
A Transformational Approach to High Performance Embedded Computing

Wim Böhm
Colorado State University

Fort Collins, CO

Jeffrey Hammes
SRC Computers, Inc.
Colorado Springs, CO

1. Introduction

This paper describes a transformational, high level lan-
guage approach to High Performance Embedded Comput-
ing on the SRC-6 machine and its MAPTM reconfigurable
hardware. A program is initially written in pure C and
compiled by the MAP C Compiler. Then, using feed-
back from the MAP C compiler, the program is succes-
sively transformed manually to achieve better performance.
These transformations avoid certain inefficiencies, such as
re-reading values from memory, loop slowdown caused
by loop carried dependencies, and underutilizing memory
bandwidth. We discuss the transformations in the context
of the Wavelet Versatility Benchmark and the Gauss-Seidel
iterative linear equation solver.

FPGAs use a large number of pins to connect to memo-
ries. They do not have caches, but they have on-chip block
RAM, allowing the programmer to decide what data stays
on chip. Also, fine grain operation level parallelism com-
bined with pipelining makes it possible for FPGAs to exe-
cute an inner loop body in one clock cycle. These character-
istics provide a simple, deterministic performance model,
allowing the programmer to work towards a well defined
goal: store hot data structures on chip either in block RAM
or in registers, create inner loop bodies that execute in one
clock cycle and use the full memory bandwidth of the ma-
chine by loop unrolling.

2 The SRC-6 and MAP Compiler

The SRC-6 machine contains a pair of dual-processor
Pentium IV boards, running Linux, and two SRC-developed
FPGA-based reconfigurable processors called MAPs. Each
MAP contains two Xilinx Virtex−IITM FPGAs, six banks
of dual-ported SRAM On Board Memory (OBM) totaling
24 Mbytes, and a control FPGA containing a DMA engine
that manages memory transfers into and out of the OBM.
DMAs can take place concurrently with executing FPGA
code. Both user FPGAs have access to the OBM banks,
though only one can access a given memory at a time. Each
of the six memory banks contains 512K 64-bit words (4
Mbytes). The user FPGAs are clocked at a fixed frequency

of 100 MHz. Each OBM bank can handle one write or read
from a user FPGA in each clock.

Using a simple directive the user allocates off chip ar-
rays onto OBM banks. The MAP Compiler allocates local
arrays to the FPGAs block RAM and local scalar variables
in registers. The MAP compiler front end produces a con-
trol flow graph (CFG) of basic blocks and directed control
flow edges between the blocks. Next the MAP Compiler
translates each block into its own dataflow graph (DFG)
that exposes instruction-level parallelism. It then merges
the DFG fragments that compose an innermost loop into a
single pipelined code block that includes a driver module
for firing loop iterations. The driver will fire one loop iter-
ation on each clock, unless data dependencies or multiple
accesses to a bank force it to run slower. The DFGs for
the code blocks are then mapped to Verilog, using straight-
forward instantiations of pre-defined macros. The Verilog
is synthesized and place-and-routed using commercial soft-
ware.

The MAP Compiler allows a user to create “user-
macros” in Verilog. Their semantics differs from functions
in C in that they can retain state between calls. This al-
lows for program transformations providing code optimiza-
tion beyond straight forward C compilation.

3 Wavelet Versatility Benchmark

The Wavelet Versatility Benchmark is part of a bench-
mark suite for evaluating configurable computing systems.
This suite was produced by Honeywell as part of the
DARPA/ITO ACS (Adaptive Computing Systems) pro-
gram [2]. The Wavelet Benchmark consists of four phases:
Wavelet Transform, Quantization, Run-Length Encoding
and Entropy Encoding.

The Wavelet Transforms perform a 5x5 convolution of
an input image stepping by 2 in both horizontal and verti-
cal directions, reading from one OBM and writing to four.
In the initial pure C implementation of this convolution, val-
ues are re-read on average 2.5 times. This can be avoided by
using system-macros that implement a delay queue mecha-
nism [1]. In the next transformation, four pixels are packed
in one word, and two horizontally adjacent convolutions are

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 FEB 2005

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
A Transformational Approach to High Performance Embedded
Computing

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Colorado State University Fort Collins, CO

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM00001742, HPEC-7 Volume 1, Proceedings of the Eighth Annual High Performance
Embedded Computing (HPEC) Workshops, 28-30 September 2004 Volume 1., The original document
contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

41

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

performed in parallel.
The initial implementation of the Quantization, Run-

Length Encoding and Entropy Encoding phases read/write
pixels (packed after the Wavelet phase was optimized)
from/to OBMs. To avoid unnecessary memory traffic and
to fully benefit from pipelining, the three phases are loop
fused. The MAP compiler indicates loop slowdown, caused
by loop carried data dependencies in Run-Length Encod-
ing and Entropy Encoding in the form of (min) reduc-
tions and (summing and shifting) accumulations. These
can be avoided by using stateful reduction and accumula-
tor macros.

A final transformation distributes the program in a coarse
grain parallel fashion over the two user FPGAS. Its execu-
tion on the MAP produces bit-identical results to the Hon-
eywell reference code and achieves a speedup of 38 when
compared to the reference code executed on a 2.8 GHz Pen-
tium IV.

4 Gauss Seidel

Gauss Seidel is an iterative linear system solver of diag-
onally dominant systemsAx = b. The inner loop of the
code recomputesx[i] using a vector inproduct:

for(i=0;i<n;i++) {
s = 0.0;
for(j=0;j<n;j++)

if (j != i) s += A[i*COL+j] * x[j];
x[i] = b[i] - s;

}

All A, b and x values are in single precision floating
point. In a first pure C implementation thex vector is al-
located in block RAM, whileA andb are allocated in one
OBM. When this code is compiled, the MAP compiler in-
dicates a loop slowdown becauses is both read and written
in the inner loop. This can be avoided by using a float-
ing point accumulator macro. This accumulator needs to be
able to accept a new input every clock cycle. It will have
a larger than one latency, as a floating point add takes 10
cycles on the MAP. This implies that the accumulator will
have to be parallelized internally. At the time of writing this
abstract, this and other floating point macros have not been
integrated in the MAP compiler yet.

In a next program transformation,k valuesx[i], x[i +
n/k], ..x[i + (k − 1)n/k] are updated in the innerj loop
in parallel. Because we can row block partition A and b
over six OBMs, a good value fork is 6. Thej loop reads
one value from each OBM and performs 6 multiplies and 6
adds.

Because we are using single precision floating point we
can pack two adjacent values in one word, thereby doubling
the amount of computation per communication. The inner
loop now performs 12 multiplies and 12 adds in each it-
eration. However, the MAP compiler now reports a loop

slowdown: because the inner loop is unrolled, two consecu-
tivex values are read from block RAM. This can be avoided
by stripe partitioning the odd and evenx elements over two
block RAMs.

The code currently runs in debug mode on a host ma-
chine. The MAP compiler backend for floating point oper-
ations will soon become available, and we will assess the
hardware performance of the Gauss Seidel codes. If the
most parallel version of the code with the 12 single clock
floating point accumulators can be placed and routed on the
FPGA, its inner loop will execute 24 floating point opera-
tions per clock cycle. At 100 MHz, this will represent 2.4
GFlops.

5 Conclusions and Future Work

In this paper we have argued that high performance em-
bedded computing can be achieved on the SRC-6 machine
and its MAP reconfigurable hardware by starting from a
pure C code and transforming this code stepwise using sys-
tem or user macros. For the codes we have studied, the
transformations 1) employ delay queues to avoid re-reading
from OBMs, 2) pack data items in words and 3) unroll
loops to increase bandwidth, 4) use accumulator macros to
avoid loop slowdown caused by loop carried dependencies,
5) fuse loops to avoid memory traffic, 6) partition arrays to
avoid multiple memory accesses in the same loop body, and
7) perform coarse grain task parallelization to shorten the
critical path of the complete application. In future work we
will implement sparse solvers and the NAS Parallel Bench-
mark suite.

References

[1] J. Hammes. Methodology for pipelining and fusing stenciled
loops. Technical Report SWP-009-00, SRC Computers, Inc.,
November 2003.

[2] R. Kohler. Benchmark specification document – versatility
stressmark. Technical Report CDRL A001, Rome Laboratory,
November 1997. Submitted by Honeywell, Inc.

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

A Program Transformation Approach to
High Performance Embedded Computing

using the
SRC MAP® Compiler

WimWim BohmBohm, Colorado State University, Colorado State University
and and

Jeff Jeff HammesHammes, SRC Computers, Inc., SRC Computers, Inc.

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

SRC–6 MAP® System

SRCSRC--6 MAP6 MAP
–– FPGA based High Performance architectureFPGA based High Performance architecture
–– Fortran / C compiler for the whole systemFortran / C compiler for the whole system

One Node:One Node:
–– MicroprocessorMicroprocessor
–– MAP reconfigurable hardware boardMAP reconfigurable hardware board
–– SNAP SNAP µµproc proc and MAP interconnected via DIM slot and MAP interconnected via DIM slot
–– GPIO ports allow connection to other GPIO ports allow connection to other MAPsMAPs
–– PCIPCI--X can connect to other X can connect to other µµprocsprocs

Multiple configurations / implementationsMultiple configurations / implementations
–– this talk: this talk: MAPstationMAPstation -- one nodeone node

MAP C CompilerMAP C Compiler
–– Compiler generates bothCompiler generates both µµprocproc and MAP code and MAP code
–– user partitions user partitions µµprocproc, MAP tasks

PCIPCI--XX

MAPstationMAPstation

MAPMAP®®

µµPP

MemoryMemory

SNAPSNAP™™

GPIOGPIO
PortsPorts

, MAP tasks

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

MAP® board architecture

Six BanksSix Banks
DualDual--portedported

OnOn--Board MemoryBoard Memory
(24 MB)(24 MB)

4800 MB/s4800 MB/s
(6 x 64b)(6 x 64b)

4800 MB/s4800 MB/s
192b192b

2400 MB/s each2400 MB/s eachGPIOGPIO

4800 MB/s4800 MB/s
(6 x 64b)(6 x 64b)

ControlControl
FPGAFPGA

User User
FPGA 0FPGA 0

User User
FPGA 1FPGA 1

108b108b

4800 MB/s4800 MB/s
(6 x 64b)(6 x 64b)

108b108b

1400 MB/s1400 MB/s
sustained sustained
payloadpayload

MAPMAP
Direct Execution Logic (DEL) made Direct Execution Logic (DEL) made
up of one or more User FPGAsup of one or more User FPGAs
Control FPGA performs off board Control FPGA performs off board
memory accessmemory access
Multiple banks of OnMultiple banks of On--Board Board
Memory maximize local memory Memory maximize local memory
bandwidth bandwidth
GPIO ports allow direct MAP to GPIO ports allow direct MAP to
MAP chain connections or direct MAP chain connections or direct
data inputdata input
Multiple parallel data transports:Multiple parallel data transports:

–– Distributed SRAM in FPGADistributed SRAM in FPGA
•• 264 KB @ 844 GB/s264 KB @ 844 GB/s

–– Block SRAM in FPGABlock SRAM in FPGA
•• 648 KB @ 260 GB/s648 KB @ 260 GB/s

–– OnOn--Board SRAM MemoriesBoard SRAM Memories
•• 28 MB @ 9.6 GB/s28 MB @ 9.6 GB/s

–– Microprocessor MemoryMicroprocessor Memory
•• 8 GB @ 1400 MB/s8 GB @ 1400 MB/s

1400 MB/s1400 MB/s
sustained sustained
payloadpayload

DualDual--portedported
MemoryMemory
(4 MB)(4 MB)

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

MAP Programmers View

4800 MB/s4800 MB/s
(6 x 64b)(6 x 64b)

4800 MB/s4800 MB/s
192b192b

2400 MB/s each2400 MB/s eachGPIOGPIO

4800 MB/s4800 MB/s
(6 x 64b)(6 x 64b)

ControlControl
FPGAFPGA

User User
FPGA 0FPGA 0

User User
FPGA 1FPGA 1

108b108b

4800 MB/s4800 MB/s
(6 x 64b)(6 x 64b)

108b108b

1400 MB/s1400 MB/s
sustained sustained
payload

1400 MB/s1400 MB/s
sustained sustained
payloadpayload payload

MAPMAP

DualDual--portedported
MemoryMemory
(4 MB)(4 MB)

OBMOBM
AA

OBMOBM
BB

OBMOBM
CC

OBMOBM
DD

OBMOBM
EE

OBMOBM
FF

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

MAP C compiler

Pure C runs on the MAP !!Pure C runs on the MAP !!
MAP C Compiler MAP C Compiler
–– Intermediate form: dataflow graph of basic blocksIntermediate form: dataflow graph of basic blocks
–– Generated code: circuitsGenerated code: circuits

•• Basic blocks in outer loops become special purpose Basic blocks in outer loops become special purpose
hardware “function units”hardware “function units”

•• Basic blocks in inner loop bodies are merged and become Basic blocks in inner loop bodies are merged and become
pipelined circuitspipelined circuits

Sequential semantics obeyedSequential semantics obeyed
–– One basic block executed at the timeOne basic block executed at the time
–– Pipelined inner loops are slowed down to disambiguate Pipelined inner loops are slowed down to disambiguate

read/write conflicts if necessaryread/write conflicts if necessary
–– MAP C compiler identifies (cause of) loop slowdownMAP C compiler identifies (cause of) loop slowdown

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Execution Modes

DEBUG ModeDEBUG Mode
–– code runs on workstation code runs on workstation
–– allows debugging (allows debugging (printf printf ☺☺))
–– allows most performance tuning (avoiding loop slow downs)allows most performance tuning (avoiding loop slow downs)
–– user spends most time hereuser spends most time here

Two SIMULATION ModesTwo SIMULATION Modes
–– Dataflow level and Hardware levelDataflow level and Hardware level
–– mostly used by compiler / hardware function unit developers mostly used by compiler / hardware function unit developers
–– very fine grain informationvery fine grain information

HARDWARE ModeHARDWARE Mode
–– final stage of code developmentfinal stage of code development
–– allows performance tuning using timer callsallows performance tuning using timer calls

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Transformational Approach

Start with pure C codeStart with pure C code
Partition Code and DataPartition Code and Data
–– distribute data over distribute data over OBMsOBMs and Block and Block RAMsRAMs
–– distribute code over two FPGAsdistribute code over two FPGAs

•• only one chip at the time can access a particular OBM only one chip at the time can access a particular OBM
•• MPI type communication over the bridge MPI type communication over the bridge

Performance tune (removing inefficiencies)Performance tune (removing inefficiencies)
–– avoid reavoid re--reading of data from reading of data from OBMsOBMs using Delay Queuesusing Delay Queues
–– avoid read / write conflicts in same iterationavoid read / write conflicts in same iteration
–– avoid multiple accesses to a memory in one iterationavoid multiple accesses to a memory in one iteration
–– avoid OBM traffic by fusing loopsavoid OBM traffic by fusing loops

Today’s transformation is tomorrow’s compiler Today’s transformation is tomorrow’s compiler
optimization optimization

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

How to performance tune: Macros

C code can be extended using C code can be extended using macrosmacros allowing allowing
for program transformations that cannot be for program transformations that cannot be
expressed straightforwardly in Cexpressed straightforwardly in C
Macros have semantics unlike C functionsMacros have semantics unlike C functions
–– have a have a periodperiod (#clocks between inputs)(#clocks between inputs)
–– have a have a pipeline delaypipeline delay (#clocks between in and output)(#clocks between in and output)
–– MAP C compiler takes care of period and delayMAP C compiler takes care of period and delay
–– can havecan have state state (kept between macro calls)(kept between macro calls)
–– two types of macrostwo types of macros

•• systemsystem provided provided
–– compiler knows their period and delaycompiler knows their period and delay

•• useruser provided (written in e.g. provided (written in e.g. VerilogVerilog))
–– user needs to provide period and delay user needs to provide period and delay

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Two Case Studies

Wavelet Versatility BenchmarkWavelet Versatility Benchmark
–– Image processing application (wavelet compression) Image processing application (wavelet compression)
–– Part of DARPA/ITO ACS (Adaptive Computing Systems) Part of DARPA/ITO ACS (Adaptive Computing Systems)

benchmark suitebenchmark suite
–– VersatileVersatile: Four phases of : Four phases of different computational nature different computational nature

1:1: wavelet transform:wavelet transform: window access, multiple outputswindow access, multiple outputs
2: quantization: 2: quantization: sum, min, max reductionssum, min, max reductions
3: run length encoding: 3: run length encoding: while loop, irregular outputwhile loop, irregular output
4: Huffman encoding: 4: Huffman encoding: table lookupstable lookups

Gauss Seidel Linear Equation SolverGauss Seidel Linear Equation Solver
–– Numerical (Floating Point) kernelNumerical (Floating Point) kernel
–– Iterative nature: Iterative nature: nonnon--perfect loop structureperfect loop structure
–– Many applicationsMany applications

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Wavelet Versatility Benchmark

Wavelet transformWavelet transform
–– Applied three timesApplied three times

•• Second and third passes use Second and third passes use
upper left quadrant of upper left quadrant of
previous passprevious pass

–– L: Low pass filter (average)L: Low pass filter (average)
–– H: High pass filter (derivative)H: High pass filter (derivative)

Wavelet does not compress Wavelet does not compress
but enables compression in but enables compression in
further stages (many 0s in H)further stages (many 0s in H)
–– Quantization Quantization
–– RunRun--Length EncodingLength Encoding
–– Huffman Encoding

HLHL

LHLH HHHH

HLHL

LHLH HHHH

HLHL

LHLH HHHH

LLLL

Huffman Encoding

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

First wavelet step

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Second wavelet step

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Final wavelet step

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

MAP C Algorithm

One 5x5 window stepping by 2 in both directionsOne 5x5 window stepping by 2 in both directions
–– Computes LL, LH, HL, and HH simultaneouslyComputes LL, LH, HL, and HH simultaneously

–– InefficiencyInefficiency: naive first implementation re: naive first implementation re--accesses accesses
overlapping image elements

LL HLHL

LHLH HHHH

overlapping image elements

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Efficient Window Access

Keep data on chip using Delay QueuesKeep data on chip using Delay Queues
–– E.g. 16 deep (using efficient hardware SLR16 shifters) E.g. 16 deep (using efficient hardware SLR16 shifters)

Simplified example:Simplified example:
–– 3x3 window3x3 window

•• stepping 1 by 1stepping 1 by 1
•• in column major orderin column major order

–– image 16 deepimage 16 deep
•• general case divides general case divides

the Image in 16 deep strips

9 points in stencil 9 points in stencil
8 have been seen 8 have been seen
before before

Per window Per window
the leading the leading
point should point should
be the only be the only
data accessdata access..

input array traversalinput array traversal
the Image in 16 deep strips

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Delay Queues 1

f1f1

Compute f(xCompute f(x11,x,x22,..x,..x99))
Data access input(i)Data access input(i)

f7f7

f8f8

f1f1

f4f4

f5f5

f6f6

f1f1

f2f2

f0f0

f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1

f0f0
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1

two 16two 16––word Delay Queuesword Delay Queues

shift and store previous columnsshift and store previous columns

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Delay Queues 2

f1f1

f7f7

f8f8

f1f1

f4f4

f5f5

f6f6

f1f1

f0f0

f1f1

f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1

f1f1
f0f0
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1

Compute f(xCompute f(x11,x,x22,..x,..x99))
Data access input(i)Data access input(i)

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Delay Queues 3

f1f1

f7f7

f8f8

f1f1

f4f4

f5f5

f6f6

f0f0

f1f1

f2f2

f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1

f2f2
f1f1
f0f0
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1

Compute f(xCompute f(x11,x,x22,..x,..x99))
Data access input(i)Data access input(i)

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Delay Queues 4

f1f1

f7f7

f8f8

f1f1

f4f4

f5f5

f6f6

f1f1

f2f2

f3f3

f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1

f3f3
f2f2
f1f1
f0f0
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1

Compute f(xCompute f(x11,x,x22,..x,..x99))
Data access input(i)Data access input(i)

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Delay Queues 5

f1f1

f7f7

f8f8

f1f1

f4f4

f5f5

f6f6

f2f2

f3f3

f4f4

f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1

f4f4
f3f3
f2f2
f1f1
f0f0
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1

Compute f(xCompute f(x11,x,x22,..x,..x99))
Data access input(i)Data access input(i)

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

… Delay Queues 16

f0f0

f7f7

f8f8

f1f1

f4f4

f5f5

f0f0

f13f13

f14f14

f15f15

f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1

f15f15
f14f14
f13f13
f12f12
f11f11
f10f10
f9f9
f8f8
f7f7
f6f6
f5f5
f4f4
f3f3
f2f2
f1f1
f0f0

Compute f(xCompute f(x11,x,x22,..x,..x99))
Data access input(i)Data access input(i)

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Delay Queues 17

f0f0

f7f7

f8f8

f1f1

f4f4

f0f0

f0f0

f14f14

f15f15

f16f16

f0f0
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1

Compute f(xCompute f(x11,x,x22,..x,..x99))

f16f16
f15f15
f14f14
f13f13
f12f12
f11f11
f10f10
f9f9
f8f8
f7f7
f6f6
f5f5
f4f4
f3f3
f2f2
f1f1

Data access input(i)Data access input(i)

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Delay Queues 18

f1f1

f7f7

f8f8

f1f1

f0f0

f0f0

f1f1

f15f15

f16f16

f17f17

f0f0
f0f0
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1
f1f1

Compute f(xCompute f(x11,x,x22,..x,..x99))

f17f17
f16f16
f15f15
f14f14
f13f13
f12f12
f11f11
f10f10
f9f9
f8f8
f7f7
f6f6
f5f5
f4f4
f3f3
f2f2

Data access input(i)Data access input(i)

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

…Delay Queues 32

f15f15

f7f7

f8f8

f1f1

f13f13

f14f14

f15f15

f29f29

f30f30

f31f31

f14f14
f13f13
f12f12
f11f11
f10f10
f9f9
f8f8
f7f7
f6f6
f5f5
f4f4
f3f3
f2f2
f1f1
f0f0

Compute f(xCompute f(x11,x,x22,..x,..x99))

f31f31
f30f30
f29f29
f28f28
f27f27
f26f26
f25f25
f24f24
f23f23
f22f22
f21f21
f20f20
f19f19
f18f18
f17f17
f16f16

Data access input(i)Data access input(i)

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

…Delay Queues 35

f18f18

f0f0

f1f1

f2f2

f16f16

f17f17

f18f18

f32f32

f33f33

f34f34

f17f17
f16f16
f15f15
f14f14
f13f13
f12f12
f11f11
f10f10
f9f9
f8f8
f7f7
f6f6
f5f5
f4f4
f3f3

Compute f(xCompute f(x11,x,x22,..x,..x99))

f34f34
f33f33
f32f32
f31f31
f30f30
f29f29
f28f28
f27f27
f26f26
f25f25
f24f24
f23f23
f22f22
f21f21
f20f20
f19f19

Data access input(i)Data access input(i)

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Delay Queues 36

f19f19

f1f1

f2f2

f3f3

f17f17

f18f18

f19f19

f33f33

f34f34

f35f35

f18f18
f17f17
f16f16
f15f15
f14f14
f13f13
f12f12
f11f11
f10f10
f9f9
f8f8
f7f7
f6f6
f5f5
f4f4

Compute f(xCompute f(x11,x,x22,..x,..x99))

f35f35
f34f34
f33f33
f32f32
f31f31
f30f30
f29f29
f28f28
f27f27
f26f26
f25f25
f24f24
f23f23
f22f22
f21f21
f20f20

Data access input(i)Data access input(i)

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Delay Queues 37

f20f20

f2f2

f3f3

f4f4

f18f18

f19f19

f20f20

f34f34

f35f35

f36f36

f19f19
f18f18
f17f17
f16f16
f15f15
f14f14
f13f13
f12f12
f11f11
f10f10
f9f9
f8f8
f7f7
f6f6
f5f5

Compute f(xCompute f(x11,x,x22,..x,..x99))

f36f36
f35f35
f34f34
f33f33
f32f32
f31f31
f30f30
f29f29
f28f28
f27f27
f26f26
f25f25
f24f24
f23f23
f22f22
f21f21

Data access input(i)Data access input(i)

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Delay Queues: Performance

3x3 window access code
512 x 512 pixel image512 x 512 pixel image

Routine StyleRoutine Style NumberNumber CommentComment
of clocksof clocks

Straight WindowStraight Window 2,376,6172,376,617 close to 9 clocks per iterationclose to 9 clocks per iteration
2,340,900: t2,340,900: the difference he difference
is pipeline is pipeline prime effectprime effect

Delay QueueDelay Queue 279,999279,999 close to1 clock per iterationclose to1 clock per iteration
262144: theoretical limit262144: theoretical limit

FPGA timing behavior is very predictableFPGA timing behavior is very predictable

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Wavelet Benchmark cont’

Rest of the code:Rest of the code:
–– Quantize each block in 16 bins per blockQuantize each block in 16 bins per block
–– Run Length Encode zeroes Run Length Encode zeroes

•• Occur frequently in derivative blocksOccur frequently in derivative blocks
–– Huffman Encode Huffman Encode

Three transformationsThree transformations
–– Fuse the three loops avoiding OBM trafficFuse the three loops avoiding OBM traffic
–– Use accumulator macros to avoid R / W conflictsUse accumulator macros to avoid R / W conflicts

•• (see Gauss Seidel case study)(see Gauss Seidel case study)
–– Task parallelize the complete code over two FPGAsTask parallelize the complete code over two FPGAs

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Versatility Benchmark: Performance

512x512 image512x512 image
Bit true results as compared to reference codeBit true results as compared to reference code
Full implementation: All phases run on FPGAsFull implementation: All phases run on FPGAs

Reference code compiled using Intel C compilerReference code compiled using Intel C compiler
executed on 2.8 GHz Pentium IV: executed on 2.8 GHz Pentium IV: 76.0 76.0 millimilli--secsec
MAP execution time: MAP execution time: 2.0 2.0 millimilli--secsec
MAP Speedup vs. Pentium MAP Speedup vs. Pentium 3838

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Gauss Seidel Iterative Solver

Scientific Floating Point Kernel (single precision for now)Scientific Floating Point Kernel (single precision for now)
Works for diagonally dominant matricesWorks for diagonally dominant matrices
Some math manipulation to create an iterative solver:Some math manipulation to create an iterative solver:

Ax = b Ax = b ÆÆ (L+D+U)x = b (L+D+U)x = b ÆÆ x = Dx = D--11bb--DD--11(L+U)x (L+U)x ÆÆ xxn+1n+1 = (= (AbAb))xxnn

while(while(maxerrormaxerror > tolerance) { // do a next iteration> tolerance) { // do a next iteration
maxerrormaxerror = 0.0;= 0.0;
for(i=0;i<n;i++) { //for(i=0;i<n;i++) { // compute new x[i]compute new x[i]

sxisxi = x[i];= x[i];
xi = 0.0;xi = 0.0;
for(j=0;j<n+1;j++) for(j=0;j<n+1;j++)

xi += xi += AbAb[i*COL+j] * x[j]; // in product[i*COL+j] * x[j]; // in product
error = abs(xi error = abs(xi –– sxisxi););

}}
maxerrormaxerror = max(= max(maxerrormaxerror, error);, error);

}}

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Pure C

User Logic
Chip

Algorithm in
logic

ld xj ld Abij

st xi

new
xicompute

errori

for j

for i

ld xi

old
xi

i
xi

xj

X
BRAM

x

i

j Ab

Abij

OBM
A

reg

+

Loop SlowdownLoop Slowdown
caused by caused by
Read/Write Read/Write

conflictconflict

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Accumulator Macro

ld xj ld Abij

hw
accumulator

st xi

new
xicompute

errori

for j

for i

ld xi

old
xi

i
xi

xj

X
BRAM

x

i

j Ab

Abij

OBM
A

Hardware Hardware
AccumulatorAccumulator

macromacro
resolvesresolves

read / writeread / write
conflictconflict

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Packing the data

ld xj xj+1 ld Abij Abij+1

hw
accumulator

new
xicompute

errori

for j

for i

cond_ld
xi

old
xi

i
xi

j xj

X
BRAM

x

i

jOBM A

cond_store
xi

x

+

Abij
Abij+1

i

j

odd even

j+1
64 bit OBM word64 bit OBM word

can contain two floats can contain two floats

This requires This requires unrolling j loopunrolling j loop
which now accesses which now accesses
AbAbii jj AbAbii j+1j+1 XXjj XXj+1j+1

To avoid multiple Block To avoid multiple Block
RAM reads, X is stripe RAM reads, X is stripe

partitioned over two Block partitioned over two Block
RAM arrays RAM arrays

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Pack Abstracted

new
xicompute

errori

for j

for i

cond_ld
xi

old
xi

i
xi

j xj

X
BRAM

cond_store
xi

i

j

mac 2ij

odd even

i

jOBM A

Abij
Abij+1

j+1

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Data Partitioned into 3 blocks

new
xi

for j

for i

old
xi

i
xi

j

xj

X
BRAM

cond_store
xi, xi+b, xi+2b

i

j

mac2 i,j

OBM B

mac2 i+b,j mac2
i+2b,j

OBM C

compute
errori

i+b

b

2b-1

i+2b

2b

3b-1

odd even

i

OBM A

b-1

j j+1 j j+1 j j+1

i+bi+b

i+2bi+2b

cond_load
xi, xi+b, xi+2b

AbAb is now is now
rowrow--blockblock
distributeddistributed
(3 blocks in(3 blocks in

3 3 OBMsOBMs))

j loop now j loop now
computescomputes
3 new Xs3 new Xs

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Two FPGAs

for j

for i

cond_ld
xi, xi+b,

xi+2b

j

X
BRAM

OBM A

j

mac2
i,j

OBM B

mac2
i+b,j

mac2
i+2b,j

OBM C

compute
error

Store &
compute errorUser

Chip 0

for j

for i

cond_ld
xi, xi+b,

xi+2b

j

X
BRAM

OBM D

j

mac2
i,j

OBM E

mac2
i+b,j

mac2
i+2b,j

OBM F

compute
error

Store &
compute errorUser

Chip 1

ii

i+bi+b

i+2bi+2b

ii

i+bi+b

i+2bi+2b

AbAb is row block distributed (6 blocks in 6 is row block distributed (6 blocks in 6 OBMsOBMs))
The jThe j--loops perform 24 Floating Ops in each clockloops perform 24 Floating Ops in each clock

FPGA0 and FPGA1 exchange 3 Xs, 1 error FPGA0 and FPGA1 exchange 3 Xs, 1 error

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Gauss Seidel Performance

n=500n=500 n=1000n=1000 n=2000n=2000
No. IterationsNo. Iterations 2727 66 77

Pentium IV Pentium IV 0.19 0.19 secssecs 0.48 0.48 secssecs 1.90 1.90 secssecs
(2.8 GHz)(2.8 GHz) 65 65 MFlopsMFlops 26 26 MFlopsMFlops 28 28 MFlopsMFlops

MAP MAP 0.013 0.013 secssecs 0.008 0.008 secssecs 0.031 0.031 secs secs
830 830 MFlopsMFlops 1.23 1.23 GFlopsGFlops 1.65 1.65 GFlopsGFlops

MAP speedupMAP speedup
vs. Pentium vs. Pentium 14 14 57 57 6060

HPEC 2004 Copyright © 2004 SRC Computers, Inc. ALL RIGHTS RESERVED.

Conclusions

High Level Algorithmic Language runs on FPGA based High Level Algorithmic Language runs on FPGA based
HPEC systemHPEC system
–– DEBUG Mode allows most development on workstationDEBUG Mode allows most development on workstation

We can apply standard software design methodologiesWe can apply standard software design methodologies
–– stepwise refinementstepwise refinement

•• currently using macroscurrently using macros
•• later using (user directed?) compiler optimizationslater using (user directed?) compiler optimizations

Bandwidth is key to FPGA performanceBandwidth is key to FPGA performance
–– Often, more operations are available in the FPGA fabric than Often, more operations are available in the FPGA fabric than

can be supplied by the available offcan be supplied by the available off--chip I/Ochip I/O
–– FPGA capability is improving rapidlyFPGA capability is improving rapidly

Currently speedups ~50 vs. Pentium IV Currently speedups ~50 vs. Pentium IV
Future: Multiple MAPsFuture: Multiple MAPs
–– More complex, streaming applicationsMore complex, streaming applications

	Presentation:
	Abstract:
	Agenda:

