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Agenda

Talks were presented in the Lees-Kubota lecture hall at Caltech in Pasadena, California.

The first two days focused on developing an overview of the field, from theoretical

perspectives to experimental
challenges and opportunities. During the third and fourth days the emphasis turned to

detailed modeling and
mathematical methods.

Saturday 21 August

8:00-8:30am Breakfast and registration
8:30-8:45 |Welcoming remarks
8:45-9:30 |Navin Khaneja

Optimal control in magnetic resonance
9:30-10:15 |Hideo Mabuchi

Real-time quantum feedback control of
alomic spin-squeezing

10:15-10:30 Coffee break

10:30-11:15 Steffen Glaser
Exploring the physical limits of quantum

evolution in NMR

11:15-12:00pm Nergis Mavalvala

Quantum noise in gravitational-wave
detectors

12:00-1:30 Lunch

1:30-2:15 Michel Devoret
Amplifying quantum signals with the

bifurcation of a Josephson Junction
2:15-3:00 Steve Girvin

Quantum optics with electrical circuits: Strong

Coupling Cavity QED
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3:00-3:30 Break

3:30—4:15 Tzyh-Jong Tarn

Control and observation of quantum
mechanical systems: systems theoretical
approach

4:15-5:00 Roger Brockett
Optimal inputs for NMR system identification

5:00-5:30 Break

5:30-6:15 Herschel Rabitz

Control of quantum dynamics phenomena:
How do the experiments work, Why do they

work, and What may lie ahead?
6:30-8:30 Opening banquet

Sunday 22 August

8:30-8:45 Aims of the workshop
8:45-9:30 Salman Habib

Quantum feedback control in

nanomechanics
9:30-10:15 Keith Schwab

Progress to feedback-cool a
nano-mechanical resonator under
continuous, near-quantum-limited position
measurement

10:15-10:30 Coffee break

10:30-11:15  Ulrike Troppmann

Molecular quantum computing: an

optimal control approach
11:15~12:00pm David Awschalom
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§Manipulation of quantum information
\with semiconductor spintronics

12:00-1:30 Lunch

1:30-2:15 Poul Jessen

Continuous optical measurement and control
of atomic spin ensembles

2:15-3:00 Daniel Lidar
Concatenated dynamical decoupling

3:00-3:30 Break

3:30—4:15 Gerard Milburn

Error correction by continuous measurement
and feedback

4:15-5:00 Ramon van Handel
Feedback control of quantum state reduction

5:00-6:30 Discussion, return to hotels

Monday 23 August

8:30-9:30am Andrew Doherty S
' Quantum limits to feedback control |

9:30-9:45 Break

9:45-10:45 Howard Wiseman

Optimal unravelings for feedback control in
linear quantum systems

10:45-11:00 Coffee break

11:00-12:00pm Hans Maassen
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Quantum filtering and ergodicity of
quantum trajectories

12:00-1:30 Lunch

1:30-2:30 Robert Kosut

uantum system identification and detection: |
design via convex optimization

2:30-2:45 Break

2:45-3:45 Matthew James

Robustness and risk-sensitive control of
quantum systems

3:45—4:15 Break / snacks

4:15-5:15 Andrew Silberfarb

State tomography by continuous
measurement

5:15-5:30 Break

5:30-6:30 Claudio Altafini
Feedback stabilization of quantum ensembles

Tuesday 24 August

8:30-9:30am|Luc Bouten
iSqueezing-enhanced control

9:30-9:45 Break

9:45-10:45 Jun Zhang

Geometric control in quantum operation
generation
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10:45-11:00 Coffee break

11:00-12:00pm Anthony Bloch

Dynamics and control of coupled
oscillator spin systems

12:00-1:30 Lunch

1:30-1:50 Axel Andre

Feedback stabilization of atomic clocks using
entangled atoms

1:50-2:10 JM Geremia

, Discriminating between two coherent states
2:10-2:30 Daniel Lidar

A Post-Markovian Master Equation

2:30-2:45 Break

2:45-3:45 Viacheslav Belavkin

On quantum filtering theory and optimal
feedback control

3:45—4:15 Break / snacks
4:15-6:30 Workshop caucus

S5of5 4/3/05 11:18 AM




Principles and applications of control in quantum systems

Hideo Mabuchil*and Navin Khaneja?

1 Control and Dynamical Systems, California Institute of Technology
2 Division of Applied Science, Harvard University

SUMMARY

We describe in this article some key themes that emerged during a Caltech/AFOSR Workshop on
“Principles and Applications of Control in Quantum Systems” (PRACQSYS), which was held 21-24
August 2004 at the California Institute of Technology. This workshop brought together engineers,
physicists and applied mathematicians to construct an overview of new challenges that arise when
applying constitutive methods of control theory to nanoscale systems whose behavior is manifestly
quantum. Its primary conclusions were that the number of experimentally accessible quantum control
systems is steadily growing (with a variety of motivating applications), that appropriate formal
perspectives enable straightforward application of the essential ideas of classical control to quantum
systems, and that quantum control motivates extensive study of model classes that have previously
received scant consideration. Copyright © 2004 John Wiley & Sons, Ltd.

KEY WORDS: Quantum, nonlinear, stochastic

1. Introduction

Modern scientific inquiry and the demands of advancing technology are driving theoretical
and experimental research towards control of quantum systems. Compelling applications for
quantum control have been noted and have motivated seminal studies in such wide-ranging
fields as chemistry, metrology, optical networking and computer science. Experience has so
far shown that quantum dynamics and stochastics can be incorporated within the framework
of estimation and control theory but give rise to unusual models that have not yet been
studied in depth. The microscopic nature of quantum systems also demands renewed emphasis
on accounting for the essentially physical (finite impedance) nature of measurement and
feedback interconnections, which limits the applicability of state-feedback formalism and makes
quantum filtering an essential methodology for closed-loop control. Open-loop control remains
effective in the quantum regime but the actuation terms are generically bilinear. Overall, one
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begins to see that novel features of quantum systems could spur the growth of a new branch
of control theory to develop hand-in-hand with the cutting-edge applications that drive it.

We should be careful to note that theoretical foundations for quantum control have been in
place for some time. Among the participants of our small workshop, V. P. Belavkin, H. Rabitz
and T.-J. Tarn each reviewed seminal work dating back to the 1980’s [1, 2, 3]. But the current
resurgence of interest may be attributed to recent advances in experiments on quantum
control and to the emergence of high-profile applications in metrology, physical chemistry,
quantum information science and spintronics. It thus seems appropriate here to emphasize
the importance of grounding further theoretical investigations of quantum contro! in concrete
experimental settings and design goals of practical interest.

Our intent in writing this article is not to present a comprehensive review of the field,
but rather to attempt to provide a timely piece—motivated by presentations given at the
PRACQSYS Workshop—that can indicate some points of entry into the recent literature on
quantum control and its applications. We begin with a brief introduction and overview of some
compelling applications for quantum control, continue with a survey of relevant experimental
systems, and then turn to a more formal presentation of mathematical models and some open
problems.

2. Quantum control scenarios and applications

A question that inevitably arises in any introduction of quantum control is, “What makes a
control system quantum?” In principle, our current understanding of physics holds that all
systems are quantum but that manifestly non-classical phenomena are observable only under
special laboratory conditions. Roughly speaking, quantum ‘behavior’ emerges in scenarios
where a relatively small physical system (with few active dynamical degrees of freedom) can be
well isolated from environmental perturbations and dissipative couplings. In some experiments
this effectively can be achieved by bringing an experimental apparatus to very low temperatures
(as is the case in the superconducting circuit experiments cited below), while in others one can
exploit a separation of energy and/or time scales to observe transient quantum behavior at
room temperature (as in the experiments performed on atomic ensembles and in liquid-state
nuclear magnetic resonance). From a more formal perspective, one could say that quantum
mechanics is believed to be a correct microscopic theory of (non-relativistic) physics but that
the reduced dynamics of subsystems nearly always corresponds closely to models that fall within
the domain of classical mechanics. Hence strongly non-classical behavior can only be observed
in a subsystem on timescales that are short compared to those that characterize its couplings
to its environment. In the case of any macroscopic object, such as an ordinary mechanical
pendulum, there are so many such couplings (e.g., via mechanical coupling to its support and
to air molecules) that these timescales are inaccessibly short. From an even more abstract
perspective, one could say that Schrodinger’s Equation is meant to apply to the universe
as a whole (whose ‘internal’ degrees of freedom are densely interconnected) while physical
experiments deal only with embedded subsystems. Unless great care is taken to suppress
the environmental couplings of an experimental system, the overwhelming tendency is for its
behavior to appear classical, or at least imperfectly quantum.

The accurate quantitative modeling of ‘imperfectly quantum’ behavior in open systems
(i.e., those with non-negligible residual environmental couplings) is a subject of intense study
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2 H. MABUCHI AND N. KHANEJA

in many branches of physics. Generally speaking, one finds fundamental theory in the fields of
quantum statistical mechanics and mathematical physics, with more system-specific results in
fields such as atomic physics, quantum optics and condensed matter physics. One of the main
goals for theoretical research in quantum control will be further to integrate what is known
from the physics of open quantum systems with core engineering methodologies.

A second question that may naturally arise at this point is, “Why should we study
quantum control?” One answer is that the above-mentioned integration of the theory of
open quantum systems with estimation and control appears to provide an important new
conceptual framework for the interpretation of quantum mechanics itself. By scrutinizing
quantum mechanics as a theory for the design of devices and systems, as opposed to a theory
for scientific explanation only, we gain new insight into obscure features of quantum theory
such as complex probability amplitudes and ‘collapse of the wave function.” In particular
we are able to make more focused comparisons between classical and quantum probability
theories. But a second compelling answer to the question at hand is that various branches of
research on nanotechnology are advancing to the point of investigating ‘mesoscopic’ devices
whose behavior remains quantum on timescales of functional relevance. It thus seems clear
that in order fully to exploit the powerful methodologies of control theory in the design and
implementation of advanced nanoscale technologies, control theory needs to be reconciled with
quantum mechanics.

As we hope the following discussion will illustrate, this reconciliation does not appear to
require any radical reformulation of control theory. It does however seem that nanoscale
systems (broadly defined) and quantum control present new classes of models that fit within
the scope of traditional analysis and synthesis methods but have yet to be studied in depth. To
date there have been a number of publications that demonstrate the use of standard control-
theoretic techniques to analyze models of quantum-physical origin; we will not attempt to
review them here. We prefer to emphasize the recent development of concrete applications—
tied to experimental research—that generate urgent questions most naturally addressed by
quantum extensions of estimation and control theory. These applications and questions are
in turn motivating the thorough and principled development of certain practical aspects of
quantum control.

A first major application area, to be described in greater detail below, is protein structure
determination via nuclear magnetic resonance (NMR). Ideas from control theory have clear
relevance to this field because protein structure determination can naturally be viewed as a
problem in system identification. In the typical setting one has foreknowledge of the types
of atomic nuclei that constitute a given protein, and has experimental tools that can induce
rotations of these individual nuclei and collect signals that gauge their precise response to
applied controls. The unknown parameters of the system are the relative spatial positions of the
various nuclei, which can be inferred from experiment by estimating the relative strengths of the
dynamical couplings among them. Questions of optimal procedure arise because measurement
signal-to-noise ratios are typically quite low, because dissipative mechanisms suppress the
observability of dynamical couplings among the nuclei, and because the total number of
measurements that must be made to establish the structure of a protein is tremendously large
(thus putting a premium on the speed of the identification procedure). It is intriguing to note
that, even though NMR researchers have been working for many decades to optimize relevant
techniques, the recent introduction of control theoretic methods has enabled some substantial
improvements in performance (with high practical impact). Many further opportunities can

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 0:0-0
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be identified for the application of control theory to NMR.

Over the past decade, a number of groups have proposed and demonstrated close connections
between magnetic resonance (of nuclear and/or electronic spins) and quantum information
processing. The quantum states of nuclei in certain types of molecules and solid-state systems
can be well shielded from environmental perturbations, making them an attractive physical
locus for the storage and processing of quantum information. Manipulation of individual
nuclear states and conditional transformations of the state of one nucleus based on that of
another (corresponding to the implementation of a quantum logic gate) can be accomplished
via tailored radio-frequency electromagnetic fields. In this context questions of optimal control
arise for much the same reasons as in protein structure determination, with the additional
consideration that large-scale quantum computation may require extremely high fidelity (with
inaccuracy < 10~%) in these elementary quantum state transformations [4, 5]. This need for
high fidelity can be compounded by the fact that in real experiments it is typically necessary
(especially in NMR) to work with a sample containing very many identical molecules, in order
to make the ‘readout’ signals sufficiently strong that they can be detected above instrumental
noise. The unavoidable presence of inhomogeneities across such a large sample of molecules
then demands a certain degree of robustness in the contro! policies employed, generating further
interesting challenges for the theory.

Similar quantum control problems arise in a wide range of physical implementations of
quantum information processing. In systems from atomic physics, the nature of the problems
is very similar to what has been described above for the setting of magnetic resonance. In solid-
state systems, one generally finds an intriguing combination of issues of both identification and
control. Whereas accurate ab initio models can often be constructed for NMR and atomic
systems, the modeling of solid state systems typically requires a more phenomenological
approach. In particular, it is seldom possible to derive accurate models for the residual
environmental couplings of something like a superconducting quantum circuit. The precise
nature and strength of these couplings should be known in order to design control schemes
that maximize the fidelity of elementary quantum operations, which as discussed above should
be very close to perfect if one is ultimately interested in large-scale quantum computation.
Some recent theoretical research [6, 7, 8] has also shown that tools from control and dynamical
systems theory can play a substantial role in the formulation and analysis of fault-tolerant
architectures for quantum computation and communication.

Quantum computation represents a very high-profile long term goal in nanoscale science
and technology; the related field of quantum metrology (or quantum precision measurement)
provides a setting with similar technical challenges and with near-term payoffs for the
exploitation of quantum control. In applications of high strategic and industrial interest,
such as prompt and accurate estimation of magnetic fields, electrical currents, time delays,
gravitational gradients, accelerations and rotations, it is just now becoming possible to
construct laboratory prototype systems whose leading-edge performance is enabled by
techniques that exploit quantum coherence and is limited by noises or uncertainties of
quantum-mechanical origin. In these contexts it is natural to look to quantum control to
provide techniques for achieving robust performance, based on approaches such as optimal
design, adaptation and real-time feedback. Preliminary studies grounded in several different
experimental settings [9, 10] have shown, e.g., that real-time feedback can be used to preserve
quantum-limited sensitivity gains in the presence of multiplicative uncertainties that would
otherwise nullify them. Concrete targets for the application of such methodology range from
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4 H. MABUCHI AND N. KHANEJA

atom interferometer-based inertial sensing systems to grand scientific projects such as the Laser
Interferometer Gravitational Wave Observatory (LIGO). In both of these examples [11, 12, 13},
promising strategies exploiting quantum phenomena have been formulated to surpass near-
term performance limits, but quantum control techniques will likely be required in order to
implement them robustly.

The final application area we wish to highlight is control and identification of chemical
reactions. As has been discussed in some excellent recent review articles [14, 15], tailored laser
pulses can be used to induce and to steer molecular processes ranging from fragmentation [16]
to electron transfer [17] and high-harmonic generation [18]. It has been noted that the typically
complex nature of the interaction between applied fields and intrinsic dynamics in an optimal
control solution could make it possible to design highly selective and sensitive approaches to
detecting dangerous chemicals in an environmental monitoring scenario [19, 20]. An interesting
feature of recent work on control of chemical reactions is that highly successful control
solutions have been ‘discovered’ using learning loops that combine computer optimization
algorithms with fast and automated laboratory apparatus for ezperimentally (as opposed
to computationally) evaluating the performance of trial solutions. Such an approach is
particularly powerful in the chemical reaction setting as it is often infeasible to obtain accurate
models for the relevant molecular dynamics. Early experimental successes have provided
strong motivation for theoretical research on improved learning algorithms and on methods
for ‘inverting’ the empirically-optimized control solutions to infer pertinent properties of the
molecular dynamics.

In the applications described in this paper, some common themes and problems emerge
from the standpoint of mathematical control theory. Many experiments and applications
involving control of quantum dynamics like magnetic resonance involve manipulation of
quantum ensembles. The members of the ensemble though having identical dynamics, could
show a big dispersion in their physical parameters that characterize the dynamics. The control
challenge is to find excitations that are robust to these dispersions and inhomogeneities. These
problems lead naturally to study of a class of infinite dimensional systems that are highly
under-actuated, as one is trying to steer a continuum of systems using the same control. Such
control models raise interesting issues of controllability that are discussed in Sec. 4.3. Besides
questions related to controllability of finite and infinite quantum systems, there are a class
of optimal control problems that arise naturally in coherent control of quantum phenomenon.
Since most quantum systems in practice are open, excitations that steer quantum systems
between states of interest in minimum time are desirable, as they reduce dissipative effects
of environment. From perspective of mathematical control theory, many of these problems
reduce to time optimal control of bilinear systems evolving on finite or infinite dimensional Lie
groups. Although, bilinear control problems have been studied in great detail in classical control
literature, rich mathematical structures dictated by new physical problems arise. In many
cases, the added structure leads to complete characterization of time optimal trajectories and
reachable sets for many of these systems |21, 22]. These results of fundamental and practical
interest in the areas of spectroscopy and quantum information are described in some detail,
in Sec. 4.1. Another class of optimal control problemthat are ubiquitous in applications of
quantum control is steering of quantum mechanical systems in presence of relaxation. The
control challenge is to characterize the reachable set of dissipative bilinear control systems and
corresponding optimal controls. Recent work has shown that by systematic use of methods of
optimal control, significant improvement can be made in sensitivity of multidimensional NMR
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experiments [23, 24, 25]. The study of these open quantum systems leads naturally to a new
class of constrained bilinear systems. These problems are discussed in Sec. 4.2. We believe, the
new mathematical structures that arise in problems of manipulation of quantum dynamics are
excellent motivation for further developments in control theory.

The problems in closed loop control described are also a rich source of new problems in
estimation, filtering and feedback control. Building on seminal work in quantum probability
and quantum filtering theory, it has been possible to derive exact results for ‘quantum LQG’
problems that correspond very closely to analogous results in classical Linear Quadratic
Gaussian control. It has also been established that general problems in quantum feedback
control can be approached via a separation principle, such that all of the uniquely quantum-
mechanical considerations are subsumed in the derivation of appropriate filtering equations
[26]. Control synthesis can then be viewed as a problem of state feedback on the estimator.
The availability of quantum filtering equations also enables rigorous approaches to (open- and
closed-loop) quantum parameter estimation and quantum system identification. In addition
to the intrinsic interest of these subjects, we should note that they represent very important
problems within fields such as quantum information science and quantum metrology.

3. Experimental systems

In this section we provide brief overviews of three broad classes of experimental systems with
close ties to quantum control. As mentioned above, coherent control of molecular dynamics and
.chemical reactions has recently been reviewed [14, 15] by experts in the field, so we will refer the
interested reader rather than synopsizing their materials here. While tutorial introductions are
beyond the scope of this article, our aim is to provide theoretical and experimental references
in a manner that highlights points of interest to the controls community.

3.1. Magnetic resonance

Few analytical techniques in science match in the breadth and depth the impact achieved by
nuclear magnetic resonance (NMR). Starting as a tool for characterization of organic molecutes,
the use of NMR has spread to areas as diverse pharmaceutics, metabolic studies, structural
biology, solid state chemistry, condensed matter physics, rheology, medical diagnostics (medical
resonance imaging) and more recently neurobiology [27, 28, 29]. The principles of NMR have
served as paradigm for other physical methods that rely on interaction between radiation
and matter. It is therefore not surprising that experiments in NMR also serve as good model
problems in control of quantum systems. In this section, we present a quick review of the basics
of magnetic resonance for understanding control problems arising in various multidimensional
experiments in high resolution NMR spectroscopy.

Modern NMR experiments, use a large static magnetic field By (say pointing in the
z direction) of the order of 5-20 Tesla to align magnetic moments of atomic nuclei in a
sample along its direction. The resulting net magnetization M in the direction of By is then
manipulated by an oscillating radio frequency field (Bz(t), By(t)) in the z — y plane, which is
smaller than By by 4 to 5 orders in magnitude. This field exerts a torque on M, which then
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evolves as a bilinear control system

g [ M 0 —By B,(t) M,
-az My =7 B() 0 _Bz(t) My ° (1)
M, —B,(t) Bit) 0 M,

An oscillating (B(t), By(t)) at the Larmor frequency wy = 7By, (v is the gyromagnetic ratio
of nuclei) i.e. (Bg(t), By(t)) = (Acos(wt), Asin(wt)), transfers the magnetic moment vector
M (0) = (0,0,1), to the z — y plane. At this point, the oscillating field is switched off and
the magnetic moment precesses around the static magnetic field By with a frequency wqg. This
precessing magnetic moment induces a current in a nearby coil also termed as free induction
decay (FID). This FID, when fourier transformed, shows a peak at wp, a characteristic of the
nuclei. At a field of 14 Tesla, the Larmor frequency of proton (*H ), nitrogen (!°N) and carbon
(*3C) is 600 MHz, 60MHz and 150 MHz respectively. NMR is therefore an important analytical
tool in chemistry as the peaks in the spectra reveal the chemical composition of molecules.
The magnetic moments making the magnetization vector M experience local fluctuations in
the ambient field By causing them to loose coherence (decoherence). This gives the FID, an
decaying envelop and the peaks in the spectrum their line widths (see Fig. 3.1).

Wi

y B,

X

Figure 1. The figure shows the basic features of an NMR experiment. The top left of part of the figure

depicts use of a field By to polarize the sample. The bottom figure shows use of pulsed magnetic

fields to steer the net magnetization and generate FID. The top left panel shows the profile of a free
induction decay.

The experiments in structure determination of biomolecules using NMR [30, 31] begins with
collecting a proton spectra. Protons in the molecule have different electronic environments.
These electronic currents generate small magnetic fields which alter the static field By locally,
hence shifting the Larmor frequency of these protons. The resulting proton spectrum has many
peaks as depicted Fig. 3.1 A. These shifts in the Larmor frequency are characteristic of the
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chemical environment of the spins. Based on these chemical shifts, it possible to assign the
various peaks in the spectrum of a molecule to various protons, a process called frequency
labeling [30]. Following this, a series of experiments are used to study interaction between
various frequency labeled protons, which gives information on distance between protons of
various amino acids. This information is used to solve for a folded configuration that satisfies
these distance constraints. In practice, the proton spectrum of a large protein molecule is
poorly resolved as shown in Fig. 3.1 B. This is due to crowding of the spectrum by larger
number of proton resonances and their increased line widths caused by increased decoherence
rates of larger proteins.

S Samme ety oo stV
B R 2T S 4 & I L e

50 MH2 xpectrans of the peaten fysnzyine

A B

Figure 2. Panel A shows the proton spectrum of a small peptide. The proton resonances are clearly
resolved. Panel B shows the proton spectrum of protein Lysozome at a magnetic field corresponding
to proton frequency of 750 MHz. The spectra has overlapping resonance lines.

To circumvent this problem, methods of multidimensional NMR were invented [27]. The
multidimensional NMR experiments generate a two dimensional spectrum, where each peak
in the spectrum is labeled by Larmor frequencies of a coupled spin pair. For example, the first
label could be the Larmor frequency of a proton and the second label the Larmor frequency
of another spin coupled to proton, say 15N. As a result, the two protons, with overlapping
Larmor frequencies can now be distinguished by their nitrogen frequencies. This way, the one
dimensional spectrum of protons can be resolved and peaks assigned a unique frequency label.
The basic set up of two dimensional NMR experiment is depicted in Figure 3.1. Initially spins
S are excited by an oscillating magnetic field with frequency corresponding to approximately
their Larmor frequencies. The net magnetization of the spins S is driven to transverse plane
where it precesses for some time ¢; . Then by application of external rf field and the coupling
between the spins the magnetization is transferred from spin S to spin I. The spins I are
then excited and the precession of its magnetization is recorded. The experiment is performed
again by incrementing the value of #;, resulting in a two dimensional signal s(¢1,t2) indexed
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8 H. MABUCHI AND N. KHANEJA

by the time t; of the precession of the spin S and ¢z, the time of the precession of spin
1. This signal takes the form s(t;,2) = ncos(wst;) cos(wrts) exp(—Rst1) exp(—Rytz), where
R; and Rg are relaxation rates for spin I and S respectively and 7 is the efficiency of the
magnetization transfer step. A two dimensional fourier transform of this signal gives peak at
frequency {wy,ws). The relaxation rates Ry and Rg determine the linewidths and 7, governs
the sensitivity of the experiment.

Interactions 2D NMR

vy (D)
. '{ ....... — - D FT
| ' B, /

Spin Hamiltonian: H, + Hy (1)

Figure 3. The left panel shows a coupled two spin system where interactions are used to transfer

magnetization between coupled spins. The right panel shows the basic features of a 2-dimensional

NMR experiment where magnetization on spin evolves for time ¢; followed by a transfer to spin I and
then another evolution period 2.

The basic idea of a 2D NMR experiment can be extended to 3 or 4 dimensional
experiments which generates frequency information of spins in a coupled spin network. In
NMR spectroscopy of proteins, many such elaborate experiments have been developed to
improve resolution of the data [31]. There are numerous, beautiful control challenges, related
to finding the optimal rf-excitations that optimize the efficiency of transfer of magnetization
in a network of coupled spins. From perspective of control theory, these are control problems
related to steering bilinear control systems with drift. Finding the shortest time optimal pulse
sequences, that transfer magnetization between coupled spins or minimize relaxation losses
and thereby maximize 7 has been a long standing research area in NMR spectroscopy. Only
recently have these problems been addressed from a contro! theory perspective. These problems
involve computing reachable sets of bilinear control systems with drift. Physics imposes new
mathematical structures in these problems. This has made it possible to characterize optimal
trajectories of these bilinear control systems [21, 22, 23, 24, 25]. There are numerous open
problems that can benefit from systematic application of tools from control theory. These
problems of optimal control of coupled spin topologies have a direct bearing on the area of
quantum information. Finding optimal excitations to generate a desired evolution in a network
of coupled quantum systems is a canonical problem in area of quantum information. These
problems are discussed in some detail in Sec. 4.1-4.3.
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3.2. Atomic physics

Basic studies of atomic internal degrees of freedom (which determine their characteristic
absorption and emission spectra) were crucial for the early development of quantum mechanics,
and in recent years atomic systems have again become the focus of seminal research in
quantum control and related fields. Because of their relative simplicity and the ease with
which they can be well isolated from bulk matter, gas-phase atoms provide a canonical setting
in which to validate elementary methodology. Subtle techniques have already been developed
for the manipulation of electron orbital motion and hyperfine spin dynamics, with potential
applications in quantum information processing and metrology. The invention and refinement
of laser cooling techniques have made it possible to observe and to induce quantum phenomena
in the center-of-mass motion of atoms as well; various forms of matter-wave interferometry are
now widely studied and there has recently been an explosion of activity in the study of quantum
phase transitions of cold atoms in optical lattices.

Quantum control techniques that have previously been developed by the atomic physics
community are mainly of intuitive origin. In many cases they were adapted from earlier work in
magnetic resonance [28, 29]. But researchers working on atomic systems have begun to explore
the utility of robust pulse sequences from NMR [33] and of optimal control theory [32] as it
has been formulated by physical chemists [2], and have likewise succeeded in generalizing some
principles from elementary frequency domain feedback control [34, 35] (a working knowledge
of which is required for the design and maintenance of most atomic physics experiments).
As it is often possible to model atomic systems essentially from first principles, sophisticated
synthesis techniques from control theory may prove to have great practical utility and to
enable vastly improved performance. Preliminary investigations suggest that model complexity
can be a serious obstacle, however, as can limitations on current technical capabilities for
generating complex laser control fields. Atomic dynamical timescales can also be quite short
(lying generally in the range from ~ 107° to ~ 103 seconds), which presents a challenge
for the implementation of closed-loop methods. Rigorous model reduction, robustness and
‘non-fragility’ will thus be highly desirable in the development of quantum control for atomic
systems. ‘

It is important to note that there is a solid theoretical foundation for the physical modeling of
input and output channels for atomic control systems. In particular, continuous measurements
based on the scattering of laser light by atoms can be accurately modeled, thus enabling a
rigorous treatment of the quantum mechanical measurement ‘backaction’ in quantum feedback
control (see Sec. 4.4).

Several distinct classes of atomic experimental systems can be identified with relevance to
quantum control. After decades of intense laboratory development, trapped ions now provide
a very clean realization of the elementary quantum model of one or more spins coupled
to simple harmonic oscillators. Relatively long coherence times can be obtained in trapped
ion experiments together with very low effective temperatures; they have thus become quite
important for applications in frequency metrology [36] and quantum information processing
[37]. Various techniques have been established for manipulating the quantum state of trapped
ions via lasers and electric fields, and some of these have been analyzed from the perspective of
geometric control theory [38, 39]. As far as open-loop control is concerned, trapped ions have
provided some of the most sophisticated examples of quantum control to date. One potential
drawback of these systems (for fundamental studies in quantum control) is that real-time
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monitoring of dynamical variables in a small sample of trapped ions is extremely difficult if not
impracticable (see, however [40, 41] for significant recent progress). For practical applications
this could be less of an impediment than a control engineer might imagine, however, as
stochastic perturbations can be kept relatively small in these experiments, high purity (low
entropy) initial states can be prepared, and many useful quantum states are reachable with
current actuation capabilities. _

Many of the attractive features of trapped ions, such as relatively long coherence times and
the reachability of highly non-classical states, can also be found in single-atom cavity quantum
electrodynamics (cavity QED) {42]. In modern cavity QED, the specially-arranged environment
of an electromagnetic resonator with high quality factor and small mode volume is utilized to
achieve strong coupling between individual atoms and photons. Experiments conducted in the
microwave regime [43, 44], with Rydberg atoms and superconducting resonators housed in a
cryostat, have achieved quantum control results on par with what has been accomplished using
trapped ions. Experiments in the optical regime [45], with ground-state atoms and dielectric
mirror resonators, have recently begun to produce ground-breaking results in active control of
quantum dynamics as well [46] (with potential applications in quantum communication and
cryptography). For the current discussion, optical cavity QED has the significant additional
feature of being the one of the few experimental settings in which it is currently possible to
perform continuous measurement of quantum dynamical variables, as would be required for
real-time feedback control. Several theoretical papers can already be found that investigate
applications of filtering and feedback in cavity QED, e.g., for active cooling of the motion
of a single atom [47] or for control of the atomic resonance fluorescence spectrum [48]. Early
interest in aspects of quantum control for cavity QED was stimulated by potential applications
in quantum information science, and also by a strong general interest within the field in non-
equilibrium statistical mechanics and the quantum-—classical interface [49].

Experiments on large ensembles of atoms have also recently entered the domain of quantum
control. Here one sub-class of experiments ‘utilizes simple vapor cell samples, in which
special technical preparations can be used to enable long coherence times for collective
internal quantum degrees of freedom of gas-phase atoms whose center-of-mass motions are at
equilibrium at room temperature. Both open-loop [50] and closed-loop [51] experiments have
been conducted with significant interest to quantum control, although the direct motivation
of these works was more along the lines of quantum information science. A second sub-class of
experiments on atomic ensembles works with laser-cooled clouds of gas-phase atoms. Again,
both open- [52, 53] and closed-loop [54] experiments have been performed, with motivations
stemming from both metrology and quantum information science. The open-loop work on
interfering pathways in laser excitation of electronic orbital motion provides a compelling
demonstration of a key principle from the physical chemists’ perspective on quantum control,
and may have the potential to find practical application in stability transfer of optical frequency
standards [55]. The closed-loop work is related both to feedback stabilized preparation of
quantum states (for fundamental studies or for quantum information applications) and to
proposed schemes [10] for robust atomic magnetometry (magnetic field measurement). The
latter work connects current experiments to more formal theoretical work on linear quadratic
Gaussian (LQG) quantum control, quantum filtering and quantum parameter estimation (see
Sec. 4.4 and Sec. 4.5 below).

Although the essential ideas involved in quantum control with atomic ensembles are similar
to those of NMR, we should emphasize that the atomic experiments manipulate pure (or nearly
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pure) quantum states whereas the liquid-state NMR research described above generally works
with so-called effective pure states [56]. Magnetic resonance experiments with low temperature
solid-state samples [57] or electron spins [58] are more like atomic systems in this regard.

Finally, we wish to call attention to a new class of experiments on atoms in optical lattices.
Optical lattices are one-, two- or three-dimensionally ‘corrugated’ mechanical potentials,
created by laser light, that can be used to modulate the motion of cold atoms and even confine
them in crystalline arrays. The interaction between the laser light and the atomic center-of-
mass motion depends generally on the atomic internal state, which makes optical lattices an
interesting setting in which to couple these quantized degrees of freedom [59) (much as has been
done with trapped ions). Experiments have been proposed to investigate the crossover from
chaotic classical dynamics to quantum dynamics in such systems [60], and also to implement
quantum logic gates among neighboring atoms in the lattice [61, 62, 63, 32]. When an optical
lattice is ‘loaded’ from a degenerate quantum gas, such as an atomic Bose-Einstein condensate,
it is possible to observe intriguing quantum phase transitions of the kind that have long been
studied in condensed matter physics [64, 65]. Theoretical studies have begun to appear on the
possibility of actively controlling these quantum phase transitions in order to access exotic
atomic collective states [66, 67].

3.8. Solid-state systems

Solid-state systems provide very rich dynamical settings for the investigation of quantum
phenomena. The construction of accurate theoretical models for such systems can be quite
challenging, but it has been possible to achieve excellent agreement with experiments in
numerous scenarios of interest for quantum control. Here we will limit our attention to a
brief survey of some specific systems that were discussed at the PRACQSYS workshop, with a
selection of compatible experimental and theoretical references. As a general comment, it seems
worthwhile to note that recent work on quantum control of solid state systems strongly suggests
that some practical limits to achievable performance will derive from the finite temperature of
sensors and actuators; this is an unusual and interesting ‘physical’ consideration for estimation
and control.

Superconducting circuits incorporating Cooper-pair boxes have become a central paradigm
for the study of many-body quantum dynamics, mesoscopic physics and solid-state realizations
of quantum information processing. It is now possible to produce coherent superpositions of
quantum states of such circuits, to observe coherent dynamical evolution in them, and to
perform readout with high fidelity and low backaction [68]. Open-loop quantum control in
superconducting circuits is thus reaching a level of maturity comparable to that of trapped ion
systems, although the decoherence mechanisms (residual environmental couplings) are much
less well understood and the achieved control fidelities have accordingly been substantially
lower. However, superconducting circuits provide access to a broader range of dynamical
phenomena, including bifurcations and limit-cycle behavior for quantized effective degrees
of freedom; some of these have been well characterized and even exploited as the basis for
constructing novel quantum amplifiers [69]. Recently it has become possible to couple Cooper-
pair boxes to high quality factor microwave resonators [70], leading to the realization of ‘circuit
QED’ systems with many features in common with single-atom cavity QED as described above.
These developments have opened exciting new prospects for observing conditional evolution
and possibly implementing real-time feedback control in superconducting circuits.
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Electron spin degrees of freedom in semiconductor systems can likewise serve as subjects for
quantum control, with important practical applications in the emerging information technology
paradigm of ‘spintronics.’ Here the vision is to utilize electron spin (rather than charge) as the
carrier of information in computer circuitry, with concomitant potential gains in speed and
miniaturization. One possible drawback to the use of electron spins is the relative difficulty
of implementing control mechanisms to change their states rapidly and with high spatial
selectivity. By analogy with NMR experiments, for example, one would think of using pulsed
magnetic fields to manipulate spins but this would be very difficult to do with the required
speeds and localization. But it has recently been demonstrated that one can instead utilize
the effective magnetic fields (due to the relativistic transformation of local electric fields) seen
by electrons moving at high speed through a strained semiconductor [71]. This insight could
provide the basis for crucial further developments, with numerous opportunities for control
theoretic analysis and design. These relativistic effects create an unusual dynamical coupling
of an electron’s spin (intrinsic angular momentum) to its linear velocity, which should be quite
interesting to study from the perspective, e.g., of geometric control.

One final development we wish to mention is the impressive recent progress on reaching
a quantum regime for the dynamics of nano-scale mechanical oscillators {72, 73]. Here the
fabrication of sub-micron scale cantilevers with extremely low internal dissipation and weak
environmental couplings, combined with state-of-the-art cryogenics and cryogenic electro-
mechanical sensors, has made it possible to approach conditions in which quantum-mechanical
behavior of the cantilever should become observable and controllable. Initial theoretical studies
have been conducted of the feasibility of using real-time feedback for active cooling of a
cantilever to its quantum mechanical ground state [74], and strategies have been proposed
and analyzed [75] for coupling a nano-mechanical cantilever to a Cooper-pair box to provide
an alternative solid-state realization of dynamics analogous to that of single-atom cavity QED.

4. Models and problems arising in quantum control

The applications and experimental systems described above have given rise to many theoretical
research challenges in quantum control. Here we discuss a selection of them and provide
references to relevant publications. i

4.1. Bilinear and Geometric control problems in Quantum systems

Active control of quantum dynamics involves systematically changing the Hamiltonian of
the quantum system by suitably tailored electromagnetic fields. These are bilinear control
problems (usually with drift) involving control of the unitary evolution operator U evolving
under Schrédinger equation (A = 1)

0= —i[Hd‘Ff:UjHj]U. (2)

=1

H, is the internal Hamiltonian of the system representing couplings between various degrees
of freedom and H; are the Hamiltonians resulting from external excitations which are
modulated using choice of control u;(t). There has been significant interest in understanding
the controllability properties of these systems [83, 99, 100, 101, 102, 103, 104], both when the
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quantum system {and hence U) is finite dimensional, as in architechtures of coupled spins and
in cases where U is infinite, as arising in problems ranging from control of cold trapped ions
to control of molecular reactions using laser fields {38, 39, 103].

In the finite dimensional case, results on controllability of these systems are well known
from classical control theory [91, 92, 93] and captured by the Lie algebra {—iHg, —iH;}ra
generated by the Hamiltonians Hy and H;. In the case of infinite-dimensional bilinear control
systems, many conceptual and technical difficulties remain [38, 39]. Controllability arguments
for steering infinite dimensional systems, between eigenstates of interest have been primarily
constructive [96, 97]. There has been a recent interest in understanding controllability of infinite
dimensional quantum systems from perspective of geometric control theory, though much
work remains to be done. Infinite dimensional bilinear control problems also arise naturally in
the context where one is trying to steer an ensemble of finite dimensional quantum systems
[87, 88, 89, 90]. These problems are discussed in much more detail in the following section 4.3.

Besides questions of controllability, in practice, the complexity of synthesizing excitations,
that produce a desired evolution of a quantum system is of great interest. In general, external
excitations, must cooperate with evolution under the intrinsic Hamiltonian H4 to synthesize
a desired evolution such as transferring coherence between spins in context of magnetic
resonance, creation of entangled states or synthesis of quantum logic between coupled quantum
systems [21]. This reliance on internal evolution puts a fundamental limit on the amount of
time it takes to implement a desired unitary evolution in a quantum system. This is a known
fact in control theory. For controllable nonlinear systems with drift, there is in general a
minimum time to steer the system to a desired point even in the presence of unbounded
controls. Characterizing all unitary transformations that can be synthesized in a given time
is an important problem related to the design of time-optimal excitations for bilinear control
systems with drift [21, 22]. The problems are of practical importance, as quantum systems of
interest are rarely isolated from their environment. Finding time optimal methods to steer the
system in Eq. 2 between points of interest reduce dissipative effects caused by interaction with
the environment.

Recent study of these time-optimal control problems has led to a careful study of the
relationship between Lie algebras generated by control Hamiltonians ¢ = {~iH;}r4 and
the full control algebra g = {—iHg4,—iH;}L4 and the associated groups K = exp(f) and
G = exp(g) [21]. The time required to synthesize a desired evolution in Eq. 2 can be related
to control systems on the quotient space G/K. A satisfactory theory has emerged when the
quotient space G/K is a Riemannian symmetric space [21]. These spaces arise naturally in the
study of control of coupled spin % [21, 22, 98] in context of magnetic resonance and quantum
information processing. In this case, the space G of unitary transformation of coupled spins
is SU(4). The external excitations produce local unitary transformations in the subgroup
K = SU(2) ® SU(2). Analysis of the resulting control systems on the symmetric space
%@% [21, 98, 108] has made the synthesis of unitary transformations for coupled spin %
or qubits transparent. The associated Cartan decomposition of SU(4) in terms of the subgroup
SU(2) ® SU(2) has been used extensively for design of quantum gates in quantum information
sciences [83, 98, 109, 110, 111, 112]. Many of the entanglement generation properties of the
quantum gates can be studied using these Cartan decompositions [112]. The reachable sets and
time optimal controls in Eq. 2 can be completely characterized when G/K is a Riemannian
symmetric space [21]. Many of these time optimal control designs have been experimentally
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realized in the context of magnetic resonance [80, 81].

The geometric control methods hold promise for understanding problems of optimal
control design in more elaborate scenarios involving networks of coupled quantum systems
in various quantum information processing architectures. Many of these optimal control
problems reduce to the study of subriemannian geodesics [94] on homogeneous spaces [22].
In the general problem of control of a network of coupled spin %, the control subgroup
K =58U(2)® SU(2)®...SU(2) of local unitary transformations, is much smaller compared
to the group of all the unitary transformations G = SU(2"). Finding efficient ways to realize
unitary evolutions in a network of coupled quantum systems are interesting challenges in
the geometric control of practical relevance. For infinite dimensional quantum systems, the
problems of optimal control design are mainly open [39]. Besides generation of specified
unitary evolutions, there are important time optimal control problems related to state to
state transfer. These range from problems of optimal synthesis of entanglement and transfer
between eigenstates in a chain of trapped ions [38] to transfer of polarization along a spin
chain [79].

Although study of bilinear control systems is not a new subject, new physical problems arising
in control of quantum systems motivate rich mathematical structures. These problems therefore
provide further motivation for development of nonlinear and geometric control theory.

4.2. Optimal Control of Quantum Dynamics in the Presence of Relazation

In practice, the interaction of a quantum system with its environment makes the evolution non-
unitary and relaxes the system back to its equilibrium state. This in various applications leads
to loss of signal and information. This problem of relaxation is ubiquitous in applications
involving coherent control of quantum mechanical phenomenon. Manipulating quantum
systems in a manner that minimizes relaxation losses is a fundamental challenge of practical
importance.

In recent years there has been significant interest in the development of the techniques
for optimal control of quantum dynamics in presence of relaxation, primarily in the context
of magnetic resonance [23, 24, 25, 85, 86]. Most of the work in this area has focused on
applications, where the environment can be approximated as an infinite thermostat and the
evolution of the open quantum system can be modeled by an equation of the Lindblad type

[77, 78]
p=—ilHa+ Y ui(H; (1), 0l + L(p). 3)
J

The evolution of the state of the quantum system is no longer unitary, but the control system
still retains its bilinear structure as the term p — L(p) is a trace preserving linear mapping.
From the standpoint of control theory, these are interesting challenges related to the control
of the Lindblad equation. How close can the state of a quantum system be driven to its
target state? What is the maximum sensitivity one can expect in an multidimensional NMR
experiment, or what is the maximum entanglement that can be synthesized in an open quantum
system. All these questions are directly related to computing the reachable sets of Lindblad
equations. In high resolution NMR experiments significant improvement in sensitivity has been
reported for various experiments [25, 23, 24, 85, 86] by optimal control of the systems as in
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Eq. 3. There has also been some recent work on understanding the controllability properties
of these systems [105] from a mathematical control theory perspective.

To fix ideas, we present a model problem associated with optimal control of coupled spin
dynamics in the presence of relaxation [24]. Given the control system [82]

x 0 -u 0 0 T
i z2 | |v -k -J 0O T3 @)
d|lzz ! |0 J -k -v z3

T4 0 0 v 0 T4

with k,J > 0, the objective is to find out that starting with the state (1,0,0,0), what is the
maximum achievable value of x4 and what are the optimal controls u and v that achieve this
value. Observe, even if the strength of controls in unbounded, there is a fundamental limit on
the maximum value of z4.

The study of optimal control of systems of the above kind leads to new class of constrained
bilinear control systems where the control parameters can be expressed as polynomial functions
of fewer parameters [24, 82]. For example, consider the optimal control problem of finding the
largest value of r4 that can be reached for the system

d [ r1(t) } _ [ —ku?  —Juiup ] [ r1(t) ] %)

dt | r2(t) Jujug  —ku r2(t)

starting with (r1(0),72(0)) = (1,0), where controls —1 < u; < 1. Observe the controls u; and
uy enter quadratically in the above equation 5, which helps us to analytically solve for the
optimal control [24].

In general, these problems on control of open quantum systems then motivate the study of
constraint bilinear control problems, of the following form. Let z € R™ and u € R™. Consider
the system

t=(A+ Z fi(w)Bi)z, (6)

where f;(u) is a polynomial or more general function of of control parameters u. Find the
reachable set of such a system starting from some initial state z,. Problems of optimal control
of Lindblad equations also arise naturally in the context of laser cooling. Recently, these
control problems have been studied with the goal of finding optimal excitations to minimize
the entropy of a quantum system [106, 107).

A systematic study of the controllability and optimal control problems related to Lindblad
equations of open quantum systems is expected to have immediate impact in areas of coherent
spectroscopy and quantum information processing.

4.8. Control of ensembles

Many applications in control of quantum systems involve controlling a large ensemble by
application of the same control. In practice, the elements of the ensemble could show variation
in their physical parameters that govern the dynamics of the system. For example, in magnetic
resonance experiments, the spins of an ensemble may have large dispersion in their Larmor
frequencies, strength of couplings between coupled spin pairs and the relaxation rates of the
spins. In solid state NMR spectroscopy of powders, the random distribution of orientations
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of inter-nuclear vectors of coupled spins within an ensemble lead to a distribution of coupling
strengths [76]. A canonical problem in control of quantum ensembles is to develop external
excitations that can simultaneously steer the ensemble of systems with variation in their
internal parameters from an initial state to a desired final state [87, 88, 89, 90]. From the
standpoint of mathematical control, the challenge is to simultaneously control a continuum of
systems between points of interest with the same control, for example transfer of magnetization
in coupled spin ensemble with large variations in the Larmor frequencies and coupling
strengths.

To fix ideas, consider the following bilinear control system that captures the dynamics of an
ensemble of spin % is external magnetic field as described in section 3.1.

dlz 0 —w  —au(t) z
zl Y= w 0 av(t) y (7)
z au(t) —av(t) 0 z

Consider now the problem of designing controls u(t) and v(t) that simultaneously steers

an ensemble of such systems with their natural frequency w € [~B, B] from an initial state
(z,y,2) = (0,0,1) to a final state (z,y, z) = (1,0,0) [87]. This problem is of particular interest,
when the maximum amplitude of the applied field A(t) = /u2(t) + v%(t) is comparable to or
less than the bandwith B one is trying to cover [87].
These problems raise interesting questions about controllability, i.e showing that there exists
a control law (u(t),v(t) satisfying /u?(t) + v3(t) € A,uez which simultaneously steers all
the systems with w € [~B, B] to a ball of chosen radius around the final state (1,0,0) in
finite time. Furthermore, practical considerations like relaxation as described in section 3.1,
make it desirable to construct the shortest control law which achieves this goal. These are
problems of optimal control of infinite dimensional systems of a special kind. A systematic
study of these systems is expected to have immediate applications in areas of coherent
spectroscopy and control of quantum systems in general. Generalization of these problems
to controllability and optimal control questions related to the problem of transferring an
initial function (z(w,0),y(w,0), 2(w,0)) to a target function (z(w,T),y(w,T), z(w,T)) by an
appropriate choice of controls in Eq. 7 is particularly interesting and relevant in NMR and MR1I
applications. In this context, Eq. 7 can be interpreted as a partial differential equation, where
the functions z(.,.), y(.,.) and z(.,.) have both a dependence on time ¢ and the parameter w.
Therefore these problems motivate investigating the controllability properties of bilinear PDE
models of the form

Ea = (A + S uB) elond

where the same controls u;(t) are being used to simultaneously steer an ensemble of control
systems indexed by the control parameter s. These models include problems in which the
elements of an ensemble may see a big variation in the control field. In Eq. 7, the parameter
a might show a distribution in @ € [Anin, Amez]- In magnetic resonance applications, this
arises when different spatial positions in the sample experience different rf-fields due to field
inhomogeneities. Control designs that only excite parts of the ensemble with their parameter
values in a desired region and leave the remaining ensemble undisturbed are desirable in NMR
and MRI applications [95].
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Another class of problems that arise often in the control of quantum ensembles are the ones
associated with the optimization of certain average quantity associated with the ensemble.
To fix ideas again consider the model problem of optimal state transfer in the presence of
relaxation described in Eq. 4 in section 4.2 [24]. Now J and k are distributed in the range
(J1, J2) and (k1, ko) respectively. The goal is to design u(t) and v(t) that maximize the average
value of x4 over all the systems i.e maximize

J2 k2
/ / z4(J, k, t)dJdk. -
Jl kl

In summary, problems involving simulataneous control of a continuum of systems with
dispersion in their parameters arise naturally in control of quantum ensembles. These problems
have received little in-depth attention in the past in control theory. The classical techniques
for studying controllability and reachability need to be further developed to understand these
highly under actuated control problems of infinite dimensional systems.

4.4. Quantum probability, filtering and feedback

The models considered in previous sections pertain to open-loop control, and here we wish
to provide a brief introduction to real-time feedback control of open quantum systems. To
begin with we should clarify that we consider setups in which the plant is an open quantum
system while the sensors, controller and actuators can reasonably be modeled as classical
devices. (Scenarios involving quantum-mechanical controllers have also been considered, for
example by S. Lloyd and co-workers [113].) In the theory of real-time feedback control of open
quantum systems, there remains a distinction between state- and output-feedback paradigms,
but care must be taken to avoid ‘improper’ applications of state-feedback methodology. (In
principle it could suffice at this point to state the fact that quantum physics forbids perfect
and complete measurements of the state of any single quantum system, but we will attempt
to provide a more operational explanation.) While direct state feedback can of course be
investigated in a quantum setting as a purely theoretical exercise, or as a computational tool
for the design of open loop controls, it never really provides a faithful representation of actual
feedback interconnection. For reasons that we will discuss shortly, quantum feedback control is
always essentially stochastic and one must generally have recourse to a separation principle. In
experimental scenarios with low measurement sensitivity (low signal-to-noise ratio), the sensor
noise can be so dominated by ‘excess’ noise that the state estimator never converges to the
level of intrinsic quantum uncertainties. In such cases the filtering problem can effectively be
treated classically, leading for example to certainty-equivalent control models in which there
is quantum dynamics (in the response of the system to applied fields) but no measurement
backaction. This type of approach is formally similar to state feedback and is in fact well-
motivated in current research on feedback cooling and closed-loop system identification of
atomic ensembles [34, 114].

In experimental scenarios with high measurement sensitivity, however, it is crucial to utilize
the type of quantum filtering equations that have been derived by researchers in mathematical
physics [115] and quantum optics [116, 117]. (In intriguing recent work, M. James [118] has
also derived quantum risk-sensitive filtering equations that could be utilized for the design and
implementation of robust feedback controllers.) These equations are derived by considering a
‘physical’ account of the continuous measurement of an open quantum system (e.g., a cloud
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of atoms) in which some probe field (e.g., a laser beam)—itself a quantum system—is coupled
to the plant via Hamiltonian dynamics (e.g., electromagnetic coupling of atoms and photons
according to Maxwell’s Equations). This dynamical coupling creates correlations between the
quantum states of the plant and the probe, such that a subsequent destructive measurement
of the probe {e.g., photodetection of the transmitted laser beam) yields some information
about the evolving plant state. If it is assumed that such a sequence occurs repeatedly
in coarse-grained time steps, one can take an Ito-like limit to obtain stochastic differential
equations (SDE’s) for propagating a recursive estimate of the plant state. It is important
to note that quantum uncertainties associated with the probe field induce some degree of
unavoidable randomness in the measurement (e.g., photodetector) signals and/or the probe-
induced perturbations of the plant evolution. Because of the quantum nature of the probe field
it is impossible to conduct measurements on an open quantum system in such a way that both -
the sensor noise and ‘measurement-induced process noise’ vanish, and it is also impossible to
make simultaneous accurate determinations of both noises ‘after the fact’ by scrutinizing the
transmitted probe field. (There have been some theoretical investigations [119, 120] of schemes
in which an optical probe beam is prepared in a highly ‘squeezed’ state to suppress sensor noise,
while photodetection and feedback are used to cancel the measurement-induced process noise,
but at present they are practically infeasible.) The use of proper quantum filtering equations in
the design and analysis of quantum feedback systems is thus crucial to ensure full compliance
with subtle physical constraints on achievable performance.

While it remains an outstanding research challenge to derive and to validate gquantum
filtering equations for solid-state quantum control systems, they are known with confidence
for many systems in atomic physics including single-atom cavity QED [121] and hyperfine
spin dynamics in atomic ensembles {122]. Such stochastic master equations (as they are
known in quantum optics and atomic physics) have been used for numerical investigations
of proposed quantum feedback schemes [47, 123] and also provide a starting point for rigorous
analyses. Some scenarios of great practical interest, such as feedback control of atomic spin-
squeezing [54] and closed-loop magnetometry [10], fall into a class of quantum Linear Quadratic
Gaussian (LQG) systems for which exact analytic treatments are possible [124, 125]. For these
systems the quantum filtering equations can be used to derive closed sets of SDE’s for the
first and second moments of a quorum of quantum variables. These SDE’s can be put in the
form of Kalman filters [126] and the usual LQG analyses from classical control theory apply
straightforwardly. In such LQG quantum control models the only signature of the underlying
quantum mechanics lies in the fact that certain inequalities must be observed among gain and
covariance matrices therein; hence quantum LQG models are in a sense a subset of all possible
classical LQG models [125].

Beyond the LQG regime it becomes difficult to obtain exact results, although some recent
progress has been made on applying stochastic global [26] and almost-global [127] stability
methods to solve stabilization problems in systems of low dimension. The basic state of
affairs in nonlinear quantum control reflects the relatively underdeveloped state of nonlinear
stochastic classical control, and one hopes that quantum systems will provide new impetus for
a reinvigoration of the latter field as well.
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4.5. Quantum system identification

As mentioned above, the problem of determining the structure of a protein using NMR is
an example of what engineers might call a system identification problem. Applications in
quantum metrology (such as magnetic field detection or inertial sensing) may also be viewed
in a system identification framework. System identification problems have been widely studied
in the field of automatic control because the design of an effective feedback control system
begins with an accurate model, and because the use of open- or closed-loop controls can often
improve identification accuracy or speed. Quantum system identification problems present new
mathematical structure and optimization criteria because of the nature of the dynamics, some
novel technical constraints, and the types of measurement backaction issues described in the
preceding section. _

It is useful to distinguish between quantum system identification procedures that are ‘single-
shot’ versus those that employ an sequence of measurements on a fixed apparatus. As an
example of the former type of problem, we refer back to our previous mention of LQG quantum
feedback control on atomic systems [54]. It is possible to formulate extended Kalman filters
for such scenarios, in which one or more parameters appearing in the Hamiltonian are treated
as static or dynamic variables to be estimated from a continuous measurement signal. Some
general investigations have appeared on the sensitivity and optimization of such procedures
(including analytic studies in the Gaussian framework and numerical studies allowing more
general likelihood functions) [128, 129, 130]. A thorough analysis has been performed of using
this strategy for broadband magnetometry with atoms [10}, and it has been shown that real-
time feedback can be exploited for significant gains in robustness. Generally speaking it seems
that closed-loop single-shot procedures provide an ideal approach to estimating non-stationary
system parameters robustly.

While single-shot procedures will presumably become more prevalent in the future (with
high-profile applications such as LIGO), most quantum system identification problems
considered to date are based on the statistical analysis of a series of measurements on a
fixed apparatus. The existing literature on classical system identification is almost exclusively
devoted to problems for which the choice of input can be decoupled from the identification
problem. But with insensitive techniques such as NMR, for which measurement time is
precious, the design of input signals that reduce the time required for system identification is
extremely important. Some recent work in this area [131] examines the problem of determining
a good probing signal for system identification as a problem in minimizing the entropy of the
probability density for the parameter values, given the observations [131]. This results in
a mathematical formulation of the optimal input problem, that, at least in principle, has a
solution that defines best input sequences or family of sequences that lead to efficient reduction
of uncertainty in system parameters. (Note that in the literature of quantum information
theory, this type of problem has been labeled ‘quantum process tomography.’)

The problems of Hamiltonian identification also arise in other applications of quantum
control. As mentioned above, there is now extensive experimental work on using closed loop
methods for design of laser excitations in control of molecular reactions. These methods use
stochastic search techniques, including genetic algorithms to learn control designs that optimize
the final yield of the experiment [132, 133, 134]. Many of these problems could benefit by a
systematic development of techniques of system identification for Hamiltonian estimation.

A complementary problem to system identification that often arises in quantum contexts is
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that of state reconstruction. The basic challenge is to derive an optimal measurement {135] or
(possibly adaptive) sequence [114] of measurements to be performed on one or more ‘copies’ of a
quantum state in order to identify it as quickly and as accurately as possible. This identification
make have any prior over a discrete or continuous set of possible states. The problem is clearly
related to observability on one hand and communication theory on the other, providing an
interesting possible point of contact between control theory and quantum networks [136].

5. Conclusions

There are now a number of quantum control systems for which basic theory is in place and
experiment has reached an advanced stage of development. The study of these systems in
control-theoretic terms will be important for a wide range of strategic applications. Broader
engagement by the controls community could be exceptionally fruitful at this time, as could be
the training of physicists with deeper knowledge of estimation, control and dynamical systems
theories from engineering. Quantum control provides a unique opportunity for reexamining
the physical basis of control and estimation theory, and may ultimately shed new light on
fundamental issues in quantum physics as well.
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