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ABSTRACT 

We present a methodology for the efficient calculation of 
the shock Hugoniot using standard molecular simulation 
techniques.  The method is an extension of an equation 
of state methodology proposed by Erpenbeck [J. J. 
Erpenbeck, Phys. Rev. A 46, 6406 (1992)] and is 
considered as an alternative to other methods that 
generate Hugoniot properties.  We illustrate the 
methodology for shocked liquid N2 using two different 
simulation methods: (a) the Reaction Ensemble Monte 
Carlo method for a reactive system; and (b) the 
molecular dynamics method for a non-reactive system.  
The method is shown to be accurate, stable and generally 
independent of the algorithm parameters.  We find 
excellent agreement with results calculated by other 
previous simulation studies.  The results show that the 
methodology provides a simulation tool capable of 
determining points on the shock Hugoniot from a single 
simulation in an efficient, straightforward manner. 

 

1. INTRODUCTION 

The behavior of materials under conditions of extreme 
temperature and pressure is of significant interest in 
many fields of physics and fluid science [1-4].    Of 
special interest are energetic materials, a class of 
materials of critical industrial and military importance.  
These materials exhibit chemically and physically 
interesting behavior when exposed to extreme 
temperatures and pressures.   In particular, when 
subjected to shock, energetic materials often undergo 
rapid reactions that produce a heterogeneous mixture of 
chemical species that are accompanied by huge energy 
releases and can produce pressures up to several hundred 
GPa and temperatures exceeding 10,000 K.  For a 
sufficiently strong shock, a supersonic, self-propagating 
reaction wave known as a detonation can be initiated.    
Unfortunately, the extreme conditions along with the 
short time and length scales over which a detonation 
occurs poses considerable experimental challenges in 
characterizing the material behind the detonation front.  
Therefore, a concerted effort that combines 
experimental, theoretical, and simulation approaches is 
essential for furthering our understanding of such 
shocked systems.  Advances in experimental capabilities 
provide us with crucial property data, while the 
continuing development of accurate equations of state 
have allowed reasonable predictions of various shock 

properties [5, 6].  Similarly, the development of novel 
methods to simulate these complex systems has been the 
focus of research efforts and has recently led to the 
invention of some uniquely effective simulation tools [7-
11].  These classical simulation methods can be 
implemented irrespective of rate limitations, the 
production of huge energy releases, or extreme 
thermodynamic conditions. 

The Hugoniot curve, a commonly calculated property in 
shock and detonation science, reveals many properties of 
shocked materials and knowledge of which is critical to the 
design of new materials and application platforms.  This 
curve consists of the set of (PVT) points for which the 
Hugoniot expression: 

Hg = E – Eo – ½(P + Po)(Vo – V)     (1) 

is zero.  In Equation (1), E is the specific internal energy, P 
is the pressure, and V=1/ρ is the specific volume (ρ is the 
specific density).  The term specific refers to the quantity 
per unit mass, while the subscript “o” refers to the quantity 
in the initial unshocked state.   

Presently, three approaches exist for calculating the shock 
Hugoniot states from classical molecular simulation, each 
with their own advantages and disadvantages.  The first 
approach, which we term here the Erpenbeck equation of 
state method (E-EOS), is the most indirect of the 
approaches.  The original version of the method involves 
performing several separate simulations at appropriately 
chosen temperatures and pressures.  Each simulation 
generates an equation of state point for subsequent 
evaluation of the Hugoniot expression followed by 
interpolation to locate the point at which the expression is 
zero.  The molecular dynamics (MD) method has been 
implemented in the Erpenbeck approach using reactive 
potentials that mimic chemical bond breaking and forming 
between species [12, 13]. 

An approach for calculating the shock Hugoniot properties 
from classical molecular simulation that is more direct 
than the E-EOS method is the piston-driven molecular 
dynamics method [7, 8].  Piston-driven MD generates a 
point on the Hugoniot curve from a single simulation, thus 
avoiding the need to calculate several EOS points (as in 
the E-EOS approach) in order to obtain the desired result.  
The method mimics the laboratory system by calculating 
properties behind the shock discontinuity in a shock wave 
simulation.  Shock waves are produced by hitting the free 
edge of the molecular solid with a rigid layer of atoms that 
are moving at a constant velocity.  Different shocked states 
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are obtained by starting with different initial piston 
velocities [8]. 

A third approach, termed the uniaxial Hugoniostat 
method [9], is a molecular dynamics method that utilizes 
modified equations of motion that constrain the system 
to states that correspond to points on the shock Hugoniot 
curve.  This method is computationally more efficient 
than both MD implementations of the E-EOS method 
and the piston-driven shock wave simulations.  The E-
EOS method requires a system of only a few hundred 
atoms (with periodic boundary conditions imposed), but 
several simulations are required to generate a single 
shock Hugoniot point.   The piston-driven MD method 
will produce results from a single simulation, however, 
the system size must be sufficiently large so that the 
properties behind the propagating shock wave can be 
averaged over time.  The uniaxial Hugoniostat method, 
on the other hand, can generate a point on the Hugoniot 
curve from a single simulation whose system size is 
relatively small. 

Unfortunately, none of these MD methods can be applied 
to the calculation of the shock Hugoniot locus over a 
wide range of temperatures and pressures unless certain 
conditions are fulfilled.  Most energetic materials 
respond to shock by decomposing into a complex 
(sometimes heterogeneous) mixture of many different 
chemical species.  Thus, for these multi-component 
systems, the implementation of the uniaxial Hugoniostat 
method, the MD E-EOS method or the piston-driven MD 
method requires either: (1) a priori knowledge of the 
relative concentrations of each chemical species in the 
shocked state; or (2) a reactive potential that simulates 
bond breaking and bond formation.  Typically, the 
relative species concentrations of the shocked state are 
lacking, moreover, knowledge of these quantities is 
desired.  Furthermore, although significant advances 
have been made in developing reactive potentials for 
shocked materials, the potentials are presently limited to 
idealized representations of the chemistry that occurs 
[e.g., 13].  The most accurate interaction potentials for 
energetic materials available at this time are all non-
reactive. 

Monte Carlo methodologies circumvent some of the 
restrictions associated with the MD methods for 
calculating shock Hugoniot states.  The Reaction 
Ensemble Monte Carlo method (RxMC) [10] and the 
Composite Monte Carlo method [11] have both been 
used to calculate Hugoniot properties through the E-EOS 
approach.   These two closely-related methods do not 
require a reactive potential or a priori knowledge of 
species concentrations for each Hugoniot state.  They 
also do not require the specification of species chemical 
potentials or chemical potential differences to determine 
chemical equilibrium states of the reactive mixtures.  
Both methods have been applied to simple, spherically-
averaged intermolecular potentials [10, 11] but can 

readily be applied to complex potentials that include multi-
site and/or electrically-charged species as well as multi-
phase mixtures.  Therefore, in the absence of reactive 
potentials or a priori knowledge of species concentrations, 
the only applicable approaches for simulating the Hugoniot 
properties of a shocked material are the Erpenbeck EOS 
method performed using either the RxMC or Composite 
MC methods. 

As previously mentioned however, the original E-EOS 
method requires simulations of several equation of state 
points to generate a single point on the shock Hugoniot 
curve.  Each separate simulation requires sufficient 
equilibration and data collection steps.  In an effort to 
reduce the number of steps and to minimize associated 
computational costs, we have implemented a numerical 
approach within the framework of the E-EOS approach.  
The resulting method requires only a single simulation to 
determine a point on the Hugoniot curve.  The fitting 
procedure used to determine the root of the Hugoniot 
expression (Hg=0) in the original version of the E-EOS 
approach is replaced by an iterative numerical procedure 
built into the framework of the simulation. 

A brief illustration of the method using isothermal-isobaric 
ensemble (NPT) simulations is given.  The simulation is 
initiated at the specified temperature and pressure, and the 
Hugoniot expression is evaluated (using instantaneous 
values of V, P and E that depend only on the current 
configuration) at periodic intervals during the simulation 
run and accumulated for averaging.  The averaged 
Hugoniot value is then used in a numerical root-finding 
algorithm (e.g., Newton-Raphson [14]) to provide an 
estimate of the Hugoniot pressure.  The imposed pressure 
for the simulation is subsequently changed to correspond 
to the new estimate of the Hugoniot pressure.   The 
simulation continues using this new imposed pressure 
constraint.  This process is repeated until the Hugoniot 
function converges to zero (more precisely, within a 
desired tolerance of zero).  The value of the pressure and 
corresponding volume averaged over the entire simulation 
run characterize the Hugoniot state at that temperature.     

The method is akin to the phase equilibria methods that 
utilize thermodynamic integration to determine 
coexistence behavior [15-17].  In these calculations, a 
finite-difference algorithm is used to numerically integrate 
the differential equations, the Clausius-Clapeyron [15, 16] 
or the Gibbs-Duhem expressions [17], which govern the 
changes in thermodynamic parameters along the phase 
coexistence curve.  Similarly, for the method introduced 
here, a numerical estimate of the root of the Hugoniot 
expression is made.  Both approaches are iterated until the 
desired convergence has been reached. 

In summary, we demonstrate the accuracy and stability of 
a method to calculate the shock Hugoniot properties of 
materials when implementing the E-EOS method either in 
an MD or RxMC framework.  (Implementation of the 



 

modified E-EOS method using the Composite MC 
method is analogous to the RxMC method and will not 
be demonstrated here.)  The method, which we term the 
adaptive Erpenbeck equation of state method (AE-EOS), 
is intended to be a tool that is an alternative to the 
existing methodologies in order to overcome some of 
their limitations.  We demonstrate the validity of the AE-
EOS method for calculating the Hugoniot properties of 
liquid N2 in the non-reactive regime using molecular 
dynamics and in the reactive regime using Reaction 
Ensemble Monte Carlo.  The outline of the paper is as 
follows.  The formalism and practical details of the 
methodology are presented in Section II.  Applications of 
the method are given in Section III, while assessments of 
the results are given in Section IV. 

 

II. METHODOLOGY 

A. Formalism 

The Hugoniot function Hg=Hg[E, T, P (or V)], and so a 
search for Hg=0 in the original Erpenbeck EOS method is 
implemented by fixing two independent variables in a 
simulation and calculating the remaining variable.  For 
example, when simulating with an isothermal-isobaric 
ensemble, E is calculated from the simulation.  
Typically, several simulations must be performed using 
various choices of the independent variables to generate 
sufficient points so that the Hugoniot state can be 
obtained through interpolation.  (Detailed outlines of the 
original E-EOS approach using the molecular dynamics 
and the RxMC methods can be found in Refs. [12] and 
[10], respectively.)  The adaptive Erpenbeck equation of 
state method presented in this work eliminates the 
interpolation procedure by using a root-finding algorithm 
to determine Hg=0.  For example, the expression for 
finding the root of a function using the Newton-Raphson 
method is [14] 
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where
nnn dxxdfxf )()(' = , f(xn)=Hg and we choose either 

xn=E, T, or P(or V).  The basis of the AE-EOS method is 
to begin a simulation at an initial xn, and after a 
prescribed number of simulation steps, the quantities 
f(xn) and f’(xn) are calculated and xn+1 is determined.  The 
simulation continues using the predicted value xn+1.  This 
procedure is repeated until the results converge. 

In the following, we demonstrate the AE-EOS method 
for P as the independent variable used to find the root of 
the Hugoniot function.  The working expression for 
predicting the pressure of the Hugoniot state within the 
framework of the Newton-Raphson procedure [Eq. (2)] 
is then 
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In the procedure presented here, the predicted pressure, 
predictedP , is determined using averaged instantaneous 

values of the Hugoniot expression [Eq. (1)] and its 
derivative with respect to pressure, i.e., gg HH =current      

and      
dP

dH
dP

d g
current

=gH , 

where ‘< >’ denotes averages of instantaneous values.  The 
instantaneous Hugoniot values (and derivatives) were 
determined using the corresponding instantaneous values 
of P, E, and T generated during the simulation.  

Next, since the internal energy can be written as [10] 
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then Eq. (1) can be rewritten as 
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where E0, P0, and V0 are the values of the initial state (and 
thus constant) and ∑∑

>

=
ij
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rUU )(conf  where Uij is the pair 

potential energy [18].  All quantities in Eqs. (4) and (5) are 
used here in the context of instantaneous quantities that 
depend only on the current configuration.  The derivative 
term required in Eq. (3) is then 
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The first and third terms on the r.h.s. of Eq. (6) are not 
functions of P and can be eliminated. Further since Uconf is 
calculated as an instantaneous value, Uconf=Uconf(r) only 
and thus can be eliminated.  Finally, the last term is readily 
solved, so that Eq. (6) reduces to 

( )02
1 VV

dP
dH g −=          (7) 

The algorithm for the adaptive Erpenbeck equation of state 
method with P chosen as the independent variable is as 
follows: 

Step 1: Set the temperature for the Hugoniot state (THg). 

Step 2: Guess the pressure for this Hugoniot state 
(Pcurrent). 

Step 3: Perform an isothermal-isobaric ensemble 
simulation (MD or RxMC) at THg and Pcurrent. 



 

Step 4: After allowing the system to relax to Pcurrent, 
accumulate instantaneous values of Hg and 
dHg/dP during the simulation using Eqs. (5) and 
(7), respectively. 

Step 5: After a prescribed number of steps, calculate 
averaged values of Hg and dHg/dP and predict 
the Hugoniot pressure using Eq. (3).  (The 
averaged values of Hg and dHg/dP can be 
determined by several methods, which are 
considered in the next section.) 

Step 6: Repeat steps (3)-(6) until the results converge to 
the desired statistical uncertainty. 

 

B. Practical Details 

Next, we consider a few practical details of 
implementing the AE-EOS method.  Our intent is to 
generalize the method for implementation into any of the 
standard molecular simulation techniques (MD, RxMC, 
or Composite MC).  We consider the effect of several 
parameters on the accuracy and stability of the method.  
Below we address these issues, the logic behind our 
choices, and the tradeoffs involved. 

There exists a wide range of root-finding algorithms, 
including the Newton-Raphson method, the Secant 
method, the Bi-section method, and Halley’s method 
[14].  Newton-Raphson (Eq. (2)) is a rather 
straightforward method but can be unstable near a 
horizontal asymptote or local minimum.  A similar 
algorithm is Halley’s method that includes an additional 
term (

nn dxxdf )(' ) from the Taylor series in the 
derivation of the method.  When the pressure is chosen 
as the independent variable, d2Hg/dP2=0 (see Eq. (7)) so 
Halley’s method reduces to the Newton-Raphson 
method.  Another root finding method is the Secant 
method, which estimates the derivative term using 
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the AE-EOS method requires two recent points along the 
Hugoniot curve as opposed to only one for the Newton-
Raphson method.  Finally, if we can be certain that the 
solution of the Hugoniot expression lies within a known 
interval, then we can iteratively converge to the solution 
using the Bi-section method.  However, a balance must 
be established between statistical uncertainty and the 
desired convergence when implementing the Bi-Section 
method in a molecular simulation, since statistical 
fluctuations cannot be greater than the size of the 
interval.  In an effort to keep the method proposed here 
as general and straightforward as possible, we have 
implemented the Newton-Raphson method.  The well-
known problems of this method near a local minimum or 
asymptote have not been encountered for the Hugoniot 
expression in this work as well as for other work [10, 12, 
13], but one should be mindful of its limitations. 

In any molecular simulation, it is necessary to design a 
starting configuration so that the relaxed system is 
physically reasonable and computationally consistent.  For 
example, consider an isothermal-isobaric ensemble 
simulation where periodic boundaries are imposed and 
where the potential energy function has a limited 
interaction range.  In such a case, an appropriate number of 
molecules must be chosen so that the relaxed box size is 
consistent with the minimum image convention, i.e., one-
half the box size must be greater than or equal to the 
potential cutoff distance [18].  Similarly, appropriate 
starting conditions for the AE-EOS method are required, 
particularly for the initial guess of the imposed pressure.   
Since the converged result (i.e. Hg=0) will produce a 
Hugoniot pressure that is equal to the imposed pressure 
(within some specified tolerance), it is desirable to choose 
an initial pressure that is a good estimate of the actual 
Hugoniot pressure.  Although we will show in Section III 
that the AE-EOS method is largely insensitive to the initial 
pressure guess, extremely poor initial guesses could result 
in numerical failures.  For example, consider the 
simulation of a Hugoniot state such that THg>To (recall that 
THg is the temperature of the chosen Hugoniot state and To 
is the temperature of the unshocked material).  If the initial 
guess of the pressure, Pinitial guess, causes an expansion of the 
simulation cell such that the specific volume is larger than 
the specific volume of the unshocked material, a negative 
pressure value will be predicted.  From a practical 
standpoint, this is an unphysical occurrence since it implies 
that the material has expanded upon shock rather than 
being compressed.  Furthermore, from a computational 
standpoint, the simulation cell will never converge to a 
negative imposed pressure.  Such an occurrence, however, 
is analogous to choosing a starting configuration that 
relaxes to a physically unreasonable and computationally 
inconsistent state. 

Consider the following ad hoc approach to choosing a 
reasonable initial guess of the pressure for Eq. (3).  First, 
assume that the shocked material does not decompose (i.e., 
chemically react).  This is a reasonable approximation at 
low shock pressures and reduces the first term on the r.h.s 
of Eq. (5) to Ho

starting material.  Next, neglect the contribution 
of Uconf and thus eliminate the second term on the r.h.s of 
Eq. (5).  This approximation has no physical justification, 
however, a short simulation could be performed to 
calculate Uconf (although probably unnecessary given the 
lack of sensitivity of the final result on the initial guess of 
the pressure).  Finally, estimate the amount of compression 
the starting material will undergo, e.g., V=0.7Vo.  This 
estimate presumably can be predicated on previous studies 
of the material or similar materials.  With these 
approximations, an initial estimate of the Hugoniot 
pressure can be determined.  Furthermore, as points along 
the Hugoniot curve are determined, better estimates of the 
initial pressure can be made by using these Hugoniot 
states. 



 

For completeness of study, we consider three different 
schemes for averaging the instantaneous values of Hg and 
dHg/dP, which are then used in Eq. (3): (1) block 
averages; (2) running averages; and (3) block-to-running 
averages.  Block averages are taken from a limited 
number of configurations immediately preceding the 
pressure adjustment step, while running averages are 
taken continuously over all configurations generated 
during the simulation run.  The block-to-running 
averages scheme uses a block-averaging scheme for the 
equilibration period of the simulation run and then 
continues with a running average scheme for the 
production period.  This scheme may most effectively 
remove the effects of a poor initial guess, while we 
expect the running average scheme to be the most 
effective alternative since fluctuations in the pressure 
will be become increasingly damped as the simulation 
proceeds.  Block averaging methods will likely be more 
slowly converging at best, and unstable at worst.  
Moreover, running average schemes have been the most 
successful scheme in the finite-difference algorithms 
used in the phase coexistence methods mentioned 
previously [15-17]. 

We also consider the effect of the frequency of re-setting 
the pressure during the simulation.  Less frequent 
updates are expected to cause the results to converge 
more slowly while more frequent updates could possibly 
cause the root-finding scheme to become unstable or to 
fluctuate too greatly. 

A final note on the convergence of the system to the 
predicted pressure is considered.  Step (4) in the 
algorithm outline allows the system to converge to the 
predicted pressure value (within a few % of the predicted 
pressure for the most recent simulation steps) before re-
evaluating the Hugoniot expression and it’s derivative 
(dHg/dP) in the equilibration period only.  This ensures 
that even for large changes in the predicted pressure, 
equilibrated information is still used in the Hg and 
dHg/dP calculation.  Typically, these large changes will 
only occur during the earliest stages of the simulation.  
At later times during the production cycles, this criterion 
is nearly always satisfied. 

 

III. APPLICATION 

For demonstrative purposes, several shock Hugoniot 
states of liquid nitrogen are considered.  The shock 
Hugoniot properties were predicted based on the initial 
states calculated previously: T=77.0 K; ρ=0.808 g/cm3; 
P=50.49 MPa; E=-0.441 kJ/g [10].  At pressures higher 
than ~30 GPa along the Hugoniot curve, the dissociation 
reaction of molecular nitrogen (N2 2N) occurs.  
Therefore, we demonstrate the AE-EOS method using 
the molecular dynamics technique only at pressures 
below 30 GPa while we demonstrate the AE-EOS 
method using the RxMC method at a wider range of 

pressures.  Particles interact through an exponential-six 
potential, where potential parameters are given in Ref. 
[19].  A spherical cutoff for the particle-particle 
interactions was applied at 2.5rm,N2 with long-range 
corrections added to account for interactions beyond this 
distance [20].  Electrostatic interactions between species 
were ignored.  The unlike interactions between species i 
and j were approximated by the Lorentz-Berthelot 
combining rules [21].  3375 N2 molecules were used with 
all calculated quantities reduced by the exponential-6 
potential energy (ε) and size (rm) parameters of N2.  
Periodic boundary conditions were imposed for all 
dimensions.  Thermochemical reference data were used in 
calculating the ideal-gas enthalpies (Hi

o) required in Eq. 
(5) [22, 23]. 

 

A. Molecular dynamics 

Molecular dynamics simulations in the isothermal-isobaric 
ensemble were performed using the Leap-Frog Verlet 
algorithm [18, 20] and the Melchionna modification of the 
Hoover-Nose equations of motion [24].  A thermostatting 
rate of 50 ps-1 was used to maintain the imposed 
temperature while a barostatting rate ranging from 0.032-
0.042 ps-1 was used to maintain the imposed pressure.  
Initial configurations were generated from a face-centered-
cubic (fcc) lattice structure with initial particle velocities 
selected from a Boltzmann distribution that corresponded 
to the imposed temperature.  Preceded by an equilibration 
period of 0.127-0.254 ns during which the pressure was 
not re-set using Eq. (3), trajectories were followed for 1.32 
ns with time steps ranging from 0.00763-0.0102 ps.  All 
pressure values reported were determined using the virial 
theorem [18]. 

Three state points along the shock Hugoniot curve were 
determined: T=883.9; 3912.4; 6778.1 K.  These state 
points are below the regime in which N2 dissociates into 
atomic nitrogen.  For each point, the Hugoniot pressure 
(PHg) was predicted in two simulations, one of which the 
initial pressure was much lower than the Hugoniot 
pressure and one in which the initial pressure was too high.  
The effect of the frequency of re-setting the imposed 
pressure was also studied.  Two cases were considered, re-
setting at: (a) every 100 steps; and (b) every 500 steps.  
Following the initial equilibration period used to relax the 
system from the fcc crystal to the imposed thermodynamic 
condition, an additional 0.305 ns of the trajectory was used 
to further equilibrate the system after the AE-EOS 
algorithm is implemented (i.e. the pressure is re-set at 
specified intervals).  All quantities calculated during this 
time interval were not included in the final averages.  A 
tolerance value of +/-5% was used in Step (4) for the 
pressure (see Section II.A), i.e., the calculated pressure 
was required to be within +/-5% of the most recent PHg 
prediction before re-evaluating Hg and dHg/dP and re-
setting of the imposed pressure. 



Table I: Predicted shock Hugoniot states of liquid N2 using molecular dynamics in the AE-EOS method.a 

aQuantities are ensemble averages.  Uncertainties in units of the last decimal digit are given in parentheses: e.g., 883.9(1.2) means 
883.9±1.2, except for the uncertainties of Hg where the values given in parentheses are absolute values.  Uncertainties reported were 
determined from the standard deviation of the instantaneous values. 
bHugoniot states taken from [10]. 

 

Table II: Predicted shock Hugoniot states of liquid N2 at T=7963.0 K using the Reactive Monte Carlo method.  Values 
determined previously [10] by the E-EOS method are P=36.0 GPa ; V=13.35 cm3/mole N2; x(N2)=0.975.a 

aQuantities are ensemble averages.  Reported uncertainties shown in parenthesis are one standard deviation of the block averages [20] 
and are given in units of the last decimal digit, e.g., 13.33(6) means 13.33+/- 0.06. 
bMole fraction of N2, so x(N2) = NN2 / Ntotal and x(N) = ½ NN / Ntotal, where Ntotal = 3375. 
 

A comparison between the Hugoniot properties predicted 
using the original E-EOS and AE-EOS methods is shown 
in Table I.  Good agreement is found for all cases 
considered, with pressure and specific volume values 

well within statistical uncertainty.  Table I also shows 
that no dependence on the initial pressure guess is found, 
with values within a few percent of the E-EOS method 
results.

 Hg evaluation frequency 

 every 100 steps every 500 steps 

Pinitial 
[GPa] 

T 
[K] 

P 
[GPa] 

V 
[cm3/mol N2] 

Hg 
[kJ/g] 

T 
[K] 

P 
[GPa] 

V 
[cm3/mol N2] 

Hg 
[kJ/g] 

bT=883.9 K ; P=4.74 GPa V=19.82 cm3/mole N2 

1.56 883.9(1.2) 4.82(9) 19.7(2) -2.356E-4(0.013) 883.9(1.1) 4.8(1) 19.9(3) 8.901E-3(0.16) 

7.92 883.9(1.2) 4.81(2) 19.74(3) 1.001E-4(0.023) 883.9(1.2) 4.8(1) 20.0(3) 1.600E-2(0.19) 
bT=3912.4 K ; P=18.1 GPa V=15.57 cm3/mole N2

 

5.97 3912(52) 18.4(3) 15.6(2) -1.550E-3(0.15) 3912(52) 18.4(2) 15.6(2) -3.101E-5(0.043) 

30.23 3912(53) 18.4(1) 15.56(8) 2.790E-3(0.063) 3912(54) 17.8(6) 16.0(4) 1.841E-1(1.1) 
bT=6778.1 K ; P=29.9 GPa V=14.05 cm3/mole N2

 

9.87 6778(94) 29.9(4) 14.1(2) -1.867E-3(0.25) 6778(94) 29.9(9) 14.1(4) 1.511E-1(1.6) 

49.93 6778(93) 29.9(5) 14.1(2) -5.581E-3(0.35) 6778(94) 29.9(5) 14.1(2) 1.355E-4(0.13) 

 Hg evaluation frequency 

 every 5000 steps every 50,000 steps 

Pinitial 
[GPa] 

P 
[GPa] 

V 
[cm3/mol N2] 

x(N2) 
Hg 

[kJ/g] 
P 

[GPa] 
V 

[cm3/mol N2] 
x(N2) 

Hg 
[kJ/g] 

Block averages 

11.9 36.1(1) 13.33(6) 0.975(1) 2.129E-5(0.013) 36.2(1) 13.32(3) 0.975(1) -5.957E-4(0.16) 

60.1 36.1(1) 13.33(6) 0.975(1) 1.118E-4(0.023) 36.1(1) 13.33(4) 0.975(1) 2.937E-5(0.19) 

Running averages 

11.9 36.2(1) 13.32(8) 0.975(1) -2.435E-5(0.15) 36.1(1) 13.33(6) 0.975(1) 5.444E-6(0.043) 

60.1 36.2(1) 13.32(6) 0.975(1) -1.022E-5(0.063) 36.1(1) 13.33(6) 0.975(1) -2.631E-5(1.1) 

Block → Running averages 

11.9 36.1(1) 13.33(4) 0.975(1) 1.942E-5(0.25) 36.1(1) 13.33(4) 0.975(1) -6.005E-4(1.6) 

60.1 36.1(1) 13.33(2) 0.975(1) 2.088E-5(0.35) 36.1(1) 13.33(4) 0.975(1) -1.805E-4(0.13) 



B. Reaction Ensemble Monte Carlo 

The Reaction Ensemble Monte Carlo method was used 
to assess the accuracy of the AE-EOS method at a wider 
range of conditions than considered using the molecular 
dynamics technique including conditions under which N2 
dissociates (N2 2N).  Details of the methodology can 
be found in the original papers [25-27] as well as in 
recent applications of the technique, which implemented 
the E-EOS method [10].  In addition to intermolecular 
potentials that describe non-reactive interactions between 
species N2 and N in the equilibrium mixture, RxMC also 
requires inputting the ideal-gas internal modes (vibration, 
rotation, electronic).  The vibrational and rotational 
contributions to the ideal-gas partition functions of both 
species were calculated using a standard source [28], and 
supplemented with electronic level constants that 
included the ground state and six excited electronic states 
for N2 [22], along with electronic energy levels for N 
taken from Moore and Gallagher [23]. 

Constant-pressure RxMC simulations of shocked N2 
were initiated from 3375 N2 particles placed on an fcc-
lattice structure.  Simulations were performed in steps, 
where a step (chosen with equal probability) was either a 
particle displacement, a forward reaction step, or a 
reverse reaction step.  A change in the simulation cell 
volume was attempted every 500 steps.  Simulations 
were equilibrated for 1.5x106 steps after which averages 
of the quantities were taken over 8x106 steps.  
Uncertainties were estimated using the method of block 
averages by dividing the production run into 10 equal 
blocks [20].  Reported uncertainties are one standard 
deviation of the block averages.  (Note that these block 
averages do not correspond to the averaging used in the 
PHg prediction scheme.)  The maximum displacement 
and volume change were adjusted to achieve an 
acceptance fraction of approximately 0.33 and 0.5, 
respectively.  Depending on the system conditions, the 
acceptance fraction of the reaction steps ranged from 
0.075-0.375. 

Three points along the shock Hugoniot curve were 
considered: T=2008.4; 7963.03; 10935.2 K.  Again for 
each point, PHg was predicted from two initial guesses 
that differ from the known value [10] by +/- 67%.  We 
predicted the shock Hugoniot properties based on the 
same initial state used previously [10] and in the 
molecular dynamics study above.  A tolerance value of 
+/-2.5% was used in Step (4) for the pressure (see 
Section II.A), a value slightly lower than used in the 
molecular dynamics simulations above.  Analogous to 
the study above, the effect of the frequency of re-
evaluating the Hugoniot pressure and subsequent re-
setting of the imposed pressure was studied.  Two cases 
were considered, re-setting at: (a) every 5000 steps; and 
(b) every 50,000 steps.  Additionally, three different 
averaging schemes of the instantaneous values of Hg and 

dHg/dP were assessed: (a) block averages; (b) running 
averages; and (c) block-to-running averages.  A 
description of each type is given in Section II.B.  For each 
of the initial pressure guesses, all six series (2 Hg 
frequency evaluations X 3 averaging schemes) were 
considered. 

Comparisons between the Hugoniot properties predicted 
by the E-EOS and the AE-EOS methods for the 7963.03 K 
case are given in Table II.  We find excellent agreement 
between the E-EOS and the AE-EOS results for all 
quantities calculated.  Nearly all AE-EOS quantities fall 
within +/-0.5% of the E-EOS calculations with none 
greater than +/-0.9%.  Consequently, no dependence on the 
initial pressure guess or the Hugoniot expression 
evaluation frequency is evident.  Likewise, no apparent 
dependence on each of the averaging schemes is found.  

 

IV. DISCUSSION 

We have presented a computationally efficient 
methodology for calculating the shock Hugoniot properties 
of materials using classical molecular simulations.  The 
method is an extension of the Erpenbeck EOS approach 
and allows for the determination of a point along the 
Hugoniot curve from a single simulation.  The method, 
termed the adaptive Erpenbeck equation of state method 
(AE-EOS), uses a numerical estimate of the root of the 
Hugoniot expression to determine the corresponding 
thermodynamic state.  AE-EOS is applicable for any 
simulation method that determines points along the 
Hugoniot curve by generating EOS points, which includes 
molecular dynamics [18,20], Reaction Ensemble Monte 
Carlo [25,26], and the Composite Monte Carlo method 
[11].  The method was demonstrated to be accurate and 
numerically stable.  For the systems in this study, the 
method was not particularly sensitive to the algorithm 
parameters indicating the method’s robustness and ability 
to be readily implemented.  Furthermore, a substantial 
savings in the computational requirements is gained 
through the implementation of the AE-EOS method.  For 
comparable statistical uncertainty, 4-5 complete 
simulations are required to generate a single point on the 
Hugoniot curve for the original Erpenbeck method while 
only a single simulation is needed in the AE-EOS method.  
Hence, a computational gain of approximately 4-5 fold is 
made when implementing the AE-EOS method.  Overall, 
the AE-EOS method appears to be slightly more accurate 
and stable when applied to the RxMC method as compared 
to the molecular dynamics method.  This may be attributed 
to the relative stability of the Monte Carlo method over the 
molecular dynamics technique for constant-temperature 
and constant-pressure simulations. 

The AE-EOS method is intended as an alternative tool to 
similar techniques, namely, piston-driven molecular 
dynamics [7,8] and uniaxial Hugoniostat molecular 



 

dynamics [9], since AE-EOS offers some notable 
advantages when simulating reactive mixtures.  The most 
striking advantage is that the AE-EOS method does not 
require either: (1) a priori knowledge of the relative 
concentrations of each chemical species in the shocked 
state; or (2) a reactive potential that simulates bond 
breaking and bond formation.  At least one of these 
conditions must be met for the other methods to be 
applicable to the simulation of reactive mixtures. 
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3. Computational methods

1. Laboratory experiments
• Trial and error process

• Costly & environmentally 
harmful

• Years to develop

50,000 lbs XM39 propellant
(Millet et al Clean Prods. & Proc. 2000)

~ 20 years for M43 propellant

Design Approaches

require EOS

2. Theoretical models (Ex: Cheetah)

• Fast calculations

• Limited predictive capabilities

• Not practical for notional materials
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Cyclops
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4Simulation of chemically reacting systems:

Requires reactive potential for each reaction

Not applicable to mixtures

1. Molecular Dynamics:

2. Reaction Ensemble Monte Carlo

Predict macroscopic 
properties from 
molecular-level behavior

Molecular Simulation

4 simulates chemical reaction equilibria

4not limited by reaction rate

4not limited by activation energy barrier

Reaction Ensemble Monte Carlo
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4 reactive potential not needed

ideal gas reaction RxMC predict chemical reaction behavior 
under non-ideal conditions

Reaction Ensemble Monte Carlo

porous materials

4multiple reactions, multiple phases possible

4 reaction equilibria not kinetics

Reaction Ensemble Monte Carlo

Input requirements:

• ideal gas intramolecular contributions
(vibrational, rotational, electronic)

• intermolecular potential models

• specify reactions occurring

4predicts physical effects not chemical effects

available in literature
or
from standard ab
initio calculations
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shock Hugoniot properties
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