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1. Introduction 
The Polymorphous Computing Architectures (PCA) program is a 
Defense Advanced Research Projects Agency (DARPA) effort to 
develop new embedded computing platforms with very strong, 
rapid in-mission reconfigurability.  Target applications range 
from military platforms that must adapt to rapidly changing 
mission parameters, to embedded network controllers whose 
optimal configuration of hardware resources will change in 
response to the traffic and environmental conditions they face. 
The PCA program “core projects” working to develop 
microprocessors that implement polymorphous capabilities 
include Smart Memories, Raw, TRIPS, and MONARCH; 
references for all are available in [1].  The chips under 
development in these projects have several characteristics in 
common.  These are typically tiled structures composed from 
replicated, fully capable computing cores, reconfigurable memory 
and cache elements, and a rich set of reconfigurable data paths, 
network interfaces, and I/O paths.  Each can operate in streaming 
or threaded modes.  Each has mechanisms for aggregating 
individual processor tiles into larger compound processor units.  
They differ in their approach for aggregating processors and in 
their emphasis on processor, memory, or communication design. 

Figure 1 illustrates a generic PCA microarchitecture. 
This ability to aggregate varying numbers and types of elements 
on a PCA chip means that the chip can be effectively partitioned 
into multiple processors of similar or different types, with each 
partition assigned to a different portion of the application program 
or even to different programs.  For instance, one portion of a PCA  

device could be optimized for stream processing and dedicated to 
a sensor processing dataflow computation, while another is 
configured for conventional thread processing and allocated to 
conventional control processing.  Furthermore, the number of chip 
tiles dedicated to each processor type could be varied based on 
expected loads. 
To exploit the capabilities of PCA hardware while retaining as 
much end-user portability and performance as possible, the 
Morphware Forum (www.morphware.org), an informal 
consortium of the PCA contractors and other selected participants, 
is creating an application development framework, called the 
Morphware Stable Interface (MSI).  An overview of the MSI is 
available in [1]. 
A key capability envisioned for PCA systems is morphing, the 
reconfiguration and re-allocation of PCA hardware resources 
within a chip in response to various events..  Morphing is 
fundamentally enabled by the reconfigurable hardware 
microarchitecture of PCA chips, but is made accessible to the 
programming environment through the MSI.  Thus, a major 
software design issue for the PCA program is how to structure the 
MSI so as to support morphing while maintaining portability 
across the various PCA targets. 

2. Types of Morphing 
The MSI envisions a component-based application software 
architecture.  Components provide natural and intuitive 
boundaries for run-time reconfiguration of hardware.  In general, 
multiple implementations of various units of functionality (e.g., a 
fast Fourier transform) will exist as different components, each 
offering different trades of performance and system requirements, 
and capable of being compiled to differing amounts of hardware 
resources.  Morphing then implies changing either the particular 
component implementations in use, the resources assigned to the 
components, or both.  Different types of morphing can thus be 
classified based on three orthogonal characteristics: 

• whether the application code directly makes an 
application programming interface (API) call to initiate 
morphing, or it is done invisibly to the user by either the 
run-time system or the compiler; 

• whether the component continues to execute or is 
reloaded or replaced with an alternate component; and 

• whether the resources allocated to the application must 
change or stay the same 

The Morphware Forum has developed a taxonomy of morph 
types, summarized in Table 1, to describe the various situations.

Figure 1.  Generic PCA chip micro-architecture. 
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Table 1. PCA Morphing Taxonomy 

Run-time System Application Programmer Compiling System 
 Components 

continue 
Components  

change 
Components  

continue 
Components  

change 
Components  

continue 
Components 

change 

Type 0a Type 1a Type 2a Type 3a Type 4a Type 5a 

Resource 
allocation doesn’t 

change 

Run-time 
environment 

changes 
transparently to the 
running application. 

Run-time system 
changes 

components to 
reconfigured but 
equivalent set of 

resources. 

Application makes 
API call to make 

suggestions. 

Application makes 
API call to change 
processing mode 
but does so within 
existing resource 

set. 

Compiler 
instructions 
reconfigure 
allocated 

resources. 

Compiler switches 
to a different library 

able to use the 
same resources. 

Type 0b Type 1b Type 2b Type 3b Type 4b Type 5b 

Resource 
allocation 
changes 

Run-time system 
changes resource 

allocation of a 
running application 
transparently to the 

application. 

Run-time system 
configures 

resources and 
loads components 

at application 
startup. 

Application makes 
API call to give up 

or gain some 
resources. 

Application makes 
API call to add or 

replace one or 
more components 

using different 
resources. 

Compiler requests 
different resources 
to meet change in 

performance 
specified by 
metadata. 

Compiler switches 
to a different library 
that uses different 

resources. 

 

3. Morphing in the MSI 
3.1 Compilation Architecture 
Portability across alternative PCA target devices is obtained in the 
MSI by using a two-level compilation architecture, as shown in 
Figure 2.  The application program is partitioned by the user or by 
tools yet to be developed into streaming units and non-streaming 
(conventional) units.  The former are expressed in a specialized 
streaming language such as Brook or StreamIt, while the latter are 
in conventional C or C++ code.  The high level compiler (HLC) 
takes in this user source code as well as a machine model (MM), a 
metadata description of the resources available on the PCA 
devices to the compilation unit and their configuration. 

The HLC compiles the streaming input units to a stream virtual 
machine (SVM) description. The HLC utilizes the information in 
the particular MM provided with the source code to optimize the 
coarse-grain parallelization of the streaming program unit.  Thus, 
the same application code will produce different SVM codes, 
depending on the machine model description of the available 
resources.  This mechanism provides the basic capability for 
portability across multiple target machines, as well as the 
capability to vary the amount of resources assigned to a functional 
unit within the same machine. 

Threaded code is expressed in terms of a thread virtual machine 
(TVM), in turn composed of a user-level VM (UVM) and a 
hardware architecture layer (HAL).  Other than expressing the 
output in these machine-neutral APIs, the HLC largely passes 
threaded code to the output without optimization.  The machine-
specific low level compilers (LLCs) then compile the VM code 
for their particular target PCA machine, performing further fine-
grained parallelization and optimizations as appropriate. 

3.2 Morphing Mechanisms 
As seen in Table 1, some morphing operations are defined by the 
compiler, while others are controlled by the run-time system, 
most likely in the form of a yet-to-be-defined resource manager.  
Thus, morphing is actually implemented by various levels of the 
MSI, depending on the type of morph.  Compiler-directed morphs 
can be the result of changes in the machine model for the target 
hardware, of coarse-grain optimization decisions made by the 
HLC, or of fine-grain configuration decisions made by the LLC.  
Morphs that change the executing components must be initiated 
and controlled by the run-time system of the PCA machine. 
Several methods for representing the various forms of morphing 
have been proposed, including modeling morphs as program 
branches, explicit control of variables representing machine state 
at the SAPI or SAAL levels, and marking sections of code with 
performance and resource constraint expressions.  The candidate 
approaches to date will be described and compared, considering 
such issues as the level of the MSI at which they are 
implemented; granularity; and visibility to and controllability by 
the programmer  Selecting and vetting the appropriate interfaces 
to represent morphing is currently a primary focus of the 
Morphware Forum. 

4. References 
[1] The Morphware Forum, “Introduction to Morphware: Software 

Architecture for Polymorphous Computing Architectures”, version 
1.0, Feb. 23, 2004.  Available at www.morphware.org. 

Figure 2.  MSI Compilation Architecture. 
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