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PREFACE

A study was conducted on image processing using a computational method from nonlinear
dynamics. This approach has similarities to biological systems and may be considered "bio
inspired".
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INTRODUCTION

Decision-making provides the basis for much of our behavior and actions in our

environment. There are generally two types of errors that can be made. When a human takes an

action, this response may be too aggressive or possibly too conservative depending on his

perception of the environment. This perception can be altered prior to the decision-making

process. In any event, the two types of errors that result can lead to significantly different cost

penalties associated with making each type of error. One simple application of decision-making

occurs in the area of Biomedical Engineering. For example, the goal in this case may be to

correctly detect the presence of a tumor in a human, when it may or may not be present. Based

on data from an x-ray or other source, if the decision-making process of the detection is too

aggressive (presuming the tumor is at hand when it is really not existent), the results may

precipitate an early surgery (exploratory), when it is not needed. This is not desired. However,

if the decision-making process is too conservative, then the conclusion would be that the tumor

does not exist. If, indeed, a tumor was actually present and growing, the penalty to the human

would also be very costly, in a health sense, to ignore this critical information.

In the military application, the effects of being too aggressive or too conservative in

decision-making have similar costs and risks. For the military application related to this

scenario, the decision maker approaches a tree in a foreign country. In the tree is a camouflaged

soldier (cf. Figure 1). The soldier may be either friendly or hostile. An immediate action of the

decision maker is required. If the decision-making process is too aggressive, the soldier on the
ground will shoot at the object in the tree. If the soldier in the tree is friendly (not hostile), this

"friendly fire" incident has a great penalty to the decision maker. On the other hand, if the object

in the tree is a hostile (enemy) soldier, the conservative decision to not fire at the object may

result in the enemy soldier shooting the decision maker. Thus the error in ignoring the

information (much like the tumor example in Biomedical Engineering) is even more costly to the

person making the action who is required to elicit a binary choice prior to his response.

Certain attributes that occur in biological systems are going to be employed herein for the

target detection problem to synthesize a nonlinear system which will work in a



Hostile Person Hiding in a Tree-Binary Decision-Making Process

SFigure I

manner to improve target detectability and also increase the signal to noise ratio of the perceived

target. It will be shown in the sequel that when the signal to noise ratio increases in a target

detection task, both types of errors in decision-making will decrease, accordingly. This method

will be shown to be "bioinspired." The strong rationale for emulating biological systems is that,

in nature, there are many unexplained phenomenon which have not presently been used for

sensing and decision-making. For example, it is well known that when birds migrate annually
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from South America to Alaska, they are able to identify precise (and repeatable) locations where

they rest on the journey. The position location schemes of these birds are far better than any

GPS (global positioning system) derived by humans using linear models and sensors. Another

biological analogy involves certain insects which can detect the presence of their opposite gender

via smell for a distance over 2 miles. The signal to noise ratio for the detection of such a target

stimulus is so small, it must be completely masked by the noise in the environment. Such

processes must be nonlinear to have this enhanced sensitivity because no linear system would

effectively have the capability to operate functionally in this low signal to noise environment.

Hence emulation of biological systems ("bioinspired" or "biomimicry") provides a powerful

platform to construct analytic methods to improve decision-making since their existence in

nature is proof positive that such a modus operandi can be devised.

This report will study a means of improving decision-making with humans when the data

provided may be of very poor quality. The assumptions that are being made are:

(1) Every decision process has some error.

(2) For a binary decision (two choices), there are two types of errors.

(3) The human must respond with an action within a limited time frame.

(4) Our goal will be to simultaneously minimize both types of error described above.

(5) A nonlinear assistive device will enable us to make improved decisions.

(6) We will emulate certain aspects from Biological Systems.

The techniques developed herein will be applied to an image processing problem to show the

efficacy of the proposed method. Various types of literature will now be reviewed to set the

stage for a methodology to improve decision-making. The first literature review will discuss a

related topic, data mining, or means of gleaning information from data.

LITERATURE REVIEW

In order to completely examine a wide range of data relevant to this problem of enhanced

target detection, there exists a host of pertinent literature in the area of data mining and

knowledge discovery in data, which is applicable to the problem at hand.
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Relationship to Data Mining and Knowledge Discovery in Data

Data mining and knowledge discovery in data is now a prevalent problem in our modem

information age [1]. In industry, government, academia and elsewhere, there is significant

interest in gleaning the relevant knowledge from an overload of information and data that are

available. Key research problems include: (1) How to warehouse the data, how to reduce data,

(e.g. via feature selection, association, and clustering), how to visualize the data, and how to

interpret the reliability of the data? The overall goal is to make predictions or discovery in the

data which has different meanings to distinct users [2].

There are a number of analytical means of addressing problems in data mining using, e.g.

statistics, pattern recognition, database management and artificial intelligence. The applications

include security and criminal detection [3], and in business/marketing for industries [4,5] to

assess carefully their competitors and customers. Decisions have to be made on finite and

limited use of resources with the ultimate goal of achieving the best information quality

decisions based on the available data that can be obtained. In criminal detection, interest exists

in classifying and correctly detecting certain patterns [3]. The data may be in the form of text,

pictures, or from alternative sources. Developing profiles of high-risk people is of significant

interest to enhance law enforcement. A powerful tool used in this context is a decision tree

which is a graphical representation of the relationship between a dependent variable (output) and

a set of independent variables (inputs) usually in the form of a tree-shaped structure that

represents a set of decisions (cf. Figure 2).

For example, to describe a decision tree, in Figure 2, the objective is to determine likely

factors that are related to the incidence of high blood pressure. The data are first grouped by

those individuals considered as having high or low (normal) blood pressure. From those

individuals with high blood pressure, they are further grouped into an age category as being

either old or young. If the preponderance of the individuals which are still considered as having

high blood pressure are further grouped by weight, the heavy individuals seem to predominant.

The tree is the node (round circle) where that category of individuals is being considered. The

branches indicate the choices of categories (more than two choices are possible), and the plus or

minus sign indicates that the factor under consideration is relevant (+) or not relevant (-).
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Blood Pressure ?

High
Low

Height?
-- Tall Short

Age ?

-- Old
Young Weight ?

- Light Heavy

Figure 2 - A Decision Tree for Detecting

the Causes of High Blood Pressure

Thus going down the tree in a direction in which the minus signs do not appear indi6ates that the
individuals who have a propensity for high blood pressure are those who are short, older, and of
high weight. This decision tree structure has the advantage that computer code can automatically

be written, e.g. in pseudo code:
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If Blood Pressure is = High
& If height is = short

& If age is = old
& If weight is = heavy

Then Blood pressure is high = True
end

end
end

end

The business applications of data mining are widely eclectic. This includes building

models on which customers may respond to a direct-mail campaign, reducing the number of

fraudulent claims with insurance, improving the ability to predict the likely fluctuations in

financial markets and in general developing more intelligent and successful strategies for

investments [4]. In counter-terrorism applications [5], keeping valuable data both private from

hostile groups yet usable to those in the intelligence community provides a great challenge.

Many new technologies now exist for data mining applications [6]. The technologies are

sometimes classified as database management and warehousing, machine learning, statistics,

decision support, parallel processing, and visualization. The means of projecting data in a visual

sense is the most powerful procedure [7] and is the most applied in the field today. Some of the

analytical techniques include Bayesian methods (Bayesian nets and adaptive Bayesian), fuzzy

sets, and evolutionary computing [8]. Neural networks and preprocessing algorithms can be

invaluable in the formation of databases in which the data mining tools can be implemented.

Models can be used in the data [9] as a high-level, global description of a data set. Models built

in this way may be descriptive (summarizing key points in the data) or inferential (allowing one

to make some statement about the population from which the data were drawn or about likely

future data values). Score functions can be used as metrics to discern the efficacy of a model.

Certainly all evaluations of data mining tools are implicit in statistical methods in the data [10].

We now discuss the concept of SR (stochastic resonance), which can be viewed as a data mining

tool when used within the context of enhancing visual images.
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Input signal y(t) Output signal y(t)
has SNR= ki has SNR = k 2

S(t) + noise = y(t) Nonlinear Dynamic Output = 5(t)

System with SR

Note: k2 /kI > > 1

Figure 3 - Viewing the SR Dynamic Filter as A Signal/Noise Amplifier

The Historical Application of SR (Stochastic Resonance) for Amplification of "Information

Quality" in an Input Signal.

Discovered in the early 1980's [11] to explain the abnormal periodicity of ice ages,

physicists for the next 20 years used this concept to model and elucidate phenomenon from a

variety of physical processes. In more recent times [12-15], it has been shown that the method

described as "Stochastic Resonance" will yield an amplification of signal to noise ratio (SNR).

Figure 3 portrays this concept using a block diagram. In Figure 3 the input to the block is the

signal y(t) = S(t) plus a noise source. The two signals (S(t) and the noise) are added together to

form y(t) which is then transformed by the SR filter. This block in Figure 3 can also be viewed

as a coordinate transformation. The output signal from the block is y-bar(t). The SNR in the

input signal y(t) is k1 . The SNR in the output signal y-.bar(t) is k2. The overall gain (information

quality) of this process is the ratio of k2 to k, which can turn out to be larger than unity. At first

this seems to be an incredible result, i.e. we have improved the information quality of the input

signal (S(t) + noise) by processing the data through this special filter. This has analogies to data

mining or knowledge discovery since we can now uncover key elements in the data by

processing the signals through the coordinate transformation as shown in Figure 3. More

quantitatively:

SNR gain = k2 / k, >> 1 (1)
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where it is shown, later, that this SNR gain may be six orders of magnitude or more for certain

elementary signals. Related to this work, others have noted, theoretically, [16] that target

detection, by itself, can be enhanced for the case of certain classes of nonlinear systems with the

addition of random disturbances.

An Early Application to Image Enhancement Using the SR Technique

In early 1995, some evidence surfaced in the Biomedical and image processing

community to suggest that certain nonlinear operations on image data can enhance detectability

of hidden objects. More recently, [17] has shown that the signal to noise ratio can be improved

in certain types of image processing by the application of just the noise alone. In their

application a hierarchical cluster analysis was employed with a stochastic disturbance (noise)

which improved the signal-to-noise ratio for the identification of functional MRI patterns.

Similarly, in [18-32], there now exists a wide range of evidence that patterns and images are

enhanced by the addition of certain types of noise. To show an example of how SR can enhance

the contrast of an image, Figure 4 from [28] is used as an instance. In Figure 4, moving to the

right, the intensity of the white Gaussian noise is increased. The goal is to identify the object in

the diagram. Obviously too much noise or too little noise degrades the identification of the

object.
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Too little noise Optimum noise level Too much noise

Direction of increasing noise intensity

Figure 4 from [28] illustrating how SR can enhance a visual image.

The ultimate step in this process would be to develop image-processing algorithms using

some of the techniques from SR. First we will investigate this improvement of target

detectability within a framework involving decision-making.

THE BASIC CONCEPTS OF DECISION-MAKING- TYPE 1 AND TYPE 2

ERRORS

Figures 5a-b facilitate the discussion on how the procedure described herein will assist in

the improvement of decision making. Present day methods will either reduce type 1 error or

type 2 error (but not both simultaneously). With reference to the problem of detecting the

object in the tree in Figure 1, let us denote the truth is Ho if the object in the tree is friendly.

Alternatively, the hypothesis H1 is that the object is hostile. If the decision maker decides to

shoot at the object (and it is friendly or H0), this is termed a Type 1 error. In Figure 5a the area

A, represents all these Type 1 errors. If, however, the object (or target in the tree) is hostile and

the decision is to not shoot at the object, this is a second type of error (Type 2 error) and is

9



denoted by the area A2 in Figure 5a. Both types of errors have significant consequences on the

mission. The goal is to minimize both Type 1 and Type 2 errors. Figure 5b can be compared to

Figure 5a. Figure 5b

Probability

H0 = Friendly Target H1 = Hostile Target

d2 di

Figure 5a - Decision Making Process

Ho H,

Area Aý4

Figure 5b - Improved Decision Making Process

represents a better decision making process because both the Type 1 and Type 2 errors are

reduced. That is, A3 < A1 and A4 < A2. Thus both types of error are reduced simultaneously.

Typically what is accomplished in the modem day assessment processes is that decision makers
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work with the x-axis of Figure 5a. They make a binary choice on a measured variable (d, or d2)

and will select either Ho or H1 according to how aggressive or conservative they wish to be in

identifying the unknown object in the tree. By sliding along on the x axis of Figure 5a, either the

Type 1 or the Type 2 error is reduced. If one is reduced, the other is correspondingly increased.

What will be different in the approach taken here is that both the Type 1 and Type 2 error

will simultaneously be reduced. Before this methodology is explained, a quantitative description

of signal to noise (SNR) will be reviewed.

THE CONCEPT OF SNR WHEN USED IN TARGET DETECTION

In this section we generalize the discussion so far to describe a quantitative description of

the SNR and the underlying assumptions required to characterize the ability to detect targets

correctly. For a straightforward binary decision, Figure 6 shows a simplified description of a

decision making process for two distributions, analogous to Figures 5a-5b. The distribution Ho

has mean of pto and standard deviation a0 . The distribution H1 has a mean of p,1 and standard

Probability
d' = pi - po

H . Standard H,
deviation = a0

SStandard
deviation = a1

P-0  P1

Figure 6 - Defining SNR for Detection in a Binary Decision Process

deviation a1 . If an approximation can be made that a0 = ca = a, and a sensitivity parameter d' is

defined via:

11



d' = gi - p.o (2)

Then the SNR is typically defined via:

SNR = d' / Y (3)

Thus if the two distributions in Figure 6 are far apart, then d' is large and this enhances the

distinction between the two distributions and the SNR is large. If the a is small (or made

smaller), then the SNR also increases and, again, it is easier to discern the two distributions.

Figure 7 shows the ROC (Receiver Operator Characteristic) curve that summarizes the main

points in Figure 6 into an easy to understand diagram.

CP 6°1 1

Prob.

of

Detection

0 1
PFA (Probability of a False Alarm)

Figure 7 - The ROC (receiver operating characteristic) Curve

In Figure 7, the ROC curve is a plot of probability of detection (PD) on the y axis versus

Probability of a False Alarm (PFA) on the x axis. This plot is sometimes termed sensitivity (y

axis) versus 1-specificity (x axis). In Figure 7, the diagonal denoted as SNR = 0 represents

random guessing on one of the binary choices. In this case the distribution functions in Figure 6

completely overlap (d' = 0). As the signal to noise ratio increases, however, (d' increases), the

operating curves in Figure 7 tend to move to the upper left-hand comer of the diagram. The best

plot would occur if the curves of operation would start at the origin and to go directly up to the

top left point (0,1) and then transverse right to the point (1,1). The area enclosed under this ROC

12



curve is sometimes used as a measure of the efficacy of the decision making process. The Type

1 and Type 2 errors can also be easily defined in the ROC curve in Figure 7.

It will be shown in the sequel that the SR procedure will actually increase the SNR and

thus improve the propensity to make a correct detection of targets in obscure environments.

Before this can be presented, two examples from Physics will be discussed to illustrate why SR

can improve sensitivity to the detectability of faint targets, when they are not immediately

apparent.

EXAMPLE 1 OF SR - IDENTIFICATION OF A SUBLIMINAL SIGNAL

BELOW A THRESHOLD.

Figure 8 shows one physical example of how SR can provide some advantage in the

detection of faint or weak signals.
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A Psychophysics Argument Detection

TThreshold I

h S(t) ~- Subliminal I
Signal No Detection

0
Time Axis

Now Add a Little Noise to the Subliminal Signal

Threshold
Th. • '

. 1 1  IS(t) + Small Noise

0
Time Axis

Now Add a Lot of Noise to the Subliminal Signal

hresho d S(t) + Large Noise

Th.
A h

0

Time Axis

Figure 8 - SR Viewed as Detecting a Subliminal Signal

Figure 9 summarizes the discussion so far on how one can interpret the SR effect.
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A Psychophysics Argument

Th. ThresholdTh. I • •--

Figure 9 - Statistical Subliminal
/ - \- Signal

Interpretation of SIR 0 li,-A,
Now Add a Little Noise to the Subliminal Signal

.shold

rime AXIS

Signal to Noise Ratio, Now Add a Lot of Noise to the Subliminal Signal
.,,;ýhresholtd

Probability of Correct Detection 'Th. f) Aresh

Transfer TNw A-

30

II

Nois Intensity;R i re n

To explainFiguresT8and ,i s seenC icn Figur of tha i ies irdt orctydtc h

a~25

c10A

-5

Noise Intensity

To explain Figures 8 and 9, it is seen in Figure 8 that it is desired to correctly detect the

subliminal signal S(t) when it is in the high state (high level of the trapezoidal signal), yet

submersed below the threshold of value h. In Figure 8, top plot, even when the subliminal signal

15



is in the high state, it cannot be detected because all signals are below the threshold. In the

middle plot of Figure 8, a small amount of noise has been added to S(t). It is now seen that when

the trapezoid is in the high state, it occasionally pierces through the threshold and appears above

the threshold. Thus it is correctly detected as being in the high state. Hence the number of

missed negatives (detecting S(t) when it is really high) is reduced somewhat. In the bottom plot

of Figure 8, the intensity of the added noise is still further increased. Here it is seen that the

combined signal S(t) + noise pierces through the threshold even when it is in the low state. This

leads to a false positive (we think S(t) is high, when it is really low). Thus the number of missed

negatives is less by increasing the noise as we go down the graphs of Figure 8, however, the

number of false positives increases, causing a reduced number of correct detections. In Figure 9,

this discussion is summarized. Here is seen the stochastic resonance curve. The y axis of this

curve is proportional to the probability of correct detection of S(t) when it is really high. The x

axis is the intensity of the noise (power or variance). The SR resonance curve acts similar to

what was shown in Figure 8, when increasing noise tends to first help the decision-making

process and then tends to hurt the process of correctly classifying S(t) when it is in its high state.

To describe this curve, starting at the origin in the bottom graph in Figure 9, the curve must start

at the origin. This is because if the subliminal signal is below the threshold (no noise added),

then the probability of correct detection of S(t) in the high state is zero. Moving to the right from

the origin in this diagram, the curve rises because as the intensity of the noise increases, the

number of missed negatives quickly decreases and the number of false positives slowly

increases. The curve rises until a resonance point is reach as denoted in Figure 9. To the right of

the resonance point on the SR curve, the number of missed negatives still is decreasing but the

increasing of the number of false positives makes the overall decision process less effective.

Thus the curve drops to the right of the resonance point as the noise intensity continues to

increase. The curve gradually returns to zero, just as in Figure 9, when the substantial increase

of the noise produces so many false positives, that the overall decision making process is

compromised.

The second example from Physics is very analogous to the first example in the sense that

the detectability of a high state of a subliminal signal will be enhanced by the addition of the

noise. The advantage of the second example is that the dynamical equations of motion can now

be obtained which will help in the numerical integration of a filter to process signals.
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EXAMPLE 2 OF SR - THE BIPOTENTIAL WELL PROBLEM

Figures 1 Oa-b portrays a second example which describes the SR effect. This example is

very popular within the Physics community.

V(x)

S 1 0 Sw1 2

h

h

Figure 10a -4 The Bi-Pote ntial Well rbe

-a

0 a

Stable Unstable Stable X

Figure IlOb - Equilibrium Points for the Physical System

To explain Figures I la-b, the green ball is trapped in one or two potential wells. The signal S(t)

represents the subliminal signal. The signal S(t) could represent the trapezoid of Figure 8, which

can be in either a high or low state. The height of the potential well in Figure IlOa is h units.

This is analogous to the threshold of h units in Figure 8. Again, since S(t) is always below h

units, it cannot transverse the threshold and change states. The right state (x = a) will be denoted

as the high state; the left state (x = - a) will be denoted as the low state. White Gaussian noise is

now added to S(t). The combined signal S(t) + noise will now overcome the potential barrier of
h units (analogous to piercing the threshold in Figure 8) and switch states (or equilibrium points).

If too much noise is added (high intensity), the signal S(t) will continue to switch equilibrium

points, even when it does not toggle between the low and high state. Thus the correlation
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between S(t) switching states and toggling between the right and left potential wells starts to

degrade with the addition of too much noise. Figure 10b displays the physical equilibrium points

of the Physics example in Figure 10a. It is noted that the potential well is characterized by two

stable equilibrium points interlaced between an unstable equilibrium point. In Figure 10b, when

x = -a is called a stable equilibrium point. This is true because if the ball is resting in this

potential well and is perturbed slightly, the motion always returns to the original equilibrium

point. This is-also true when x = a. Here, again, if the ball is perturbed slightly, it returns to the

equilibrium point x = a. The point x = 0, however, is an unstable equilibrium point. It is

observed that small perturbations about the point x = 0 results in the ball moving either right or

left away from the original equilibrium point. This is characteristic of an unstable equilibrium

point.

Now the efficacy of this work, it will be demonstrated. The ability of the SR filter to

amplify the signal to noise ratio in an input signal (consisting of elementary signals) to extreme

amounts will be demonstrated. This computer simulation study will now be presented to show

the extent of this gain. For elementary signal analysis (two sine waves), it was demonstrated

[33] that the signal to noise amplification for a block similar to Figure 3 could exceed 1 million

or more, hence substantially increasing the likelihood of a correct detection of a target, especially

when it is subliminal.

COMPUTER SIMULATION OF IMPROVED SNR FOR ELEMENTARY

SIGNALS

To fairly test the SR process, an input signal S(t) will be selected to be the sum of two

sine waves (with unity amplitude and having frequencies of 1 and 4 hertz (Hz)) denoted as

follows:

S(t) = sin( 2 irt (1) t) + sin ( 2 7E (4) t) (4)

Rationale for Selecting S(t) to be the Sum of Two Basic Sinusoids

The selection of S(t) in equation (4) is to consist of two sinusoids of different frequencies

and equal amplitude. The rationale for this selection of a target signal is derived from studies in
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signal analysis where a measured signal is typically decomposed into its Fourier components as

described in equation (5) as an inverse transform:

N

y(t) =Inverse Fourier Transform of YO(jw) = E a1 sin(ot +O%) + bcos(wit + %) (5)
i=1

where the Fourier components (amplitude coefficients ai and bi of equation (5)) occur at the

frequencies w. as the significantly important components of the signal y(t). In equation (5), only

N frequencies are considered, which is an approximation to the original signal y(t). Since most

signals in nature have a substantial portion of their spectral power at low frequencies, the

approximation of the first N components seems pragmatic. The task of target detection can be

formulated as the role of identifying a single (or multiple) sinusoid(s) in noise or possibly

distinguishing two different target signals. The task is then to identify the signature of each

target (sets of ai, bi and aN values from the Fourier analysis that make the targets different) when

buried in noise. The goal here is to clearly distinguish the Fourier components of S(t) as being

different from the adjacent noise signals that appear in the power spectral analysis of the signals

y(t) or yjbar(t). In real time, Figure (11) displays a plot of S(t) = sin(27tt)+sin(8ntt) versus time

in seconds over a four second time period.

a litld This is a time domain plot of the sine wave signal = fa
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Figure G11) - S(t) plotted in relaltime over a period of 4 seconds.
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It is seen that the components of 1 Hz and 4 Hz are very apparent in the signal in Figure

(11). To see this effect even more clearly, a fast Fourier transform (FFT) operation of the signal

S(t) is displayed in Figure (12). In Figure (12) it is observed, for this two sine wave signal, that

the power in S(t), in the frequency domain, is equally concentrated at the points 1 Hz and 4 Hz

on the x axis of Figure (12).

1 1 1 11
700 ..�. ... ..................

"-E gin m 10.
500 ...

I
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---- Pi ____ ___ ___in

0 1 2 3 4 5 6 7 8 9 10
frequency in Hertz

Figure (12) _ An Fast Fourier Transform of S(t) in Figure (11)

From Figure (12), it is extremely easy to distinguish the two constituent components that make

up S(t) (the peak power at 1 and 4 Hz).

With the addition of noise, however, the lucid diagram in Figure (12) now becomes quite

muddled. The input signal to now be analyzed is y(t) which contains the sum of S(t) and white-

Gaussian noise, i.e. y(t) satisfies:

y(t) = S(t) + ri(t) (6)

and the fast Fourier transform is now performed on y(t) rather than S(t). As the power of the

noise (r't) ) term increases, the goal is to still attempt to identify (and distinguish) the two peaks

of S(t) in the frequency domain at 1 Hz and 4 Hz from the power spectra plots of y(t) or from its
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transformed counterpart y-bar(t) illustrated in Figure (3). It is noted that the zero mean

Gaussian (normal) noise source ir(t) has a density function specified via:

density function = g(x) = 1 ex 2 12 (7)

where a is the standard deviation of the zero mean Gaussian random process 17(t) in equation (6).

For simulation purposes, to compare conventional detection methods to those of the SR

nonlinear dynamical system, the pure, deterministic signal S(t) was slightly modified to be of the

form:

S(t) = gainl * [sin( 2 it (1) t) + sin ( 2 t (4) t) (8)

and the noise term is describe via

Y7(t) = gainl * gain2 * randn(.) (9)

where the function randn(.) is used in MATLABTM to call the white-Gaussian noise generator.

Noting that the constant, gain1, multiplies both S(t) and ?(t) , then the remaining variable in

equation (9) (gain2) is the only influence on the SNR with the standard deviation of the noise

source cr set = 1. The calculation of the SNR in the frequency domain is proportional to the

square of the magnitudes of the Fourier components of S(t) to the corresponding values for 77(t).

Thus, it can be shown that the relative comparison of any numerical simulation in terms of SNR

is proportional to (1/(gain2)) 2 compared to the baseline condition (gain2=1)). The gain1 term

has no effect on the SNR but sets up a baseline or standard for all relative measurements of both

the signal and the noise. A series of plots of the output variable are now displayed for:

y(t) = S(W + q(t) (10)

with their fast Fourier transform sketches provided for this method which will be termed the
"conventional method".

Conventional Method (Not Using the SR Nonlinear Dynamical Filter)

The conventional method will deal with the analysis of the signal y(t) (before the

filtering) using Fourier analysis. Figure (13) illustrates the FF1 plot of y(t) for the case of

gainl=10 and gain2=l. This corresponds to a baseline condition to study the SNR as gain2 is

manipulated. It is seen in Figures (13-15) that the power in the spectral components of the noise

(normal, Gaussian) appears at all frequencies and slowly creeps upward as gain2 increases in
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Figures (13-15) to the point that it will eventually cause confusion in the identification of the

target signals at 1 Hz and 4 Hz. Figure (15) portrays the FFT of y(t) when the variable gain2 =7.
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Figure (15) Gainl=10, Gain 2 ) 7 Traditional Detection

From Figure (15), it is obvious that it is now much more difficult to discern the peaks of the 1Hz

and 4 Hz signal because of the masking introduced by the noise. The actual SNR in Figure (15)

is proportional to 1/(7)2 compared to the baseline condition in Figure (13). From observing

Figure (15), it is obvious that if gain2 > 7, it becomes increasingly difficult to accurately detect a
target comprised of the deterministic (sine waves at 1 Hz and 4 Hz) signals contained in S(t).
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The next step is to now pass the y(t) signal through the SR filter. This method, using y-.bar(t)

rather than y(t), will be termed the "nonconventional method".

Nonconventional Methods (Using the SR Nonlinear Dynamical Filter)

The new or nonconventional method will now deal with the signal y-bar(t) after it has

been transformed by passing y(t) through the nonlinear SR filter in Figure (3). Power spectral

analysis will also be performed on the signals yjar(t) and contrasted to those similar analyzes

performed on y(t). As a comparison to the data presented in Figures (13- 15), the real time noisy

data y(t) are now transformed by the nonlinear dynamic system of Figure (3). The FFT analysis

was then conducted on the output signal ybar(t) as described in Figure (3). The gain2 variable

was adjusted upward to take on situations in which gain2 >> 7. We illustrate, for comparison,

some extreme examples. Recall from the conventional method (Figure (15)), if gain2 > 7 (with

a SNR of 1/(7)2 as compared to Figure (13)), the conventional method in distinguishing the two
input signals fails at about gain2 > 7. Figure (16) illustrates the output (y-bar(t)) of the SR

nonlinear filter-in real time when the value of gain2 = 200, gainI = 10, and h = 0.1 for the

potential barrier height of the SR filter described in the appendix.

This is a time domain plot of fc = signal + noise
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Figure (16) -Output of S R filter with h=0. 1, gainl 1 10, gain2 = 200
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A comparison should be made between Figures (16) and (11), the latter of which consists of

noise-free data (in real time). It is seen in Figure (17) (FFT of Figure (16)) that even with a

significantly reduced SNR (comparing 1/(7)2 to 1/(200)2 ) it is still possible in Figure (17) to

discern, in a spectral sense, that a significant event occurs at a 1 Hz component and at a 4 Hz

component of the input signal. This seems plausible in comparing Figure (16) to Figure (11)

where the output seems periodic and somewhat in phase with the true deterministic signal.

Plot of signal + noise in red
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Figure (17)- FFT of Figure D.7 using SR output, h = 0.1, gainl = 10 and gain2 = 200.

From Figure (17), it is clear that it is possible to discern the two frequencies in the input

signal S(t), even when the SNR has been compromised by a factor of (1/(7)2) / (1/(200))2 which

represents an amplification of the SNR (in the spirit of Figure (17) to over 800 to 1) by using the

SR filter. There are, of course, several shortcomings with this procedure, which need to be

discussed.

Shortcomings of the SR Nonlinear Dynamic Filter

There are two ways the filter thus described can have inferior performance:

(1) Computational complexity can increase in a substantial manner.

(2) Distortion of the original signal can occur.
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(1) For the computational complexity issue, runs have been conducted for values of gain2 at

levels of 900 or more. Figure (18) illustrates a plot of the number of FLOPS (Floating Point

Operations) necessary to compute the SR filter output y-bar(t).

Millions of Flops In SR Filter versus SIN Ratio of y(t)

FLOPS x 106

* FlopsxlG'6
a - Expon. (FlopsxlOW6)

-100 -80 -60 -40 -20 0 20 40 60 80

SIN ratio of y(t) Decibels

Figure (18) - Millions of FLOPS versus SNR ratio (dB) for the SR Filter

It should be noted that the significant number of FLOPS which are required at high noise levels

(negative values of SNR) is due to the nature of the integration subroutine employed in

MATLABTM. The most accurate method was engaged. It utilized fourth order Runge-Kutta

predictor corrector methods. Such methods require a significant number of iterations before

convergence. The way that Runge-Kutta works is that the integration will not be complete until

certain convergence criteria are met and the error between adjacent estimates of the derivative

terms is below a specified bound. This prolongs the time and multiplications necessary to

perform the numerical integration, since a high accuracy and numerical iterations are required

before each step is considered solved by the integration subroutine. The high noise, when added

to S(t), acts like a "stiff' differential equation (sudden change in the value of the x variable),

which takes substantial time for the integration subroutine to be satisfied that the accuracy of the

method has been achieved. This may be ameliorated if hardware could perform this task in lieu

of a software method. For example, in the case of gain2 at a level of 900 requires approximately
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2xR10 0 FLOPS or 20 Giga FLOPS which can be computationally excessive. In some
applications, however, when it is essential to detect an extremely weak signal in noise, it is still

possible to use the method as described in this appendix to glean out information if computation

time is not a critical issue.

(2) Figure (19) displays how distorted the output signal y bar(t) for the SR filter in Figure

(3) may become as gain2 approaches values of 900 or more. Superimposed on the plot

fory_bar(t) is the original signal S(t) in real time (gain I = 10). The transformed signal

y_bar(t) in Figure (19) (for gain2 = 900) does not even complete a full four cycles over

the 4 seconds of data which introduces a nonzero mean(dc) component. This distorts

y_bar(t) from the original signal S(t) both in phase and in amplitude. When the FFTs are

run, a resulting dc component (bias) is obtained which influences whether an accurate

detection may occur, especially at low frequencies.

comparison of ybar(t) versus S(t) for gain2 - 900
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Figure (19) - Overlay ofy bar(t) and S(t) for gain2=900

This is to not an unusual result to expect since a nonlinear system has transformed the

data from y(t) to y bar(t) which will normally produce distortion of this type to a sine wave
input. It is interesting to note that the FFT of Figure (19) for ybar(t) shows the peaks of S(t) as

demonstrated in Figure (20). Recall that the noise factor is now gain2 = 900, which translates
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into a SNR of approximately - 55 dB. This is an incredible result considering the intensity of the

noise relative to the power in the target signal S(t).

1500
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Figure (20) - FFT of yjbar(t) from Figure (19)

Finally we conclude with an overall signal to noise ratio comparison of the conventional methods

(using y(t) ) versus the SR filter procedure (using y-bar(t)) thus far discussed in terms of the

information quality gain of the input signal y(t) = S(t)+ )7(t).

NUMERICAL COMPARISON OF THE CONVENTIONAL METHOD TO THE

SR FILTER

Figure (21) illustrates the overall comparison of the performance of the SR filter to the

conventional methods as discussed previously. The performance of both systems in
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Figure (21l)- Comparison of Conventional Method to the SR Transformed Data

estimating a target is based on a procedure [34] to deal with detecting targets when passed

through nonlinear transformations such as portrayed in Figure (3). The definition of SNR (in

decibels or dB- a devised unit for amplification of information quality) is specified via:

SNR = 10 logL S(CO) (1
N(w 0 )

Where, at the frequency Qoo, the power in the target signal 8(0)0) is determined as well as the

noise power N(ioo). Since it is desired to have a power measure, to determine 8(0)0), it can be

further defined via the spectral power estimate at the frequency (Oo of interest, where:

S(00) = ly(0)o)1 2  (12)
is the square of the magnitude (volts 2) of the output spectral signal. Thus the SNR given in

equation (12) is a true power measure and 10 logio is the appropriate conversion to obtain the

terms in units of decibels. For the noise term, the noise power was estimated at adjacent

frequencies to the frequency of interest (1 Hz or 4 Hz) and then averaged over adjacent

frequencies. For Figure (20), the SNR of the output y(t) or y bar(t) was computed for both the I

Hz signal and the 4 Hz signal and then averaged.
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Results of the Comparison of the Conventional to the SR Method

In studying Figures (18,2 1) some interesting results appear:

(1) For low values of noise (high levels of SNR, e.g. SNR = 1 on the left side of Figure (21))

the conventional methods perform better than the SR filter. This is because the distortion

introduced by the filter provides a disadvantage on the ability of the system to identify a

target. Thus the SR methods provide advantages only for cases in which the targets have

to be detected in environments with high uncertainty.

(2) For increased levels of noise power (much lower levels of SNR on the right side of

Figure (21)), however, which corresponds to high levels of gain2, the nonconventional

method introduced in this report yields a gain in the SNR of over 40 dB (approaching 60

dB) as compared to standard procedures. Since this is a power gain, the 60 dB SNR

amplification gain translates into the ability to significantly detect a target better using

this new system, which is proportional to 106 or provides a 1,000,000 amplification of the

SNR ratio. This can only dramatically improve the ability to detect certain targets,

especially when they are buried in extremely high levels of noise.

The No Free Lunch Theorem for Image Enhancement

With reference to the prior discussion it is seen that a trade off exists between the SNR gain

and the number of FLOPS necessary to perform the numerical integration in an accurate manner.

Table 1 shows some of these values with the appropriate conversions:

Table 1 - SNR Ratio versus FLOPS

SNR defined by equation (11) FLOPS for convergence

-80 dB 2x 10'0 FLOPS

-50 dB 1 x 1010 FLOPS

-30 dB 5 x 109 FLOPS

-20 dB 1 x 10' FLOPS

Comparing the first two rows of Table 1, it is seen that approximately 4-5 db gain in SNR

corresponds to 1 G FLOP of computation. Since a 3 dB power gain corresponding to a doubling

of a variable, a crude rule of thumb can be stated as:
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Rule of Thumb: 1 G FLOP of computation = a doubling in SNR (13)

This is an example of the "No Free Lunch" theorem. In order to gain signal to noise

information quality gain (via performing integration on signals with large negative SNR values),

it is necessary to perform a great deal of computations (perform many G FLOPS to achieve

accuracy of the integration of the resulting stiff differential equations.)

In the next section, a more thorough description of how the method synthesized to this

point will assist in decision making is presented. The goal will be to minimize both Type 1 and

Type 2 error discussed previously.

AN EXPLANATION WHY THE SR APPROACH HELPS IN THE DECISION-

MAKING PROCESS

Returning to the basics of decision making from the earlier Figures 5a-b, Figures 22a-b

represents an interesting means of describing why the true decision making can be enhanced for

a binary process.
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Figure 22a- Traditional Decision Making Process
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2 Figure 22b- Revised Decision Making Process dl

To describe what is occurring in Figures 22a-b with respect to the SR method to improve

decision making it is necessary to compare Figure 22a to Figure 22b. Referring back to the

example of the identification of the man in the tree, the true situation H0 is that the man in the

tree is friendly; the true situation H1 is that the man in the tree is hostile. The Type 1 error

(friendly fire) in Figure 22a is denoted as A, and the same Type 1 error in Figure 22b is denoted

as A3, Note that A 3 < AI. A similar argument holds for the Type 2 error. In Figure 22a, the area

A 2 (Type 2 error) is that the man in the tree is hostile, but we erroneously select Hl. In Figure

22b A4 the area has the same interpretation but the area A4 < A2. Hence the revised decision

making process in Figure 22b is better than the traditional method in Figure 22a.

To explain how the decision-making process is enhanced, in the overlap area of Figure

22a (in the areas AI and A2), a random selection of points is made. For example, suppose, for a

fixed value of the x axis (in the area A1), the value of the H0 function was 0.4 and the value of

the H 1 function was 0.1. We then select 5 points in the area A2. Using the SR method, four of
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the points are then assigned to the H0 and one point is assigned to the H1 distribution. The area

A2 now drops. Relating this method to the identification of the subliminal signal S(t) under a

threshold in Figure 8, this would translate into whenever the subliminal signal pierced through

the threshold, the assignment would be made that S(t) was in the high state. There are two

interesting analogies to this process which add further credence.

(1) The flu shot analogy explains this abstract concept within a medical context. If 100,000

people take a flu shot, it is known that not taking the flu shot will result in 20 deaths due

to flu. However, after taking the flu shot, only 8 deaths now occur. Some of these deaths

are due to the adverse interaction of the shot and not the flu. However, the overall risk is

reduced from 20/100,000 to 8/100,000 which benefits the general population. This type

of risk reduction is well understood in making intelligent decisions in the medical

community. The SR method makes decisions (assigns random pixels to either Ho or H1

based on the most likely probability). Obviously the SR method makes errors, similar to

the flu shot analogy, however what is similar is that the overall risk is reduced (both Type

1 and Type 2 error are mitigated, accordingly).

(2) The second analogy involves the gaming industry. Players who attempt to bet against the

house (the casino) may experience good luck streaks for short periods of time. However, the

house eventually wins because in the long run, the odds are against the player. In this SR

process described here, the odds are being improved by the reassignment of the pixels to

either Ho or the H1 population. It is still possible to make an error, but on the average, over a

long period of time, this procedure will prevail, much like the success of the gambling house

over the player.

To now go into much more detail on the process, the SR method will be examined for the

case of a visual image that has been compromised. First the technique is verbally described and

then applied to example 1.
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EMPIRICAL DEMONSTRATIONS THAT AN IMPROVED SIGNAL TO

NOISE RATIO WILL ENHANCE TARGET DETECTION AND DECISION-

MAKING

About 10 year ago, it was first noticed that certain visual images could be enhanced

(objects could be identified more clearly) if noise were added. Figure 23 showed this effect quite

vividly. In Figure 23 (earlier discussed as Figure 4), random white Gaussian noise is added of

increasing intensity in going to the right. For the middle picture, the object is most easily

Too little noise Optimum noise level Too much noise

Direction of increasing noise intensity

Figure 23 from [28] illustrating how SR can enhance a visual image.

identified. Too little or too much noise works against the process of accurately identifying the

object in the picture. This effect should be compared to the SR curve in Figure 9 which shows

a resonance at an optimum amount of noise to enhance the image. Here the goal is the

identification of a key object. In Figure 23, the only way the image was manipulated was

through the addition of the noise. In the next section we discuss all the details requisite to the

enhancement of the image using the analogy in Figures 22a-b. First the procedure is outlined

for jpeg images.

33



PROCEDURE FOR SR ENHANCEMENT (FOR JPEG IMAGES)

(1) Divide the image up into the three primary colors (Red, Green, and Blue).

(2) Within a color, plot a histogram of frequency versus gray scale index. Since the jpeg

images considered are 8 bit, the gray level may go from 0 (black) to 255 (white). On other

graphs the gray level may go from 0 (black) to 1.0 (white).

(3) Perform a black and white rendering of the within color image. Take the ratio of number

of black pixels versus the total number of pixels from this rendering. This ratio represents a

centroid of area of the histogram distribution.

(4) Fit a parabola with the vertex of the parabola at the centroid point, the area under the

parabola exactly matches or is slightly larger than the area under the histogram plot in step 2.

(5) Now plot the true histogram plot from step 2 over the template of the parabola from step

4. The excess pixels are defined as those above the template.

(6) It is now required to adjust the number of gray levels of the image. Choose N pixels to

be adjusted (N to the left and N to the right). For a given gray level ( x axis), we move the

excess pixels either left (to zero or black) or right (to the white).

Only N pixels are affected.

(7) The resulting image is the enhanced image. The level of enhancement is a function of N,

the number of pixels that are affected.

(8) Repeat steps 2-7 for each color and now fuse all three enhanced images.

Figure 24 portrays how the pictures are originally decomposed. Figure 25 shows the overlap of

the parabolic template and the actual histogram distribution.

In Figure 24, the three primary colors (red, green, and blue) are individually sliced from the

original image. A plot of the histograms (frequency of occurrence) versus gray level is given

within each color. A parabola is fit for each color with the vertex at the appropriate centroid.
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Real Data- .jpg File
Figure 24 -

Breaking the Original Image up into the constituent colors.

338 x 415

338 x 415

338 x 415

This parabola represents a template in which the pixels should appear if normally viewed. The

next step will be to plot the actual histogram diagram on top of this template. Those excess gray

levels will then be moved left (left is darker for this color or set to 0) or right (right (set = 1) or
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white for this color). Thus the SR method is making a decision on the confused pixels via this

assignment, much like occurs in Figures 22a-b where the distinction is between two distributions

(binary decision).

The next step is to move those pixels above the template. This will reduce the Type 1 and Type

2 error. Figure 25 displays this action for an example of the man in the tree. Here the pixels are

either moved directly left or directly right.

Our Approach - Use Stochastic Resonance

Frequency
Real World

• TreeMan *__

0.0 1.0
1 Gray Level25

Black White

Figure 25 - Overlaying the parabola and the histogram distribution.

Recall that only N points will be moved. Much like the SR curve in Figure 9, it is presumed that

moving too many points (or too few points) will not enhance the image. Finally after this
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process is conducted for each of the three colors, the three enhanced color images are then

recombined together to realize the overall enhanced image.

To better illustrate the seven step procedure with a real world example, Figure 26 will be the first

example we will consider. The picture was taken from a TV or other source and the goal is to

find out if additional information or objects could be identified from the image.

Image Processing Example 1 with A SR Approach

Figure 26 shows the original image we wish to enhance using the SR method. Such an image

was taken from a TV camera. We wish to learn or discover details in the image using the

principal of SR. It is obvious this is a poor image and the recognition of objects is difficult.

Note that all 3 of the primary colors appear in this original image.

Figure 26 - Original Image to be Enhanced by the SR Process

The next portrayal of Figure 26 will be the green layer, only, that can be gleaned from this

diagram. Since the original image has a high green content, the green slice represents a

substantial representation of the visual energy in the original image in Figure 26.
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Second column non zero - Pure green slice of the data rendering

Figure 27 - The Green Slice from the Original Image
This is the first of the three slices involving the primary colors.
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The next slice from the original image is derived from only the red slice which is portrayed next.

Second column non zero - Pure red slice of the data rendering

Figure 28 - The Red Slice from the Original Image
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The remaining slice is the blue portion of the original Figure 6 which is now displayed:

Second column non zero - Pure blue slice of the data rendering

Figure 29 - The Blue Slice from the Original Image

Since the blue image is the most confused (contains the least information), the next effort will

focus on Figure 29 and how we can best enhance the visual information it contains. The next

rendering is a black and white representation of Figure 29.
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In Figure 30, the black portions correspond to zero blue (black) or 100% blue (white). The gray

versions of the next picture are various levels of blue that appear in the blue slice in Figure 29.

Figure 30 - A Black and White Rendering of the Blue Slice

The goal of the next few steps will be to demonstrate that Figure 30 can be enhanced significantly by the

SR method and aid in the detection of objects appearing in the original image.

41



A histogram of the Figure 30 image will now be displayed.

Pure blue plot (darkness distribution) only - 2-D plot
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Figure 31 - The Histograms of the Blue Slice from Figure 30

To overlay this diagram with a parabola template, Figure 31 will be redrawn in MATLABTM to

better represent the histogram distribution of this blue layer.
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Plot of the actual histograms for the original picture
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Figure 32 - A MATLAB Histogram Rendering of the Blue Slice

The template consisting of the parabola needs to be constructed next. From the black and white

rendering of Figure 30, the parabola is constructed such that the area under the parabola is equal

to (or slightly greater than) the area under the histogram illustrated in Figure 32 and with its

vertex located at the centroid of areas in Figure 32. Figure 33 shows this parabola constructed

via MATLABTM.
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Distribution of n-max(i) = Desired blue Bin Sizes
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Figure 33 - The Parabola Template for the Blue Slice

Next, Figures 32 and 33 will simultaneously be plotted to show how the original histogram

distribution is at variance with the template in Figure 33.
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Figure 34 - The Overlap of Histograms and Template - Blue Slice

In Figure 34 it is seen where the histograms are above the template. These are the candidate

pixels to be adjusted to the left or the right. These are the "confused pixels" and are analogous to

the areas A, and A2 in Figure 22a. To the left of the vertex of the parabola, the excess pixels are

sent directly left (made black or no blue color). To the right of the vertex of the parabola, the

excess pixels are sent directly right (made white or full blue color). In this case the black means
"no blue color" and white means "full blue color". It is more convenient to develop a function of

the excess pixels. This is a distribution of the difference between the actual histograms and the

template. Figure 35 shows this difference function which is a plot of the difference between the

two curves in Figure 34.
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Whenever this difference function in Figure 35 is positive, pixels should be moved either left or

right according to the location of the vertex of the parabola in Figures 33, 34.

Plot of excess pixels that have to be moved versus gray level1500 -- - - -
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-21000
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Figure 35 - A Plot of the Excess Pixels to be Moved

To now see the full effect of the image processing algorithm, let us review its effect on the blue

image. Figure 36 will portray the evolution of the blue slice as this technique is applied to this

picture.
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Second column non zero - Pure blue slice of the data rendering

Figure 36 - The Original Blue Slice with no Enhancement
The next image is Figure 37, which is a black and white rendering of this diagram.
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This is the fundamental image we wish to manipulate. Note how murky the objects appear in

Figure 37. Our goal in this exercise is to improve upon this image in the ability to discern

objects in the image.

Figure 37 - The Blue Slice as a Black and White Image - N = 0

Figure 38 will be the first SR enhancement of Figure 37. Here we have enhanced N= 500 pixels

to the right and N = 500 pixels to the left for this blue slice.
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Here is the blue picture

Figure 38 - The Blue Slice as a Black and White Image - N=500

Note the white dots appearing around the key objects- the soldier, the gun, and various other

objects adjacent to the soldier. Figure 39 will be the next SR enhancement of Figure 38 by

increasing N to 1,000.
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In Figure 39 we have enhanced N = 1000 pixels to the right and N = 1000 pixels to the left for

this blue slice.

Here is the blue picture

Figure 39 - The Blue Slice as a Black and White Image - N=1000

Figure 40 will be the next SR enhancement of Figure 39.
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In Figure 40 we have enhanced N = 2000 pixels to the right and N = 2000 pixels to the left for

this blue slice.

Here is the blue picture

Figure 40 - The Blue Slice as a Black and White Image - N=2000

Figure 41 will be the next SR enhancement of Figure 40.
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In Figure 41 we have enhanced N = 3000 pixels to the right and N= 3000 pixels to the left for

this blue slice.

Here is the blue picture

Figure 41 - The Blue Slice as a Black and White Image - N=3000

Figure 42 will be the next SR enhancement of Figure 40.
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In Figure 42 we have enhanced N = 5000 pixels to the right and N= 5000 pixels to the left for

this blue slice.

Here is the blue picture

Figure 42 - The Blue Slice as a Black and White Image - N=5000

Figure 43 will be the next SR enhancement of Figure 40.
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In Figure 43 we have enhanced N = 10,000 pixels to the right and N= 10,000 pixels to the left for

this blue slice.

Here is the blue picture

Figure 43 - The Blue Slice as a Black and White Image - N=10,000

In Figure 43, note the large amount of white (presence of the full blue color) now appears around

the key objects (the soldier's head, the gun base and differently in the upper part of the gun).

Now to continue on to the next color slice, Figure 44 represents this green slice of the original

picture.
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Second column non zero - Pure green slice of the data rendering

Figure 44 - The Green Slice of the Original Image

Figure 45 is the black and white rendering of Figure 44, which will now be manipulated.
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It is noted in Figure 45 that the presence of the plentiful white color means that high levels of the

green color appear throughout the picture.

Figure 45- The Green Slice as a Black and White Image

Figure 46 will be the first SR enhancement of Figure 45.
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In Figure 46 we have enhanced N = 500 pixels to the right and N= 500 pixels to the left for this

green slice.

Here is the green picture

Figure 46- The Green Slice as a Black and White Image - N = 500

Figure 47 will be the next SR enhancement of Figure 45.
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In Figure 47 we have enhanced N = 1000 pixels to the right and N= 1000 pixels to the left for

this green slice.

Here is the green picture

Figure 47- The Green Slice as a Black and White Image - N = 1000

Figure 48 will be the next SR enhancement of Figure 45.
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In Figure 48 we have enhanced N = 2000 pixels to the right and N= 2000 pixels to the left for

this green slice.

Here is the green picture

Figure 48- The Green Slice as a Black and White Image - N = 2000

Figure 49 will be the next SR enhancement of Figure 45.
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In Figure 49 we have enhanced N = 3000 pixels to the right and N= 3000 pixels to the left for

this green slice.

Here is the green picture

Figure 49- The Green Slice as a Black and White Image - N 3000

Figure 50 will be the next SR enhancement of Figure 45.

60



In Figure 50 we have enhanced N = 5000 pixels to the right and N= 5000 pixels to the left for

this green slice.

Here is the green picture

Figure 50- The Green Slice as a Black and White Image - N = 5000

It is mentioned that for this green color, there was not a lot of change from the original picture as

a result of this SR result.
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Figure 51 is the red slice of the original picture.

Second column non zero - Pure red slice of the data rendering

Figure 51- The Red Slice of the Original Image
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Figure 52 is a black and white rendering of Figure 51, which will be manipulated.

Figure 52- The Red Slice as a Black and White Image
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Figure 53 will be the first SR enhancement of Figure 51. Here we have enhanced N = 500 pixels

to the right and N= 500 pixels to the left for this red slice.

Here is the red picture

Figure 53- The Red Slice as a Black and White Image - N = 500
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Figure 54 will be the next SR enhancement of Figure 51. Here we have enhanced N = 1000

pixels to the right and N= 1000 pixels to the left for this red slice.

Here is the red picture

Figure 54- The Red Slice as a Black and White Image - N = 1000
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Figure 55 will be the next SR enhancement of Figure 51. Here we have enhanced N = 2000

pixels to the right and N= 2000 pixels to the left for this red slice.

Here is the red picture

Figure 55- The Red Slice as a Black and White Image - N = 2000
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Figure 56 will be the next SR enhancement of Figure 51. Here we have enhanced N = 3000

pixels to the right and N= 3000 pixels to the left for this red slice.

Here is the red picture

Figure 56- The Red Slice as a Black and White Image - N = 3000
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Figure 57 will be the next SR enhancement of Figure 51. Here we have enhanced N = 5000

pixels to the right and N= 5000 pixels to the left for this red slice.

Here is the red picture

Figure 57- The Red Slice as a Black and White Image - N = 5000
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Figure 58 will be the next SR enhancement of Figure 51. Here we have enhanced N = 10,000

pixels to the right and N= 10,000 pixels to the left for this red slice.

Here is the red picture

Figure 58- The Red Slice as a Black and White Image - N = 10,000
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Figure 59 will be the basis for the overall fusion of the three color enhancement. This is the

original image repeated for comparison purposes.

Figure 59- The Original Image - No Enhancement
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Figure 60 will be the first SR enhancement of Figure 59. Here we have enhanced N = 500 pixels

to the right and N= 500 pixels to the left for this fused image consisting of all three enhanced

colors.

Figure 60- The Original Fused Image - N = 500
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Figure 61 will be the next SR enhancement of Figure 59. Here we have enhanced N = 1000

pixels to the right and N= 1000 pixels to the left for this fused image consisting of all three

enhanced colors.

Figure 61- The Original Fused Image - N = 1000
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Figure 62 will be the next SR enhancement of Figure 59. Here we have enhanced N = 2000

pixels to the right and N= 2000 pixels to the left for this fused image consisting of all three

enhanced colors.

Figure 62- The Original Fused Image - N = 2000
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Figure 63 will be the next SR enhancement of Figure 59. Here we have enhanced N = 3000

pixels to the right and N= 3000 pixels to the left for this fused image consisting of all three

enhanced colors.

Figure 63- The Original Fused Image - N = 3000
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Figure 64 will be the next SR enhancement of Figure 59. Here we have enhanced N = 5000

pixels to the right and N- 5000 pixels to the left for this fused image consisting of all three

enhanced colors.

Figure 64- The Original Fused Image - N = 5000

Since the technique for manipulation of images seems to depend on how the histograms of the

pixels are manipulated, the next step will be to consider the SR method developed so far with

standards in the image processing industry.

Image Processing Example 2 with A RetineX Approach

In the early 1960's, Edwin Land [35-37] discovered an algorithm to enhance images

called the RetineX method. A RetineX contains all mechanisms from retina to cortex necessary

to form images in terms of lightness. In short, it brought out the idea that vision is the result of

image processing of spatial information found in the image. This method is widely accepted [38]

as a baseline standard to compare alternative algorithms. A study was conducted to better

understand how this baseline algorithm excels in its ability to improve image quality by
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lightening images, yet preserving their original integrity. Figure 65 shows a picture taken with a

camera in which the light from the window makes the rendering of the remainder of the picture

to be difficult. This is a common problem in which large amounts of light (from the window)

saturate the camera, thus producing dark images on the right hand side of the picture. The goal

will be to improve the rendering of this picture by lighting the image to enable better

identification of the objects in the picture.

Dad - Girl - Original Image

Figure 65 - Original Image

The RetineX algorithm was applied to the image in Figure 65. The resulting image is shown in

Figure 66.
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DadgirlRetinaX image

Figure 66 - The Image Processed by the RetinaX Algorithm

It is clear that the right hand side of the picture has been significantly clarified. To understand

the reason why the image can be enhanced, we next examine the distributions of the histograms

of the two pictures, Figures 65 and 66. Both histograms are plotted in Figure 67.
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Figure 67 - Histogram Plot of the Original and RetineX Image

In Figure 67, it is noted that the original histogram distribution (called f1(x)) where the x axis is

the darkness level running from 0 (black) to 256 (white) for this 8 bit word representation of the

darkness level of the picture. For the original image fi(x), the darkness level is too highly

concentrated between the range of 10-80 gray levels. Since 0 is black, this means the original

image is too dark. The image, after being processed by RetineX, however, is denoted as f2(x)

and shows some similarities to the shape of fi(x), however, it is more spread out to keep the

visual energy in the mid band of sensitivity (gray level - 100 or larger). One can view the

RetineX algorithm as an operation on the function fQ(x) such that:

f2(x) = T [ f(x) ] (14)

Where T [ ] is a transformation of coordinates and fQ(x) is the input function (original image)

and f2(x) is the output (transformed image).

To further understand the difference induced by the RetineX transformation we now plot

the difference function which is a portrayal of the difference between the two histogram

functions in Figure 67.
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Figure 68 - Difference Function between the original and RetinaX Histograms

We now attempt to emulate the RetineX approach using a linear systems approach. In Figure 67,

the input to the linear system will be fl(x) and the desired output would be f2(x). That is, we

wish to emulate what is accomplished by a simple linear transfer function and we choose the

form:

Y(s) / F1(s) = Output / Input = k, (1 + s/alpha) (15)

Where s is the Laplace transform variable and the two series fi(x), f2(x) or fl(t) or f2(t) can be

considered analogous. Equation (15) is a simple low pass filter of bandwidth alpha radians per

second and forward gain of kl. Really what is desired is to generate a template that the

histograms of the revised image will follow that will emulate the algorithm developed by

RetineX. We show a number of interesting plots. First a plot of the fi(x) variable (input) and

y(x) for the case k, = 3.1 and alpha = 2 is displayed next.
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Figure 69- f,(x) versus the output of the linear filter

Next we show the difference function that results between fi(x) and y(x). The goal is to emulate

the true difference function between fi(x) and the RetineX algorithm.
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Figure 70 - Difference between fl(x) and y(x).

A comparison of the two difference functions is now portrayed in Figure 71. The goal is to have

similarity or overlap of the two difference functions, indicating that the choice of y(x) was an

appropriate linear template.
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We now show two renderings using this linear framework. Two other variables will beintroduced using a simple rule based algorithm based on the following constructs:Rule 1: If the difference function is positive, lighten all pixels that fall in this category a, gray
levels.
R~ule 2 Stretch the histogram distribution by translating it to the right "stretch" units.
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Figure 72

Figure 72 portrays the first rendering with al 90 and stretch 2.
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Figure 73 - Al=60,
Stre.tch .= I

Figure 73 illustrates the second rendering with al =60 and stretch = 1.

In comparing Figures 72 and 73 to the true RetineX image in Figure 66, it is obvious that the

solution of the problem will not be accomplished by just using a linear transformation, such as

occurs in equation (15).

THE RATIONALE FOR THE SR APPROACH TO BE CONSIDERED

"BIOINSPIRED"

There are three reasons why the technique considered so far may be considered to be based on

biological principles or is "bioinspired." They are listed as follows with more details given

below;

(1) Sufficient evidence exists that subliminal signals also exist in other biological systems

and SR provides an enabling paradigm to detect signals under threshold.

(2) The nonlinear dynamics of the bipotential well (example 2 of SR previously discussed)

also can represent a common illusion of visual perception termed the "Decker Cube".
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(3) The RetineX theory has analogies to the parabolic templates considered in the SR

procedure previously described.

We elaborate on each reason, first for the prior biological evidence:

(1) Prior biological evidence:

As studies in stochastic resonance were discussed by physicists and others, similar dynamic

effects were observed in a vast number of biological systems. This theory enabled the

description of how creatures could increase their sensitivity and detect subthreshold signals.

This was shown for neuronal computing [39], in crayfish [40], insects [41], paddle fish [42], for

improving visual acuity [43], and in a variety of other biological systems [44].

A second biological justification for the SR effect is derived as a consequence of the

similarity of certain visual illusions to the dynamics of the bipotential well discussed as example

2, previously:

(2) The Similarity of the Decker Cube to the Bipotential Well Problem.

Figure 74 is an illustration of the well-known visual illusion, termed the "Decker Cube".

In Figure 74, the dot can be perceived as being either in the front or on the rear of the cube. The

human visual perception system will oscillate between the two states of the perception of the dot

being either in the front or the back of the cube. This is very similar to the bipotential well in

which the ball oscillates between two states. This hints that the nonlinear dynamics of the

human visual perception system must have some similarity to the nonlinear dynamics of the

bipotential well. Since the bipotential well has nonlinear dynamics that benefit from the SR

effect, the generalization is that inherent in the human visual perception system, it must also have

such nonlinear dynamics embedded. Thus the SR effect may benefit how humans perceive

images.
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Analogy to Image Processing
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Figure 74 - Relationship between the Decker Cube and The
Bipotential Well Problem in Physics
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(3)The RetineX Theory of Visual Perception:

As discussed earlier, the RetineX theory was introduced by E. Land as an explanation of how

humans process color in a visual image. Its success is without question. It has also been

discussed that the RetineX method represents a maximization of the information via the

constancy of the color context in the image [38]. As noted earlier [37], in the development of

the RetineX theory, the presumption was that the logarithm of the histograms of the picture

pixels versus darkness density would be proportional to the form e-X2 where x is the darkness

level (normalized to some bit length). Taking the logarithm of the histograms would yield a

parabolic relationship between histograms and gray level. This was the procedure used in the

SR method in this report. Another interpretation of why a parabolic template was used was

because it is also known from optical physics that the light gathering power of the eye is

inversely proportional to the square of the distance from the source. This was the original

reason why the parabolic rule was employed in this study.

DISCUSSION

Future work can be accomplished in the processing of visual images using computational

means. The SR method appears to reduce both Type 1 and the Type 2 error described. A more

sophisticated technique must be applied to manipulation of the template for the emulation of the

RetineX method.

CONCLUSIONS

Two studies were conducted with computational means to process a visual image. The

first method, stochastic resonance, showed the discovery of hidden objects inside the original,

compromised image. The second study attempted to emulate the well known image processing

software, RetineX. Although the theoretical concept seemed tenable, the results from the second

method did not seem outstanding.
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APPENDIX: - TECHNICAL ISSUES REGARDING THE NONLINEAR

TARGET DETECTION ALGORITHM

With reference to the physics example (example 2) of SR, the potential energy function V(x) can

be expressed as:

V(x) =1/2a x2 +1/4b x 4  (A.1)

Where a>0 and b >0.

This satisfies the boundary conditions: V(0) = 0, V(+ 0) = + 0 (A.2)

From Newtonian dynamics, force is the negative spatial gradient of potential energy, i.e.

Force = - d/dx V(x) (A.3)

This yields: Force = a x - b x3  (A.4)

If the state vector x(t) were velocity and a unit mass M was assumed, it then follows from

Newton's second law that in the time domain:

d/dt x(t) = Force (A.5)
or

d/dt x(t) = a x - b x3  (A.6)

This is the homogenous version of the SR equation. For the forced form of equation (A.6) we

have:

d/dt x(t) = a x - b x3 + S(t) + 10(t) (A.7)

where S(t) is the subliminal signal to be identified and 17(t) is a white Gaussian noise source.

The equilibrium points of the homogenous equation (A.6) are of interest.

Equilibrium Points of Equation (A.6):

Please note that the term "equilibrium point" will be considered akin with the terms "fixed

point", "singular point", or "steady state point".

For the homogeneous equation (A.6), in steady state, this results in:
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0 =a x (1- b/a x2) (A.8)

which has roots at x = 0, and x = + 1b" Since both a and b are positive, we next demonstrate

that the equilibrium point near x = 0 is unstable. Let F > 0 be small.

To show that x = 0 is an unstable equilibrium point:

For x = e > 0, equation (A.6) becomes d/dt x(t) = a (x) (1) > 0. Hence the trajectory diverges to

the right away from the equilibrium point x = 0.

For x = - e < 0, equation (A.6) becomes d/dt x(t) = a (x) (1) < 0. Hence the trajectory diverges

to the left away from the equilibrium point x = 0. Thus x = 0 is an unstable equilibrium point.

To show that x = + a is an stable equilibrium point:

For x = a + E > 0, equation (A.6) becomes d/dt x(t) = a (x) ( 1 - [(b/a) (a+E)] 2 ) < 0. Hence the

trajectory converges to the left towards the equilibrium point x = a.

For x = a - e > 0, equation (A.6) becomes d/dt x(t) = a (x) ( 1 - [(b/a) (a-E)] 2) > 0. Hence the

trajectory converges to the right towards the equilibrium point x = a. Thus x = a is an stable

equilibrium point.

The same arguments apply for x = -a which is also a stable equilibrium point.

We next discuss Lyapunov exponents, which helps clarify the relationship between the SR filter

and possible chaotic behavior.

Relationship to Lvapunov Exponents:

Given a nonlinear system with an equilibrium point at xo where:

x(t) = f(x(t)) (A.9)

Near an equilibrium point (xo), for y values in the neighborhood of xo, a Taylor series expansion

of f(y) is made:

f~y=fXo+(y fo_ 1~ Xo 2 df 1 _ 3 d 3f
+ - 6 d (y-XO) d-•-+ (A.10)

dx 2 x0) -+-(y X 3

where all derivatives are evaluated at x = xo. For the equilibrium point the termf(xo)=O.
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Define a new variable z = y - xo, which measures the distance of the trajectory away from the

equilibrium point. If we neglect all derivatives of order higher than the first, then z satisfies the

following equation:

(t) = df x z(t) (A.11)

which has a solution of the form:

z(t) = z(O) e X1 (A. 12)

where 2 df(x)1 x=x (A.13)dx

is the Lyapunov exponent. Thus near the equilibrium point, the trajectories either grow away

from (diverge) or converge toward the equilibrium point, depending on the sign of X. If X > 0,

then we have divergence of nearby trajectories. If X < 0 we have convergence of nearby

trajectories. Thus the sign of X determines this behavior. The magnitude of the value of X

may be a factor on the rate of convergence and divergence of adjacent trajectories. In short, the

Lyapunov exponent is the eigenvalue of the Jacobian evaluated at the equilibrium point. This

can be viewed as a nonlinear construct borrowing heavily from concepts embedded in linear

system theory.

Relationship of the SR Method to Chaos Theory:

It should be made clear that the results presented so far for this SR filter do not put it into the

realm of chaotic systems. In short, chaotic systems are globally stable but have local instability

near equilibrium points. Without proof we list the following key facts about chaotic systems

[45] which clearly show that the SR filter does not fit into this category:

(1) The minimum order of a chaotic system is third order. The SR filter is only a first order

nonlinear dynamical system.

(2) For a third order system, a necessary condition for chaotic behavior is that at least one

Lyapunov exponent is positive. The sum of the Lyapunov exponents must be negative.

(3) For a fourth or higher order system, the existence of one positive Lyapunov exponent is a

sufficient condition for the existence of chaotic behavior.
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The Lyapunov Exponents for the SR Filter:

From equation (A.6), the following Lyapunov exponents are easily derived.

At x = 0 X1 = a (A. 14)

Atx =±+ a X2 , X3  -2a<0 (A.15)

Thus one positive Lyapunov exponent exists, but since the SR filter is only of first order, then it

cannot exhibit chaotic behavior. Note also that the sum the three Lyapunov exponents is

negative ( - a), which ensures a stable system.

Unsolved Technical Problems to be Addressed:

From the prior discussion, a number of interesting problems need to be examined to observe how

the performance of the SR filter can be manipulated.

Problem 1:

For the bipotential well problem, the value of threshold h can be stated in terms of the V

function, i.e. h = V(O) - V(a) if x has an equilibrium point at x = a. There must be a strong

relationship between the value of h, the maximum value of IS(t)I and the variance of the noise

process q(t). Understanding the relationship between these three key variables will enable the

user to better understand how to operate at the optimum point in the SR curve of Figure 9. There

must be an important dependence between these three variables.

Problem 2:

In the discussion on the RetineX study, it was demonstrated that this algorithm stretched out the

pixel distribution from a narrow distribution to more of a full distribution across a wider range of

the gray levels. An attempt was made to treat fi(x) analogous to a time series and f2(x) as an

output time series using linear transfer function analysis. To formulate this as a mathematical

problem, let f1 (x) be the original distribution of gray levels, which needs to be stretched, yet

maintain the same area. Perform some operation of fi(x), e.g. a transformation of coordinates or

differential equation operation so that:

F2(x) = T [fi(x)] (A.16)

Where the transformed variable F2(x) will have approximately the same area as fl, but have its

energy stretched out over the midpoint of the gray level distribution. This maximizes the ability
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of humans to perceive images that are too dark and cannot be understood. If the transformation

operator T[.l could be a differential equation, then it could be implemented in hardware, thus

reducing the computational burden now seen in applying the SR method to image enhancement.

Problem 3:

In chaotic systems, the Lyapunov exponent determines the degree of chaotic behavior. Even

though the SR system does not exhibit chaotic behavior, it still has a positive Lyapunov

exponent. How does the performance of the system vary as a function of the Lyapunov exponent

of the SR system?

Problem 4:

The RetineX method is well known and respected as a standard to enhance image processing.

The difference function shown in Figure 68 shows what must be accomplished to realize the

same effect as the RetineX method. In an approach similar to problem 2, the goal would be to

produce a difference template similar to Figure 68 using linear, or any nonlinear type of

transformation on the original distribution of gray levels.

One may pick a particular nonlinear model and find choices of parameters to generate a

difference template similar to Figure 68 for a given fl(x) input function (treating it as a time

series or in the spatial domain).

Problem 5:

The questions of what particular SR transformations yield the best SNR is not understood. Using

the procedure as described in this report to measure SNR gain as a function of the number of G

FLOPS, the Lyapunov exponent X or any other parameters is an open question. In short, use the

SNR as the metric of quality improvement.

Problem 6:

In Figure 9, it is desired to operate at the top of the resonance curve. There must be some way to

design system parameters to find the optimal amount of noise power or the optimum number (N)

of pixels to be moved for a given image problem. Again, this may depend, specifically, on each

image considered.
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