
Implementing Modal Software in Data Flow for Heterogeneous Architectures

James Steed, Kerry Barnes, and William Lundgren
Gedae, Inc.,

Phone: 856-231-4458
Email Address: {jim,kerry,bill}@gedae.com

Software for embedded systems is often
based on distinct processing modes. A
simple example of such modal behavior is a
radar system that switches between search
mode and tracking mode as targets are
located. In complex software systems, the
system may have dozens of modes, including
sub-modes, forming a deep hierarchy. Such
large embedded systems often must be
implemented on boards of multiple digital
signal processors (DSP). Increasingly, field
programmable gate arrays (FPGA) are being
used alongside DSPs as a method for
meeting the throughput and latency
requirements of these systems. Gedae is an
integrated design environment for
deployed systems and advanced
demonstrators based on DSPs (e.g., AltiVec,
PowerPC, TigerSHARC) or distributed
networks (e.g., Linux clusters). This paper
describes extensions to Gedae’s language
that empower developers to easily develop
modal software and enable them to port that
software to heterogeneous architectures,
including a new class of boards that contain
both DSPs and FPGAs.

Modal Software
Gedae’s language is based on data flow. A
flow graph implements an application, and
each primitive node in the flow graph defines
the data flow relationship between its inputs
and outputs. The three core types of data
flow relationships are

• Static: the number of tokens produced
and consumed is constant and
determined at application start-up.

• Dynamic: the number of tokens
produced and consumed is
determined at runtime, and the node

cannot execute unless full input
queues are ready to be processed and
empty output queues are ready to be
written to.

• Nondeterministic: the number of
tokens produced and consumed is
determined at runtime, and there are
no restrictions on when the node can
execute.

While these basic types of data flow are
sufficient to implement any application,
complex modal applications would require
large amounts of application control to be
implemented in an ad hoc manner alongside
the signal and data processing. To reduce
this overhead and provide a general solution
to the problem of modal software
development, the Gedae language has been
extended to allow developers to mark
segments of streams. These user-specified
markers on the beginning and end of stream
segments can produce side effects that alter
graph behavior, such as switching to tracking
mode after a target has been found in a
stream of radar data.

Figure 1 – Two-mode radar implemented using
segmentation

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 FEB 2005

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Implementing Modal Software in Data Flow for Heterogeneous
Architectures

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Gedae, Inc.,

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001742, HPEC-7 Volume 1, Proceedings of the Eighth Annual High Performance Embedded
Computing (HPEC) Workshops, 28-30 September 2004. , The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Gedae’s primitive language is
based on C with functional and
variable-based extensions to
allow the developer to interface
with Gedae’s data structures.
This C-code is grouped into
methods, e.g., the Start
method is executed at start-up,
the Apply method is executed
when the primitive has data to
process, etc. The example two-
mode radar application is shown
in Figure 1. Two subgraphs implement the
two modes, Track and Search. The
segmenter primitive reads data from an
I/O device (DataSource) and a graphical
user interface (GUI) to create two branches
of data and uses the segment() function to
place the segment markers in the streams.
As the markers are encountered in
downstream primitives, the Reset and
EndOfSegment methods are invoked,
creating side effects and forming distinct
boundaries between modes.

Figure 2 – FIR filter implemented in Gedae-RTL using 16-bit
fixed-point arithmetic

Heterogeneity
In embedded systems, FPGAs are often used
alongside DSPs to implement front-end
signal processing that must be processed at a
high throughput. With the increased focus
on targets such as FPGAs, the Gedae block
diagram language has been extended to
enable porting to firmware. Unlike the
AltiVec, PowerPC, and TigerSHARC, these
new targets generally do not allow cross-
compilation of C-code. To support other
languages, Gedae has been augmented with a
single sample meta-language based on the
theory of register transfer languages called
Gedae-RTL. This language is capable of
exporting VHDL code for FPGAs as well as
Ansi-C code optimized for a DSP.

Functionality built using Gedae-RTL uses
the new single sample primitive type.
Conceptually, a graph of single sample

primitives forms a processing pipeline that is
enabled by a clock. These single sample
primitives are built upon seven fundamental
functions: register, assignment, decimate,
clock, memory, memory read, and memory
write. The register function copies the input
variable to the output with a delay of one
clock pulse. The assignment evaluates an
expression and assigns its value to a variable.
The memory function declares a memory
buffer, and the memory read and write
functions access a buffer. Decimate and
clock functions set and retrieve the clocks
tied to variables.

Much like Gedae’s core language, the Gedae-
RTL graph specifies only the functionality of
the graph without regard to the target or its
programming language. For example, Figure
2 shows a FIR filter implemented in Gedae-
RTL, built from a register pipeline
(ui16_history), multipliers
(fx16_mult), and a tree-adder
(ui16_treeadd) with no target-specific
processing. Through Gedae’s knowledge of
the target processor, a graph such as this FIR
filter is transformed to generate correct
results on the target and for optimized
performance on the target. Then target code
is exported to implement the application.
Components implemented in Gedae-RTL
interact seamlessly with core Gedae
components, allowing an entire
heterogeneous system to be specified in the
Gedae programming environment.

Gedae, Inc.
www.gedae.com

HPEC 2004

Implementing Modal Software in Data Flow
for Heterogeneous Architectures

James Steed, Kerry Barnes,
William Lundgren

Gedae, Inc.

Gedae, Inc.
www.gedae.com

Core Gedae Data Flow

• Gedae’s Core Data Flow Relationships

• Any application control can be implemented but
– Complex modal software requires lots of logic
– Done in an ad hoc manner that isn’t reusable

static
dynamic
nondet

Number of Tokens
Produced/Consumed Restrictions on Execution
Preplanned
Determined at Runtime
Determined at Runtime

Full Inputs/Empty Outputs
Full Inputs/Empty Outputs
None

Gedae, Inc.
www.gedae.com

Stream Segmentation

• Infinite streams can be broken into finite length
segments

• Segments are processed independently
• Primitives add segment begin and end markers to

a data stream
• Each marker causes side effects downstream

segmenter
in
c

out be f g h

1 1 1 0

c e f ga b c d

0 1 1 0

Segment begin

Segment end

Gedae, Inc.
www.gedae.com

Using Segmentation to Control Modes

• Segment markers cause old
mode to end and new one
to reset

• Exclusivity allows memory
sharing between modes

Search Track Search

Reset Search Reset Track Reset Search

End Search End Track

Gedae, Inc.
www.gedae.com

Reset and EndOfSegment Methods

• Primitive code is grouped into
methods

• When methods are executed:
– Start: Beginning of execution
– Reset: Beginning of each

segment (start mode)
– Apply: When queues are ready

for execution (execute mode)
– EndOfSegment: End of each

segment (end mode)
– Terminate: End of execution

Start

Reset

Apply

EndOf
Segment

Terminate

Segment End

Segment
Begin

Queues
Ready

App Started

Queues Ready

Run

Terminate

Gedae, Inc.
www.gedae.com

Sharing Resources Between Modes

• Exclusivity: Only one output is actively producing
a segment at any given time

• Subgraphs controlled by a family of exclusive
outputs can share resources
– Schedule memory
– Queue memory
– State variables

exc_branch 5 segments

in [0]outa b c d e f g

c [1]out

h

1 1 1 00 0 1 0

a b d h

c e f g

Gedae, Inc.
www.gedae.com

Sharing State Information
Between Modes

Moving static
variable out of
filterS

subgraph causes
it to be persistent
between segment

boundaries

No transients
due to clearing

of static
variables at

segment
boundaries

Internal State External State

Gedae, Inc.
www.gedae.com

Moving to Heterogeneity

• Gedae relies on
– C cross compilers

and
– Optimized vector

libraries
to run on DSPs.

• How do we support
firmware targets
like FPGAS?

Specify
Implementation

Gedae
Implements

Build
Functionality

Prototype,
Simulate

Link

Compile

Component Library:
Generated C-code,
Optimized Vector

Routines,
Run

User
Gedae
Vendor

Key

Runtime Kernel

Gedae, Inc.
www.gedae.com

Single Sample Language:
Gedae-RTL

• Single sample
extension to Gedae
graph language

• Based on the theory
of register transfer
languages

• Registers store
information, delayed
by a clock rate

out(i) = K*(in(i) - out(i-1)) +
out(i-1)

Gedae, Inc.
www.gedae.com

Gedae-RTL’s Seven Functions

• Register R(in,out,c)
– Copy in to out delayed by

clock rate c.
• Assignment A(E,out)

– Evaluate the expression E
and assign its value to out.

• Decimate D(in,c)
– Tie clock rate c to signal
in.

• Clock C(in,c)
– Get clock rate c tied to in.

• Memory M(in,n,s)
– Allocate buffer in with n

elements of size s.

• Read MR(a,out)
– Read the element at address
a and put the value in out.

• Write MW(in,a)
– Write the value in to

address a.

Gedae, Inc.
www.gedae.com

Language Independence

• Language Support
Package (LSP) allows
exportation of target-
specific code

• Export Ansi-C to
simulate functionality

• Export VHDL for
FPGAs

• Export C enhanced for
the AltiVec architecture

Hardware
Description

Implementation
Settings

Transformations

Internal
Implementation

LSP/Code
Generator

Code

Gedae-RTL
Graph

Gedae, Inc.
www.gedae.com

Example: 5-Point FIR Filter

Pipeline of N
R() registers

Set of N
A(a*b,out)

Network of N-1
A(a+b,out)

out(i) = C0*in(i) + C1*in(i-1) + C2*in(i-2) ...

Gedae, Inc.
www.gedae.com

Gedae Implements the
Heterogeneous System

• Pin connections to
camera and VGA
provide real time I/O

• Host updates
threshold in non-real
time

Gedae-RTL graphs on the
FPGA perform Sobel in real time

Gedae graphs on the DSP
calculate new thresholds

Gedae, Inc.
www.gedae.com

HPEC 2004

Implementing Modal Software
in Data Flow for

Heterogeneous Architectures
James Steed, Kerry Barnes,

William Lundgren
Gedae, Inc.

Gedae, Inc.
www.gedae.com

How Do We Program Modal
Software in Data Flow?

• Modal software breaks
data streams into finite
length segments

• Extra processing at the
beginning and end of
segments

Search Track Search

Reset Search Reset Track Reset Search

End Search End Track

Gedae, Inc.
www.gedae.com

How Do We Program This
Heterogeneous Architecture?

• Gedae is a powerful
programming tool for
boards of Power-
PCs.

• The Gedae-RTL
language extension
to Gedae allows
mapping processing
to FPGAs.

Two Power-PC 7447s

Two Xilinx Virtex-II Pro FPGAs

Gedae, Inc.
www.gedae.com

Gedae Language Features

Gedae-RTL
• Seven Functions
• Language Support

Package

Segmentation
• Reset and

EndOfSegment
Methods

• Exclusivity
• External State

The Gedae language allows specification of a complete modal
software system and implements it on heterogeneous hardware.

	Modal Software
	Heterogeneity

	Precis:
	Agenda:
	Abstract:
	Poster:

