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SYNOPSIS

In this final technical report we document, in three chapters, the results
obtained from our AFOSR-sponsored study on a new ion acceleration using
beating electrostatic waves.

Unlike previously known methods of energizing plasmas with electrostatic
waves, and which accelerate only ions whose initial velocities are above a certain
threshold (close to the waves velocity), the new mechanism can accelerate ions
with arbitrarily small initial velocities (as illustrated in Fig. (1)). This results
in significant improvements to the acceleration/heating efficiency (by as much
as 45%) over previous techniques. The benefits to the state of the art of space
propulsion stem from the high efficiency of the new mechanism, its thersholdless
nature and its capabilities of producing high ion energies and its electrodeless
character.

2 wawes
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Figure 1: Calculation from first principles (using Hamiltonian formulation) of
ion acceleration by two beating electrostatic waves (red curve) compared to the
effect of a single wave (blue curve) . Unlike the single wave case, the 2-wave
interaction accelerates ions whose initial velocity is below the classical thresh-
old (dotted horizontal line) to significantly high velocities. The thresholdless
nature and efficiency of this acceleration mechanism make it most promising for
propulsion applications.

In summary we have accomplished the following:

1. Demonstrated theoretically that a new highly efficient ion acceleration
mechanism by beating electrostatic (ES) waves is real and is a fundamen-
tal phenomenon that occurs only under specific conditions that were not
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known before. We derived, from first principles, the fundamental neces-
sary and sufficient conditions for the acceleration mechanism to occur.

2. We studied using Monte Carlo simulations the effects of collisions (that
would occur in a real low temperature plasma) on the ion acceleration
mechanism and found that collisions can enhance the effects due to scat-
tering of ions out of the forbidden region of phase space.

3. We designed and constrducted a dedicated experiment to study the new
ion acceleratio mechanism. We were able to launch and beat ion cyclotron
waves in an argon plasma produced by a helicon source and, using a ded-
icated state-of-the-art LIF diagnostic system (acquired through a recent
DURIP grant), we were able to provide the first laboratory de-
mostration of the existence of this new ion acceleration mecha-
nism.

This final technical report consists of three chapters summarized below.
In Chapter 1 the conditions under which a magnetized ion can be acceler-

ated through a nonlinear interaction with a pair of beating electrostatic waves
are explored. The electric field of the beating waves can, under some condi-
tions, accelerate ions from arbitrarily low initial velocity in stark contrast with
the well-known nonlinear threshold criteria for ion acceleration by a single wave.
A numerical investigation of the fundamental dynamics led to the identification
of critical points on the Poincar6 cross-section. A second-order perturbation
analysis was carried out to approximate the location of these critical points and
define the domains of allowed and forbidden acceleration. It is shown that for
an ion to be significantly energized, the Hamiltonian must be outside the en-
ergy barrier defined by the location of the elliptic and hyperbolic critical points.
Despite the restriction on the Hamiltonian, an ion with arbitrarily low initial
velocity may benefit from this acceleration mechanism. The resulting domain
of allowed acceleration is significantly larger than that of ion acceleration by
either single or non-beating waves.

In Chapter 2 a numerical model of the nonlinear interaction between beat-
ing electrostatic waves and magnetized ions, including collisions, is presented.
Previous studies of the beating electrostatic waves (BEW) interacting with a
single ion showed the ability of this mechanism to accelerate ions from arbitrar-
ily low initial velocities, and have revealed the fundamental conditions for this
interaction to occur. The present study extends the analysis to a large number
of ions and includes ion-ion collisions. The numerical investigation combines a
dynamical description for the ion-wave interaction and a Monte Carlo simulation
of the collisions. Despite the thermalization role of collisions BEW acceleration
was found to yield larger heating rate and higher particle energies than the
better known interaction with the single electrostatic wave (SEW).

In Chapter 3 we report on our experiments that demonstrate the exis-
tence of the new acceleration mechanism. We first report on the excitation and
propagation of Electrostatic Ion Cyclotron (EIC) waves in an rf-sustained argon
plasma and our measurements of the sought dispersion relations. Such waves
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were used to study the beating waves ion acceleration mechanism as reported in

the last section of the chapter. The waves are excited by an antenna consisting
of two parallel metal plates inserted at the edge of a plasma column with their
surface normal perpendicular to magnetic field. The plates can be driven in or
out of phase. The in-phase configuration couples better to plasma. It is shown
that EIC waves launched at frequencies between wcj and l0wcj propagate with
little damping at an angle between 820 and 86' with respect to the magnetic
field. The amplitude of the excited waves can be optimized by properly match-
ing the impedance of the driving circuit to the plasma and choosing the right

plasma conditions. The dispersion relation was measured using a phase-delay
technique and was found to be in good agreement with the theoretical EIC dis-
persion relation over a wide range of frequencies. We conclude that chapter and
the report with the first laboratory demonstration of the existence of
the new ion acceleration mechanism by directly measuring a significant
(up to 40%) increase in the perpendicular ion energy.

Acknowledgements This work has been carried out under contract from
the US Air Force Office of Scientific Research (AFOSR) under Grant number
F49620-02-1-0009. Technical Contract Manager: Dr. Mitat Birkan. Mr. Robert
Sorenson provided valuable assistance in developing the experiment. The au-

thors are thankful to professor Scime of West Virginia University for equipment
loaned and for his invaluable assistance in setting up the laser-induced fluo-
rescence (LIF) diagnostic which we acquired through a recent AFOSR-DURIP
grant.



Chapter 1

Ion Acceleration by Beating
Electrostatic Waves:
Domain of Allowed
Acceleration

1.1 Introduction

Stochastic heating of a magnetized ion by a single propagating electrostatic (ES)
wave has been extensively studied [1, 2, 3, 4]. Using first-order perturbation
theory Karney [3, 5] was able to derive analytical expressions approximating
overall nonlinear dynamics of an ion interacting with a single ES wave. That
work revealed the existence of a threshold for the initial ion energy below which
the particle cannot gain net energy from the ES wave. Skiff et al. validated these
findings experimentally [6]. The threshold is essentially the lower bound of a
nonlinearly broadened resonance condition between the ion velocity and wave
phase velocity. Ions with initial velocities below this threshold will not gain net
energy and their motion will remain coherent, while ions moving slightly faster
than the wave will be accelerated stochastically. Thus the threshold separates
two regions of phase space: a regular (or coherent) motion region of low energies
below the threshold and a stochastic one - above the threshold. Nonlinear ion
acceleration by a single wave is therefore always a stochastic process.

In 1998 Benisti et al. described a new mechanism for nonlinear ion acceler-
ation by ES waves [7, 81. The scheme requires pairs of ES waves that obey a
beating criterion: their frequencies must differ by an integer number of the ion
cyclotron frequency. In essence the beating of two or more ES waves creates a
propagating electric field structure having a low-frequency amplitude envelope.
Slow ions are first accelerated coherently through interaction with this envelope
and are then further accelerated stochastically by the higher harmonics of the

6
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beat wave. Under such conditions the single-wave theory threshold disappears
and regular and stochastic regions of phase space become connected allowing
ions with arbitrary small initial velocities to obtain high energies through co-
herent acceleration followed by stochastic energization. Consequently, this non-
linear interaction may result in a more efficient acceleration mechanism than is
possible from the interaction with a single wave. This new acceleration scheme
has been advanced as a possible explanation for the ionospheric ion acceleration
observed during the Topaz 3 [9] rocket experiments. An acceleration mechanism
that promises to energize a larger portion of the ion distribution function may
be promising to many applications where the efficiency of ion heating is of prime
importance, such as in spacecraft plasma propulsion.

A preliminary numerical exploration [10] of this mechanism revealed that
there are many cases for which the beating criterion does not lead to ion ac-
celeration. This hinted to the possibility that the criterion is necessary but not
sufficient.

In this study we attempt, using analytical and numerical techniques, to
define the necessary and sufficient conditions for the acceleration of the magne-
tized ion through nonlinear interaction with a pair of propagating electrostatic
waves. In particular, we use second-order perturbation theory and numerical
integration to analyze the nonlinear dynamics by finding the location of the
critical points [11] of the motion on a Poincar6 cross-section [121. These critical
points were not observed in previous studies [7, 8] since they were limited to the
analysis of a single trajectory (i.e. single initial condition) in a given Poincar6
cross-section. The location of these critical points allows us to define the initial
conditions for the Hamiltonian and the ion's velocity required for a magnetized
ion to be energized by a pair of beating waves.

In section 1.2 we overview the analytical formulation of the problem. In
order to give context to our study we review in section 1.3 the better-known
dynamics of a magnetized ion interacting with a single ES wave. This is followed
in section 1.4 by an overview of the fundamental features of the new mechanism
that relies on beating waves. In the remaining sections we seek expressions for
the location of the critical points of the motion which amount to a definition of
the domains of allowed and forbidden acceleration.

1.2 Analytical Formulation

We start by defining the coordinate axis as shown in Fig. 1.1. Here we have
a single ion of mass m and charge q in a constant and homogeneous magnetic
field, Bi. This ion interacts with a packet of electrostatic waves that propagate
in the positive x direction. Since we take the waves to be purely electrostatic
the wave-number ki is parallel to the electric field Ei of each of these waves.
The dynamics of the single ion in Fig. 1.1 is described by the following equation
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= const

Figure 1.1: A single ion of charge q and mass m in a constant homogeneous
magnetic field B, interacts with a spectrum of electrostatic waves whose wave-
number and electric field direction is parallel to the x-axis.

of motion [13, 7]:

S+Ei sin(kix- (1.1)

where w, = qB/m is the ion cyclotron frequency and Soi is the phase angle of
each wave. The corresponding Hamiltonian for the system is [7]

f=P2/2±+ ei cos(Kipsin 0 - vi-r + vi). (1.2)

In writing Eq. (1.2) we have used the fact that the system is periodic, and
transformed the Hamiltonian into normalized action-angle coordinate system
[14], where Ki = ki/kl, vi = w/wc, -r = wet, e = (kiqEi)/(mw,), p2 =X2 2
and X = kx, X = dX/dr-, so that X = psin0, X = pcos0. The action-angle
coordinate system is a special case of polar coordinates [12]. In our context 0
corresponds to the cyclotron phase angle measured clockwise from the y-axis,
as indicated on Fig. 1.1, while p is the normalized Larmor radius which, in a
constant magnetic field, represents the normalized velocity (perpendicular to
the magnetic field) of the magnetized particle undergoing cyclotron motion in
the xy plane.

Benisti et at. [7] defined a criterion for particle acceleration by multiple ES
waves. They showed that for regular and stochastic regions to be connected it
is necessary (but, as we shall see, not sufficient) to have at least one pair of ES
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waves such that

W2 - W1 = nw., (1.3)

where n is an integer. They also report that acceleration is more vigorous for
n < 2, therefore for the sake of simplicity, we limit our analysis to the case of a
single pair of beating waves, such that n = 1. In addition, Ref.[7] reports that
the maximum acceleration is achieved when all waves are of the same amplitude,
-=i = e . We also set Ki = rj = K, to simplify our analysis, and since the
phase angles, Vi, do not play a fundamental role in this acceleration process [71
we set all Vi = 0. With these simplifications the Hamiltonian (1.2) becomes

H = p'/2 + [cos(p sin 0 - ij) + (1.4)

cos(p sin O - vj-r)].

This Hamiltonian represents two coupled oscillators: one is the gyrating ion and
the other corresponds to the beating ES waves. We, therefore, can interpret E
as a coupling parameter between the two oscillators.

Two approaches are taken in this study for analyzing the system above.
First, we derive the analytical solution to equation (1.4) by applying a second-
order perturbation technique in conjunction with Deprit modified [15, 16] Lie
transformations [12, 13], and then compare it with the results of numerical
integration of equation (1.4). To obtain the numerical solution we use the fourth-
order symplectic integration algorithm (SIA4) derived by Candy and Rozmus
[17] who showed its superiority over fourth order Runge-Kutta algorithm for
Hamiltonian periodic problems, such as ours.

A convenient way of representing both numerical and analytical solutions is
to plot the resulting trajectories on a Poincar6 cross-section [12]. To construct
a Poinca6 cross-section from the numerical integration of Eq. (1.4) we plot the
point intersections of the ion trajectory in three dimensions (p, 0, r) with the p-0
plane at specific time intervals. For integer values of v this reduces to plotting p
vs. 0 at 7- = 27rj, where j = 0, 1, 2, ... is a non-negative integer. For non-integer
values of v precaution must be taken for proper accounting of intersection points.

Since the magnetic field is constant, the normalized cyclotron radius p is a direct
measure of the perpendicular ion velocity. Therefore Poincar6 cross-sections give
direct visual insight into the acceleration process.

The visual interpretation of Poincar6 cross-sections is straightforward. Ran-
dom point distribution corresponds to stochastic motion while regular patterns,
such as lines and ellipses, will tell us that the ion dynamics is analytical (or
regular). For example, if the wave amplitude, E, is zero, Eqs. (1.1) and (1.4)
reduce to a simple harmonic oscillator and for irrational values of V its Poincar6
cross-section shows a set of horizontal lines, indicating constant velocity (which
corresponds to a free ion gyrating in a constant magnetic field). Each of these
lines represents an invariant of motion for a given set of initial conditions [12].
When the coupling parameter e is not zero, we can treat the ion motion as a
perturbation of these invariants.
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The detailed derivation of the analytical solution for a particle interacting
with a single wave can be found in Ref. [5]. However, a more generalized solution
for multiple waves is obtained [12, 13, 18] through Deprit's modified Lie trans-
formation in Refs.[7, 8]. The resulting autonomous Hamiltonian derived from
Eq. (1.4) for a non-integer value of v to the second order in the perturbation,
E, is

H = E{J,(p) cos(vit) + Jvj(p) cos(vjO)}

+ e2{SN (p) + S'(p)
+ S6'i" (p)cos[(vj -i)O]}, (1.5)

where,

1 x-° mJm(p)J'(p)

S (p) = -

= i( 00 mJmp)J~.V.+m'(p) +
S6 ~~2p m__z00 V

+ 0 M mJ(P) ji-+m(P)), (1.6)
E .'3 - mM=--00

Jm is the Bessel function of the first kind of order m, and JX represents the
derivative of the Bessel function with respect to its argument. When vi is an
integer, the summations are performed over all m 7 vi to avoid singularities.
When v 0 integer, the first order terms in Eq. (1.5) disappear [7], and the
equation becomes more tractable.

The Hamiltonian in Eq. (1.5) is autonomous and therefore itself is an in-
variant of motion. Curves of constant H in a Poincar6 cross-section represent
the complete analytical solution of the problem to second order. We now wish
to compare the Poincar6 cross-sections of the analytical solution to those ob-
tained through numerical integration of Eq. (1.4). It should be noted that we
should not expect to see any stochastic behavior on the Poincar6 cross-sections
obtained from the analytical solution.

As with most phase diagrams, critical points define the dynamics of motion.
Since the system is not dissipative we expect to find two types of critical points:
elliptic and hyperbolic. As we shall show later, the location of the critical
points is the key to determining which initial conditions lead to acceleration or
trapping. The task before us is to find these critical points.

We now explore particle dynamics as a function of wave amplitude and
frequency, and in terms of the location of critical points on the Poincar6 cross-
section. Using numerical solutions we will demonstrate that when critical points
are absent in the regular region of the Poincar6 cross-section (as in the single
wave-particle interaction), the particle will not gain net energy.
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1.3 Single Wave Interaction

70-
60- Po=25

50-

40-

30-
1/22 0. ..... ....P ~ - v ". ........ ... ..

20 ------------------ * P....--...-.

0-
0 I I I

0 400 800 1200 1600
T

Figure 1.2: Time evolution of the normalized velocity p for a particle interacting
with a single off-resonance wave (e = 10, v = 24.3). The threshold derived in
Ref.[5] and given by Eq. (1.7) represents the boundary between the regular and
stochastic domains and is shown as a horizontal dashed line. This picture is
qualitatively similar to the case of the non-beating waves.

In this section, in order to create a context for our study, we summarize
the results obtained by Karney [5, 3] for the interaction of a magnetized par-
ticle with a single electrostatic wave. When the wave frequency is exactly an
integer number of the ion cyclotron frequency it is said to be an on-resonance
wave, otherwise it is an off-resonance wave. In both cases Karney found that a
threshold given by

p = - VIC, (1.7)

separates the regions of regular and stochastic motion [5, 19], as shown Fig. 1.2,
which illustrates for the numerical solution of the equation of the motion (1.1) a
typical case (6 = 10, Y = 24.3). Below the threshold, indicated by the horizontal
dashed line (p - 20), we observe that the ion motion is regular and we can
predict its behavior well by means of perturbation theory. More importantly,
as long as the ion's initial velocity is in that region it is clear that the ion
will not gain net energy from the wave [5]. When the initial velocity is above
the threshold, the ion moves stochastically and eventually gains net energy, as
shown by the upper trajectory in Fig. 1.2. Therefore, in the case of interaction
with a single wave the ion gains energy only chaotically when its initial velocity
P0 exceeds the threshold.
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Figure 1.3: Time evolution of the normalized velocity p for a particle interacting
with two beating waves (e = 10, vi = 24.3, vj = 25.3). Two particle trajectories
are shown, one with an ion trapped below p < v - v/E threshold and another
resulting in an accelerating ion. For both trajectories po are the same but 00
are different.

This is an important point and we will contrast it later with the case of
beating waves where, as we shall see, the two regions of phase space can become
connected under some conditions, and a particle with an arbitrarily small initial
velocity in the regular region can be accelerated through the threshold to high
values of p.

1.4 Multiple Wave Interaction

One of the early investigations of two ES waves interacting with ions was done
by Chia et at. [13, 20] who conducted an analytical study of the interaction
to first order in the perturbation and found that for the waves with even-even
or odd-odd combinations of frequencies v, there existed a vertical separatrix
allowing "infinite" heating. In 1998 Benisti et a. [7, 8, 9] showed that to
observe particle acceleration through the threshold boundary one needs to use
perturbation theory to at least second order. According to their analysis, the
normalized condition for the new acceleration mechanism already given by Eq.
(1.3) is

v. - v3 = n, (1.8)

where n is an integer. This amounts to a wave beating condition. By analyzing
a single ion trajectory obtained from numerical solutions of Eq. (1.1) Benisti et



FINAL REPORT 9/1/04: ION ACCEL. WITH BEATING WAVES 13

al. showed that as long as condition (1.8) is satisfied the ion will gain significant
energy from the waves.

Subsequently, we performed numerical investigation [101 based on the same
single trajectory method and found that some ion trajectories did not lead to
ion acceleration even if condition (1.8) was satisfied, as shown in Fig. 1.3. We
concluded that to find the necessary and sufficient conditions for ion acceleration
we need to examine the complete Poincar6 cross-section and find the critical
points of motion, as will be done in sections 1.5 and 1.6.

We first investigated the case of two electrostatic waves when condition (1.8)
does not hold. The picture is qualitatively very similar to that of the single wave-
particle interaction shown in Fig. 1.2. Ions with energies below some threshold
maintain coherent motion and do not gain net energy. This picture can change
drastically if condition (1.8) is satisfied.

As we already mentioned above, the case of the off-resonance beating waves
(both vi and v2 are not integers) provides us with much more tractable analytical
expressions. Consequently, we will focus our attention on such cases. Some
qualitative analysis of the on-resonance beating waves is still possible and will
be done in section 1.7.

In Fig. 1.4 we show typical Poincar6 cross-sections obtained by numerical
integration for vl = 24.3 and v2 = 25.3. The panels in this figure illustrate
the effect of increasing wave amplitude. The phase diagram consists of two
regions, stochastic and regular, just as for the single wave interaction. However,
unlike the single wave-ion interaction, the two regions are "connected". By
"connected" we mean that an ion with low initial velocity can undergo first
regular and then stochastic acceleration, reaching high energies.

For low perturbation strength (low values of e) the regular region extends to
values of p approximately predicted by Eq. (1.7). However, as E is increased the
regular region quickly shrinks to the vicinity of the elliptic critical point (desig-
nated E on Fig. 1.4.) Notice that the elliptic point is located at PE '- V/2 and
OE = 7r. In dimensional quantities the position translates into relation between
the ion velocity and the wave phase velocity, vio0  - -0.5w/k. Eventually, as
the wave amplitude is raised above values shown on Fig. 1.4, chaotic motion
dominates the phase diagram.

We now gauge how well the second-order perturbation analysis compares to
the numerical solutions. Fig. 1.5 indicates a good degree of agreement between
the two. Even though the detailed structure of the regular motion lines is not
captured with the analytical solution, the latter does predict the position of the
lower elliptic (E) as well as the hyperbolic point (H) rather well. On the other
hand, our analytical approach breaks down in the stochastic region, as should
be expected. Therefore the critical points shown by the analytical solution to
be at p > 25 in Fig. 1.5 (which can be said to describe a "homoclinic tangle" or
"stochastic layer") are in reality covered by the stochastic motion, as shown by
the numerical solution.

However, as described in Ref.[8], even in that region of phase space the
overall ion motion could be approximated by first-order orbits, for small E.
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Figure 1.4: Poincar6 cross-sections showing numerical solutions for a particle
interacting with two beating off-resonance waves (vi = 24.3, vj = 25.3). The
stochastic region occupies a greater fraction -of the phase space as the wave
amplitude is increased.
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Figure 1.5: Poincar6 cross-section for a particle interacting with two beating off-
resonance waves (E = 10, vi = 24.3, vj = 25.3). a) Analytical solution showing
the existence of hyperbolic and elliptic points marked by H and E respectively.
b) Numerical solution also showing the locations of the critical points.
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Figure 1.6: Analytical Hamiltonian as a function of p at 0 = 7r. The elliptic
an the hyperbolic points corresponding to the ones shown in Fig. 1.5 are the
minimum and the maximum of H. (vi = 24.3, vj = 25.3).

1.5 Topology of the Phase Diagram

As with any phase diagram, each curve on the Poincar6 cross-section corresponds
to a given set of initial conditions. In the case of a particle interacting with
beating waves we are mainly concerned with the hyperbolic and elliptic critical
points designated H and E respectively on Fig. 1.5. It is clear by tracing
trajectories in Figs. 1.4 and 1.5 that an ion with Hamiltonian lying between
the Hamiltonian values corresponding to points E and H does not gain net
energy from the waves i.e. does not reach the stochastic region where it can
be vigorously accelerated. Instead the corresponding phase space trajectories
circulate around the elliptic critical point E or cover the full range of cyclotron
phase angles (0 < 0 < -r) while remaining below H.

Other features of the Poincar6 cross-section in Fig. 1.5 worth mentioning
(but not central to our discussion on acceleration) are the two degenerate saddle
points that can be seen at the intersection of the fourth curve (outward) from
the elliptic point with the 0-axis and the "primary" (upper) separatrix that is
approximately near the eleventh curve (outward) from the elliptic point.

It is relevant to note in this context that the Hamiltonian of various tra-
jectories increases monotonically from the Hamiltonian value at point E to its
value at point H, as shown in Fig. 1.6. The figure shows the Hamiltonian as
a function of p for 0 = 7r and illustrates that the location of the elliptic and
the hyperbolic points could be found by determining the local minimum and the
maximum of H.
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Therefore, for given values of vi and E, the inequality

HE < H(po, Oo) < HH, with po < v - v¼ (1.9)

defines the forbidden acceleration domain, where HE and HH are the Hamilto-
nian values for the elliptic (E) and the hyperbolic (H) points, and subscript 0
refers to initial conditions. By "forbidden acceleration domain" we mean here
the domain of initial conditions for which an ion cannot reach the stochastic
region of phase space where it can be vigorously energized. All other ion tra-
jectories then lie in the allowed acceleration domain of phase space. The ions
in the allowed acceleration domain will be affected by the waves strongly. The
restriction on p0 in Eq. (1.9) is needed because ions with P0 > v - V/e will not
be trapped in the energy barrier between the elliptic and the hyperbolic points
(i.e. in the forbidden acceleration domain), as shown in Fig. 1.6.

The "trapping" criterion in Eq. (1.9) given in terms of the Hamiltonian
should be contrasted with the threshold criterion for interaction with a single
wave given by Eq. (1.7). It is clear that unlike the single-wave case, an ion with
initial velocity po below the "threshold" can still be accelerated to high energies
if the corresponding Hamiltonian is outside the range described by Eq. (1.9)

From the point of view of plasma acceleration one would like to limit the
number of particles trapped in the forbidden acceleration domain (HE < H(po, 00) <
HH). The rest of the ions gain much higher energies through first regular (if
their initial energy is low) and then stochastic acceleration, as shown in Figs.
1.4 and 1.5. However, even the trapped particles can escape into the stochastic
domain if we consider a collisional plasma, given that a trapped particle may
gain enough energy during a collision to overcome the energy barrier, Fig. 1.6,
as we have shown through particle simulations reported in Ref.[21].

1.6 Critical Points

To define the domains of allowed and forbidden acceleration described by Eq. (1.9)
we need to find the location of the critical points E and H. We now seek ana-
lytical expressions for both.

Since both points are the extrema of the Hamiltonian, that task can be
achieved by setting the time derivative of p and 0 to zero simultaneously [12, 11].
Utilizing Hamilton's equations of motion in conjunction with Eqs. (1.5) and (1.6)
we get

aH
p - -0 =e{ViJg,(p)sin(viO) (1.10)

"± vJ,,Jv (p) sin(v39)}

"± 6i(vi - vj)S6"'"(p)sin[(vj - vi)O] = 0,
S= aH

5p- = {J', (p) cos(vA0) (1.11)

+ g((p)cos(vj0)}
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+ E2{s, (P) +~'p

+ S6
1' "(P)cosI(Vi - = 0.

When both wave frequencies are off-resonance (vi, vj 0 integer), the equations
above simplify because the first-order terms drop out, and we are able to obtain
the position of critical points analytically.

For v 0 integer, the S1'(p) term in Eq. (1.6) could be simplified to an
algebraic equation containing only few Bessel functions [13]:

IT

S'(p) = 8sin vi•r

- J-,-i(P)J-(.i-1)(P)]. (1.12)

As a result of this simplification we can reduce the S$"v" (p) term down to

Si ''(p)j = P Sr (p) + PL S (p). (1.13)
Vi Vi1

The details of this derivation are given in the appendix. We can therefore
express the Hamiltonian (1.5) in terms of the simplified S'i (p) function only,

H= 2{(1 +Pcos[vi- vj]O)S'ki(p)
V i

+ (1 + p cos[vi - vj]O)S'i (P) (1.14)
Vi

As we will show later in this section our analysis breaks down for small values
of v. Consequently we take vi > 1, and remembering that n = 1 with p/vj =
p/(vi + 1) ,- p/vi(1 - 1/vi. + ...) we can approximate p/li - p/vj. Dropping the
subscripts in S'i (p) we have

H = e2 [ + L Cos((vi - Vj)0] x

[S' (p)+ SVj (P)]. (1.15)

Finally, we substitute Eq. (1.12) for each of the S'i (p) functions. Expressing
everything in terms of vi we get

H ( 2inr + - cosO) (1.16)

[ -

I J'-(P)J-ý-10 + 4'(p)J-(p)

+ Jv+1(P)J-(,,+l)(P) - Jv+2(P)J-(v+2)(P)j,

where we have replaced vi with v.
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We are now ready to find the position of points E and H. From Eq. (1.10)
as well as from Figs. 1.4 and 1.5 we see that these points lie at 0 = 7r. This
reduces equations (1.10) and (1.11) to

-p(1 - P)L(p) = 0, where (1.17)
'9P L'

L(p,v) = -J,-_l(p)J-_(,-_)(p) + J,(p)Jg-(p)

+ J.+I(P)J-(,+i)(P) - Jv+ 2 (P)J-(,+ 2)(P).

From Eq. (1.17) we can express p as a function of L(p) and L'(p), where the
prime denotes the derivative with respect to p, and arrange the resulting ex-
pression as

p 1 L(p, v)- 1or (1.18)
v v L'(p, v)'

F(p,v) = p P 1L(p,v)v vvL(p, v) . (1.19)

The first and second roots of Eq. (1.19), PE and PH, for a given value of v,
correspond to the locations of the elliptic and hyperbolic points respectively.

The solution to Eq. (1.18) for a range of v is shown in Fig. 1.7, while the
F(p,v) of Eq. (1.19) is plotted as a function of p/v for v c [55.001,55.999] in
Fig. 1.8. It is now important to discuss the behavior of these solutions.

As we discussed above, we are only considering the cases with v 4 inte-
ger. Unfortunately, due to the asymptotic behavior of the Bessel function near
the "turning point" [22], defined as Ptp = v•(v + 1), the solution approaches
different limits as v gets close to an integer from different sides. This peculiar
behavior is demonstrated for the case of v - 55 in Fig. 1.8. Therefore, no simple
analytical expression could be obtained for the position of the hyperbolic point.
Instead, Fig. 1.7 shows a range of solutions for the location of this point. On the
other hand, the elliptic point is very well defined. It is seen that for sufficiently
large values of v the location of the elliptic point, according to our second-order
perturbation analysis is at

PE OE = ir. (1.20)

Although no simple expression could be found for the location of the hyperbolic
point, we see from Fig. 1.7 that its location asymptotes (at large values of v) to
a value of plv - (0.8 - 1.0), therefore we may approximate

PH :- 0.9v, OH = 7- (1.21)

It is also important to mention that because of the asymptotic behavior of
Bessel functions, the elliptic and hyperbolic points could not always be found
for small values of v. For these cases while the expression for the Hamiltonian,
Eq. (1.16), is still valid, our analysis of the allowed and forbidden acceleration
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Figure 1.7: Solution to Eq. (1.18) as a function of v. The elliptic and hyperbolic
points, E and H, could not always be found for small v. For Y > 9 both points
could be found for any values of v. That region is marked as "continuous" on
the figure.
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Figure 1.8: Plot of the function F(p, v), given by Eq. (1.19), showing how the

second root (corresponding to the hyperbolic point) moves away from p/v = 1 as
v changes from 55.001 to 55.999. The first root on the left, marked E, represents
the elliptic point and the subsequent roots represent the hyperbolic points for
the various values of p/v.
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domains does not apply. The range of v for which we could always find both
critical points is designated as "continuous" in Fig. 1.7.

Another limitation is placed on our analysis by its independence on c in
locating the critical points, as seen from Eq. (1.17). Extensive numerical explo-
ration of the weak dependence of the critical point locations on E suggests the
following corrections to expressions (1.20) and (1.21), which are reminiscent of
the c dependence in the single wave interaction [5], Eq. (1.7),

(E2 O eE = 7, (1.22)PE: = 2 '

PH = V - Vp, OH = 7r. (1.23)

The physical interpretation and significance of these two points could be
understood as follows. Looking back at Fig. 1.1 we see that both points cor-
respond to the particles moving 1800 out of phase with the electric field of the
wave. We can note from Fig. 1.6 that at the hyperbolic point the ion velocity is
VH = -w/k + vt, and the Hamiltonian is at the maximum, while at the elliptic
point the ion velocity is vE = (-wlk + vt,)/2, and the Hamiltonian is at the
minimum. The difference in the Hamiltonian of the two points then forms an
"energy barrier", which an ion must overcome to be accelerated by the wave.

Another way to understand the importance of the elliptic point is to realize
that at this point the energy exchange between the ion and the waves is minimum
and the situation is equivalent to stable equilibrium for a pendulum. Any small
perturbation from that equilibrium will only cause small oscillations about it.
This implies that in the immediate neighborhood of point E the ion energy
cannot be altered sufficiently to push the ion into the stochastic region, as
seen in Fig. 1.5. On the other hand, the hyperbolic point corresponds to the
unstable equilibrium of the pendulum and any small perturbation from it will
cause significant changes in the ion motion, i.e. escape into the stochastic region
and subsequent vigorous heating.

1.7 Beating Waves (On-Resonance)

When we choose vi and vj to be both on-resonance, the overall behavior becomes
much more complicated and no simple analytical expression, as in the previous
section, can be found. Fig. 1.9 shows a typical example, the case with E = 10,
vi = 24, and vj = 25. One of the major differences with respect to the off-
resonance case is that now we have two hyperbolic points which do not lie at
0 = Ir. Nevertheless, we could still find their positions by solving equations
(1.10) and (1.11) numerically.

The location of the elliptic point is easier to obtain since the first-order terms
in Equations (1.10) and (1.11) drop out for 0 = 7r, as in the off-resonance case.
Also, Fig. 1.9 shows that the analytical solution exhibits much more complicated
chains of the critical points at large values of p. While in reality these points
are "inside" the stochastic region, this graphical picture illustrates why the
analytical treatment of the on-resonance case is more challenging. However, we
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note that the locations of both the elliptic and the hyperbolic points even in
this case are very close to those determined by Eqs. (1.6). Indeed, by studying
numerically the solutions to Eq. (1.4) for both on-resonance and off-resonance
cases we conclude that the locations of elliptic and hyperbolic points for both
cases could be well predicted by Eqs. (1.6).

1.8 Summary and Concluding Remarks

The beating criterion (W1 - w2 = nwr) proposed by Benisti et al. [7, 8] can
allow a magnetized ion to be energized by a pair of beating electrostatic waves.
The importance of this mechanism stems from its ability to accelerate ions with
arbitrarily low initial velocity. It has become clear however, (see Fig. 1.3) that
this criterion is not sufficient for acceleration.

In order to better define the criteria for acceleration we investigated multiple
ion trajectories (multiple initial conditions) on the same Poincar6 cross-section.
This analysis led to the identification of critical points on the phase diagram.
Vigorous ion acceleration now can be explained in terms of the location of these
points in the region of regular motion. A second-order perturbation analysis of
the equation of motion allowed us to derive the criterion defining the allowed
and forbidden acceleration domains in terms of the location of these points.

According to this analysis, for a pair of beating (vi - v2 = 1), electrostatic
waves interacting nonlinearly with a magnetized ion, significant ion acceleration
can occur as long as the Hamiltonian of the system does not satisfy the following
"trapping" criterion

HE < H(po; 0o) < HH, with po < v - ¼/c, (1.24)

(which strictly applies when v >> 1). If the ion's initial conditions do not
satisfy the above trapping criteria, the ion can be accelerated from arbitrarily
low initial velocity through the region of regular motion to the stochastic region
where substantial energization can occur.

Regular ion acceleration is a much slower process than stochastic energiza-
tion [10]. However, as the wave amplitude is increased, the region of stochastic
motion can extend down to low initial velocities. It is important to note that
the trapping criterion is in terms of the (initial) Hamiltonian and not just the
(initial) velocity (Po).

The necessary (wave-beating) condition stated in Eq. (1.8) along with the
avoidance of the trapping criterion stated in Eq. (1.24) represent two necessary
and sufficient conditions for the beating-wave ion acceleration mechanism to
occur.

Finally, it is important to mention that the trapping criterion's independence
of the wave energy e is a consequence of the second-order nature of the analysis.
In light of the albeit weak dependence on e in the single-wave criterion in Eq.
(1.7), we investigated numerically over a wide range of non-dimensional param-
eters (E z 5 - 100, v z 10 - 50) location of the critical points and found that
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Figure 1.9: Poincar6 cross-section for a particle interacting with two beating
on-resonance waves showing a more complicated picture than that of the off-
resonance case shown in Fig. 1.5. (c = 10, v. = 24, ' 25). a-) and a-2)

analytical solution. b) numerical solution.
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the same dependence on applies. Therefore, given the locations of the critical
points in Eq. (1.6) we can rewrite the trapping criterion in Eq. (1.24) as

H[(v - vle)/2; ir < H(po; Oo) < H(v - v'E; ir),

with P0 < v- /•.

While the above study offers insight into the fundamental problem of a sin-
gle ion interacting with two beating waves, the relevance of the mechanism to
practical problems involving a plasma rests on resolving a number of issues: 1)
the effects of oblique wave propagation, as recently studied in Ref.[23]; 2) the
effects of wave dispersion; 3) the extension to collection of particles and the
role of collisions. This last effect was a subject of numerical investigation in
Ref.[21]. In that work we found that collisional scattering enhances ion ener-
gization by providing an escape mechanism for the ions trapped in the forbidden
acceleration domain of phase space.

1.9 APPENDIX: Sý"vi(p) Term Simplification

Using Eq. (1.8) and substituting for Jm(p) and J4,(p) with the following iden-
tities [22]

J.-i (P) + Jm+i(P) = 2m Jm(p),
P

Jm-i(p) - Jm+I(P) = J.'(P), (A-25)

we can rewrite S '6' (p) as

S+ i " .(p)J ) Jm+2 (P)J_+I(P)

+ z Jm(P)Jm+i (P) ZJm-I(P)Jm+2(P)
v-rn v-rn

Jm(p)Jm-i(p) + Jm-i(P)Jm- 2 (P)

± z Jm+i(P)Jm- 2 (P) _ Jm(P)Jm-i(P)

- ZJm(p_)Jm+_l(P)} (A-26)

Now we use identity [24]

g J+p(p)JM(p) = .

v-rm sin irvP

which is valid for p > 0 to simplify Eq. (A-26) to

$6"(P = 8 sin 'Tv [2J,+ 2 (p)J-(,+l)(p)

-2J,(p)J-(.,-i)(p)],
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which, with the help of identities (A-25), may be easily shown to equal to

snp irv

-J'- 1 (P)J-(v'-)(P)]

(v + 1) sin 7r(v + 1)[ j(p)j-'(p)
-J,,+2(P)J-(.,+2) (P)].

Chia et al. [13] showed that S 'i(p) can be simplified as

S" (p) 8 i [J,+1(P)J-(T,+1)(P)

J-i g- (P) J-(v, -1)(P)]

It is then clear that

Sivj (p)) + ± S (P) (A-27)

Finally, we caution that the relation (A-27) holds only for the special case
of vi 0 integer and vj = vi ± 1.



Chapter 2

Effects of Ion Collisions on
Ion Acceleration

2.1 Introduction

Acceleration of magnetized ions by beating electrostatic waves (BEW) is a non-
linear phenomenon that may be occurring in nature and may have interesting
applications to various problems including spacecraft propulsion. Observations
made with the Topaz 3 rocket [9] indicated that ions are accelerated, in a region
of natural electrostatic wave activity, in the topside ionosphere to the escape
velocity. A puzzling issue is that initial velocities of these ions are significantly
below the previously known threshold required for resonant acceleration by elec-
trostatic waves. The threshold was derived in the context of ion interaction with
a single electrostatic wave (SEW) [3, 5].

Benisti et al. [7, 8] proposed a non-resonant acceleration mechanism that
relies on nonlinear interaction of an ion with a pair of beating waves. They
showed that if the criterion

nWc = W2 - W1, (A-1)

is satisfied between any pair of electrostatic waves, ions can be accelerated
from an arbitrary low initial velocity. Equation (A-i) states that the difference
between the frequencies of the two beating waves W, and W2 should equal to an
integer multiple, n, of the ion cyclotron frequency w,. This is in great contrast
with the well known SEW-ion interaction studied theoretically by Karney et al.
[3, 5], Zaslavsky et al. [24, 4], and Chia et al. [13, 20], and experimentally by
Skiff et al. [6]. These studies showed that for acceleration to take place ion
initial velocity has to be within a resonance band of the wave velocity. Another
fundamental understanding obtained from these studies was that the ion motion
during SEW-ion acceleration is always stochastic.

Choueiri and Spektor [10] investigated the beating wave acceleration mech-
anism theoretically and found that while Eq. (A-i) is necessary for the accel-

26
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eration to occur, it is not a sufficient condition. Spektor and Choueiri [25]
derived and verified the necessary and sufficient conditions for interaction, also
discussed in section 2.2. When these conditions are satisfied, an ion with an
arbitrary low initial velocity can accelerate through a regular (non-stochastic)
motion in the electric field of the beating waves, then reach a threshold above
which acceleration continues more vigorously (stochastically).

Since the BEW acceleration can increase the perpendicular velocity of all
ions, as opposed to only the resonant part of the distribution function, it is of
particular interest to spacecraft propulsion applications where acceleration or
heating efficiency is of prime importance. In order to obtain the first indication
of the existence of this mechanism we have designed and built a dedicated
experiment using a helicon source and RF antenna to launch pairs of beating
waves [26].

In order to guide the design of the experiment and help in interpreting its
results we needed a model of the interaction that more resembles the case of a
real plasma than does the single ion model. Such a model should account for the
interaction of the waves with large amount of particles, and most importantly
ion-ion collisions. In this study we present such a model based on using Monte
Carlo techniques to describe collisions, and solving the equation of motion be-
tween collisions. We use the simulation to study parametrically the effects of
ion collisions on the heating rate and attainable average energy for both SEW
and BEW.

In section 2.2 we review the collisionless model that describes the interac-
tion of a single particle with a spectrum of electrostatic waves. We also review
previous findings resulting from that model. In section 2.3 we present the nu-
merical model that allows tracking a large number of ions and account for a
finite collision rate. In section 2.4 we present and discuss the results of our nu-
merical investigation, and in section 3.7 we summarize our findings and deduce
a phenomenological picture that illustrates the fundamental differences between
BEW and SEW ion acceleration.

2.2 Single Particle Model

A theoretical model for beating electrostatic waves interacting with a single
ion is given in [7, 8, 25]. The description, which latter in this chapter is aug-
mented with inclusion of collisions and the ability of tracking many ions, is
shown schematically in Fig. 2.2. The schematic shows an ion in a constant
magnetic field Bi and electrostatic wave traveling in transverse direction 1.
The wave interacts with a gyrating ion causing a change in its Larmor radius.
Because the magnetic field is constant, an increase in the Larmor radius di-
rectly corresponds to the increase in the ion's perpendicular velocity and thus
its kinetic energy. The equation of motion governing the interaction between
a spectrum of propagating electrostatic waves and a single ion can be easily
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Z

Figure 2.1: A single ion of charge q and mass m in a constant homogeneous
magnetic field B; interacts with an electrostatic wave. The wavenumber and
electric field of the wave is parallel to the x-axis.

derived [3, 13]:
d2x
dt-2- + w2x= Z Ei sin(kix - wit + Voi), (A-2)

where x and t are the coordinate and the time variables, q and m are the charge
and the mass of the ion, w. = qB/m, Ei, ki, wi, and ¢i are the amplitude, wave
number, frequency and phase of the ith electrostatic wave. While Fig. 2.2 shows
a single wave, a similar picture can be drawn for a spectrum of electrostatic
waves traveling in the same direction. It is convenient to normalize the above
equation and express it in the canonical form [14, 12]:

H= p2 /2 + y: -- cos(Kip sin 0 - vir + 0i), (A-3)

where H is the Hamiltonian of the system, ti = ki/k 1 , vi = wi/we, "r = wet, ei =

(klqEi)/(mw2), p 2 = X 2 + k 2, and X = klx, X = dX/dr, so that X =
p sin 0, X = p cos 0. Where 0 is the cyclotron rotation angle measured clockwise
from the y-axis as shown in Fig. 2.1 , and p is the normalized Larmor radius.
Equations (A-2) and (A-3) could be solved numerically with either conventional
4th order Runge-Kutta scheme or a symplectic approach. We have used the
symplectic integration method developed by Candy and Rozmus [17] to study
the behavior of a single ion interacting with one or two propagating electrostatic
waves.

We were able to confirm [25] that while a single electrostatic wave produces
some ion heating under restricted (resonance) conditions, two beating waves
can result in ion acceleration from arbitrary low initial velocities. We have
also shown that Eq. (A-i) describes the necessary, but not sufficient condition
for that heating to take place. The necessary and sufficient conditions for ion
heating by the beating electrostatic waves are [25]:

nw, = W2 - w1 , (A-4)

H(p;0) = HH > H(p -v-VE-;O=7r), (A-5)
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where HH is the value of the Hamiltonian evaluated at the hyperbolic point as
described in Ref.[25] and shown schematically in Fig. 2.2.

The schematic shows the possible acceleration processes. Particle 1 is ac-
celerated stochastically in both cases. Particle 2 with initial energy below the
SEW resonance threshold (p = v - ,Fe is affected by BEW but is never al-
lowed to reach the stochastic region. While particle 3 remains unaffected by
the SEW interaction, it can be effectively accelerated by BEW through regular
(non-stochastic) motion that allows it to reach stochastic region, where more
rigorous acceleration takes place.
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2.3 Including Collisions

Collisions alter the picture described in the previous section drastically. Without
collisions an ion whose initial velocity (Hamiltonian) is below that corresponding
to Eq. (A-5), particle 2 in figure 2.2b will never be effectively accelerated by the
waves. However, a collision would instantaneously change that ion's trajectory
and place it in a part of phase place where Eq. (A-5) is satisfied.

In this section we consider ion collisions only. Coulomb ion collisions are of
interest since they thermalize the heavy species energy and since our main focus
is ion heating.

To introduce collisions into our numerical model we follow the classical work
of Takizuka and Abe [27]. We model Coulomb collisions as small angle binary
collisions and assume that on a sufficiently small time scale we can uncouple
particle motion from collisions. Thus our algorithm consists of two parts. We
move all particles between collisions according to the equation of motion pre-
scribed by the single particle collisionless model, Eq. (A-2). We then use the
Monte Carlo approach to determine randomly the collision partners and the
scattering angles for each collision.

2.3.1 Overall implementation

1. We first choose a time step At smaller than the ion-ion relaxation time
calculated at the initial temperature of the ions.

2. Using a 4 th order Runge-Kutta scheme we then follow each particle in our
simulation for At seconds according to the equation of motion for a single
ion, Eq. (A-19).

3. Next we randomly choose a collision partner for each ion.

4. Using Monte Carlo method we then determine the velocity increments for
all colliding pairs as described in section 2.3.2. The new velocities are fed
back into the Runge-Kutta solver.

5. After each collision, we store the value of the scattering angle E) for each
particle. We assume that whenever E sin 2 E > 1 the particle has under-
gone one ion-ion Coulomb collision. Here the summation is over successive
collisions for a given particle.

2.3.2 Momentum exchange during a collision

We treat Coulomb collisions between ions as a small angle binary elastic scat-
tering events [27]. Such collisions preserve energy and momentum.

The relative velocity vector u(u,, uY, u.) for a colliding pair is:

U = Va -Vb, (A-6)
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where va and Vb are the velocities of two colliding ions. The post-collision
relative velocity uf is:

uf = ui + Au, (A-7)

where ut is the relative velocity right before the collision and Au is the change
in the relative velocity due to the collision. The change in the relative velocity
due to a scattering event could be derived from conservation principles [271,

Au, = (u./u±)uzsinEcos• - (uy/u±)usinEsinb

- u,(1 - cos E), (A-8)

Auy = (uv/uL)uz sine cos 4 + (u,/u±)u sine sin D

- uy(1 - cosE), (A-9)

Au, = -u 1 sin E cos (D - u.(1 - cos E)), (A-10)

where u X Y and = u±+uZ. Here perpendicular and parallel directions
are defined relative to the magnetic field (2-axis). When u± = 0 we have,

Au, = usinecos4D, (A-11)

AuY -= usinEsin4i, (A-12)
Auz = -u(1 - cos E). (A-13)

Angle 4) is chosen homogeneously randomly from 0 to 27r. Angle E is chosen
according to:

sin - 1E 2' (A-14)

232
1 - cos E) = 2' (A-15)

1 +J2' (-5
where 3 = tan(E/2) is a random number chosen with the Gaussian distribution
centered around zero and having the following variance (32):

(32) = q4nA (A-16)(55E = 1t m ll'l

where q and m are the charge and the mass of the ion, n is the particle number
density, A is the Coulomb logarithm, E0 is the permittivity of free space, lull
is relative speed of two colliding ions, and At is the time step [27]. This small
angle restriction allows us to interpret as the ion-ion collision frequency vii to the
binary collision frequency vb and the formalism implicitly accounts for electron
shielding. We did not however track the electron dynamics as electrons are
not expected to be effected by low frequency of the wave. We assume that the
electron temperature is not affected by the low frequency waves of the problem,
W < Wce.

The post-collision velocity of each particle is found simply from,

= vf + (m/2)Au, (A-17)

b= v' + (m/2)Au. (A-18)
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2.3.3 Moving the particles

Starting from the Lorentz force equation,

F = mR = q(E + v x B), (A-19)

we can derive equations of motion for a single particle in three dimensions. In
our analysis, the magnetic field is constant ,B = Bi, and the electric field arises
from the propagating electrostatic waves, as shown in Fig. 2.1,

+= y+E sin(x - wit), (A-20)
i

S---- -, (A-21)

=- 0, (A-22)

so that •, j, and i are the second derivatives with respect to time t, and the
other variables are the same as those appearing in equations (A-2) and (A-
3). Equations (2.3.3) could be solved numerically using 4 th order Runge-Kutta
method.

2.4 Simulation

The above model is used to simulated the case of BEW acceleration (c =

10, v, = 24.3, v2 = 25.3 Ki = 1) and compared to those of SEW acceler-
ation under similar condition (E = 10, v = 24.3). To visualize the numerical
results we use Poincare cross-sections (p vs. 0 phase diagrams) [12]. We will also
investigate how collisions influence the energy evolution of the entire system.

2.4.1 Phase diagrams

Figure 2.3 follows collisionless evolution of 1000 particles in the plot p vs. 0.
Initially we distribute all particles homogeneously over region of the phase space
p < 20. The stochastic heating is observed whenever ions reach the stochastic
zone (p > 20), Fig2.2b. Particles with initial conditions lying outside prohibited
zone are accelerated as could be seen from that figure. The points corresponding
to unaccelerated particles define a mount-like structure, seen in the last two
panels of Fig. 2.3, which corresponds to prohibited zone shown in figure 2.2b.
Figure 2.4 shows the BEW ion acceleration case where the evolution of phase
space points is qualitatively different then the collisionless case illustrated in
2.3. Even ions originally in the forbidden acceleration zone are accelerated.

2.4.2 Energy Evolution

Now that we showed that collisions enhance ion heating, we will analyze the
energy evolution of the entire system. In this section we compare the cases
of BEW and SEW ion acceleration by beating electrostatic waves and a single
electrostatic wave.
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Figure 2.3: E = 10, v, = 24.3, v2 = 25.3. Collisionless case. The "hump"
corresponds to the particles not accelerated by the beating waves in accordance
with Eq. (2.2).

Figure 2.5 shows perpendicular component of the energy for BEW as well
as SEW cases. Initially the energy increases exponentially. This corresponds to
ions funnelling to the stochastic region. The process is analogous to phase space
diffusion - thus its exponential nature. As more particles find their way into the
stochastic region, the exponential increase is followed by the equilibration of
the energy (by stochastic motion and collisions). Because particles fill up the
stochastic region randomly, the statistical average of the energy stays constant.

Figure 2.5 demonstrates that collisions significantly increase both the ion
heating rate and the final average energy.

In order to help us further illustrate these effects better we have ran the
simulation with the collision frequency restrained to a constant value irrespec-
tive of the temperature. Figure 2.6 shows the results for four such cases and a
simulation with self-consistent collision frequency calculation, for comparison.
The figure indicates that there is an optimum collision frequency at which the
heating rate and efficiency are at the maximum. When the collision frequency
is increased from 0 to vb = O.04wc, the ions diffuse faster into the stochastic
region and the heating efficiency improves. However, as the collision frequency
is further increased (vb = 4 .14w.), the heating rate as well as the efficiency start
dropping because collisions increasingly disturb ion motion too much. In a real
plasma the ion collision frequency scales as - Ti-,/2 (for Ti < Te). As the elec-
trostatic waves deposit their energy into the plasma, the ions collide less often
and the collision frequency drops to its optimum value. However, if the collision
frequency decreases even further, the heating efficiency drops, driving down the
temperature and stabilizing the collision frequency back to its optimum value.
Therefore, we can conclude that the collision frequency always changes to ac-
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Figure 2.4: e 10, v, 24.3, v2 25.3. Particles are allowed to collide with
each other. We take the initial collision frequency required for step 1 of our
algorithm to be _ 106, which corresponds to n, _" 1012 cm-' and T. = 300 K.
Unlike Fig. 2.3, beating electrostatic waves accelerate all ions.

commodate the maximum possible heating rate. This becomes more evident
by comparing the clamped value of v'b simulations (dashed lines) to the solid
line which was obtained by running the simulation and allowing the collision
frequency to change self-consistently with the ion temperature evolution.

2.5 Conclusions

Numerical simulations of the nonlinear interaction of magnetized ions with beat-
ing electrostatic waves (BEW) were carried out. The resulting particle heating
was compared to that obtained from simulations with interaction with SEW
under the same conditions. The higher heating rate and temperature attained
in BEW acceleration can be explained through the following fundamental de-
scription. In the SEW interaction thermalizing collisions are the only means for
particles below a certain threshold of energy, associated with the resonant con-
dition, to reach the region of phase space were stochastic and vigorous heating
takes place. The non-resonant character of BEW acceleration allows a signif-
icant fraction of the ion distribution function to be accelerated and reach the
stochastic region. This acceleration is augmented by collisions. In addition to
the thermalizing role of collisions, this simulation-supported phenomenological
picture points to the promise of using BEW as a new and efficient method for
accelerating magnetized ions in a real plasma.
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Figure 2.5: Perpendicular energy evolution for 1000 particles interacting with
beating waves. E = 10, v, = 24.3, v2 = 25.3.For comparison we also show the
energy evolution for the single wave-ion interaction. e = 10, v = 24.3.
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Figure 2.6: Perpendicular energy evolution for 1000 particles interacting with
beating waves. Dashed lines correspond to the clamped values of collision
frequency and solid curve represents the self-consistent simulation. C = 10,

v, = 24.3, v 2 = 25.3.



Chapter 3

Beating Waves Experiment:
Excitation of Ion Cyclotron
Waves and Demonstration
of Ion Acceleration

3.1 Introduction

Inductive rf plasma sources, and in particular helicon plasma discharges, are of
interest in propulsion research because of their high plasma production efficiency
and controllability [28, 29]. Unfortunately, these rf plasma sources produce cold
(T2 - 0.1 eV) ions. To achieve high Ihp it is thus necessary to heat these ions
considerably.

Various types of electrodeless plasma heating (ion acceleration) provide an
efficient way to increase ion temperature. Methods such as the Ion Cyclotron
Range Heating (ICRH), Lower Hybrid (LH) wave heating, and the current drive
have been suggested for ion heating in fusion devices [30, 31, 32]. The ICRH
scheme is also employed in the VASIMR experimental rocket concept [33, 34, 35].
In addition, ion heating by various electromagnetic and electrostatic instabilities
has been observed in the Earth ionosphere [36, 37, 38, 39, 40].

In this chapter we investigate excitation of Electrostatic Ion Cyclotron (EIC)
waves that propagate transversely to the external magnetic field. Our previous
theoretical and numerical studies have shown that two beating electrostatic
waves, obeying specific criteria [10, 25, 41, 42], may energize ions very effi-
ciently. Such ion energization mechanism can prove to be useful in propulsion
applications.

There is a lack of detailed measurements of EIC wave properties and prop-
agation in rf-sustained plasmas. It is with this goal in mind that we investigate
the excitation and propagation of EIC waves across a magnetized rf-sustained

36
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plasma column, and subsequent ion energization by these waves. In the above
sections we have not dealt with ion energization but focused on the excitation
and propagation of EIC waves. The energization is demonstrated in the last
section.

This chapter is organized as follows. In section 3.2 we review previous ex-
perimental work on electrostatic wave launching. Then in section 3.3 and 3.4
we describe our experimental apparatus and the diagnostics used to detect and
study the waves. In section 3.5 we analyze the electrostatic waves launched in
our apparatus. We summarize our results regarding wave excitation in section
3.7. We finally conclude in the last section with the experimental demonstration
of the existence of the new ion acceleration mechanism.

3.2 Review of previous work

Various experiments reported on vigorous ion energization by EIC waves in mag-
netized plasmas. However, most of these studies relied on exciting EIC waves
through some internal plasma instability. Two typical experimental configura-
tions are shown in Fig. 3.1.

In these experiments an electrostatic wave of frequency -w j is excited ei-
ther by drawing electron current along the magnetic field to a positively biased
small electrode, as shown in Fig. 3.1a, or by creating an electric field perpen-
dicular to the external magnetic field, as shown in Fig. 3.lb. In both cases
significant ion energization was observed once the wave was excited [44, 45].
Unfortunately in experiments like these, it is impossible to separate the cause
from the effect - the ion energization from the wave generation mechanism. In
addition the wave frequency cannot be controlled. Thus to investigate ion ener-
gization properly one needs to design an experiment where the waves are excited
by some externally controlled antenna.

Four such antenna configurations are shown in Fig. 3.2. Hooke and Barn-
abei [46] used capacitively coupled plates, shown in Fig. 3.2a, and Stenzel and
Gekelman [47] employed a set of wires strung along the magnetic field, as shown
in Fig. 3.2b, to launch waves close to the LH resonance. Schmitt launched Pure
Ion Bernstein Waves (PIBW) with a single wire at the center of the plasma
column [48], Fig. 3.2c, while Schmitt and Krumm launched Bernstein waves
through a mode conversion mechanism with a wire coil wrapped around the
plasma column [49], Fig. 3.2d.

Goree et al. [50] and Skiff et al. [6] used electrostatic plate antenna to launch
a single electrostatic wave above the ion cyclotron frequency transversely to the
magnetic field. Significant stochastic ion energization was reported in the latter
experiment. Since our theoretical and numerical investigations have focused on
similar frequency range we have adopted this antenna design for our experiment.
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Figure 3.1: Typical setup for studying Electrostatic Ion Cyclotron (EIC) wave.
a) Used by Motley and D'Angelo [43] to excite current driven EIC. The picture
is taken from Ref. [44]. b) Used by Koepke et aL. to excite inhomogeneous
energy density driven EIC. The picture is taken from Ref. [45].
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Figure 3.2: Various antenna designs for launching waves into a plasma. a)
Capacitively coupled plates, and b) a set of wires strung along the magnetic
field launch waves close to the LH resonance. c) A single wire at the center of
the plasma column, and d) a coil wrapped around the plasma column launch
Bernstein waves.

3.3 Experimental setup

3.3.1 Vacuum Chamber

A schematic of the Beating Wave experimental apparatus (BWX) is shown in
Fig. 3.3. It consists of two pyrex cylinders placed inside a 0.1 Tesla magnet. The
axial magnetic field along the centerline is shown in Fig. 3.4. The two curves
correspond to the ion cyclotron frequency of 10 kHz and 30 kHz in the test
section of the vacuum chamber. The small cylinder is 6 cm in diameter (ID)
and 37 cm in length while the large cylinder is 20 cm in diameter (ID) and 46 cm
in length. The backplate of the small cylinder is made from molybdenum and
is electrically floating to minimize sputtering. The two cylinders are connected
by an electrically floating aluminum plate with a 6 cm concentric hole at the
center to allow free flow of gas between the cylinders. A uniform fill pressure of
1 to 30 mTorr is maintained by a gas feed (Ar or He) at the aluminum endplate
of the large cylinder and by a 150 1/s turbo pump with a conductance controller
backed up by a roughing pump. The system is capable of maintaining a base
pressure of 2- 10-6 Torr.

Once the plasma discharge is ignited in the small cylinder, the plasma prop-
agates along the magnetic field lines, which are parallel to the axis of the cylin-
ders, into the large chamber where the wave-launching and plasma-energization
experiments are conducted.
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Figure 3.3: The drawing of the BWX experimental apparatus.
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Figure 3.4: The axial magnetic field (B.) along the centerline of the magnet.
The ion cyclotron frequency is relatively constant within the test portion of the
large chamber where the electrostatic waves are launched.
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Figure 3.5: Plasma density and electron temperature for various rf power to
the saddle antenna. As rf power is raised above 500 W the high plasma density
helicon discharge is observed. B=782 Gauss, P=lmTorr.

3.3.2 Plasma Source

A Boswell saddle type antenna used to create the plasma discharge is placed
around the small cylinder. The antenna is made of 0.25" copper tubbing to
allow water cooling. An inductive discharge is produced by supplying rf power
to the antenna from an ENI 13.56 MHz 1.2 kW power supply through a tuner.
The tuner consists of an L network made of two Jennings 1000 pF 3 kV variable
vacuum capacitors. The tuner is placed as close to the antenna as possible to
maximize coupling.

An inductive discharge is easily obtained with only a few watts of forward
rf power to the antenna and only a few percent of rf power reflected. A helicon
discharge with high plasma density (1013 cm- 3 ) can be produced as rf power to
the antenna is raised above 500 W by properly adjusting the pressure and mag-
netic field. The inductively coupled discharge looks homogeneous and occupies
the entire cross-section of the small cylinder. When the helicon discharge is ob-
tained with argon, a bright blue column is observed at the centerline. Measured
radial distributions of plasma density and electron temperature for both types
of the discharges are shown in Fig. 3.5. Figure 3.6 shows the range of some
natural plasma frequencies that were calculated with measured Te, ne, and B.

3.3.3 Beating Waves Antenna

In attempt to launch electrostatic waves into the plasma column we have tried a
couple of antenna configurations. An external antenna consisting of two spools
of wire in the Helmholtz coil configuration, placed on opposite sides of the out-
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Figure 3.6: Typical plasma parameters for the BWX experiment calculated with
measured Te, ne.

side wall of the vessel, with their axis perpendicular to the magnetic field were
initially used but did not excite electrostatic waves. The hope was that electro-
magnetic waves from this external antenna could be converted into electrostatic
waves by the plasma [51, 52]. We were able to launch an electrostatic wave
with an antenna placed inside the vacuum chamber, and consisting of two flat
metal plates. This type of antenna has been used to launch a single electrostatic
wave above the ion cyclotron frequency by Coree et al. in the toroidal ACT-1
device [50, 531, and by Skiff et al. in a linear device [6]. The antenna is made of
two 1 cm x 6 cm molybdenum plates placed 3.14 cm apart along the magnetic
field. The plates are oriented such that the long side and the surface normal
are perpendicular to the magnetic field, as shown in Fig. 3.3. During the wave-
launching experiments reported below, the plates were driven by a Wavetek 180
signal generator with a sinusoidal signal through a Tektronix AM 501 modular
op-amp either in or out of phase, as shown in Fig. 3.7.

3.4 Diagnostics

Two types of Langmuir probes were employed to measure the steady-state
plasma properties and the wave propagation. Plasma density and electron tem-
perature were determined using a radio frequency compensated Langinuir probe
with 0.5 mm graphite tip [54]. The rf compensation was achieved with four
miniature inductors placed in series and close to the probe tip. The inductors
where chosen to filter out the fundamental at 13.56 MHz and the second har-
monic at 27.12 MHz of the helicon antenna signal. Uncompensated Langmuir
probes with either graphite or T-shaped tips made of 10 mil tungsten wire were
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Figure 3.7: The circuit diagram for launching a single electrostatic wave into
the plasma column. The two antenna plates can be driven in or out of phase.
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Figure 3.8: To launch a pair of beating waves the impedance between the two
signal sources and the amplifier has to be matched through a power combiner.
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used to detect the wave and investigate its dispersion.
Instead of the Laframboise analysis [55] of the Langmuir probe I-V charac-

teristic we used an empirical floating potential method specifically developed by
Chen et al. [56] to determine T, and n, with rf-compensated Langmuir probes
in helicon-sustained plasmas similar to ours.

3.5 Wave launching

The circuit used to launch a single electrostatic wave into the plasma column
is shown in Fig. 3.7. The sinusoidal signal (10-300 kHz) from a Wavetek 180
signal generator is amplified with gain of 10 by a Tektronix AM 501 modular
operational amplifier (Rout -- 150 f2, ±40 V, 50 mA Max.). To drive the plates
in phase the signal is sent to both plates. A coupling capacitor (C. = 2iF) can
be used, as indicated in Fig. 3.7, to allow both plates to float with respect to
the plasma potential. To drive the plates out of phase the antenna is connected
through a 1:1 transformer.

The launching of a pair of beating waves into the plasma is accomplished by
combining the output from two signal sources. This is achieved by mixing the
low-power signals coming out from two Wavetek signal generators and sending
the combined output to an amplifier, as demonstrated in Fig. 3.8. The output
impedance of the signal generators and the input impedance of the amplifier is
50 Q2. To make sure that the signal of one of the signal generators is not distorted
by the other, we needed to match the impedance of the entire circuit. A power
combiner consisting of a 100 D resistor and a tapped inductor in parallel provide
good matching between the signal generators and the amplifier.

To ensure that the waves are launched into the plasma efficiently we also
needed to maintain a good antenna-plasma coupling. Different amount of power
is delivered to the antenna plates depending on the impedance mismatch be-
tween the driving antenna circuit and the plasma. Plasma impedance varies
with the plasma density, i.e. with rf power delivered to the helicon antenna,
and the fill-up pressure. For a given pressure the power to the antenna plates
and the efficiency of the electrostatic wave launching can be correlated to the
helicon antenna power.

In order to investigate the wave launching conditions we conducted the fol-
lowing experiment. The signal generator and the op-amp in Fig. 3.7 were set to
produce a 30-Volt sinusoidal signal (w = 70 kHz) with no plasma. A magnetized
argon plasma with ne = 109 - 1013 cm- 3 and fci = 30 kHz was produced by the
helicon antenna with the chamber back filled to 1 mTorr. Measuring the plates
voltage and current simultaneously we were able to determine the impedance
and the power delivered to the antenna plates as a function of rf power deliv-
ered to the helicon antenna. A Langmuir probe inserted into the plasma column
measured the amplitude of the launched waves.

We found that for the in-phase configuration the maximum power to the
antenna plates is delivered when rf power is 175-200 W, as shown in Fig. 3.9a and
3.9b. The amplitude of the Langmuir probe signal is a complicated function of rf
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Figure 3.9: The amplitude of the launched wave as well as the impedance and

the power delivered to the antenna plates are shown as functions of the rf power
to the helicon antenna. The real and imaginary components of the antenna

impedance are designated by Z, and Zi respectively. The fundamental as well
as the second harmonic of the launched waves are measured with a Langmuir
probe. a) Both plates are driven in phase (without the coupling capacitor). b)
Both plates are driven in phase (with a coupling capacitor connected in series

with the antenna, Fig. 3.7). c) The plates are driven out of phase.
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power, and it does not seem to track the power delivered to the antenna plates.
There are two maxima for the detected wave amplitude. One occurs at 200 -
250 W of rf power, when the real component of the measured impedance (Zr)
approaches 150 Q2, the output impedance of the op-amp, and the imaginary part
(Zi) is small. At that condition the entire circuit is matched. The second, and
higher maximum occurs at 350 -400 W of rf power, and probably corresponds to
the increase in plasma density due to the transition from the inductive discharge
mode to the helicon mode. The real part of the measured impedance at that
point is 50 Q. A more efficient wave launching can thus be achieved by choosing
an amplifier with an impedance close to that value.

It is interesting to note that the Langmuir probe detected a plasma wave
at the second harmonic aside the fundamental frequency driven by the circuit.
As shown in Fig. 3.9 the second harmonic can be a significant fraction of the
fundamental.

A similar experiment was repeated with the antenna plates driven out of
phase. The results are shown in Fig. 3.9c. The maximum power delivered to
the antenna in this case is about 75% of the power in the case described above.
Also, the wave amplitude detected by the Langmuir probe is significantly lower
than the amplitude of the wave launched by the plates driven in phase. Possible
reasons as to why the out-of-phase configuration does not couple well into the
plasma will be given in the next section. However as in the previous case, the
maximum in the wave amplitude corresponds to the matched circuit condition,
Zi <K Zr - 150 Q, and not to the maximum power delivered to the antenna
plates. The imaginary component of the impedance for the out-of-phase con-
figuration is negative, indicating capacitive coupling between the plates. In the
in-phase configuration the imaginary component is positive, indicating inductive
coupling.

The in-phase driven antenna couples better to the plasma thus resulting
in a wave with a higher amplitude than the out-of-phase driven antenna. We
therefore undertook further study of the in-phase configuration. The goal of
the study was to determine whether the launched wave is electrostatic in nature
and whether it propagates transversely to the magnetic field.

3.6 Dispersion relation measurement

The electrostatic dispersion relation derived from the kinetic theory for an in-
finite slab of collisionless, homogeneous, isotropic, and non-drifting plasma can
be written as [50, 30],

D = k K22  + k K2 2 = 0, (A-1)

where k± and kll are the perpendicular and the parallel components of the
wavenumber, and K. 2 and K_. are two components of the dielectric tensor.
For a single ion species plasma these components can be expressed as,

+W2 e+W2i -A. ( i 1/2

W~c k11woAi 2Ti
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where In is the modified Bessel function, A3  k2 Tj/MjW2, Z(Cn) is the plasma
dispersion function [57], and Cn = (w - nwj)(mj/2Tj)'/ 2/kj1 , with j = e,i. In
Eqs. (A-2)Eq:Kzz we assumed that w «< fe and Ae < 1.

To launch an electrostatic ion cyclotron (EIC) wave above the ion cyclotron
frequency the following conditions must also be satisfied [501,

wpi > Wci, Ti •_T5e,

(2Tj/m,)1/2 << W/kj1 < (2Te/me)1/ 2 .

In our experiment we have T. = 3 eV, Ti = 0.1 eV, B = 261 Gauss, w =

30 - 180 kHz, and All - 46 cm, therefore the above inequalities are satisfied.
Here we assumed that the parallel wavelength is determined by the extent of the
large glass cylinder where the waves are launched. By measuring the parallel
component of the wavenumber with two axially separated Langmuir probes
we have confirmed that the parallel wavenumber is - 46 cm. The numerical

solution of Eq. (A-i) for the plasma parameters in our experiment is represented
in Fig. 3.10.

Theoretical curves can be subdivided into two types according to their slopes.
One curve extending from k 1 = 0 to 2 cm- 1 has a positive slope. This curve
represents the forward branch of the EIC dispersion relation since its group
velocity (aw/8k) is in the same direction as its phase velocity (wik). On the
other hand, curves extending from k± = 1 to 6 cm- 1 have negative slopes. The
curves correspond to cyclotron harmonics of the backward branch of the EIC
dispersion relation, since their group velocity has the opposite sign of the phase
velocity. The pass-band of each of these backward branches is narrow, and

therefore we do not expect to see any of the backward mode waves propagating
in our experiment.

The slope of the forward branch of the EIC dispersion is sensitive to the
electron temperature, while the backward branch is sensitive to the ion tem-
perature. Thus comparing the experimentally obtained dispersion relation to
the theoretical expression provides a good check of the species temperatures.
While the ion temperature was not measured, the electron temperature inferred
by the slope of the experimental dispersion relation, Te = 2.75 eV, is in good
agreement with the values measured independently with the rf-compensated
Langmuir probe, shown in Fig. 35.

As was mentioned above, the theoretical dispersion relation given by Eq.
(A-i) was derived for an idealized plasma. Some plasma parameters of our
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Figure 3.10: The measured dispersion relation at fci=10 kHz agrees well with the
theoretical dispersion for the forward branch of the Electrostatic Ion Cyclotron
wave (EIC). Curves extending to large values of k±L represent the cyclotron
harmonics of the EIC backward branch.

experiment are given by Fig. 3.6. It can be seen that the plasma is collisional
(vej, vii > f.::). Also, the density profiles shown in Fig. 3.5 indicate that the
plasma is not homogeneous, (a/n)an/ax _> 1, specifically at high rf power.
Another point of concern is the effect of the plasma boundaries. At low values
of k, (long wavelength) the effect of the boundaries should be significant and
the experimental data might diverge from the theoretical expression. With
these considerations in mind, Fig. 3.10 shows a surprisingly good agreement
between the experiments and the theory for a wide range of frequencies. The
experimental data were obtained in the following manner.

A single wave was launched by the antenna plates inserted at the edge of the
plasma column and driven in the in-phase configuration. We measured the wave
dispersion by a system of three uncompensated Langrnuir probes. The probes
were placed orthogonally to each other so that simultaneous measurements of k_±
and kll could be performed by measuring the signal delay between any two probes
[581. Measuring the probe signal with the plasma discharge off we determined
that the ac-coupling signal was two orders of magnitude below the wave signal
with the plasma turned on.

The parallel component of the wavenumber measured by the two probes
placed along the magnetic field indicated that the parallel wavelength of the
wave is 46 cm - the length of the large glass cylinder. This measurement was
confirmed by the wave observations at various axial positions along the chamber.
The perpendicular wavenumber, shown in Fig. 3.10, varies in accordance with
the EIC dispersion. The dispersion measurements indicate that the wave is
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propagating at the angle of 820 to 860 with respect to the magnetic field. Both
the fundamental and the second harmonic components of the signal were used
to construct the experimental dispersion relation shown in Fig. 3.10.

Driving the plates of the antenna out of phase, we expected the parallel
wavelength to be 6.28 cm - twice the spacing between the plates. This however
was not the case. The measured parallel wavelength was on the order of the
chamber length. The measurements of the perpendicular wavelength were not
consistent with the EIC dispersion relation. It is likely that the wave was affected
by the ion Landau damping since w/k11 - Vthi.

3.7 Conclusions regarding ES Wave Excitation

We reported.on the excitation and propagation of an Electrostatic Ion Cyclotron
(EIC) wave launched by a two-plate antenna into a magnetized argon plasma.
We described in detail the circuity necessary to drive the antenna in the in- and
out-of-phase configuration.

We found that the antenna driven in phase couples better to the plasma and
excites higher amplitude waves than the plates driven out of phase.

In addition, we determined that the wave amplitude can be optimized by
carefully choosing the right plasma parameters and building a matched driving
circuit.

The antenna driven in phase excites a wave with All = 46 cm - the length of
the portion of the vacuum chamber where the waves are launched. The perpen-
dicular component of the wavenumber varies according to the EIC dispersion
relation and is in good agreement with the forward branch of the theoretical
dispersion relation despite the simplifying assumption of a collisionless, mag-
netized, homogeneous, isotropic, and infinite plasma slab. We found that EIC
waves launched at frequencies between wj and 10wd propagate with little damp-
ing at an angle between 82' and 860 with respect to the magnetic field.

Multiple EIC waves required for our ongoing beating waves studies [10, 25,
26, 21, 42] can also be easily launched by the plates antenna with two or more
signal generators by means of a power combiner.

3.8 Demonstration of Ion Acceleration

After the success in launching the waves, we proceeded to measure the effects
of the beating waves on ion acceleration to provide the first test for the ex-
istence of the new ion acceleration mechanism. The goal was to measure the
ion's perpendicular enregy (equivalently velocity or temperature) and observe
if ion acceleration (or equivalently heating) occurs when a pair of beating ion
cyclotron waves are launched. In order to do this measurement we developed,
using funds from a recent DURIP grant, a dedicated state-of-the-art Laser In-
duced Fluorescence (LIF) diagnostic system (shown in Fig. (3.11)) that allows
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Figure 3.11: Photograph and schematic of the new state-of-the-art LIF system,
recently developed under DURIP funding and used for our AFOSR-funded beat-
ing wave study.

accurate measurement of the ions' energy distribution function. Our LIF system
is described in a recent publication ??.

The measurements led to the recently obtained results plotted in Fig. (3.12)
which shows as much as 40% enhancement to the ion energy due to beating
wave acceleration. This represents the first experimental evidence ever
of this new acceleration mechanism.
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Figure 3.12: Measured ion energies (blue data points) under the effect of a pair
of beating ion cyclotron waves compared to the benchmark case with no waves
(red horizontal line at .1 eV) showing that the ions were accelerated by as much
as 40%. (RF Power in helicon source = 250 W, Wave Antenna voltage - 60 V,
ion cyclotron frequency = 10 kHz, wave frequency = 10-100 kHz.)
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Impact Statement

The revised budget represents about two-thirds the original budget. Therefore, the scope
of the work will be adjusted as follows.

The original plan was to explore the use of three different layered materials: bismuth
telluride, bismuth selenide, and molybdenum diselenide. However, in view of the
reduced budget, we will concentrate on the first and last as the first two are quite similar.
I do not think this will seriously affect the scientific understanding of nanocomposites we
expect from this study.


