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ABSTRACT

An efficient modeling of the electromagnetic scattering
properties of symmetric lamellar periodic structures at
normal incidence is discussed within the framework of
the modal-field approach. By taking advantage of the
inherent symmetry, a numerical computational speedup
of up to 8 times can be achieved by explicitly ignoring
anti-symmetric modes, which play no role in the scat-
tering process at all.

1 INTRODUCTION

We consider here the special problem of electro-
magnetic scattering of normal incident waves onto a
lamellar periodic structure whose unit cell possesses
a plane about which the structure exhibits a reflec-
tion symmetry. This problem is commonly encoun-
tered in corrugated quantum well infrared photodetec-
tors (C-QWIPs). (Choi 1997, Mao et al. 2002, Choi
et al. 2003, 2004a,b,c) Other applications include anti-
reflection coatings and interference filters.

QWIPs have applications in many different areas,
including industrial, medical, geological, environmen-
tal, homeland security, and defense. In the case of de-
fense, they are critical to all phases of any ballistic mis-
sile system, including missile seeking and detection, and
decoy countermeasure. They also have applications in
long range surveillance and land-mine detection

An example of a symmetric C-QWIP structure is
shown in Fig. 1. The structure has a semi-infinite sub-
strate below and a semi-infinite cover region at the
top, with 3 grating layers sandwiched between them.
These grating layers consist of a multiple quantum-
well (MQW) layer of thickness tq sandwiched between
two semi-conductor layers of thicknesses tc and tb. The
MQW region is assumed to have a biaxial dielectric
constant given by εy in the vertical direction and by εx

in the horizontal direction. The width for the air region

is s, and that for the MQW region is w, and so the lat-
tice spacing a is s + w. The incident wave is assumed
to be a plane TM polarized wave incident from below
and traveling perpendicularly to the layers.
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Figure 1: An example of a C-QWIP structure.

Modeling and optimizing the performance of pho-
todetectors like the present one presents certain chal-
lenges. First of all there must be strong diffraction
of the waves within the structure. This means that the
various dimensions of the structure must be comparable
to the wavelength of the incident radiation, and the di-
electric contrast must also be sufficiently strong. Mod-
eling of diffraction in such a strongly scattering medium
is known to be always challenging and requires accurate
handling of the entire set of Maxwell’s equations with
its associated set of boundary conditions.

Secondly, photodetector structures are intrinsically
multilayered. The above simple example of a C-QWIP
consists of only 5 layers (3 periodic layers and 2 semi-
infinite homogeneous layers). More realistic devices of-
ten have metallic layers and other dielectric layers for
various electrical and mechanical and structural pur-
poses. The number of layers quickly increases when
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multi-color operations are required. The handling of
periodic structures that have slanted sidewalls often re-
quires the artificial sectioning of such a layer into multi-
ple sub-layers, which further increase the total number
of layers that must be handled in modeling such struc-
tures. It is also well-known that many methods for
imposing the required electromagnetic boundary con-
ditions suffer increasing degree of instabilities with in-
creasing number of layers.

Thirdly, realistic detectors often contain a multi-
tude of different electromagnetic components. Other
than the use of high and low dielectric materials men-
tioned above, the materials can be isotropic and biax-
ial electromagnetically, absorbing and non-absorbing,
metallic and non-metallic, and form homogenous and
periodic layers within the structure. Modeling of such
devices therefore requires one to be able to handle suc-
cessfully all these material components.

The electromagnetic properties of such a complex
multilayered structure depend, sometimes sensitively,
on a large number of material parameters such as the
dielectric constants of the various components along
different directions, and the widths and thicknesses of
individual components within each layer. In detector
design, this set of parameters must be optimized under
a variety of constraints to achieve a certain performance
goal. Modeling of photodetectors therefore requires the
use of methods that are not only reliable, accurate and
stable, but are highly efficient and have only modest
memory requirements.

For this purpose, we have developed(Jiang et al.
2001) a modeling method based on the determination
of the modal fields within each layer of the detector
and then using them to represent the actual fields, and
the use of the transmission-line technique to solve the
resulting problem associated with the electromagnetic
boundary conditions. Our method, referred to as the
modal transmission-line (MTL) method, is fully capa-
ble of handling the stringent requirements mentioned
above in connection with photodetector modeling.

In the MTL method, the modal fields within each
of the periodic layer are computed from the eigenvalues
and eigenvectors of a secular equation associated with
Maxwell’s equations. Our work here is to describe a
method to transform such an equation into a form that
can be solved very efficiently in the case of a normally
incident wave. We then apply our method to illustrate
how it can be used in modeling the C-QWIP mentioned
above.

Throughout this paper, we assume that the inci-
dent field propagates perpendicularly to the structure,
and that the entire structure can be decomposed into
a multilayered one, where a common unit cell can be
identified for all the periodic layers. This means that
the periodicities of each of the periodic layers must be
commensurate with each other. We further assume

that within each periodic layer, the unit cell exhibits
reflection symmetry about a constant-x plane passing
through its center.

Symmetry is a familiar concept in the study of
electron waves in crystalline materials and photonic
bandgap crystals. Symmetries in electromagnetic
waves are more interesting because other than the sym-
metries associated with the structure itself, there are
internal symmetries due to Maxwell’s equations them-
selves.

In the case of lamellar structures with a simple unit
cell, the symmetry turns out to be rather simple, as we
will discuss in this work. First we consider the case
where the incident wave is symmetric just like the unit
cell. An obvious example is the very common case of a
normally incident plane wave. Owing to the symmetry
of the unit cell, the modal fields in the structure can be
classified as either symmetric or anti-symmetric. Since
the incident fields are symmetric, they do not couple
to the anti-symmetric modes at all. By explicitly elim-
inating such irrelevant modes in modeling symmetric
structures within our modal-field representation of the
scattering problem, we find that a numerical computa-
tional speedup of up to 8 times can be achieved. On
the other hand, if the incident wave is anti-symmetric
with respect to the symmetry plane, then only the anti-
symmetric modal fields are coupled. An up to 8 times
speedup can also be achieved.

Symmetrized modal fields can be employed as long
as the incident wave falls normally onto the structure.
Such an approach offers a significant numerical advan-
tage even when the incident wave does not possess a
definite symmetry. The reason is that a general nor-
mally incident wave can always be decomposed into a
symmetric part and an anti-symmetric part. In addi-
tion, linear combinations of the Bloch plane waves (i.e.
plane waves that obey Bloch’s theorem) that exhibit
symmetric and anti-symmetric properties can also be
made. Owing to the linearity of the scattering problem,
these two different types of waves can be dealt with sep-
arately using the present approach. A speedup of up
to 4 times can still be achieved over the conventional
approach which ignores symmetry considerations.

After deriving the resulting secular equations for
the symmetric and anti-symmetric modes for the TE
and TM cases, we apply our symmetrized modal field
method to compute the scattering properties of the
above C-QWIP structure. We also compare and con-
trast the results with those obtained from conventional
modal-field method. First of all, we find that the
numerical results for the eigenvalues and eigenvectors
from two methods are practically identical within ma-
chine accuracy. The agreement in the final result for
the absorption is better than 1× 10−11, but the results
are obtained much quicker using the new method. The
speedup factor indeed approaches closely the theoreti-
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cal expected value of 8 as the number of harmonics in-
cluded in the calculation is increased. Furthermore the
present method reduces the required amount of mem-
ory by about one half.

2 SYMMETRIZED MODAL-FIELD
METHOD

We are interested in a biaxial lamellar structure
that is periodic along the x-direction. If a is the size of
the primitive cell, then the reciprocal lattice vectors
along the x-direction have magnitudes K = 2πn/a,
where n = 0,±1, . . .. The basic structure of inter-
est here is exactly the same as that studied in the
past,(Tamir and Zhang 1996, Jiang, Tamir and Zhang
2001) except for the additional requirement that the
structure must be symmetric about the center of each
primitive cell. Thus if the origin in x is chosen to be
at the center of one of the primitive cells, the dielectric
constant satisfies

εα(−x) = εα(+x), for α = x, y, z. (1)

We therefore consider some general results for Fourier
expansions and series that will be needed later. First
any function f(x) having the same periodicity as the
lattice can be expanded as a Fourier series:

f(x) =
∑
K

fK exp(iKx) (2)

where the sum over K implies a sum over the integers
that specify K, and the Fourier coefficients fK are given
by

fK =
∫ a/2

−a/2

dx

a
f(x) exp(−iKx). (3)

Alternatively f(x) can be expressed in the form of a
trigonometric Fourier series

f(x) = f̃0 +
∑
K>0

[
f̃K cos(Kx) + f̃−K sin(Kx)

]
. (4)

It is easy to see that these two sets of Fourier coefficients
are related by

f̃0 = f0, f̃K = fK + f−K , f̃−K = i(fK − f−K). (5)

The only restriction on f(x) thus far is the periodic
property.

Next if f(x) is a symmetric function under reflec-
tion about the x = 0 plane, i.e. f(−x) = f(x), so that
f(x) is an even function of x. In that case one can eas-
ily see from Eq. (3) that f−K = fK . Using this relation
in Eq. (2) one finds that

f(x) = f0 + 2
∑
K>0

fK cos(Kx). (6)

Therefore one has

f̃0 = f0, f̃K = 2fK , f̃−K = 0, (7)

which can also be deduced from Eq. (5). For our calcu-
lation later, we find that it sometimes more convenient
to rewrite the Fourier series expansion of a symmetric
function f(x) in the form

f(x) = f0 +
∑
K>0

fK cos(Kx) +
∑
K<0

f−K cos(Kx)

=
∑
K

fK cos(Kx), (8)

where the sum over K is unrestricted. We will next
derive expressions for the modal fields. We find that it
is more convenient to use Eq. (4) to express the modal
fields, but Eq. (8) is better for the dielectric constants.

3 MODAL FIELDS

We consider here the modal fields inside a sym-
metric periodic layer located between z = 0 and t.
The incident wave is assumed to be propagating along
the z-direction, i.e. normal to the layer. We want to
derive a secular equation that determines the modal
fields within the periodic layer. The general fields are
then expressed in terms of these modal fields.(Tamir
and Zhang 1996, Jiang et al. 2001)

3.1 TE Mode

In the case of TE waves, the y-component of the
electric field obeys the equation

[k2
0ε

x(x) + ∂2
x]Ey = −∂2

zEy. (9)

In previous studies, Ey is expressed in terms of plane
waves as

Ey =
∑
K

exp(iKx)
∑
m

aK,mvm(z), (10)

where

vm(z) = fm exp(iκmz) + gm exp(iκm(t− z)) (11)

are the equivalent voltages, m labels the modes, and
the transverse component of the wavevector has been
set to zero. It is known that the coefficients aK,m and
κm are related to the eigenvectors and eigenvalues of
the secular equation∑
K′

[(K ′2 + κ2
m)δK,K′ − k2

0ε
x
K−K′ ]aK′,m = 0, (12)

where δK,K′ is the Kronnecker delta function. If a fixed
integer N is chosen such that only the reciprocal lat-
tice vectors between −2πN/a and 2πN/a are retained
in our calculation, then the secular equation becomes
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an eigenvalue-eigenvector problem involving square ma-
trices of size (2N + 1) by (2N + 1).

It is important to note that a symmetric wave,
such as a plane wave, incident onto a symmetric struc-
ture can only couple to modes that are also symmetric.
Therefore instead of using a Fourier series expansion of
the fields, which exhibit no definite symmetry, it is bet-
ter to use trigonometric Fourier series. Then we only
need to include terms that are symmetric, i.e. the con-
stant term and the cosine terms. Thus in Eq. (9) we
let

Ey =
∑
K≥0

cos(Kx)
∑
m

ãK,mvm(z), (13)

and use the cosine expansion of the form given in Eq.
(8) for the dielectric function

εx(x) =
∑
K

εx
K cos(Kx). (14)

Then we multiply the resulting equation by cos(Kx),
with K ≥ 0, and integrate within a unit cell to obtain
the secular equation

ζK(K2 + κ2
m)ãK,m − k2

0

∑
K′≥0

ε+K,K′ ãK′,m = 0. (15)

where we define

ζK =
{

2, if K = 0
1, otherwise (16)

and

ε+K,K′ = εK−K′ + εK+K′ . (17)

If we keep only values of K between 0 and 2Nπ/a,
the above equation can be solved as a finite order ma-
trix eigenproblem for the eigenvalues and eigenvectors,
which yield κ2

m and ãK,m, respectively. There is a
total of N + 1 of these symmetric mode eigenvalue-
eigenvectors pairs. They are part of the eigenvalue-
eigenvectors pairs of the previous secular equation [Eq.
(12)]. We have checked to verify that this is indeed
so. Of course Eq. (8) also contains the eigenvalue-
eigenvectors pairs of the anti-symmetric modes.

A secular equation for the anti-symmetric modes
can be derived by expanding Ey in terms of only the
sine function rather than the cosine function:

Ey =
∑
K>0

sin(Kx)
∑
m

ã−K,mvm(z). (18)

Inserting Eq. (18) in Eq. (9), using the cosine expansion
of the form given in Eq. (8) for the dielectric function,
multiplying the resulting equation by sin(Kx) and in-
tegrating x over a unit cell, yields the secular equation
for the anti-symmetric TE modes:

(K2 + κ2
m)ã−K,m − k2

0

∑
K′>0

ε−K,K′ ã−K′,m = 0. (19)

In most practical situations, the incident field is
itself symmetric with respect to the symmetry plane. A
very common example is that of a plane incident wave.
In that case, the anti-symmetric modes are not coupled
at all to the incident wave, and therefore need not be
computed. To obtain the modal fields within each of
the periodic layers, all we need is to solve the secular
equation for the symmetric modes using Eq. (15). By
explicitly dealing with the relevant symmetric modes,
we now only need to solve a N + 1 by N + 1 matrix
instead of a 2N +1 by 2N +1 matrix for its eigenvalues
and eigenvectors. Since the numerical complexity of
matrix eigenproblem goes as the third power of the size
of the matrix, we see that the computation should be
about 8 times faster, since N is typically a large integer.

On the other hand, in the rare case where the in-
cident field is anti-symmetric, then we need to solve
the secular equation for the anti-symmetric modes us-
ing Eq. (19). We now only need to solve an N by
N matrix instead of a 2N + 1 by 2N + 1 matrix for
its eigenvalues and eigenvectors. Therefore we can also
achieve a speed-up factor of about 8.

3.2 TM Mode

In the case of TM waves, the y-component of the
magnetic field obeys the equation

[k2
0ε

x(x) + εx(x)∂xηz(x)∂x]Hy = −∂2
zHy, (20)

where ηz(x) = 1/εz(x). In previous studies, Hy is ex-
pressed in terms of plane waves as

Hy =
∑
K

exp(iKx)
∑
m

bK,mim(z), (21)

where

im(z) = fm exp(iκmz)− gm exp(iκm(t− z)), (22)

are equivalent currents. The coefficients bK,m and κm

are related to the eigenvectors and eigenvalues of the
secular equation∑

K′

(k2
0ε

x
K−K′ − κ2

mδK,K′)bK′,m (23)

−
∑
K′

∑
K”

εx
K−K′K ′ηz

K′−K”K”bK”,m = 0.

Equation (23) expresses a matrix eigenproblem for a
2N + 1 by 2N + 1 matrix if reciprocal lattice vectors
between −2πN/a and 2πN/a are retained.

It is known that (Li 1996) faster convergence is
achieved if εx

K−K′ is obtained by first inverting the
matrix containing the Fourier coefficients of 1/εx

K−K′

and then taking the KK ′ element. Similarly ηz
K−K′ is

obtained by first inverting the matrix containing the
Fourier coefficients of εz

K−K′ and then taking the KK ′

element.
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We now derive the secular equation for symmetric
TM modes in the trigonometric Fourier series represen-
tation by including in the expansion for the magnetic
field only symmetric terms

Hy =
∑
K≥0

cos(Kx)
∑
m

b̃K,mim(z), (24)

and use the cosine expansion of the form given in Eq.
(8) for the dielectric function and an analogous one for
ηz(x)

ηz(x) =
∑
K

ηz
K cos(Kx). (25)

We use Eq. (24), Eq. (14), and Eq. (25) in Eq. (20),
and then multiply the resulting equation by cos(Kx),
with K ≥ 0, and integrate within a unit cell. After
some algebra we obtain the following secular equation
for the symmetric TM modes∑

K′≥0

(ζKκ2
mδK,K′ − k2

0ε
+
K,K′)b̃K′,m (26)

+
∑

K′≥0

∑
K”≥0

ε+K,K′K
′η−K′,K”K”b̃K”,m = 0.

This secular equation does not contain the unwanted
anti-symmetric modes and as a result its eigenvalues
and eigenvectors can be computed about 8 times faster
than if one uses Eq. (23).

To find the secular equation for the anti-symmetric
modes, we use the sine expansion for the magnetic field

Hy =
∑
K>0

sin(Kx)
∑
m

b̃−K,mim(z). (27)

Using Eq. (27), Eq. (14), and Eq. (25) in Eq. (20),
and multiplying the resulting equation by sin(Kx),
with K > 0, and then integrating within a unit cell,
we obtain the following secular equation for the anti-
symmetric TM modes

κ2
mb̃−K,m − k2

0

∑
K′>0

ε−K,K′ b̃−K′,m (28)

+
∑

K′>0

∑
K”>0

ε−K,K′K
′η+

K′,K”K”b̃−K”,m = 0.

For a truncation value of N , this secular equa-
tion become an N by N matrix eigenproblem whose
eigenvalues and eigenvectors determine the modal fields
within such a periodic layer. In the case of an anti-
symmetric incident wave, we can use this secular equa-
tion to find the modal fields about 8 times faster than
using the conventional secular equation.

4 ALTERNATIVE DERIVATION

The above secular equations for the symmetric TE
and TM modes can also be derived by considering the

relations between the coefficients for the fields in the
Fourier series representation with those in the trigono-
metric Fourier series representation. The general rela-
tion is given by Eq. (5). The derivation of the secular
equations is more convenient if matrix notation is used.

For that purpose we define the following column
vectors

fK =

 f1

f2

...

 , f−K =

 f−1

f−2

...

 , (29)

f̃K =

 f̃1

f̃2

...

 , f̃−K =

 f̃−1

f̃−2

...

 . (30)

We also define composite vectors

f̄ =

 f0

fK

f−K

 , f̃ =

 f̃0

f̃K

f̃−K

 , (31)

and the transformation matrix

S =

 1 0 0
0 1 1
0 i1 −i1

 , (32)

where 1 is an identity matrix. The relation given by
Eq. (5) can then be expressed as

f̃ = Sf̄ . (33)

The inverse relation is given by

f̄ = S−1f̃ , (34)

where

S−1 =

 1 0 0
0 1

21 − i
21

0 1
21

i
21

 . (35)

We define vectors εK and ε−K analogous to Eq. (31),
and a matrix εK,K whose ij element is given by εKi−Kj

.

4.1 TE Modes

We reconsider first the TE modes. In matrix nota-
tion we see that the secular equation in Eq. (12) in the
usual plane wave basis can now be written as

(ε̄− D̄)ā = 0, (36)

where we have defined

ε̄ =

 ε0 εT
K εT

−K

εK εK,K εK,−K

ε−K ε−K,K ε−K,−K

 , (37)

D̄ =

 κ2 0 0
0 Γ 0
0 0 Γ

 , (38)
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Γ = K2 + κ21, (39)

where K is a diagonal matrix with diagonal elements
K1,K2, . . ., and the composite vector ā is defined as in
Eq. (31). From Eqs. (34) one has ā = S−1ã and so
we see that the secular equation in the trigonometric
Fourier series basis is

(ε̃− D̃)ã = 0, (40)

where for any 2N + 1 by 2N + 1 matrix M , we define
the matrix

M̃ = SM̄S−1, (41)

which is related to M by a similarity transformation.
One finds that D̃ = D̄ and

ε̃ =

 ε0 εT
K 0

2εK ε+
K,K 0

0 0 ε−K,K

 , (42)

where we have defined

ε±K,K = εK,K ± εK,−K . (43)

Hence, we can prove that the secular equation for TE
waves in the trigonometric Fourier series basis is given
by ε0 − κ2 εT

K 0
2εK ε+

K,K − Γ 0
0 0 ε−K,K − Γ

×
×

 ã0

ãK

ã−K

 = 0. (44)

The eigenproblem is seen to decouple into two separate
diagonal blocks. The first block, consisting of the first
two equations, is for the symmetric modes. It is easy
to see that they are equivalent to the secular equation
that we derived earlier in Eq. (15).

The second block, consisting of the last equation,
is clearly the secular equation for the anti-symmetric
modes. This equation is in the form of an eigenproblem
of an N by N matrix. If the incident wave is symmet-
ric, these anti-symmetric modes cannot be excited and
therefore there is no need to solve this secular equation
at all. However if the incident wave is anti-symmetric,
then we need to solve for the eigenvalues and eigen-
vectors of this secular equation, but not those for the
symmetric modes. We also get a speed-up factor of up
to 8 times compared with the conventional approach.

It is important to note that our approach of using
symmetrized modal functions is applicable even when
the incident wave has no definite symmetry. The reason
is that a general incident wave can always be written
as the sum of a symmetric part and an anti-symmetric
part. Linearity of the electromagnetic problem implies

that these two parts can be treated separately using
their respective secular equations within the periodic
layer. Consequently we expect to have a speed-up fac-
tor of up to 4 for high truncation value, N .

4.2 TM Modes

Next we reconsider the TM case using this matrix
approach. The secular equation in the plane wave ba-
sis is given by Eq. (23), which can now be written in
matrix notation as(
ε̄− κ21̄− ε̄K̄η̄K̄

)
b̄ = 0, (45)

where 1̄ is an identity matrix, and

η̄ =

 η0 ηT
K ηT

−K

ηK ηK,K ηK,−K

η−K η−K,K η−K,−K

 . (46)

This equation can then be transformed into the trigo-
nometric Fourier series basis by multiplying from the
left by S. The result is(
ε̃− κ21̃− ε̃K̃η̃K̃

)
b̃ = 0, (47)

where

1̃ = 1̄, (48)

and

η̃ =

 η0 ηT
K 0

2ηK η+
K,K 0

0 0 η−K,K

 , (49)

with

η±K,K = ηK,K ± ηK,−K . (50)

We can easily compute K̃ and obtain from Eq. (47)
the following secular equation for the TM modes in the
trigonometric Fourier series basis ε0 εT

KΩ− 0
2εK ε+

K,KΩ− 0
0 0 ε−K,KΩ+

− κ2I

×

×

 b̃0

b̃K

b̃−K

 = 0, (51)

where

Ω± = (1−Kη±K,KK), (52)

and

I =

 1 0 0
0 1 0
0 0 1

 (53)
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Figure 2: The absorption at a fixed wavelength (near
the maximum) is plotted as a function of the truncation
factor N .

is the identity matrix. The matrix in Eq. (51) is
seen to separate into two diagonal blocks. The first
block, which consists of two parts, clearly determines
the modes of the symmetric TM modes. The result
can be seen to be equivalent to the secular equation
that we derive earlier in Eq. (26). The second block
on the other hand determines the modes of the anti-
symmetric TM waves. These modes are not needed for
symmetric normally incident waves.

Our alternate derivation of the secular equation
clearly shows that both the symmetric and the anti-
symmetric modes are contained in the conventional
method that ignores symmetry considerations. The use
of symmetrized modal field here enables one to ignore
modes that do not have the right symmetry and are
therefore irrelevant to the problem, and hence leads to
in a more efficient numerical method.

5 RESULTS AND DISCUSSION

We will show the results of numerical computations
of the scattering properties of a symmetric structure at
normal incidence using the present method and com-
pare them with those obtained using the conventional
method. Our purpose here is to illustrate the superior-
ity of the present method by considering as an example
a practical C-QWIP structure, (Choi 1997, Mao et al.
2002, Choi et al. 2003, 2004a,b,c) as shown in Fig. 1.

First of all, we verify that the eigenvalues and
eigenvectors obtained from the present method and the
conventional method agree. Indeed we find that they
are practically identical within machine accuracy. One
of the most important quantity of interest in modeling
QWIPs is the relative absorption, Pabs at any given
wavelength. We find that using the resulting eigenval-
ues and eigenvectors to compute Pabs, the agreement
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Figure 3: The absorption spectrum computed using a
fixed value of the truncation factor N .

is better than 1× 10−11.
Typically in our modeling work, the absorption

spectrum is first computed using a moderate value of
the truncation factor, N . To test for convergence of
the results, we then fix the wavelength near one of the
absorption peaks and repeat the computation of the
spectrum using either methods for larger values of N .
As a result we obtain a convergence curve as shown
in Fig. 2. This curve provides us a good idea of the
maximum error in the computed result at any given N .
Using a value of N large enough to ensure that our re-
sults are accurate within a certain acceptable tolerance,
we then recompute the spectrum. The result is shown
in Fig. 3.

The above results were computed using the pre-
sent symmetrized modal field method as well as the
conventional method. Since they agree to better than
1 × 10−11 for any wavelength and truncation, the re-
sults from the above graphs will be practically identi-
cal. However the present method reduces the memory
requirement to about one half that of the conventional
method. It also runs much faster, as can be seen from
Fig. 4, where the computation times for obtaining the
absorption spectrum using these two methods are plot-
ted as a function of N . We define a speed-up factor
as the ratio of the computation time using the present
method to that of the conventional method. The speed-
up factor is shown in Fig. 5 as a function of N . We see
that the speed-up factor increases with N and indeed
gradually approaches the expected value of 8.

For the present somewhat simple C-QWIP, rather
accurate absorption spectrum can be obtained in about
11.4 seconds for a given structure using a truncation
value of N = 15. However in optimizing the perfor-
mance of the detector, even if the material parame-
ters are kept fixed, one still needs to explore numerous
structures with layers having different widths, spacings
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Figure 4: The total computation time for obtaining
an absorption spectrum is plotted as a function of the
truncation factor N .
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Figure 5: The speed-up factor as a function of the trun-
cation factor N .

and thicknesses. For example if we want to vary only 4
out of the total of 6 dimensional parameters, and if each
parameter can assume only 10 different values, then
an exhaustive exploration of detector performance will
take close to 32 hours using the conventional method.
The speed-up factor for the new method at this trunca-
tion value is about 3.2. That means that the modeling
can now be done in only about 10 hours. In general,
the saving will be much greater for more complicated
structures(Gunapala et al. 2000) and for higher accu-
racies.
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