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Introduction

The major objective of this project was to study the fatigue life and dynamic response of
Shape Memory Alloy (SMA) actuators. The effective use of SMAs in actuators
undergoing thermomechanical cyclic loading requires a good understanding and
estimation of their behavior and fatigue life. The investigation involved an array tests for
both complete and partial transformation under different constant load levels. A
microstructural evaluation of failure mechanisms was also performed. In order to
understand the dynamic response of SMAs, the project was subdivided into two main
thrusts: modeling and experimentation of SMA devices for vibration isolation in space
applications and modeling and experimentation of SMAs in shock absorption devices.

In order to provide a comprehensive overview of the project, the report is organized as
follows. First, the two main subtasks related to the dynamic loading of SMAs are
presented. This is followed by a description of the work done on fatigue life of SMA
actuators. The report concludes with the most recent activities that has been performed
and includes some future plans and goals. A list of publications based on the work
performed during this project is also included.

Passive Vibration Isolation

Objectives: Vibration isolation between launch vehicle and payload is a necessity if the
payload is to survive it’s journey into orbit. An investigation has been performed to
determine the suitability of SMA for the task of vibration isolation. In this task, the effect
of pseudoelastic response of shape memory alloys on passive vibration isolation and
damping has been presented with payload launch applications in mind.

The methodology followed for this work was a) design and testing of a prototype SMA
vibration isolation device. b) Development of a phenomenological and system ID-based
models to predict the component level response of SMA springs and c¢) design and
implementation of vibration isolation simulation tool. Figure 1 shows the SMA device
vibration setup. Figure 2 shows a schematic of the device along with the testing system.
The SMA tubes that were used as springs were created from tubing manufactured by
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SMA, Inc. (6.0mm OD, ~5.65mm ID). Due to the small size of the tubes, they were
operated in compression only. Testing of the prototype device was conducted at the Air
Force Research Laboratory, Kirtland AFB, NM under the supervision of Dr. Kyle
Henderson. Figure 3 shows comparison of model predictions along with experimental
correlations with one of the tested cases.
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Figure 1 - SMA device vibration test setup Figure 2 - Schematic of shaker and SMA
spring-mass isolation system as tested
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Figure 3 -Model and experiment show good agreement between measured and
calculated resonant frequencies for varied spring pre-compression and number of
springs for 1Kg mass.

Major accomplishements of this project are summarised as follows:
= Development of two models for analysis of SMAs based dynamic systems
* Development of a computationally efficient simulation tool for parametric analysis.
Capability includes
o Isothermal, non isothermal conditions
o Linear, non-linear and non-linear with hysteresis
®=  Modeling of accurate SMA response using Preisach model for predicting the dynamic
behavior of the SMA based vibration isolation device.




= SMAs are promising candidates for vibration isolation components based on:
o Variable damping depending on loading
o Tunable response (pre-compression)
o Passive dual use structural member
= Patent application in collaboration with AFRL for a Pseudo-Elastic Shape Memory

Alloy Vibration Isolator.

Dynamic Loading

Objectives: An investigation of the energy absorption capabilities of SMA components
requires a detailed knowledge of the wave propagation phenomena in this type of
nonlinear materials. A necessary first step in analyzing complex SMA devices is the study
of one-dimensional rods. A numerical treatment is needed since closed form solution can
only be obtained in certain very limited cases. The objective of the dynamic loading
simulations was to build a reliable FE code and use it to analyze a wide variety of impact
problems at different temperatures and boundary conditions.

An FE code has been developed to model wave propagation in one-dimensional SMA
rods. A material subroutine implementing a constitutive model for polycrystalline SMA
was also developed. It is capable of simulating both the phase transformations from
martensite to austenite as well as detwinning of martensite. The fully coupled
thermomechanical problem was solved by a standard semi-discrete FE formulation.
Earlier attempts to solve the same problem with a commercial solver (ABAQUS) failed
due to the complex material behavior of the SMA and the black-box nature of the solver.
An adaptive mesh refinement strategy based on the Zienkiewicz-Zhu error estimator has
been employed to considerably optimize the effectiveness of the FE analysis. A pulse-
loading problem in detwinning was solved numerically and compared with existing

experimental results.
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Figure 4 — Step loading problem. Shown is stress profile at 30ps for an adaptive mesh with two
different time steps. The two-shock structure of the solution is clearly visible. Mesh nodes are
marked with black squares and the thin line at the top shows the density of elements. The elastic
shock is smeared in the left plot due to the coarse time step — 0.1ps. The time step for the right
plot is 0.001ps and the solution is converging the analytical results.
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Figure 5 — Energy dissipation for a 10 ps square pulse in adiabatic conditions. Temperature is set
for pseudoelastic response of the material.

The first boundary value problem that was solved was one for a step loading at
isothermal conditions. The stress/strain profile for a constant shock load in SMA rods
splits into an elastic precursor wave that travels at the speed of sound in the initial phase
of the rod followed by a transformation front, as shown in Figure 4. Thermal effects were
also included in the simulations and the adaptive meshing proved to work equally well. A
model problem for a 10us pulse under adiabatic conditions showed that up to 84% of the
energy is dissipated (Figure 5) by transforming the mechanical energy of the shock wave
heat. Dynamic response of SMA rods at lower temperatures involving the shape memory
effect as the main factor for inelastic deformations was also considered. Energy
dissipation levels reached similar values (86%) for a 10us pulse. Finally, experimental
data from a split-Hopkinson bar test was compared with numerical simulations and the
two were found to be in good agreement (Figure 6).
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Figure 6. Data from a split-Hopkinson bar test of an SMA specimen instrumented with 6 strain
gauges (red lines) is compared with model predictions (black). Gauge #3 was excluded as it failed
during the test.




Major accomplishements of this part of the effort are summarised as follows:

» Development of specalized adaptive FEM solver that can sucessfully solve dynamic
problems for materials with highly nonlinear constitutive response, such as SMAs.

=  Good correlaion of numerical simulations with actual experimental results.

=  Based on numerical simulations, SMA based devices

o Show very good energy absorption capabilities.
o Can absorb shock loads while preventing permanent damage to the material

Fatigue of SMA actuators

Objective: The effective use of SMAs in actuators undergoing thermomechanical cyclic
loading requires a good understanding and estimation of their behavior and fatigue life.
Arrays of tests were performed for both complete and partial transformation under
different constant load levels (54 MPa to 247 MPa). The study included macroscale
behavior characterization and also microstructural observations.

A large test matrix has been realized on an experimental fatigue frame to compare the
fatigue life in specimens undergoing complete and partial transformations. The same
testing and loading conditions were used for two cases: a complete transformation and a
partial one with a volume fraction of martensite reaching up to 50%. After the
experiments were completed the microstructure and patterns responsible for different
failure modes were investigated.

The macroscale study of the fatigue life of SMA actuators was focused on the evolution
of the different strains characterizing SMA actuation (martensitic, austenitic and
transformation strains) as described for both complete and partial transformations under
192 MPa in Figures 7 and 8. Based on experimental results, a Manson-Coffin law (Figure
9) is used to express a relationship between plastic strain and number of cycles to failure.
The graph indicates that minor loops lead to longer fatigue life due to lower amount of
plastic strains accumulated during the cycling.
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Figure 9. Manson-Coffin Law characterizing the plastic strain developed during complete and
partial phase transformations.

The observation of the macroscale behavior was ‘then followed by a microstructural
investigation of the fracture modes using SEM. The fracture surfaces show two different
levels of failure. One is called “classical”, with the orientation and the propagation of the
fatigue lines from the crack initiation area (Figure 10). However, another pattern was also
identified: when exceeding 154 MPa for the complete transformation and 106 MPa for
the partial transformation, a highly stressed state is observed in the specimens with
circular cracks and internal cracks as seen in Figure 11. An interesting result is that the
stress limit to start creating highly stressed state in the specimens is lower in the partial
transformation: 154 MPa for the complete transformation in opposition to 106 MPa for

the partial transformation.
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Figure 10. Complete transformation under Figure 11. Complete transformation under 247
106MPa. Classic fracture surface describes the MPa. Higher internal stress level creates
propagation and saturation at the main fatigue circular and internal cracks.
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Figure 12. Complete transformation under Figure 13. Complete transformation under
106MPa. Classic fracture surface describe the 247 MPa. High internal stress levels create
propagation and saturation at the main fatigue circular and internal cracks.

lines.

A general damaging pattern was also analyzed with microscattering of the superficial
layer containing microcracks of 1 to 5 microns (Figure 12). Indications were found that
the accumulation of stabilized detwinned martensite creates a debonding at the outer
layer. It can be observed that the grain and microcracks sizes are almost identical
suggesting that the impact of corrosion during cycles is significant. Further evidence that
corrosion takes place during cycling, in particular at higher stress levels, is the fact that
some macrocracks follow a random path through the debonded cells as shown in Figure
13.

Moreover, as the specimens are heated up through resistive heating and cooled down with
a glycol-like liquid, some interactions with corrosion and oxidation effects are observed
and could be responsible for the rising of some periodical circular cracks with the
martensitic transformation. Indeed, while stretched into martensitic phase, the material is
under tension and the superficial layer, a mixture of NiTiCu and oxidants, exhibits a
brittle behavior favoring periodical circular cracks. The depth of these cracks is
connected to the time spent in the coolant. As a simplified theory, the assumption of
cyclic insertion of corroded particles could be an explanation for the growth of the
hardened outer layer.

Major accomplishements of this part of the effort are summarised as follows:

= A Manson-Coffin type of law was used to successfully characterize the plastic strain increase
(comparison between a complete and a partial martensitic phase transformation).

*  Microstructural observations show a coupling of chemical interactions (due to active cooling)
with mechanical damage, which further reduce the fatigue life of SMA actuators.

Current Activities and Future Work: Development of Comprehensive SMA Model.

The analysis of the existing SMA models during this project and their comparison to
experimental results has shown that current constitutive models can handle successfully different
types of thermomechanical loading paths but have difficulties doing so in a unified manner.
While the models which take into account the development of stress-induced martensite have




reached a high level of sophistication, generally they lack the ability to handle other loading
paths, involving detwinning and reorientation of martensite. The simulations involving dynamic
loading of SMAs ran into this type of difficulties and it was necessary to use different models for
different temperature regimes. Another limiting factor in existing SMA models are related to their
inability to model successive tension-compression cycles. Therefore most of the current research
is focused towards developing a comprehensive SMA model that can remedy these issues. The
goals of this effort are summarized bellow:

s Utilize two internal variables for phase transformation in order to treat pseudoelasticity and
detwinning in a unified manner in three dimensions;

=  Use a different hardening law for the detwinning deformation which takes into account the
gradual decrease in stiffness;

»  Introduce new laws for the evolution of internal variables, so that successive tension—
compression cycles can be accurately modeled.

The starting point was to extend the current SMA model that was developed in our group to one
with two internal variables. This allowed to successfully model the different hardening behavior
of pseudoelasticity and detwinning within a unified framework (Figure 14). The next task was to
simulate loading paths that involve simultaneous transformations of austenite to both twinned and
detwinned martensite. A loading path involving constrained cooling of an SMA specimen,
initially loaded in austenite demonstrates these capabilities (Figure 15).
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Figure 14. The new comprehensive model uses a different hardening law for phase transformation and detwinning of

martensite as can be seen from the stress-strain plots a). A schematic of the simulated loading path is also shown on
the stress-temperature phase diagram for the SMA b)




Start of A—M9 phase Strain is fixed,

transformation Begin cooling
400 //.
350
300
Elastic
é‘ 250 } Loading
s 200 /
»
k
© 150
100 E .
Starting
) // pOint
[} 4 = L L . 1
240 260 280 300 320 340 360 380 400

Temperature, K

Figure 15. In a temperature-strain driven simulation an SMA bar is first loaded elastically in the austenitic phase. The
strain is then fixed and the bar is gradually cooled. The blue line shows the resulting thermomechanical path in
temperature-stress space.

While there is significant progress in the development of a comprehensive SMA model, this is a
still ongoing area of research. It is necessary to validate the model on a comprehensive set of
thermomechanical loading paths as well as to allow for the modeling of successive tension-
compression cycles.
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