

Software Architecture for Morphing in Polymorphous Computing Architectures

Daniel P. Campbell Mark A. Richards Dennis M. Cottel, Randall R. Judd
Georgia Tech Research

Institute
Electrical & Computer

Engineering
Space & Naval Warfare Systems Center

San Diego
Georgia Institute of Technology, Atlanta, GA 30332

1. Introduction
The Polymorphous Computing Architectures (PCA) program is a
Defense Advanced Research Projects Agency (DARPA) effort to
develop new embedded computing platforms with very strong,
rapid in-mission reconfigurability. Target applications range
from military platforms that must adapt to rapidly changing
mission parameters, to embedded network controllers whose
optimal configuration of hardware resources will change in
response to the traffic and environmental conditions they face.
The PCA program “core projects” working to develop
microprocessors that implement polymorphous capabilities
include Smart Memories, Raw, TRIPS, and MONARCH;
references for all are available in [1]. The chips under
development in these projects have several characteristics in
common. These are typically tiled structures composed from
replicated, fully capable computing cores, reconfigurable memory
and cache elements, and a rich set of reconfigurable data paths,
network interfaces, and I/O paths. Each can operate in streaming
or threaded modes. Each has mechanisms for aggregating
individual processor tiles into larger compound processor units.
They differ in their approach for aggregating processors and in
their emphasis on processor, memory, or communication design.

Figure 1 illustrates a generic PCA microarchitecture.
This ability to aggregate varying numbers and types of elements
on a PCA chip means that the chip can be effectively partitioned
into multiple processors of similar or different types, with each
partition assigned to a different portion of the application program
or even to different programs. For instance, one portion of a PCA

device could be optimized for stream processing and dedicated to
a sensor processing dataflow computation, while another is
configured for conventional thread processing and allocated to
conventional control processing. Furthermore, the number of chip
tiles dedicated to each processor type could be varied based on
expected loads.
To exploit the capabilities of PCA hardware while retaining as
much end-user portability and performance as possible, the
Morphware Forum (www.morphware.org), an informal
consortium of the PCA contractors and other selected participants,
is creating an application development framework, called the
Morphware Stable Interface (MSI). An overview of the MSI is
available in [1].
A key capability envisioned for PCA systems is morphing, the
reconfiguration and re-allocation of PCA hardware resources
within a chip in response to various events.. Morphing is
fundamentally enabled by the reconfigurable hardware
microarchitecture of PCA chips, but is made accessible to the
programming environment through the MSI. Thus, a major
software design issue for the PCA program is how to structure the
MSI so as to support morphing while maintaining portability
across the various PCA targets.

2. Types of Morphing
The MSI envisions a component-based application software
architecture. Components provide natural and intuitive
boundaries for run-time reconfiguration of hardware. In general,
multiple implementations of various units of functionality (e.g., a
fast Fourier transform) will exist as different components, each
offering different trades of performance and system requirements,
and capable of being compiled to differing amounts of hardware
resources. Morphing then implies changing either the particular
component implementations in use, the resources assigned to the
components, or both. Different types of morphing can thus be
classified based on three orthogonal characteristics:

• whether the application code directly makes an
application programming interface (API) call to initiate
morphing, or it is done invisibly to the user by either the
run-time system or the compiler;

• whether the component continues to execute or is
reloaded or replaced with an alternate component; and

• whether the resources allocated to the application must
change or stay the same

The Morphware Forum has developed a taxonomy of morph
types, summarized in Table 1, to describe the various situations.

Figure 1. Generic PCA chip micro-architecture.

PCA chip

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

(replicated PCA tile) (replicated PCA tile) (replicated PCA tile)

(replicated PCA tile) (replicated PCA tile) (replicated PCA tile)

re
pl

ic
at

ed
 ti

le
re

pl
ic

at
ed

 ti
le

replicated tile
replicated tile

P Reconfigurable processor

M Reconfigurable memory

C Reconfigurable cache

Fixed communication

Configurable communication

PCA chip

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

(replicated PCA tile) (replicated PCA tile) (replicated PCA tile)

(replicated PCA tile) (replicated PCA tile) (replicated PCA tile)

re
pl

ic
at

ed
 ti

le
re

pl
ic

at
ed

 ti
le

replicated tile
replicated tile

P Reconfigurable processor

M Reconfigurable memory

C Reconfigurable cache

Fixed communication

Configurable communication

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 FEB 2005

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Software Architecture for Morphing in Polymorphous Computing
Architectures

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Georgia Institute of Technology, Atlanta, GA 30332

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM00001742, HPEC-7 Volume 1, Proceedings of the Eighth Annual High Performance
Embedded Computing (HPEC) Workshops, 28-30 September 2004 Volume 1., The original document
contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Table 1. PCA Morphing Taxonomy

Run-time System Application Programmer Compiling System
 Components

continue
Components

change
Components

continue
Components

change
Components

continue
Components

change

Type 0a Type 1a Type 2a Type 3a Type 4a Type 5a

Resource
allocation doesn’t

change

Run-time
environment

changes
transparently to the
running application.

Run-time system
changes

components to
reconfigured but
equivalent set of

resources.

Application makes
API call to make

suggestions.

Application makes
API call to change
processing mode
but does so within
existing resource

set.

Compiler
instructions
reconfigure
allocated

resources.

Compiler switches
to a different library

able to use the
same resources.

Type 0b Type 1b Type 2b Type 3b Type 4b Type 5b

Resource
allocation
changes

Run-time system
changes resource

allocation of a
running application
transparently to the

application.

Run-time system
configures

resources and
loads components

at application
startup.

Application makes
API call to give up

or gain some
resources.

Application makes
API call to add or

replace one or
more components

using different
resources.

Compiler requests
different resources
to meet change in

performance
specified by
metadata.

Compiler switches
to a different library
that uses different

resources.

3. Morphing in the MSI
3.1 Compilation Architecture
Portability across alternative PCA target devices is obtained in the
MSI by using a two-level compilation architecture, as shown in
Figure 2. The application program is partitioned by the user or by
tools yet to be developed into streaming units and non-streaming
(conventional) units. The former are expressed in a specialized
streaming language such as Brook or StreamIt, while the latter are
in conventional C or C++ code. The high level compiler (HLC)
takes in this user source code as well as a machine model (MM), a
metadata description of the resources available on the PCA
devices to the compilation unit and their configuration.

The HLC compiles the streaming input units to a stream virtual
machine (SVM) description. The HLC utilizes the information in
the particular MM provided with the source code to optimize the
coarse-grain parallelization of the streaming program unit. Thus,
the same application code will produce different SVM codes,
depending on the machine model description of the available
resources. This mechanism provides the basic capability for
portability across multiple target machines, as well as the
capability to vary the amount of resources assigned to a functional
unit within the same machine.

Threaded code is expressed in terms of a thread virtual machine
(TVM), in turn composed of a user-level VM (UVM) and a
hardware architecture layer (HAL). Other than expressing the
output in these machine-neutral APIs, the HLC largely passes
threaded code to the output without optimization. The machine-
specific low level compilers (LLCs) then compile the VM code
for their particular target PCA machine, performing further fine-
grained parallelization and optimizations as appropriate.

3.2 Morphing Mechanisms
As seen in Table 1, some morphing operations are defined by the
compiler, while others are controlled by the run-time system,
most likely in the form of a yet-to-be-defined resource manager.
Thus, morphing is actually implemented by various levels of the
MSI, depending on the type of morph. Compiler-directed morphs
can be the result of changes in the machine model for the target
hardware, of coarse-grain optimization decisions made by the
HLC, or of fine-grain configuration decisions made by the LLC.
Morphs that change the executing components must be initiated
and controlled by the run-time system of the PCA machine.
Several methods for representing the various forms of morphing
have been proposed, including modeling morphs as program
branches, explicit control of variables representing machine state
at the SAPI or SAAL levels, and marking sections of code with
performance and resource constraint expressions. The candidate
approaches to date will be described and compared, considering
such issues as the level of the MSI at which they are
implemented; granularity; and visibility to and controllability by
the programmer Selecting and vetting the appropriate interfaces
to represent morphing is currently a primary focus of the
Morphware Forum.

4. References
[1] The Morphware Forum, “Introduction to Morphware: Software

Architecture for Polymorphous Computing Architectures”, version
1.0, Feb. 23, 2004. Available at www.morphware.org.

Figure 2. MSI Compilation Architecture.

StreamIt Brook C/C++ Others…
Stable APIs (SAPI)

Stable Architecture
Abstraction Layer
(SAAL)

Binaries

Low Level Compilers

TRIPS MONARCH Smart Memories RAW Others...

High Level Compilers Target
Machine Model

Virtual Machine API
Stream VM

API
User-level VM API

Hardware Architecture Layer

Virtual Machine API
Stream VM

API
User-level VM API

Hardware Architecture Layer

PCA PI Meeting #7, August 2004 1

Software Architectures for Morphing in
Polymorphous Computing Architectures

Dan Campbell, Mark Richards
Georgia Tech

Dennis Cottel, Randy Judd
USN SSC-SD

High Performance Embedded Computing Workshop
28 September 2004

Morphing in PCA Architectures

PCA PI Meeting #7, August 2004 2

The DARPA Polymorphous Computing Architectures
(PCA) program is developing embedded high-
performance computing platforms with strong, rapid
reconfigurability

PCA processors are essentially
“multiprocessors on a chip”

tiled architectures
reconfigurable processing
aggregates
reconfigurable networks

“Morphing” is the reconfiguration and re-allocation of
PCA hardware resources within a chip in response to
various events

key capability to achieve PCA goals
portability across PCA chips must be maintained

PCA chip

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

(replicated PCA tile) (replicated PCA tile) (replicated PCA tile)

(replicated PCA tile) (replicated PCA tile) (replicated PCA tile)

re
pl

ic
at

ed
 ti

le
re

pl
ic

at
ed

 ti
le

replicated tile
replicated tile

P Reconfigurable processor

M Reconfigurable memory

C Reconfigurable cache

Fixed communication

Configurable communication

PCA chip

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

(replicated PCA tile) (replicated PCA tile) (replicated PCA tile)

(replicated PCA tile) (replicated PCA tile) (replicated PCA tile)

re
pl

ic
at

ed
 ti

le
re

pl
ic

at
ed

 ti
le

replicated tile
replicated tile

P Reconfigurable processor

M Reconfigurable memory

C Reconfigurable cache

Fixed communication

Configurable communication

PCA chip

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

(replicated PCA tile) (replicated PCA tile) (replicated PCA tile)

(replicated PCA tile) (replicated PCA tile) (replicated PCA tile)

re
pl

ic
at

ed
 ti

le
re

pl
ic

at
ed

 ti
le

replicated tile
replicated tile

P Reconfigurable processor

M Reconfigurable memory

C Reconfigurable cache

Fixed communication

Configurable communication

PCA chip

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

P C

C P
M M

(replicated PCA tile) (replicated PCA tile) (replicated PCA tile)

(replicated PCA tile) (replicated PCA tile) (replicated PCA tile)

re
pl

ic
at

ed
 ti

le
re

pl
ic

at
ed

 ti
le

replicated tile
replicated tile

P Reconfigurable processor

M Reconfigurable memory

C Reconfigurable cache

Fixed communication

Configurable communication

PCA Two-Level Module Compilation Architecture

PCA PI Meeting #7, August 2004 3

Two-level compile + customizable machine models
enables targeting of same functionality to multiple
machine configurations

StreamIt Brook C/C++ Others…
Stable APIs (SAPI)

Stable Architecture
Abstraction Layer
(SAAL)

Binaries

Low Level Compilers

TRIPS MONARCH Smart Memories RAW Others...

High Level Compilers

Virtual Machine API

Machine Model
Metadata Context

SVM
TVM-HAL

UVM

PCA Morph Taxonomy Dimensions

PCA PI Meeting #7, August 2004 4

Compiler
switches to a

different library
that uses
different

resources.

Compiler
requests
different

resources to
meet change in

performance
specified by
metadata.

Application
makes API call

to add or
replace one or

more
components

using different
resources.

Application
makes API call

to give up or
gain some
resources.

Run-time
system

configures
resources and

loads
components at

application
startup.

Run-time
system

changes
resource

allocation of a
running

application
transparently to
the application.

Type 5bType 4bType 3bType 2bType 1bType 0b

Resource
allocation
changes

Compiler
switches to a

different library
able to use the

same
resources.

Compiler
instructions
reconfigure
allocated

resources.

Application
makes API call

to change
processing

mode but does
so within
existing

resource set.

Application
makes API call

to make
suggestions.

Run-time
system

changes
components to
reconfigured

but equivalent
set of

resources.

Run-time
environment

changes
transparently to

the running
application.

Type 5aType 4aType 3aType 2aType 1aType 0a

Resource
allocation
doesn’t
change

Components
change

Components
continue

Components
change

Components
continue

Components
change

Components
continue

Compiling SystemApplication ProgrammerRun-time System

Compiler
switches to a

different library
that uses
different

resources.

Compiler
requests
different

resources to
meet change in

performance
specified by
metadata.

Application
makes API call

to add or
replace one or

more
components

using different
resources.

Application
makes API call

to give up or
gain some
resources.

Run-time
system

configures
resources and

loads
components at

application
startup.

Run-time
system

changes
resource

allocation of a
running

application
transparently to
the application.

Type 5bType 4bType 3bType 2bType 1bType 0b

Resource
allocation
changes

Compiler
switches to a

different library
able to use the

same
resources.

Compiler
instructions
reconfigure
allocated

resources.

Application
makes API call

to change
processing

mode but does
so within
existing

resource set.

Application
makes API call

to make
suggestions.

Run-time
system

changes
components to
reconfigured

but equivalent
set of

resources.

Run-time
environment

changes
transparently to

the running
application.

Type 5aType 4aType 3aType 2aType 1aType 0a

Resource
allocation
doesn’t
change

Components
change

Components
continue

Components
change

Components
continue

Components
change

Components
continue

Compiling SystemApplication ProgrammerRun-time SystemA taxonomy of morph possibilities has
been established by the Morphware
Forum
Morphs distinguished by

Initiator: application, run-time system, or
compiler-generated code
Resource constancy: static, or changed
Component persistence: continues, or is
replaced

Morph Taxonomy

Morphware Stable Interface Architecture

Software Architectures for Morphing in
Polymorphous Computing Architectures
Software Architectures for Morphing in

Polymorphous Computing Architectures
Dan Campbell, Mark Richards
Georgia Institute of Technology

Dennis Cottel, Randall Judd
USN SPAWAR Systems Center, San Diego

The Morphware Stable Interface
Standard PCA Application Environment

Defined by a set of open standards documents

Based on a virtual machine (VM) abstraction
layer with standardized metadata and
programming languages
Goals

Foster software portability across PCA architectures
Dynamically optimize PCA resources for application
functionality, service requirements, and constraints
Obtain nearly optimal performance from PCA hardware
Be highly reactive to PCA hardware and user inputs
Manage PCA software complexity
Leverage existing and developing technologies

Cross-project effort, developed in parallel with
the hardware

For more information: www.morphware.org

Source Code

SVM Code TVM Code

Application
Metadata

Application
Programmer Provides:

Machine Model

Runtime System

A
rchitecture V

endor
P

rovides:

HIGH-LEVEL COMPILER

LOW-LEVEL COMPILER/LINKER/LOADER

PCA SYSTEM

Executable Binary

Stream Code Thread Code

Th
ird

 P
ar

tie
s

P
ro

vi
de

:

Libraries

Libraries

Morphing in the MSI
MSI assumes component-based architecture

natural and intuitive boundaries for compilation and run- time
reconfiguration
natural support for multiple SWEPT- variant implementations of
units of functionality

Morphing implies changing …
component implementations in use;
resources assigned to components;
or both

Implies a taxonomy of morph types
Morphing will be implemented at various levels
of MSI

compiler
run- time system
resource manager

SAPI and SAAL
Two intermediate representations

Stable API: application code in C/C++ and a stream
language such as Brook or Streamit
Stable Architecture Abstraction Layer: PCA virtual
machine code

Development Process
Two-stage compile process enables portable
performance across PCA architectures

VM Layers
User accesses User-
level VM for thread
code, Stream VM for
stream code
TVM- HAL abstracts
low- level hardware to
UVM

Machine Models
Used to optimize VM
output for different
target platforms

Coarse grain mapping of
application to target
resources

Describes target
platform using
common dictionary of
virtual resources and
attributes

Processors
Memories
Net- Links

L2
cache

GMEM

Stream.
Proc

Local
RAML1

Instr

L1
Data

Thread.
Proc

L1
Instr

L1
Data

Stream.
Proc

Stream.
Proc

Local
RAM

Local
RAM

L1
Instr

L1
Instr

L1
Data

L1
Data

Example: University of Texas TRIPS
Machine Model for R-Stream 1.1

DMA

DMADMA

Compiler
switches to a

different library
that uses
different

resources.

Compiler
requests
different

resources to
meet change in

performance
specified by
metadata.

Application
makes API call

to add or
replace one or

more
components

using different
resources.

Application
makes API call
to give up or
gain some
resources.

Run-time
system

configures
resources and

loads
components at

application
startup.

Run-time
system

changes
resource

allocation of a
running

application
transparently to
the application.

Type 5bType 4bType 3bType 2bType 1bType 0b

Resource
allocation
changes

Compiler
switches to a

different library
able to use the

same
resources.

Compiler
instructions
reconfigure
allocated

resources.

Application
makes API call

to change
processing

mode but does
so within
existing

resource set.

Application
makes API call

to make
suggestions.

Run-time
system

changes
components to
reconfigured

but equivalent
set of

resources.

Run-time
environment

changes
transparently to

the running
application.

Type 5aType 4aType 3aType 2aType 1aType 0a

Resource
allocation

doesn’t change

Components
change

Components
continue

Components
change

Components
continue

Components
change

Components
continue

Compiling SystemApplication ProgrammerRun-time System

Compiler
switches to a

different library
that uses
different

resources.

Compiler
requests
different

resources to
meet change in

performance
specified by
metadata.

Application
makes API call

to add or
replace one or

more
components

using different
resources.

Application
makes API call
to give up or
gain some
resources.

Run-time
system

configures
resources and

loads
components at

application
startup.

Run-time
system

changes
resource

allocation of a
running

application
transparently to
the application.

Type 5bType 4bType 3bType 2bType 1bType 0b

Resource
allocation
changes

Compiler
switches to a

different library
able to use the

same
resources.

Compiler
instructions
reconfigure
allocated

resources.

Application
makes API call

to change
processing

mode but does
so within
existing

resource set.

Application
makes API call

to make
suggestions.

Run-time
system

changes
components to
reconfigured

but equivalent
set of

resources.

Run-time
environment

changes
transparently to

the running
application.

Type 5aType 4aType 3aType 2aType 1aType 0a

Resource
allocation

doesn’t change

Components
change

Components
continue

Components
change

Components
continue

Components
change

Components
continue

Compiling SystemApplication ProgrammerRun-time System

StreamIt Brook C/C++ Others…
Stable APIs (SAPI)

Stable Architecture
Abstraction Layer
(SAAL)

Binaries

Low Level Compilers

TRIPS MONARCH Smart Memories RAW Others...

High Level Compilers

Virtual Machine API

Machine Model
Metadata Context

SVM
TVM-HAL

UVM SVM
TVM-HAL

UVM

Applications
LIBsOSs

SVM

Hardware
TVM-HAL

UVM

	Precis:
	Poster:
	Agenda:
	Abstract:

