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Abstract— This paper presents a general method for — AT (— “Position
investigating the unsteady aerodynamics of flapping wings for - > " Mol | e <'4_‘\."\F01'|ﬂ
micro air vehicle application. For this purpose, a dynamically Lr_v m
scaled robotic flapper was designed and fabricated which
can flap the wings in a desired kinematic pattern. A quasi- H
steady aerodynamic model and wing testing methodology Control <7 Kinematies | Aerodynamic
was developed based on unsteady aerodynamic mechanisms. LG ; / Module
This model additionally accounts for the wing twisting. The Design "in
experimental results show a good agreement with published P::EL
data. 24 kinematic patterns were tested and the quasi-steady S atiics
aerodynamic model compares well with the experimental States Module
results. The focus of the present work is on hovering flight, i
however, the methodology is general and can be extended to “Ovientation
slow forward flight in future.
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I. INTRODUCTION

The creation of flapping wing micro air vehicles (FW- Fig. 1. The architecture of FW-MAV Design

MAV) is a challenging problem. Flapping wing flight
offers high maneuverablity and the capability to hover as
witnessed in insects and hummingbirds. These properties In our work, we conduct experiments on flapping wings
make FWMAVs more suitable for micro air vehicle mis- using a robotic flapper. However, our focus is the FWMAV
sions such as reconnaissance and surveillance, special@erodynamics and design. Therefore, we keep the wing
in confined areas. The aerodynamics of flapping wingskinematics to be very general and use a generic insect-like
such as that of insects and hummingbirds, is unsteadyving for testing. We have taken into account the effects of
The flow over the wings is a function of time and this Wing twist along the span, since wings of large insects and
makes unsteady aerodynamics extremely complex. Unlik@ummingbirds show marked twisting compared to small
conventional fixed and rotary W|ng Vehic|esl the f|appinginsect5 such as DrOSOphila. The moments and the location
wing aerodynamics is still a largely unexplored area. ~ Of force on the wing are also determined experimentally
As shown in Fig. 1, the aerodynamic module is funda-Using a six-axis force torque sensor. We also present a
mental to the design process of a FWMAV. The moduleMathematical model of flapping wing aerodynamics which
takes the wing and body kinematics as inputs and give§onstitutes the aerodynamic module.
the aerodynamic forces and torques. These are then usedThe main goal of this paper is to present a method
to compute the rigid body dynamics, navigation and controffor determining the force coefficients to be used in the
algorithms, and to perform design optimization. aerodynamic model. Using this methodology, the coeffi-
Due to the complexity of solving Navier-Stokes equationcients of a number of wing shapes and geometries can
[2] for flow around f|app|ng Wings and possib|e inaccu- be Catalogued analogOUS to NACA airfoil sections. This
racies in the theoretical modeling, we have selected théformation can then be utilized for designing insect-like
experimental method to determine the aerodynamic forceMAV’s or for comparison of aerodynamic characteristics
and moments based on blade element analysis. Exper®f different wing planforms.
mental investigation of flapping wing aerodynamics based The organization of this paper is as follows: Section I
on fruit fly (Drosophila) kinematics has been reporteddescribes the flapping wing kinematics. Section Il presents
[9]. Flow visualization experiments using scaled hawkmotha derivation of the aerodynamic model along with the
wings were performed [7, 8]. These experiments led toassumptions. Section IV outlines the experimental setup.
the discovery of certain unsteady aerodynamic mechanismis Section V, we present a modification to the aerodynamic
that are responsible for high lift in biological flying species. model based on the initial experimental data. Section VI



explains the methodology of determining the coefficients inwherew is the flapping speed in radians/sd&g,, ©,,, ¥,
the aerodynamic model. In Section VII, the experimentalare the flapping amplitudes ar@ ., (o, and(y,, are the
results are compared with published data and in Sectiophase differences.

VIII, we compare the quasi-steady aerodynamic model with
the experimental results. Finally, conclusions are presente%'

in Section IX.

[1. KINEMATICS
A. Wing motion analysis

Terminology
Stroke plane

The plane defined byzx,, ys) axes represents the stroke
plane as shown in Fig. 2. The frante;, ys, zs) is refered
to as thestroke plane frame. The motion of the feather

We consider the left wing of a typical insect. For the axis is not necessarily confined to the stroke plane due to
right wing motion, a similar but different rotation sequence ¢, the elevation or out of stroke plane angle.

is required and will not be considered here. As shown in

Fig. 2, the wing frame(x.,, y.,, 2.,) €an be described by
three succesive rotations with respect to frafue, ys, z5)
attached at the wing base. First, rotation abautxis by
an angleg, next a rotation about the current axis by an
angled and finally rotation about the currept’ axis by
an angley. Therefore, the wing position is given by the
body sequence 3-1-2 rotation and by anglésé, v)). The
Y axis attached to the wing is the feather axis.

(z

Gy )T g BB r e O

(%, Vo Z)

Fig. 2. Figure showing the body sequence 3-1-2 which gives
the three rotation angles (¢, 6, )

Planar flapping

If the out of stroke plane anglé is zero, the motion
is called planar flapping. In this paper, we will consider
planar flapping.

P
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I }.\._ c - = - Y,
e A
Circular path of wing section

Feather/ rotation axis, V. P,

(D) Linear translation
(C) Papping translation 7

base

Fig. 3. Motion terminology: (A) Rotational Motion of a wing
section about the feather axis given byy. (B) Translational
motion of the section about the flapping axis given byy. The
difference between flapping translation and linear translation
is shown in (C) and (D).

Translational motion

Linear translation [11] is the wing motion where the
entire wing moves forward perpendicular to the feather axis
in such a way that the velocity of the base and the tip of the

Wing angles can be a represented by Fourier series givening are the same as shown in Fig. 3(D). Therefore, every

below [10]:

O(t) = do+ Y _ P sin(nwt + (p,),

1)
n=1

0(t) =0, + > _ O sin(nwt + (,), )
n=1

U(t) =1ho + Y Wy sin(nwt + Gy, ), (3)

n=1

section of the wing moves along a straight line path with
the same velocity. A conventional aircraft wing undergoes
linear translation. In flapping translation [11], the wing
tip rotates around the flapping axis fixed at the base as
shown in Fig. 3(C). Therefore, the velocity along the wing
increases linearly from the root to the tip such that a section
of the wing translates along a circular path as shown in Fig.
3(B). Insect wings undergo flapping translation. A section
of helicopter rotor blade undergoes flapping translation
since the section follows a circular path. However, unlike
insect flapping motion, it can trace a complete circle. For
a wing section located at a distaneefrom the flapping



axis, the translational spedd(r,t)| is given by ¢r as
shown in Fig 4(C) and the translational acceleration alon¢
the circular path ispr.

(A)

Flap amplitude

Feather axas

For a single frequency motion, the flap amplitude is an ' Meopies
important parameter of the wing kinematics, denotediby
as shown in Fig. 3(B). The total stroke amplitude is labelec
as®, which is twice the flap amplitud®. ®, is the mean
stroke amplitude. Thenid — stroke is that position of the
wing where¢ = @, as shown in Fig. 3(B). Whed, # 0, ()
the motion is calletisymetric flapping. When®y = 0,
the motion is refered to agymmetric flapping.

i i B)

Rotational motion ® (©
Wing rotation refers to the rotation of the wing about Fig. 4. (A) Wing geometry of a typical insect. (B) shows the

the feather axis through an angleas shown in Fig. 3(A) definition of angle of attack at a wing section. (C) The angle

d ai by Ed. (3). Elappi ina tvoicall tat tOf attack remains constant during the translational motion of
and given by Eq. (3). Flapping wing typically rotates & a section. If translational speed|ar(r,t)| = ¢r is also held

the extremes of the stroke. When the wing goes fromonstant, then the flow over the section is steady-state.
upstroke to downstroke, the rotation is callgtonation.

Similarly, rotation between downstroke and upstroke is
called supination. The rotational speed and rotational Ill. A ERODYNAMIC MODEL
acceleration are> and ), respectively. A. Quasi-steady state analysis

If the flow velocity at a location on the wing does not
change with respect to time, it is referred to as steady state
The rotational amplitude is denoted by. As shown flow. In order to maintain steady state flow over an airfoil
in Fig 3(A), ¥, is the mean rotational amplitude. For section, it is required that the section be placed in a flow
symmetric rotation, ¥q = 0, otherwise the motion is of constant velocityU, and at a fixed orientation, i.e, the
refered to asisymetric rotation. angle of attacky with respect to time be fixed in an inertial

frame. The steady-state aerodynamic force is given by

Rotational amplitude

Angle of attack

The angle of attack is the angle between the chord at a F =Cr(a)l/2 p Uy?A. (6)
locationr from the wing base and the relative flow velocity

iz (r, 1). Mathematically is given by where F' is the aerodynamic force such as lift or drdg,,

is the relative flow velocity,A is the wing area ang is
the air densityCr(«) is the coefficient of the aerodynamic
a = *tan(22) | —r/2<a<n/2 (4) force. It is a function of the angle of atta@kpf the_ wing.

Uy The steady state force equation for flapping wing can be
derived using the blade element method (BEM). The force
on a strip of wing at a distancefrom the flapping axis is
given by

wherew, andw,, are the components afr(r,t) along the
normal# and axialt axes fixed to the airfoil section shown
in Fig. 4(B). The+ in Eq. (4) takes the sign of;.

Mean angle of attackd) dF = Cp(a)1/2 p |ap(r, t)|*c(r)dr, (7)

We define the mean angle of attackas the angle of whereCr(«) is the force ceofficient of an element of the
attack of a section located at a distanegR along the wing which is a function of the local angle of attaekand
span and having the chord length equal to the mean chord(r)dr is the area of the section as shown in Fig. 4(A). Eq.
¢ [3]. 72 is the radius of gyration of the wing area non- (7) can be integrated for the entire wing as follows
dimensionalized by the wing lengtR [3]. Therefore,& is

iven by Eq. (4 R
gen by Ea. 4 F=1/2p [ Cota) lartr0Pelridr,  @©
0

The force coefficient can also be defined for the entire wing
based on the mean angle of attagk Therefore, Eq. (8)
can be written as

Un (7:2Ra t)

o = + arcta
“ retan (ut(fQR,t)

) , —m/2<a<mn/2 (5)



al and the CFD-modeled forces on the virtual fruitfly wing
R (Sun and Tang, 2002 [16]).
F=Cr(@)1/2p / g (r, t)[Pe(r)dr. 9) Based on a study of quasi-unsteady aerodynamic models
0 presented by Dickinson [12], Delaurier [1] and Walker [13],
In the hope of finding approximate analytical solutions towe modify the quasi-steady model given by Eg. (8) as
the flapping wing aerodynamics, simplified models basedollows
on quasi-steady state assumption have been developed [15].
According to quasi-steady state assumption, the motion . S e
kinematics during flapping cycle is replaced by a series Fr = Fiteady(9) + Funsteady(®: ¥, 6, ), (11)

of static positions having instanta_neous yelocity and anglgynere Fr is the total instantaneous force on the wing,
of attack [3]. The force is determined using Eq. (7) or (8) ., is the steady state or translational force given by
which is not a function of wing rotation and acceleration. g4 (9) and Fynsieaay IS the unsteady force which is a
It is only a function of the translational velocityr(r, ) function of wing rotation and acceleration. In this paper,
of the wing. Therefore, we refer to quasi-steady stat&ye will refer to this method as quasi-unsteady since the
force as the translational force. In this method, any timeyg| force Fr is implicitly dependent on time. The current
dependence of the aerodynamic force arises from the timg,c;s is to determine the mathematical fOrmBf,srcady-
dependence of the kinematics but not that of the fluid

flow itself. Ellington [3] used quasi-steady analysis to C. Unsteady effects

investigate insect flight and determined that the analysis eading edge vortex (LEV) Force

underestimated the lift required to support an insect during

: : o When a thin wing translates at a high angle of attack
hovering and concluded that a substantial revision of the .
. ) close to the stall, the flow breaks up at the leading edge and
guasi-steady method is necessary. He further proposed that, . .
. : . -~ " rolls into a leading edge vortex (LEV). The presence of this
the quasi-steady state model must include wing rotation in . . : .
o i . vortex increases the circulation and, thereby, the lift force
addition to flapping translation.

significantly. In conventional airplane wings, this effect
B. Quasi-unsteady state analysis occurs momentarily before stall. However, in insects such

. . o _ as hawkmoths, the flapping translation motion stabilizes the
Since Ellington’s investigation [3], several researchers . ; . : .
. . o vortex and it remains attached to the wing during the entire

have provided more data to support the insufficiency of ) .
: . stroke [2], [7]. LEV was shown to remains attached even in

the quasi-steady model (Ennos, 1989a; Zanker and Gotz, . .. . :
1990; Dudley, 1991). These developments have spurred t rebtatlng wings at high angles of attack [5], [6]. Therefore,
' Y. ' P b hb?sed on this study, we conclude that LEV force is not a

search for specific unsteady mechanisms and mathematic . . . : .
; . . : Unction of wing rotation and acceleration and it can be
models to explain the aerodynamic forces on insect wings, . .
o . : N modeled by steady-state Eq. (9) which can be written as
Dickinson [9],[12] used experimental investigation to de-

termine the aerodynamics of hovering fruitfly. According to

L ; ; R
Dickinson [12], the total instantaneous aerodynamic force . C (a1 /2 / _ Delr)dr = CiFy. (12
on the wing can be represented as a sum of four force ™ ' 1(a)1/2p 0 [ar(r, O e(r)dr = CLFy. - (12)

components given below; Equation (12) can be thought of as a product of a
functionF; =1/2 p fOR |ir (7, t)|*c(r)dr which captures
Finst = Fu -+ Frrans + Frot + Fue, (10) the physics of Fieaqy = Fleo and a coefficientC; =

C1(@) that adjusts the magnitude. Sinég.,, is generated
where F;,.; is the instantaneous aerodynamic forde,  during the translational phase of wing motion, it can be
is the force due to virtual mass effect aifd,.,,s iS the refered to as translational force.
instantaneous translational forde,,; is the rotational force )
and F,. is the force due to wake capture. Dickinson Rotational Force
did not provide a mathematical form for wake capture If the wing rotates about the feather axis with an angular
effect. However, wake capture effect was identified fromrate ), a rotational circulation force is generated [12]. In
the experimental data. Delaurier [1] presented a theoreticahis paper, we use the mathematical form of rotational
model of flapping wings based on circulation theory of force given by Walker [13]. It says that rotational force
lift. In Delaurier's model, the wake capture effect is alsocan be modeled by selecting the flow velocity,(r, t)|
modeled in addition to rotational and virtual mass forces.in Eq. (12) at a locationi' along the chord as shown
Walker [13] also presented a semi-empirical model ofin the Fig. 5(A). The total flow velocityu(r,t) can be
flapping wings with an alternate mathematical form forwritten as a vector sum of translational velocity-(r, ¢)
the rotational force. Walker applied this model to the and rotational velocityiz(r,t). The magnitude ofip(r, t)
fruitfly wing and found good comparison with both the is dependent om, andd; which are percentage distances
experimental results of fruitfly experiment by Dickinson et along the chorde(r). The parameterl; is an unknown



constant whiled,, is known from wing geometry and can of air shows up as a virtual mass force (see Fig. 5(B)) and

vary along the span. Therefoig = d,(r). The coefficient
of rotational force Cy appears as the non-dimensional

parameterd; — d,(r) in the expression fofa(r, t)| which

can be adjusted to scale the rotational force. Therefore,

CQ(T) = dl - dO(T). (13)

can be written as

(15)

dFvirtual mass — dm ’[Ln(T, t)a

where 4,,(r, t) is the rate of change of normal velocity
component at the mid-chord location in the wing frame and
dm is the mass of air enclosed in a thin cylinder of width

Note that if the rotational axis lies ahead of the leadingdr and a diameter equal to the charét a distance from

edge theni,(r) should be taken as negative. Therefaie

the flappping axis. The mass of air jsc?/4. Therefore,

can vary along the span depending upon the wing geometrizqg. (15) can be written as

unlessd,(r) = 0. The combined LEV and rotational force

is given as

R
Flevirot = C11/2 p / |a(r, t)|*e(r)dr, (14)
0

where the coefficient’; appears in the expression for
|u(r, t)|. If the wing has only translation, i.e} is zero, then
Eq. (14) simplifies to Eq. (12) and we get the translational

force only. In Fig. 5(A), note that the angle of attaecldue

to combined rotational and translational velocity is greater,

than ar due to translational velocity alone.

(A) .
Feather axis 7
Translation
» ity (r,1)
"‘f AE = W) u(ri)

up(r,y)

Rotation

“wing

Fig. 5. (A) The combined rotational and translational/LEV

effect on a wing section located at a distance ‘r' from the
flapping axis. ur(r,t) is the translational velocity, ar(r,t)

is the rotational velocity and ur,t) is the vector sum of
translational and rotational velocities. (B) Virtual mass force
acting at a section located at a distance ‘r’ from the flapping
axis. Here, u,(r,t) is the component of acceleration normal
to the wing surface in the wing frame and ‘dm’ is the mass
of air assumed to be contained in a cylinder of diameterc(r)

and height dr.

Virtual Mass force

As the wing accelerates, it moves along with it a mass

dFvirtual mass — %’an(ra t)C(T)QdT- (16)
On integrating Eq. (16) from root to the tip of the wing,
we get the total force given by

pr [T
Firtual mass = 03 4 / ’[Ln(T, t)C(T)2dT = C3F3 (17)
0

The coefficient of virtual mas€¢’; is included in order to
adjust the magnitude while the functiof; captures the
physics of virtual mass effect.

D. Total Force

The total aerodynamic force including translational
(LEV effect), rotational and virtual mass effects can be
written as

p R
Tgcli/ \a(r, t)Pe(r)dr +

0

R
Cs pw/ Up (r, t)e(r)?dr. (18)
0

Here, the LEV and rotational forces are combined as
the first term in the above equatiod!; and C5 are the
coefficients of LEV and virtual mass force respectively.
The coefficient of rotational force(’s, appears implicitly

in a(r,t).

E. Assumptions in the model

« Superposition of steady and unsteady aerodynamic
effects holds.

« LEV force can be modeled by the steady-state aero-
dynamic equation.

« Chordwise-force due to skin friction is ignored. This
is based on the results of revolving wing experiments
[5].[6].

« The total forceFr acts normal to the chord through-
out the flapping cycle, i.e, we assume thatFi,
F»(C1C3) andCs F5 act normal to the chord at every
section of the wing.

of air, assumed to be contained in a cylinder with diameter « The total forceF’r acts at the mid-chord location at

equal to the chord [1], [3]. The acceleration of this mass

every section of the wing.



IV. EXPERIMENTAL INVESTIGATION

A. Flow similarity
In order to determine the coefficients;, C2 and Cs
in Eg. (18), we conducted experimental investigation. The
basis of experimental investigation is flow similarity which Multi axis force torque sensor
ensures that the coefficients are similar for the actual an
the experimental wing. In order to achieve flow similarity,
the reduced frequency paramet&r along with Reynolds
numberRe and wing geometry should match for the actual
and experimental wing. The wing size, flapping speed an(
fluid medium can be different. Therefore,

C1 = Cy = f(Re, K, geometry) (29)

It is shown in [17] that the virtual mass force dependS (0] Membrane made of cellophane .
Reynolds number and wing geometry

Fig. 6. Figure shows the robotic flapper designed and
fabricated at University of Delaware. It is driven by three

independent servo motors and can give 3-DOF flapping wing
motion. A six-axis force torque sensor (Nano 17) from ATI
industrial automation is mounted at the base of the wing. The
aerodynamic forces and torques along with wing position can
be seen real time with the help of this apparatus.

Cs = f(Re, geometry) (20)

The flow Reynolds numbeRe and reduced frequencik
for the case of hovering flapping flight are given by [4, 10]

_ B8ORS T
- vA ~20A°
wherev is the kinematic viscosity of the fluid mediun®

is the wing length,® is the flapping amplitudef is the
flapping frequency in cycles/sec ardis the wing aspect
ratio. Reduced frequenci is a measure of unsteadiness

Re

(21)
the directions {4, ¥4, 74) respectively. The rotation matrix
between the wing fram¢g; and sensor framg, is given

of the flow. -1 0 0
4 — —
B. Robotic Flapper s = 8 01 (1] ’ (23)
In order to conduct experimental investigation, a robotic
flapper was designed and fabricated at the University of and
Delaware. It is shown in Fig. 6. The flapper is driven
by three independent servo motors designed to give three —SsSy  —SsCy  Cy
degrees-of-freedom flapping motion, i@, 0, . Ry=RiR3R; = CyS, CuCy Sy |. (29

Flapper Kinematics —Cy Sy 0

In our experiments, we keep the out of plane motion The lift, drag force is given by
# = 0. This simplifies the kinematics but still retains the

features of wing motion. The flapper coordinate system 0 F,
is shown in Fig. 7(A). For the case of hovering flight, Lift | = R} F, |, (25)
the body of FWMAV is assumed to be stationary with Drag F.

respect to the earth. The body franfig(%o, go, 20) is also _ . o
the inertial frame. The rotation matrices between the bodyvhere Lift and Drag are alongy; and z; direction
frame and framef, (%1, 51, 71) and betweenf; and wing ~ respectively. Similarly, the vertical and horizontal force is

frame f3(2's, 3, 73) are given by: given by.
Cs 0 Sy 0 0 1 0 (s

Ry={8 0 ~Cs | Ri=|Cy —5 0 By | =Ry | By | (26)
010 Sy Cy 0 F, F.

where F}, is the horizontal force and”, is the vertical
The frame f4(24, 94, 74) is the force/torque sensor force along the directiong, and Z, respectively. Due to
frame. The F,, F,, F’, are the sensor read forces alongsymmetry, we expect the force along thg direction to



If we substitutela(r, t)|> and., (1, t) given by Egs. (29)

35” i and (30) into Eqg. (18), we get the total force as
300 Trailing edge
= 0 v T~
gmg ________ B \\\
9 I S \ Fr = C\F| 4+ F5(Cy,Cs) 4 C3F3, (33)
(A) Vertical Force 5 100 E E‘ o )
20 Lift 5 o8 where
N 0 Rotation or feather axis Leading edge
Horizontal force 50 ; ; ; :
™ gy Y w 500 P o R 2
‘Wing Length (mm) Fl = 5 ¢ T C(T)d?" (34)
0
Drag " (B)
A .. R 2
1_[ —. Fy = £[2C1Coyppcos v [ re(r) dr +
/:y . R
S C2? / cr)dr]  (35)
0

Fig. 7. (A) Figure shows the sensor co-ordinate framef,

and the postive direction of force and moment components B R L R

(Fs, Fy, F., M., M,, M.). The direction of lift, drag, vertical ~ F3 = ZF[—¢cosy [ re(r)?dr + Posing [ c(r)?dr

and horizontal force are also identified. (B) Wing Planform R

used in the experiment. _0_51;}/ c(r)3dr] (36)
0

cancel by the two opposite wings. The angular velocity of Er€C1E1 is the steady-state or LEV forcéisF is the
win Witr): respect toptphe earth fgra'me is i\?en b y virtual mass force. The functioR: captures the rotational
9 P 9 y force and it is an implicit function of the coefficients;

and Cs. The integrals are a function of wing geometry.
w3/0 = Pz + 1PZ3. (27)

Therefore, velocity of air at the poini”on the wing in
frame f is given by

C. Wing Design

Size and shapeThe size of the wing can be determined
from Eq. (21) based on Reynolds number. Reynolds num-
. . . ber of hummingbird (ampornis clemenciae) is 14,300
u(r,t) = —¢rsinay — (¢rcosy + Cac(r)v)ys + with a wing length of 85 mm, aspect ratio of 8.2, total

CQC(T)(jﬁsimp@, (28)  stroke amplitude of 151 deg and a flapping frequency of
o ) ) 23.3 cycles/sec. A flapping wing MAV capable of hovering
For the estimation of total aerodynamic force given by Ed.fight will be similar to a hummingbird in size and therefore
(18), the velocity and normal acceleration components argne anticipatedRe range for FWMAV design is between
required. For the robotic flapper, these are given by 12,000-25,000. Based on thiBe range, we selected a
generic insect-like wing shape for experiment shown in
Fig. 7(B). It has the following scaled dimensions:

« Wing lengthR = 0.58m,
o Aspect ratioA = 5.7677,
. _ i i 0 o 75 = 0.5628 (dimensionless).
nr ) (9rcos = ggsiny +0.5¢(r) ), (30) « Scaled flapping frequency = 0.5 cycles/sec
where the velocity of air in theZy direction is ignored |pq wing geometry is given in Table I. Each element has
because it is in the spanwise direction and does Nof,nstant width. i.elr = 0.05 meters.
contribute to the force. For estimation of given by Eg.
(5), the normal and tangential velocity components in theWing fabrication
1y and 2, directions respectively are given by

[a(r, )] = (drsingy)” + (drcos b + Coc(r)h)’,  (29)

The wing structure is made of carbon rods representing
. ) the veins in a typical insect wing or feathers in humming-
un(fo R, t) = —(¢FaRcos ) + Cacr)), 1) bird's wing. Carbon rods radiate from the triangular wing
base made of balsa block. A cellophane membrane was
attached to the structure using cellophane tape. The entire
ug (PR, t) = —pryRsin1p. (32) wing assembly weighs just 18 grams.
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WING GEOMETRYUSED IN THEEXPERIMENT

INERTIA LOADS
T =
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4

Wing B

section  spanwise location r'(m), chord c(r)(m), do,(r)% £
i 0.105 0.270 0 02 L
2 0155 0287 0 100 200 300 400 a00 600 70.2' N
3 0.205 0.284 0 mwesnm
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D. Measurement of Force and Moment

We used ATI Industrial Automation multi-axis force-
torque sensor which can measure three foregsFy, F,
and three moment componenid,, M,, M.. The sensor
can measure a maximum af12 N in the F, and F,
directions and+17 N in the F, direction. The maximum
moment range in all directions 120 N-mm. The reso-
lution for all three force components is 1/1280 N and for

alllthreg mtomegt comppnefnts Ittrlws tI/ZtSG N-mm.d . Iansz components of the force besides thg component
h order to reduce noise trom the data, we used a simpig s gp oy in Fig. 8. From observations of the wing during
lO_W pass dlgltal_fllter [14]. It is given by the following the experiment, we concluded that the wing deforms due to
difference equation the aerodynamic loads. Both spanwise bending and twist
were present which are discussed separately below.

X H |
T T L 00 200 30 40 500 6D
Time (sec x 100) Time (sec x 100)

Fig. 8. Force Data in sensor frame f4 of wing A and wing B
(before and after filtering). The unit of force is ‘N’ (Newtons)
and the unit of moment is ‘N-mm’

y(n) =a y(n —1) + (1 —a) z(n), (37)  Spanwise Bending

where z(n) represents the discrete-time observed signal Initially, the F, data appeared simply as noise as shown
with n = 0,1,2..N at the sample pointsy(n) is the in Fig. 8. However, after processing the data for one
smoothed output ang(—1) = 0. The parameter. is a complete cycle, we observed that there was a definite
weighting factor(0 < a < 1) selected between 0.7 and aerodynamic force in the, direction. Fig. 9 shows the
0.8, depending on the noise in the data. aerodynamic force’, along the sensot, direction which
is along the leading edge or feather axis of the wing (see
Fig. 7(A)). If we examine the inertia loads from wing B,
The original force and torque data along with filtered e see that there is a positive force. This is most likely
data, in the sensor coordinate franfig for one particular  que to the centrifugal force trying to pull the wing out from
kinematic pattern is shown in Fig. 8. This data includesthe sensor. The results from wing A show a slight negative
the forces and moments due to gravity as well as inertiag, force. We conclude that the possible explaination for
In order to filter out the aerodynamic force, we used ange aerodynamic force in the negati¥® direction is wing
identical wing but without the membrane (wing B). The pending as shown in Fig. 10(A). The aerodynamic force
wing with the membrane is refered to as wing A. The acts normal to every element of the wing and it is greatest
inertia and gravity loads from wing B were subtracted from¢jgse to the wing tip. The resultant aerodynamic force
wing A to get the aerodynamic force data. Fr bends the wing and creates a negatfe component
Fig. 9 shows the aerodynamic and inertia loads fromyhich seems to overcome the centrifugal force in this
wing A, the inertia loads from wing B and the aerodynamic particular case. This can be further validated by the fact
force in the sensof, F, and F, directions for one stroke. that theF, component of aerodynamic force was found to

A ten degree polynomial fit was done on the aerodynamigye symmetric between the upstroke and downstroke.
data to further smooth out the noise.

We know from revolving wing experiments [5], [6] that SPanwise twist
at high angles of attack (° and up), the aerodynamic force  Fig. 9 shows the aerodynamic force in the negative
is roughly normal to the wing surface and this was thedirection. This was found during both the upstroke and the
assumption made in our aerodynamic model. This implieglownstroke. The negative, force is most likely due to a
that the sensor should only detect tli§ component of twist along the wing length with the tip chord at an angle of
force. However, initial results revealed the presencé’of roughly 10 to 20 degrees with respect to the root chord. As

V. INITIAL OBSERVATIONS
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Fig. 9. Aerodynamic + inertia force of wing A, inertia force Fig. 10. (A) Shows how the spanwise bending creates a

for wing B and filtered aerodynamic force for wing A during —F, component of the aerodynamic force which acts in—2z4
the upstroke. The unit of force is Newtons. A ten-degree direction in the sensor frame. The centrifugal force acts in
polynomial fit is done on the aerodynamic data. the sensor+2, direction. (B) shows how the spanwise twist

8i; at the i'" element contributes to the —F, component of
aerodynamic force in the sensor frame.

shown in Fig. 10(B), thé*" element of the wing undergoes
twisting by an angle§y;. The aerodynamic forcgF. still
remains normal to thé" element but it contributes a force
in the negativeF, direction with respect to the sensor
frame.

axis and at a distance af;¢ along the chord from the
feather axis. Therefore,

B =+Kp [un(faR, 1), (39)

A. Modifications to the aerodynamic model The normal velocity is squared to give the same effect as

In order to better match the experimental results, theaerodynamic force. Here{; is a coefficient to adjust the
aerodynamic model should involve structural deflections tamagnitude of3 variation in a cycle due to normal velocity.
match with the physical wing. As a first approximation, we In the current experiment the magnitude of the twist is
ignore theF, component by assuming infinite rigidity in visually matched with the experiment by varying the value
bending. We model twist by assuming a linear variation ofof K. The + takes the sign ofu, (72 R, t) to give the
twist from root to the tip of the wing. The twisky; at the  correct direction of twist. The wing is considered rigid for

it" section is given by computation ofu,, (7o R, t).
Having an approximation of the aerodynamic twist, the
L total aerodynamic force is integrated vectorially from the
r; — 0.08 : _ A
Wi =Bo—5 08 (38)  root to the tip of the wing. Considering th&" element of

the wing located at a distancg from the flapping axis,
where the unit ofr;, and R is meters an®.08 is the the total force can be written as follows:
distance in meters between the root chord and the flapping
axis andg is the magnitude of twist proportional to the - i 9
aerodynamic moment about the feather axis. The inertial dFy = Clgm(”’t” cri)dri +
moment is ignored due to low flapping frequency of 0.5 Hz. Cgﬂ’lln(ﬂ t)e(rs)2dr. (40)
The aerodynamic moment is assumed to be proportional to 4 ’
the normal velocity which is computed at a point locatedBased on the assumption that the total force remains normal
at a distance of = 7, R along the span from the flapping to the chord of any'” element, we can transform this force



into the sensor frame as follows: VI. DETERMINATION OF COEFFICIENTS

The sensor measures the total aerodynamic fdrge
dF! 0 given by Eq. (47). The functiong’, F> and F3 in Eq.
dF; =R. | dF% , (41)  (33) capture the physics of the particular unsteady effect
dF! 0 and the coefficients simply adjust the magnitude. Once the
magnitudes ofC,, C> and Cs are adjusted at any point
whereR?, is the rotation matrix between each blade elementiuring the flapping cycle, these functions are expected to be
and the sensor frame given as robust enough to match the experimental data throughout
cycle. We determined the coefficients as follows.

sensor ithelement

. Copi —Ssu; 0 A. Determination ofC
st = SMH CMH 0]. (42) . . .
0 0 1 In order to determine”, we select the flapping kine-

matics such that the functions, and F5 become zero at
Here, dv; is the angle of twist of the'” element with Some point in the flapping cycle but; remains non-zero.
respect to the root chord. The moments in the sensor framBhis meansp # 0, while ¢ = ¢ = <) = 0. The following

can be computed as follows: simple kinematic pattern was selected using Egs. (1)-(3).
dM} = —rdF! ,  dMi =rdF., (43) ¢(t) = @sin(wt) . ¢o=(g, =0, n=1  (48)
AM: = o — dy(r:))e(r:)dE, (44) M)=0 » B=6.=0 (49)

whered,(r;) is the non-dimensional distance between the

rotation axis and the wing leading edge as shown in Fig.(t) = —Wcos(wt) , ¥, =0, (y, = E’ n=1 (50)

5(A). The non-dimenstional distance = 0.5 gives the

mid-chord location ofdF} at every section based on our  This pattern gives maximum values gfand ¢) at the

assumption (see Section Ill. E). mid-stroke position where) = 0. The term involvings)
The forces and moments can be summed in the sensim F; gives the rotational virtual mass effect which is

frame in order to get the total force and moment compo-small in comparison to the translational virtual mass effect

nents and therefore we ignore it in subsequent analysis. In other
words, F> and F5 both become close to zero and only the
N N N translational forcefj., = C1F; is non-zero at the mid-
F = Z dF!, F,= Z dF'. F. — Z dF’ =0 (45) Stroke. Therefore, the sensor measufgs= Fi., and
x x Yo z z
= i i=1
F Fley
L ! at ¢ =0, (51)

N N N OB 172 62 [Fr2e(r)dr
M, =Y dMi M,=Y dMi, M.=)Y dM: (46) _ / p_¢ Jo"r2etr)

=1 =1 =1 where Fr is determined from force sensor componehis
and Fy,. The integralfoR r2c(r)dr turns out to be simply
one half of the second moment of ar@a [3]. This gives
a simple form for the determination af4, i.e,

o 2 2 Fev
Fr=\/F.2+ F>. (47) Cp=—tv (52)

1/4p¢282

Since theF, component of sensor force is ignored, the
resultant forcel’r in the sensor frame can be written as

The inclusion of moderate spanwise twist will have
insignificant effect on the magnitude 6f; [5]. We further
assume that it has no effect on coefficiertts and Cs. For the safe operation of robotic flapper, the flapping
Therefore, based on this assumption, the sensor oufput, frequency was limited to 0.5 Hz. This together with the
could still be used to find the coefficients using Eq. (33)wing geometric parameters, gives the Reynolds number Re
for rigid wing by ignoring the twist and Eq. (40) and Eq. and reduced frequency K as a function of flap amplitude
(45) can then be used to determine the force components
by taking into account the twist. In the computation of 154507 0.2795 x 180 1

kinematics and angle of attack, the twigp; is ignored. €= 120 X ) =T % (53)

Procedure




TABLE Il

The plot of C; againstx is shown in Fig. 11 for the three
TESTING SCHEME

different stroke amplitudes. This shows that the coefficient

Flap Amplitude® (deg). Re K of translational force varies linearly with. Furthermore,
ég %383 832?7 the flap amplitude and consequenti¢ has little effect on
745 20,000 0.2095 the slope(dC;/da). From Fig 11, we can approximate;

as linearly varing witha given by

TABLE Il 7

ANGLE OF ATTACK AT MID -STROKE, (¢ = 00) Ci(a) = ;54, (54)
s.no.  Rotational Amplitud@ (deg). & (deg) wherea is in radians.

x  90.0 0.0

1 75.0 15.0 B. Determination ofCy

2 64.0 26.0 L

3 524 37.6 Cy and C; occur implicitly in F,. Therefore, the best
4 412 48.8 way to determine’; is to adjust it untill the model matches
g ?88 (;(1]8 with the experimental results. Furthermof&, = d, —d,(r)

7 80 82.0 varies along th_e spgndo(r) is known from the wing
8 0.0 90.0 geometry and given in Table I. The value 6% is based

on d;. We found thatd; = 0.75 gives best results. In
computing Fy, the coefficientC; is considered a known

) _ parameter. Therefor&,; is determined befor€’;.
Three different values of flap amplitudé were chosen

(46, 63, and 74.5 degrees) as shown in Table Il. Each flafr- Determination ofC’s

amplitude gives a different value of Reynolds numbiar If we modify the kinematic pattern given by Eqgs. (48)-

and reduced frequency. This conforms with different (50) by taking¥ = 0° in Eq. (50), thenF, becomes zero

flap amplitudes of flapping used by biological species.  for the entire cycle whileF; becomes zero at the ends of
For each flap amplitude, the rotational amplituleand  the stroke, i.e, ath = ¢mq. and ¢ = 0. However, F3 is

eight correpondingy from 0 to 90 degrees were chosen at maximum there since is maximum. Therefore, the total

the mid-stroke position, as shown in Table IIl. In faat, force, Fr, measured by the sensor at the ends of the stroke

varies between -90 and 90 degrees during the cycle, givings due to virtual mass effect.

two values of force at the same, differing only in sign.

We averaged the two forces and determined an average Fr  Fuirtual mass

C; corresponding tax at the mid-stroke position. We did e at ¢ = dmaz-  (55)

not conduct th? e_xperlment at = 0 deg an_d assumed The value ofC5 was found to vary between 0.5 and 1.0

C1(0) = 0. This is because normal force is zero on ¢or all 24 Kinematic patterns

symmetric flat plate at zero angle of attack. The chordwise '

friction force is ignored in our model. In all, 24 kinematic VIl. COMPARISON OF EXPERIMENTAL RESULTS

patterns were tested. Most of the published data on flapping wings is for

flapping translational motion of the wing, i.e; without

| «D-46 = D-63 D= 745] rotation. The only way to compare it with our experimental
4 data is to compare it at the mid-stroke of flapping cycle
35 A where wing rotation becomes zero instantaneously, for all
3 7 the kinematic patterns given by Eq. (48-50). Secondly, the
L published data is in the form of either coefficients of lift
25 and drag or coefficients of vertical and horizontal force.
G 2 Therefore, in order to compare our experimental data, we
15 / determined the coefficients of lift and drag at the mid-stroke
’ //’3 position using the lift and drag forces.
1 :
o = - A. Lift, drag, vertical and horizontal force
’ L The aerodynamic force componer(tg,, F,, F.) which
04—

correspond to «y, 4, Z4) directions in the sensor frame
7 f1, were transformed into lift, drag, vertical and horizontal
(X degrees components for the entire cycle using Egs. (25) and (26).

As shown in Fig. 12, the lift and vertical components
Fig. 11. Coefficient of LEV/translational force C1 Vs & are positive for both the upstroke and downstroke while

0 15 26 38 49 60 71 82 90
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Fig. 12. Lift, Drag, horizontal and vertical force components Fig. 13. Lift and drag polar plot for three stroke amplitudes,

for ® = 46° and ¥ = 52.4° in the sensor frame f4 i.e, ® = 46°,63°,74.5°. These coefficients are computed at
the mid-stroke position during the flapping cycle similar to
the determination of C;

the drag and vertical force components cancel out during

the cycle. This is expected since the kinematic pattern given

by Eq. (48-50) is symmetric between the upstroke andVIII. C OMPARISON OF EXPERIMENTAL RESULTS WITH

downstroke. Therefore, a net vertical force is generated AERODYNAMIC MODEL

corresponding to a hovering flight. A net horizontal and The coefficient”;, C> andC; will now be used in the

drag component is produced if the kinematic pattern is nogerodynamic model and comparison will be made with the
symmetric. experimental data. Note thaf; and C'; were computed

from the experimental data buf; was tuned to fit the
experimental results. In order to compare the aerodynamic

The coefficient of lift and drag are computed from the model with the experiment, we will compare two kinematic
lift and drag force plots at the mid-stroke position using patterns. From Table Ill, we select two patterns having
Eq. (52). rotational amplitude oft = 75° and¥ = 0° (entries 1 and

8 in Table Ill). In both cases, the flap amplitudelis= 46°.
Lift Drag These represent the extreme cases. The experiment was

- 1/4 p ¢25, ’ Cp = 1/4 p $25, (56) not conducted atr = 90°. If the model compares well
with the experimental data for these two extreme cases,
we will have more confidence that the comparison will be
good for the patterns in between. The kinematic patterns
for these two cases are shown in Fig. 14, where arrows
indicate instantaneous direction of motion.

B. Coefficients of lift and drag force

Cr,

Eq. (52) is applicable sinc€, andCp are the decom-
position of Cy. The polar plot ofC;, and Cp for the three
flap amplitudes® = 46, 63, 74.5 deg) is shown in Fig. 13.
The polar plot shows high values 6f;, andCp compared
to linearly translating wings [5] and compares well with
the published data Sane [11], Usherwood and Ellington [5]A. Comparison of kinematics

[6]. The only major difference can be seen at the maximum |, Fig. 15, we compare the flap angieand rotational
value of C'p in Fig. 13 where the plot does not go to zero. gngle ¢ with the experimental data from the encoder.
This is because we tested a wing which could also twistrhe kinematic pattern is given by Eq. (48)-(50). The
under the aerodynamic loads. Therefore, at the maximurgomplete cycle takes 2 seconds at flapping frequency of
angle of attack, i.e90° when the coefficient of drag is g5 cycles/sec. Note that the maximum valueyof= ¥
maximum (close to 3.5), we get added lift due 0 spanwisgyccyrs at the mid-stroke (at time = 50 and 150 millisecs)
twist. The polar plot also show that the coefficients doyith a corresponding minimum angle of attack during the

not vary with flapping amplitudes. However, for a given entjre cycle. The comparison éfands) is good throughout
flapping frequency, large stroke amplitudes generate greatgpe cycle.

lift due to the fact that the wings sweep a larger area with _ )

higher translational velocity. Therefore, we conclude thatB- Comparison of twisf)

large stroke amplitude is vital for generating higher vertical Fig. 15 also shows the variation of twist) at the tip
force during hovering flight. section during the cycle modeled by Eqgs. (38) and (39).
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Fig. 14. (A) This kinematic pattern has flapping and rotational

amplitudes of & = 46° and ¥ = 74.9° respectively. The
arrows indicates instantaneous direction of motion of a wing
section. At mid-stroke, v = 0, the section is undergoing
flapping translation. (B) This kinematic pattern has flapping

and rotational amplitudes of ® = 46° and ¥ = 0° respec-
tively. Section is undergoing translational motion only. Figure
also shows roughly the location of maximum twistdy.mq.. as
observed during the experiment.

mid-stroke

®)

The model predicts maximum twisfy,, ., at the mid-

stroke position (time = 50, 150 millisecs) for pattern (B).
This location is also shown in Fig. 14(B). For pattern (A),
0maz OCCUrs when the wing passes through the mid-stroke

position and roughly close to the end of the stroke as showi "

in Fig 15. This location is roughly shown in Fig 14(A).

This is becausév is directly proportional to the normal

velocity according to Eq. (38) and (39) which turns out to
be the greatest when the wing undergoes both rotatione
and translational motion near the end of the stroke. Note
that Eq. (38) and (39) give an approximate representation ¢
the actual wing twist. The amplitude of twist was matched
visually with the physical wing through trial and error by

varying K. During the actual experiment, we did notice
the pattern oféy) at the wing tip similar to Fig. 15 with

C. Comparison off, component of aerodynamic force

Fig. 16 shows thé’, component of aerodynamic force in
the sensor frame for the two kinematic patterns. Plots (A)
and (B) show the force data for the patterns having flapping
and rotational amplitudes @b = 46° and¥ = 74.9° while
(C) and (D) represent the pattern having amplitude® of
46° and ¥ = 0°. The F,, component was computed using
Eq. (45). Figs 16(A) and (C) are the plots of individual
aerodynamic mechanism&(Fy;, F», C3F3) which are
components of the total force transformed in the serfspr
direction for half cycle. Figs 16(B) and (D) shows how the
individual aerodynamic mechanisms contribute to the total
force and match very well with the experimental results.
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Fig. 16. Comparison of F,, component of total aerodynamic
force Fr = C1F1 + F»(C1,C2) + C3Fs. (A) and (B) shows

the maximum twist occuring near the end of the stroke forthe comparison for the pattern having amplitudes ® = 46°,

pattern (A) and at the mid-stroke position for pattern (B).
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Fig. 15. Comparison of kinematic patterns, (E)=Experiment,
(M)= Model. Pattern (A) & = 46°, ¥ = 74.9° and Pattern
(B) ® = 46°, ¥ = 0° show a good match with the model.
Plot also shows the twistds) at the tip section computed using
Egs. (38) and (39)

¥ =74.9°, (C) and (D) shows the comparison for the pattern
having amplitudes & = 46°, ¥ = 0°.

For the patterns in Figs 16(A) and (B), the rotational
force F, dominates as far as magnitude is concerned. This
shows that the quasi-steady aerodynamic force given by
C1Fy, is inadequate for modeling flapping wing aerody-
namics when the rotation is present. Furthermore rotational
and virtual mass forcé, and Cs F;3 respectively are seen
to be zero at the mid-stroke position while the translational
forceC1 F is zero at the ends. This is because the functions
F, and F5 are zero whileF is not zero at the mid-stroke
(¢ = 0°).

For the pattern shown in (C) and (D), the rotational
force is zero throughout the cycle singe = 0 and the
wing undergoes flapping translation only. Therefore, we
see that the trasnlational for¢e F;, dominates throughout
the cycle except at the ends of the stroke where it is zero.
The virtual mass forc€’'s F5 is maximum at the ends of the
stroke and adjusts the total force at the ends as shown in
Fig. 16(D). This kinematic pattern was specially selected
to study the virtual mass effect since this is the only effect
present at the ends of the stroke.
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W 20 a0 40 s 8 7 s 90 i at each sectiond F'r acts at the mid-chord location. (A) shows
ftime, sec x 100) the results for the kinematic pattern having amplitudes ® =
46°, ¥ = 74.9°, and (B) shows the results for the kinematic
Fig. 17. Comparison of F, component of total aerodynamic  pattern having amplitudes ¢ = 46°, ¥ = 0°.
force Fr. (A) shows the comparison for the pattern having
amplitudes & = 46°, ¥ = 74.9°, (B) shows the comparison
for the pattern having amplitudes ® = 46°, ¥ = 0°

-0.04

span. The magnitude df, has already been verified from
comparison of the force plots. Similarly, the accuracy
of M, component idicates that our assumption of mid-
chord location of forcel F at every section given by the
The F,, component of aerodynamic force is computedparameter ¢ = 0.5 in Eq. (44) is valid. The comparison
using Eq. (45) and compared with the experimental data agf 17, component is approximate due to the fact that it
shown in Fig. 17 for the two kinematic patterns. The matchis dependent orF, component of force which compared
with the experimental data is less accurate in the case Qfpproximately with the experiment as discussed earlier.
F, component. This is probably due to the approximateThis behavior of moments was found to be consistent in
match of twistds) with the actual wing in terms of both a|| 24 kinematic patterns.
the spanwise distribution as well as variation during the
cycle. The model assumes linear twist from the root toF. Comparison of the location of resultant aerodynamic
the tip of the wing. The actual twist distribution could be force

different. It should be noted that the apprOXimation of twist The location of the resultant aerodynamic force on the
does not affect thé”, component because its magnitude iswing for one stroke is also compared with the experiment
more than three times that of th€, component and the and shown in Fig. 19. The distanadchord-wise direction)
error is not visible in ther, plot. We found this typical and the distancé (spanwise direction) give the location
behavior in all the 24 kinematic patterns. of the resultant aerodynamic force. This is another way
to test our assumption that the total fordé at every
section acts at the mid-chord location, ice= 0.5. a and
The sensor measures the aerodynamic moments as Wgllyere calculated using the values of force and moment at

as the aerodynamic force. Therefore, we can compare thge |ocation of force/torque sensor for both the model and
experimentally obtained moments with the moments comexperiment using the following equations.

puted from the aerodynamic model. In Fig. 18, the three
plots in column (A) and (B) show the three components M M
of moments {/,, M,, M,) belonging to the two selected a= FZ ., b= I L
kinematic patterns. v v
The moments are computed using Eq. (46). Tiigand  Fig. 19 shows good comparison of aerodynamic and exper-
M. components show a good match with the experimentaimental values of force locatiori@@ndb) for one kinematic
data. The accuracy oM, component indicates that the pattern. Fig. 19 also indicates that the location of force does
model accurately distributes th&, component along the not vary during the stroke except near the very ends.

D. Comparison ofF,, component of aerodynamic force

E. Comparison of aerodynamic moments

(57)
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Fig. 19. Location of resultant aerodynamic force on the wing
given by the distancea and b for the kinematic pattern (& =
46° and ¥ = 64°). Note ‘Exp’ stands for experimental and
‘Mdl' stands for aerodynamic model.)

IX. CONCLUSION (1]

This paper presents a methodology for the experimenta[F]
determination of unsteady aerodynamic force coefficients
based on the principle of dynamic similarity. These coef-
ficients are used in the quasi-unsteady aerodynamic modegj)
which additionally takes into account the wing twist due to
aerodynamic loads. The key conclusions drawn from thid®!

work are given below

1)

2)

3)

4)

(6]
We found a good match of,, F., M, and M, 7]
components and an approximate match iof and

M, components of resultant force and moment at the
base of the wing for all the 24 kinematic patterns. (8]
The coefficient of translational forc€'; is deter-
mined as a function of angle of attack at one point

during the flap cycle. Similarly, the coefficiert (9]

5) We also found that the effects of virtual mass force
are small compared to translational and rotational
effects at theRe range of 12,000 to 20,000. In our
model, we have assumed th@gF3 is virtual mass
effect. However, it might be wake capture effect
because both act in a similar manner. This needs to
be verified using PIV measurements.

Moderate spanwise twist has very little effect on the
magnitude ofC; and total force Frr, however, it
changes the force components in the sensor frame
significantly. This implies significant change in the
direction of resultant force vector. For wings with
large spanwise twist, the procedure should be mod-
ified by decomposing’; into horizontal C;, and
Vertical C, coefficient of force. However, we have
not pursued this method.

6)
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