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ABSTRACT 
 

A new family of quinary, hafnium-based, bulk-
metallic-glass-forming alloys has been developed for use 
in composite kinetic-energy penetrators.  The alloys are 
based on an invariant point identified in the hafnium-
copper-nickel ternary system.  They are denser than 
zirconium-based glass-forming compositions, and exhibit 
a higher reduced glass-transition temperature than alloys 
prepared by 1:1 hafnium substitution into the zirconium-
based alloys.  The combination of density and glass-
forming ability exhibited by this alloy moves the 
composite technology closer to being a viable substitute 
for depleted-uranium penetrators. 

 
1.  INTRODUCTION 

 
1.1  Criterion for Effective Kinetic Energy Penetrator 
Performance 
 

The lethality of depleted uranium-based (DU) and 
tungsten-nickel-iron (W-Ni-Fe) composite kinetic energy 
(KE) munitions is primarily ascribed to their high 
densities (U:   ρ = 18.95 g/cm3, and W:   ρ = 19.3 g/cm3, 
respectively).  Additionally, DU’s material characteristics 
give it greater penetration ability than W-Ni-Fe.  The 
increased performance is attributed to a localized flow-
softening behavior, more commonly referred to as 
adiabatic shear (AS) (Magness and Farrand, 1990).  
Localization occurs when the rate of thermal softening 
exceeds that of the rate of strain and strain-rate hardening.  
In ballistic tests with semi-infinite targets, the transformed 
zones tend to occur at oblique planes with respect to the 
penetrator-target interface that renders the DU alloy 
penetrator, unlike W-Ni-Fe, able to maintain a 
"chiseled-nose" shape favorable for enhanced penetration.  
However, environmental hazards and the cleanup of spent 
munitions impose additional costs on the use of DU. 

 
A long-standing goal of current research is to achieve 

localized flow softening in non-DU materials.  
Conventional W-Ni-Fe composites are two-phase 
composites of nearly unalloyed W particles embedded in 
a Ni-alloy matrix.  Because the W phase itself is very 
resistant to AS localization, efforts over the past decade 
have primarily focused on replacing the Ni-alloy matrix 

with one having a greater susceptibility to AS failure. 
 
As conceived, this W-based composite would 

combine the desirable properties of DU (i.e., increased 
penetration and AS) and W (i.e., density and non-toxicity) 
as a new class of high density, high strength, and high 
hardness KE penetrator.  It is hoped that, by emulating the 
preferred erosion behavior in a comparable-density 
composite, the ballistic performance of DU penetrators 
can be matched.   
 
1.2  Bulk Metallic Glass Alloys for Kinetic Energy 
Penetrator Applications   
 

Alongside other possible candidate matrix materials, 
such as titanium (Ti), zirconium (Zr), hafnium (Hf), or 
certain steels with strong shear-localization susceptibility, 
the use of bulk metallic glasses (BMGs) has also been 
suggested.  Unlike typical metals, BMGs do not have a 
crystalline structure.  Their disordered atomic 
arrangement results in unusual mechanical behaviors.  For 
example, when subjected to a compressive mechanical 
load, the BMG deforms by shear localization and fracture, 
in a similar manner to that exhibited by DU alloys at 
impact. 
 

Shear localization in BMGs was first reported in Zr 
alloys which have densities of ~ 6.7 g/cm3 (Bruck et al., 
1994; Bruck, et al., 1996).  Because of its low density, a 
Zr-alloy BMG alone would be ineffective as a penetrator 
material.  However, it has been suggested that the 
combination of W with a BMG matrix would achieve the 
required combination of density and deformation 
mechanism to compete with DU.  Nevertheless, the use of 
the low-density Zr alloy limits composites to densities 
~ 15.5 g/cm3. 

 
An alloy of sufficient density and glass-forming 

ability (GFA) is thus crucial to matching the performance 
of DU.  GFA refers to the fact that the nature of metallic 
glasses restricts the sizes in which they can be made.  Any 
metal can be prepared with a glass structure, provided that 
it can be cooled (quenched) from a melt rapidly enough.    
In practice, most metals and alloys require quench rates so 
high that glasses of metals and alloys are typically thin 
ribbons or foils.  BMGs are prepared from alloys, which 
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yield glass at much lower cooling rates, and can thus be 
made in larger dimensions.  Increasing alloy density 
without compromising GFA thus poses a challenge to the 
metallurgist. 
 

In addition to being high, the quench rates used in 
metallic glass preparation are difficult to measure directly.  
However, an easily measured parameter of the glass, the 
reduced glass-transition temperature (Trg), correlates with 
quench rate.  Typically, the larger Trg is, the smaller the 
critical cooling (or quench) rate needs to be.  Trg is the 
glass-transition temperature, Tg, normalized to the 
liquidus temperature, Tl, of the alloy.  Both parameters 
can be measured with commonly available thermal 
analysis equipment.  A Trg between 0.63 and 0.67 
represents a BMG alloy with good GFA (Johnson, 1999).   
 
1.3  Composition Rules for Bulk Metallic Glass Alloys   

 
A large Trg translates into a low Tl value for a given 

alloy family.  Typically in multicomponent systems, the 
compound with the lowest Tl corresponds to a eutectic 
composition.  

 
At the eutectic composition, there is a strong 

competition between several crystalline phases to nucleate, 
grow, and accommodate one another in the solid phase.  
The required atomic rearrangement for crystallization and 
solidification takes time.  Therefore, the atoms may be in 
a thermodynamically more favorable state if they remain 
in the liquid.  If being in the liquid phase is more stable, 
the stability would be manifested as a greater depression 
in the melting point (Johnson, 1999).  Increased stability 
in the liquid near a eutectic composition could then also 
be interpreted as a higher propensity for bypassing 
crystallization, and hence improved GFA as well. 

 
There is considerable discord in the BMG community 

regarding the location of the ideal alloy composition that 
has an optimum GFA.  Arguments for the use of the 
eutectic composition (Li, 2001) have been opposed with 
examples of hypo- or hypereutectic compositions (Wang 
et al., 2004; Xu et al., 2004). 

 
In addition to locating systems with deep eutectics, 

other topological and empirical rules also aid BMG 
formation.  These include the use of at least three 
elements, dissimilar crystal structures, negative heats of 
mixing, and large- and small-sized atoms.  Such factors 
are designed to increase the competition between phases 
and raise the chemical disorder in the liquid, thereby 
destabilizing the formation processes of possible 
crystalline phases.  Any complication, frustration, or 
confusion of the solidification process near the eutectic 
composition, cause the nucleation kinetics to become 
more sluggish and crystallization then can be avoided. 

 

1.4  Zr- and Hf-Based Bulk Metallic Glass Alloys   
 
Our initial efforts to develop higher-density BMGs 

centered on two quinary alloys of Zr with good GFA:  
Zr52.5Ti5Cu17.9Ni14.6Al10 (Vit105) and Zr57Ti5Cu20Ni8Al10 
(JHU Zr57).  It was felt that, based on the strong chemical 
similarities between Zr and Hf, direct substitution of Hf 
for Zr would be a straightforward approach.  Replacing Zr 
with Hf in 20-at. % increments, we produced alloy ingots 
with densities ranging from 6.7 to 11.1 g/cm3. 

 
We were able to prepare glass for all compositions in 

the (Hfx,Zr1-x)52.5Ti5Cu17.9 Ni14.6Al10 series.  In contrast, in 
the (Hfx,Zr1-x)57Ti5Cu20Ni8Al10 series, compositions of 
x > 0.6 could not be quenched to a uniform glass structure  
(Kecskes et al., 2002).  As shown in Fig. 1, in the 
(Hfx,Zr1-x)52.5Ti5Cu17.9Ni14.6Al10 series, Trg declined from 
0.628 (x = 0) to 0.608 (x = 1) with increasing x.  The 
decline from an initial Trg of 0.588 (x = 0) was more 
pronounced in the other series. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Trg of (Hfx,Zr1-x)52.5Ti5Cu17.9Ni14.6Al10 and 
(Hfx,Zr1-x)57Ti5Cu20Ni8Al10 BMGs.  Note the gradual 
decline with increasing Hf mole fraction. 

 
Obviously, this approach would not result in an 

improvement in GFA.  Subsequently, we observed that 
the Zr:Cu:Ni ratio of Zr52.5Ti5Cu17.9Ni14.6Al10 (Vit105), 
Zr57Nb5Cu15.4Ni12.6Al10 (Vit106), or Zr57Ti5Cu20Ni8Al10 
(JHU Zr57) alloy is near the Zr-Cu-Ni ternary eutectic 
point (Fig. 2).  It was hypothesized that the low Trg of the 
substitutionally obtained Hf alloys was attributed to being 
too far from the corresponding Hf-Cu-Ni ternary eutectic 
point.  However, a Hf alloy with Hf:Cu:Ni ratio near the 
Hf-Cu-Ni eutectic point would be a good glass-former. 

 
Because no ternary Hf-Cu-Ni phase diagram could be 
found in the literature, we undertook a study of the 
Hf-Cu-Ni phase equilibria.  Once the invariant points 
were identified, we applied the BMG formation rules to 
develop a Hf alloy with improved GFA.  We used, 
differential thermal analysis, a well-established technique, 
for the determination of phase equilibria in alloys (Pope 
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and Judd, 1977).  We also relied on X-ray diffraction, 
scanning and transmission electron microscopies to 
determine and verify the structure of the alloyed and 
glassy materials.  We report these results here. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  Zr:Cu:Ni ratios of common Zr alloys, mapped 

onto the two-dimensional plane projection of the 
Zr-Cu-Ni liquidus surface (taken from Takeuchi, 1968).  
Note all are near the eutectic point (E). 

 
2.  EXPERIMENTAL PROCEDURES 

 
2.1  Invariant-Point Identification 

 
Identifying invariant points in the Hf-Cu-Ni system 

entailed synthesizing ternary compositions, and 
measuring their melting behavior using differential 
thermal analysis.  Elemental metals were pickled in an 
acidic solution, and arc melted under a Ti-gettered, 
partial-vacuum argon atmosphere.  The ingot buttons 
were flipped and remelted several times (typically 6 
melts) to ensure complete alloying of the elements. 

 
Thermal analysis was conducted using a Netzsch 

Instruments STA 409C differential thermal analyzer 
(DTA) configured with a high-temperature (1600 oC) 
furnace, Type S thermocouples, graphite crucibles, and an 
argon atmosphere.  Heating rates were 10 oC/min.  To 
establish good thermal contact between the crucible and 
the sample, alloy samples were melted, allowed to cool, 
and solidify in the DTA furnace prior to the analysis scan. 

 
Backscatter scanning electron microscopy (SEM) 

was used to examine the phase assemblage of samples 
cooled in the DTA.  We used a Hitachi S-4700 field-
emission scanning electron microscope, with a tungsten 
electron source and a YAG backscatter detector. 

 

 
2.2  Quaternary and Quinary Alloy Development 

 
Once the invariant point was identified, further 

alloying additions were made.  The goal of alloying 
additions was to lower the liquidus temperature while 
retaining the congruent nature of the melt. 

   
5 and 10 atomic % (at. %) Ti, niobium (Nb), 

aluminum (Al), and chromium (Cr) were substituted for 
Hf at the invariant composition (Hf55Cu30Ni15, see Results 
and Discussion), or mixed proportionally while 
maintaining the Hf:Cu:Ni ratio fixed.  In addition, a 15-
at. %-Al, proportionally substituted ingot was prepared.  
The resulting ingots were subjected to the same thermal 
analysis procedure described above. 

 
Glass-forming ability was determined by suction 

casting 3-mm-diameter rods.  Suction casting was 
performed by arc-remelting ingot pieces in Ti-gettered 
purified argon, followed by drawing and quenching the 
melt into a water-cooled Cu mold.  The suction-casting 
apparatus has been described elsewhere (Gu, et al., 2002). 

 
2.3  Bulk Metallic Glass Characterization 

 
Due to the high strengths and large elastic limits of 

metallic glasses, a simple screening procedure to 
determine whether or not a suction-cast rod might be 
glassy is to bend it in one’s hands.  If it breaks, it is not 
glass.  All suction-cast rods were subjected to this test. 

 
Segments of rods, which passed the initial screening, 

were subjected to differential scanning calorimetry 
analysis.  To determine glass-transition temperature, the 
STA 409C was configured with an argon atmosphere, 
Type E thermocouples, and copper crucibles.  Heating 
rate was 10 oC/min. 

 
Alloy density was determined using the Archimedes 

method in water. 
 
X-ray diffraction patterns were recorded using 

Philips PW 1729 x-ray generator, with a typical copper 
Kα tube source, scintillation detector, and low-
background sample holder.  Scans were taken over a 2-Θ 
scattering angle range of 20 to 120 o, with a step size of 
0.025 o, and 5-s dwell time. 

 
A sample of the suction-cast glass-forming alloy was 

thinned with an FEI-200 focused ion beam milling device 
until electron transparent, and examined using a 300-kV 
FEI Technai F30 high-resolution transmission electron 
microscope. 

Vit105
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3.  RESULTS AND DISCUSSION 
 

3.1  Invariant-Point Identification 
 
Each point on the ternary Hf-Cu-Ni plot (Fig. 3) 

represents a composition for which an ingot was made 
and subjected to thermal analysis.  The dashed lines 
represent a series of pseudo-binary compositions, wherein 
the mole fraction of the third component is fixed.  The 
intersections of the dashed lines are compositions, which 
were observed to melt congruently.  Figure 4 illustrates 
melting point data along these composition lines, 
indicating how the solidus and liquidus converge at one of 
these invariant points. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.  The locus of all experimentally fabricated 

Hf-Cu-Ni alloy points, depicted on the Hf-Cu-Ni ternary 
composition triangle.  The two sets of intersecting lines, 
labeled as (a) and (b), and (c) and (d), respectively, define 
the invariant points found in our study. 

 
The DTA thermographs for Hf55Cu30Ni15 and 

Hf70Cu5Ni25 are exhibited in Fig. 5.  It may be noted that 
although data in Fig. 4 infers that the invariant point is at 
Hf75Cu5Ni25, the convergence of the solidus and liquidus 
occurs over a wider composition range.  For clarity, 
heretofore, we designate the nominal eutectic composition 
as Hf70Cu5Ni25.  For Hf55Cu30Ni15, the onset of melting 
was 1150 oC, while the endpoint was at 1165 oC.  For 
Hf70Cu5Ni25, they were 1130 and 1144 oC, respectively.  
We have not yet developed a glass-forming alloy based 
on Hf70Cu5Ni25, so we will limit our discussion to alloys 
based on Hf55Cu30Ni15. 

 
3.2 Quaternary and Quinary Alloy Development 

 
Figure 6 presents the thermographs for the 5 at. % Ti 

and 10 at. % Al alloying additions to Hf55Cu30Ni15.  The 
ingot compositions are Hf50Ti5Cu30Ni15 and 
Hf49.5Cu27Ni13.5Al10.  The concentrations of these elements  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.  Plots of solidus and liquidus vs. composition 

for (a) Hf75CuxNi25-x, and (b) Hf95-xCu5Nix. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.  DTA thermographs of the two congruently 

melting ternary alloys. 
 

reduced the liquidus temperature of Hf55Cu30Ni15 as 
shown, while maintaining the congruent melting behavior.  
The other alloying elements (Nb and Cr) and other 
concentrations of Ti or Al elements resulted in moving 
the composition away from a congruent melt.  The typical 
result of the other alloying additions was the appearance 
of a shoulder on the high-temperature side of the melting 
peak (not shown).  This would be consistent with the 
persistence of a small amount of higher-melting-point 
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material after the initial melting began. 
 
Because 5 at. % Ti and 10 at. % Al had the effect that 

they did in quaternary ingots, we prepared suction-cast 
rods of Hf44.5Ti5Cu27Ni13.5Al10.  Rods of this nominal 
composition passed the simple mechanical screening 
described above, and were subjected to the glass-
characterization tests. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.  Alloying effect of Ti and Al on the solidus 

and liquidus of Hf55Cu30Ni15. 
 
3.3  Metallic Glass Characterization 

 
The density of the metallic glass is 10.9 g/cm3.  As 

shown in Fig. 7, the X-ray diffraction pattern from a 
suction casting exhibits a broad, diffuse ring with no 
Bragg peaks.  A selected-area electron diffraction pattern, 
Fig. 8 (a), showed similar features.  The corresponding 
bright-field, high-resolution image in Fig. 8 (b) reveals no 
evidence of crystallites or ordering.  DTA determined Tg 
to be 500 oC, Tl = 984 oC, making Trg = 0.615 (Fig. 9). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.  X-ray diffractogram of the 

Hf44.5Ti5Cu27Ni13.5Al10 glass. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8.  Electron diffraction pattern and high-

resolution transmission electron micrograph, shown in (a) 
and (b), demonstrate no long-range crystalline order in the 
alloy. 
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Fig. 9.  DTA thermograms exhibiting a glass 

transition point and a single exothermic peak, shown in 
(a), and an endothermic peak defining the solidus and 
liquidus of the alloy in (b). 

 
3.4  Detailed Study of Hf55Cu30Ni15 Invariant Point 

 
Attempts to reproduce the thermograph of Fig. 5 

revealed a small endotherm at 1085 oC (not shown).  
Subsequent measurements revealed that this endotherm 
appears in most nearby compositions, including the 
compositions through which the dotted lines are drawn in 
Fig. 3.  Figure 10 illustrates the variation of solidus and 
liquidus lines with composition for these alloys. 

 
If the Hf55Cu30Ni15 were a eutectic, the liquidus 

would converge to the solidus at that composition (see 
Fig. 4).  As is clear from Fig. 10, it does not.  The 
presence of the small endotherm at 1085 oC also means 
that Hf55Cu30Ni15 is not a eutectic. 

 
Backscattered SEM micrographs of a furnace-cooled 

ingot of Hf55Cu30Ni15 are exhibited in Fig. 11.  It is clear 
from Fig. 11 (a) that the composition is off eutectic, 
although there is a eutectic microstructure present.  The 
eutectic region probably corresponds to the 1085 oC 
endotherm observed in thermal analysis.  Figure 11 (b) is 

a higher magnification study of the eutectic region. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10.  Plots of solidus and liquidus versus 

composition for (a) Hf55Cu45-xNix, and (b) Hf70-xCu30Nix. 
 
The fact that Hf55Cu30Ni15 is not a eutectic 

composition has important consequences for the 
development of metallic glasses.  It appears from the 
asymmetric nature of the 1160 oC endothermic peak 
(Fig. 5) and the appearance of the microstructure that the 
peak most likely is a peritectic point resulting from the 
interaction of the a small amount of eutectic liquid with 
an incongruently melting compound.  While such an alloy 
does not have the advantages that a eutectic would have 
for forming glass, peritectic points still involve 
considerable atomic rearrangement.  If quenching is 
sufficiently rapid to prevent such rearrangement, it 
appears from the evidence presented here that peritectic 
points are also promising candidates for the development 
of glass-forming alloys.  If this can be shown to be widely 
true, the opportunities for making bulk metallic glasses 
will have expanded greatly. 
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Fig. 11.  Backscattered SEM micrographs of the 

Hf55Cu30Ni15 alloy sample with an overview shown in (a) 
and an enlarged view shown in (b). 

 
6.  CONCLUSIONS  

 
The significance of this discovery in the development 

of high-density BMGs is twofold.  First, it implies that a 
Hf-alloy BMG could be formed into bulk objects with 
dimensions equivalent to those only previously available 
to Zr-alloy BMGs.  Second, and more importantly, it has 
enabled fabrication of 17-g/cm3 composites, which 
approach the density of WHA KE penetrators.   Ballistic 
tests of the first composites prepared showed penetration 
was more pronounced than would be expected from 
density alone. 
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Develop enhanced tungsten-based kinetic energy penetrator
materials that replicate the deformation and flow behavior of 
depleted uranium (DU) materials.

It is inherent that if imitation of the ballistic deformation behavior is 
successful, the ballistic performance will follow…

Hf-Based BMGs
Motivation

DU outperforms tungsten as 
localized deformation causes 
the bulging tip to remain sharp.

DU WHA

GoalGoal:  Reproduce uranium-like 
behavior with non-uranium material
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ARO funded SBIR program at CalTech
Zr-Ti-Cu-Ni-Be:  castable bulk metallic glass alloy

‘chisel’ nose on 
monolithic BMG

Uranium-Like Behavior: i.e., Self-Sharpening

Hf-Based BMGs
Motivation

reduced mushrooming on 
W-wire-reinforced-BMG 

composite
2 mm 1 mm
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atoms arranged into a 
structure with order

atoms in liquid-like 
disordered arrangement

Hf-Based BMGs
Tutorial:  History

versus

Crystalline Glassy

Amorphous Structures:
Types:
1960’s:  first metallic glass Au-Si by Klement et al.  - binary
1980’s:  Pd40Ni40P20  - ternary
1990’s:  Vitreloy1 (Zr41.2Ti12.8Ni10Cu12.5Be22.5)  - quinary

Forms:
Thin Films (nm)  → Ribbon (µm) and Wire (µm)
Bulk Metallic Glasses (BMG) (mm)Bulk Metallic Glasses (BMG) (mm)

Cooling Rate

106 – 105 K/s

10 – 1 K/s
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Hf-Based BMGs
Tutorial:  Undercooling and Selection Rules

Binary EutecticBinary Eutectic

Eutectic is the lowest melting point alloy
Behaves as a ‘pure’ element
Rearrangement during transformation 
from liquid to solid; slow process

A + Liquid

Liquid

A + B

B + Liquid

Pure A Pure B

Metallic Glass Synthesis RulesMetallic Glass Synthesis Rules

Near deep eutectics
More than three constituents
Competing crystalline structures
Atomic size difference between 
main constituents more than 12%
Negative heats of mixing between 
constituents

Metallic GlassMetallic Glass forms when a liquid 
alloy becomes increasingly viscous 
on cooling and fails to crystallizecrystallize

Laszlo Kecskes
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Hf-Based BMGs
Tutorial  - Properties and Entry Rules

Entry Criteria for Entry Criteria for PenetratorPenetrator
ApplicationsApplications

Increase density from 7 g/cm3 to 
11 g/cm3

Improve thermal stability and 
glass forming ability;

high Tliquidus

large Trg = Tg/Tliquidus

Environmental and systemic 
compatibility (i.e., non-toxicity, 
non-reactive with reinforcement)

 Vitreloy105
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X-ray Profile

Thermal Profile
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Because of its amorphous 
structure, metallic glass fails metallic glass fails 
by shear localizationby shear localization, beyond 
the compressive elastic limit
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0.0 0.2 0.4 0.6 0.8 1.0
Hf Mole Fraction, x

T
rg

(HfxZr1-x)52.5Ti5Cu17.9Ni14.6Al10

(HfxZr1-x)57Ti5Cu20Ni8Al10

Trg of (Hfx,Zr1-x)52.5Ti5Cu17.9Ni14.6Al10 and (Hfx,Zr1-x)57Ti5Cu20Ni8Al10 BMGs.
Note the gradual decline with increasing Hf mole fraction.

Hf-Based BMGs
Point of Origin
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Vit105

Vit106

JHU Zr57

Vit105

Vit106

JHU Zr57

Zr:Cu:Ni ratios of common Zr alloys, mapped onto the two-dimensional 
plane projection of the Zr-Cu-Ni liquidus surface.
All are near the eutectic point (E).

Hf-Based BMGs
Point of Origin

Takeuchi, et al., 1968
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Hf-Based BMGs
The Search for the Invariant Points

The locus of all experimentally fabricated Hf-Cu-Ni alloy points, depicted 
on the Hf-Cu-Ni ternary composition triangle.
The sets of intersecting lines, define the invariant points found.
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Hf-Based BMGs
The High-Hf Eutectic

a

b

Plots of solidus and liquidus
versus composition for

(a) Hf75CuxNi25-x, and
(b) Hf95-xCu5Nix.

Hf75Cu5Ni20

A + Liquid

Liquid

A + B

B + Liquid

Pure A Pure B
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DTA thermographs of the two congruently melting ternary alloys.

Hf-Based BMGs
Thermal Characteristics of the Invariant Points
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Alloying effect of Ti and Al on the solidus and liquidus of Hf55Cu30Ni15.

Hf-Based BMGs
Alloying Effects
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X-ray diffractogram of the Hf44.5Ti5Cu27Ni13.5Al10 glass

Hf-Based BMGs
End Point:  X-ray Amorphous
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2 nm

Electron diffraction pattern and high-resolution transmission electron 
micrograph, shown in (a) and (b), demonstrate no long-range crystalline 
order in the alloy.

Hf-Based BMGs
A Real BMG

a b
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Hf-Based BMGs
A Real BMG
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b

TTsolidussolidus TTliquidusliquidus

DTA thermograms exhibiting a glass 
transition point and a single exothermic 
peak, shown in (a), and an 
endothermic peak defining the solidus
and liquidus of the alloy in (b).

TTgg

TTxx
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Plots of solidus and liquidus
versus composition for

(a) Hf55Cu45-xNix, and
(b) Hf70-xCu30Nix.
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SEM micrographs of the Hf55Cu30Ni15
alloy sample with an overview shown in 
(a) and an enlarged view shown in (b).

Hf-Based BMGs
Things Get Complicated

a

b

This is not a eutectic-like structure 

This is the eutectic-like structure 

A + Liquid

Liquid

A + B

B + Liquid

Pure A Pure B
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Hf-Based BMGs
Implications

Melt behavior and as-cooled phase morphology resembles that of 
a different type of reaction:

Liquid + Solid A → Solid AB

The reaction appears to be sluggish

Significant undercooling is possible

BMG compositions are not limited to deep eutectics

Number of potential systems increases
Greater flexibility of finding higher density systems

A + Liquid

Liquid

AB + B

B + Liquid

Pure A Pure B

AB + Liquid
A
+

AB
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Hf-Based BMGs
Ballistic Results
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Hf-Based BMGs
Ballistic Results
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