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INTRODUCTION

This final progress report details key theoretical and
applied advancements in the field of Moment Closure
discovered through the course of this project.
Specifically, the objective of this work was to study the
application of moment closure methods under cumulant
truncation to the transient analysis of the sortie
generation process. The work that was originally proposed
included 1) investigating the accuracy of moment closure
procedures, 2) developing procedural improvements to
increase accuracy, and 3) applying these to the sortie
generation process. As the work progressed, it became
apparent that these original objectives needed to be
augmented to accomplish the proposed work. As such,
additional research objectives of this project include 4)
creating a computationally efficient moment closure program
and 5) investigating the stability of moment closure
methods.

As a result of this work, the following main
accomplishments have been achieved 1) the creation of a
self-contained Mathematica package with users manual that
provides moment closure approximations for large stochastic
networks, 2) the development of analytical procedures to
check for network stability, 3) the development of an
optimal truncation policy based on the maximal order of
polynomial intensity (rate) functions for the network, 4) a
loose correlation measure of the error between the accuracy
of moment closure approximations and the traffic intensity
of the network, and 5) the application of moment closure
methods to the large-scale sortie generation process. Each
of these accomplishments will be discussed individually in
the body of the report. There have been three research
publications developed as part of this work, two invited
presentation, and two contributed presentations. At the
present time, a paper titled "" is in the process of being
re-submitted to Naval Research Logistics.

RESEARCH FINDINGS

Creation of Moment Closure Program

At the beginning of this project, the Mathematica® program
initially authored by the PI for the analysis of stochastic
systems was deemed to be inefficient for analyzing large
stochastic systems, such as the sortie generation process.



As an example, a 10-node version of the sortie generation
model described in Dietz[1] would take several hours to
enter and would not fully evaluate due to memory
constraints. This same model, however, can be entered and
evaluated in a matter of minutes using the streamlined code
that was developed through this project.

The process of streamlining the moment closure code was
ongoing throughout this project. Significant milestones
include the completion of a preliminary streamlined version
in April 2004, the completion of a user-friendly version of
this code in August 2004, and the ultimate packaging of
this code in March 2005. This program provides for the
efficient analysis of arbitrarily large networks and only
requires user to input the intensity functions of the
network, the desired truncation level, and the time horizon
over which the model is to be evaluated. The contents of
the Mathematica package may be found in Appendix A of this
report, a users manual in Appendix B, and a sample
implementation in Appendix C. This Mathematica code may be
retyped and saved as a .m package file, or an electronic
version may be obtained from http://web.nmsu.edu/-tmatis.
The majority of the coding work was performed by Karl Adams
and Ivan Guardiola under the direction of the PI, and the
users manual was co-authored by Amara Nance and the PI.

Stability of Moment Closure Methods

"Moment Closure" is a method used in order to close the
open set of Differential Equations obtained from the
transition intensities using the Random Variable technique
that define the moments of the system. Currently two forms
of closure are being implemented throughout the scientific
community. These two forms of closure are neglect and
parametric. Under the closure method of "neglect" we draw
to the assumption that all moments and cumulants above a
certain "closure level" are insignificant in the sense that
they are not vital in order to approximate the low order
cumulants of interest. The closure method of "parametric"
is done by making an assumption of the underlying
statistical distribution and formulating the high order
moments and cumulants in terms of the lower ones. The
underlying statistical distribution gives us an insight
into how the high order moments should approximated. For
example, by making the assumption that the underlying
distribution is "Poisson" we would set the high order
moments and cumulants above n>2 to be equal to the first



cumulant, this is due to the characteristics of the Poisson
distribution. These parametric assumptions allow us to use
stability analysis to fully interpret the system's
solutions both in transient as well as in steady state.

Stability analysis consists of the deriving the system's
stationary points otherwise known as the critical points or
equilibrium points of the system. This is done by solving
the system of differential equations after the parametric
assumption is made in the same manner as solving a linear
system of equations. A brief mathematical procedure summary
consists of finding the critical points of the system of
equations, deriving the Jacobian Matrix at each of the
stationary points, deriving the Eigensystem, which contains
both the Eigenvalues and Eigenvectors of the system at each
point, and deriving a staring point for manifolds that will
divide the phase portrait into feasible and unfeasible
regions. The procedure above can be done by choosing the
appropriate closure of the high order moments and cumulants
based on an underlying statistical distribution assumption
and setting the differentials to zero. This will yield the
corresponding critical points of the system. Stability
analysis continues by then giving a description and
classification of the system's critical points. The
Jacobian of the system will then give us a means of
obtaining such classification of the critical points as
"source," "sink," or "saddle". Consider the following
system

- f(x, y)

"T- g(x, y)
Looking at this system asymptotically we set the
differentials to 0. Thus,

0= f(xy),O = g(x, y)
We then find the equilibrium or critical points of the
system. Suppose that (;,y) is an equilibrium point. Then
let,

j- dI(x.o,Y.) W (XY

be the Jacobian Matrix evaluated at the equilibrium
point(x0 ,y0 ). The Eigenvalues are obtained by solving

Det(J-2J)=0 in terms ofA. The Eigenvalues allow us to
fully explore and classify the equilibrium points. These
classifications can be determined if the Eigenvalues follow



the following criterion. If the Eigenvalues of the Jacobian
matrix are negative real numbers or complex numbers with
negative real parts, then the equilibrium point of the
system is classified as a stable "sink" or "spiral sink."
This solution will approach this point as t-4- . If the
Eigenvalues are positive or complex with positive real
parts then this solution will move away from this point as
t-4 -. Thus, such a point is an unstable point. The point
can then be classified as a "source" or "spiral source." If
the Eigenvalues are positive and negative parts then this
point is classified as a "saddle."

Manifolds are solutions of the system of differential
equations which determine the behavior of solutions, within
all feasible space. These manifolds are of importance do to
the fact that the behavior of solution on either side
differ. For example, on one side of the manifold solutions
will tend to a stable equilibrium point, where as, on the
other side solutions might tend to some infinite value.
Therefore, manifolds will be employed in order to separate
the phase portrait into feasible and unfeasible regions.
The following example considers a single node(compartment)
Markov system. Let the immigration/birth rate function be
given by f (X) = X = 4, and let the death rate function be
given by f- 1 (X) = Px 2 =2x 2 . The system is graphically
depicted as

We find the following results for the stability of the
above system under a normal and Poisson parametric
assumption, yielding the following closure procedures.

Normal Distribution: ki(t)=Q V iŽ3
Poisson Distribution: ki(t)=kj(t) V i,j~l

Phase plots for these systems are given in Figures 1 and 2.

The results of stability analysis in moment closure
approximations are important for various reasons. First,
through this analysis we are able to determine a domain for
initial conditions in which solutions will behave in
accordance to the birth death model characteristics and
expectations. This domain determines which initial
conditions will yield relevant results and even determine
whether solutions can be attained or not. Through a study
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Figure 1: Stability Analysis under a Normal Assumption
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Figure 2: Stability Analysis under a Poisson Assumption

of manifolds we are able to graphically interpret such a
domain as shown in the previous figures. The manifolds act
as separators of solutions behavior from one side to
another we can clearly see that the solution tend toward
very different values. This analysis shows us another mode
of establishing error involved with the approximation
method based on making certain parametric assumptions.
This is an important aspect that has not been fully
explored by any others in the scientific community. Moment
Closure methods are currently being employed in turbulence
air flow models, signal processing and many other in which
people are employing the moment closure method specific to



parametric assumptions. These parametric assumptions should
be under full exploration and determination of system
behavior prior to implementation of closure under such
assumptions. We explore this issue in order to assure that
certain assumption carry certain error, stability and
solution behavior.

Optimal Truncation Policies

The accuracy of low-order cumulant approximations, namely
mean and variance, under cumulant-neglect moment closure
methods will approach the exact values as the level of
truncation goes to infinity. Since the computational
effort is positively related to the level of truncation,
however, our objective was to find a policy that minimizes
the level of truncation while maintaining reasonable
approximation accuracy. Our mathematical and empirical
findings suggest that there are two such 'logical'
truncation levels.

In particular, let "s" be the highest order of the
intensity function, and "i" be the number of cumulants
which we wish to estimate. It follows that "s+i-l" would
be the smaller of the two truncation levels and "2s" would
be the larger of these. The lower truncation level
accounts for all cumulants that are in the associated
differential equations generated by the system, and the
higher level includes those cumulants that are one order
removed. Truncating below the lower level leads to
significant approximation error, while above the upper
leads to unnecessary computational effort.

We present numerical results to summarize the above
truncation scheme for High, Medium and Low traffic
situations in Figures 3-8. In all in each case, the
maximum order of the arrival and service intensities were
quadratic and our objective is to estimate the Mean and
Variance of the system. Hence, it follows that the minimum
truncation level is (2+2-1)=3, and the Maximum Truncation
level is (2*2)=4. We observe that mean is quite well
approximated under the Low, Medium and High traffic
intensities. The approximation accuracy of the variance,
however varies. In particular, the variance is under-
approximated under the lower truncation limit and over-
approximated under higher truncation limit under the
varying traffic intensities.
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Figure 6: Variance Approximations under Medium Traffic
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Figure 8: Variance Approximations under Low Traffic

Effect of Traffic Intensities on Approximation Accuracy

Investigations into optimal truncation policies lead to the
observation that the traffic intensity greatly affects that
accuracy of the moment closure approximations. In
particular, empirical evidence indicates that the accuracy
of the approximations is best for medium traffic systems
and deteriorates as we move to low and high traffic
systems. This finding is dependent on the systems under



study, yet holds for a large body of models. A graphically
illustration of this is given in Figure 9. To study the
effect of traffic intensity, we consider a single node
system with 2 nd order polynomial intensities. Generating
exact solutions for the low-order order cumulants of the
system via Kolmogrov equations, we noticed that in general
the 4 th order cumualant was large under low traffic, small
under medium traffic, and very large under high traffic.
It follows that under 3rd order truncation, this potentially
large term may be missing from the equation. The effect of
this and other large higher-order cumulants may propagate
through as the truncation level is increased. This aspect
of the project remains in the exploratory stages, yet is an
area that warrants future research attention.

(low) Traffi Intenst (high)

Figure 9: Traffc Intensity and Approximation Error

Analysis of the Sorie Generation Process

Moment Closure methods, under a cumulant-neglect policy,
were applied to the sortie generation model. The model
considered mimicked that of Dietz[l]. A paper on this
subject was written and submitted to Naval Research
Logistics, yet is presently under revision for a
resubmission. The original draft of this paper is included
in Appendix D, in which a Phase-type distribution is used
to model the fork-join nodes.

RESEARCH MATERIALS

The following research publications were developed under
this grant.



" Jayaraman, R., Matis, T. and Guardiola, I. (2004) "Effect
of Polynomial Intensity Functions on Cumulant Derivation
Procedures", Proceeding of the 2004 Industrial Engineering
Research Conference.

" Matis, T. I. and Kharoufeh J. P., (2005) "Transient
Queueing Network Analysis of Sortie Generation" Naval
Research Logistics (under revision).

" Matis, T. and Guardiola I. (2005) "On the Stability of
Moment Closure Methods" Operations Research Letters (in
preparation).

This work was presented at several research conferences,
including

" Stability Region Identification for Non-Linear
Stochastic Systems Using Moment Closure Methods,
Institute for Operations Research and the Management
Sciences 2004 Annual Conference, Denver, Colorado,
October 2004

"* Jayaraman R., Matis T. I., and Guardiola I. (2004)
"Effect of Polynomial Intensity Functions on Cumulant
Derivation Procedures", Proceedings of the Institute
of Industrial Engineering 2004 Annual Conference.

CONCLUSION

The research performed under this grant has lead to
significant advancements in the theoretical and applied
aspects of Moment Closure methods. Notable theoretical
advancements include documented studies on the stability,
accuracy, and optimality of moment closure methods, and
applied advancements include efficient computational
routines for analyzing large systems and demonstration of
applicability to the sortie generation process. A website
at http://engr.nmsu.edu/-tmatis contains copies of
computational codes, papers, and presentation produced
under this grant.

REFERENCES
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Generation with the Use of a Fork-Join Model", Naval Research
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APPENDIX A
MOMENT CLOSURE MATHEMATICA© PACKAGE

(MCP.m)



This file is intended to be loaded into the Mathematica
kernel using the package loading commands Get or Needs.

(*This Notebook is the keeper of all function which are

necessary in order to \
evaluate a give node system using transient analysis
corresponding to moment \
neglect*)
(*Packages needed in order to use this program*)
(*Wirtten by Ivan Guardiola &Tim Matis*)
<<DiscreteMath'Combinatorica"
<<momcum. m

(*This function build the left hand side of the of the

partial differential \
equations. *)
LHSPDE[Nodes_,TRUNC_]:=

Module [{AA,AB,AC,AD,AE,AF,AG,AH,AI,AJ,AKAL,AM,ANAO,AP,AQ,
AR, AS, AT, AU, AV,

ORLI,MGFList,CGFlist,IVV,mgfl,Cgf, MGF,LESpde},

AA=Table [Table [0 ,{Nodes}] ,{Nodes}] ;AB=MapThread [K, Transpose
[AA]];

AC=MapThread [m, Transpose [AA]] ; Clear [AA];

AD=AB/. {K [b ] \ [Rule] K [b] [t] } ;AE=Take [First [AD]] ;AF=Take [Fi
rst [AC]];

Evaluate[AE]==O;Evaluate[AF]==l;AG={ab,c,d,e,f,g,h,r,s,t,u
,v,w,x,y,z};

AH=Take [AG,Nodes] ;AI=Table [0, {Nodes}J ;AJ=Table [TRUNC, {Nodes1];

AK=Transpose [{AH,AI,AJ}] ;AL=MapThread [m,AH, 0] ;AM=MapThread [
K,AH, 0];

AN=Table [Subscript [\ [Theta], i], {i,Nodes}] ;AO=ANAAH;AP=Times
@@AO;



AQ=Factorial [AH] ;AR=Times@@AQ;

AS=AP/AR;AT=AM/. {K[z _ \ [Rule]K[z] [t] };AU=AL*AS;AV=AT*AS;
(m [i ]/;Plus@@{i}\ [GreaterEqual] TRUNC+1) =

0; (K[i__ ][t]/;Plus@@{i)\[GreaterEqual]TRUNC+l)=0;ORLI={};
For [i=l, i<TRUNC+I,

If [i\ [Equal] 1,AppendTo[ORLI,Compositions [i,Nodes]],
AppendTo [ORLI,Join [ORLI [[i-

1] ],Compositions [i,Nodes]]]] ;i++];
orderListl=Last[ORLI] ;ORLI={1;MGFList={1;CGFlist={};
For [i=l, i<Length [orderListl] +1,

IVV=Thread [AH\ [Rule] orderListl [[i]]];
AppendTo [MGFList, AU/.. IVV];

AppendTo [CGFlist,AV/.IVV] ;i++] ;mgfl=l+Plus@@MGFList;Cgf=Plu
s@@CGFlist;

NGF=Exp [Cgf];
LHSpde=D [MGF, {t, I}]/. {\ [ExponentialE] ACgf

\ [Rule]mgfl);{LHSpde, MGF,Cgf,
mgf1)

I

(*This function builds and evaluates all necessary
symbolics in order to \
create the right hand side of the partial differential
equations*)
EQUATE[F_,B_,TRUNC_]:=

Module[{F2,Y,Y2,Y5,Y7,Nodes,AN,AG,AH,ord,Y8,Yll,ORLI,orderL
isti,

relationsmod, relations, momcumrule, AO, T1, Y12, LHL, LHSpde, MGF,
Cgf,mgfl, stu,

butt,butt2},F2=Partition [F, 1];
Nodes=Length [B [ [1]]];

Y=Table[Join[Take[F2[[i]]],Take[B[[i]]],]{i,I,
Length [F] }]/. {Plus\ [Rule] Listi;

Y2=Partition[
Flatten [Table [

If[ListQ[Y[[i,l]]]\[Equal]False,Y[[i]],

Table[{Flatten[Y[[i,i]]][[j]J,Drop[Y[[i]],l]},{j,l,

Length[Y[[i,]] ]}]],{i,l,Length[Y]] ],l+Length[B[l[]]]];



Y5=Y2/.Thread[Variables [F] \ [Rule] Table [1, {Length[Variables [
F]])]];

AN=Table [Subscript [\ [Theta],i] , {i,Nodesl];

AG={a,b,c,d,e,f,g, h, r, s, t, u, v,w,x,y,z);LHL=LHSPDE[Nodes,TRU
NC];

LHSpde=LHL[[l[] ;MGF=LHL[[2]] ;Cgf=LHL[[3]] ;mgfl=LHL[[4]] ;AH=
Take [AG, Nodes] ;

Y7=Table [Y5 [[i,lI] *Sum[ (Plus@@(AH*AN) ) ^j/j !, {j, l,TRUNC}]/.T
hread [

AH\[Rule]Take[Y2[[i] ,,{2,2+Length[B[[l]]]-
1)]) ,{i, l,Length [Y5] }] ;

ord=Table[Exponent[Y2 [[i,l]] ,Variables [F]] ,{i,I,Length[Y2] }
];

Y8=Table[Prepend[Table[{AN[[j]],ord[[i,j]]},{j,1,Length[ord
[[i]]])],

MGF],{i,l,Length[Y5]}];

Yll=Plus@@ (Y7* (Table [D@@Y8 [[i]] , {i, l,Length [Y8] }] )/. {\ [Expo
nentialE] A

Cgf \ [Rule]mgf1)) ;ORLI={};
For [i=l, i<TRUNC+l,

If [i\ [Equal] l,AppendTo [ORLI,Compositions [i,Nodes]],
AppendTo [ORLI, Join [ORLI [ [i-

1]] ,Compositions [i,Nodes] ]] ;i++];
orderListl=Last [ORLI] ;ORLI={};
relationsmod=

MomCumConvert [#, ForMomentQ\ [Rule] Y, CenteredQ\ [Rule] N",

MomentSymbol\ [Rule]m, CumulantSymbol\ [Rule] K] &/@orderListl;
relations=relationsmod/. {K [r__] \ [Rule]K[r] [t]);
momcumrule=relations/. {Equal\ [Rule] Rule) ;AO=ANAAH;
Tl=Table [Times@@AO/.Thread[AH->orderListl [[ill] , {i,l,

Length [orderListl] }];
butt=Table [Thread [AN-

>Sign[orderListl[[i]]] ],{i,l,Length[orderListl]}];
Y12={);
butt2=

Table [Table [

If[Sign[orderListl[[j,i]]]\[Equal]l,a,butt[[j,i]]],{i,l,



Length [orderListli [[i]]]] ,{j, i,Length [orderListl] 1];

For [i=l, i<Length [butt2] +1,AppendTo [Y12,DeleteCases [butt2 [[i
]],a]] ;i++];

{LHSpde, Y12, T, Yl, momcumrule}
]

(*This function does the moment matching operation*)
EquateCoefficients[F , B , TRUNC_]:=

Module[{LLL,BF,LHSpde,Y12,T1,Yl,momcumrule},

LLL=EQUATE[F,B,TRUNC] ;LHSpde=LLL[ [1]] ;YI2=LLL[ [2]] ;Tl=LLL[ [
3]];

Y11=LLL [[4]] ;momcumrule=LLL [[5]];
BF=Flatten[

Table [Coefficient [LHSpde/.Y12 [[i]] ,TI [ [i] ] ] \ [Equal]
Coefficient [Yll/.YI2 [[i]] ,Tl [ [i] ] ],{i,l,
Length [TI)] }/.momcumrule]

]

(*This function set initail conditions if any and produces
the Equations for \
NDSOlve thus this will allow the building of all necesarry
function in order \
to solve the PDEs numerically*)
InitialConditions[F , B , TRUNC_, NodeID_,Initial_]:=

Module [{ORLI, orderListl, BE,
Nodes,BE1,BE2,neweqns,neweqmod,BG,BH,BI,BJ,BK,

BL,BM,BF},
Nodes=Length [B [[1]]];
ORLI={)};
For [i=l, i<TRUNC+i,

If[i\ [Equal] l,AppendTo[ORLI,Compositions [i,Nodes] J,
AppendTo [ORLI,Join[ORLI [ [i-

1]] ,Compositions [i,Nodes]]]] ;i++];

orderListl=Last [ORLI] ; Clear [ORLI] ;BE=MapThread [K, Transpose [
orderListl]];

BEI=BE/.{K[y_] \ [Rule]K[y] [t] );BE2=BE/.{K[y__] \ [Rule]K[y] [
0] \ [Equal] 0);

BF=EquateCoefficients[F,B,TRUNC] ;neweqns=Solve[BF,BEl];
neweqmod=neweqns/. {Rule\ [Rule] Equal);

If [Length [NodeID] \ [GreaterEqual] l&&Length [Initial] \ [Greater
Equal] I,BG={);



For [j=l,j<Length[Initial] +1,
For [i=1, i<Length [orderListl] +1,

If[NodeID[[j]]\[Equal]orderListl[[i]],AppendTo[BG,i]] ;i++];j++] ;

BH=MapThread [K, Transpose [NodeID]] ;BI=BH/. {K( n___] \ [Rule] K [n]
[0] };BJ={};

For [i=l,i<Length [Initial] +I,AppendTo[BJ,BI [[i]] \ [Equal] Int
ial E [i] ]] ;

i++] ;BK={};AppendTo[BK,ReplacePart[BE2,BJ[[1]],BG[[1]]]];
If [Length [Initial] >1,

For [i=l, i<Length [Initial] +1,
If [i\ [NotEqual] 1,

AppendTo [BK, ReplacePart [BK [ [i-
1]],BJ[[i]],BG[[i]]]]] ;i++]];

BL=Last [BK] ;BM=Join[BF,BL],BM=Join[BF,BE2];];
(EM, BE)
]

(*This function obtains the numberical evaluated functions
and return \
intorpolating functions*)
NumericalSolution [BM ,BE_,TimeAxis] :=

Module [{rs),rs=NDSolve [BM,BE, {t, 0,TimeAxis),MaxSteps\ [Rule]
10000]]
(*This function calls all other functions as well as it
runs all plotting *)
MomentNeglectIF , B , TRUNC_,NodeID_,Initial_,TimeAxis_,PlotF
uncs_,RangeList_]:=

Module [1{Sol, INT ,BM, BE),

INT=InitialConditions [F,B,TRUNC,NodeID, Initial] ;BM=INT [[1]]
;BE=INT [ [2]] ;

Sol=NumericalSolution [BM, BE, TimeAxis];
For [i=l, i<Length [PlotFuncs] +1,

If [Length [RangeList] >=l,
NotebookWrite [NotebookCreate [],

Cell [GraphicsData ["PostScript",
DisplayString [

Plot [Evaluate[{Extract[PlotFuncs,i] }/.Sol],{t,0,TimeAxis},
PlotRange\ [Rule] Extract [RangeList, i],
AxesLabel\ [Rule] {t,Extract [PlotFuncs,i] },



DisplayFunction\ [Rule] Identity]], "Graphics3 ]]],
NotebookWrite [NotebookCreate [],

Cell [GraphicsData ["PostScript",
DisplayString [

Plot[Evaluate[{Extract[PlotFuncs,i] }/.Sol],{t,O,TimeAxis},
PlotRange\ [Rule] All,
AxesLabel\ [Rule] {t,Extract [PlotFuncs, i] },

DisplayFunction\ [Rule] Identity]] , "Graphics] ]]] ;i++];
]
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1. Introduction
The Moment Closure Program (MCP) is a Mathmatica® package that estimates

the cumulants (moments) of a non-linear stochastic system over the transient period. The

program does not assume a particular parametric state-distribution for the system apriori,

which results in the simple truncation, i.e. equating to zero, of all non-estimated

cumulants. This program was originally conceived by Dr. Timothy Matis in 1998 and

was refined to its present form by Ivan Guardiola and Karl Adams during the 2003 and

2004 academic years. The project was sponsored by grant #F49620-03-1-0310 from the

Air Force Office of Scientific Research, whose support made this work possible.

2. Before You Start
Before using the MCP program, place the file "MOMCUM.m" and "MCP.m" in

the folder where the Mathematica program and kernel are located. This is typically in the

directory C AProgram FileslWolfram ResearchMathematica15.0 for PC versions of

Mathematica. The package "MOMCUM.m" was authored by Dr. Qui Zheng, presently

with the Department of Bio-Statistics at Texas A&M University, and is necessary for

converting moments to cumulants as part of the internal calculations of the "MCP.m"

package.

3. Entering a Stochastic System
The first step in entering a stochastic system into Mathematica© is to read in the

MCP package. This is accomplished by typing the following command into the first line

of a notebook.

<<MCP.m



On the second line, a function that calls information in this package is entered. The

arguments of this function describe all necessary information about the network. This

function is given below, and the arguments are described in the following subsections.

MomentNeglect[F,B,TRUNC,NodeID,Initial,TimeAxis,PlotFuncs,RangeList]

3.1. Entering the Intensity Functions
Instantaneous changes in the state of the system in (t,t+At) and their

corresponding intensity functions are entered into the lists B and F respectively. It

follows that the lists B and F must be of the same length and that the elements of B and F

correspond by position. Note that B is entered as a list of lists and F is entered as a list of

functions.

The variables of the intensity functions must be entered as a subscripted letters

(note: letters without a subscript will not work properly). As an example, the variable

corresponding to the state of the first node should be entered as x]. All other elements of

the intensity function should be entered in numeric form. The following two examples

consider systems that are subject to 1) unit changes and 2) bulk changes in (t,t+At).

3.1.1. Systems with Unit Changes
Consider a 2-node system with instantaneous unit changes in the state of the

system. In particular, arrivals to the first node occur at a rate 3, departures from the first

node and the subsequent arrivals to the second node occur according to the rate function

4 xi2, and departures from the second node occur according to the rate function 5 x23. To

specify this system, the following lists would be defined for B and F.

F=13, 4 x, 2, 5 X2}



3.1.2. Systems with Bulk Changes
Consider a single node system with bulk arrivals and unit departures. In

particular, arrivals to the first node occur 3 at a time at a rate 5 and departures occur

according to the rate function 4 x, 2. To specify this system, the following lists would be

defined for B and F.

F={5, 4 x1
2}

3.2. Defining the Truncation Level
The first element defined by the user is the truncation level of the cumulants.

This value may be set arbitrarily high within the limits of available memory, yet is

typically 2,3, or 4 as this is common for many moment closure problems. An example of

the truncation level set to 3 is given below.

TRUNC=3

3.3. Defining the Initial Conditions
Next, the initial conditions are specified. There are three conditions that may

exist for the system, 1) all cumulants set to zero, 2) one non-zero cumulant, and 3) more

than one non-zero cumulant.

3.3.1. All Cumulants Set to Zero
The default initial condition of the program sets all cumulants to zero at time zero.

Hence, leave the lists "NodelD" and "Initial" empty as shown below.

NodeID:={}

Initial:={}



3.3.2. One Non-Zero Cumulant
If the initial conditions consist of one non-zero cumulant, identify that cumulant

in "NodeID" and enter the non-zero value in "Initial". Note that "NodelD" is entered as

a list of lists and "Initial" is entered as a list of numbers. As an example, suppose at time

= 0 there are five items in node three of a five node system and that all other nodes are

known to be empty. To enter this initial condition, specify "NodeID" in the form of a list

using I in the third position to indicate the first cumulant of the third node and then

specify 5 in the first position of the "Initial" list as shown below.

NodeID:={{0,0,1,0,0}}

Initial:={5}

3.3.3. Multiple Non-Zero Cumulants
The procedure for entering initial conditions for multiple non-zero cumulants is a

simple extension of that for one-cumulant only. The non-zero cumulants are identified as

a list in "NodeID" and their values are entered in the corresponding position in "Initial".

As an example, suppose at time = 0 it is known that there are 10 items in node three and

that the expected number of items in node 4 is 12 with a variance of 5. These initial

conditions are entered as shown below.

NodeID:={{0,0,1,0,0}, {0,0,0,1,0},{0,0,0,2,0}}

Initial:={10,12,5}

3.4. Defining the Output Plots
The variables that control the output plots of the network are "PlotFunes",

"TimeAxis", and "RangeList". The cumulants that the user would like to view are

entered into the list "PilotFuncs" as the elements K[ij,...][t], where ij.... are the non-

negative integers corresponding to this set of cumulants. Note that any desired marginal



and cross cumulants up to the order of truncation may be specified in this list. As a

reminder, the first order marginal cumulants correspond directly to expectation, the

second to the variance, and the third to the skewness. Likewise the second order cross

cumulants correspond directly to the covariance between the respective nodes. As an

example, consider a fully defined 5-node stochastic network and assume our interest lies

only in the expectation and variance of the first node. The specification of these output

plots would be entered in the list "PiotFuncs" as shown below.

PlotFuncs={K[2,0,0,0,0,0l[tI,K1l,0,0,0,0,0l[t]);

The range of the x and y axis of these plots are specified through "TimeAxis" and

"RangeList" respectively. In particular, "TimeAxis" controls the range of the

independent time variable on the x-axis and "RangeList" specifies the range the

cumulant on the y-axis. "TimeAxis" does not have a default value and must be specified

by the user for the program to function properly. "TimeAxis". is entered as a single real

number that denotes the end point of the interval [0, "TimeAxis"]. "RangeList"

defaults to an interval which is large enough to show the entire value of the cumulant on

the y-axis. Often "RangeList" is left blank for the first run for the user to visual the

entire graph. "RangeList", is modified by entering embedded lists of the form {lower

endpt of y, upper endpt of y} that correspond by position to those plots specified in

"PlotFuncs". Hence, the lists "PlotFuncs" and "RangeList" must be of the same

length. As an example, consider the two cumulants specified in "PlotFuncs" in the

previous example. Suppose the user would like to solve for these cumulants from time

te [0,50] and plot K12,0,0,0,0,0l[t] on the interval {0,25} and plot K[1,0,0,0,0,0lIt] on the



interval (5,50). The values of "TimeAxis" and "RangeList" would be entered as shown

below.

TimeAxis=50;

RangeList--{{0,25},{5,50));

4. Running the MCP Program
The MCP program may be run by clicking on the "Kernel" menu, then

"Evaluation", then "Evaluate Notebook". This will generate the specified output graphs

labeled with the corresponding cumulant in their own window. For example, the graph of

the first cumulant of the first node will have the label "K[1,0,0,0,0,0j[tj" and will open in

the window "Untitled 1".

5. Limitations
The program, as written, has a limit of twenty six nodes. If the system under

consideration contains more than twenty six nodes, the number of variables in a list that

is embedded is in the internal calculations section of the program must be increased. To

do this, find the list "AG" in the "MCP.m" pacakage and add variables to this list.

6. Contact Information
For further information about the MCP program, please contact Dr. Timothy I.

Matis at tmatis(cnmsu.edu.
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1 Introduction

In a highly volatile world environment, military decision makers are currently faced

with the daunting task of accurately assessing the ability of their forces to carry out critical

missions in an efficient and expedient manner. The successful execution of such missions,

particularly those involving military aircraft, hinges upon the availability of resources such as

personnel, aircraft, munitions, and maintenance facilities. Assessing the operational readi-

ness of a given air base is therefore of paramount importance to military decision makers.

The concept of operational readiness can refer to a number of performance measures

within this context. One important measure is that of resource availability which refers to

the proportion of time the air base is able to provide all necessary resources and personnel

to perform a mission. A few examples of these resources include diagnostic equipment,

tools, replacement aircraft components, and physical hangar space necessary to perform

maintenance activities. Ultimately, decision makers are interested in the number of successful

missions flown over a critical period of time. This measure is often referred to as the aircraft

sortie generation rate. It is obvious that the sortie generation rate is highly dependent

on the flow of ground operations. Perhaps the most critical portion of the overall sortie

generation process is the maintenance activity. This is due to the fact that distinct aircraft

may have vastly differing maintenance requirements upon sortie completion. For this reason,

it is crucial to assess such measures as the current workload at the maintenance station(s)

as well as resource availability. However, these measures are not necessarily time invariant,

particularly in wartime scenarios in which prevailing theater-level dynamics may govern

ground operations. The time-variant behavior of these measures ultimately impacts the

ability of an airfield to fly aircraft sorties.

Owing to the inherently complex interactions between resources required for the sortie

generation process, analysts have typically employed computer simulation techniques for the

purpose of evaluating operational readiness. In the United States Air Force, for instance,

some typical models that have been employed are the Logistics Composite Model (LCOM)

[31 and the Sortie Generation Model (SGM) [1]. Though such simulations allow analysts

to assess the utilization of resources (and other performance metrics), the implementation

of such models can be cumbersome due to extensive data input requirements and long run

times for a single replication. These problems are exacerbated in a real-time setting when

decision makers need reasonable answers in an expedient manner.



In order to address the shortcomings of simulation models of air base operations, some

authors have proposed analytical models to measure some basic aggregate features that can

be used to quickly and adequately answer important questions regarding operational readi-

ness. More specifically, Dietz and Jenkins [2] provided a mathematical framework to address

the problem of modelling the theater-level dynamics of the aircraft sortie generation process

as a closed queueing network. In that work, the authors presented a steady-state, mean value

analysis (MVA) for several important performance measures involved in the aircraft sortie

generation process. The key innovation in their model was the incorporation of a single,

fork-join node in the queueing network that enables the analytical modelling of concurrent

maintenance activities subsequent to sortie completion. This approach to the problem is

significant for several reasons. First, it allows for an aggregation of many complexities into

single- or multi-server queueing stations. Second, it provides an analytical framework upon

which to build models of higher resolution if needed, and third, it provides fast numerical

results for decision makers who require a "snapshot" of their current operational capability

by avoiding time-consuming simulation replications. Hackman and Dietz [61 extended the

preliminary work of [2] by allowing the service times at each node of the network (i.e., at each

stage of the sortie generation process) to be arbitrarily distributed rather than exponentially

distributed.

Though these two papers provide a framework upon which the sortie generation

process may be analyzed, the work does suffer an important shortcoming. Both works provide

a steady-state, mean value analysis (MVA) of the workload at each node and the sortie

generation rate as opposed to a more realistic transient analysis. Although the steady-state

analysis allows for mathematical tractability of the model, it fails to incorporate the realistic,

time-variant behavior of the important measures of operational readiness. Additionally,

the queueing network models developed in these papers do not account for the blocking

of aircraft that occurs at the maintenance node due to limited hangar space. Hence, the

primary objective of our work is to extend that of Dietz and Jenkins [2] and Hackman and

Dietz [6] by explicitly incorporating the time dependence of queueing performance measures

for a more accurate assessment of operational readiness by using a new analytical technique

for the transient analysis of queueing networks.

The main contributions of this work can be summarized as follows. We provide a

transient analysis for a closed queueing network model of the sortie generation process. The

primary measure of operational readiness is the time-variant sortie generation rate, though
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we also consider the workload (or congestion level) of the system measured by the expected

number of aircraft present at each station at a given point in time. To that end, we formulate

a phase-type approximation for the distribution of aircraft holding time at the fork-join repair

node, and adapt and employ the cumulant function method previously applied to queueing

networks by Matis and Feldman [9]. Our approach to the problem allows us to compute the

first moment of the aforementioned measures as explicit functions of time.

The remainder of the paper is organized in the following manner. Section 2 reviews

the important features of the steady-state model of [2]. In section 3, we present our modified

queueing network model of the aircraft sortie generation process. Section 4 discusses the

cumulant-based, transient analysis of the queueing network while section 5 provides a nu-

merical example demonstrating the implementation of the procedure. Finally, we give some

concluding remarks in section 6.

2 Queueing Network Model

Dietz and Jenkins [2] were apparently the first to present a formal mathematical model

of the sortie generation process. Before describing our transient analysis and extensions of

their model, we provide a brief review of the latter. There are six activities that can be

identified in the process of flying sorties from a given air base. In the queueing network

framework of [2], each activity is modelled as an individual queueing station. The flow

entities of the network are a fixed number of aircraft (N) that pass through the six nodes

(stations) according to a stochastic routing matrix P := [puj] where pij denotes the stationary

probability that an aircraft completing activity i proceeds next to activity j. The network is

assumed to be closed in that the N aircraft never leave the system, nor do additional aircraft

arrive to the system. The closed queueing network model consists of the following nodes:

pre-flight, sortie, troubleshoot, a fork-join maintenance node, turnaround, and munitions

upload. The fork-join node consists of five substations representing five critical systems of

an aircraft that may or may not require maintenance subsequent to sortie completion and

the troubleshooting activity. Each station is assumed to have an exponentially distributed

service time. Figure 1 gives a graphical depiction of the flow of aircraft through this network.

The closed queueing network model was analyzed using a mean value analysis (MVA)

heuristic developed by Rao and Suri [11] to accommodate the nuance of a fork-join node and

enhanced by Jenkins [7] to handle fork-join nodes with probabilistic branching. While the

3
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Figure 1: Queueing network model of sortie generation process.

MVA produces exact results for product-form networks, the heuristic MVA procedure pro-

vides only approximate performance measure values for any closed network with more than

one customer in the system. Using this approach, the primary (steady-state) performance

measures computed in [2] were: i) the mean number of aircraft at each station (workload),

ii) the throughput at each station, and iii) the overall throughput of the network, which

directly corresponds to the time-invariant sortie generation rate. These results are useful

due to their mathematical tractability and ease of implementation; however, they do not

account for the inherently time-variant behavior of the station (or system) workload and the

sortie generation rate. Moreover, the model of [2] ignores the effects of blocking by assuming

infinite capacity queues at each station; however, limited hangar space is a reality at most

air bases causing aircraft to be blocked at the troubleshoot node of the network.

In the following section, we present a modified version of the basic model of Dietz
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and Jenkins [2] in order to consider the transient (time-dependent) behavior of the expected

workload in the system and the sortie generation rate. In the subsequent section, we describe

the formal procedure for analyzing the model in the transient regime.

3 Modified Queueing Network Model

The first significant difference in our model is the characterization of the holding

time in the maintenance hangar as a phase-type (PH) distribution. PH distributions are

extremely useful when modeling the distributions of nonnegative random variables. Figure

2 gives a graphical depiction of our modified queueing network model.

Sortie (2)

Troubleshoot (4)

iRepair

Phase 1 (5)

S Phase 2 (6)

Turnaround (3)

Figure 2: Sortie generation model with PH-distributed repair times.

It is important to note the distinction between the models of Figures 1 and 2. In Figure 2,

it is compulsory to add node 6 to the maintenance node (node 5 of Figure 1) in order to

implement our two-phase holding time distribution.
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For our modified model, we adopt the notation in [2]. Referring to Figure 1, let si

denote the mean service time at node i, and let ri denote the number of servers at node i, for

i = 1, 2,3,4. Owing to the fact that service rates are state dependent, whenever n customers

are present at node i, the state-dependent service rate, Pi(n), is given by

pi(n) = minfn/si,r 1/si}, i= 1,2,3,4. (1)

With regard to node 5 of Figure 1, the fork-join repair node, we define s5,k as the mean

service time at repair station k, rs,k denotes the number of servers at repair station k, and

q5,k is the probability that repair activity k is required by an arriving aircraft, k = 1, 2,3,4,5.

The state-dependent service rates for the maintenance activities are thus

A5,k(n) = min{n/ss,k, r5,k/s5,k}, k 1,2,3,4,5. (2)

The service rates of Equation (2) correspond to the rate parameters of the associated expo-

nential distributions at each of the five repair stations of node 5. For our particular queueing

network model, the parameter values are summarized in Table 1.

Table 1: Model parameter values for sortie generation queueing network.
Node Index Mean Service Time Repair Probability Number of Servers

1 s, = 0.25 ri = co
2 S2 = 2.00 r2 = 0c

3 s3 = 1.25 r 3 = 00

4 S4 = 0.50 r41
5,1 s5,1 = 2.20 q5,1 = 0.17 r 5,1  1
5,2 S5,2 = 2.27 q5,2 = 0.39 r5,2 = 2
5,3 $5,3 = 2.37 q5,3 = 0.21 r5,3 = 2
5,4 S5,4 = 1.50 q5,4 = 0.27 r5,4 - 1

5,5 s5,1 = 1.19 q5,5 = 0.46 r5,5 2

It should be noted that the activity labelled "munitions upload" in [2] is contained in the

"turnaround" activity in this model so that the total mean service time at the turnaround

queue is 1.25 time units.

We examine the operational readiness of a single air base that services N aircraft with

a maintenance hangar capacity of 2 planes (i.e., we relax the assumption that the mainte-

nance hangar has infinite capacity). An airplane undergoing service will occupy a hangar

space until all required service activities have been completed. The troubleshooting activi-

ties of node 4 will be halted when the hangar is full and will resume only when a departing
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aircraft frees capacity in the subsequent repair node. The repair activities of node 5 are per-

formed concurrently and assumed to be mutually independent. In the following subsection,

we describe the means by which the original fork-join construction of the repair node is used

to provide a phase-type representation of the maintenance holding time distribution. The

parameters of the phase-type distribution will ultimately be used to describe the stochastic

evolution of the system, thereby allowing for our transient analysis procedure.

3.1 PH Distribution for Repair Holding Times

The distribution of aircraft holding time at the fork-join repair node shall be repre-

sented by a continuous three-parameter, two-phase, state-dependent distribution. We first

briefly review PH distributions which are described in detail in the pioneering book by Neuts

[101. Consider a Markov process on a finite state space.6 := {1, 2,..., u+ 1} such the state j

is transient for 1 < j < u, and state u + 1 is the absorbing state. The infinitesimal generator

matrix Q of this process may be partitioned as

[=G Go](310 0(3

where the elements of the u x u matrix G are such that Gii < 0 and Gij Ž 0, i # j. Moreover,

Ge + Go = 0

where e is a column vector of ones. The initial distribution of the Markov process is given

by the row vector a' := (a, au+l) where a is a row vector, au+1 is the probability that the

process begins in state u + 1, and

ae+a•+l = 1.

A probability distribution F for a nonnegative random variable is said to be a PH distribution

if and only if it is the distribution of the random time until absorption of the aforementioned

Markov process. In such case, the distribution is said to have representation (_, G).

The representation of repair holding times necessarily incorporates the state depen-

dence of service rates for individual repair activities. Following the notational convention

of Neuts [101, the PH distribution is denoted by the ordered pair (%, G(n)) where G(n) is

the matrix of state-dependent transition rates. In this work, the holding time distribution

at the repair node has the representation

(aq,G(n)) ((1,0),[ -(v1(n)+v2((n)) v3(n)()
0 -v7(n)
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where vi(n), i = 1,2,3, denote the unknown parameters of the phase-type distribution.

In order to describe the stochastic evolution of this system, our aim is to determine these

unknown parameters by matching moments.

Referring to Figure 1, let T5,k, k E {1,.. . , 5}, be an exponentially distributed random

variable representing the aircraft holding time at repair node k, and let N5 (t) E {0, 1, 2}

denote the number of aircraft in the repair hangar of node 5 at time t. The moments

E[T5,k I Ns(t) = n], j = 1, 2,3, may be calculated for repair activity k using the exponential

assumption of individual repair times by

E[T5,k I N5(t) = nj = j tils,k(n)e-"5,k(n)tdt.

Let Q = {0, {1},..., {1, 2,3,4, 5}} be the set of all possible repair activity combinations

for an aircraft. From the independence of the repair activities, the probability that the set

w E Q2 is required by an arriving aircraft, 7r•, is

7r. = ]I qik l- (1 - qU,). (5)
kEw kCw

Denote by a continuous random variable, T5, the total time spent by an aircraft in the hangar

at node 5 until all required repair activities have been completed. The conditional moments

E[TJ5 I N5 (t) = n], j = 1,2,3, may be calculated as

E[T• I N5 (t) = n] = 7r.E[max {Ts,'} I N5 (t) = n]. (6)
wEfQ

For the queueing network model defined in Table 1, the moments of T5 are given by

Table 2: Repair time moments.
n E[T5 I Ns(t) = nI E[T2 I N5 (t) = n] E[T. I Ns(t) = nj
0 0 0 0
1 2.07944 9.33339 61.6057
2 1.82659 7.63503 48.3688

Suppose X is a nonnegative random variable with PH representation (a, G). Then it is well

known (cf. Kao [4]) that the jth moment of X can be obtained by

E[Xj] = (-1)jj!aG-je, j > 1. (7)
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For j = 1, 2,3 and each n E {0, 1, 2}, the moments of the phase-type distribution

defined in Equation (4) are calculated and matched to those given in Table 2 using Eq. (7)

by

E[T3 I N 5 (t) =n] =(l)ij!(1,0) [(vl(n)+v2(n)) Jil(n) (8)10 -v3(n) 1 " (8

This operation generates three sets of three algebraic equations whose simultaneous solution

yields estimates for the unknown parameters vi(n), i = 1, 2,3, of the phase-type distribution.

For our defined queueing network model, these parameter estimates are listed in Table 3.

Table 3: Parameters of the PH distribution.n vin v2( n 3(n)
0 0 0 0
1 12.2582 1.4874 0.42102
2 5.1942 1.36185 0.47136

The phase-type representation of the fork-join nodes is incorporated into the model of sortie

generation depicted in Figure 1 yielding the model representation displayed in Figure 2.

In what follows, we discuss the stochastic evolution of this closed queueing network before

presenting the transient analysis procedure of section 4

3.2 Stochastic Evolution of the System

The evolution of this stochastic, time-variant system is described as follows. Let Xi(t)

denote the number of aircraft at station i at time t > 0 and let the multivariate stochastic

process {X2(t) : t > 0, i = 1, 2,..., 6} describe the state of the network at time t. The state

space Ei of Xi(t) is given by Ei = {0, 1, 2,..., N}, for 1 < i < 6. We will henceforth denote

this vector-valued, Markov process by {X(t) : t > 0} where X(t) = (Xi(t),... ,X 6(t)). In a

small interval of time (t, t + 6t), we note that, for each node of the queueing network, the

change of state may decrease by one aircraft, increase by one aircraft, or remain the same.

We describe this collection of all possible state changes by the set

B-- {(-1,1,0,0,0,0),(-1,0,0,1,0,0),(0,-1,1,0,0,0),(0,-1,0,1,0,0),(0,0,-1,0,0,1),

(0, ,0, -1, 1, 0), (, O, O, O, -1, 1), (1, O, O, O, -1, 0), (1, 0,0,0, O, -1)}. (9)

The intensity functions corresponding to the elements of this set will be denoted as

f(b, 6 .... 7)(x ,... ,x6)

9



for xi E E2 . Combining information from Tables 1 and 3, the functions corresponding to (9)

are specified in Table 4 where I11,.](x) is a 0,1 indicator function on E1 for x E [1, u]. These

defined intensity functions will be represented as finite polynomial functions of the form

fbl ,...,b 6 (Xl, ... , X6 ) = q(b 1,""", b6)hb,,... ,b6 (X1," ", X6 ), (10)

where 0(b1 ,--. , b6) is a constant and hb1,...,b6 (X... , X6 ) is a polynomial function, for the

purpose of subsequent cumulant-based mathematical operations.

Table 4: Intensity functions for the aircraft sortie model.

(bl,. .,b 6) EB lbx.f.b 8 (X," ... " X6)
(-1,1,0,0,0,0) P12(XI/SI) = 4.0p 12xI
(-1,0,0,1,0,0) P14 (XI/SI) = 4.0p 1 4 xl

(0,-1,1,0,0,0) P 2 3 (X 2 /S 2 ) = 0.25p23x2

(0,-1,0,1,0,0) P 2 4(x2/s2) = 0.25p 2 4 x 2

(1,0,-1,0,0,0) X3/s3= 0.80x3

(0o0,0,-1,1,0) (x 4/s 4)Il0 ,11(x 5 + X6) - 2X4 (1 + 0.5 (x5 + x6 ) - 0.5 (x5 + x 6)2)

(0,0,0,0,-1,1) V1 (0)I[o,o] (X5) + V1 (1)I[i,11 (X5)I[oo] (x6 ) + v1 (2) (1[2,2] (x5 )1fo,o1 (X6) + 1[1,I] (x5)I[1,lj (x 6 ))
= 21.9193x5 - 9.66108x2 - 7.06402x 5Xz

(1,0,0,0,-1,0) V2(0)I[o,o] (X) + V2 (W[1,1] (x5)Ito,01 (X6) + v2(2) (I[2,21 (X5)11o,o1 (X6 ) + I[,, (x5 )X,,l (x6))
= 2.29388x 5 - 0.806475x5 - .12555x x_

(1,0,0,0,0,-1) V3(0)I[o,o1 (X6) + V3 (1)Itl,lj (x6 )110 ,01 (x5) + v3(2) (/J2,21(x6)IZo,o](zs) + St ~ (x6)111 ,11 (x5))

= 0.605482x 6 - 0.184451x6 + .05034x 6x5

The intensity functions of Table 4 depend explicitly on the parameters of the PH distribution

(vi(n), 1 < i < 3). In what follows, we present the means by which to apply cumulant

functions for the purpose of performing a transient analysis of the Markov process {X(t) :

t > 0}. In particular, our interest is in approximating the time-variant functions E[Xi(t)]

for i = 1,... , 6 as well as the time-variant sortie generation rate.

4 Cumulant-Based Transient Analysis

There are relatively few analytical procedures through which the Markov process

{X(t) : t > 0} may be practically analyzed over the transient period. Many of the existing

analytical techniques suffer from either a high degree of mathematical complexity or from

computational intractability. As an example, consider the common approach of using Kol-

mogorov differential equations to obtain the transient state probabilities of {X(t) : t > 0}.

10



The number of such equations is given by

+ (11)

where n denotes the number of nodes in the network and c'- is the capacity of the ilh node.

As an example, the previously defined queueing network with n = 6 and c- = N for all

i, generates approximately 5.15 x 1010 differential equations when N = 10 aircraft and

7.43 x 1014 equations when N = 50 aircraft. Hence, the number of Kolmogorov differential

equations tends to intractability for even small N.

Alternatively, a cumulant-based approach may be used to approximate the first order

cumulants (means) of the multivariate state distribution of {X(t) : t > 0} in a much more

computationally efficient manner. Specifically, the number of differential equations using

these procedures is
+1 1I m))- (12)

where m is the level of cumulant truncation. The specification of m = 2 assumes that the

state distribution is multivariate normal, which is not practical in most cases. It has been

previously shown, however, that raising the truncation level to m = 3, which introduces a

skewness measure, is sufficient for reasonable approximations of the first cumulant of Xi(t).

For the defined queueing network {X(t) : t > 0} with n = 6 and m = 3, 83 differential

equations will be generated by a cumulant-based approach independent of N. This set of

equations is sufficiently small to facilitate an efficient numerical solution.

The use of cumulant-based analysis procedures for a general n-node network will first

be discussed, following which the procedure will be applied to the defined closed queueing

network {X(t) : t > 0} representing the aircraft sortie generation process.

4.1 General Procedural Description

For 01,.. ., 9n, t > 0 and 1+ the set of non-negative integers, let M(0 1, ..., 9n, t) be a

multivariate moment generating function for X(t) defined as
M(O, , t) = a,.,a (t)9 1 O n (13)

i.--an 1 a, ! ... a n.!

where Ma ...... a. (t) are the joint moments of X(t). Likewise, let K(O1, ... , 9,t) be a multivariate

cumulant generating function defined as

k .. (t)o., 
(1

K(01, .,nt -. al, .....a,,Ez+ a , ! . ." an!



where ka1 . (t) are the joint cumulants of X(t). By definition (Kendall [5]), the generating

functions of Eqs. (13) and (14) have the functional relationship

M(01, .. . , On, t) = enK(01-4'°4), (15)

through which the joint moments define the cumulants of X(t).

The multivariate moment generating function M(01, ..., On, t) and the polynomial in-

tensity functions b. ..... b(x, ... , xn) of a Markovian network may be related through the

partial differential equation

aM ( 1, ... , •, t) (eb0O 0+...(9b 1 , (16)
"Ot = V -- 1)fbJ,...,b,(-b 0 )M(Oi,.On, t) (16)

& ,...,ba

where fbý..bn(' , , o•)M(01,...,On,t) is a partial differential operator that replaces

terms of the form xin the polynomial functionf with the th partial derivative of M(0 1, ... , On, t)

with respect to Oj. The partial differential equation of Eq. (16) may be solved directly if

possible, yet this is often not plausible due to the frequent complexity and non-linearity of

the equation.

As an alternative, an mth order truncated cumulant generating function, defined as

K°(( 1 , ... ,On,t) = Ea,,,,Ez(M) k.a,! a! (t) O (17)

n
for Z(m) = {(al,...,an) : ai E +,Z ai < m}, may be used to extract a closed set of

i=1

ordinary differential equations from this partial differential equation. In particular, Eq. (17)

is substituted into Eq. (16) yielding the expression

aeK°(O,..... (,t) M i,.-bn(f a a )eKo(o1 ..... . (18)at = e'.''•"- )b ... b(•'"0b---

Expanding all partial derivatives, performing Taylor series expansions, and substituting ex-

panded moment generating function in Eq. (18) generates the expression
m ...,,(t)oa.. Oa. • , ,zm k ...,,(t)Oal ... an?

-- ,a.. •+ a,! -- an! .anEZ() a!.an!

b c, ...(. (b)01.+ ..... ,+b .,n)) --- ,O (19)

12



where Cb. ..... b (i) is a constant, j(bi,... ,,b) E I+, and 74, _... b,(O1, ... , O0,) is a polynomial

function of 01, ... , 0,, comprised of moments and non-truncated cumulants. Since both sides of

Eq. (19) are polynomial expressions of 01,..., O, the coefficients of each unique combination

of {01 ... Oa, : ci E 1+, al + --- a, _ m} on the left and right hand side must equate.

Hence, equating these coefficients and expressing the joint moments ma1 ,...,an (t) as functions

of the non-truncated joint cumulants, ka ..... a. (t), for {a,, --- a,,} E Z(m) forms a closed set of

ordinary differential equations whose solution approximates the time-varying, non-truncated

cumulants of {X(t) : t > 0} up to the Mth order.

4.2 Analysis of the Sortie Generation Model

In this subsection, we apply the general cumulant-based procedure to our modified

queueing network model for the aircraft sortie generation process. Let Ka(O1,... ,06,t) be

a third-order (m = 3), truncated cumulant generating function defined as in Eq. (17) for

the sortie queueing network model {X(t) : t > 0} defined in section 3. Using Eq. (18), the

function K° (O1, ... , 06, t) is related to the intensity functions defined in Table 4 through the

partial differential equation

OeK (6O1,...6,t ) 4.p2Cz , OeK (GO,...O8,t) a o0eK (e1O2..6,t )

-•p12(C02-01 1) -KO + 4.0p14(e° 0 ' - 1) 0 6t

090190
1 eK(O1,...,08 ,t) oeK(O1,...O6,t)

+ 0.50p23 (e- 0302 002 + 0 50P2(e 0
4-02 - 1) 002

+ 0.80(ee,-- - 1) 3 + 2.0(e804-° 1)- 1),0et)

SOeK(#l,...o6,t oe•0,.•o oeK(0G.ooooi•0,...eeo ~ e~•,..,,,
X 1 + 0.50 ( ... + 006 ) -0.50 ( 2eK(, 1_..Gt) + 02eK( -.. et) 2.0 +64)

/ 0e K (OG ,.... 6,0) O2 (K (O.... ,tt)

(e°G-05 - 1) (21.919388 -9.66108 -a(052 7.06402 005006 )

)OeK(01....6,t) 02eK(GI'G6,t) -eK(01r...o,,ot)

+ (e03-°0 - 1) (2.29388 a - 0.806475 a05 .1 a005006
+0 eK(0,...O,t) eK(0,. 6,K(..,..O,t)

6 - 1) 0605482 -0.184451 +0.05034 * (20)
(0- O6 O6 00506

Patterned after Eq. (19), the expansion and substitution operations of the previous subsec-

tion are performed on Eq. (20) yielding the general polynomial expression
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Ma_________ kai ._a(tW

(+o.-80° (3a),! ... (a6! E,0z))(a,!,... 06)

+ o.op 12 E (02 01)ý9(,+20-( )),0,o o o(O(... 0 0)+ ,0,-• 1,, ,( 04 V 0•6o2) * o, _,,o, oo) ( ol...o0 )

+~~~~ (i-+00.5 (0302i ?10,o-1,,I,0)(01 .*06)) + 0.50P2 (04 -O 02,)i 10,101,)(1 ..06)))

+(o.80 (-9• ( 03-) i )
6 8 P (0 IO,-),0,oo)(016 ... 06)

+.0 (05 •04)i P 6)
+ 2 .0 (0,0,0,- 1,0) 06) 0 " "

× ~ ~ ~ ~ 2 (0..50o'o~~ (•, o..o• .•0I•ooo_ ,p3 (o0.. ..•- .oo• ooo _06 ))..)o>

× (0.605482 ' I0,0 ) (01 ."0 6)- 0.184451(,,-),1,0,01 .. (.1 006))+ 0-05034,0,010, 0,0 1,, (1 "06))•

(21)

The coefficients of each element of the set7.06402%F2 ", a, , -,,a(+--+a6 <31 on the

left and right hand side of this expression are equated to form a set of 83 ordinary differential

equations. Converting the joint moments to cumulants will close this set of equations,

and the numerical solution of such will yield approximations to the elements of the set
6

{k, 1,. ..•(t) :a 2 E 27+, •] ai < 3}. In order to obtain the transient queueing performance

measures, we note that

E[X,()] = kej(t), 1 1 <.6 (22)

where e2 denotes a row vector whose ith element is unity and all other elements are zero.

The sortie generation rate corresponds directly to the throughput of node 2 of Figure 2.

Therefore, by applying Little's Law at this node, the expected number of sorties generated

up to time t, denoted by E[A(t)], is given by

E[A(t) := J 2 ke2 (t)dt. (23)

14



5 Numerical Example

In this section, we demonstrate the implementation of the procedure described in

section 4. In particular, we set up and numerically solve the set of ordinary differential

equations given by Eqns. (20) and (21) for a closed queueing network containing ten aircraft

(i.e., N = 10). As previously noted, the extension of this model to larger values of N

will not increase the number of differential equations in this set. To further describe our

example problem, we refer to the node indices of Figure 2. We assume that the probability

of a pre-sortie ground abort is P14 = 0.05, and we separately evaluate the model under the

probabilities p24 = 0.20,0.35 of a post-sortie malfunction. We assume that all aircraft are

initially grounded and waiting for taxi at node 1; hence, kei (0) = 10. All other cumulants

are set to zero at time t = 0. All numerical results in this section were obtained using the

Mathematica® computing environment.

For demonstrative purposes, we studied the expected workload and throughput of

the network over the transient period which is defined to be the time interval [0, 40]. The

expected workload at each node corresponds directly to the first order cumulant of X(t), and

the expected throughput, i.e. expected number of sorties flown by time t, may be calculated

directly by using Eq. (23). Based on previous empirical testing in Matis [8], first order

cumulant approximations under m = 3 for high traffic networks of this general topology are

relatively tight, i.e. 5%.

The output of our numerical example for the stochastic routing probabilities P14 =

0.05, P12 = 0.95, P24 = 0.20, and P23 = 0.80 is displayed through Figures (3)-(9). In

particular, we have plotted the expected workload and number of sorties flown as a function

of time. It is noted that each of these measures approaches a steady-state condition rapidly

using the particular parameter values.
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E [X 1(t)] E [X2 (t)]
10 10

8 8

6 6

4 4

2 2

t t
10 20 30 40 10 20 30 40

Figure 3: Expected workload at node 1. Figure 4: Expected workload at node 2.

E [X3 (t)] E [X 4 (t)]
10 10

8 8

6 6

4 4

2 2

10 20 30 40t 10 20 30 40

Figure 5: Expected workload at node 3. Figure 6: Expected workload at node 4.

E fX 5(t)] E IX 6 (t)]
2 2

1.75 1.75

1.5 1.5

1.25 1.25

1 1

0.75 0.75

0.5 0.5

0.25 0.25
t -t

10 20 30 40 10 20 30 40

Figure 7: Expected workload at node 5. Figure 8: Expected workload at node 6.
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Figure 9: Expected number of sorties by t.

The output of our numerical example for the stochastic routing probabilities P14

0.05,P12 = 0.9 5 ,P24 = 0.35, and 3 = 0.65 is displayed through Figures (10)-(17). It is

interesting to note the dampened oscillatory patterns of the measures E[Xi(t)] for i = 5,6

corresponding to Figures (14) and (15) respectively. The emergence of this pattern as the

probability of a post-sortie malfunction increases is likely due to the network being closed

with a limited number of aircraft, the large differences in the parameters vi(n) with n as

listed in Table 3, and the truncation of cumulants at m = 3. The overall expected holding

time of the aircraft E[X1 (t) + X 2(t)] = E[Xi(t)] + E[X2(t)] of Figure (16) does not oscillate

greatly as do the individual nodes, which is typically the measure of practical interest.

E [X 1(t)] E [X 2 (t)]
10 10

8 8

6 6

4 4

2 2

t t
10 20 30 40 10 20 30 40

Figure 10: Expected workload at node 1. Figure 11: Expected workload at node 2.
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E (X3(t)l E(X 4 (t)]
10 10

8 8

6 6

4 4

2 2

t t
10 20 30 40 - 10 20 30 40

Figure 12: Expected workload at node 3. Figure 13: Expected workload at node 4.

E [X5(t)] E IX6 (t)
2 2

1.75 1.75

1.5 1.5

1.25 1.25

1 1

0.75 0.75

0.5 0.5

0.25 0.25
t t10 20 30 40 t10 20 30 40

Figure 14: Expected workload at node 5. Figure 15: Expected workload at node 6.

E [X 5 (t)+ X6 (t)] E [A(t)]
2 100

1.75 80
1.5 • ==

1.25 • 60
1

0.75 40
0.5•

0.257 20

10 20 30 40 10 20 30 4'0

Figure 16: Expected workload (nodes 5 and 6). Figure 17: Expected number of sorties by t.
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6 Conclusions

This work has considered the important concept of operational readiness for an in-

dividual air base, particularly when the measures of operational readiness depend explicitly

on time due to theater-level dynamics. This paper has extended a previous closed queueing

network model for the aircraft sortie generation process by solving for vital, time-variant

performance measures including the workload in the system as well as the expected number

of sorties flown over a transient time period. Moreover, we generalized the maintenance ser-

vice time distribution by considering a phase-type (PH) representation that accommodates

a transient analysis via the method of cumulant functions and allows for inclusion of the

likely phenomenon of blocking at the repair hangar. In particular, we assumed that a single

repair hangar accommodates at most two aircraft. By adapting and employing the cumu-

lant function method, we obtained a computationally tractable set of ordinary differential

equations that are independent of the number of aircraft in the system. Our approach to the

problem allows for the computation of mean performance measures as an explicit function

of time. Though the cumulant-based procedure for transient analysis was tailored for this

queueing network model of the aircraft sortie generation process, it is well suited for other

applications in manufacturing, transportation, distribution networks.
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