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Abstract  A unicasting ad hoc network is considered, where each node i is 
equipped with a transmit/receive beamformer pair (wi , gi). Each node's SNR Γi 
satisfies Γi ≥ γ0. It is first shown that the minimum sum power beamformers for 
the network satisfy a weak duality condition, in which the pairs (gi

*, wi
*) achieve 

the same sum power as the primal network. However, the optimum receive 
beamformer wi is not in general equal to the optimum gi

*, in contrast to the case 
of certain networks with simpler topologies. A suboptimal iterative beamforming
algorithm is then proposed in which wi = gi

* is enforced. The algorithm is shown to be
an instance of the Power Algorithm in which gi is the maximizing eigenvector 
of an SNR-related objective matrix. The beamforming algorithm is also shown 
to have a Game Theory interpretation, in which the payoff is SNR, and the tax 
is related to interference caused to other nodes. The algorithm is also proven 
to have a Nash equilibrium(a). 
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ABSTRACT

A unicasting Ad hoc network is considered, where each
node i is equipped with a receive/transmit beamformer pair
(wi,gi). Each node’s SNR Γi satis£es Γi ≥ γ0. It is
£rst shown that the minimum sum power beamformers for
the network satisfy a weak duality condition, in which the
pairs (g∗i ,w

∗
i ) achieve the same sum power as the primal

network. However, the optimum receive beamformer wi

is not in general equal to the optimum g∗i , in contrast to
the case of cellular and time-division duplexing (TDD) net-
works. A suboptimal iterative beamforming algorithm is
then proposed in which wi = g∗i is enforced. The algorithm
is shown to be an instance of the Power Algorithm in which
gi is the maximizing eigenvector of an SNR-related objec-
tive matrix. The beamforming algorithm is shown to have
a Game Theory interpretation, in which the payoff is SNR,
and the tax is related to interference caused to other nodes.
The algorithm is also proven to have a quasi-Nash equilib-
rium(a). A sequential beamforming algorithm for rank-1
channels is also presented, which is proven to converge to
an equilibrium and minimize a total interference function.

1. INTRODUCTION

Noncooperative game theory has recently been applied to
problems in CDMA network power control [1],[2] and se-
quence design [3]. The application of game theory to dis-
tributed beamforming algorithms is an evolving area. Op-
timal solutions to transmit/receive beamforming have previ-
ously been developed for networks with well-de£ned topolo-
gies, e.g. cellular as in [4] or with TDD [5]. However, prac-
tical algorithms to obtain optimal beamforming, in terms of
SNR constraints or capacity maximization, have not been
obtained in the Ad hoc network case. The goal here is to use
game theory to motivate “good” solutions to the distributed
beamforming problem.

This work was supported in part by NSF Grant No. CCR-0073214 and
by a grant from the International Foundation for Telemetering

An Ad hoc network is considered here with unicasting,
where pairs of nodes (i, l(i)) such that i 6= l(i) commu-
nicate only with each other, with i, l(i) ∈ {1, 2, . . . , N}.
Each node maintains a unit-norm receive/transmit beam-
former pair (wi,gi), and reciprocal channel matrices Hi,j =
HT
j,i are assumed. An unnormalized beamformer g̃i =

√
Pigi

is also de£ned where Pi is the transmitted power. It is £rst
shown that this Ad hoc network exhibits a weak duality,
in which the minimum sum power Psum equals P ′

sum for
the dual network (g∗i ,w

∗
i ). Next, a LEGO-type [5] itera-

tive MMSE algorithm is developed for the Ad hoc network,
which is shown to correspond to a noncooperative game.
The action set comprises both the beamformers and powers,
with a payoff function that increases with link SNR. How-
ever, the payoff includes a “tax” that increases with interfer-
ence incurred by other links. A quasi-Nash equilibrium is
proven to exist for the resulting Iterative Power Algorithm
(IPA) beamforming game.

In general, convergence to the equilibrium cannot be
proven for the IPA. An alternative Sequential Distortionless-
Response Beamforming (SDRB) algorithm is presented for
the special case of rank-1 spatial channels. It is shown in a
manner similar to [6] that the SDRB algorithm minimizes a
Total Interference Function (TIF) that is the spatial channel
analog to total squared correlation [6], and is hence conver-
gent. Simulation examples for both the IPA and SDRB are
presented.

2. WEAK NETWORK DUALITY

The duality results use the following de£nition of received
SNR at node l(i).

Γl(i) =
Pi|wH

l(i)Hl(i),igi|2
∑

l 6=i,l(i) Pl|wH
l(i)Hl(i),lgl|2 + σ2

n

. (1)

where ||wi||, ||gi|| = 1. The SNR requirement is Γi ≥ γ0

for all i.



The following theorem describes duality for this net-
work, and uses the approach of [7],[5].

Theorem 1 Weak Network Duality: Consider a network
with beamformer pairs (wi,gi). If a feasible solution for
the powers exists, then the solution for minimum sum power
Psum = 1Tp, where 1 is the all-ones vector, exactly sat-
is£es the constraints Γi = γ0. De£ne a dual network by
(g∗i ,w

∗
i ) at all nodes. This network has the same sum power

P ′
sum = Psum as in the primal network. An optimal beam-

former pair (wopt
i ,gopti ) exists for feasible γ0 which mini-

mizes Psum, in which w
opt
i is always a Minimum Variance

Distortionless Response (MVDR) beamformer. However,
w
opt
i 6= g

opt
i

∗
in general for the Ad hoc network.

Proof: An outline of the proof uses the gain de£nition Ti,j =
|wi

HHi,jgj |2, where wi,gi are the optimum beamformers.
Let p = [p1, p2, . . . , pN ]

T be the power vector, which sat-
is£es

[

I− γ0DT̃
]

p = γ0D1, (2)

where Di,i = 1/Tl(i),i is a diagonal matrix. Note that the
i, j-th element of the matrix T̃ satis£es T̃i,j = Tl(i),j . The
solution for the minimum sum power in eq. (1) is

Psum = γ01
T
[

D−1 − γ0T̃
]−1

1, (3)

Now de£ne the permuted vector pπ
i = pl(i), and T̃π

i,l =
Ti,l(l). Similarly, Dπ

i,i = 1/Ti,l(i). The minimum sum
power can be written in terms of these rearranged matri-

ces/vectors asPsum = γ01
T
[

Dπ−1 − γ0T̃
π
]−1

1. To com-

plete the proof, the dual network (g∗i ,w
∗
i ) has transfer func-

tions T ′
i,j = Tj,i when Hi,j = HT

j,i. Then the transfer func-

tion matrix in the dual network has entries T̃′
i,j = Tj,l(i).

But note that Tj,l(i) = T̃π
j,i. Hence T̃′

i,j = T̃π
j,i, and T̃′ is

just the transpose of T̃π. Furthermore, D′
i,i = 1/Ti,l(i) =

Dπ
i,i. The sum power for the dual network is then

P ′
sum = γ01

T
[

Dπ−1 − γ0(T̃
π)T

]−1

1. (4)

Again, the results of [7],[5] show that P ′
sum = Psum.

It should be emphasized that the result P ′
sum = Psum,

where Psum is the minimum power in the primal network,
does not imply that the optimum gi = w∗

i . That is, con-
sider the receive/transmit beamformer pair in the primal net-
work, (wi,gi). The receive vector wi must always be the
normalized MVDR, or equivalently MMSE beamformer to
maximize the SNR Γi (1). However, we cannot claim that
gi = w∗

i . It can only be proven that the dual network
(g∗i ,w

∗
i ) has the same minimum sum power as the primal.

For n = 1, 2, . . .
For each node i

m← 1
While ||gi(m+ 1)− gi(m)|| > ε

Update normalized MVDR beamformer at i
w′
i(m+ 1) = R−1

i (g̃n−i)Hi,l(i)gl(i)(m)

wi(m+ 1)← w′

i(m+1)
||w′

i
(m+1)||

gi(m+ 1)← w∗
i (m+ 1)

Transmit packet to node l(i) –
Update node l(i) beamformer.
w′
l(i)(m+ 1) = R−1

l(i)(g̃
n
−i)Hl(i),igi(m+ 1)

w′
l(i)(m+ 1)← w′

l(i)(m+1)

||w′

l(i)
(m+1)||

gl(i)(m+ 1)← w∗
l(i)(m+ 1)

m← m+ 1
End while
Update beamformer gn+1

i ← gi(m)
Transmit estimated Γl(i) from l(i)→ i
Update power Pn+1

i ← Pn
i γ0/Γl(i)

Next i
Next n

Table 1: Ad hoc beamforming algorithm

3. ITERATIVE POWER ALGORITHM
BEAMFORMING GAME

The following iterative beamforming algorithm is proposed
in Table 1 which is similar to LEGO [5], except that TDD
is not required, and the SNR target γ0 is met at every it-
eration. All nodes simultaneously update their unit-norm
MVDR receiver beamformer wi, and then set their trans-
mit beamformer to g∗i = w∗

i for subsequent transmission to
l(i). This procedure is repeated M times with beamformers
g−i (game theoretic notation) held £xed. The power Pi is
then set to meet the SNR target γ0. The interferer plus noise
covariance matrix at node i is de£ned by

Ri(g̃
n
−i) =

∑

l 6=i,l(i)

Hi,lg̃
n
l g̃

n
l H

H
i,l + I, (5)

where the thermal noise power is unity w.l.o.g. It should
be emphasized that g̃l =

√
Plgl, where ||gl|| = 1, thus

Ri(g̃
n
−i) incorporates the power of the interferers.

The power algorithm interpretation of the above algo-
rithm is given in the following Proposition.

Proposition 1 Consider the n-th overall update in the Ad
hoc beamforming algorithm. The transmit vector gni con-
verges to the maximum eigenvector of the objective matrix

Gi = R∗
i (g̃

n
−i)

−1HH
l(i),iRl(i)(g̃

n
−i)

−1Hl(i),i. (6)



where Ri(g̃
n
−i) is the interference plus noise covariance

matrix at node i in (5). The maximum eigenvector is also
the maximizer of the ratio

gn+1
i = argmax

gi

gHi HH
l(i),iRl(i)(g̃

n
−i)

−1Hl(i),igi

gHi R∗
i (g̃

n
−i)gi

. (7)

Proof: The MVDR beamformer wi(m+ 1) is given by

wi(m+ 1) =
1

c
R−1
i Hi,l(i)gl(i)(m). (8)

Recall that gl(i)(m) = w∗
l(i)(m). Thus,

gl(i)(m)
∗ =

1

c
R−1
l(i)(g̃

n−1
−i )Hl(i),igi(m), (9)

where c is chosen for unit-norm gl(i). Combining eqs. (8)
and (9), and setting gi(m+ 1) = wi(m+ 1)∗ yields

gi(m+ 1) = (10)
1

c′
(Ri(g̃

n
−i)

∗)−1HH
l(i),iRl(i)(g̃

n
−i)

−1Hl(i),igi(m),

which is a power algorithm iteration with c′ normalizing
gi(m + 1) to unity. Since R∗

i is always invertible from its
de£nition (5), maximization of the ratio (7) is equivalent to
£nding the maximizing eigenvector of the matrix in (6)

The algorithm in Table 1 is a noncooperative beamform-
ing game, in which the i-th node utility function is

un(Pi,gi, g̃
n
−i) = η

(

γ0 − Piγi(gi, g̃
n
−i)

)

(11)

+ lngi
HHH

l(i),iR
−1
l(i)(g̃

n
−i)Hl(i),igi

− lngi
HR∗

i (g̃
n
−i)gi,

where η(x) is any continuous, concave function with a global
maximum at zero. The normalized SNR is

γi(gi, g̃−i) = gHi HH
l(i),iRl(i)(g̃−i)

−1Hl(i),igi,

for unit norm gi. The second term in un() is the log SNR,
hence the payoff increases with increasing SNR and when
the SNR constraint is met with equality. The last ln term
however corresponds to an interference tax, de£ned by

T (gi,gn−i, Pn
−i) = (12)

gHi R∗
i gi =

∑

l 6=i,l(i)

gHi H∗
i,lP

n
l gnl

∗
gnl

T
HT
i,lgi.

Since g∗l = wl, the tax T (gi) can be interpreted as the in-
terference incurred by users l 6= i, l(i) from transmitter i,
weighted by the power of each user l. Finally, the noncoop-
erative beamforming game is completely de£ned by

(gn+1
i , Pn+1

i ) = argmax
gi,Pi

un(Pi,gi, g̃
n
−i). (13)

The payoff function (11) lacks the properties of quasi-
concavity and continuity required in most proofs of Nash
equilibrium existence [1],[8]. Furthermore, since the action
set involves beamformer vectors as well as powers, it is not
possible to use supermodular theory which requires ordered
action sets [1].

The £nite power algorithm iterations in Table 1 are shown
to yield a £xed point, and hence quasi-Nash equilibrium
as follows. Using the unnormalized beamformer de£nition
g̃i = Pigi with ||gi||2 = 1, the M power iterations (10)
satisfying the SNR constraint are then equivalently written
as

g̃n+1
i =

√
γ0

Ai(g̃
n
−i)

Mv0
√

v0
HAi(g̃n−i)

MH
Bi(g̃n−i)Ai(g̃n−i)

Mv0

,

(14)
where Bi = HH

l(i),iR
−1
l(i)Hl(i),i, and Ai = (R∗

i )
−1Bi. The

quantity v0 is any vector not orthogonal to the maximum
eigenvalue solution. It is readily veri£ed that (14) repre-
sents a vector transformation gn = f(gn−i) which is differ-
entiable, and hence continuous in g−i. Thus, the Brouwer
£xed-point theorem guarantees that at least one equilibrium
of (14) exists.

4. SDRB – RANK 1 CHANNELS

Efforts to prove convergence of the IPA in Table 1 have thus
far failed, and simulations have demonstrated cases where
the solutions for (Pi,gi) oscillate between two points de-
pending on initial conditions. The alternative SDRB algo-
rithm is presented in Table 2 which is proven to converge for
the special case of rank-1 channels. The rank-1 channel is
de£ned by Hi,j = hi,jh

T
j,i. For example, in a environment

free of multipath, hi,j would represent the steering vector
at node i corresponding to a plane wave received from node
j. Each vector gi is updated using the most recent values of
g−i. Hence, following [6], when gi is updated on the n-th
pass of the algorithm,

gn−i =
{

gn1 ,g
n
2 , . . . ,g

n
i−1,g

n−1
i+1 , . . . ,g

n−1
N

}

The interpretation of the SDRB is as follows: At each it-
eration, the MVDR beamformer wi, or equivalently gi sat-
is£es

gi = argmin
g

gHR∗
i g (15)

Subject to |gHi h∗
i,l(i)|2 = α.

However, for the rank-1 channel, this is equivalent to com-
puting the unique solution to

g̃i = argmax
g

|gHh∗
i,l(i)|2hHl(i),iRl(i)(g̃−i)

−1hl(i),i

gHR∗
i (g−i)g

(16)



For n = 1, 2, . . .
For each node i

Update normalized MVDR beamformer at i
wi = Ri(g̃

n
−i)

−1hi,l(i)

gni =←
w∗

i

||wi||

Pi =
α

|gH
i

h∗
i,l(i)

|2

Next node i
Next n

Table 2: Sequential Distortionless-Response Beamforming
Algorithm

which satis£es |g̃Hi h∗
i,l(i)|2 = α. Hence, gi still maxi-

mizes an SNR subject to an interference tax. The constraint
|gHi h∗

i,l(i)|2 = α for wi = g∗i is the conventional distortionless-
response requirement in MVDR beamforming.

To prove convergence of the algorithm in Table 2, £rst
de£ne a Total Inteference Function as

TIF = (17)
∑

i

∑

l 6=i,l(i)

g̃Hi H∗
i,lg̃

∗
l g̃

T
l HT

i,lg̃i

+2
∑

i

||g̃i||2,

where g̃i = Pigi, with ||gi|| = 1. The TIF is similar to
total squared correlation in [6], except that it is de£ned in
terms of £xed steering vectors hi,l instead of adaptive signa-
ture sequences. The interference interpretation follows from
the summands g̃Hi H∗

i,lg̃l. When gl = w∗
l , each such term

represents the interference seen at node l due to transmitter
i, multiplied by the product of the powers, PiPl. Further-
more, ||g̃i||2 represents the additive noise power incurred
by receive beamformer i multiplied by Pi. Hence, TIF can
indeed be viewed as the total mutual interference in the net-
work.

The TIF after updating gni can be decomposed as

TIFni = 2(g̃ni )
HR∗

i (g̃
n
−i)g

n
i + f(gn−i), (18)

for the symmetric channel case Hi,j = HT
j,i, where f(g−i)

is a function independent of gi. Convergence is claimed in
the following.

Proposition 2 The TIF is a non-increasing function of the
sequential distortionless- response beamforming algorithm.
Hence the vectors g̃i converge.

Proof: Follows directly from the statement of the SDRB.
Let g̃ni be the most recently updated transmit vector. Re-
call that g̃ni minimizes g̃Hi R∗

i (g̃
n
−i)g̃i under the constraint

|(g̃ni )Hh∗
i,l(i)|2 = α. Now the vector g̃n−1

i satis£es the

same constraint as g̃ni , but minimizes g̃Hi R∗
i (g̃

n−1
−i )g̃i in-

stead. Thus,

(g̃ni )
HR∗

i (g̃
n
−i)g̃

n
i ≤ (g̃n−1

i )HR∗
i (g̃

n
−i)g

n−1
i , (19)

which in turn implies that TIF n
i ≤ TIFn

i−1, or that TIF is
a nonincreasing sequence.

The correlation coef£cient α can be determined in terms
of a target SNR. For unit-variance thermal noise, rank-1
channels, and in the absence of multiuser interference, the
SNR at node l(i) is given by

Γl(i) = |g̃Hi h∗
i,l(i)|2|hl(i),i|2. (20)

The maximum value of α is then Pi|hi,l(i)|2. For arrays
with M unit-magnitude elements, we then have αmax =
PiM and Γl(i) ≤ PiM

2 = αmaxM . Thus, for target SNR
Γ0, α can be set to α = Γ0/M .

5. RESULTS AND CONCLUSIONS

The IPA and SRDB algorithms were simulated for N = 10
nodes in a 1km by 1km area, equipped with uniform linear
arrays (ULAs). A rank-3 channel was chosen for the IPA
algorithm with the direct path gain 3 dB above two paths
at an angular spread of π/4 radians. For the SDRB, only a
rank-1 channel was used de£ned by the steering vector for
a ULA.

The beampatterns formed by the IPA algorithm are shown
in Figure 1 for the case of M = 8 antenna elements, Γ0 =
10 dB. A power ef£ciency is de£ned similarly to asymptotic
ef£ciency in multiuser detection [9]. In the absence of mul-
tiuser interference, the power required to attain an SNR of
Γ0 is found using Γ0 = P su

i λmaxH
H
l(i),iHl(i),i. Hence, the

ef£ciency η ∈ [0, 1] quanti£es the excess power required
to maintain a constant error rate (assuming Gaussian MAI),
and is de£ned by

η =
P su
i

Pi
=

Γ0

Piλmax

(

HH
l(i),iHl(i),i

) , (21)

where Pi is the power resulting from the IPA. The power
ef£ciency η is shown in Figure 2 for the scenario in Fig. 1.
The algorithm clearly reaches the £xed point de£ned by the
updates (8).

A typical result for the SDRB algorithm is shown in
Fig. 3, for M = 4 antenna elements at each node. The
corresponding TIF is plotted in Fig. 4, which is seen to
be non-increasing as claimed. In this case, the target SNR
was Γ0 = 10 dB. This SNR is not reached in general, since
satisfying the distortionless response constraint α only cor-
responds to Γi = Γ0 in the ideal case of zero MAI.
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Figure 1: Beampattern for IPA algorithm, M = 8 ele-
ments/node.
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Figure 2: Power ef£ciency η for IPA algorithm, M = 8 ele-
ments/node.

To conclude, iterative beamforming algorithms were pre-
sented for Ad hoc networks. It was shown that the LEGO-
type algorithms [5] correspond to power algorithm itera-
tions and maximization of the ratio of SNR to an inter-
ference function. In terms of noncooperative game the-
ory, the IPA corresponds to a payoff function for each node
that is maximized when the target SNR is met subject to
maximization of normalized link SNR. However, an inter-
ference tax is incurred by each node as a byproduct of the
IPA. A sequential distortionless response beamforming al-
gorithm was developed for rank-1 channels, and shown to
converge by minimization of a Total Interference Function.
The SDRB thus provides a connection between iterative beam-
forming and the iterative sequence construction algorithm
of [6].
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Iterative MMSE Beamforming – Accomplished via simple 
LMS/RLS algorithm and training sequences (as in 802.11b/g.)

Equivalent to Power Algorithm.
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Main Results

• Weak Duality – Replace receive transmit beamformer pair 
(wi, gi) at all nodes by (gi

*,wi
*), minimum sum power 

remains unchanged – Does not imply that optimum gi = wi
*.

• IMMSE Beamforming is a non-cooperative game. 
• Utility function maximizes normalized SNR to meet target 

SNR at all nodes with minimum power.  Includes tax 
proportional to interference to other nodes.

• Fixed point of the IMMSE algorithm exists.  Convergence 
has been proven for a modified game with rank-1 channels 
based on Total Interference Function (TIF).
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Example of Fixed-Point and Power Efficiency 
of IMMSE
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