
Star-P: High Productivity Parallel Computing

Ron Choy∗ Alan Edelman∗ John R. Gilbert† Viral Shah† David Cheng∗

June 9, 2004

1 Star-P

Star-P ‡ is an interactive parallel scientific comput-
ing environment. It aims to make parallel program-
ming more accessible. Star-P borrows ideas from
Matlab*P [3], but is a new development. Currently
only a Matlab interface for Star-P is available,
but it is not limited to being a parallel Matlab. It
combines all four parallel Matlab approaches in one
environment, as described in the parallel Matlab

survey [2]: embarrassingly parallel, message pass-
ing, backend support and compilation. It also in-
tegrates several parallel numerical libraries into one
single easy-to-use piece of software.

The focus of Star-P is to improve user productiv-
ity in parallel programming. We believe that Star-

P can dramatically reduce the difficulty of program-
ming parallel computers by reducing the time needed
for development and debugging.

To achieve productivity, it is important that the
user interface is intuitive to the user. For example,
a large class of scientific users are already familiar
with the Matlab language. So it is beneficial to use
Matlab as a parallel programming language. Ad-
ditions to the language are minimal in keeping with
the philosophy to avoid re-learning. Also, as a design
goal, our system does not distinguish between serial

data and parallel data.

C = op(A,B)

print(C)

C will be the same whether A and B are distributed
or not. This will allow the same piece of code to
run sequentially (when all the arguments are serial)
or in parallel (when at least one of the arguments is
distributed).

∗ {cly,edelman,drcheng}@csail.mit.edu
† {gilbert,viral}@cs.ucsb.edu
‡ Some of this text appears in Ron Choy’s upcoming Ph.D. thesis

2 Functionality

Where possible, Star-P leverages existing, estab-
lished parallel numerical libraries to perform numer-
ical computation. This idea is inherited from Mat-

lab*P. Several libraries already exist which provide a
wide range of linear algebra and other routines, and
it would be inefficient to reproduce them. Instead,
Star-P integrates them seamlessly for the user.

3 RT-STAP Benchmarks

The RT-STAP (Real-Time Space-Time Adaptive
Processing) benchmark [1] is a benchmark for real-
time signal processing systems developed by the
MITRE Corporation. In the hard version of the
benchmark which we run, the input to the Matlab

code is a data cube of 22 (channels) x 64 x 480 dou-
bles. The code performs the following three steps:

1. Convert the input data to baseband.

2. Doppler processing.

3. Weight computation and application to find the
range-Doppler matrix.

Upon execution, we noticed that step 1 was the
most time consuming step. This is surprising, since
the weight computation would be expected to have
the highest FLOP count. It turns out that this is due
to the Matlab coding style used in the benchmark
code. Since the point of the benchmark is to measure
the running time of a typical application, we chose to
proceed without modifying the code. The conversion
step in the original Matlab code is a for loop as
follows:

for channum=1:NCHAN

xx = CPI1_INITIAL(:,channum);

CPI1(:,channum) = baseband_convert(xx, ...

SOME_ARGUMENTS);

end

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 FEB 2005

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Star-P: High Productivity Parallel Computing

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology; University of California at Santa
Barbara

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM00001742, HPEC-7 Volume 1, Proceedings of the Eighth Annual High Performance
Embedded Computing (HPEC) Workshops, 28-30 September 2004 Volume 1., The original document
contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

32

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

0 5 10 15 20 25
0

20

40

60

80

100

120

140

160

180
Time taken by conversion step

Number of processors

T
im

e
(s

)
Real timing
Perfect Scaling

Figure 1: Scalability of RT STAP

It loops over the input channels and processes them
in an embarrassingly parallel fashion. This makes it a
natural candidate for Star-P’s multi-Matlab mode.
We converted the loop to run in Star-P by changing
the loop into a function call and putting it in an mm-
mode call:

P_CPI1_INITIAL = matlab2pp(CPI1_INITIAL,2);

CPI1 = mm(’convert_loop’, SOME_ARGUMENTS);

CPI1 = CPI1(:,:);

Note that the calls before and after the mm call are
used to transfer data to the server and back. The
time required by these calls is also included in our
timings.
Figure 1 compares timing results for sequential Mat-

lab and Star-P on 2, 11 and 22 processors. The
solid line shows the timings that would be obtained
if the code scales perfectly. The real timings follow
the solid line quite closely except for the 22 proces-
sors case. Going from 11 processors to 22 processors
provides no additional benefits. This is easy to ex-
plain in terms of granularity. As the input data cube
only has 22 channels, with 22 processors, each pro-
cessor has only 1 channel of work, as opposed to 2
channels in the 11 processors case. So there is very
little to gain from using additional processors, and
any benefit is offset by the additional time needed for
communication.

4 Sparse matrix capabilities

Star-P provides basic sparse matrix capabilities [4]
similar to those found in Matlab. Sparse matrix

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80
Performance of the sparse constructor

Number of processors

T
im

e
(s

)

10,000,000 (4 nnz/row)
1,000,000 (32 nnz/row)

Figure 2: Scalability of sparse (SGI Altix 350)

algorithms are often useful in signal processing and
embedded computing. Sparse matrix operations of-
ten display poor spatial and temporal locality result-
ing in irregular memory access patterns.

A very basic and fundamental sparse matrix op-
eration is the sparse matrix constructor in Matlab

– sparse. It constructs a distributed sparse matrix
from 3 vectors containing the row and column num-
bers and the corresponding non-zeros. The sparse

constructor has fairly general applications in build-
ing and updating tables, histograms, and sparse data
structures in general. It also accumulates and adds
duplicate entries.

Figure 2 shows the performance of sparse on two
matrices: one very large but sparse, with 107 rows
and 4 × 107 non-zero entries; the other smaller and
denser, with 106 rows and 32 × 106 non-zero entries.

References

[1] K. C. Cain, J. A. Torres, and R. T. Williams.
RT STAP: Real time space-time adaptive pro-
cessing benchmark. Technical report, Feb 1997.

[2] R. Choy. Parallel Matlab survey. 2001.
http://theory.lcs.mit.edu /∼cly/survey.html.

[3] P. Husbands and C. Isbell. MATLAB*P: A tool
for interactive supercomputing. SIAM PPSC,
1999.

[4] V. Shah and J. R. Gilbert. Sparse Matrices in
MATLAB*P: Design and Implementation. Sub-

mitted to HiPC 2004.

2

STAR-P: High Productivity
Parallel Computing

David Cheng, Ron Choy, Alan Edelman
Massachusetts Institute of Technology

John R. Gilbert and Viral Shah
University of California at Santa Barbara

Graph Algorithms and Sparse Matrix Land

Birth of Interactive Supercomputing

• Dream of taking academic software
commercial

Star-P
• Interactive Parallel Computing Environment
• Parallel Client/Server Architecture
• Main goal: parallel computing easier on the

human user
• Academic Front End: MATLAB
• Four parallel approaches interacting:

– Embarrassingly Parallel
– Message Passing
– Backend Support (insert *p)
– Compiling

• Integrates several packages into one easy to
use software

Page Rank Matrix

• Web crawl of 170,000 pages from mit.edu
• Matlab*P spy plot of the matrix of the graph

Clock

• c=mm(‘clock’);
• std(c);

• Simple example shows two modes
interacting

Pieces of Pi
>> quad('4./(1+x.^2)', 0, 1);
ans = 3.14159270703219

>> a = (0:3*p) / 4
a = ddense object: 1-by-4

>> a(:)
ans =

0
0.25000000000000
0.50000000000000
0.75000000000000

>> b = a+.25;

>> c = mm('quad','4./(1+x.^2)', a, b); % Should be “feval”!
c = ddense object: 1-by-4

>> sum(c(:))
ans = 3.14159265358979

FFT2 in four lines
>> A = randn(4096, 4096*p)
A = ddense object: 4096-by-4096
>> tic;

>> B = mm('fft', A);
>> C = B.';
>> D = mm('fft’, C);
>> F = D.';

>> toc
elapsed_time = 73.50

>>a = A(:,:);
>> tic; g = fft2(a); toc
elapsed_time = 202.95

… we have FFTW installed as well!

Matlab sparse matrix design principles
• All operations should give the same results for

sparse and full matrices (almost all)

• Sparse matrices are never created automatically,
but once created they propagate

• Performance is important -- but usability, simplicity,
completeness, and robustness are more important

• Storage for a sparse matrix should be O(nonzeros)

• Time for a sparse operation should be O(flops)
(as nearly as possible)

Matlab sparse matrix design principles
• All operations should give the same results for

sparse and full matrices (almost all)

• Sparse matrices are never created automatically,
but once created they propagate

• Performance is important -- but usability, simplicity,
completeness, and robustness are more important

• Storage for a sparse matrix should be O(nonzeros)

• Time for a sparse operation should be O(flops)
(as nearly as possible)

Matlab*P dsparse matrices: same principles,
but some different tradeoffs

Sparse matrix operations

• dsparse layout, same semantics as ddense
• For now, only row distribution
• Matrix operators: +, -, max, etc.
• Matrix indexing and concatenation

A (1:3, [4 5 2]) = [B(:, 7) C] ;

• A \ b by direct methods
• Conjugate gradients

Sparse data structure
31 53 59 41 2631 0 53

0 59 0
41 26 0

1 3 2 1 2

• Full:
• 2-dimensional array of

real or complex numbers
• (nrows*ncols) memory

• Sparse:
• compressed row storage
• about (1.5*nzs + .5*nrows)

memory

Distributed sparse data structure

P0

P1

P2

Pn

5941 532631

23 131

Each processor stores:
• # of local nonzeros
• range of local rows
• nonzeros in CSR form

Sparse matrix times dense vector

• y = A * x

• The first call to matvec caches a
communication schedule for matrix A.
Later calls to multiply any vector by A use
the cached schedule.

• Communication and computation overlap.

• Can use a tuned sequential matvec kernel
on each processor.

Sparse linear systems

• x = A \ b

• Matrix division uses MPI-based direct solvers:
– SuperLU_dist: nonsymmetric static pivoting
– MUMPS: nonsymmetric multifrontal
– PSPASES: Cholesky

ppsetoption(’SparseDirectSolver’,’SUPERLU’)

• Iterative solvers implemented in Matlab*P
• Some preconditioners; ongoing work

Application: Fluid dynamics
function lambda = peigs (A, B,
sigma, iter, tol)

[m n] = size (A);
C = A - sigma * B;
y = rand (m, 1);

for k = 1:iter
q = y ./ norm (y);
v = B * q;
y = C \ v;
theta = dot (q, y);
res = norm (y - theta*q);
if res <= tol
break;

end;
end;

lambda = 1 / theta;

• Modeling density-driven
instabilities in miscible
fluids (Goyal, Meiburg)

• Groundwater modeling,
oil recovery, etc.

• Mixed finite difference &
spectral method

• Large sparse generalized
eigenvalue problem

Combinatorial algorithms in Matlab*P

• Sparse matrices are a good start on primitives
for combinatorial scientific computing.
– Random-access indexing: A(i,j)
– Neighbor sequencing: find (A(i,:))
– Sparse table construction: sparse (I, J, V)

• What else do we need?

Sorting in Matlab*P

• [V, perm] = sort (V)

• Common primitive for many sparse matrix and
array algorithms: sparse(), indexing, transpose

• Matlab*P uses a parallel sample sort

Sample sort

• (Perform a random permutation)

• Select p-1 “splitters” to form p buckets

• Route each element to the correct bucket

• Sort each bucket locally

• “Starch” the result to match the distribution
of the input vector

Sample sort example
Initial data (after randomizing)

3 6 8 1 5 4 7 2 9
Choose splitters (2 and 6)

1 2 3 6 5 4 8 7 9
Sort local data

1 2 3 4 5 6 7 8 9
Starch

1 2 3 4 5 6 7 8 9

How sparse() works

• A = sparse (I, J, V)

• Input: ddense vectors I, J, V (optionally, also
dimensions and distribution info)

• Sort triples (i, j, v) by (i, j)

• Starch the vectors for desired row distribution

• Locally convert to compressed row indices

• Sum values with duplicate indices

Graph / mesh partitioning
• Reduce communication in

matvec and other parallel
computations

• Reordering for sparse GE

• PARMETIS

• Parts of G/Teng Matlab
meshpart toolbox

0 50 100

0

20

40

60

80

100

120

Geometric mesh partitioning

• Algorithm of Miller, Teng, Thurston, Vavasis

• Partitions irregular finite element meshes into equal-size
pieces with few connecting edges

• Guaranteed quality partitions for well-shaped meshes,
often very good results in practice

• Existing implementation in sequential Matlab

• Code runs in Matlab*P with very minor changes

Outline of algorithm

1. Project points stereographically from Rd to Rd+1

2. Find “centerpoint” (generalized median)

3. Conformal map: Rotate and dilate

4. Find great circle

5. Unmap and project down

6. Convert circle to separator

Geometric mesh partitioning

Matching and depth-first search in Matlab
• dmperm: Dulmage-Mendelsohn decomposition

• Square, full rank A:
– [p, q, r] = dmperm(A);
– A(p,q) is block upper triangular with nonzero diagonal
– also, strongly connected components of a directed graph
– also, connected components of an undirected graph

• Arbitrary A:
– [p, q, r, s] = dmperm(A);
– maximum-size matching in a bipartite graph
– minimum-size vertex cover in a bipartite graph
– decomposition into strong Hall blocks

Connected components
• Sequential Matlab uses depth-first search (dmperm),

which doesn’t parallelize well

• Shiloach-Vishkin algorithm:
– repeat

• Link every (super)vertex to a random neighbor
• Shrink each tree to a supervertex by pointer jumping

– until no further change

• Originally a processor-efficient PRAM algorithm

• Matlab*P code looks much like the PRAM code

Pointer jumping

while ~all(C(myrows) == C(C(myrows)))
C(myrows) = C(C(myrows));

end
C(myrows) = min (C(myrows), C(C(myrows)));

Example of execution

Final components

After first iteration

Page Rank
• Importance ranking

of web pages
• Stationary distribution

of a Markov chain
• Power method: matvec

and vector arithmetic
• Matlab*P page ranking

demo (from SC’03) on
a web crawl of mit.edu
(170,000 pages)

Remarks
• Easy-to-use interactive programming environment

• Interface to existing parallel packages

• Combinatorial methods toolbox being built on
parallel sparse matrix infrastructure
– Much to be done: spanning trees, searches, etc.

• A few issues for ongoing work
– Dynamic resource management
– Fault management
– Programming in the large

	Presentation:
	Abstract:
	Agenda:

