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Abstract Beamforming methods are used extensively in a variety of different areas, where one
of their main goals is to estimate the source signal amplitude s(t) from the array observations y(t)
=s(t)a +i(t) + e(t), t = 1,2,..., where a is the steering vector, i(t) is the interference, and e(t) is a
Gaussian noise vector [1, 2].

To estimate s(t), we may use a beamformer with weights w so that é(t) = wy(t), where s(f) is an
estimate of é(t). To ensure that §(t) is close to s(t) in some sense, we may design the beamformer
weights to minimize the MSE. However, since the MSE of a linear beamformer depends in general
on the unknown signal power 62, we cannot directly minimize the MSE. A possible approach is to
minimize the MSE subject to a constraint on the beamformer that ensures that the MSE does not
depend on 63, which, as we show below, results in the conventional Capon beamformer. However,
this approach does not guarantee a small MSE, so that on average, the resulting estimate of s(t)
may be far from s(t). Instead, it would be desirable to design a robust beamformer whose perfor-
mance is reasonably good access all possible signal powers.

In our work, we propose a minimax regret beamformer whose MSE is uniformly as close as possible
to that of the optimal beamformer that knows o2, for all possible values of 62. Thus, we ensure that
over a wide range power signal of values, our beamformer will result in a relatively low MSE.

Specifically, the MSE corresponding to a beamformer w is

E(IS® - s®)1?) = wRw + 621 — wal?, (1)

where R is the interference+noise covariance matrix, which is typically replaced by the sample
covariance. Since o2 is not known, we cannot choose an estimator to minimize the MSE directly.

One approach is to force the term depending on cg to 0, and then minimize the MSE, i.e.,

m“iln W*Rw subject to w*a = 1, @)
which leads to the Capon beamformer. However, this does not guarantee a small MSE.

Based on the ideas of [3], we propose a competitive beamforming approach, in which the beam-
former w is designed to minimize the worst-case regret over all values 62<U?, where the regret is
defined as the difference between the MSE using a beamformer ignorant of the signal power, and
the smallest possible MSE attainable with a beamformer that knows the power. This ensures that
the performance of the resulting minimax regret beamformer minimizing the MSE when the signal
power is known. The upper bound U is estimated as U() = |w*y(t)| using one of the conventional

beamformers w. The resulting estimate of s(f) is

a*R7y(t)

1
1- o t=1,2..
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Abstract

dresentation

COMPETITIVE MEAN-SQUARED ERROR BEAMFORMING

Yonina C. Eldar

Dept. of Electrical Engineering
Technion—Israel Institute of Technology
Haifa, Israel 32000
yonina@ee.technion.ac.il

ABSTRACT

We consider the problem of designing a linear beamformer
to estimate a source signal(t) from array observations. Con-
ventional beamforming methods typically aim at maximizing the
signal-to-interference-plus-noise ratio (SINR). However this does
not guarantee a small mean-squared error (MSE), hence on av-
erage their resulting signal estimaté(¢) can be far froms(t).

To ensure thats(t) is close tos(t), we propose using the more
appropriate design criterion of MSE. Since the MSE depends
in general on s(t) which is unknown, it cannot be minimized
directly. Therefore we develop a competitive beamforming ap-
proach, in which the beamformer is designed to minimize the
worst-casaegret over all s(¢), where the regret is the difference
between the MSE using a beamformer ignorant eft) and the
smallest possible MSE attainable with a beamformer that knows
s(t). Thus, we ensure that over a wide range of signal values, our
beamformer will result in a relatively low MSE. We demonstrate
through numerical examples that the proposed minimax regret
beamformer (MMR) outperforms several existing standard and
robust beamformers, for wide range of SNR values.

1. INTRODUCTION

Arye Nehorai

Dept. of Electrical and Computer Engineering
The University of lllinois at Chicago
Chicago, IL 60607, USA
nehorai@ece.uic.edu

goal is to deign a beamformer in order to obtain an estimate of the
signal amplitude that is close to the true amplitude, it would make
more sense to choose the weights to minimize an objective that is
related to the estimation error, rather than the SINR.

In this paper we derive a beamforming method for estimating
a signal in the presence of interference and noise using the mean-
squared error (MSE) as the performance criterion. Computing the
MSE shows, however, that it depends explicitly on the unknown
signal in the deterministic case, or the unknown signal power in
the stochastic case, hence cannot be minimized directly. Thus, we
aim at designing a robust beamformer whose performance in terms
of MSE is good across all possible values of the unknowns. To
develop a beamformer with this property, we employ a new com-
petitive estimation framework, which has been recently proposed
for solving robust estimation problems [12]. This framework con-
siders a general linear estimation problem, and suggests a linear
estimator whose performance is as close as possible to that of the
optimal linear estimator for the case in which the model parame-
ters are completely known. Specifically, the estimator is designed
to minimize the worst-casegret, which is the difference between
the MSE of the estimator in the presence of uncertainties, and the
smallest attainable MSE with a linear estimator that knows the ex-
act model. Based on this framework, we propose a minimax regret
(MMR) beamformer whose MSE is uniformly as close as possible

Beamforming is a classical method of processing temporal sensorto that of the optimal beamformer that knows the signal parame-
array measurements for signal estimation, interference cancellaters, for all possible parameter values, as we detail below in the
tion, or source direction and spectrum estimation [1, 2, 3]. It has next section. Thus, we ensure that our proposed beamformer will
ubiquitously been applied in areas such as radar, sonar, wirelesgesultin a relatively low MSE over a wide range of signal values.
communications, speech processing, medical imaging, radioas- In Section 2 we present the problem formulation and review
tronomy, etc. existing methods. In Section 3 we develop the proposed MMR
Conventional approaches for designing beamformers typi- beamformer. In Sections 4 and 5 we discuss practical considera-
cally attempt to maximize the signal-to-interference-plus-noise tions and present numerical examples illustrating the advantage of
ratio (SINR). Maximizing the SINR requires knowledge of the the proposed MMR beamformer over several existing standard and
interference-plus-noise covariance matrix and the array steeringrobust beamformers, for wide range of SNR values.
vector. Since this covariance is unknown, it is often replaced by
the sample covariance of the measurements, resulting in deteriora-
tion of performance with higher signal-to-noise ratio (SNR) when

the signal is present in the training data. Some beamforming tech-\ye denote vectors ifi™ by boldface lowercase letters and matri-
niques are designed to mitigate this effect [4, 5, 6, 7, 8], whereas yqq i x™ by boldface uppercase lettedsdenotes the identity

others are developed to also overcome uncertainty in the steeringpstrix of appropriate dimensioit;)* denotes the Hermitian con-
vector [9, 10, 11]. However, maximizing SINR may not guarantee

a good estimate of the signal. In astimationcontext, where our

2. PROBLEM FORMULATION

jugate, and-) denotes an estimated vector or matrix.
Beamforming methods are used extensively in a variety of dif-
The work of A. Nehorai was supported by the Air Force Office of €rentareas, where one of their main goals is to estimate the source
Scientific Research Grant F49620-02-1-0339, the National Science Foun-Signal amplitudes(¢) from the array observations

dation Grants CCR-0105334 and CCR-0330342, and the Office of Naval
Research Grant NO0014-01-1-0681.

y(t) =s(t)a+i(t)+e(t), t=1,...,N Q)



wherey (t) € CM is the complex vector of array observations at
time ¢ with M being the number of array sensossis the signal
steering vector which depends on the degree of arrival (DOA) of
the wavefront plane associated witft) with respect to a uniform
linear array (ULA) of sensorss(t) is the signal amplitudei(t)

is the interferencee(t) is a Gaussian noise vector and is the
number of snapshots [1, 2].

The source signal amplitudg€¢) may be a deterministic un-
known signal, such as a complex sinusoid, or a stochastic station
ary process with unknown signal power. Since the statistie$tof
are unknown, in our development below we will treét) as a de-
terministic signal. Note, that as we demonstrate in Section 5, the
algorithms we develop can be applied to both deterministic and
stochastic signals.

Our goal is to estimate the signal amplitugle) from the ob-
servationsy (t) using a set of beamformer weights(¢), where
the output of a narrowband beamformer is given by

(1) = w' (D)y (1), @)

Traditionally, the beamformer weights(¢) = w are chosen to
maximize the SINR

t=1,...,N.

* |2
SINR o V2 ©)

wW*Ripew’
where
Riie = BE{(i+n)(i+n)} (@)
is the interference+noise covariance matrix. The weight vector
maximizing the SINR is given by
Ri_jea

W= ——.
a*RH_ea

®)

The solution (5) is also referred to as the minimum variance distor-

loaded Capon beamformer. Various methods have been proposed
for choosing the diagonal loading factgrseee.qg.,[5]. A heuristic
choice forg¢, which is common in applications, §s~ 1002, where

o2 is the noise power in a single sensor.

Another popular approach to estimatinR;i. is the
eigenspace approach [6, 7, 8], in which the covariance matrix is
estimated as N N

Reig = RPS’ (9)
where P; is the orthogonal projection onto the subspace corre-
sponding to theD + 1 largest eigenvalues &, were D is the
known rank of the interference subspace.

The Capon, loaded Capon and eigenspace beamformers, can
all be viewed as MVDR beamformers with a particular estimate of
Rit.. Inthe sequel, we usR to denote the interference+noise
covariance matrix, wherR is equal toR.;+. whenR,; ;. is avail-
able, and is otherwise chosen as any of the estimates above.

The class of MVDR beamformers assumes explicitly that the
steering vectoa is known exactly. Recently, several robust beam-
formers have been proposed for the case in which the steering vec-
tor is not known precisely, but rather lies in some uncertainty set
[9, 10, 11]. Although originally developed to deal with steering
vector mismatch, the authors of the referenced papers suggest us-
ing these robust methods even in the case in whighknown, in
order to deal with the mismatch in the interference+noise covari-
ance. Each of the above robust methods is designed to maximize
a measure of SINR on the uncertainty set. Specifically, in [9], the
authors suggest minimizingr*f{w subject to the constraint that
|w*c| > 1 for all possible values of the steering vectgrwhere
lc — a|| < e. The resulting beamformer is given by

A
Aa* (ﬁ n )\621) aci

w = R+AT) a 10
(R+2e'1) "a o)

tionless response (MVDR) beamformer, since it can be obtained aswhere ) is chosen such thatv*a — 1> = *w*w. In practice,

the solution to
minw* R, .w subjectto w*a=1.
w

(6)

In practice, the interference+noise covariance mawix. is
often not available. In such cases, the exact covaridge. in

(5) is replaced by an estimated covariance. Various methods exist

for estimating the covariand,;;.. The simplest approach is to
choose the estimate as the sample covariance

R= ICHON ™

The resulting beamformer is commonly referred to as the sample
matrix inversion (SMI) beamformer or the Capon beamformer [13,
14]. If the signal is present in the training data, then it is well
known that the performance of the MVDR beamformer vith, ,,
replaced b)ﬁ of (7) degrades considerably [6].

An alternative approach for estimatim); ., is the diagonal
loading approach, in which the estimate is chosen as

N
Ru =R+ =1 S y(y(0) +€L ®)
t=1

where¢ is the diagonal loading factor. The resulting beamformer
is referred to as the loaded SMI (LSMI) beamformer [4, 5], or the

the solution can be found by using a second order cone program.
In [10] the authors consider a similar approach in which they seek
to minimizew* Rw subject tol|lw — al| < ¢, which results in the
beamformer

<f&+ %I) a

w = (12)

’

a* (I‘A{+§I>_lf{<ﬁ+§1)a

2

~\ —1
where\ is chosen such th%.l(l + )\R) aH = ¢. Finally, in

[11] the authors consider a general-rank signal model. Adapting
their results to the rank-one steering vector case, their beamformer
is the solution to minimizingw*Rw subject tojw*al? > 1 —
w*Aw for all ||A|| < ¢, and is given by
~ —1

w=P ((R + AI) (aa” — 61)) , 12)
where P(A) is the eigenvector associated with the largest eigen-
value of A, and\ is a diagonal loading factor.

The motivation behind the class of MVDR beamformers and
the robust beamformers is to maximize the SINR. However, choos-
ing w to maximize the SINR does not necessarily result in an esti-
mated signal amplitudé(¢) that is close tas(t). In anestimation
context, where our goal is to deign a beamformer in order to obtain



an estimate(t) that is close tas(¢), it would make more sense to 3. THE MINIMAX REGRET BEAMFORMER
choose the weightss to minimize the MSE rather than to maxi- _ _ o
mize the SINR, which is not directly related to the estimation error The MMR beamformer is designed to minimize the worst-case re-

5(t) — s(t). gretR (s, w), which is defined as the difference between the MSE
If § = w*y, where for brevity we omitted the index then using an estimatat = w™y and the smallest possible MSE attain-
the MSE between ands is given by able with an estimator of the forthv= w™*(s)y whens is known,
which we denote bSE°.
E(5—s]®) = V() +|B@®) To develop an explicit expression vESE? we first determine
— wRw+ |s]?|1 — wal?, (13) the estimators = w*(s)y that minimizes the MSE whes is

known. To this end we differentiate MSE of (13) with respect to
whereV (8) = E(|é — E(3)]?) is the variance of the estimage W @nd equate t0, which results in

andB(3) = E(8) — sis the bias. Since is not known, we cannot Rw(s) + |s|*(a"w(s) — 1)a =0 (15)
choose a beamformer to minimize the MSE of (13). One approach '
is to force the term depending ds|, namely the bias, t0, and so that
then minimize the MSE,e., w(s) = |s]*(R + |s]*aa*) 'a. (16)
. Using the Matrix Inversion Lemma we can expresss) as
min w*Rw subject tow”"a = 1, (14) 9 preess)

. . " w(s) = L ~la. 17)

which leads to the class of MVDR beamformers. Thus, in addition 1+ s|?a*Ra

to maximizing the SINR, the MVDR beamformer minimizes the o ] o

MSE subject to the constraint that the bias in the estimatisr ~ Substitutingw(s) back into (13) MSE® is given by

equal to0. However, this does not guarantee a small MSE, so that 9 2

on average, the resulting estimates¢f) may be far froms(¢). MSE° = |25\ —— = 5 5 (18)
Indeed, it is well known that unbiased estimators may often lead 1+ [sPa*R~'a 14 [s[?

to large MSE values. where for brevity we denote = a*R ™ 'a.

Instead of forcing the term depending erto zero, it would Sinces is unknown, we cannot implement the optimal beam-
be desirable to design a robust beamformer whose performancgq mer (17). Instead we seek the beamformer w*y that mini-
is reasonably good across all possible values.oBased onthe  izas the worst-case regrBl(s, w) = E(jw*y — s|?) — MSE®

ideas of [12], we propose an MMR beamformer whose MSE IS g piect to the constraint < |s| < U. Thus we seek the beam-
uniformly as close as possible to that of the optimal beamformer ¢ marw that is the solution to the problem

that knowss, for all possible values of in a prespecified region of
uncertainty. Thus, we ensure that over a wide range of valugs of
our beamformer will result in a relatively low MSE. Specifically,

min max ”R(s,w):min{w*Rw—i—

we seek a beamformer that minimizes the worst-case difference w L<|s|<U
regret, namely the worst-case difference between its MSE and the ) . o Bk
best possible MSE attainable using a linear beamformer when + max s/l -wa]” - —F—— (19)
\ : L<ls|<u L+ [s]?a
is known, over a bounded set of valug$. Whens is known,
the beamformer output has the foim= w™(s)y, wherew can To develop a solution to (19), we first consider the inner max-
depend ors. As we show below, even in the case in whicls imization problem
known, we cannot achieve a zero MSE, when restricting ourselves )
to linear beamfgr_mers._ _ _ fw) = max {‘s|2|1 —wra* - El _ }
In [12], a minimax difference regret estimator was derived for L<s|<U 1+ [s[?a

the problem of estimating an unknown vectom a linear model

y = Hx + n, whereH is a known linear transformation, amdis

a noise vector with known covariance matrix. The estimator was
designed to minimize the worst-case regret over all bounded vec-wherex = |s|2. Noting that the functiof(z) = ax—bx/(c+dx)

max {:c\l —w*al® — e } . (20)
L2<2<U? 1+ za

tors x, namely vectors satisfying*Tx < U? for someU > 0 with b, ¢, d > 0 is convex inz > 0, we have that for fixeav,
and some positive definite matriR. It was shown that the linear z
MMR estimator can be found as a solution to a convex optimiza- g(z) =2x|1 — W*a|2 ~1taa (22)

tion problem that can be solved very efficiently.
In our problem, the unknown parameter= s is a scalar, so is convex inz > 0, and consequently the maximum gfz) over

that an explicit solution can be derived, as we show in Section 3. a closed interval is obtained at one of the boundaries. Thus,

Furthermore, in our development we consider both lower and up- 9 9

per bounds oifs|, so that we seek the beamformer that minimizes flw) = max g(x)=max(9(L),9(U7),  (22)

the worst-case regret over the uncertainty regior< |s| < U. T

The bounds. andU can either be determined based on prior in- and the problem (19) reduces to

formation on the signal amplitude, or, in cases in which no such

information is available, these bounds can be estimated from the min {W*Rw + max (L2|1 _ w*aﬁ _

data, as we discuss in Section 4. Thus, in practice, the only prior w

information needed in order to implement the MMR beamformer 9 v 12 U?

is knowledge of the steering vector. Ul —wTal” — m) } : (23)

L2
1+ L2a’



We now show that the optimal value @f has the form

w=d@R 'a) 'R 'a= gR_la7 (24)
for somed. To this end, we first note that the objective in (23)
depends orw only throughw™a andw*Rw. Now, suppose that

we are given a beamforme, and let

w = R a (25)
«
Then .
wa= " 23R 'a= wa, (26)
e
and
. |a*w‘2 — 1 |a*\7v|2
w Rw = s—a R a= 27)
« e
¢ From the Cauchy-Schwarz inequality, for any veestor
la*x|* < a"R'ax"Rx = ax*Rx. (28)
Substituting (28) withk = w into (27), we have that
. la*w|? . .
w Rw < <w Rw. (29)
«

It follows from (26) and (29) thatv is at least as good a®& for
minimizing (23). Therefore, the optimal value wf satisfies

a*w_

R "a,

(30)

W =
e
which implies thatw has the form (24) for somé.
Combining (24) and (23), our problem reduces to

[ 1dP? 2 2 L?
m;“{jmax L =d =0
U2
2 2
1—-d" — —— .
vl | 1+aU2>}

Sinced is in general complex, we can write= |d|e’® for some
0 < ¢ < 2. Using the fact thafl — d|? = 1 + |d|? — 2 cos(¢),
it is clear that at the optimal solutios, = 0. Therefore, without
loss of generality, we assume in the sequel that 0. We can
then express the problem of (31) as

(1)

rgldnt (32)
subject to
d2 5 9 L2
IR S A vy
d2 5 9 U2
= 1—d)? - —— )
STV e 6
The constraints (33) can be equivalently written as
A 1 al? 2
= (=417 - ) <
fi(d) (a + ) (d 1+aL2) =t
A 1 2 aU? 2
= = -— <t 4
fo(d) <a+U)(d 1+aU2) st (34

To develop a solution to (32) subject to (34), we note that both
fr(d) and fy (d) are quadratic functions id, that obtain a mini-
mum atdr, anddy respectively, where

al?
d = 14+ al?’
alU?
d = — 35
v 1+ aU? (35)
Therefore, the optimal value @f denotedly, satisfies
dr < do < du. (36)

Indeed, lett(d) = max(fr(d), fu(d)), and letto = t(do) be the
optimal value of (32) subject to (34). Since bgth(d) and fv (d)
are monotonically decreasing fdr< dr, t(d) > t(dy) > to for

d < dg, sothatdy > dr. Similarly, since bothfz (d) and fir(d)
are monotonically increasing fat > dy, ¢(d) > t(dv) > to for

d > dy so thatd < dy.

Since f1.(d) and fu (d) are both quadratic, they intersect at

most at two points. Iff.(d) = fu(d), then

1
2 _
so thatf. (d) = fu(d) ford = d+ andd = d_, where
di = ! (38)

* \/(1 + al?)(1 +aU2)'

Denoting byZ the intervalZ = [d., dv], sinced; > 1, clearly
d4+ ¢ Z. Using the fact that

1 1 1
< < ,
L+aU? = /(1 +al?)(1 +aU?) ~ 1+al?

(39)

we have thati_ € Z. We now show that the optimal value éfs
do=d_.If L =U,thend_- = d; = dy so that from (36)d, =
d—. Next, assume thatt < U. In this case, fod € Z, fr(d) is
monotonically increasing anft; (d) is monotonically decreasing.
Denotingt_ = t(d_) and noting that = = f1(d_) = fu(d_),
we conclude that fod_- < d < dr, fu(d) > ¢—, and fordy <
d < d-, fr(d) > t— sothatt(d) > ¢ for anyd € Z such that
d # d_, and thereforely = d_.

We summarize our results in the following theorem.

Theorem 1. Let s denote an unknown parameter in the model
y = sa + n, wherea is a known length¥/ vector, andn is a
zero-mean random vector with covarian@e Then the solution to

min max {E(\§—5|2)— min E(|§—s|2)}
s=w*y L<|s|<U Sd=w*(s)y
is
s (1- 1 a*Rly
V(1 + L?a*R-1a)(1 + U?a*R-1a) ) a*R~'a’

4. PRACTICAL CONSIDERATIONS

In our development of the MMR beamformer, we assumed that
there exists bounds andU on the magnitude of the signal to be
estimated. In some applications, such bounds may exist, for exam-
ple when the type of the source and the possible distances from the



array are known. If no such bounds are available, then we may esti-¢ = 10; MMR2 was applied by using (9) with =1, 3 = 8 and
mate them from the data using one of the conventional beamform-w. given by the EIG beamformer. It can be seen in Figure 1 that
ers. Specifically, letv. denote one of the conventional beamform- MMR1 has the best performance for SNR values between -6 to
ers. Then, using this beamformer we can estimass = w)y. -4 dB, whereas MMR2 has the best performance between -3 and
We may then use this estimate to obtain approximate valuek for 4 dB. Figure 2 shows the performance as a function of the num-
andU. In the examples below, we choose= g3|wy| for some ber of training data for a fixed SNR = -5 dB. It can be seen that
B > 0,andL = 0. Assuming that is known, with this choice of MMR1 and MMR2 have improved performance with larger num-

bounds the MMR beamformer becomes ber of training snapshots.
1 R . r r :
w=|1- . 7? - (40) o.6f : : f MMR1
\/(1 + B2|wtyl2a*R-1a) | a*R7'a L : : MMR2
3 : : EIG
Since in most applications the true covaraince is not available we 0.55} IEQE)CBA1PON
have to estimate it, e.g. using (7). However, as we discussed in & | ROB2
Section 2, ifs(t) is present in the training data, then a diagonal 2 0.5 R ROB3
loading (8) or a projection approach (9) may perform better than 5 | i: 89:!”‘&: "C"MR
(7). Thus in the examples below, the true covariance is replaced g . P P p'maapon

by (8) or (9).

o |
s 1
o 0.4F
5. NUMERICAL EXAMPLES o i
To evaluate and compare the performance of the proposed MMR 0'35; : : g -
method with other techniques, we conducted numerical examples SO~ ool -
using the same scenarios as in [11]. These consist of a uniform lin- 0.3% - = R - =
ear array of 20 omnidirectional sensors spaced half a wavelength SNR [dB]

apart. In all the examples below the interference and noise are
zero-mean complex white Gaussian processes. The si¢rabk
continuously present throughout the training data and the steer-Figure 1: Performance comparison of the different methods in
ing vectora is known. The plane-waves 6ft) and interference  terms of the square root of the normalized mean-squared error for
i(t) have directions of arrival (DOAs) df0° and —30°, respec-  estimating a complex sinewave, as a function of signal-to-noise
tively, relative to the array normal. The power of the noige) ratio for a training data of 30 snapshots.
is one and the interference-to-noise ratio (INR) in a single sensor
is 20 dB. The merit function we use to evaluate the performance
is the square root of the normalized mean-square error NMSE =
E(|5(t) — s(t))?)/E(|s(t)|?). Each result presented below was
obtained as a sample mean from 100 Monte Carlo experiments.
The performance of the proposed method was compared
against six methods: the Capon beamformer (CAPON) [13, 14],

MMR1
MMR2
EIG
L-CAPON
ROB1

0.55f

0.5
loading Capon beamformer (L-CAPON) [4, 5], eigenspace-based ugJ 2833
beamformer (EIG) [6, 7, 8] and robust beamformers (ROB1, Z Optimal MMR
ROB2 and ROB3) [9, 10, 11]. The parameters of each of the com- 045 Optimal Capon
pared methods were chosen as suggested in the literature. For the £ -
L-CAPON (8) the diagonal loading was seté&s 1062 [9, 10] % oal -
with o2, being the variance of the noise in each sensor, assumedto 3

be known ¢, = 1 in this example); for the EIG beamformer (9) it
was assumed that the low rank condition and number of interfer- 0.35}
ers is known. For the alternative robust methods we have that, for
ROBL1 (10) the upper bound on the steering vector uncertainty was : : : : :
set asc = 3 [9], for ROB2 (11), the upper bound on the steering 40 60 80 100 120 140
vector uncertainty was set as= 3.5 [10] and the diagonal loads Number of training snapshots

for ROB3 (12) [11] were chosen as= 30 ande = 9. In order

to show the best possible performance by each approach, the op- ) ) )
timal CAPON and optimal MMR beamformer are also included. Figure 2: Performance comparison of the different methods in
By optimal we refer to the case when the covariance marjx terms of the square root of the normalized mean-squared error for

and|s(t)|* fort = 1,..., N are known, in addition to the steering ~ €stimating a complex sinewave, as a function of number of training
vectora. snapshots for SNR = -5 dB.

Example 1 - Deterministic signalVe choses(t) to be a com-
plex sine wave with varying amplitude to obtain the desired SNR, Example 2 - Stochastic signdh this example we chosgt)
and used 30 training snapshots. We implemented MMR1 with a to be a zero-mean complex Gaussian signal with varying variance
sample covariance matrix estimated with a loading fagter,10 to obtain the desired SNR, and used 30 training snapshots. We

[9, 10], 8 = 8 andw. given by the L-CAPON beamformer with  implemented MMR1 and MMR2 as described in the last example,



but with 8 = 12. From Figure 3, we can draw similar conclusions
as in the last example about the performance of optimal and practi-

cal beamformers presented. It can be seen that MMR14with0

xt Abstract
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andg = 12, has the best performance for SNR values between -8 the numerical examples in this paper.
to -5 dB, whereas MMR2 witl = 12 has the best performance

between -4 and 2 dB. Also, it can be seen in Figure 4 that MMR1
and MMR2 improve their performances with a larger number of
training snapshots for SNR of -5 dB.
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Figure 3: Performance comparison of the different methods in
terms of the square root of the normalized mean-squared error for
estimating a zero mean complex Gaussian signal, as a function of[8]
signal-to-noise ratio for a training data of 30 snapshots.
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Figure 4: Performance comparison of the different methods in

terms of the square root of the normalized mean-squared error for
estimating a zero mean complex Gaussian signal, as a function of
number of training snapshots for SNR = -5 dB.
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/ Competitive Mean-Squared Error Beamforming\

e Conventional beamformers typically maximize the
signal-to-interference-plus-noise ratio (SINR). However, this may
not guarantee a good estimate of the signal.

e We derive beamformers for estimating a signal in the presence of
interference and noise using the mean-squared error (MSE) as the
performance criterion.

e Challenge: the MSE depends on the signal in the deterministic
case, or its power in the stochastic case, both are unknown.

e To solve this problem, we minimize the worst-case regret, i.e. the
difference between the true MSE and smallest attainable MSE
with a linear estimator that knows the exact model. This results in

\ a low MSE over a wide range of signal values. /
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