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This paper presents a hierarchical application of Discrete Event Supervisory (DES)
control theory for intelligent decision and control of a twin-engine aircraft propulsion
system. A dual layer hierarchical DES controller is designed to supervise and coordinate the
operation of two engines of the propulsion system. The two engines are individually
controlled to achieve enhanced performance and reliability, necessary for fulfilling the
mission objectives. Each engine is operated under a continuously varying control system that
maintains the specified performance and a local discrete-event supervisor for condition
monitoring and life extending control. A global upper level DES controller is designed for
load balancing and overall health management of the propulsion system.

I. Introduction

Discrete-event dynamic behavior of physical plants is often modeled as regular languages'12 that can be realized by
finite-state automata.3 This paper focuses on the development of intelligent decision and control algorithms based
on the theory of Discrete Event Supervisory (DES) control on twin-engine aircraft propulsion systems. This work
extends the research in the DES field and adds validity to its theory.

The DES control system is designed to be hierarchically structured. Each engine's continuously varying
controller interacts with its own local DES controller for detailed health monitoring and intelligent control. The
operational information is abstracted and reported to the coordinator for propulsion or mission level DES control of
the two engines. Furthermore, the propulsion level DES controller allows for interaction with external inputs such as
those from a pilot, aircraft components (e.g. flight control, etc.), and other vehicle management systems. resulting in
flexibility for making on-line modifications in the mission objectives. The uniqueness of this DES control approach
is that the control policy can be adaptively updated on-line at both the engine and propulsion coordinator levels, and
the system is tolerant of small components faults.

Although DES control has been developed for quite some time, there are only a few application examples.4"5 It
is primarily because no quantitative analytical tool has been established to help design and evaluate the DES
controllers. This research is the first time hierarchical DES control is used on a complex non-linear dynamical
system, such as an aircraft.
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The objective of the paper is to apply hierarchical Discrete Event Supervisory (DES) control theory for
intelligent decision and control of a twin-engine aircraft propulsion system. In this paper, the following has been
demonstrated:

(1) DES control can be used for intelligent decision and control of twin-engine aircraft propulsion systems e.g.
the problem of load balancing between various engines.

(2) Implementation of DES control can reduce the accumulated engine damage and thus extend the life of the
aircraft engine.

(3) DES control is helpful in improving the overall mission success and operational behavior.

In this paper the terms controller and supervisor are used interchangeably, also the phrases "Upper Level" and
"Propulsion Level" are synonymous and similarly the phrases "Lower Level" and "Engine Level" are synonymous.
The paper is organized in six sections including the present one. Section II describes the simulation setup. Section
Ill summarizes the DES control techniques. Section IV discusses the design of the engine level and propulsion level
DES controller. The simulation results are examined in section V, and the paper is concluded in section VI.

II. Simulation Setup

In this section the implementation of Discrete Event Supervisory (DES) control on a commercial turbofan
engine model simulation is discussed. The objective of such an application is to validate the hierarchical DES
control technique with a real world complex non-linear dynamical system. The overall system structure will be
explained first, followed by a description of the two hierarchical levels of the system including their internalcomponents. l

co m p onents. ~C om puter I ( U pper Leve o trl t r A

A. Overall Simulation Testbed Architecture Upe Leve Dete
Supesry ,•(DES)

A hierarchical DES controlled propulsion Corro rloabal, cng
Sa eet& (Ser-)

system has been designed and tested on a simulation So ,r
test bed that consists of three networked computers higher l Contrl omatdandThrs
using the client/server concept, refer to Figure 1. D r,,f-high,,lverDS

Computer I is the upper level propulsion system 1 -

coordinator responsible for load balancing,
intelligent decision making and health monitoring of Local DES (Client Loc ES
the engines. Each of the other two computers, T T I
Computer 2 and Computer 3, runs its own copy of a Engine Model (Server) Engine Model (Server)
gas turbine engine simulation (differing from each
other only through such performance-related Computer 2 (Gas Tmubine Rione 1) Computer 3 (Gas Turblne Englne 2
parameters as component efficiencies, etc.),
including its continuously varying control system Figure I.-Overall Testbed architecture.
and a local discrete-event supervisor. Each of the
engine simulators integrates the event-driven Gwarco. nd

discrete dynamics modeled by a finite-state AM. kThrwstd~nand

automaton as well as time-driven continuous Client Serer
dynamics modeled by ordinary differential I ! ____

equations through continuous-discrete and discrete- c c,, na,, ------ t
continuous interfaces.6 The test bed is capable of AM

simulating different dynamics for each individual
engine based on performance-related parameters +

and operating conditions. Ee,•)

As can be seen in Figure I, the simulation
architecture can be expanded to include more .
engines that would run in parallel with Computers 2 sensm Evun(st)

and 3. It could also be expanded to include higher "' 1b'
levels of control. For example, there could be a -,AD S
level above Computer I that controls propulsion in AM o

parallel with flight control. In this sense, .,nelmn--on

hierarchical DES could be applied to any number of Figure 2.-Engine Level Plant/DES controller.
complex systems and missions.
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B. Engine Level DES Control

Figure 2 shows the architecture of the engine level plant and DES controller implementation, which is
replicated on Computer 2 and Computer 3. This section will briefly address the main points. For more detailed
explanations, refer to reference 6.

In order to implement the DES control in tandem with the gas turbine engine simulation program (written in
FORTRAN), a C++ interface was written. The C++ wrapper interfaces the major inputs/outputs of the engine
simulation and makes it function just like a simulation running in the C++ environment.

The turbofan engine simulation was designed for full flight envelope operation. With the proper inputs such as
power lever angle (PLA or pilot throttle input), and ambient condition (altitude and speed or temperature and
pressure), the FORTRAN simulation program simulates the complex operation of the engine from transient to some
steady state running condition with large order differential and difference equations. This simulation is a stand-alone
program with its own continuous time gain
scheduled controller. From the engine simulation, Server
important sensor data such as combustion chamber Othe
temperature and high-pressure turbine speed, aK
together with other important information, such as
the simulation step size and the simulation cycle State,et "
number are collected by the C++ wrapper program &seo,, lyow leEA

exchanged with the DES controller through the m'o",
Message API (Application Programming Interface) levelDES's Thr -- -''m
communication routine. frn egn

The engine level DES controller design has two
important components, refer to Figure 2. One is the
Event Generator and the other is the Action Evl
Generator (which resides on the Server). The Event
Generator is the module which receives continuous
time sensor data from the plant. This data along
with other information, such as estimated state and
external inputs are used by this module to generate
events, which in turn are inputs to an open-loop Figure 3.-Propulsion Level DES controller.
DES model of engine operation. The open-loop
DES model is constructed based on the operating scenario. The details of the modeling are discussed in section IV.
The state-based Deterministic Finite State Automata (DFSA) model serves as state estimator and provides important
state and event (both controllable and uncontrollable) information for the discrete-event supervisor to take proper
action. Event behavior in the state-based DFSA model only depends on the state where the event is defined and does
not depend on the history of how the state was reached.

The DES controller represents the control policy applied to the DFSA model of engine operation, and it could
be an ad hoc DES controller based on experience or a discrete-event supervisor designed by the control techniques
discussed in section III and IV. The DES controller takes the estimated state as input and generates control
commands (controllable event disabling or enabling) as outputs. The control commands are sent through a Message
API communication routine to the Action Generator. The primary task of Action Generator is to convert control
commands from the supervisor into necessary simulation input for the continuously varying plant (altitude and
mach).

C. Propulsion Level DES Control

Figure 3 shows the structure of the propulsion level DES controller together with its own Event Generator. This
structure is implemented on a separate computer (Computer 1) which uses the messaging interface to communicate
with the other two computers. The Higher Level Supervisor is a DES controller. If expanded graphically, it would be
similar to the Client on the Engine Level design.

The software architecture of the simulation test bed is flexible to adapt arbitrary DFSA models and controller
designs which make it portable to other complex dynamic systems.

NASA/TM-2004-213376 3



III. Review of Language Measure Concepts

This section reviews the previous work on language measure.7T8 It provides the background information
necessary to develop a performance index.

Let the dynamical behavior of a physical plant be modeled as a deterministic finite state automaton (DFSA)
Gi =_(Q 5,6,qi,Qm) with IQJ = n and [EI = m. Here Q={qo, qj ... , q} is a finite set of states with q, the initial state;

Z is a finite alphabet of events. (5 is a function from Q x Y to Q (the transition function); and Qm g Q is the set of
marked states. Additionally. 1* is the set of all strings over Y.

Definition I: A DFSA Gi, initialized at qi e Q, generates the language L(Gi)= {s e Y*: 6 * (qi,s)e Q} and its
marked sublanguage Lm (Gi) ={s e ** : * (qi,s) E Qm }.

Definition 2: The language of all strings that, starting at qi e Q, and terminating atqj e Q, is denoted as L(q,, q,).

Definition 3: The characteristic function that assigns a signed real weight to state-partitioned sublanguages

L(q,,q,) is defined as: v" :Q --) [-1, I] such that

[-1,0) ifq, e
Xj =- X(qj)e {O0 if qj V Q, independent of i,

1 (0,11 ifqjeQ+

The (n x 1) characteristic vector is denoted as:

E = X2"1 .. Xn IT.

Definition 4: The event cost is defined as if : Y*xQ -x [0, 1) such that Vqj e Q. Vok c y, Vs e Y*,

"' f[k I qj ] = 0 if S(qj, rk ) is undefined; ik[,- qj ] = 1, where i: is the empty (zero length) string;

"* k[lrk qj] = kjkE[0,l) ; Zkrjk <l;

"* i [rk s1 q.,] =k [okIqj] k1 [sl 9(qj, ak)].

The (n x m) event cost matrix is denoted as: II = [ii 1.

Definition 5: The state transition cost of the DFSA is defined as a function 7r:QxQ---[0,1) such that

Vq., qk r Q, )r(qk qj )= Y ._(craqj)_ i= r and xjA =0 if {o'e X:S5(qj,O')} = 0.
oUE X:b5(qj. .o)=qk

The n x n state transition cost matrix, denoted as l , is defined as:

gTl1 IT12 "' )!'In1

Litnl ,'n2 j nn

NASA/TM-2004-2 13376 4



Definition 6: The signed real measure u of a singleton string set Is} is defined as:

u/(Is)) -=2,(q,)k(s Iq,) Vs E L(q,q,q)_ L(G,)

The signed real measure of L(q, ,qj ) is defined as:

The signed real measure ofa DFSA Gj, initialized at the state q, E Q, is defined as

p,~~~ -=uLG) u( L(q,,q,))

The n X I real signed measure vector is denoted as:

In reference 5, it has been shown that the measure of the language L(Gi), where Gi =1(Q, ,Jqi,Qj) can be

expressed as: ui = XjTrti/j + Xi . Equivalently, in vector notation: ;9 = n1 P + 2. Since 11 is a contraction

operator, the measure vector -u is uniquely determined as:

I/ -- FI-I(I)

NASA/TM-2004-213376 5



IV. DES controllers
One of the major tasks of this paper is fusion of the (possibly) redundant, conflicting and incomplete information

to make timely decisions. Such information can be derived from different types of sensor data as well as operational
history and the knowledge base generated from pilots' personal experience. Computer-based advanced analytical
techniques are necessary for fusion of the time series data available from multiple sensors and the relevant non-
sensor-based information (e.g. weather data, analytical damage model data) to make specific inferences that could
not be achieved by the use of single sensors alone. However, improved performance may not result simply from an
increased volume of sensor data and engine information unless the ensemble of information is systematically
processed in the context of the engine operational conditions and mission objectives. In essence, fusion of the
heterogeneous information is necessary to:

(1) Guarantee improvement of resolution and reduction of ambiguity in decision and control.
(2) Make advantageous trade-offs between probability of false alarms and missed detections.

The open-loop discrete event dynamics are modeled as a Discrete Finite State Automaton (DFSA) based on the
postulated engine operating scenario. The model may vary for different mission scenarios. The DFSA plant model
assumes that an aircraft equipped with twin turbofan engines is carrying out a routine surveillance mission. Abortion
of the mission is allowed at certain states when an anomaly is detected in the engine. Each engine of the aircraft is
equipped with a continuous time controller which is supervised by a local DES controller. The primary objective of
the local Engine level DES controller is to strike the right balance between the conflicting demands of higher
performance from a higher level DES and limiting the damage (stress-related damage modes) to the engine. The
upper Propulsion level DES controller redistributes the load depending on the health of the engine and thrust
demand of the pilot.

A. Engine Level DES control c

Figure 4 presents the DFSA model of the b
engine operation discrete-event supervisory control q
for an individual engine, whereas Figure 5 shows
the associated DES controller, which is derived
from the engine model. The state and the event list f
are presented as tables A-I through A-4 in the c
appendix of the paper (C denotes controllable

events and UC denotes uncontrollable events). The
engine can operate in two regimes, one is a high
performance regime (state q3) where the damage
rate is high, and the other is a low performance f
regime (state q5) where the damage rate is low. In
the high performance regime the engine has a
tendency of going to state q4, where state variables Figure 4.-Engine Level DES plant model.
like combustor temperature have been observed to c
have oscillatory behavior. This is extremely harmful
in terms of engine health and must be avoided. The b
engine level controller chooses the regime of q a
operation (q3 or q5) depending on two factors: (I)
Thrust demand from upper level DES, and (2)
Health of the engine (as formulated below). f

In the context of this paper, "health"
specifically refers to structural health, i.e. the
remaining life of the engine or its components. Life
is consumed by thermal and/or structural loads that f
result in engine "'damage." The health of the engine
is determined by the damage accumulated over the
period of operation.

Figure 5.-Engine Level DES controller model.

NASA/TM-2004-213376 6



Damage accumulation has two components. It is formulated as a finction of high-pressure turbine gas inlet
temperature and shaft speed. In addition, at random time intervals, damage spikes (sudden jumps) are introduced to
simulate sudden events of unspecified cause resulting in damage accumulation in the engine.

B. Propulsion level DES Control

The main task of the upper level DES controller is to redistribute the load between two engines depending on
the current health of each engine and the thrust demand of the pilot. The states and the event list are presented in
table A-3 and A-4 of the appendix. A graphical representation for the propulsion level DES controller, such as
Figure 5 for the engine level controller, is provided in the appendix as Figure A-1. Due to the complexity of the
propulsion level system, the figure is not fully labeled.

V. Simulation Experiments: Results and Discussion

The experimentation setup for the DES simulator is designed on the engine simulation test bed to validate the
DES control concept. Upon successful implementation of the software modules (discussed in section II) on the client
and server computers, two sets of experiments were performed. The first set of experiments was performed on the
engine level DES controller to validate that implementation of DES control reduces the engine damage and thus
extends engine life. The second set of experiments was performed on the Propulsion Level DES to validate that it
judiciously balances engine load for the two engines. Afterwards, the DES controller performance is analyzed.

A. Engine Level DES Test

Both unsupervised and supervised plants are excited by the same predetermined fixed input shown in Figure 6.
To make a comparison between the supervised and the unsupervised cases several outputs (Combustor temperature,
high pressure turbine speed, net thrust of the engine and fuel flow through the main burner) of the engine simulation
were observed over a period of 12 minutes. Figures 7 and 8 show the simulation outputs for the unsupervised and
supervised cases respectively.

43

42

41

-40

g39-
38

37-

36

35-
0 200 400 600 800

Time (sec)
Figure 6.--Power Lever Angle input.
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Figure 7.-Simulation output for the unsupervised case. Figure 8.-Simulation output for the supervised case.

The comparison of two figures indicates that the DES controller applied in the engine level eliminates the high
frequency oscillations which are observed in the unsupervised case. High frequency oscillations are modeled as the
primary source of damage to the turbine blades and adversely affect the overall health of the engine.

B. Propulsion Level DES Test

The propulsion level DES controller has two main tasks. One is the intelligent decision making and control of
twin-engine aircraft propulsion systems and the second is to improve the overall mission and operational behavior so
that engine health is maintained. These can be demonstrated through intelligent load balancing. The issue of load
balancing becomes especially important when the health conditions of two engines are significantly different (one
can be called in "bad" condition and in "good" condition). For this scenario, the aim of the DES controller is
judicious redistribution of the load between two engines such that the "bad" engine carries lower load than the
"good" one, subject to the condition that the total thrust output of the engines remains same. Figures 9 and 10 show
the simulation inputs/outputs of each of the two engines. Initially in region (1), both engines are in "good" condition.
As the mission progresses, Engine 2 suffers a sudden damage-inducing event, i.e. the condition of Engine 2 becomes
"bad" (as indicated by the discrete damage increment spike at approx 325s; this unexplained event facilitates the
demonstration of the Propulsion level DES). At this point (entering region (2)), the propulsion level DES
redistributes the load such that Engine 1 carries a higher load than the damaged Engine 2, (as can be seen by
comparing Figures 9 and 10). At approx 625s, Engine 1 goes "bad" (as indicated by the discrete damage increment
spike on Figure 9). Entering region (3), both Engine 1 and Engine 2 are considered to be in "bad" condition, thus the
propulsion level DES controller balances the load approximately equally between the two.

NASA/TM-2004-213376 8
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Given the vector for the state weights of the
engine level as X = [0 0 0.2 -0.1 0.2 -0.5] Table 1.-Simulated Performance of Controllers.
(designed by the control engineer), the theoretical
language measure for the unsupervised plant and
supervised plant are computed from equation (1) NUMBER
to be:

lliuperised = 4.603 andIlsupervis = 6.3678. Supervised Unsupervised

Improved performance is a positive gain in the
language measure. Therefore, the engine level 8 1 1
DES controller improves the performance of the
open loop plant. 9 8 15

For the propulsion level DES controller the
weights of the states are selected according to 10 41 34
their importance to the mission management as X
= [0 0 0 0 0 0 0 -1 -0.2 0.2 0 0]. Table 1 shows the
experimental results of the number of visits to the states which have weights other than 0. These are State 8: Plane
destroyed, State 9: Mission abort, State 10: Mission successful. They have relative weights of -1, -0.2 and 0.2
respectively. The language measures, i.e. the theoretical performance of the controllers are calculated as:

l6,upeised = -2.7999 and
Pkupervised = - 1.6003,

which indicate that the propulsion level DES controller improves mission performance.
Experimental outcomes, shown in Table 1, can also be used to evaluate the DES controller performance directly

by multiplying each state visit with the relative weight of the state. The experimental performances of the propulsion
level controllers are:

Unsupervised : lx (-1)+ 15 x (-0.2)+ 34 x (0.2)= 2.8
Supervised : lx (-) + 8 x (-0.2) + 41 x (0.2) = 5.6.

Once again, a positive gain is observed, which confirms that the supervised plant performs better than the
unsupervised plant, indicating an overall improvement of the mission performance. A similar experimental
calculation for the engine level controllers is not shown because there is no mission behavior element in the engine
level.

VI. Conclusions

This paper presents a quantitative approach to synthesis of a hierarchical discrete-event supervisory (DES)
control of an aircraft propulsion system. The DES control law has been validated on a networked simulation test
bed. The plant dynamics in the simulation test bed are built upon the model of a generic gas turbine engine. The
software architecture of the simulation test bed is flexible to adapt arbitrary DFSA models and controller designs
and to fit other complex systems. The supervisory control laws are quantitatively analyzed using a language
measure.

7' 8

The long-term objectives of the proposed approach are to achieve: (i) intelligent decision and control of
distributed propulsion management systems, where each of the engines has its own local DES control; (ii) structural
damage reduction and life extension of aircraft engines without any significant loss of the system performance; and
(iii) decision making and mission planning modifications through a high-level DES coordinator; (iv) extension of
this work to other complex dynamic systems such as Rotorcraft, power plants, and spacecraft simulation test-beds.
Future work includes incorporation of optimal control laws.5

NASA/TM-2004-213376 10



Appendix

Table A-1.-State List for the engine level DES supervisor.

Name Description Status

q, Engine Start

q2  Engine Warm up

q3 High Performance/ High damage rate Marked (good)

q4 Oscillations Marked (bad)

q5  Low Performance/ low damage rate Marked (good)

q6  Engine inoperable Marked (worst)

q7  Low Performance/ high damage rate Marked (bad)

Table A-2.--Event List for the engine level DES supervisor.

Name Description Status

a Start C

b Warm up complete UC

c Shut down the engine UC

d Detection of oscillations UC

e Nozzle area reduction C

f Engine fails UC

g Reduce performance /reduce damage C

h Increase performance/ increase damage C

i Remain in the state C

j Reduce performance C

k Increase performance C

I Increase damage rate C

m Decrease damage rate C

NASA/TM-2004-213376 11



Table A-3.-State List for the propulsion level DES supervisor.

State Description Status

q, Engines on ground

q2  Engines warming up

q3 Both engines in High Performance operation

q4 One engine in High one engine in Low Performance

q5 Both engines in Low Performance operation

q6  One engine stopped one engine in High Performance

q7 One engine stopped one engine in Low Performance

qs Both engines failed bad

q9  Decision for abort mission bad

q10  Mission successful good

q1n High damage detected for one engine

q12  High damage detected for both engines

NASA/TM-2004-213376 12



Table A-4.-Event List for the propulsion level DES supervisor.

Event Description Status

A Start engine C

B Warm up complete UC

C One engine deteriorates UC

D Redistribute the load C

E Both engines deteriorate UC

F One good engine fails UC

* Both engines fail UC

H Increase performance C

I Reduce performance C

J Request to abort mission C

K Request accepted UC

L Request rejected UC

M Mission accomplished UC

N Turn off engines UC

0 Redistribute load C

P Redistribute load C

Q Request rejected UC

R One bad engine fails UC

NASA/TM-2004-2 13376 13



Table A-5.-Engine Level In matrix.

a b c d e f g h
q, 1 0 0 0 0 0 0 0
q2 0 I 0 0 0 0 0 0

q3  0 0 0 0.1938 0 0.015504 0.7907 0
q 4  0 0 0 0 0.96 0.04 0 0
q5  0 0 0.16667 0 0 0 0 0.83333
q6 0 0 0 0 0 0 0 0

Table A-6.-Propulsion Level ll matrix.

A B C D E F G H I J K L M N O P 0 R
q, 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q2  0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q3  0 0 0.091 0 0 0.045 0 0 0.864 0 0 0 0 0 0 0 0 0
q4  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
qs 0 0 0.045 0 0 0 0 0.773 0 0 0 0 0.182 0 0 0 0 0
q6  0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
q 7  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

q8  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q9  0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
q1o 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
q1  0 0 0 00 0 0 0 0 0.7 0 0 0 0 0.3 0 0 0
q12 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0

H q5

Figure A-1.--Propulsion Level DES controller
(NOTE: not all state transitions are labeled due to complexity).
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