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ABSTRACT

By providing highly realistic simulations of sound
propagation through complex atmospheric and terrain en-
vironments, finite-difference time-domain (FDTD) tech-
niques can potentially reduce development time and im-
prove the battlefield performance of acoustic sensors. In
this paper, we summarize recent progress in improving
two key aspects of acoustic FDTD calculations for the at-
mosphere: (1) development of a rigorous implementation
of sound propagation in a moving, inhomogeneous fluid,
and (2) formulation and numerical implementation of time-
domain methods for handling sound interactions with par-
tially reflecting ground surfaces. The new techniques are
illustrated with highly detailed calculations of sound prop-
agation through simulated, dynamic atmospheric turbu-
lence fields and over a porous ground surface with viscous
and thermal relaxation mechanisms.

1. INTRODUCTION

Acoustic sensors are expected to play a key role in
the Army’s Future Force by providing rapidly deployable,
networked surveillance over wide areas. It is well known
that the performance of acoustic sensors is affected by
complex sound propagation phenomena occurring in out-
door settings, such as reflections from trees and buildings,
ground interactions, scattering by turbulence, refraction
by wind and temperature gradients, and diffraction over
hills. The expense and difficulty of performing comprehen-
sive, controlled field experiments outdoors, combined with
the rapid schedule for fielding the Future Force, makes
necessary novel approaches to advanced sensor develop-

ment. A realistic simulation of complex environmental ef-
fects on propagating sound, when combined with detailed
source signature and high-resolution atmospheric and ter-
rain inputs, could be immensely valuable in shortening
the requirements-to-deployment cycle for acoustic sensors,
developing robust signal information processing stategies,
and improving sensor utilization doctrine.

Most current numerical methods for outdoor sound
propagation, such as the fast field program and parabolic
equation (Salomons, 2001), are incapable of, or poorly
suited to, simulating all of the propagation phenomena
mentioned in the preceeding paragraph. Complex, moving
source distributions, such as maneuvering ground vehicles,
are also difficult to incorporate. These shortcomings can
potentially be overcome with finite-difference, time-domain
(FDTD) techniques, which have become popular for elec-
tromagnetic and seismic wave propagation. But there
are significant drawbacks to FDTD techniques that have
so far prevented their widespread use for outdoor sound
propagation. Foremost among these is that they are very
computationally intensive when applied to the frequency
range (a few hundred Hz and lower) and spatial scales (a
few km or less) of Army tactical applications for acoustic
sensors. Fortunately, the current generation of parallel-
processing computers now makes FDTD calculations vi-
able. Some other difficulties, particular with the sound
propagation problem, are (1) incorporating the dynami-
cally moving (windy and turbulent) atmospheric propaga-
tion medium, and (2) formulating time-domain techniques
for the acoustic interactions with the ground, including ab-
sorption and dispersion characteristics of porous materials
such as soils. Successfully addressing these two problems is
key to making acoustic FDTD simulation useful for Army
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applications. These problems are the focus of this paper.

Incorporation of a dynamically moving atmosphere is
discussed in Section 2. There the time-domain differential
equations needed to propagate the sound fields through
a propagation medium in motion are described and some
of the numerical issues involved in their implementation
are addressed. An example is provided with inputs to an
FDTD calculation provided by an atmospheric large-eddy
simulation (LES). Section 3 describes acoustic interactions
with porous materials such as the ground and their im-
plementation in time-domain calculations. Due to the his-
torical emphasis in acoustics on frequency-domain compu-
tational methods, our time-domain analysis represents a
fundamentally new approach.

2. ACOUSTIC FDTD CALCULATIONS IN A
MOVING MEDIUM

For most terrestrial problems involving electromagnet-
ics or seismics, the propagation medium (atmosphere or
Earth) does not move or otherwise change significantly as
waves propagate between sources and receivers of inter-
est.1 The same cannot be said, however, for sound propa-
gation through the atmosphere. Propagation times and at-
mospheric variations both occur in seconds or less for most
scenarios of tactical interest to the Army. Wind Mach num-
bers (the ratio of the wind speed to the sound speed) are
commonly as high as 1/50 in the near-Earth atmosphere
and 1/5 in a stratospheric jet stream. To be useful in Army
applications, numerical methods for sound propagation in
the atmosphere must account for the effects of wind, tur-
bulence, and other atmospheric disturbances.

In this section, we consider various aspects of including
a moving propagation medium in acoustic FDTD calcula-
tions. An accurate treatment has required derivation of a
new set of coupled state equations, together with numerical
methods for solving it.

2.1 Coupled Equation Set

The wave equation, which is the starting point for
most sound propagation calculations, is a second-order par-
tial differential equation in both time and space. FDTD
techniques, however, are most readily applied to first-order
partial differential equations (that is, a state equation set).
Furthermore, most solutions of the wave equation have
been based on one-way approximations, in which the en-
ergy is propagated in only one direction, and on effective
sound-speed approximations, in which the sound speed is
taken to be the actual sound speed plus the component of
the wind velocity in the direction of propagation. Wave
equations in a moving medium that do not use these ap-
proximations are considerably more complicated than the
wave equation for a stationary medium (Ostashev, 1997).
Fortunately, the switch to first-order equations facilitates
correct handling of the wind velocity field. The following
coupled, first-order equations for the acoustic pressure p

1There are some notable exceptions to this statement, such
as Doppler shifts in signals from clear-air radars.

and acoustic particle velocity w involve no one-way or ef-
fective sound-speed approximations, and therefore provide
an appropriate starting point for accurate FDTD calcula-
tions in a moving atmosphere (Ostashev et al., 2004):

∂p

∂t
= − (v ·∇) p− ρc2∇ ·w+ρc2Q, (1)

∂w

∂t
= − (w ·∇)v− (v ·∇)w− ∇p

ρ
+
F

ρ
. (2)

Here, ρ is medium density, c is the adiabatic speed of sound,
and v is the wind velocity. The quantities F and Q repre-
sent sources: the former is a force acting on the medium,
whereas the latter is a mass source. Bold symbols represent
vectors. The terms involving (v ·∇), which are particular
to the moving medium, are called the advective terms. Nu-
merical issues aside, the source terms and atmospheric field
variables can be arbitrary functions of space and time.

Equations (1) and (2) were derived in Ostashev et al.
(2004) from the full fluid dynamical equations using the
conventional linear acoustics approximation, namely that
the sound wave is a small perturbation to the background
state of the medium. Additionally, the sound waves are
assumed to be uninfluenced by the following: (1) diver-
gence in the atmospheric flow, (2) the background pres-
sure gradient, and (3) the Coriolis force. The first of these
implies that turbulent fluctuations in the flow have a low
Mach number, which is very reasonable for the problems
considered here. The second may be considered a distin-
guishing property between sound and gravity waves. The
third is valid for even for very low infrasonic frequencies.
An FDTD code based on Eqs. (1) and (2) is both more
general and accurate than most current sound propagation
formulations, despite its comparative simplicity.

2.2 Computational Considerations

Typically, finite-difference solutions for wave propaga-
tion in a nonmoving medium use a grid that is staggered in
space and time (Botteldooren, 1994; Graves, 1996). Each
acoustic particle velocity component is explicitly calculated
on spatial grid nodes shifted by one-half of the internode
spacing, relative to the explicit acoustic pressure nodes, in
the direction of the velocity component. The particle veloc-
ities and pressures are advanced on alternating time steps.
The finite-difference stencil corresponding to the pressure
advancement in this approach is illustrated in Figure 1. It
happens, however, that this staggered “leap-frog” method-
ology of alternately marching the solution in time cannot
be applied directly to Eqs. (1) and (2). Evaluation of the
advective terms on the right-hand sides of these equations
requires knowledge of the pressure and particle velocity
fields at time steps where they are not explicitly available.
Therefore, we have developed alternative approaches based
on unstaggered temporal grids (Ostashev et al., 2004;
Wilson and Liu, 2004) and staggered temporal grids span-
ning multiple time steps (Symons et al., 2003). (In either
case, a staggered spatial grid is still used.) The latter, stag-
gered approach is shown schematically in Figure 2. This
finite-difference stencil provides fully centered spatial finite
differences in the context of the moving medium problem.
As discussed in Wilson and Liu (2004), this approach and
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Fig. 1: Standard O(4,2) (fourth order in space, second
order in time) staggered leap-frog finite-diference stencil
for updating the acoustic pressure solution in a non-moving
medium. For simplicity, the stencil is shown with only one
spatial dimension. Time is the vertical axis and space is
horizontal, with corresponding grid intervals ∆t and ∆x,
respectively. The dashed lines intersect at the pivot point,
which is the location on which the finite-difference approx-
imations are centered.

Fig. 2: New O(4,2) staggered finite-diference stencil
for updating the acoustic pressure solution in a moving
medium. Two time levels must be stored in comparison to
the single time level for the non-moving medium.

several others can yield highly accurate results, although
some efficiency in memory usage and/or calculation time
is lost in comparison to the customary leap-frog solution
for a nonmoving medium.

The size and dimensions of the computational domain
in an acoustic FDTD simulation depend on the propaga-
tion geometry of interest and the memory available. Ar-
tificial sound absorbing layers are usually placed around
the sides and corners of the domain to prevent unwanted
numerical reflections. The lower surface is normally taken
as a rigid plate, although more sophisticated and realistic
partially absorbing ground models are under development
as described in Section 3. The spacing between grid points
in acoustic is driven by the smallest acoustic wavelength
of interest. For fourth-order spatial finite differencing, a
typical grid spacing would be 1/8 of the wavelength. To
illustrate the memory requirements, consider a simulation

in which a source emits frequencies at 250 Hz and lower.
For a sound speed of 340 m s−1, the minimum wavelength
is 340/250 = 1.36 m, and the spatial grid interval therefore
0.17 m. Assuming the dimensions of the computational
domain are 500 m in each horizontal direction and 50 m in
the vertical, about 2.5× 109 grid nodes are required. Such
intensive computational problems can be tackled only on
very large, parallel processing computers.

2.3 High Mach Number Tests of the Solution
Technique

We now consider 2D FDTD calculations for the case
of a stationary source in a uniform, high Mach number
wind. Although this is a simple case, it is very useful for
testing the fidelity of the numerical solution method, since
an analytical solution is known. For this series of calcula-
tions, a mass-type source was used that consisted of a 10-
cycle, 100-Hz signal with a cosine taper function applied to
the three periods at the beginning and end. The tapering
alleviates numerical dispersion of high frequencies, which
can become evident when there is an abrupt change in the
source emission.

Figure 3 illustrates the pressure field calculation for
a uniform Mach 0.3 wind. The field is shown at 0.11 s,
or 0.01 s after the source has been turned off. Note that
the distance between wave fronts is smaller upwind than
downwind, due to the role of the wind in determining the
overall propagation speed. Although not as clearly evi-
dent, the pressure amplitude is higher upwind than down-
wind. The azimuthal dependence of |p(r, α,M)/p(r, 0, 0)|
at a distance r = (10/π)λ (where λ is the wavelength, α
the azimuthal angle measured from upwind, and M is the
Mach number) is plotted and compared to the theoretical
prediction in Figure 4 for M = 0, 0.3, and 0.6. Two cal-
culated curves for each value of M are shown, one for a
low-resolution run with 800×800 grid points and a time
step ∆t = 0.145 ms, and the other for a high-resolution
run with 1600×1600 grid points and ∆t = 0.0362 ms. For
M = 0.3, both grid resolutions yield nearly exact agree-
ment with theory. Agreement with theory at M = 0.6 is
very good for the high-resolution run, although the low-
resolution run substantially underpredicts the upwind am-
plitude. High spatial resolution is needed at high Mach
numbers because of the shortening of the wavelength in
the upwind direction.

2.4 Simulations with Dynamic Atmospheric
Models

The time-domain nature of acoustic FDTD simulation
makes it a natural approach for coupling with dynamic
atmospheric models such as global and mesoscale numeri-
cal weather predictions (NWP) and large-eddy simulations
(LES) of the atmospheric boundary-layer (ABL) and flow
in urban terrains. In this section, we present examples of
FDTD simulations of sound propagating through ABL tur-
bulence fields generated by LES. The LES we use is a par-
allelized implementation of the physical models and code
described in Sullivan et al. (1994). Two stability cases
are considered. The first is for a neutral ABL (Figure 5)
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Fig. 3: Wavefronts of the sound pressure due to a 100-Hz
point source located at x = 0 and y = 0. A uniform flow
with Mach number 0.3 moves from left to right.
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Fig. 4: Comparison of the angular dependence of the
pressure amplitude from FDTD calculations to theory. The
downwind direction is 0◦ and the upwind direction is 180◦.
Calculations for grids at two different resolutions and three
different Mach numbers are shown.

and the second for a buoyantly unstable ABL (Figure 6).
Although only the vertical velocity component is shown in
these figures, all three velocity components and temper-
ature were used as input to the acoustic FDTD calcula-
tion. The sound speed c in Eqs. (1) and (2) is known from
the absolute temperature T according to the relationships
c = 20.02

√
T ; the density follows from the ideal gas law.

The acoustic calculation was performed in 3D with
901× 901× 603 grid nodes spaced at 1 m. The time step
was 0.25ms and the solution was advanced over 16001 time
steps. The sound source was a 20-Hz, mono-frequency,

mass-type source. Execution required 10 hours on a clus-
ter built from 100 Compaq ES45 processors, making this
run likely the single most computationally intensive and
detailed calculation of sound propagation in the ABL yet
performed.

The middle panels in Figures 5 and 6 show snapshots
of the calculated sound fields. Distortions to the propagat-
ing wavefronts are not easily discernable in these images as
presented. For each case we also propagated sound fields
through horizontally averaged LES fields (i.e., the mean
vertical profiles only). The difference between the sound
fields, with and without the horizontal LES variability, is
shown in the lower panels of Figures 5 and 6. The dis-
tortions to wavefront shape and amplitude are easily dis-
cernable in these difference images. Such distortions cause
fluctuations in apparent bearings of targets derived from
acoustic sensor arrays and are the limiting factor in array
performance when the signal-to-noise ratio is high. The ca-
pability to realistically simulate turbulence effects enables
virtual testing of acoustic beamforming systems being de-
veloped for the Army’s Future Force.

3. TIME-DOMAIN MODELING OF AN
ABSORPTIVE GROUND

Typically, in frequency-domain acoustic calculations,
the ground interaction is characterized using a localized
impedance function Z, defined as

Z (ω) =
P (z = 0, ω)

Wn (z = 0, ω)
,

in which P and Wn are the Fourier transforms of the pres-
sure and particle velocity normal to the boundary, respec-
tively, z = 0 is the position of the boundary, ω = 2πf , and
f is the frequency. In this formulation, the acoustic pres-
sure is analogous to voltage in an electrical system, while
the particle velocity is analogous to current. The linear
ground boundary condition between the pressure and par-
ticle velocity generally makes frequency-domain handling
of the ground interaction a simple task.

Alternatively, one might explicitly calculate the wave
propagation in the ground as well as in the air. In that
case, the normal methodology is to use complex opera-
tors (frequency-dependent values with real and imaginary
parts) to represent the bulk material properties, specifi-
cally the density and bulk modulus within the ground. The
imaginary parts of the operators relate to wave attenuation
and dispersion in the medium. Implementation of complex-
valued material properties in most computer programming
languages is little more difficult than real-valued material
properties.

The impedance ground boundary condition and bulk
material methods each have their own relative merits. The
former is highly computationally efficient: the wavefield in
the ground does not need to be calculated or stored. On
the other hand, the bulk material method is called for when
one is interested in the waves in the ground or they must
be explicitly calculated due to reflections from non-uniform
ground properties, such as when a thin layer of soil overlies
rock. The bulk material method is also easier to apply
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Fig. 5: Top: Vertical wind field from an LES for a neu-
tral ABL (zi/Lo = −∞). Only a partial cross section of the
full LES is shown. The turbulent structures are generated
primarily by wind shear. Middle: Acoustic FDTD calcula-
tion of waves from a constant-frequency source propagating
through the neutral LES fields. Bottom: Difference field,
multiplied by 10, between sound field calculated with tur-
bulence (LES fields) and without turbulence (horizontally
averaged LES fields).

when the surface is not parallel to one of the coordinate
directions.

Regardless of whether a ground boundary condition or
bulk material approach is appropriate, time-domain proce-
dures for handling attenuation and dispersion in a porous
ground material are not nearly so well established as the
frequency-domain procedures. Fundamentally, the issue is
the reaction time of the porous material, which requires the

Fig. 6: Same as Figure 5, except for a buoyantly unstable
ABL (zi/Lo = −6).

history of the signal to be stored over an interval of time.
If this interval is long compared to the computational time
step, a substantial amount of computer memory may be
required. In the remainder of this section, we describe ap-
proaches to time-domain modeling of the ground, based
both on the bulk material and impedance ground bound-
ary condition methods.

3.1 Bulk Material Method

Although dozens of frequency-domain models have
been developed for sound propagation in porous materi-
als, we have found that one based on explicitly modeling
the viscous and thermal diffusion in the pores as relax-
ation processes (Wilson, 1993) translates most naturally to
the time domain. Other approaches that have been exam-
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ined are either non-causal (Berthelot, 2001) or limited in
their frequency range of applicability (Zwikker and Kosten,
1949; Fellah and Depollier, 2000), and in any case do not
have closed-form analytical solutions in the time domain.
A new set of integro-differential equations (Wilson et al.,
2004) to be discussed in this section remedies all of these
shortcomings with no appreciable loss in accuracy.

The physics underlying the relaxation model can be
understood in a straight-forward manner. When a pressure
gradient is introduced across a porous material (by a sound
wave or other mechanism), air is accelerated through the
pores. The acceleration is counteracted by viscous drag
forces exerted by the solid frame material. The air flow
gradually relaxes to a steady state in which the pressure
gradient and viscous forces balance. Similarly, if the air in
the pores is heated or cooled, the temperature in the pores
gradually relaxes to a thermal equilibrium with the frame
material as heat is conducted between the solid and air.2

The new set of integro-differential equations (Wilson
et al., 2004) describing these processes in the time domain
is:

w

τv
+

∂w

∂t
+

1√
πτv

t

−∞

w (t0) /τv + ∂w (t0) /∂t0√
t− t0

× exp − t− t0

τv
dt0 = −V∞∇p, (3)

and

β∞
∂p

∂t
+

β∞ (γ − 1)√
πτe

t

−∞

∂p (t0) /∂t0√
t− t0

× exp − t− t0

τe
dt0 = −∇ ·w. (4)

Here, τv is the time constant for the viscous relaxation
process and τe for the thermal (entropy) relaxation process.
Additional symbols are: V∞ = Ω/ρq2, the effective specific
volume at high frequency, β∞ = Ω/Pγ, the effective (adi-
abatic) compressibility at high frequency, Ω, the porosity
(void fraction), q, the tortuosity (a measure of the oblique-
ness of the pores), P , the ambient air pressure, and γ, the
ratio of specific heats for air.

The integrals in Eqs. (3) and (4) represent convolu-
tions of the propagating wavefield with the relaxational
response function s (t) = 1/

√
πτt exp (−t/τ)H (t) [where

H (t) is the Heaviside function equal to 0 for t < 0 and
1 for t ≥ 0]. When the relaxation time is very short in
comparison to any changes in the propagating wavefield,
the response functions can be approximated as unit im-
pulses and the following much simpler set of equations is
obtained:

2

τv
w+

3

2

∂w

∂t
= −V∞∇p, (5)

and

β∞γ
∂p

∂t
= −∇ ·w. (6)

2Typically, the heat capacity of the frame material is so large
compared to the air that the frame essentially remains at a fixed
termperature while the temperature of the air in the pores at-
tempts to attain equilibrium.

The first of these equations describes a simple balance
among viscous, inertial, and pressure gradient forces,
whereas the second implies that the propagation is isother-
mal (that is, the acoustic period is long enough that the
temperature in the pores stays in equilibrium with the
frame material). With notational changes, these equations
are the same as a well known set of phenomenological equa-
tions suggested by Zwikker and Kosten (1949) that has
more recently been used for acoustic FDTD calculations
(Salomons et al., 2002).

As discussed in Section 2.2, in FDTD simulation the
wavefield variables are calculated at discrete time steps.
The wavefield variables should vary only a small amount
between the time steps. Using this assumption, but avoid-
ing any additional ones pertaining to the relative values of
the time step and relaxation times, we can readily evaluate
the integrals in Eqs. (3) and (4) in a closed form involving
error functions. Although the details are not given here,
we have succeeded in deriving such a solution and imple-
menting it in a 2D FDTD code.

An example calculation involving a porous ground sur-
face is shown Figures 7—10. The domain is configured with
a source in the center, a rigid barrier 20 m to the right of
the source, a 20-m thick porous ground layer at the bottom
of the domain, and a 20-m thick artificial absorbing layer
at the top. The porous material parameters for the ground
are σ = 1000 Pa·s·m−2, q = 1.8, and Ω = 0.5, which are
reasonable for an “acoustically soft” ground such as snow
or coarse gravel. The source in the simulation emits 10
cycles of a 100-Hz sine wave, as described in Section 2.2.
No wind flow is present in this calculation.

In Figure 7, corresponding to 0.058 s after source ini-
tiation, the sound waves are just beginning to impinge on
the barrier. By the time of the second snapshot (Figure 8,
taken at 0.116 s) the wavetrain is just starting to penetrate
the ground. A diffracted wave curls over the right side of
the barrier and a reflection is evident to the right. At 0.151
s (Figure 9), the reflection off the barrier is fully formed and
a partial reflection from the ground is also becoming evi-
dent. The sound in the ground has a shorter wavelength
than in the air and is rapidly attenuated. In Figure 10,
taken at 0.250 s, the initial wave and barrier reflection are
distinct and propagating leftward, while the barrier dif-
fraction propagates to the right. Weak ground reflections
associated with the initial wave and barrier reflection are
also visible. Waves in the ground refract strongly toward
the surface normal, as is consistent with Snell’s law.

3.2 Ground Boundary Condition Method

As mentioned earlier, a ground-boundary condition
formulation can provide a substantial savings in computa-
tional memory and processing time because the wavefield
need not be explicitly calculated in the ground. Based on
the viscous and thermal relaxation concept, Wilson (1993)
previously derived a full-frequency equation for the im-
pedance of a porous ground surface:

Z (ω) =
ρcq

Ω
1 +

γ − 1√
1− iωτe

1− 1√
1− iωτv

−1/2
.

(7)
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Fig. 7: Propagation above a soft porous ground in the
presence of a rigid barrier, 0.058 s after source initiation.
The 100-Hz source is located at the middle of the domain,
and an absorbing layer is present at the top to eliminate
numerical reflections.

Fig. 8: Propagation above a soft porous ground in the
presence of a rigid barrier, 0.116 s after source initiation.

Fig. 9: Propagation above a soft porous ground in the
presence of a rigid barrier, 0.151 s after source initiation.

In principle, an inverse Fourier transform could be ap-
plied to this equation to determine a time-domain ground
boundary condition. However, a closed-form inverse trans-
formation is not known. Fortunately, we have found that
the following much simpler equation, derived from a fac-

Fig. 10: Propagation above a soft porous ground in the
presence of a rigid barrier, 0.250 s after source initiation.

torization of (7), behaves nearly identically:

Z (ω) =
ρcq

Ω

1− iωτz
−iωτz , (8)

where τz = (γ/2) τv. This approximation is compared to
(7) in Figure 11. Quite interestingly, one can show that
(8) has the same functional form as an impedance derived
from the low-frequency approximations (5) and (6). Phys-
ically, this suggests that the convolution terms in (3) and
(4), which cause dissipation of propagating acoustic en-
ergy at higher frequencies, do not significanly affect the
impedance. The inverse transform of Eq. (8) can be found
in tables. It is

p (t) =
ρcq

Ω
wn (t) +

1

2τz

t

−∞
I1

t− t0

2τz

+ I0
t− t0

2τz
exp − t− t0

2τz
wn t0 dt0 , (9)

where I0 and I1 are the modified Bessel functions of zeroth
and first order, respectively.

The FDTD calculation for propagation with a barrier
and soft porous ground from Section 3.1 is repeated in Fig-
ure 12, except that the ground interaction in this instance
is calculated with Eq. (9). Although the propagation in
the ground is not explicitly calculated, the appearance of
the ground reflections is nearly the same as in Figure 10.

4. CONCLUSION

Improvements in acoustic FDTD techniques, and the
increasing capabilities of modern parallel-processing com-
puters, make possible highly detailed calculations of sound
propagation through the atmosphere with real-world fea-
tures such as complex reflecting surfaces, distributed mov-
ing sources, and dynamic turbulence fields. In this pa-
per, we summarized recent efforts in developing a rigorous
FDTD implementation of sound propagation in a moving,
inhomogeneous fluid. As an illustration, calculations of
low-frequency sound propagation through an atmospheric
large-eddy simulation were presented. We have also suc-
ceeded in formulating and numerically implementing new
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Fig. 11: Comparison of the exact impedance equation
from the relaxation model Eq. (7) (solid lines) and its ap-
proximation Eq. (8) (dashed lines).

Fig. 12: Propagation above a soft porous ground in the
presence of a rigid barrier, 0.250 s after source initiation.
Calculation was performed with a time-domain boundary
condition for the ground interface.

time-domain methods for handling sound interactions with
the ground surface. The methods are unique in that they
are based on full-frequency equations for sound propaga-
tion in porous materials including viscous and thermal dif-
fusion processes.

Taken together, the progress reported here lays the
foundation for highly realistic simulations of atmospheric
sound propagation. Among the applications are virtual
testing of tactical acoustic sensors and their associated in-
formation processing algorithms. We anticipate that this
new capability, when applied to sensor design and procure-
ment for the Army’s Future Force, will substantially lower
development costs and time cycles, and ultimately improve
sensor performance in complex battlefield environments.
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