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Section 1 

Introduction 

1.1 Overview 
Costly decisions about which wireless networking technologies to develop are currently being 
based largely on results from high-level simulation tools.  The FCS-C program, for instance, 
used high-level simulation tools to select the network and radio software for final development 
and demonstration.  To mitigate risk, there needs to be lab-based tools that provide more 
accurate assessment than simulation but at far less cost than field testing.  Our approach to this 
problem is to develop a tool that emulates a field-test environment in the lab, so technologies 
under consideration can migrate from coarse simulation models to actual code and tested “live,” 
in real-time, over a high-fidelity virtual wireless channel environment.  Our current solution is 
the Wireless Network Emulator. 

The Wireless Network Emulator (WiNE) is a network-embedded, highly-optimized, distributed 
simulation engine, built into a cluster of commodity workstations and switches.  On each 
workstation, there appears to be one or more wireless network interfaces, located somewhere 
within a three-dimensional (virtual) environment.  A packet sent across one of these interfaces 
experiences transmission errors according to the outcome of its simulated transmission in the 
virtual environment.  Since the speed and fidelity of this process ultimately defines the quality of 
the emulation, WiNE employs novel techniques that exploit the availability of high-speed, low-
latency programmable interconnects, fast processors, and large memories to minimize 
communication overhead and maximize simulation fidelity, while limiting the amount of induced 
latency and jitter.  The last objective is important because induced latency and jitter can 
dramatically affect the performance of applications that require real-time QoS, such as audio and 
video streaming and teleoperation/telepresence control traffic, or rely on packet arrival time 
tracking for efficient operation, like TCP.  WiNE’s unique design has the potential to reduce 
unwanted latency and jitter by several orders of magnitude below existing emulation platforms, 
like NistNet, Seawind, NS-Emulator, and QualNet’s Emulator, without any sacrifice in fidelity. 

This report summarizes the development and testing that was conducted under this program.  
Notable achievements include the development of the first integrated prototype of the embedded 
distributed simulation engine, accompanied by a wonderful graphical user interface; and the 
development of detailed network, traffic, mobility, and environment models patterned after the 
FCS-C baseline field tests conducted at the Naval base in Lakehurst, NJ.  Future work under 
consideration includes improvements in platform stability, support for HLA, new simulation 
models (specifically underwater and hybrid sensor networks), expanding the library of 
propagation, radio, and MAC models, and the development of a diverse set of virtual worlds. 

1.2 Organization 
In Section 2 we present an overview of the WiNE architecture, which is followed in Section 3 by 
the results of our testing with the Lakehurst scenario.  In Section 3 we summarize the report. 
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Section 2 

WiNE Description 

2.1 Overview 
An architectural overview of the WiNE system is shown in Figure 1.  On the left side of the 
figure is a block diagram of the cluster architecture.  The system consists of a group of client 
machines and server machines that are interconnected by a high-speed, low-latency 
programmable interconnect (Myrinet).  The client machines and server machines also share 
separate networks for communication among themselves.   

 

Figure 1. Architectural overview of the WiNE emulator. 

 
On the right side is a high-level description of the emulator software that exists on the machines, 
as well as the type of traffic carried by the networks.  Above the cluster is a diagram showing an 
example “virtual world” (the simulated wireless communication environment) within which the 
client nodes appear to reside (from the viewpoint of their wireless communication).  Beside the 
diagram is a description of some of the simulation models that are used to describe the world 
within the simulation engine.  The client machines host the wireless application and network 
software to be tested.  Each node has one or more interfaces on a data network, and one interface 
on the Myrinet control network.  The data network may or may not be visible to the node 
software, depending on the need, but the control interface is never directly visible.  The Myrinet 
interface, instead, supports a software-implemented virtual wireless networking device.  During 
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an emulation run, packets can be sent and received on this virtual device just like a real device, 
but the link quality they experience is dictated by the simulated wireless channel between their 
locations within the virtual world. 

 

Figure 2.  Block diagram of major software modules and packet processing flow. 

   

A block diagram showing this process can be seen in Figure 2.  At the start of an emulation run, 
the simulation engine loads and configures the selected virtual world scenario, which includes 
information such as initial node locations and mobility patterns; and terrain, weather, and 
propagation models.  Subsequently, each client node is loaded with the wireless network 
applications and protocols under test, and initialized according to the virtual world scenario.  
When the emulation is in motion, any data packet sent out the virtual device is redirected to the 
client-side simulation support process, which extracts information about the data packet (e.g. 
src/dst MAC addresses, size, time-of-arrival) and encodes it into the payload of a small 
“descriptor” packet.  This descriptor is then sent over the control network to the simulation 
server(s) while the real data packet is simultaneously sent (tunneled) over the data network to the 
peer process(es) on the recipient node(s).  The peer(s) buffer the data packet for later processing.  
The simulation server decodes the information in the descriptor packet and simulates the 
transmission of the data packet across the wireless channel within the virtual world.  The results 
of this simulated transmission (e.g. delay, corrupt, drop) are then encoded into an “outcome” 
packet and sent back over the control network to the virtual devices on the source and destination 
nodes of the original data packet.  The support process on the destination node decodes the 
information in the outcome packet and applies the result to the original data packet in its buffer 
before passing it up the network stack.  The process on the source node also uses the information 
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in the outcome to update the state of its virtual device (e.g. transmission statistics, queue status, 
transmission status). 

In the sections that follow, we describe this system in more detail. 

2.2 Virtual Wireless Network Interface 
The virtual wireless network interface is modeled partly on the client and partly in the virtual 
world simulation.  The model of the wireless network interface can be broken down into separate 
data link layer models and physical layer models.  The data link layer is further subdivided into 
two sublayers: Logical Link Control (LLC) and Media Access Control (MAC).  The Logical 
Link Control (LLC) sublayer manages communications between devices over a "logical" link, 
whereas the Media Access Control (MAC) sublayer manages the communication across the 
physical link.   

In the emulator, the data link layer model is divided between the client node and simulation 
server, with the LLC model residing entirely on the client.  One reason for this separation is that 
there is little purpose for emulating the LLC, since it is designed to provide common access to 
different devices.  Another reason is that there is a natural separation point in the system 
architecture between the MAC and LLC.  The MAC is usually located in firmware on the 
network device and the LLC is located in the kernel, right above the device driver (which 
facilitates access to the hardware and firmware of the device by the kernel).  Thus, separating the 
real system from the emulated system at the device driver level means we only have to emulate 
those portions of the network that are not easily manipulated within the lab environment. 

The MAC models, however, are divided into a virtual hardware layer model and a simulation 
model.  The virtual hardware layer is located within the virtual interface device driver on the 
client, and is responsible for maintaining the appearance of a physical network interface.  The 
simulation object is located on the server, and contains the core functionality of the MAC.  
Communication between the two is carried in the descriptor and response packets across the 
emulation interconnect.  A common API is currently being developed for this purpose, which 
will consist of a general set of core functions such as packet transfers, exception notifications, 
configuration status and change requests, and statistics gathering. 

2.3 Virtual World Simulation Server 
The core of the emulator is a high-performance event-driven simulator.  The simulator is built on 
a custom simulation engine that manages a set of software objects that mimic the behavior of 
components in the virtual network.  Each software object is an instance of a model that 
reproduces the behavior of a real-world component.  For example, wireless channel models 
mimic the behavior of the physical environment on the transmitted signal, such as pathloss, 
shadowing, and multipath fading; whereas network interface models mimic the components of 
the wireless device, such as the logical link control, the medium access control, and the radio. 

The software objects are implemented as a set of extended finite state machines.  State transitions 
are triggered by the handling of events from one of the simulation clocks.  Example events are 
the expiration of a timer, the arrival of a packet, or a change in channel conditions.  Terminal 



5 

states and select intermediate states may generate output, which can take the form of, for 
instance, packets, signals, or exceptions.   

The main task of network object models is to simulate the exchange of packets with peer objects 
in the emulated network.  Packets are represented by objects that are built by the sender from 
packet descriptors received from the virtual nodes.  These packet objects are held until they are 
either transferred to another object or dropped.  Other packet objects may be created and 
destroyed in the process, such as for control and management packets.  Termination of any state 
machine, whether in error or success, always results in the generation of an outcome packet to 
the clients.  Outcome packets may also be generated at any other time, for example, to "push" 
status information to the clients. 

All inter-object communication is carried out strictly by the creation and handling of events at 
time offsets that accurately track the behavior of the actual protocol or device.  This requirement 
maintains consistency between the virtual world and the real world by ensuring that events in the 
virtual world do not occur before those in the real world according to common global (wall-
clock) time. 

Hardware interfaces are too complex to model closely in software in a timely manner, so they are 
represented by high-level behavioral models that characterize the effects that the hardware 
architecture has on packet transmission and reception.  Common, generic models are used to 
cover common architectural features, such as coding, modulation, and spreading techniques, 
whereas device specific models are used to cover traits unique to a specific device, such as 
proprietary protocols, noise factors, and sensitivity figures. 

The wireless channel models consist of a single state machine that generates the loss or gain in 
received signal strength over a discrete time interval.  The choice of time interval varies 
according to the channel model.  For small-scale fading, the time interval is at least as small as 
the current coherence time of the channel.  Interfering transmissions that arrive during an interval 
are handled by adding their partial energy contribution to the total interference for the interval.  

The strength of a received radio signal depends on the propagation characteristics of the 
transmitted electromagnetic waves in the channel.  The physical properties that govern these 
characteristics are incredibly diverse and complex.  Thus, real-time computation of high-fidelity 
models is intractable for all but the simplest scenarios.  Thus, we use a hybrid emulation 
approach.  For low-fidelity emulation, we use high-level, computationally efficient statistical 
channel models that can be calculated during emulation.  For higher-fidelity emulation, we use a 
combination of pre-computed (offline) channel conditions and statistical channel models. 

Parameters for the wireless channel models can be obtained from the simulation of network 
interface positions within a three-dimensional terrain and node model.  Currently, the server is 
able to construct terrain models from standard digital terrain files (e.g. DTED, GeoTiff, DEM), 
and node models from standard 3DS files.  Additional support is provided for the modeling of 
obstruction blocks with varying attenuation affects.  
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2.4 Cluster Communication 
Cluster communication consists of a complex distributed real-time protocol that provides global 
clock synchronization and reliable communication across the emulation cluster.  The heart of the 
core is a TDMA protocol that strictly regulates use of the communication channel, mitigating the 
impact of latency and jitter on the timeliness and accuracy of the emulation.  To enable this 
functionality, the core is built, in part, from real-time RT-Linux kernel threads that operate 
beneath the non real-time Linux kernel.  These real-time threads execute in synchrony across the 
cluster in a pattern defined by the TDMA protocol to exchange the control packets necessary to 
conduct the emulation.  Some of these control packets are passed to/from non real-time threads 
in Linux through asynchronous interprocess communication mechanisms, requiring very careful 
coordination across threads to prevent race conditions that can disrupt communication flow.    

2.5 Graphical User Interface 
A graphical user interface allows the user to control the emulator and visualize the virtual world.  
The interface communicates with the simulation server and control daemons residing on the 
clients.  Example snapshots of the interface in action are shown on the following page.  

2.6 Previous Work 
There have been a number of software emulators developed for modeling traffic congestion in 
wired networks (e.g. NIST Net [1], Dummynet [2], ONE [3], and Seawind [4]); most of these 
utilize device drivers or kernel modules to drop, delay, or corrupt packets according to some user 
defined probability distribution.  A similar approach was used for the emulation of packet errors 
and congestion in a wireless network [5], except trace data from an actual wireless connection 
was used to perturb the flow of data packets.  A different approach was taken in the ns-2 
emulator [7], which emulates an entire mobile network, by simulating the network in ns-2 and 
then converting real data packets to simulated packets on the fly at the gateway node between the 
real and simulated networks.  The gateway then reflects the outcome (e.g. dropped, delayed, 
corrupted) of the simulated version of a packet on the buffered real packet.  Still other 
approaches, like that in [6], attempt to provide purely hardware solutions.  Presently, WiNE is 
the only emulator that we are aware of that attempts to provide bounded, real-time emulation of a 
dynamic mobile networking environment at and below the LLC layer, enabling “live” testing of 
wireless networking protocols. 
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Section 3 

Implementation and Testing 

The implementation of the emulator consists of approximately 35,000 lines of mixed C, C++, 
and Tcl source code.  To test and evaluate the emulator, we implemented network and virtual 
world models patterned after the Lakehurst FCS-C Demo-1 baseline field trials.  Modeling of the 
Lakehurst scenario consists of approximately 50,000 lines of XML code, and a 7.5m DTED 
digital terrain model. 

The Lakehurst Demo-1 scenario is a field test designed to evaluate the effectiveness of 
conventional COTS ad hoc networking technologies.  The scenario consists of 1 fixed node and 
19 mobile nodes moving in scripted mobility patterns within a 16 km2 region over a three hour 
test cycle.  Each node is outfitted with laptops, GPS, 802.11 wireless cards, and 9dBi antennas 
driven by external 6W amplifiers.  During a run, simulated traffic is transmitted in predefined 
patterns between nodes.  Statistical data on the successful delivery of this traffic defines the 
outcome of the test. 

Sample data from our general testing of the emulator is shown in Figures 3-4.  Figure 3 shows a 
profile of the computed BER as a function of time for an emulated wireless link, and the 
resultant impact on the data rate of a 512B CBR traffic flow crossing the link.  Notice the good 
correlation between the BER curve and the data rate curve.  As the BER rises there is a clear 
reduction in the data rate.  Also noticed that because of the rapid variations in BER from 
multipath fading, the data rate is does fluctuate even in very good average channel conditions.  
This is consistent with measurements of real wireless network behavior.  Figure 4 shows a 
similar profile, except in this experiment a building was placed at a location between the nodes, 
to demonstrate the modeling and effects of obstructions in the virtual environment. 

Sample data from our testing against the Lakehurst scenario is shown in Figures 5-6.  In Figure 
5, the upper curve shows a snapshot of the actual measured data rate between the X04 and Xcom 
nodes in the baseline test, and the lower curve shows the results from the same flow as emulated 
within WiNE.  Here, the data rate is averaged over a 10 sec window.  Note that although there is 
general overall agreement between the emulated and measured data, although there is greater 
variability in the emulation results.  Similar results are shown in Figure 6, for the Xp4 and Xcom 
flow. 

Further improvement in the accuracy of these results can be achieved by enhancing the detail of 
the virtual world to more accurately represent the Lakehurst terrain.  Indeed, considerable 
improvement in accuracy was achieved by tuning terrain, building, and foliage attenuation 
parameters to best match those of the actual environment.  Such improvements are currently 
ongoing. 
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Figure 3  Comparison of the emulated BER (top) and the induced affects on the link data rate (bottom). 
 

 

 
Figure 4  Comparison of the emulated BER (top) and the link data rate (bottom) with an obstruction. 
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Figure 5  Comparison of the measured data rate (top) to the emulated data rate (bottom) for the flow from  
X04 to Xcom in the Lakehurst Demo-1 scenario. 

 
 

Figure 6  Comparison of the measured data rate (top) to the emulated data rate (bottom) for the flow from  
Xp5 to Xcom in the Lakehurst Demo-1 scenario. 
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Section 4 

Conclusion 

Under this effort we implemented and successfully tested the first integrated prototype of the 
Wireless Network Emulator.  Software components include an advanced, network embedded, 
distributed simulation engine, accompanied by a wonderful graphical user interface; and the 
development of detailed network, traffic, mobility, and environment models patterned after the 
FCS-C baseline field tests conducted at the Naval base in Lakehurst, NJ.  Results of the 
Lakehurst tests demonstrate not only the correct operation of the emulator, but also demonstrate 
its accuracy in comparison to actual field data.  In the future, we hope to continue our work with 
DARPA to develop the platform into a tool that can aid in the evaluation of a variety of wireless 
networking technologies.  Additional planned enhancements include support for HLA 
federations, the addition of new simulation models (specifically underwater and hybrid sensor 
networks), and the expansion of the library of propagation, radio, and MAC models.
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