

Wireless Network Emulation
System (WiNE)

Gavin Holland

HRL Laboratories, LLC
3011 Malibu Canyon Road
Malibu, CA 90265

March 30, 2005

Final Technical Report
Contract No. MDA972-03-C-0061
June 2003 through March 2005

Sponsored By:
Defense Advanced Research Projects Agency
Advanced Technology Office (ATO)
Program: Battlefield Damage Assessment
ARPA Order No. Q013/00, Program Code: GS24E
Issued by DARPA/CMO under Contract No. MDA972-03-C-0061

The views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressly or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
30 MAR 2005

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Wireless Network Emulation System (WINE)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency Advanced Technology
Office (ATO) Battlefield Damage Assessment Arlington, VA 22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1

Section 1

Introduction

1.1 Overview
Costly decisions about which wireless networking technologies to develop are currently being
based largely on results from high-level simulation tools. The FCS-C program, for instance,
used high-level simulation tools to select the network and radio software for final development
and demonstration. To mitigate risk, there needs to be lab-based tools that provide more
accurate assessment than simulation but at far less cost than field testing. Our approach to this
problem is to develop a tool that emulates a field-test environment in the lab, so technologies
under consideration can migrate from coarse simulation models to actual code and tested “live,”
in real-time, over a high-fidelity virtual wireless channel environment. Our current solution is
the Wireless Network Emulator.

The Wireless Network Emulator (WiNE) is a network-embedded, highly-optimized, distributed
simulation engine, built into a cluster of commodity workstations and switches. On each
workstation, there appears to be one or more wireless network interfaces, located somewhere
within a three-dimensional (virtual) environment. A packet sent across one of these interfaces
experiences transmission errors according to the outcome of its simulated transmission in the
virtual environment. Since the speed and fidelity of this process ultimately defines the quality of
the emulation, WiNE employs novel techniques that exploit the availability of high-speed, low-
latency programmable interconnects, fast processors, and large memories to minimize
communication overhead and maximize simulation fidelity, while limiting the amount of induced
latency and jitter. The last objective is important because induced latency and jitter can
dramatically affect the performance of applications that require real-time QoS, such as audio and
video streaming and teleoperation/telepresence control traffic, or rely on packet arrival time
tracking for efficient operation, like TCP. WiNE’s unique design has the potential to reduce
unwanted latency and jitter by several orders of magnitude below existing emulation platforms,
like NistNet, Seawind, NS-Emulator, and QualNet’s Emulator, without any sacrifice in fidelity.

This report summarizes the development and testing that was conducted under this program.
Notable achievements include the development of the first integrated prototype of the embedded
distributed simulation engine, accompanied by a wonderful graphical user interface; and the
development of detailed network, traffic, mobility, and environment models patterned after the
FCS-C baseline field tests conducted at the Naval base in Lakehurst, NJ. Future work under
consideration includes improvements in platform stability, support for HLA, new simulation
models (specifically underwater and hybrid sensor networks), expanding the library of
propagation, radio, and MAC models, and the development of a diverse set of virtual worlds.

1.2 Organization
In Section 2 we present an overview of the WiNE architecture, which is followed in Section 3 by
the results of our testing with the Lakehurst scenario. In Section 3 we summarize the report.

2

Section 2

WiNE Description

2.1 Overview
An architectural overview of the WiNE system is shown in Figure 1. On the left side of the
figure is a block diagram of the cluster architecture. The system consists of a group of client
machines and server machines that are interconnected by a high-speed, low-latency
programmable interconnect (Myrinet). The client machines and server machines also share
separate networks for communication among themselves.

Figure 1. Architectural overview of the WiNE emulator.

On the right side is a high-level description of the emulator software that exists on the machines,
as well as the type of traffic carried by the networks. Above the cluster is a diagram showing an
example “virtual world” (the simulated wireless communication environment) within which the
client nodes appear to reside (from the viewpoint of their wireless communication). Beside the
diagram is a description of some of the simulation models that are used to describe the world
within the simulation engine. The client machines host the wireless application and network
software to be tested. Each node has one or more interfaces on a data network, and one interface
on the Myrinet control network. The data network may or may not be visible to the node
software, depending on the need, but the control interface is never directly visible. The Myrinet
interface, instead, supports a software-implemented virtual wireless networking device. During

3

an emulation run, packets can be sent and received on this virtual device just like a real device,
but the link quality they experience is dictated by the simulated wireless channel between their
locations within the virtual world.

Figure 2. Block diagram of major software modules and packet processing flow.

A block diagram showing this process can be seen in Figure 2. At the start of an emulation run,
the simulation engine loads and configures the selected virtual world scenario, which includes
information such as initial node locations and mobility patterns; and terrain, weather, and
propagation models. Subsequently, each client node is loaded with the wireless network
applications and protocols under test, and initialized according to the virtual world scenario.
When the emulation is in motion, any data packet sent out the virtual device is redirected to the
client-side simulation support process, which extracts information about the data packet (e.g.
src/dst MAC addresses, size, time-of-arrival) and encodes it into the payload of a small
“descriptor” packet. This descriptor is then sent over the control network to the simulation
server(s) while the real data packet is simultaneously sent (tunneled) over the data network to the
peer process(es) on the recipient node(s). The peer(s) buffer the data packet for later processing.
The simulation server decodes the information in the descriptor packet and simulates the
transmission of the data packet across the wireless channel within the virtual world. The results
of this simulated transmission (e.g. delay, corrupt, drop) are then encoded into an “outcome”
packet and sent back over the control network to the virtual devices on the source and destination
nodes of the original data packet. The support process on the destination node decodes the
information in the outcome packet and applies the result to the original data packet in its buffer
before passing it up the network stack. The process on the source node also uses the information

4

in the outcome to update the state of its virtual device (e.g. transmission statistics, queue status,
transmission status).

In the sections that follow, we describe this system in more detail.

2.2 Virtual Wireless Network Interface
The virtual wireless network interface is modeled partly on the client and partly in the virtual
world simulation. The model of the wireless network interface can be broken down into separate
data link layer models and physical layer models. The data link layer is further subdivided into
two sublayers: Logical Link Control (LLC) and Media Access Control (MAC). The Logical
Link Control (LLC) sublayer manages communications between devices over a "logical" link,
whereas the Media Access Control (MAC) sublayer manages the communication across the
physical link.

In the emulator, the data link layer model is divided between the client node and simulation
server, with the LLC model residing entirely on the client. One reason for this separation is that
there is little purpose for emulating the LLC, since it is designed to provide common access to
different devices. Another reason is that there is a natural separation point in the system
architecture between the MAC and LLC. The MAC is usually located in firmware on the
network device and the LLC is located in the kernel, right above the device driver (which
facilitates access to the hardware and firmware of the device by the kernel). Thus, separating the
real system from the emulated system at the device driver level means we only have to emulate
those portions of the network that are not easily manipulated within the lab environment.

The MAC models, however, are divided into a virtual hardware layer model and a simulation
model. The virtual hardware layer is located within the virtual interface device driver on the
client, and is responsible for maintaining the appearance of a physical network interface. The
simulation object is located on the server, and contains the core functionality of the MAC.
Communication between the two is carried in the descriptor and response packets across the
emulation interconnect. A common API is currently being developed for this purpose, which
will consist of a general set of core functions such as packet transfers, exception notifications,
configuration status and change requests, and statistics gathering.

2.3 Virtual World Simulation Server
The core of the emulator is a high-performance event-driven simulator. The simulator is built on
a custom simulation engine that manages a set of software objects that mimic the behavior of
components in the virtual network. Each software object is an instance of a model that
reproduces the behavior of a real-world component. For example, wireless channel models
mimic the behavior of the physical environment on the transmitted signal, such as pathloss,
shadowing, and multipath fading; whereas network interface models mimic the components of
the wireless device, such as the logical link control, the medium access control, and the radio.

The software objects are implemented as a set of extended finite state machines. State transitions
are triggered by the handling of events from one of the simulation clocks. Example events are
the expiration of a timer, the arrival of a packet, or a change in channel conditions. Terminal

5

states and select intermediate states may generate output, which can take the form of, for
instance, packets, signals, or exceptions.

The main task of network object models is to simulate the exchange of packets with peer objects
in the emulated network. Packets are represented by objects that are built by the sender from
packet descriptors received from the virtual nodes. These packet objects are held until they are
either transferred to another object or dropped. Other packet objects may be created and
destroyed in the process, such as for control and management packets. Termination of any state
machine, whether in error or success, always results in the generation of an outcome packet to
the clients. Outcome packets may also be generated at any other time, for example, to "push"
status information to the clients.

All inter-object communication is carried out strictly by the creation and handling of events at
time offsets that accurately track the behavior of the actual protocol or device. This requirement
maintains consistency between the virtual world and the real world by ensuring that events in the
virtual world do not occur before those in the real world according to common global (wall-
clock) time.

Hardware interfaces are too complex to model closely in software in a timely manner, so they are
represented by high-level behavioral models that characterize the effects that the hardware
architecture has on packet transmission and reception. Common, generic models are used to
cover common architectural features, such as coding, modulation, and spreading techniques,
whereas device specific models are used to cover traits unique to a specific device, such as
proprietary protocols, noise factors, and sensitivity figures.

The wireless channel models consist of a single state machine that generates the loss or gain in
received signal strength over a discrete time interval. The choice of time interval varies
according to the channel model. For small-scale fading, the time interval is at least as small as
the current coherence time of the channel. Interfering transmissions that arrive during an interval
are handled by adding their partial energy contribution to the total interference for the interval.

The strength of a received radio signal depends on the propagation characteristics of the
transmitted electromagnetic waves in the channel. The physical properties that govern these
characteristics are incredibly diverse and complex. Thus, real-time computation of high-fidelity
models is intractable for all but the simplest scenarios. Thus, we use a hybrid emulation
approach. For low-fidelity emulation, we use high-level, computationally efficient statistical
channel models that can be calculated during emulation. For higher-fidelity emulation, we use a
combination of pre-computed (offline) channel conditions and statistical channel models.

Parameters for the wireless channel models can be obtained from the simulation of network
interface positions within a three-dimensional terrain and node model. Currently, the server is
able to construct terrain models from standard digital terrain files (e.g. DTED, GeoTiff, DEM),
and node models from standard 3DS files. Additional support is provided for the modeling of
obstruction blocks with varying attenuation affects.

6

2.4 Cluster Communication
Cluster communication consists of a complex distributed real-time protocol that provides global
clock synchronization and reliable communication across the emulation cluster. The heart of the
core is a TDMA protocol that strictly regulates use of the communication channel, mitigating the
impact of latency and jitter on the timeliness and accuracy of the emulation. To enable this
functionality, the core is built, in part, from real-time RT-Linux kernel threads that operate
beneath the non real-time Linux kernel. These real-time threads execute in synchrony across the
cluster in a pattern defined by the TDMA protocol to exchange the control packets necessary to
conduct the emulation. Some of these control packets are passed to/from non real-time threads
in Linux through asynchronous interprocess communication mechanisms, requiring very careful
coordination across threads to prevent race conditions that can disrupt communication flow.

2.5 Graphical User Interface
A graphical user interface allows the user to control the emulator and visualize the virtual world.
The interface communicates with the simulation server and control daemons residing on the
clients. Example snapshots of the interface in action are shown on the following page.

2.6 Previous Work
There have been a number of software emulators developed for modeling traffic congestion in
wired networks (e.g. NIST Net [1], Dummynet [2], ONE [3], and Seawind [4]); most of these
utilize device drivers or kernel modules to drop, delay, or corrupt packets according to some user
defined probability distribution. A similar approach was used for the emulation of packet errors
and congestion in a wireless network [5], except trace data from an actual wireless connection
was used to perturb the flow of data packets. A different approach was taken in the ns-2
emulator [7], which emulates an entire mobile network, by simulating the network in ns-2 and
then converting real data packets to simulated packets on the fly at the gateway node between the
real and simulated networks. The gateway then reflects the outcome (e.g. dropped, delayed,
corrupted) of the simulated version of a packet on the buffered real packet. Still other
approaches, like that in [6], attempt to provide purely hardware solutions. Presently, WiNE is
the only emulator that we are aware of that attempts to provide bounded, real-time emulation of a
dynamic mobile networking environment at and below the LLC layer, enabling “live” testing of
wireless networking protocols.

7

8

Section 3

Implementation and Testing

The implementation of the emulator consists of approximately 35,000 lines of mixed C, C++,
and Tcl source code. To test and evaluate the emulator, we implemented network and virtual
world models patterned after the Lakehurst FCS-C Demo-1 baseline field trials. Modeling of the
Lakehurst scenario consists of approximately 50,000 lines of XML code, and a 7.5m DTED
digital terrain model.

The Lakehurst Demo-1 scenario is a field test designed to evaluate the effectiveness of
conventional COTS ad hoc networking technologies. The scenario consists of 1 fixed node and
19 mobile nodes moving in scripted mobility patterns within a 16 km2 region over a three hour
test cycle. Each node is outfitted with laptops, GPS, 802.11 wireless cards, and 9dBi antennas
driven by external 6W amplifiers. During a run, simulated traffic is transmitted in predefined
patterns between nodes. Statistical data on the successful delivery of this traffic defines the
outcome of the test.

Sample data from our general testing of the emulator is shown in Figures 3-4. Figure 3 shows a
profile of the computed BER as a function of time for an emulated wireless link, and the
resultant impact on the data rate of a 512B CBR traffic flow crossing the link. Notice the good
correlation between the BER curve and the data rate curve. As the BER rises there is a clear
reduction in the data rate. Also noticed that because of the rapid variations in BER from
multipath fading, the data rate is does fluctuate even in very good average channel conditions.
This is consistent with measurements of real wireless network behavior. Figure 4 shows a
similar profile, except in this experiment a building was placed at a location between the nodes,
to demonstrate the modeling and effects of obstructions in the virtual environment.

Sample data from our testing against the Lakehurst scenario is shown in Figures 5-6. In Figure
5, the upper curve shows a snapshot of the actual measured data rate between the X04 and Xcom
nodes in the baseline test, and the lower curve shows the results from the same flow as emulated
within WiNE. Here, the data rate is averaged over a 10 sec window. Note that although there is
general overall agreement between the emulated and measured data, although there is greater
variability in the emulation results. Similar results are shown in Figure 6, for the Xp4 and Xcom
flow.

Further improvement in the accuracy of these results can be achieved by enhancing the detail of
the virtual world to more accurately represent the Lakehurst terrain. Indeed, considerable
improvement in accuracy was achieved by tuning terrain, building, and foliage attenuation
parameters to best match those of the actual environment. Such improvements are currently
ongoing.

9

Figure 3 Comparison of the emulated BER (top) and the induced affects on the link data rate (bottom).

Figure 4 Comparison of the emulated BER (top) and the link data rate (bottom) with an obstruction.

10

Figure 5 Comparison of the measured data rate (top) to the emulated data rate (bottom) for the flow from
X04 to Xcom in the Lakehurst Demo-1 scenario.

Figure 6 Comparison of the measured data rate (top) to the emulated data rate (bottom) for the flow from
Xp5 to Xcom in the Lakehurst Demo-1 scenario.

11

Section 4

Conclusion

Under this effort we implemented and successfully tested the first integrated prototype of the
Wireless Network Emulator. Software components include an advanced, network embedded,
distributed simulation engine, accompanied by a wonderful graphical user interface; and the
development of detailed network, traffic, mobility, and environment models patterned after the
FCS-C baseline field tests conducted at the Naval base in Lakehurst, NJ. Results of the
Lakehurst tests demonstrate not only the correct operation of the emulator, but also demonstrate
its accuracy in comparison to actual field data. In the future, we hope to continue our work with
DARPA to develop the platform into a tool that can aid in the evaluation of a variety of wireless
networking technologies. Additional planned enhancements include support for HLA
federations, the addition of new simulation models (specifically underwater and hybrid sensor
networks), and the expansion of the library of propagation, radio, and MAC models.

12

References

[1] M. Carson, “Application and protocol testing through network emulation,” NIST, Internetworking and Technologies

Group, http://snad.ncsl.nist.gov/itg/nistnet/.
[2] L. Rizzo. “Dummynet: A simple approach to the evaluation of network protocols,” ACM Computer Communication

Review, vol. 27, no. 1, pp. 31-41, Jan. 1997.
[3] M. Allman, A. Caldwell, and S. Ostermann. “ONE: The Ohio network emulator.” Technical Report TR-19972, School of

Electrical Engineering and Computer Science, The Ohio University, Aug. 1997.
[4] M. Kojo et al., “Seawind: A wireless network emulator,” in Proc. of MMB’01, 2001.
[5] B. D. Noble, M. Satyanarayanan, G. T. Nguyen, and R. H. Katz, “Trace-based mobile network emulation,” in Proc. of

ACM SIGCOMM’97, Cannes, France, Sept. 1997.
[6] J. T. Kaba and D. R. Raichle, “Testbed on a desktop: Strategies and techniques to support multi-hop MANET routing

protocol development,” in Proc. of MOBIHOC’01, pp. 164-172, 2001.
[7] K. Fall, “Network emulation in the Vint/NS simulator,” in Proc. ISCC'99, July 1999.

