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Abstract— This paper presents a general method for
investigating the unsteady aerodynamics of flapping wings for
micro air vehicle application. For this purpose, a dynamically
scaled robotic flapper was designed and fabricated which
can flap the wings in a desired kinematic pattern. A quasi-
steady aerodynamic model and wing testing methodology
was developed based on unsteady aerodynamic mechanisms.
This model additionally accounts for the wing twisting. The
experimental results show a good agreement with published
data. 24 kinematic patterns were tested and the quasi-steady
aerodynamic model compares well with the experimental
results. The focus of the present work is on hovering flight,
however, the methodology is general and can be extended to
slow forward flight in future.

I. I NTRODUCTION

The creation of flapping wing micro air vehicles (FW-
MAV) is a challenging problem. Flapping wing flight
offers high maneuverablity and the capability to hover as
witnessed in insects and hummingbirds. These properties
make FWMAVs more suitable for micro air vehicle mis-
sions such as reconnaissance and surveillance, specially,
in confined areas. The aerodynamics of flapping wings,
such as that of insects and hummingbirds, is unsteady.
The flow over the wings is a function of time and this
makes unsteady aerodynamics extremely complex. Unlike
conventional fixed and rotary wing vehicles, the flapping
wing aerodynamics is still a largely unexplored area.

As shown in Fig. 1, the aerodynamic module is funda-
mental to the design process of a FWMAV. The module
takes the wing and body kinematics as inputs and gives
the aerodynamic forces and torques. These are then used
to compute the rigid body dynamics, navigation and control
algorithms, and to perform design optimization.

Due to the complexity of solving Navier-Stokes equation
[2] for flow around flapping wings and possible inaccu-
racies in the theoretical modeling, we have selected the
experimental method to determine the aerodynamic forces
and moments based on blade element analysis. Experi-
mental investigation of flapping wing aerodynamics based
on fruit fly (Drosophila) kinematics has been reported
[9]. Flow visualization experiments using scaled hawkmoth
wings were performed [7, 8]. These experiments led to
the discovery of certain unsteady aerodynamic mechanisms
that are responsible for high lift in biological flying species.

Fig. 1. The architecture of FW-MAV Design

In our work, we conduct experiments on flapping wings
using a robotic flapper. However, our focus is the FWMAV
aerodynamics and design. Therefore, we keep the wing
kinematics to be very general and use a generic insect-like
wing for testing. We have taken into account the effects of
wing twist along the span, since wings of large insects and
hummingbirds show marked twisting compared to small
insects such as Drosophila. The moments and the location
of force on the wing are also determined experimentally
using a six-axis force torque sensor. We also present a
mathematical model of flapping wing aerodynamics which
constitutes the aerodynamic module.

The main goal of this paper is to present a method
for determining the force coefficients to be used in the
aerodynamic model. Using this methodology, the coeffi-
cients of a number of wing shapes and geometries can
be catalogued analogous to NACA airfoil sections. This
information can then be utilized for designing insect-like
MAV’s or for comparison of aerodynamic characteristics
of different wing planforms.

The organization of this paper is as follows: Section II
describes the flapping wing kinematics. Section III presents
a derivation of the aerodynamic model along with the
assumptions. Section IV outlines the experimental setup.
In Section V, we present a modification to the aerodynamic
model based on the initial experimental data. Section VI



explains the methodology of determining the coefficients in
the aerodynamic model. In Section VII, the experimental
results are compared with published data and in Section
VIII, we compare the quasi-steady aerodynamic model with
the experimental results. Finally, conclusions are presented
in Section IX.

II. K INEMATICS

A. Wing motion analysis

We consider the left wing of a typical insect. For the
right wing motion, a similar but different rotation sequence
is required and will not be considered here. As shown in
Fig. 2, the wing frame(xw, yw, zw) can be described by
three succesive rotations with respect to frame(xs, ys, zs)
attached at the wing base. First, rotation aboutzs axis by
an angleφ, next a rotation about the currentx′ axis by an
angleθ and finally rotation about the currenty′′ axis by
an angleψ. Therefore, the wing position is given by the
body sequence 3-1-2 rotation and by angles(φ, θ, ψ). The
yw axis attached to the wing is the feather axis.

Fig. 2. Figure showing the body sequence 3-1-2 which gives
the three rotation angles (φ, θ, ψ)

Wing angles can be a represented by Fourier series given
below [10]:

φ(t) = φo +
∞∑

n=1

Φn sin(nωt+ ζφn), (1)

θ(t) = θo +
∞∑

n=1

Θn sin(nωt + ζθn ), (2)

ψ(t) = ψo +
∞∑

n=1

Ψn sin(nωt+ ζψn), (3)

whereω is the flapping speed in radians/sec,Φn, Θn, Ψn

are the flapping amplitudes andζφn , ζθn and ζψn are the
phase differences.

B. Terminology

Stroke plane

The plane defined by(xs, ys) axes represents the stroke
plane as shown in Fig. 2. The frame(xs, ys, zs) is refered
to as thestroke plane frame. The motion of the feather
axis is not necessarily confined to the stroke plane due to
θ, the elevation or out of stroke plane angle.

Planar flapping

If the out of stroke plane angleθ is zero, the motion
is called planar flapping. In this paper, we will consider
planar flapping.

Fig. 3. Motion terminology: (A) Rotational Motion of a wing
section about the feather axis given byψ. (B) Translational
motion of the section about the flapping axis given byφ. The
difference between flapping translation and linear translation
is shown in (C) and (D).

Translational motion

Linear translation [11] is the wing motion where the
entire wing moves forward perpendicular to the feather axis
in such a way that the velocity of the base and the tip of the
wing are the same as shown in Fig. 3(D). Therefore, every
section of the wing moves along a straight line path with
the same velocity. A conventional aircraft wing undergoes
linear translation. In flapping translation [11], the wing
tip rotates around the flapping axis fixed at the base as
shown in Fig. 3(C). Therefore, the velocity along the wing
increases linearly from the root to the tip such that a section
of the wing translates along a circular path as shown in Fig.
3(B). Insect wings undergo flapping translation. A section
of helicopter rotor blade undergoes flapping translation
since the section follows a circular path. However, unlike
insect flapping motion, it can trace a complete circle. For
a wing section located at a distancer from the flapping



axis, the translational speed|ūT (r, t)| is given by φ̇r as
shown in Fig 4(C) and the translational acceleration along
the circular path is̈φr.

Flap amplitude

For a single frequency motion, the flap amplitude is an
important parameter of the wing kinematics, denoted byΦ
as shown in Fig. 3(B). The total stroke amplitude is labeled
asΦ̄, which is twice the flap amplitudeΦ. Φ0 is the mean
stroke amplitude. Themid− stroke is that position of the
wing whereφ = Φ0 as shown in Fig. 3(B). WhenΦ0 6= 0,
the motion is calledasymetric flapping. WhenΦ0 = 0,
the motion is refered to assymmetric flapping.

Rotational motion

Wing rotation refers to the rotation of the wing about
the feather axis through an angleψ as shown in Fig. 3(A)
and given by Eq. (3). Flapping wing typically rotates at
the extremes of the stroke. When the wing goes from
upstroke to downstroke, the rotation is calledpronation.
Similarly, rotation between downstroke and upstroke is
called supination. The rotational speed and rotational
acceleration arėψ and ψ̈, respectively.

Rotational amplitude

The rotational amplitude is denoted byΨ. As shown
in Fig 3(A), Ψ0 is the mean rotational amplitude. For
symmetric rotation, Ψ0 = 0, otherwise the motion is
refered to asasymetric rotation.

Angle of attack

The angle of attack is the angle between the chord at a
locationr from the wing base and the relative flow velocity
ūT (r, t). Mathematically,α is given by

α = ±tan(
un
ut

) , − π/2 < α < π/2, (4)

whereut andun are the components of̄uT (r, t) along the
normaln̂ and axialt̂ axes fixed to the airfoil section shown
in Fig. 4(B). The± in Eq. (4) takes the sign ofut.

Mean angle of attack (̄α)

We define the mean angle of attack̄α as the angle of
attack of a section located at a distancer̂2R along the
span and having the chord length equal to the mean chord
c̄ [3]. r̂2 is the radius of gyration of the wing area non-
dimensionalized by the wing lengthR [3]. Therefore,ᾱ is
given by Eq. (4)

ᾱ = ± arctan
(
un(r̂2R, t)
ut(r̂2R, t)

)
, − π/2 < ᾱ < π/2 (5)

Fig. 4. (A) Wing geometry of a typical insect. (B) shows the
definition of angle of attack at a wing section. (C) The angle
of attack remains constant during the translational motion of
a section. If translational speed|ūT (r, t)| = φ̇r is also held
constant, then the flow over the section is steady-state.

III. A ERODYNAMIC MODEL

A. Quasi-steady state analysis

If the flow velocity at a location on the wing does not
change with respect to time, it is referred to as steady state
flow. In order to maintain steady state flow over an airfoil
section, it is required that the section be placed in a flow
of constant velocityU∞ and at a fixed orientation, i.e, the
angle of attackα with respect to time be fixed in an inertial
frame. The steady-state aerodynamic force is given by

F = CF (α)1/2 ρ U∞
2A. (6)

whereF is the aerodynamic force such as lift or drag,U∞
is the relative flow velocity,A is the wing area andρ is
the air density.CF (α) is the coefficient of the aerodynamic
force. It is a function of the angle of attackα of the wing.

The steady state force equation for flapping wing can be
derived using the blade element method (BEM). The force
on a strip of wing at a distancer from the flapping axis is
given by

dF = CF (α)1/2 ρ |ūT (r, t)|2c(r)dr, (7)

whereCF (α) is the force ceofficient of an element of the
wing which is a function of the local angle of attackα and
c(r)dr is the area of the section as shown in Fig. 4(A). Eq.
(7) can be integrated for the entire wing as follows

F = 1/2 ρ
∫ R

0

CF (α) |ūT (r, t)|2c(r)dr, (8)

The force coefficient can also be defined for the entire wing
based on the mean angle of attackᾱ. Therefore, Eq. (8)
can be written as



F = CF (ᾱ)1/2 ρ
∫ R

0

|ūT (r, t)|2c(r)dr. (9)

In the hope of finding approximate analytical solutions to
the flapping wing aerodynamics, simplified models based
on quasi-steady state assumption have been developed [15].
According to quasi-steady state assumption, the motion
kinematics during flapping cycle is replaced by a series
of static positions having instantaneous velocity and angle
of attack [3]. The force is determined using Eq. (7) or (8)
which is not a function of wing rotation and acceleration.
It is only a function of the translational velocitȳuT (r, t)
of the wing. Therefore, we refer to quasi-steady state
force as the translational force. In this method, any time
dependence of the aerodynamic force arises from the time
dependence of the kinematics but not that of the fluid
flow itself. Ellington [3] used quasi-steady analysis to
investigate insect flight and determined that the analysis
underestimated the lift required to support an insect during
hovering and concluded that a substantial revision of the
quasi-steady method is necessary. He further proposed that
the quasi-steady state model must include wing rotation in
addition to flapping translation.

B. Quasi-unsteady state analysis

Since Ellington’s investigation [3], several researchers
have provided more data to support the insufficiency of
the quasi-steady model (Ennos, 1989a; Zanker and Gotz,
1990; Dudley, 1991). These developments have spurred the
search for specific unsteady mechanisms and mathematical
models to explain the aerodynamic forces on insect wings.
Dickinson [9],[12] used experimental investigation to de-
termine the aerodynamics of hovering fruitfly. According to
Dickinson [12], the total instantaneous aerodynamic force
on the wing can be represented as a sum of four force
components given below;

Finst = Fa + Ftrans + Frot + Fwc, (10)

whereFinst is the instantaneous aerodynamic force,Fa
is the force due to virtual mass effect andFtrans is the
instantaneous translational force,Frot is the rotational force
and Fwc is the force due to wake capture. Dickinson
did not provide a mathematical form for wake capture
effect. However, wake capture effect was identified from
the experimental data. Delaurier [1] presented a theoretical
model of flapping wings based on circulation theory of
lift. In Delaurier’s model, the wake capture effect is also
modeled in addition to rotational and virtual mass forces.
Walker [13] also presented a semi-empirical model of
flapping wings with an alternate mathematical form for
the rotational force. Walker applied this model to the
fruitfly wing and found good comparison with both the
experimental results of fruitfly experiment by Dickinson et

al and the CFD-modeled forces on the virtual fruitfly wing
(Sun and Tang, 2002 [16]).

Based on a study of quasi-unsteady aerodynamic models
presented by Dickinson [12], Delaurier [1] and Walker [13],
we modify the quasi-steady model given by Eq. (8) as
follows

FT = Fsteady(φ̇) + Funsteady(φ̇, ψ̇, φ̈, ψ̈), (11)

where FT is the total instantaneous force on the wing,
Fsteady is the steady state or translational force given by
Eq. (9) andFunsteady is the unsteady force which is a
function of wing rotation and acceleration. In this paper,
we will refer to this method as quasi-unsteady since the
total forceFT is implicitly dependent on time. The current
focus is to determine the mathematical form ofFunsteady.

C. Unsteady effects

Leading edge vortex (LEV) Force

When a thin wing translates at a high angle of attack
close to the stall, the flow breaks up at the leading edge and
rolls into a leading edge vortex (LEV). The presence of this
vortex increases the circulation and, thereby, the lift force
significantly. In conventional airplane wings, this effect
occurs momentarily before stall. However, in insects such
as hawkmoths, the flapping translation motion stabilizes the
vortex and it remains attached to the wing during the entire
stroke [2], [7]. LEV was shown to remains attached even in
rotating wings at high angles of attack [5], [6]. Therefore,
based on this study, we conclude that LEV force is not a
function of wing rotation and acceleration and it can be
modeled by steady-state Eq. (9) which can be written as

Flev = C1(ᾱ)1/2ρ
∫ R

0

|ūT (r, t)|2c(r)dr = C1F1. (12)

Equation (12) can be thought of as a product of a
functionF1 = 1/2 ρ

∫R
0

|ūT (r, t)|2c(r)dr which captures
the physics ofFsteady = Flev and a coefficientC1 =
C1(ᾱ) that adjusts the magnitude. SinceFlev is generated
during the translational phase of wing motion, it can be
refered to as translational force.

Rotational Force

If the wing rotates about the feather axis with an angular
rate ψ̇, a rotational circulation force is generated [12]. In
this paper, we use the mathematical form of rotational
force given by Walker [13]. It says that rotational force
can be modeled by selecting the flow velocity|ūT (r, t)|
in Eq. (12) at a location ‘i’ along the chord as shown
in the Fig. 5(A). The total flow velocitȳu(r, t) can be
written as a vector sum of translational velocitȳuT (r, t)
and rotational velocitȳuR(r, t). The magnitude of̄uR(r, t)
is dependent ondo anddi which are percentage distances
along the chordc(r). The parameterdi is an unknown



constant whiledo is known from wing geometry and can
vary along the span. Thereforedo = do(r). The coefficient
of rotational forceC2 appears as the non-dimensional
parameterdi − do(r) in the expression for|ū(r, t)| which
can be adjusted to scale the rotational force. Therefore,

C2(r) = di − do(r). (13)

Note that if the rotational axis lies ahead of the leading
edge thendo(r) should be taken as negative. ThereforeC2

can vary along the span depending upon the wing geometry
unlessdo(r) = 0. The combined LEV and rotational force
is given as

Flev+rot = C11/2 ρ
∫ R

0

|ū(r, t)|2c(r)dr, (14)

where the coefficientC2 appears in the expression for
|ū(r, t)|. If the wing has only translation, i.e,̇ψ is zero, then
Eq. (14) simplifies to Eq. (12) and we get the translational
force only. In Fig. 5(A), note that the angle of attackα due
to combined rotational and translational velocity is greater
thanαT due to translational velocity alone.

Fig. 5. (A) The combined rotational and translational/LEV
effect on a wing section located at a distance ‘r’ from the
flapping axis. ūT (r, t) is the translational velocity, ūR(r, t)
is the rotational velocity and ū(r, t) is the vector sum of
translational and rotational velocities. (B) Virtual mass force
acting at a section located at a distance ‘r’ from the flapping
axis. Here, u̇n(r, t) is the component of acceleration normal
to the wing surface in the wing frame and ‘dm’ is the mass
of air assumed to be contained in a cylinder of diameterc(r)
and height dr.

Virtual Mass force

As the wing accelerates, it moves along with it a mass
of air, assumed to be contained in a cylinder with diameter
equal to the chord [1], [3]. The acceleration of this mass

of air shows up as a virtual mass force (see Fig. 5(B)) and
can be written as

dFvirtual mass = dm u̇n(r, t), (15)

where u̇n(r, t) is the rate of change of normal velocity
component at the mid-chord location in the wing frame and
dm is the mass of air enclosed in a thin cylinder of width
dr and a diameter equal to the chordc at a distancer from
the flappping axis. The mass of air isρπc2/4. Therefore,
Eq. (15) can be written as

dFvirtual mass =
ρπ

4
u̇n(r, t)c(r)2dr. (16)

On integrating Eq. (16) from root to the tip of the wing,
we get the total force given by

Fvirtual mass = C3
ρπ

4

∫ R

0

u̇n(r, t)c(r)2dr = C3F3 (17)

The coefficient of virtual massC3 is included in order to
adjust the magnitude while the functionF3 captures the
physics of virtual mass effect.

D. Total Force

The total aerodynamic force including translational
(LEV effect), rotational and virtual mass effects can be
written as

FT ∼= C1
ρ

2

∫ R

0

|ū(r, t)|2c(r)dr+

C3
ρπ

4

∫ R

0

u̇n(r, t)c(r)2dr. (18)

Here, the LEV and rotational forces are combined as
the first term in the above equation.C1 and C3 are the
coefficients of LEV and virtual mass force respectively.
The coefficient of rotational force,C2, appears implicitly
in ū(r, t).

E. Assumptions in the model

• Superposition of steady and unsteady aerodynamic
effects holds.

• LEV force can be modeled by the steady-state aero-
dynamic equation.

• Chordwise-force due to skin friction is ignored. This
is based on the results of revolving wing experiments
[5],[6].

• The total forceFT acts normal to the chord through-
out the flapping cycle, i.e, we assume thatC1F1,
F2(C1C2) andC3F3 act normal to the chord at every
section of the wing.

• The total forceFT acts at the mid-chord location at
every section of the wing.



IV. EXPERIMENTAL INVESTIGATION

A. Flow similarity

In order to determine the coefficientsC1, C2 and C3

in Eq. (18), we conducted experimental investigation. The
basis of experimental investigation is flow similarity which
ensures that the coefficients are similar for the actual and
the experimental wing. In order to achieve flow similarity,
the reduced frequency parameterK along with Reynolds
numberRe and wing geometry should match for the actual
and experimental wing. The wing size, flapping speed and
fluid medium can be different. Therefore,

C1 = C2 = f(Re,K, geometry) (19)

It is shown in [17] that the virtual mass force depends on
Reynolds number and wing geometry

C3 = f(Re, geometry) (20)

The flow Reynolds numberRe and reduced frequencyK
for the case of hovering flapping flight are given by [4, 10]

Re =
8ΦR2f
νΛ

, K =
π

2ΦΛ
. (21)

whereν is the kinematic viscosity of the fluid medium,R
is the wing length,Φ is the flapping amplitude,f is the
flapping frequency in cycles/sec andΛ is the wing aspect
ratio. Reduced frequencyK is a measure of unsteadiness
of the flow.

B. Robotic Flapper

In order to conduct experimental investigation, a robotic
flapper was designed and fabricated at the University of
Delaware. It is shown in Fig. 6. The flapper is driven
by three independent servo motors designed to give three
degrees-of-freedom flapping motion, i.e,φ, θ, ψ.

Flapper Kinematics

In our experiments, we keep the out of plane motion
θ = 0. This simplifies the kinematics but still retains the
features of wing motion. The flapper coordinate system
is shown in Fig. 7(A). For the case of hovering flight,
the body of FWMAV is assumed to be stationary with
respect to the earth. The body framefo(x̂0, ŷ0, ẑ0) is also
the inertial frame. The rotation matrices between the body
frame and framef1(x̂1, ŷ1, ẑ1) and betweenf1 and wing
framef3(x̂3, ŷ3, ẑ3) are given by:

R1
0 =



Cφ 0 Sφ
Sφ 0 −Cφ
0 1 0


 , R3

1 =




0 0 1
Cψ −Sψ 0
Sψ Cψ 0




(22)

The frame f4(x̂4, ŷ4, ẑ4) is the force/torque sensor
frame. TheFx, Fy, Fz are the sensor read forces along

Fig. 6. Figure shows the robotic flapper designed and
fabricated at University of Delaware. It is driven by three
independent servo motors and can give 3-DOF flapping wing
motion. A six-axis force torque sensor (Nano 17) from ATI
industrial automation is mounted at the base of the wing. The
aerodynamic forces and torques along with wing position can
be seen real time with the help of this apparatus.

the directions (̂x4, ŷ4, ẑ4) respectively. The rotation matrix
between the wing framef3 and sensor framef4 is given
by

R4
3 =




−1 0 0
0 −1 0
0 0 1


 , (23)

and

R4
0 = R1

0R
3
1R

4
3 =




−SφSψ −SφCψ Cφ
CφSψ CφCψ Sφ
−Cψ Sψ 0


 . (24)

The lift, drag force is given by




0
Lift
Drag


 = R4

1



Fx
Fy
Fz


 , (25)

where Lift and Drag are along ŷ1 and ẑ1 direction
respectively. Similarly, the vertical and horizontal force is
given by.




0
Fh
Fv


 = R4

0



Fx
Fy
Fz


 . (26)

where Fh is the horizontal force andFv is the vertical
force along the directionŝyo and ẑo respectively. Due to
symmetry, we expect the force along thêx0 direction to



Fig. 7. (A) Figure shows the sensor co-ordinate framef4
and the postive direction of force and moment components
(Fx, Fy, Fz,Mx,My,Mz). The direction of lift, drag, vertical
and horizontal force are also identified. (B) Wing Planform
used in the experiment.

cancel by the two opposite wings. The angular velocity of
wing with respect to the earth frame is given by

ω3/0 = φ̇ẑo + ψ̇ẑ3. (27)

Therefore, velocity of air at the point ’i’ on the wing in
framef4 is given by

ū(r, t) = −φ̇r sinψx̂4 − (φ̇r cosψ +C2c(r)ψ̇)ŷ4 +
C2c(r)φ̇ sinψẑ4. (28)

For the estimation of total aerodynamic force given by Eq.
(18), the velocity and normal acceleration components are
required. For the robotic flapper, these are given by

|ū(r, t)|2 = (φ̇r sinψ)
2

+ (φ̇r cosψ + C2c(r)ψ̇)
2
, (29)

u̇n(r, t) = −(φ̈r cosψ − ψ̇φ̇ sinψ + 0.5c(r) ψ̈), (30)

where the velocity of air in theẑ4 direction is ignored
because it is in the spanwise direction and does not
contribute to the force. For estimation of̄α, given by Eq.
(5), the normal and tangential velocity components in the
ŷ4 and x̂4 directions respectively are given by

un(r̂2R, t) = −(φ̇r̂2R cosψ + C2c̄ψ̇), (31)

ut(r̂2R, t) = −φ̇r̂2R sinψ. (32)

If we substitute|ū(r, t)|2 andu̇n(r, t) given by Eqs. (29)
and (30) into Eq. (18), we get the total force as

FT = C1F1 + F2(C1, C2) + C3F3, (33)

where

F1 =
ρ

2
φ̇2

∫ R

0

r2c(r)dr (34)

F2 = ρ
2
[2C1C2ψ̇φ̇ cosψ

∫ R
0
rc(r)2dr+

C2
2ψ̇

2

∫ R

0

c(r)3dr] (35)

F3 = ρπ
4 [−φ̈ cosψ

∫ R
0
rc(r)2dr + ψ̇φ̇ sinψ

∫ R
0
c(r)2dr

−0.5ψ̈
∫ R

0

c(r)3dr] (36)

whereC1F1 is the steady-state or LEV force,C3F3 is the
virtual mass force. The functionF2 captures the rotational
force and it is an implicit function of the coefficientsC1

andC2. The integrals are a function of wing geometry.

C. Wing Design

Size and shape:The size of the wing can be determined
from Eq. (21) based on Reynolds number. Reynolds num-
ber of hummingbird (Lampornis clemenciae) is 14,300
with a wing length of 85 mm, aspect ratio of 8.2, total
stroke amplitude of 151 deg and a flapping frequency of
23.3 cycles/sec. A flapping wing MAV capable of hovering
flight will be similar to a hummingbird in size and therefore
the anticipatedRe range for FWMAV design is between
12,000-25,000. Based on thisRe range, we selected a
generic insect-like wing shape for experiment shown in
Fig. 7(B). It has the following scaled dimensions:

• Wing lengthR = 0.58m,
• Aspect ratioΛ = 5.7677,
• r̂2 = 0.5628 (dimensionless).
• Scaled flapping frequency = 0.5 cycles/sec

The wing geometry is given in Table I. Each element has
constant width, i.edr = 0.05 meters.

Wing fabrication

The wing structure is made of carbon rods representing
the veins in a typical insect wing or feathers in humming-
bird’s wing. Carbon rods radiate from the triangular wing
base made of balsa block. A cellophane membrane was
attached to the structure using cellophane tape. The entire
wing assembly weighs just 18 grams.



TABLE I

WING GEOMETRY USED IN THE EXPERIMENT

section spanwise location ‘r’(m), chord c(r)(m), do(r)%
1 0.105 0.270 0
2 0.155 0.287 0
3 0.205 0.284 0
4 0.255 0.271 0
5 0.305 0.261 0
6 0.355 0.254 0
7 0.405 0.236 0
8 0.455 0.212 0
9 0.505 0.180 −0.12
10 0.555 0.115 −0.27

D. Measurement of Force and Moment

We used ATI Industrial Automation multi-axis force-
torque sensor which can measure three forcesFx, Fy, Fz
and three moment componentsMx,My,Mz. The sensor
can measure a maximum of±12 N in the Fx and Fy
directions and±17 N in the Fz direction. The maximum
moment range in all directions is±120 N-mm. The reso-
lution for all three force components is 1/1280 N and for
all three moment components it is 1/256 N-mm.

In order to reduce noise from the data, we used a simple
low pass digital filter [14]. It is given by the following
difference equation

y(n) = a y(n − 1) + (1 − a) x(n), (37)

where x(n) represents the discrete-time observed signal
with n = 0, 1, 2..N at the sample points.y(n) is the
smoothed output andy(−1) = 0. The parametera is a
weighting factor(0 < a < 1) selected between 0.7 and
0.8, depending on the noise in the data.

V. I NITIAL OBSERVATIONS

The original force and torque data along with filtered
data, in the sensor coordinate framef4, for one particular
kinematic pattern is shown in Fig. 8. This data includes
the forces and moments due to gravity as well as inertia.
In order to filter out the aerodynamic force, we used an
identical wing but without the membrane (wing B). The
wing with the membrane is refered to as wing A. The
inertia and gravity loads from wing B were subtracted from
wing A to get the aerodynamic force data.

Fig. 9 shows the aerodynamic and inertia loads from
wing A, the inertia loads from wing B and the aerodynamic
force in the sensorFx, Fy andFz directions for one stroke.
A ten degree polynomial fit was done on the aerodynamic
data to further smooth out the noise.

We know from revolving wing experiments [5], [6] that
at high angles of attack (10o and up), the aerodynamic force
is roughly normal to the wing surface and this was the
assumption made in our aerodynamic model. This implies
that the sensor should only detect theFy component of
force. However, initial results revealed the presence ofFx

Fig. 8. Force Data in sensor framef4 of wing A and wing B
(before and after filtering). The unit of force is ‘N’ (Newtons)
and the unit of moment is ‘N-mm’

andFz components of the force besides theFy component
as shown in Fig. 8. From observations of the wing during
the experiment, we concluded that the wing deforms due to
the aerodynamic loads. Both spanwise bending and twist
were present which are discussed separately below.

Spanwise Bending

Initially, the Fz data appeared simply as noise as shown
in Fig. 8. However, after processing the data for one
complete cycle, we observed that there was a definite
aerodynamic force in theFz direction. Fig. 9 shows the
aerodynamic forceFz along the sensor̂z4 direction which
is along the leading edge or feather axis of the wing (see
Fig. 7(A)). If we examine the inertia loads from wing B,
we see that there is a positiveFz force. This is most likely
due to the centrifugal force trying to pull the wing out from
the sensor. The results from wing A show a slight negative
Fz force. We conclude that the possible explaination for
the aerodynamic force in the negativeFz direction is wing
bending as shown in Fig. 10(A). The aerodynamic force
acts normal to every element of the wing and it is greatest
close to the wing tip. The resultant aerodynamic force
FT bends the wing and creates a negativeFz component
which seems to overcome the centrifugal force in this
particular case. This can be further validated by the fact
that theFz component of aerodynamic force was found to
be symmetric between the upstroke and downstroke.

Spanwise twist

Fig. 9 shows the aerodynamic force in the negativeFx
direction. This was found during both the upstroke and the
downstroke. The negativeFx force is most likely due to a
twist along the wing length with the tip chord at an angle of
roughly 10 to 20 degrees with respect to the root chord. As



Fig. 9. Aerodynamic + inertia force of wing A, inertia force
for wing B and filtered aerodynamic force for wing A during
the upstroke. The unit of force is Newtons. A ten-degree
polynomial fit is done on the aerodynamic data.

shown in Fig. 10(B), theith element of the wing undergoes
twisting by an angleδψi. The aerodynamic forcedF iT still
remains normal to theith element but it contributes a force
in the negativeFx direction with respect to the sensor
frame.

A. Modifications to the aerodynamic model

In order to better match the experimental results, the
aerodynamic model should involve structural deflections to
match with the physical wing. As a first approximation, we
ignore theFz component by assuming infinite rigidity in
bending. We model twist by assuming a linear variation of
twist from root to the tip of the wing. The twistδψi at the
ith section is given by

δψi = β
ri − 0.08
R− 0.08

, (38)

where the unit ofri and R is meters and0.08 is the
distance in meters between the root chord and the flapping
axis andβ is the magnitude of twist proportional to the
aerodynamic moment about the feather axis. The inertial
moment is ignored due to low flapping frequency of 0.5 Hz.
The aerodynamic moment is assumed to be proportional to
the normal velocity which is computed at a point located
at a distance ofr = r̂2R along the span from the flapping

Fig. 10. (A) Shows how the spanwise bending creates a
−Fz component of the aerodynamic force which acts in−ẑ4
direction in the sensor frame. The centrifugal force acts in
the sensor+ẑ4 direction. (B) shows how the spanwise twist
δψi at the ith element contributes to the−Fx component of
aerodynamic force in the sensor frame.

axis and at a distance ofC2c̄ along the chord from the
feather axis. Therefore,

β = ±Kβ [un(r̂2R, t)]
2
. (39)

The normal velocity is squared to give the same effect as
aerodynamic force. Here,Kβ is a coefficient to adjust the
magnitude ofβ variation in a cycle due to normal velocity.
In the current experiment the magnitude of the twist is
visually matched with the experiment by varying the value
of Kβ. The ± takes the sign ofun(r̂2R, t) to give the
correct direction of twist. The wing is considered rigid for
computation ofun(r̂2R, t).

Having an approximation of the aerodynamic twist, the
total aerodynamic force is integrated vectorially from the
root to the tip of the wing. Considering theith element of
the wing located at a distanceri from the flapping axis,
the total force can be written as follows:

dF iT
∼= C1

ρ

2
|ū(ri, t)|2c(ri)dri +

C3
ρπ

4
u̇n(ri, t)c(ri)2dri. (40)

Based on the assumption that the total force remains normal
to the chord of anyith element, we can transform this force



into the sensor frame as follows:



dF ix
dF iy
dF iz



sensor

= Ris




0
dF iT
0



ithelement

, (41)

whereRis is the rotation matrix between each blade element
and the sensor frame given as

Ris =



Cδψi −Sδψi 0
Sδψi Cδψi 0

0 0 1


 . (42)

Here, δψi is the angle of twist of theith element with
respect to the root chord. The moments in the sensor frame
can be computed as follows:

dM i
x = −ridF iy , dM i

y = ridF
i
x, (43)

dM i
z = [a− do(ri)]c(ri)dF iT , (44)

wheredo(ri) is the non-dimensional distance between the
rotation axis and the wing leading edge as shown in Fig.
5(A). The non-dimenstional distancea = 0.5 gives the
mid-chord location ofdF iT at every section based on our
assumption (see Section III. E).

The forces and moments can be summed in the sensor
frame in order to get the total force and moment compo-
nents

Fx =
N∑

i=1

dF ix, Fy =
N∑

i=1

dF iy, Fz =
N∑

i=1

dF iz = 0 (45)

Mx =
N∑

i=1

dM i
x, My =

N∑

i=1

dM i
y, Mz =

N∑

i=1

dM i
z (46)

Since theFz component of sensor force is ignored, the
resultant forceFT in the sensor frame can be written as

FT =
√
Fx

2 + Fy
2. (47)

The inclusion of moderate spanwise twist will have
insignificant effect on the magnitude ofC1 [5]. We further
assume that it has no effect on coefficientsC2 and C3.
Therefore, based on this assumption, the sensor output,FT
could still be used to find the coefficients using Eq. (33)
for rigid wing by ignoring the twist and Eq. (40) and Eq.
(45) can then be used to determine the force components
by taking into account the twist. In the computation of
kinematics and angle of attack, the twistδψi is ignored.

VI. D ETERMINATION OF COEFFICIENTS

The sensor measures the total aerodynamic forceFT
given by Eq. (47). The functionsF1, F2 and F3 in Eq.
(33) capture the physics of the particular unsteady effect
and the coefficients simply adjust the magnitude. Once the
magnitudes ofC1, C2 andC3 are adjusted at any point
during the flapping cycle, these functions are expected to be
robust enough to match the experimental data throughout
cycle. We determined the coefficients as follows.

A. Determination ofC1

In order to determineC1, we select the flapping kine-
matics such that the functionsF2 andF3 become zero at
some point in the flapping cycle butF1 remains non-zero.
This meansφ̇ 6= 0, while ψ̇ = φ̈ = ψ̈ = 0. The following
simple kinematic pattern was selected using Eqs. (1)-(3).

φ(t) = Φ sin(ωt) , φo = ζφn = 0, n = 1 (48)

θ(t) = 0 , θo = Θn = 0 (49)

ψ(t) = −Ψ cos(ωt) , ψo = 0, ζψn =
π

2
, n = 1 (50)

This pattern gives maximum values ofφ̇ and ψ̈ at the
mid-stroke position whereψ̇ = 0. The term involvingψ̈
in F3 gives the rotational virtual mass effect which is
small in comparison to the translational virtual mass effect
and therefore we ignore it in subsequent analysis. In other
words,F2 andF3 both become close to zero and only the
translational force,Flev = C1F1 is non-zero at the mid-
stroke. Therefore, the sensor measuresFT = Flev and

C1 =
FT
F1

=
Flev

1/2ρ φ̇2
∫ R
0 r2c(r)dr

, at φ = 0, (51)

whereFT is determined from force sensor componentsFx
andFy. The integral

∫ R
0

r2c(r)dr turns out to be simply
one half of the second moment of areaS2 [3]. This gives
a simple form for the determination ofC1, i.e,

C1 =
Flev

1/4 ρ φ̇2S2

. (52)

Procedure

For the safe operation of robotic flapper, the flapping
frequency was limited to 0.5 Hz. This together with the
wing geometric parameters, gives the Reynolds number Re
and reduced frequency K as a function of flap amplitude

Re =
15450π

180
× Φ , K =

0.2725× 180
π

1
Φ
. (53)



TABLE II

TESTING SCHEME

Flap AmplitudeΦ (deg). Re K
46 12,404 0.332
63 17,000 0.2477

74.5 20,000 0.2095

TABLE III

ANGLE OF ATTACK AT MID -STROKE, (φ = 00)

s.no. Rotational AmplitudeΨ (deg). ᾱ (deg)
∗ 90.0 0.0
1 75.0 15.0
2 64.0 26.0
3 52.4 37.6
4 41.2 48.8
5 30.0 60.0
6 19.0 71.0
7 8.0 82.0
8 0.0 90.0

Three different values of flap amplitudeΦ were chosen
(46, 63, and 74.5 degrees) as shown in Table II. Each flap
amplitude gives a different value of Reynolds numberRe
and reduced frequencyK. This conforms with different
flap amplitudes of flapping used by biological species.

For each flap amplitude, the rotational amplitudeΨ and
eight correpondinḡα from 0 to 90 degrees were chosen at
the mid-stroke position, as shown in Table III. In fact,ᾱ
varies between -90 and 90 degrees during the cycle, giving
two values of force at the samēα, differing only in sign.
We averaged the two forces and determined an average
C1 corresponding tōα at the mid-stroke position. We did
not conduct the experiment at̄α = 0 deg and assumed
C1(0) = 0. This is because normal force is zero on a
symmetric flat plate at zero angle of attack. The chordwise
friction force is ignored in our model. In all, 24 kinematic
patterns were tested.

Fig. 11. Coefficient of LEV/translational force C1 Vs ᾱ

The plot ofC1 against̄α is shown in Fig. 11 for the three
different stroke amplitudes. This shows that the coefficient
of translational force varies linearly with̄α. Furthermore,
the flap amplitude and consequentlyRe has little effect on
the slope(dC1/dα). From Fig 11, we can approximateC1

as linearly varing withᾱ given by

C1(ᾱ) =
7
π
ᾱ, (54)

whereᾱ is in radians.

B. Determination ofC2

C1 andC2 occur implicitly in F2. Therefore, the best
way to determineC2 is to adjust it untill the model matches
with the experimental results. Furthermore,C2 = di−do(r)
varies along the span.do(r) is known from the wing
geometry and given in Table I. The value ofC2 is based
on di. We found thatdi = 0.75 gives best results. In
computingF2, the coefficientC1 is considered a known
parameter. Therefore,C1 is determined beforeC2.

C. Determination ofC3

If we modify the kinematic pattern given by Eqs. (48)-
(50) by takingΨ = 00 in Eq. (50), thenF2 becomes zero
for the entire cycle whileF1 becomes zero at the ends of
the stroke, i.e, atφ = φmax and φ̇ = 0. However,F3 is
maximum there sincëφ is maximum. Therefore, the total
force,FT , measured by the sensor at the ends of the stroke
is due to virtual mass effect.

C3 =
FT
F3

=
Fvirtual mass

F3
, at φ = φmax. (55)

The value ofC3 was found to vary between 0.5 and 1.0
for all 24 kinematic patterns.

VII. C OMPARISON OF EXPERIMENTAL RESULTS

Most of the published data on flapping wings is for
flapping translational motion of the wing, i.e; without
rotation. The only way to compare it with our experimental
data is to compare it at the mid-stroke of flapping cycle
where wing rotation becomes zero instantaneously, for all
the kinematic patterns given by Eq. (48-50). Secondly, the
published data is in the form of either coefficients of lift
and drag or coefficients of vertical and horizontal force.
Therefore, in order to compare our experimental data, we
determined the coefficients of lift and drag at the mid-stroke
position using the lift and drag forces.

A. Lift, drag, vertical and horizontal force

The aerodynamic force components(Fx, Fy, Fz) which
correspond to (̂x4, ŷ4, ẑ4) directions in the sensor frame
f4, were transformed into lift, drag, vertical and horizontal
components for the entire cycle using Eqs. (25) and (26).

As shown in Fig. 12, the lift and vertical components
are positive for both the upstroke and downstroke while



Fig. 12. Lift, Drag, horizontal and vertical force components
for Φ = 46o and Ψ = 52.4o in the sensor framef4

the drag and vertical force components cancel out during
the cycle. This is expected since the kinematic pattern given
by Eq. (48-50) is symmetric between the upstroke and
downstroke. Therefore, a net vertical force is generated
corresponding to a hovering flight. A net horizontal and
drag component is produced if the kinematic pattern is not
symmetric.

B. Coefficients of lift and drag force

The coefficient of lift and drag are computed from the
lift and drag force plots at the mid-stroke position using
Eq. (52).

CL =
Lift

1/4 ρ φ̇2S2

, CD =
Drag

1/4 ρ φ̇2S2

(56)

Eq. (52) is applicable sinceCL andCD are the decom-
position ofC1. The polar plot ofCL andCD for the three
flap amplitudes (Φ = 46, 63, 74.5 deg) is shown in Fig. 13.
The polar plot shows high values ofCL andCD compared
to linearly translating wings [5] and compares well with
the published data Sane [11], Usherwood and Ellington [5],
[6]. The only major difference can be seen at the maximum
value ofCD in Fig. 13 where the plot does not go to zero.
This is because we tested a wing which could also twist
under the aerodynamic loads. Therefore, at the maximum
angle of attack, i.e,90o when the coefficient of drag is
maximum (close to 3.5), we get added lift due to spanwise
twist. The polar plot also show that the coefficients do
not vary with flapping amplitudes. However, for a given
flapping frequency, large stroke amplitudes generate greater
lift due to the fact that the wings sweep a larger area with
higher translational velocity. Therefore, we conclude that
large stroke amplitude is vital for generating higher vertical
force during hovering flight.

Fig. 13. Lift and drag polar plot for three stroke amplitudes,
i.e, Φ = 46o, 63o, 74.5o. These coefficients are computed at
the mid-stroke position during the flapping cycle similar to
the determination of C1

VIII. C OMPARISON OF EXPERIMENTAL RESULTS WITH

AERODYNAMIC MODEL

The coefficientsC1, C2 andC3 will now be used in the
aerodynamic model and comparison will be made with the
experimental data. Note thatC1 and C3 were computed
from the experimental data butC2 was tuned to fit the
experimental results. In order to compare the aerodynamic
model with the experiment, we will compare two kinematic
patterns. From Table III, we select two patterns having
rotational amplitude ofΨ = 75o andΨ = 0o (entries 1 and
8 in Table III). In both cases, the flap amplitude isΦ = 46o.
These represent the extreme cases. The experiment was
not conducted atΨ = 90o. If the model compares well
with the experimental data for these two extreme cases,
we will have more confidence that the comparison will be
good for the patterns in between. The kinematic patterns
for these two cases are shown in Fig. 14, where arrows
indicate instantaneous direction of motion.

A. Comparison of kinematics

In Fig. 15, we compare the flap angleφ and rotational
angle ψ with the experimental data from the encoder.
The kinematic pattern is given by Eq. (48)-(50). The
complete cycle takes 2 seconds at flapping frequency of
0.5 cycles/sec. Note that the maximum value ofψ = Ψ
occurs at the mid-stroke (at time = 50 and 150 millisecs)
with a corresponding minimum angle of attack during the
entire cycle. The comparison ofφ andψ is good throughout
the cycle.

B. Comparison of twistδψ

Fig. 15 also shows the variation of twistδψ at the tip
section during the cycle modeled by Eqs. (38) and (39).



Fig. 14. (A) This kinematic pattern has flapping and rotational
amplitudes of Φ = 46o and Ψ = 74.9o respectively. The
arrows indicates instantaneous direction of motion of a wing
section. At mid-stroke, ψ̇ = 0, the section is undergoing
flapping translation. (B) This kinematic pattern has flapping
and rotational amplitudes of Φ = 46o and Ψ = 0o respec-
tively. Section is undergoing translational motion only. Figure
also shows roughly the location of maximum twistδψmax as
observed during the experiment.

The model predicts maximum twistδψmax at the mid-
stroke position (time = 50, 150 millisecs) for pattern (B).
This location is also shown in Fig. 14(B). For pattern (A),
δψmax occurs when the wing passes through the mid-stroke
position and roughly close to the end of the stroke as shown
in Fig 15. This location is roughly shown in Fig 14(A).
This is becauseδψ is directly proportional to the normal
velocity according to Eq. (38) and (39) which turns out to
be the greatest when the wing undergoes both rotational
and translational motion near the end of the stroke. Note
that Eq. (38) and (39) give an approximate representation of
the actual wing twist. The amplitude of twist was matched
visually with the physical wing through trial and error by
varyingKβ . During the actual experiment, we did notice
the pattern ofδψ at the wing tip similar to Fig. 15 with
the maximum twist occuring near the end of the stroke for
pattern (A) and at the mid-stroke position for pattern (B).

Fig. 15. Comparison of kinematic patterns, (E)=Experiment,
(M)= Model. Pattern (A) Φ = 46o, Ψ = 74.9o and Pattern
(B) Φ = 46o, Ψ = 0o show a good match with the model.
Plot also shows the twistδψ at the tip section computed using
Eqs. (38) and (39)

C. Comparison ofFy component of aerodynamic force

Fig. 16 shows theFy component of aerodynamic force in
the sensor frame for the two kinematic patterns. Plots (A)
and (B) show the force data for the patterns having flapping
and rotational amplitudes ofΦ = 46o andΨ = 74.9o while
(C) and (D) represent the pattern having amplitudes ofΦ =
46o andΨ = 0o. TheFy component was computed using
Eq. (45). Figs 16(A) and (C) are the plots of individual
aerodynamic mechanisms (C1F1, F2, C3F3) which are
components of the total force transformed in the sensorFy
direction for half cycle. Figs 16(B) and (D) shows how the
individual aerodynamic mechanisms contribute to the total
force and match very well with the experimental results.

Fig. 16. Comparison of Fy component of total aerodynamic
force FT = C1F1 + F2(C1, C2) + C3F3. (A) and (B) shows
the comparison for the pattern having amplitudes Φ = 46o,
Ψ = 74.9o, (C) and (D) shows the comparison for the pattern
having amplitudes Φ = 46o, Ψ = 0o.

For the patterns in Figs 16(A) and (B), the rotational
forceF2 dominates as far as magnitude is concerned. This
shows that the quasi-steady aerodynamic force given by
C1F1, is inadequate for modeling flapping wing aerody-
namics when the rotation is present. Furthermore rotational
and virtual mass forceF2 andC3F3 respectively are seen
to be zero at the mid-stroke position while the translational
forceC1F1 is zero at the ends. This is because the functions
F2 andF3 are zero whileF1 is not zero at the mid-stroke
(φ = 0o).

For the pattern shown in (C) and (D), the rotational
force is zero throughout the cycle sinceψ = 0 and the
wing undergoes flapping translation only. Therefore, we
see that the trasnlational forceC1F1 dominates throughout
the cycle except at the ends of the stroke where it is zero.
The virtual mass forceC3F3 is maximum at the ends of the
stroke and adjusts the total force at the ends as shown in
Fig. 16(D). This kinematic pattern was specially selected
to study the virtual mass effect since this is the only effect
present at the ends of the stroke.



Fig. 17. Comparison of Fx component of total aerodynamic
force FT . (A) shows the comparison for the pattern having
amplitudes Φ = 46o, Ψ = 74.9o, (B) shows the comparison
for the pattern having amplitudes Φ = 46o, Ψ = 0o

D. Comparison ofFx component of aerodynamic force

The Fx component of aerodynamic force is computed
using Eq. (45) and compared with the experimental data as
shown in Fig. 17 for the two kinematic patterns. The match
with the experimental data is less accurate in the case of
Fx component. This is probably due to the approximate
match of twistδψ with the actual wing in terms of both
the spanwise distribution as well as variation during the
cycle. The model assumes linear twist from the root to
the tip of the wing. The actual twist distribution could be
different. It should be noted that the approximation of twist
does not affect theFy component because its magnitude is
more than three times that of theFx component and the
error is not visible in theFy plot. We found this typical
behavior in all the 24 kinematic patterns.

E. Comparison of aerodynamic moments

The sensor measures the aerodynamic moments as well
as the aerodynamic force. Therefore, we can compare the
experimentally obtained moments with the moments com-
puted from the aerodynamic model. In Fig. 18, the three
plots in column (A) and (B) show the three components
of moments (Mx, My, Mz) belonging to the two selected
kinematic patterns.

The moments are computed using Eq. (46). TheMx and
Mz components show a good match with the experimental
data. The accuracy ofMx component indicates that the
model accurately distributes theFy component along the

Fig. 18. Comparison of moments (Mx, My, Mz). These are
computed based on the assumption that the aerodynamic force
at each sectiondFT acts at the mid-chord location. (A) shows
the results for the kinematic pattern having amplitudes Φ =
46o, Ψ = 74.9o, and (B) shows the results for the kinematic
pattern having amplitudes Φ = 46o, Ψ = 0o.

span. The magnitude ofFy has already been verified from
comparison of the force plots. Similarly, the accuracy
of Mz component idicates that our assumption of mid-
chord location of forcedFT at every section given by the
parameter ‘a = 0.5’ in Eq. (44) is valid. The comparison
of My component is approximate due to the fact that it
is dependent onFx component of force which compared
approximately with the experiment as discussed earlier.
This behavior of moments was found to be consistent in
all 24 kinematic patterns.

F. Comparison of the location of resultant aerodynamic
force

The location of the resultant aerodynamic force on the
wing for one stroke is also compared with the experiment
and shown in Fig. 19. The distanceā (chord-wise direction)
and the distancēb (spanwise direction) give the location
of the resultant aerodynamic force. This is another way
to test our assumption that the total forcedFT at every
section acts at the mid-chord location, i.e,a = 0.5. ā and
b̄ were calculated using the values of force and moment at
the location of force/torque sensor for both the model and
experiment using the following equations.

ā =
Mz

Fy
, b̄ =

−Mx

Fy
. (57)

Fig. 19 shows good comparison of aerodynamic and exper-
imental values of force location (ā andb̄) for one kinematic
pattern. Fig. 19 also indicates that the location of force does
not vary during the stroke except near the very ends.



Fig. 19. Location of resultant aerodynamic force on the wing
given by the distanceā and b̄ for the kinematic pattern (Φ =
460 and Ψ = 640). Note ‘Exp’ stands for experimental and
‘Mdl’ stands for aerodynamic model.)

IX. CONCLUSION

This paper presents a methodology for the experimental
determination of unsteady aerodynamic force coefficients
based on the principle of dynamic similarity. These coef-
ficients are used in the quasi-unsteady aerodynamic model
which additionally takes into account the wing twist due to
aerodynamic loads. The key conclusions drawn from this
work are given below

1) We found a good match ofFy, Fz, Mx and Mz

components and an approximate match ofFx and
My components of resultant force and moment at the
base of the wing for all the 24 kinematic patterns.

2) The coefficient of translational forceC1 is deter-
mined as a function of angle of attack at one point
during the flap cycle. Similarly, the coefficientC2

and C3 are determined as constants for the entire
flapping cycle. However, the model matches the
experimental data for the entire cycle and for all
kinematic patterns. This idicates that the functions
F1, F2 andF3 are robust and capture the trend or
physics of the unsteady effects.

3) The variation of stroke amplitudeΦ at constant
flapping frequency does not alter the translational
force coefficientC1. However, an increase in stroke
amplitude results in higher lift and drag forces during
the cycle. This means that high stroke amplitude is
essential for hovering flight.

4) The model assumes that for high angles of attack,
typically encountered in hovering flapping flight, the
total aerodynamic force remains normal to the chord
and the chordwise component is zero for the entire
cycle. The good match of model and experimental
results indicates that the total force remains roughly
normal to the chord for the entire cycle as assumed.
In making this conclusion, we have taken into ac-
count the approximate spanwise twist in the model.

5) We also found that the effects of virtual mass force
are small compared to translational and rotational
effects at theRe range of 12,000 to 20,000. In our
model, we have assumed thatC3F3 is virtual mass
effect. However, it might be wake capture effect
because both act in a similar manner. This needs to
be verified using PIV measurements.

6) Moderate spanwise twist has very little effect on the
magnitude ofC1 and total forceFT , however, it
changes the force components in the sensor frame
significantly. This implies significant change in the
direction of resultant force vector. For wings with
large spanwise twist, the procedure should be mod-
ified by decomposingC1 into horizontal Ch and
Vertical Cv coefficient of force. However, we have
not pursued this method.
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