  and )H( 0xp , we will explore a 
parametric approach in which we model these distributions as N-dimensional Gaussian 
distributions, assuming that the feature vectors (extracted from the EMI and 
magnetometer data) are of dimension N. Under this assumption we utilize the available 
training data to estimate the mean value of x under hypotheses H1 and H0. Moreover, the 
training data is utilized to compute the associated NN ×  covariance matrices. 
 
 We will also investigate non-parametric means of performing classification based 
on the feature vectors x, under which we do not require assumptions concerning the 
statistical properties of the data (i.e. we do not have to make the Gaussian assumption). 
We will employ kernel-based algorithms, in which the feature vector x is processed via 
the scalar operator 
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where xm denote the feature vectors from the M training examples, wm are weights, b is an 
offset or bias, and g(x, xm) is a general nonlinear function that quantifies the similarity of 
the feature vector with available training data. The function g(x, xm) is often termed a 
“kernel”, an example of which is the radial basis function (RBF) 
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where mxx−  is a general norm quantifying the “distance” in feature space between x 
and xm.  
 
 It is also important to note that the parametric EMI model summarized in equation 
(1) is appropriate for both time- and frequency-domain induction sensors. Therefore, in 
addition to processing data from frequency-domain systems, such as the GEM-3, we will 
also process available time-domain data provided by the sponsor. For the case of time-
domain sensors, the imaginary resonant frequencies in (1) are transformed into 
exponential decay constants. The other parameters of the model, such as the dipole-
moment strength, have the same meaning in both a time- and frequency-domain 
implementation. From a practical standpoint, however, a time- or frequency-domain 
sensor may be optimal for a given sensing scenario. For example, for large UXO the 
resonant frequencies in (1) may be too low (small) to measure via a frequency-domain 
system, and therefore a time-domain system may be preferable. In a time-domain system 
these low resonant frequencies correspond to a long late-time EMI decay constant. This is 
easily measured via a time-domain system with a long enough time window. By contrast, 
small UXO are better measured via a frequency-domain system, since the late-time decay 
is very fast for such targets (often too fast to be measured via a time-domain system). 
Since we often do not know a priori whether the target is large or small, this suggests 
classification based on fusing time- and frequency-domain EMI data. This will be 
pursued in the proposed research (using data provided by the sponsor). 

 
V. Technology Transfer 

 
The software developed under this program is being transitioned to the US Army Corps 
of Engineers (Vicksburg, MS) 

 




