M

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

IMPROVING SOFTWARE QUALITY AND
MANAGEMENT THROUGH USE OF SERVICE LEVEL
AGREEMENTS

by
Leonard T. Gaines

March 2005

Dissertation Supervisor James Bret Michael

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 2005 Dissertation

4. TITLE AND SUBTITLE: Improving Software Quality and Management 5. FUNDING NUMBERS

Through Use of Service Level Agreements

6. AUTHOR: Leonard Troy Gaines

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) | 10. SPONSORING / MONITORING
Naval Supply Systems Command AGENCY REPORT NUMBER

Mechanicsburg, PA

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

In this dissertation we explore the use of service level agreements (SLAS) to improve the quality and management of software-
intensive systems. SLAs are typically used in outsourcing contracts for post-production support. We propose that SLAs be
used in software acquisition to support quality and process control throughout the lifecycle (requirements engineering through
post-production support) of a software-intensive system. The hypothesis was tested using two methodologies. The first
method explained how SLAs could be used throughout a system’s lifecycle to improve software quality. This concept was
validated by a survey of IT professionals. The results of the survey indicated that practitioners in the IT field felt that SLAs
could be used to improve overall quality in the development effort and in the end product. The second approach was to
develop actual SLASs for a specific lifecycle phase (post-production) to illustrate the concepts of SLAs and to demonstrate their
value as a quality control and management tool.

14. SUBJECT TERMS Software Engineering, Software Metrics, Software Management, Software 15. NUMBER OF
Acquisition, and Service Level Agreements PAGES:
434
16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF | OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited.

IMPROVING SOFTWARE QUALITY AND MANAGEMENT THROUGH THE
USE OF SERVICE LEVEL AGREEMENTS

Leonard T. Gaines
Commander, United States Navy
B.S., University of Nevada, 1986
M.S., Naval Postgraduate School, 2000
M.S., Industrial College of the Armed Forces, 2004

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN SOFTWARE ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL
March 2005

Author:

Leonard T. Gaines

Approved by:

Bret Michael Dan Boger

Professor of Computer Science Chairman of Information Sciences
Dissertation Supervisor

Committee Chairman

John Osmundson Man-Tak Shing
Professor of Information Sciences Professor of Computer Science

Rex Buddenberg
Senior Lecturer Information Sciences

Approved by:

Peter Denning, Chairman, Department of Computer Science

Approved by:

Julie Filizetti, Associate Provost for Academic Affairs

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

In this dissertation we explore the use of service level agreements (SLAS) to
improve the quality and management of software-intensive systems. SLAs are typically
used in outsourcing contracts for post-production support. We propose that SLASs be
used in software acquisition to support quality and process control throughout the
lifecycle (requirements engineering through post-production support) of a software-
intensive system. The hypothesis was tested using two methodologies. The first method
explained how SLAs could be used throughout a system’s lifecycle to improve software
quality. This concept was validated by a survey of IT professionals. The results of the
survey indicated that practitioners in the IT field felt that SLAs could be used to improve
overall quality in the development effort and in the end product. The second approach
was to develop actual SLASs for a specific lifecycle phase (post-production) to illustrate
the concepts of SLAs and to demonstrate their value as a quality control and management

tool.

THIS PAGE INTENTIONALLY LEFT BLANK

Vi

TABLE OF CONTENTS

INTRODUGCTION. ...ttt bbb bbb eneas 1
A EXECUTIVE OVERVIEW ..ottt 1
1. HYPOTNESIS. ... 2
2. AV [=34 pTo o (o] (o]0 VAR URTRPRURPRS 2
3. RESUITS .. 3
4, Original ContribULION.........cccoiiiiiie e 3
5. Expanding the Body of Knowledgeccccveoevveveiienieece e 4
6. Outling Of DISSErtatioN.........cccoveiieiiiie e 7
7. DEIIVEFADIE ... 8
B. IMPORTANCE OF INFORMATION TECHNOLOGYcccccevvvveiiriennn, 8
C. SOFTWARE QUALITY Lottt 9
1. Product QUANITYcooiiiiiiiee e 11
2. Project QUAlITYcocviieiiei et 12
3. Process QUANITYcoiiiiiiiiiee e 13
4. Post-Production QUAalItYcccoeieeiiiieiiec e 14
D. CHALLENGES IN OBTAINING QUALITY SOFTWAREcccevuee. 15
E. QUALITY PROBLEMS IN THE DEPARTMENT OF DEFENSE.......... 18
1. CliNGer-CoNen ACE.......cooiie s 19
2. Difficulty Managing Technologycccooveveiiieiieeie e 20
3. Shortage of Information-Technology Personnel...........c...cccceeneee. 23
4. (@ 11 101 U1 o | oo [SRS 25
F. PERFORMANCED-BASED SERVICE ACQUISITION (PBSA) 27
G SUMMARY ..t b e bbb 29
SERVICE LEVEL AGREEMENTS ..ottt 31
A. DEFINTTION ..ottt 31
B. BACKGROUNDooooiiiiitiitctsteieie ettt 34
C. SLA FORMAT Lttt bbbttt bbb 39
D. SLAS AS A FRAMEWORKccoiieiiesese e 42
E. SUMMARY .ttt bbb 45
APPLYING SLAS ..ottt sttt neareeneene e 47
A. DEVELOPMENT ...ttt 47
1. Define the Problem ... 47
2. [DCV=] (o] oI W =T o USRS 50
3. Service-Level Management.........coooeveieiieiinicee s 51
4. REVIEW CUFTENT SEIVICESocuviviiiieieie et 54
5. Determine REQUITEMENTS.cc.ooviiieiieieiiesieeie e 56
6. SLA Preparationcccceiv e 60
7. NEGOTIATION ...t 63
8. CONTFACT ... 66
B. SUCCESSFUL SLAS ...ttt 68
C. POST-PRODUCTION SUPPORT ..ottt 72
1. BaCKGIrOUNDc.eiiiiiiecc e e 72
2. POSt-ProdUCTION SEIVICES......couviieiieiieie et 74

Vil

VI.

VII.

VIII.

3. Developing the SOW and SLAS in AppendiX (A)cccoovvvevieieennns 76

D. SUMMARY ..ttt sttt a bbb re e anes 78
SOFTWARE DEVELOPMENT MODELS........ccccooiiiiieeeee s 81
A TYPES OF PROCESS MODELS ..ot 82
B. SELECTING APPROPRIATE PROCESS MODEL........cccccooniiniiinnne. 85
C. PROCESS MODELS.......ooiiiiieee ettt 87
1. Waterfall Model ... 88
2. SPIral MOEl ... s 90
3. Evolutionary Prototyping Model.............cccooveveiiiviieiecece e 92
4, Commonality Among Models ... 93
D. SLAs AND SOFTWARE PROCESS MODELS.........ccoocviiiiiiieniienee 95
E. SUMMARY ..ttt sttt be st b re e enes 97
REQUIREMENTS ENGINEERING. ..ot 99
A SYSTEM REQUIREMENTS ..ot 99
B. REQUIREMENTS ELICITATIONoocoiiiiiiiiiiieeee s 100
C. REQUIREMENTS ANALYSISoooiiiieeeeeeee e 107
D. REQUIREMENTS SPECIFICATION......cccoiiiiiiniiieiee s 112
1. Vision and Scope DOCUMENT.........ccoiiiieiiiiiee e 113
2. BUSINESS RUIES ...t s 114
3. Software Requirements Specificationccccoccvvvrieeneniieneennns 114
E. REQUIREMENTS VALIDATION. ..ot 115
F. REQUIREMENTS MANAGEMENTcooooiieieieesene e 118
G. SUMMARY ..ttt bbb 121
DESIGN ..ottt bbb bt r et e et bbb e reereene e 123
A. ARCHITECTURE ANALYSIS ...t 124
B. SOFTWARE QUALITY FACTORS EFFECT ON DESIGN................. 126
1. Maintainability ... 126
2. SBCUNTLY oottt e re e sre e e sneeare s 128
3. PerfOIMANCEcvieeie et e 131
C. DEVELOPMENT QUALITY oottt 135
1. SCREAUIE ... 136
2. Process QUAlILYccoeoiiiiiieie e 136
3. D] (=7 ST 137
D. TESTING ..ottt sttt eneas 139
E. SUMMARY ..ottt ettt te e reenes 141
SOFTWARE QUALITY FACTORS ...ttt 143
A. DETERMINING QUALITY FACTORS ... 143
B CONFLICT RESOLUTIONccctiiiieieieie e 146
C. RESPONSE TIMEci ittt 147
D. AVAILABILITY co et 152
E SUMMARY ..ottt ettt be e reenes 158
CONFIGURATION MANAGEMENT ..ottt 159
A. CONFIGURATION IDENTIFICATION ...ccocviiiieieieeese e 160
B. CONFIGURATION CONTROL ...ooiviiiiiiiiitciesiiseseeee e 162
1. Change Review Boardccooeiiiiiiiieiccee e 163

viii

2. Change Management..........ccccoevveieiiieieese e 166

3. NOTIFICATION ... e 167

4, Release Managementccovveeiieieeie e 168

C. CONFIGURATION ACCOUNTING.....ccoiiiiieieieiee e 169

D. CONFIGURATION AUDIT ..ottt 170

E. ASSET MANAGEMENT ..ottt 171

F. SUMMARY ..ttt bbb 172

IX. PROGRAM MANAGEMENTcoiititeieieieie et 175

A. RISK MANAGEMENTooitiiiiiieiee st 175

1. Risk Management in Requirements Phasec.ccoovvveiieiiennnene 177

2. Performance MONItOriNgG........ccccuviveiieere e 181

3. TESTPIAN e 183

4. POSt-Production RiSK.........ccccuiiiiiiiiiineeee s 184

B. FINANCIAL MANAGEMENT ..ottt 187

C. QUALITY CONTROL ...ttt 189

D. MAINTENANCE ..ottt ens 190

E. CONTRACT MANAGEMENT ..ottt 193

1. CoNntact Preparationccoeovieenieneeie e 195

2. Proposal Evaluation............cccccuevviieiieiccc e 200

3. Contract OVErSIQNTccoiiiiiiiiee e 202

4, Contractor Performance Management...........cccccovvevvvieiivennennnn 205

F. CUSTOMER SATISFACTIONooiiiiiieiieieeie e 207

G. SUMMARY ..ttt bbb 209

X. RESEARCH METHODOLOGYcccociiiiiiieieieiie et 211

A. PHILOSOPHICAL APPROACHES ... 211

B. APPLYING VARIOUS METHODOLOGIESc.coooiiiiiieieieneee 212

C. DISSERTATION METHODOLOGY ...ccooiiiiirieiiieie e sieeie e 215

D. QUESTIONNAIREottt ettt 217

E. RESULTS .ottt nenne e ans 219

F. INTERPRETATION OF RESULTS ..ottt 220

G. RESEARCH USING HOSTING SLAS ..ot 222

H. WEAKNESSES ...ttt et st 225

l. SUMMARY ..ottt ettt be e raanes 226

XI. CONCLUSION L.ttt bbb nneas 227

A REASON FOR STUDY ..ottt 227

B. KEY POINTS ..ttt 228

C. FUTURE WORK ..ottt 230

1. Evaluation in Actual Contractingcccoeveveiieieenece e 230

2. QUANILY FACTOTS. ..o 231

3. AVAIADITILY ... 232

4 ENA-T0-ENA SLAS ...t 232
APPENDIX A: NAVSUP HOSTING REQUIREMENTS AND SERVICE

LEVEL AGREEMENTS......ooiii ittt 233

A ESSENTIAL PACKAGE SYSTEM SUPPORT AREASccoccvviiene. 234

1. Application Migration SErViCe..........cccuiiiiiniiiieieie s 234

iX

10.

11.

a. Midrange Site Transition SErviCes........ccocvvveriveveriverieenenns 234

Systems ManagemMeNTtooouviiiiiiieieie e 236
a. System and Network Monitoring...........cccceeeveveveeresiesnene. 237
b. Performance Managementccoocvoevienenieneene e 238
C. Capacity Managementccccveveieeieeiesie e 239
d. System Operations AUtOMAatioNcccoveeeveeieenieeneeiesee e 240
Software Management...........ccoveiveie e i 240
a. Configuration Managementccoccveveveenenieneenesie e 240
b. System Product Integration and Problem Resolution.......... 241
C. System Software Maintenance............ccovvveereneieenesee e 241
d. Software REfresh ... 242
Hardware Management...........cocooeiiieninin e 243
a. Hardware Configuration Managementccccccocvevvvenenne. 243
b. Hardware Support and Maintenance.............cccccceveveeineenn. 243
C. Hardware Refresh ServiCesccovvvviineneiesisesesens 244
Security Management........cocoieeiiiiiiie e 244
a. Security Management ServiCesS.........covvvvvereereesieeseesiesnennns 245
b. Intrusion Detection SErVICES.........ccovvverereeieeie e 246
C. Vulnerability ASSESSMENT........ccciverieiierieesie e 247
d. Data Protection Software ServiCes.........ccocuveveeresieniennnn 249
e. User ldentification (ID) Maintenance and Password
ISSUBINCE ...ttt 249
CUStOMEr SUPPOIT SEFVICES.ccivievieirieieeiesee e eie e e eee e e e 250
a. Request Management............ccoovveiiieiiiic e 250
b. Continuous Hours Operational Support Coverage 251
C. Change Management.........ccooveereeiinie e 251
d. Problem Management..........cccovvvriiiiieienese e 252
Service-Level Management...........cccoovvieeveec e 253
a. Standard Service-Level Management Reviews and
REPOMING ... 253
BUSINESS CONTINUITY ..o 254
a. Documented Recovery Action Plan............ccccccovevviieiinennenn, 254
b. System Backup and ReCOVErycccooviviinencicniesi 254
C. Off-Site TaPe SEIVICES......ccoveireeieiieie e 256
d. Disaster Recovery TeSt SEIVICEccovvvererererenisesiesieeieas 256
e. Recovery Site ReqUIremMEeNtScccoevvevveveerie e, 257
Facilities - General ReqUIrEMEeNtSocvveieieieneni e 258
a. Electrical POWENccooviiiiiieiceecee e 258
b. HVAC and Climate Controls.........cccccovveveiieniienniie e 258
C. SEIUCTUFALL...oee e 259
d. WAN/BAN/LAN CONNECLIVILY ..o 260
e. Facility Physical SECUFitYcccovvivieiieiece e, 260
SNArEd SEIVICES ...eiiiiii et 261
a. Shared Services — DiSK........cccoveriiieniniiniisieene e 261
b. Shared Services — Platform...........cccccevvviiiieieinnee e 261
Essential Services — Optional Service Upgrades...............ccccuvneee. 262
a. Essential Services —Optional Service Adjustments.............. 262

X

B. ENHANCED BASE PACKAGE SYSTEM SUPPORT AREAS 263
1. Systems ManagemMeNTtooouviiiiiiieieie e 263

a. System DBMS MONItOFiNG.......cccoovverveieiiereeie e 263

b. Printer Definition and Queue Management...............c........ 264

2. Software Management...........cccveveereiiie i 264

a. System Database (DBMS) Support Services..........ccoceevenee. 264

3. Workload Management...........cccooceiveieiieneeie e 265

a. Batch Scheduling Services..........ccooiviienenienience e 265

b. Batch Monitoring SErviCeScovvvvievverie e 266

4. Application Security and Resource Controls.............cc.ccoovvnnnnns 266

5. Production Promotion ..o s 267

6. CUStOMEr SUPPOIT SEIVICES.covieiiiiiieieiie sttt 267

a. Request Management — Multi-Site Coordination Services .267

7. Enhanced Service — Optional Service Upgrades...........ccccceveenee. 268

a. Upgrade — Custom Product SUPPOrtcccccevevveveiieeiinennnn 268

b. Upgrade — Local High-Availability Support...........cccce....... 268

C. Upgrade — Custom Service Level Reviews and Reporting...268

d. Enhanced Services — Optional Service Adjustments........... 268

C. PREMIER BASE PACKAGE SYSTEM SUPPORT AREAS 270
1. Systems ManagemMeNTtcoouviiiiiiieee e 270

a. Application MONItOringccccoveveeiieiie e 270

b. Web Site MONITOIINGcoveiiiieiie e 270

2. Software Management...........cccveiveie e ie e 271

a. Custom Product SUPPOIT.......ccovereriiiieiiere e 271

b. Local High-Availability Software Support..............ccccvennee. 271

3. Hardware Configuration Management...........c.cccooevvinienennennnnn 272

a. Local High-Availability Hardware Support............cc.cceeveee. 272

4, CUStOMEr SUPPOIT SEFVICEc.eeivveeeiieiie et 272

a. Request Management — Global Coordination...................... 273

b. Custom Service Reviews and Reporting...........c.cccceeevvennenne. 273

5. Premier Services — Optional Service Upgrades............c.ccocvevrnnne. 273

a. Upgrade — Remote High-Availability Support Services.......273

b. Premier Services — Optional Service Adjustments............... 274

6. Contract TerminNatioN.........ccocvviveierenese e 274

7. ACKNOWIEAEMENTS ... 275

D. NMCI CONTRACT (APPENDIX A): oot 276
E. NAVSUP SERVICE LEVEL AGREEMENTS.......c.cccooevivein e 279
APPENDIX B ..ottt bbbttt bbb 353
A. PURPOSE OF QUESTIONNAIREcccov it 353
B. INSTRUCTIONS ...ttt et 353
C. INTRODUCTION. ..ottt st enes 353
D. CHALLENGES IN OBTAINING QUALITY SOFTWARE 353
E. SLAS: WHAT THEY ARE AND HOW THEY ARE USED 355
F. SLA FORMAT ..ttt bbbttt nne s 356
G. CASE STUDY .ottt ettt ane e 357
H. SAMPLE SLA ..ot 358
l. QUESTIONNAIRE: ..ottt 364

Xi

APPENDIX C ..o s 367

A. EFFECTIVENESS OF SLAS IN SOFTWARE ACQUISITION 384
B. USEFULNESS OF THE SLA FORMAT ..o, 385
C. SLAS CONTRIBUTION TO SOFTWARE QUALITY ..o 386
D. SLAS CONTRIBUTION TO POST-PRODUCTION SUPPORT 387
E. SLAS CONTRIBUTION TO LIFECYCLE MANAGEMENT 388
LIST OF REFERENCES. ... 389
INITIAL DISTRIBUTION LIST .o 413

Xii

Figure 1.
Figure 2.
Figure 3.
Figure 4.

LIST OF FIGURES

SLA FrAMEBWOIK.....cvieiiiiiieiieeie sttt sttt sttt e nee e nne s 44
Waterfall MOGELcooiiee e 89
SPIFAL MOGEL ... 91
EVOIULIONArY ProtOtYPE ...cvveivee et 92

Xiii

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

ACKNOWLEDGMENTS

I would like to thank my family, friends, and co-workers who supported me in
this effort. | would especially like to thank Dr. Bret Michael for his encouragement, hard
work and help in bringing this dissertation to fruition. | appreciate the amount of time
and effort it takes to review and provide comments on a dissertation of this size. Given
their extremely busy schedules, | sincerely appreciate the efforts and dedication of Dr.
Dan Boger, Dr. Man-Tak Shing, Dr. John Osmundson, and Professor Rex Buddenberg.
The author would also like to acknowledge Scott Price and Joseph Vickery from EDS for
their support with drafting the SOW in Appendix A. Finally, | would like to thank my

wife, Sally, for her patience, support, and sacrifice.

XV

THIS PAGE INTENTIONALLY LEFT BLANK

XVi

EXECUTIVE SUMMARY

Management and end-users have become increasingly dependent upon software-
intensive systems to support new ways of conducting business. These critical software-
intensive systems are becoming more complex, and difficult to manage, yet the
performance and quality expectations from management and the end-users continue to
increase. Unfortunately, despite software’s increased importance to organizations, the
quality of software can be lacking.

The dissertation describes a new approach to software acquisition: application of
service level agreements (SLAS) throughout a system’s lifecycle and at each major phase
of software development and maintenance to improve the overall quality of the end
product. The hypothesis is that the use of the SLAs in the software acquisition process
can improve product, process, project, and post-production quality by identifying and
defining relevant quality factors, quality metrics, quality thresholds, methods of
measurement, and by establishing penalties for failure to meet quality requirements.

The basis for the hypothesis is our theory that the SLA development process aids
requirements engineering by identifying software quality factors that support the critical
business processes the software development or maintenance project supports. The
quality factors that are addressed in the SLAs then drive architectural and design
decisions about the business-critical system. If developers and maintainers of business-
critical systems know which of the characteristics are most critical to project success,
they can select — within the constraints of time and budget — among system architecture,
design, and implementation alternatives that have a high likelihood of meeting the quality
goals set forth by the stakeholders for the end product.

To test the hypothesis, we used two approaches. The first approach explained
how SLAs could be used throughout a system’s lifecycle to improve software quality.
This approach was validated by a survey of information technology (IT) professionals.
The second approach was to develop actual SLAs for a specific lifecycle phase (post-
production) to illustrate the concepts of SLAs and to demonstrate their value as a quality

control and management tool.

XVii

THIS PAGE INTENTIONALLY LEFT BLANK

xviii

l. INTRODUCTION

A. EXECUTIVE OVERVIEW

In the past, the typical information system tended to be homogeneous and
stovepiped, and was typically developed from scratch by a small number of vendors. In
contrast, today’s typical information system is software-intensive and distributed,
composed of heterogeneous subsystems, supplied by numerous vendors. The subsystems
themselves can consist of a mix of legacy and new-system development. Software is
viewed by many as the means for making systems readily adaptable to change, as the
environments in which the systems operate change. In this dissertation we treat the topic
of service level agreements (SLA) in the context of their use in managing modern
information systems over their entire system lifecycle.

Many of the advances in the principles and mechanics of software engineering
provide the software engineer with a means for improving the quality of software-
intensive information systems. However, actual practice does not always take advantage
of these advances. This can be attributed to such factors as training problems, the rush-to-
market mentality, and lack of proper quality control throughout the lifecycle of the
information system. Although quality control is the responsibility of the program
manager, he or she may choose to defer addressing quality to later in the system lifecycle,
focusing initially on realizing functional system requirements. As experience has shown,
retrofitting quality—and non-functional requirements in general—into an information
system can be difficult to do technically or even cost-prohibitive to achieve in some
cases. In this dissertation, we argue that program managers must address software
quality through the system lifecycle and that SLAs provide a means for managing the
activities needed to build quality into software-intensive information systems.

A SLA is a contractual mechanism that defines quantifiable quality metrics,
acceptable service levels, the method of measurement, responsibilities of the parties to
the SLA, and incentives—both positive and negative reinforcements—for meeting agreed
upon service levels. A SLA can be used for in-house development efforts and services as

well as those that are outsourced. Further, a SLA can also be used in any stage of the

1

application’s lifecycle. Typically, a set—something akin to a portfolio—of SLAs are
used in conjunction with the management of an information system, with each SLA
representing a distinct quality attribute (e.g., reliability, maintainability) of the
information system or dimension of system development and maintenance (e.g., product
quality, process quality, project quality, and quality in post-production maintenance and
services).

1. Hypothesis

Service level agreements can improve the management and quality of software-
intensive information systems throughout the system’s lifecycle. Embedded software and
other specialized application of software are not within the scope of this paper.

2. Methodology

To test the hypothesis, we utilized two approaches. In the first approach we
explained how SLAs could be used as a quality control tool in the various phases of
software development to improve product, process, project and post-production quality.
Our research identified areas within the development and post-production effort where
SLAs could be effectively utilized, as well as provided examples of standards and quality
models that could be incorporated into SLAs. We validated these concepts through a
survey instrument administered to information technology (IT) professionals.

The questionnaire consisted of three sections. The first section provided the
subject with a brief introduction to the topic of software quality, and a short discussion of
how SLASs can contribute to software program management from conceptualization of an
information system through post-production support. The second section was a case
study illustrating a real-world scenario along with a SLA for availability. The last section
consisted of a questionnaire comprised of twenty-nine questions and a comment section.
Each statement had a corresponding Likert scale from one to five, with a one representing
strong disagreement and a five indicating strong agreement. The survey was conducted
from a web site.

The second approach was to develop SLAs for a specific phase of the software
lifecycle to further illustrate how SLAs can be used as a quality control tool and to

demonstrate the usefulness of the new SLA format. Although the SLAs that were

developed apply to post-production support, a similar approach can be utilized to apply
quality factors to other phases of development. The SLAs were also created to
demonstrated how SLAs could be used as a template for requirements elicitation and to
show that they can and should be tailored to meet project specific needs.

3. Results

The survey supported the hypothesis that SLAs can improve the management and
quality of IT intensive systems throughout their lifecycle. Twenty-two of the twenty-five
statements had a statistically significant difference from the null hypothesis (mean equal
to three on the Likert scale, which indicates a neutral feeling about the statement).

4. Original Contribution

This dissertation has three major original contributions to the field of software
engineering. The first contribution is a unique approach to improving software quality
from a software acquisition perspective. For numerous reasons software acquisition
tends to concentrate on the functional aspects of an information-intensive system.
Unfortunately, this approach often leads to poor software quality as software can be of
poor design, but still meet functional requirements. In an effort to improve software
quality this dissertation advocates the use of SLAs in software acquisition contracts to
specify performance-based requirements relating to product, process, project and post-
production quality. This dissertation demonstrates how SLAs can be applied to the entire
lifecycle of a software-intensive system in an effort to improve the quality of the
management and development of the system. SLAS are not a new concept, however they
are used primarily in post-production support. In this dissertation we take the concept of
SLAs and demonstrate how they can be used as a quality control and management tool
throughout the software development cycle (i.e., requirements, design, coding, testing,
post-production support).

The dissertation introduces a unique format for the SLAs. The format forces the
SLA development group to define in detail (e.g., in terms that all stakeholders
understand) the services to be performed, quantitative service levels, the method of
measurement, and time frames or periodicity of measurements. The format helps to

ensure that all parties understand the terms of the SLAS by stating the responsibilities of

the contractor and program manager, stating assumptions, deliverables, stating who will
perform monitoring, and how monitoring will be performed. The format also ties the
quality requirements to specific business needs and stakeholder concerns. Providing the
rationale for measuring the service ensures the development team has considered whether
the service and quality thresholds are relevant to business needs, that the quality
thresholds are realistic, and that metrics are meaningful and provide value.

Although SLAs are sometimes found in contracts with External Service Providers
(ESPs) for post-production support they are often used more to set expectations rather
than establish quality control measures. They are often poorly defined, they lack
information concerning monitoring techniques, and they generally favor the ESP.

In this dissertation we have developed thirteen original post-production SLAs that
are far more extensive than those found in the research conducted. The SLAs in
appendix (A) were developed to illustrate how SLAS can be used as a quality control tool,
not just for post-production, but for the other phases of the software lifecycle as well.
The SLAs in appendix (A) were used in actual source selection negotiations with very
favorable results.

5. Expanding the Body of Knowledge

Although numerous software engineering disciplines are discussed, this
dissertation has made contributions to the body of knowledge in the disciplines of
software acquisition, requirements analysis, software quality and software project
management.

There is currently a lack of theoretical basis or intellectual body of knowledge in
the field of software acquisition. Although there is a great deal of research concerning
software development methods and their affect on project success in terms of cost and
schedule, similar research on contracting methodology for software development is
lacking. This dissertation proposes a methodology for acquiring software that focuses on
project, process, product and post-production quality. This approach goes beyond
traditional acquisition by applying a holistic view of quality throughout a system’s
lifecycle. SLASs can be used as a quality control tool to enhance other software

acquisition approaches such as the Software Acquisition Capability Maturity Model (SA-

CMM) (Software Engineering Institute Mar 2000), IEEE Recommended Practice for
Software Acquisitions (IEEE Std. 1062) or Performance-Based Acquisition. (DoD USD
(A&T) Utilizing SLAs in the acquisition process is an attempt to correct many of the
software acquisition deficiencies sited in numerous articles, studies, and General
Accounting Office (GAO) reports. Although this dissertation does not empirically
demonstrate that SLAs will lead to project success and better quality, it does provide a
foundation upon which future studies can be based.

The SLA development process supports and incorporates many of the theories
proposed in the field of software requirements engineering such as Facilitated
Application Specification Technique (FAST) (Zahniser), Mizuno and Akao’s Quality
Function Deployment (Zultner, Krogstie) as well as use cases and scenarios (Hickley,
Sutcliffe). Many of the requirements elicitation techniques proposed by practitioners and
academia can be incorporated in the SLA development process to generate quality
requirements. For example, the SLAs presented in appendix (A) can be utilized in
scenario elicitation.

SLAs also enhance existing requirement engineering techniques or methods.
SLAs concentrate on non-functional quality requirements, which are not always
considered in other methods. Due to the nature of contracting for software services,
SLAs introduce quality requirements early in the lifecycle where they are most effective.
Quality software requires more than just identifying quality requirements. Monitoring
and measuring the requirements is necessary to ensure the requirements are being met.
The literature on software requirements almost always implies that just because
requirements are specified, that they are incorporated into the final product. This is rarely
the case. SLASs enhance existing software requirement techniques by instituting a
measuring and monitoring philosophy (quality control) and enforcing requirements by
use of penalties for non-compliance.

The SLA development process also enhances traditional software requirement
techniques. The level of detail necessary to develop the SLASs requires an understanding
of the business processes the system is supporting, it incorporates multiple perspectives,

and it requires a prioritization of the quality factors chosen. The development effort will

not only generate discussion on which quality attributes are appropriate for the software
system, but it will also identify whether resources, employee skill sets, and management
support exist to properly support and enforce the SLAs. SLAs and specifically the format
proposed in this dissertation will help to produce requirements that are quantifiable,
measurable, meaningful, and support business processes.

This dissertation adds to work that has been conducted on software quality.
While this dissertation does not introduce a new model for software quality, or a new
measurement of quality, it does introduce the use of SLAs as a means to contract for
software quality over the lifecycle of a product. SLAs are the practical implementation
of many of the quality models that will be discussed later in the dissertation.

The SLA development effort also contributes to the discipline of software quality
by incorporating quality (functional and non-functional) requirements in the requirements
engineering process. The development effort evaluates many of the quality models and
metrics proposed in literature. These metrics and models are then applied in part or in
whole to measure or specify process, product, project, and post-production quality.

There is no single quality model that can extend through the entire lifecycle of a
software product. SLAS are a means to incorporate many quality factors and models
simultaneously to best support the system throughout its lifecycle. The SLA
development effort involves an analysis of the various quality factors and models to
determine which best support the system given performance expectations, budget and
time constraints, and the purpose of the system. Prioritizing the quality factors and
resolving quality requirement conflict are an important part of the development process.
It is very likely that multiple quality models will have to be incorporated to evaluate the
deliverables at the various stages of the development cycle.

This dissertation has also added to the body of knowledge related to software
project management. SLASs enhance many of the existing processes or models associated
with software project management such as Performance-based Management (Plunkett),
Software-Performance Engineering (Smith, C. 1988), and Capability Maturity Model
Integration (CMMI) (Software Engineering Institute, Aug 2002) by instituting the
software quality control measures that are implied in these models.

In addition to quality management and quality control, SLAS can assist program
managers in many of the tasks identified in project management models as important to
the success of the project. In the SLA development effort, the project is scoped, risks are
identified and analyzed, resources are evaluated, quality factors are prioritized, specific
business needs are identified, and success factors for those business needs are defined.
SLAs also help the program manager in the areas of financial management, customer
relations, configuration management, and especially contract management.

6. Outline of Dissertation

Chapter I outlines the importance of IT systems, and describes the difficulty that
both public and private sectors have had in developing quality IT systems. The chapter
also provides a detailed discussion on software quality. Chapter Il defines SLAs,
discusses how they are utilized, and describes a recommended format. Chapter 111
outlines an 8-step process for developing SLAs and provides a case study describing how
the SLAs in appendix (A) were developed. Chapter IV provides a detailed discussion on
software development models, illustrating how SLAs can support various approaches.
Chapter V describes how the SLA development process can support and enhance many
of the recommended requirements engineering processes and techniques. Chapter VI
discusses how the quality metrics and quality factors incorporated in the SLAS can
influence the architecture and design of the system. Chapter VII illustrates the
importance of selecting the appropriate software quality factors to incorporate in the
SLAs. Chapter VIII describes how SLAs can be utilized as a quality control tool to assist
the program manager in managing the configuration of the project. Chapter IX explains
how SLAs can also assist the program manager with many aspects of program
management and oversight. Chapter X is a detailed discussion on the research
methodology and results. Chapter XI contains the conclusion and makes
recommendations for future work. Appendix (A) is a statement of work (SOW) along
with thirteen SLAs that were used in a proposal for post-production support. Appendix
(B) contains the survey instrument. The final section is Appendix (C), which provides a

breakdown of the results of the survey.

7. Deliverable

The concepts discussed in this dissertation were applied in the development of the
SLAs and the SOW found in appendix (A). The SLAs and SOW in appendix (A) were
developed for the post-production hosting services under CLIN 0029 of the Navy/Marine
Corps Intranet (NMCI) contract. The SLAs and SOW were designed to allow program
managers to select from three levels of services to support their programs. Programs
needing more advanced services would be able to modify the CLIN to support their
needs. The CLIN 0029 SOW and SLAs are currently still in contract negotiation.

B. IMPORTANCE OF INFORMATION TECHNOLOGY

IT has offered an unprecedented opportunity for organizations to improve the
efficiency and effectiveness of its operation. The rapid growth of the Internet has lead to
an ever increasing reliance by organizations on interconnected computer systems to
provide critical operational services, from business processes to coordinating
decentralized command, control, computers, communications, intelligence, sensors and
reconnaissance (C4ISR) systems.

One can argue that IT-based systems have become the most critical, multi-faceted
strategic tool any business or organization possesses. (Info Tech) Organizations that
have properly integrated IT into their overall business processes and have invested in the
most current infrastructure have a significant advantage over any competition that has not
taken advantage of IT.

The reliance on IT systems to provide strategic and tactical advantages has placed
ever-increasing levels of pressure on the IT department to provide quality services and
products than ever before. Interruptions to IT systems are having a far greater impact
than before in terms of opportunity loss, revenue loss, customer dissatisfaction, and
efficiency. As managers realize that their mission-critical processes are tied to IT
services, they are demanding more control over the quality of the services provided.

Another factor bringing IT quality to the attention of senior management are the
various third-party vendors, system integrators, or external service providers (ESP) that

market IT services that are similar to those offered in most IT departments. Outsourcing

is forcing IT organizations to reevaluate their relevancy to the organization. When top
executives hear the sales pitches from ESPs, they expect similar or higher levels of
service from their internal staffs. Competition has started to drive the levels of service
higher and higher, especially when service performance is really the only differentiator
the ESPs have with one another.

Information flow is the lifeblood of an organization allowing it to enable its
personnel, respond to customers, and react to the external environment. An
organization’s ability to gather, manage, and use information will determine its success.
(Gates) Leveraging information technology allows organizations to interconnect
disparate processes and information that was separated logically, physically, and
chronologically. The rapid growth of technology along with the greater globalization of
enterprises has brought IT management to “center stage”. However, as information
systems become more complex and distributed, they also in general become increasingly
difficult to manage, yet the performance expectations for the system, from management,
and the end-users continue to increase.

All organizations want world-class quality levels, but achieving those quality
levels requires a holistic view of quality that incorporates leadership support, repeatable
and measurable quality processes and controls, resource planning, vision, customer
support, and service-level management. Organizations must do more than identify and
incorporate quality attributes in their requirements, they must also monitor quality
metrics to ensure those quality requirements are being met. Quality is not something that
IS inherent in the development process: it must be planned, monitored and incorporated as
part of standard business practices.

C. SOFTWARE QUALITY

There are numerous definitions of quality. The 1SO 9000 model defines quality
as the degree to which a set of inherent characteristics fulfills requirements. (Tricker)
ISO 9126, a refinement of the ISO 9000 model, which proposes a quality standard for
software product evaluation, defines software quality as the totality of features and

characteristics of a software product that bear on its ability to satisfy stated or implied

needs. (Hansen) Pressman states that software quality is conformance to explicitly stated
functional and performance requirements, explicitly documented development standards,
and implicit characteristics that are expected of all professionally developed software.
(Pressman)

It is interesting that both 1ISO model definitions and Pressman’s definition are
based on an assumption that all stakeholders have an input into the requirements-
specification process. An IT system may meet all of the program requirements and thus
be viewed as being a quality product. However, the IT system will not be perceived as a
quality product if the product does not perform according to the end-user’s perspective.
Many believe that quality is based upon the perceptions of the stakeholders. This view is
also supported by Garvin, who stated that quality is multifaceted and can be viewed by
many perspectives. (Garvin) However, it is generally recognized that the consumer of the
product is the ultimate judge of a product’s quality. (Glass, Tice, Briones, Weigers) The
IEEE standard 610-1990 does incorporate user needs, by defining software quality as the
degree to which a system, component, or process meets specified requirements and meets
customer or user needs and expectations. (Schmidt)

Software quality can be broken down into four areas of focus. The first area,
product quality, is concerned with the requirements and specifications of the product as it
applies to the attributes or characteristics of the software product. This area could also be
referred to as end-product quality. The second area, project quality, is concerned with the
metrics and measurements associated with the software production effort. (Wheeler,
Hilburn) The third area is process or management quality, which is concerned with the
processes, planning and controls used to develop and manage the software product. The
last area of focus is on post-production quality or deployed application management.
Although there is some overlap with process quality, this last area is focused on software
maintenance, IT system performance, and hosting services after the application has been
placed into production. Software quality models have been developed in all of these

areas in an attempt to evaluate and/or predict software quality.

10

1. Product Quality

Quality attributes are generally used to describe the degree to which software
possesses certain characteristics. Quality can be viewed from numerous perspectives, and
certain attributes are more preferable to others depending on the objective of the IT
system. As such, numerous quality attributes have been identified. When referring to
product quality, two perspectives are generally represented: those of the user and those of
the developer.

In addition to the functional aspects of a system, the end user wants the product to
exhibit specific qualities that will assist them in performing their task. From a user’s
perspective, some of the common quality attributes used in the quality models include
availability, usability, integrity, interoperability, and reliability. Personnel involved in
the development of software or its maintenance may be more concerned with the
software attributes such as portability, testability, maintainability, and reusability.
(Wiegers)

Product quality models concerned with the developer’s perspective can be further
broken down into three categories. The first category is concerned with those quality
factors, or their associated quality metrics that involve attributes associated with the
software code. A common quality metric for software code is defects per thousand lines-
of-code (KLOC). The next category is concerned with quality metrics associated with
the structure or architecture of the software. Structure quality metrics are concerned with
the features, components and relationships among the components. Common structure
quality metrics are quantitative counts of the sources (fan-in) and destinations (fan-out).
The last group contains hybrid quality metrics, which combines code and architecture
quality factors. An example would be evaluating complexity by analyzing or weighing
against the lines-of-codes in the modules. (Kafura)

One of the first software quality models to address product quality was the
McCall quality model, based on earlier work by Boehm (Boehm). McCall’s model
consists of a number of questions and a subjective grading criterion based on a Lickert
scale from 0 to 10. McCall defined quality in a hierarchical manner in which quality

factors defined a key characteristic of the software, such as ‘maintainability’. Quality

11

factors consisted of quality criteria that represented an attribute of the quality factors,
such as ‘understandability.” Finally, quality metrics were used to assign quantitative
measurements to the quality factors. (Pressman, Ward, Kafura)

There are numerous software product quality models that incorporate software
quality factors or metrics in an effort to benchmark or measure software quality. Some
of the better-known quality models include early work done by Halstead, who calculated
complexity based on the number of operators and operands. (Ogasawara) The 1ISO 9126-
1 quality model is also well known. The ISO 9126-1 model incorporates the quality
factors functionality, reliability, usability, efficiency, maintainability and portability.
(Cross, Ward) The Hewlett-Packard FURPS model is also well known. (Pressman)

There are also numerous software quality models that concentrate on specific
quality factors such as complexity. (Ogasawara, McClure) In his book Software
Complexity- Measures and Methods, Horst Zuse identifies over ninety models for
describing the software attribute complexity. Other quality models are specific to object-
oriented systems (Coppick, Pritchett), some are specific to a language (Pritchett) or
COTS components (Bertoa, Hansen), while others are only applicable at run-time. (Bass)

2. Project Quality

Project quality is concerned with metrics that allow an organization to manage,
track, and improve the quality of the software-development effort. One of the most
common quality factors involving project quality is project estimation. Project estimation
models such as COCOMO Il (Boehm), Albrecht’s Function Points (Albrecht, Jones), and
Putnam’s Software Life-cycle Model (SLIM) (Putnam, Chulani) address the cost to
produce software, errors or defects that can be expected, as well as the level of effort
required to produce the software.

Some of the project quality metrics that Motorola used to measure their software-
development projects included software-defect density, adherence to schedule, estimation
accuracy, reliability, requirements tracking, and fault-type tracking. (Daskalantonakis)

Other project quality models such as DoD Std 7935 are concerned with the degree
of formalism necessary to manage the project. (McConnell) Another metric used in

assessing project quality is risk, which can be defined as any variable within a project that

12

results in project failure. General risk areas are schedule risk, requirements risk, budget
risks and personnel risk. (Padayachee) There are a number of risk assessment models
including Gilb’s risk heuristics (Gilb), Boehm’s classification of risk (Boehm), Keil’s
follow on identification of risk factors (Keil), the USAF AFCS/AFLC Pamphlet 800-45
which outlines software risk identification and abatement (Pressman), interpretivist
approaches (Gemmer, Padayachee), risks associated with enterprise software projects
(Charette, Sumner), and Noguiera’s risk assessment model. (Noguiera de Leon)

3. Process Quality

Quality metrics also apply to the processes and business practices used to manage
software throughout its lifecycle. Quality in the context of software process management
refers to an adherence with explicit process requirements and those implicit processes
necessary to meet user requirements and produce quality software. Process metrics
allow a holistic view of the activities that organizations are taking to ensure a quality
software product. Processes provide a clear understanding of what an organization does
and the quality controls it has in place to do those activities. (Tricker)

There are many who believe that the quality of the development process is the
best predictor of software product quality. (Fenton) Repeatable software processes such
as the Software Engineering Institutes Software Capability Maturity Model for software
(SW-CMM), which lists five levels of organizational maturity levels, and the
International Standards Organization (ISO 9001:2000) are designed to improve software
quality, productivity, predictability and time to market. (Paulk, McGuire) There is also
some empirical evidence that there is a correlation between process maturity and software
quality. (Harter, Diaz, Ferguson)

Other models of process quality include the new Capability Maturity Model
Integration (CMMI) model. CMMI integrates 3 CMM models into one to eliminate
problems with different architecture, semantics, and approaches. (SEI) Humphery
developed the personal software process (PSP) to assist software engineers in producing
quality software. (Humphrey) Other process models include cleanroom engineering that
has shown reduced errors per KLOC for small projects (Fenton), and the quality

management metric (QMM) (Machniak, Osmundson). There are also numerous IEEE

13

and 1SO standards that provide processes on everything from software engineering
product evaluation (ISO/IEC 14598) to selecting appropriate quality metrics (IEEE Std.
1061-1998).

4. Post-Production Quality

Quiality control does not stop once a software product has been deployed. Quality
factors still need to be applied to the application performance, maintenance efforts, and
hosting services throughout its lifecycle. Monitoring the performance of the application
once it is deployed is essential in quality control and maintaining customer satisfaction.
Much of the application performance monitoring in the initial phases of deployment is
used to validate product-quality factors identified in the initial requirements. However, in
the post-production environment there is also an emphasis on monitoring system
performance in terms of resource utilization, system capacity, network utilization and
quality of service, storage management, and security.

Many of the quality models involving deployed applications are concerned with
software maintenance and the quality factors that make maintenance cheaper and more
effective. Some of the maintenance-quality factors deal with ease of change (Royce),
others deal with architectural design to promote maintenance (Hulse, Garlan), defect
management (Kajko-Mattsson), organizational structure (Briand), complexity (Banker),
and change management. (Bennett)

Quality factors with deployed software are also concerned with the IT system as a
whole. Quality is not just concerned with the application itself: it is also concerned with
the IT system as a whole, across distributed components. Part of that distributed system
is the network. There are numerous quality metrics that can be applied to network quality
of service. (Clark, Tanenbaum, Lee, Hochstetler, Packeteer) Quality metrics are also
applied to the host server. Quality metrics such as application-resource utilization
(Aries), bandwidth utilization (Eager), concurrent user management (Aweya), and server
performance (Dalal, Gama) are also utilized to address system-level quality. Hosting
services are another area that needs to be addressed when discussing the quality of

production software. Traditional hosting metrics have centered on total cost of operation

14

(TCO) benchmarking, and help desk support metrics, but areas such as backups, storage,
configuration management, and security also need to be addressed.

There are numerous software-quality models and metrics that can be incorporated
into SLAs. The models or quality factors chosen will depend on those quality attributes
that best support the underlying business process. Regardless of the software-quality
models incorporated in the SLAS, the software metrics must be meaningful, quantitative,
and measurable.

In this dissertation, the term quality is used loosely to describe the degree to
which a system, component, or process meets specified requirements and meets customer
or user needs and expectations. Quality thresholds or quality metrics are those

measurements that specify the quality factors or quality requirements.

D. CHALLENGES IN OBTAINING QUALITY SOFTWARE

The software program manager is responsible for evaluating the program
requirements and determining the methodology or process to deliver and maintain quality
software. There have been a number of initiatives proposed to improve the quality of
software through its lifecycle. Most approaches are based on the tenet that quality must
be designed into a product. Approaches such as formalizing specifications (Berzins), use
of development standards and models, and utilizing architecture for quality analysis
support this approach. These approaches can be supplemented, for instance, by using
programming languages such as Ada that are designed to prevent common design and
coding errors, or utilizing rigorous testing and third-party debugging tools.

If there are numerous approaches to developing quality software, why are there
still problems? Part of the answer lies with the lack of meaningful dialog between the
developers, end-users and management. Unrealistic completion dates, requirements
churn, poor requirements elicitation, and lack of proper resources all lead to development
problems. Additionally, just because standards exist for developing software does not

mean that they are being used. In many cases adherence to developmental standards

15

requires additional training, additional development time, additional funds and a
commitment from upper level management that those standards will be inspected and
enforced.

In his book “Decline and Fall of the American Programmer,” Yourdon estimates
that eighty-five percent of US software organizations operated at level 1 of the SW-
CMM. (Yourdon) This fact was reemphasized by Dietz who stated that most of the
software companies that he evaluated were at level 1 of the CMM. (Dietz)

A study published by the Standish Group reveals that the number of software
projects that fail has dropped from 40% in 1997 to 26% in 1999. However, the
percentage of projects with cost and schedule overruns rose from 33% in 1997 to 46% in
1999 (Noguiera) In another Standish study in 1999, a survey of 1,500 software projects
found that 31% of the projects were canceled and of those projects that were delivered on
average only 61% of the originally specified features were delivered. (Cross)

Despite software’s increased importance to organizations, software program
managers have not improved the quality of software. (Anthes) There are numerous
examples of software errors leading to major incidents, including the Denver airport
baggage handling system, the Hershey Foods ERP implementation, the Toys-R-Us e-
commerce site continuing to promise delivery of Christmas gifts after shipping cut-off
dates, and the USS Yorktown Smart Ship system failure. (Slabodkin, Huckle)

In the article “Why Software is so Bad”, Mann offers a number of reasons why
the quality of software tends to be poor. Mann states that software quality is actually
getting worse rather than better, despite the advances in software engineering theory,
processes, methodology and tools. Poor software quality can be attributed to the
following:

) The perceived need to hurriedly develop and market a software-based product to
be the first to market; such an approach can result in software artifacts that contain
software flaws and are difficult to test and maintain. In a 60-day development cycle,
which is not uncommon, programmers are not going to spend two weeks searching for a

bug, despite risks associated with deploying a faulty product. (Blacharski)

16

. Software can be poorly designed. This is due in part to the poor training
programmers have received, and the fact that as programmers bounce code off of the
complier to fix errors, they often deviate from the original designs and end up with
sloppy, poorly documented code.

. Testing software often requires a different skill set than programming. Often the
testing personnel are not properly trained, or are not given the time to test properly. Too
many organizations are relying on testing as the primary means to improve quality
instead of designing the application with quality factors built into their initial
requirements—the latter approach actually can improve our ability to test systems.

. Software is not designed for testing. The designers do not utilize good component
level design or software architecture, the software’s modularity and corresponding
interconnectivity is not well defined, and the application is not internally coded to throw
exceptions, or write faults to a log.

. Software fails to meet the customer’s expectations. The software developer must
looks at requirements from the user’s perspective, the business’ perspective, and the
programmer’s perspective. Too often the user is not a part of the requirement elicitation
process.

. Requirements churn contributes to the poor reliability of software, as designs are
altered, interfaces added, unplanned modules are glued together, with little consideration
given to the additional resource demands.

. Post-production support plays a large role in the success of an application, but
software developers do not normally address it in their planning.

. The application needs to be hosted in an environment that supports the
application’s functionality. Software quality can be adversely affected by lack of
resources within the server, and by network and bandwidth constraints.

o Maintaining software without proper documentation or configuration information
is very difficult and expensive. Additionally, without proper documentation it is difficult
to compare the original requirement specifications to the product throughout the

software’s lifecycle.

17

E. QUALITY PROBLEMS IN THE DEPARTMENT OF DEFENSE

The next three sections discuss some of the problems that the DoD has with the
management of software-intensive information systems, recruiting and retaining
competent IT personnel and outsourcing. Although these sections focus on the DoD,
many of the same problems can be found in the commercial sector.

In the past, the DoD has not excelled at managing software-intensive information
systems through their lifecycles. Managing information systems can be challenging.
Utilizing the latest technology to exploit information requires highly developed
intellectual and managerial skills, which are rare attributes (Rocheleau). The difficulty in
managing these systems has been demonstrated by the numerous system development
and maintenance projects within the DoD that lacked sound planning, had poor controls,
lacked measurements for success, and did not meet expectations.

From 1986 to 1996, the US Government spent 200 billion dollars on information
technology that did not produce the results that were desired. (Deputy Assistant Secretary
of Defense) One example is the Corporate Information Management (CIM) initiative. In
October 1989, the DoD attempted to improve and consolidate almost 2,000 information
systems relating to transportation, depot maintenance and material maintenance. By
October 1993, the DoD determined that efforts to develop and complete these logistics
systems would take too long to develop and would not produce the costs savings they
initially anticipated. In response, the DoD standardized on its best logistics information
systems—in terms of performance, maintainability, and other measures of
effectiveness—across all military services. This “migration strategy” as it was termed,
was designed to quickly produce cost savings. By 1995, the DoD realized that its
migration strategy for materiel management and depot maintenance consumed more
resources than it had anticipated, took longer than expected, and did not produce the
benefits expected. Over 700 million dollars was spent migrating material management
systems before abandoning the project, having failed to produce a single operational
system. (U.S. GAO OCG-99-4) The CIM and migration-strategy effort cost eighteen

billion dollars without achieving its objective. The DoD abandoned its efforts at

18

standardizing the systems and opted instead to try to achieve interoperability between the
different services’ information systems, and privatize some functions. (U.S. GAO AIMD-
96-109)

Despite the failures of the CIM and the migration strategy, the US General
Accounting Office (GAO) noted that the interoperability and privatization approach
suffered from the same managerial problems that plagued the two prior attempts at
system consolidation. The DoD did not even conduct a thorough cost-benefit study to
determine if the new strategy would achieve a positive return on investment. The DoD
failed to tie its efforts to its overall business objectives using strategic planning. It had
also not adequately explored better commercial alternatives such as reengineering or
outsourcing. (U.S. GAO AIMD-97-6, U.S. GAO 01-244)

1. Clinger-Cohen Act

On October 12, 1994, then Senator Cohen of Maine and a member of the Senate
Governmental Affairs Committee released a report entitled “Computer Chaos: Billions
Wasted Buying Federal Computer Systems.” The report was a summary of reports from
the GAO and Inspector General (IG) that detailed problems with major software-
development projects that were in progress. The report concluded that antiquated
systems were costing the government billions of dollars, government-planning efforts
were inadequate, and the acquisition process forced the government to pay more for less.
(Peckinpaugh)

The Information Technology Management Reform Act (ITMRA) of 1996 coupled
with the Federal Acquisition Reform Act became known as the Clinger-Cohen Act.
Congress’ intent in passing the Act was to solve some of the longstanding problems
associated with the acquisition and maintenance of information systems by the DoD.
Among those problems was inadequate attention to business processes, failure to improve
processes before investing in information systems, investing in poorly planned and
ineffective information systems, and outdated acquisition procedures that did not address
the rapid evolution of information technology. (Deputy Assistant Secretary of Defense)

The Act mandates that federal agencies develop internal investment-control and

performance-management processes to improve their acquisition, use, and management

19

of information systems. (U.S. GAO-00-179) The act established the positions of Chief
Information Officer (CI10O) for every major federal agency. The CIO became responsible
for ensuring the provisions of the Clinger-Cohen Act are executed. Some of the
responsibilities of the C1O were as follows: encourage incremental phased development
instead of grand projects, ensure that the information system supports the core mission—
as articulated in doctrine and policy—of the agency, determine whether other agencies or
contractors have information systems with similar functionality as the system being
developed, and perform cost-benefit analyses and risk assessments prior to embarking on
developing an information system. Another key provision in the Act is the requirement
to ensure that measures of performance (functional and non-functional) are used to gauge
the effectiveness of information systems in meeting system requirements.

Furthermore, the Act requires software-acquisition personnel to answer three
questions before initiating an IT project. The first two-part question is what are the
functions that the system will perform, and is it consistent with the organization’s
mission? The second question is if we need to perform a particular function, can it be
performed more efficiently and at a cheaper cost by the private sector? The third
question is whether the function that is required can be reengineered or redesigned (i.e.,
are the processes it supports absolutely necessary)? All of these questions must be
answered before an investment in new technology can go forward. (SecDef)

2. Difficulty Managing Technology

Despite the fact that the Clinger-Cohen Act requires the establishment of a
process to identify, evaluate, and monitor risks and results from applying IT, the DoD is
still having problems in both acquisition and management of information systems. (DoD
IG D-2000-162) Since the Act was enacted, the DoD record on implementing its
provisions has been disappointing. (DoD IG Semiannual Report to Congress) Some
continuing problems with software acquisition have been attributed to the DoD’s failure
to adopt the provisions of the Act (DoD 1G D-2000-162, DAWIA), and some was due to
the DoD’s current organizational structure and culture, which makes departmental
oversight very difficult. (U.S. GAO OCG-99-4) Moreover, the DoD has not been able to

20

implement practices conformant to the Clinger-Cohen Act that ensure prudent investment
in information technology. (U.S. GAO AIMD-00-282)

Notwithstanding the improvements that the DoD has made in the management of
information technology, including establishing guidance to reflect best practices, and
updating policies, the DoD continues to be plagued by problems in managing its portfolio
of investments in information systems. (U.S. GAO AIMD-00-316) Unless the provisions
of the Act are fully understood by program managers, fully supported by the chain of
command, and enforced, it is unlikely that the Act will have the effect that Congress had
hoped for.

For example, in 1994, the Under Secretary of Defense for Acquisition,
Technology and Logistics mandated the use of “open systems,” however, subsequent
audits in 2000 revealed that fourteen of seventeen major weapon systems audited lacked
open-system design objectives. Management either was not aware of the mandate, or they
chose to ignore it. The DoD Inspector General (IG) identified management weakness
along with poor analyses of requirements in twenty audits conducted between 1 April
2000 and 30 September 2000. (DoD IG Semiannual Report to Congress) The GAO has
designated managing the investment in information technology as a major management
challenge. (U.S. GAO HR-99-1, U.S. GAO HR-97-9, U.S. GAO 01-244, U.S. GAO
OCG-99-4) The GAO identified a number of weaknesses in the DoD’s management of its
approximately 5,800 mission-critical or mission-essential information systems. (DoD I1G
D-2000-162)

Technology will not solve management problems. Program managers and senior
leadership need to understand and improve business processes before applying
technology. The GAO and the DoD IG have identified a number of systemic problems
relating to the DoD’s management of information systems. Of the programs audited, one
of the most common problems was the lack of adequate documentation and validation of
system requirements. DoD program managers do not always develop well-defined
project purpose and scope, and realistic and measurable expectations. Audits also report
the failure to perform risk assessments and develop appropriate risk mitigation strategies.

Nine of the DoD IG audits identified inaccurate analyses of costs associated with the

21

system life-cycle. (DoD IG D-2000-162) An additional area of concern was the
perceived weakness of the DoD in conducting information technology investment-
selection and management-control processes. (U.S. GAO 01-244) The DoD’s lack of
centralized control over standards and architectures has also contributed to system
failures. (DoD 1G D-2001-121, U.S. GAO AIMD-00-282, U.S. GAO OCG-99-4) The
DoD’s inadequate software development, cost estimating, and system acquisition
practices has greatly increased the risks associated with the information systems audited.
(U.S. GAO AIMD-00-209R, U.S. GAO 01-244) The DoD has also shown significant
computer security weaknesses in its programs. (U.S. GAO AIMD-00-295, U.S. GAO
AIMD-00-188R)

Although the Clinger-Cohen Act established the position of C10, the DoD needs
to build an effective organization with the proper leadership. (DoD IG D-2000-162, U.S.
GAO 01-244) Currently the DoD CIO and the CIOs in charge of the individual services
do not control the budgets for IT. Individual programs procure their own IT systems and
services to support their needs. As a result, CIOs often do not have the control or
visibility they need to determine whether programs are complying with IT directives.

In its report to the Senate on adopted best practices for software development, the
DoD stated that the responsibility for successful fielding of the software product was the
responsibility of the contractor developing the system. However, in that report, the DoD
could not state how it measures the success of a contractor’s efforts. The DoD could also
not state what requirements existed for maintenance or support. The DoD did list some
generic metrics such as maintenance costs and number of problems reported, but it did
not have clear guidelines as to what was acceptable performance for each of the quality
metrics. (U.S. GAO AIMD-00-209R) Both the review and evaluation of performance
metrics is essential in the acquisition of information systems (U.S. GAO T-AIMD/GGD-
00-179), but requires knowledgeable information specialists working for the government
to accomplish this task.

Shortcomings in information technology, contracting, and acquisition are
attributable in part to human-capital issues. (U.S. GAO T-AIMD/GGD-00-179, U.S.
GAO AIMD-00-282, U.S. GAO 01-244) The DoD IG semi-annual report to Congress

22

reported on the adverse consequences from cutting the acquisition workforce in half
without a proportional decrease in workload. (DoD IG Semiannual Report to Congress)
A shortage of personnel with the skill sets to manage IT intensive systems has also
contributed to the lack of software quality. This is another reason that outsourcing has
become more popular, although outsourcing efforts often require as much effort to
manage as in-house efforts.

3. Shortage of Information-Technology Personnel

The DoD and industry have both been plagued by a shortage of workers with the
IT skills necessary to support their organizations needs. Recruiting and retaining talented
IT personnel is a problem for all organizations. In many cases personnel that are not

familiar with IT have been forced into managing IT systems because there are not enough

skilled personnel. This lack of IT knowledge has lead to many of the problems discussed
in the previous section. It has also increased the reliance on contractor support and
outsourcing.

In 1998 and again in 2000 Congress increased the quotas of H-1B visas in
response to claims of a significant IT labor shortage from organizations such as the
Information Technology Association of America (ITAA) and the U.S. Department of
Commerce’s Office of Technology Policy. (Matloff) In addition, The Department of
Commerce projects a 1.3 million shortage in core IT workers by 2006. (Department of
the Navy) In its 2002 study “Bouncing Back: Jobs, Skills and the Continuing Demand
for IT Workers” the ITAA predicted that in 2002, of the projected demand for 1.15
million IT workers, 578,000 will go unfilled due to a lack of qualified workers.

Despite the amount of IT personnel that are currently unemployed, a recent study,
and informal surveys have indicated that there still remains a shortage of IT personnel
with the right skill sets necessary to help organizations achieve success in the complex,
competitive IT market. (Griffith, Millard) The government has identified its largest IT
skill gaps are in the areas of enterprise system integration and web-development. (U.S.
GAO AIMD-00-282)

Part of the skill shortage is in the areas of IT program management. The are many
program managers in the government’s current workforce that lack the requisite skill sets

23

needed to administer the large, complex, software-intensive systems seen today. Many of
the program managers are functional experts that have risen through the ranks to become
program managers of major systems. There is no doubt that they understand the
functional requirements of the system, but they do not have the training necessary to
understand technical architectures, software documentation, software life-cycle
management, or software engineering. In addition, with the current work load, it is
difficult for program managers to keep abreast of the protocols, interface challenges,
architecture constraints, or technological advancements associated with the move to
distributed computing.

The DoD has shown that it is adept at utilizing risk management in systems
engineering and the system-design process. However, it has not shown that same
competency in software development. Experience has shown that the software
component of major acquisitions is the source of most system risks. The software
component is most frequently associated with late deliveries, cost escalation, and
inefficient performance. (U.S. GAO AIMD-00-209R)

The GAO and DoD IG have acknowledged that the DoD does not have enough
skilled information-technology workers to properly manage its information systems. The
GAO expressed its concern that during the downsizing efforts in the DoD, more attention
was paid to the reduction in numbers than managing the various skill sets of the
workforce. (U.S. GAO 01-244) Thus, some people with necessary skills, such as
information technology, were not been retained.

DoD, like industry, is having difficulty retaining skilled IT employees. The DoD
civilian workforce is aging, and the GAO has identified retaining personnel with
computer skills as one of the major managerial challenges for the DoD in the year 2001.
(U.S. GAO 01-244) The mean age of the civil service workforce in the Department of
the Navy (DoN) is forty-six, with nineteen years of service. Nearly fifty percent of the
civilian workforce is approaching retirement. Of these civil service employees, one third
of the civilian computer specialists will be eligible for retirement in 2003. (DON CIO)

The civilian workforce has declined about forty-three percent since 1989. (U.S.

GAO 01-244) This downsizing in many cases has lead to the termination of the younger

24

employees. The policy of “bump and retreat” has forced many of the most junior
personnel from the workforce. This policy, designed to protect senior workers, not only
can lower morale among the existing entry-level workers, but it can discourage new
accessions.

The DoD has difficulty in recruiting personnel to replace the civil service
employees who retire. During good economic times, the salaries and benefits offered by
the private sector for information-technology personnel outdistance those offered to
government employees. The private sector offers from fifty to one hundred percent more
for entry-level information-technology professionals than the government. (DON CI10)
The advancement opportunities within DoD are limited due to downsizing, outsourcing,
and the seniority of the existing staff. There is also a perception that junior information-
technology professionals will be assigned to maintain legacy systems, rather than
participating in the use of cutting-edge technology. As a result, there has been a decline
in the number of young people who are pursuing careers in the civil service.

Most program managers control the functional aspects of the systems they
manage well, but due to their lack of IT knowledge and the shortage of in-house IT
support, they are forced to rely more on contractors to manage the software components
of their systems, including maintenance. However, Outsourcing IT functionality does not
lessen a program manager’s responsibility for managing that functionality. Program
managers must still maintain control over their systems, they must be involved in the
development and maintenance actions on their systems, ensure adherence to formal
policies and procedures and provide contractual oversight.

4. Outsourcing

Outsourcing is the process of contracting with a service provider to perform a
function or functions that used to be performed by the organizations own (in-house) staff.
Outsourcing has been a business strategy for a number of years. Organizations are
generally more comfortable assigning functionality to in-house staff as it gives them
more flexibility, they do not need to contract for the services, in-house staff already

understand the organization’s policies and procedures, they have greater trust in their

25

own staff, and in many cases in-house staff is cheaper than contractors. However, in the
IT industry outsourcing is becoming ever more appealing.

Many organizations have discovered that they do not have the necessary IT skills
within their organization. Rather than hire IT specialists, or invest in training for their
staff, they are considering outsourcing their IT work as a strategy. The emergence of
ESPs have provided a source of IT specialists that can in many cases provide high quality
service for lower prices than internal IT organizations can. IT outsourcing is gaining
popularity and is increasing in volume worldwide. In many cases IT managers have little
choice but to outsource as ESPs provide access to cutting edge technology and skilled
staff, they share the project risk, and they allow organizations to concentrate on core
competencies. (King, Goth, Greaver)

Numerous books and papers have addressed the topic of outsourcing IT .
Research has addressed outsourcing of information systems from a number of
perspectives. Some research has addressed the strategic implications of which
information systems should be outsourced (Lacity, King, Beath, Nelson), others have
written about the potential for offshore outsourcing efforts (Heeks, Smith, M.,
Kobitzsch), others have concentrated on the acquisition aspects of outsourcing (Farbey,
Robert, Ripin), and some have addressed organizational risk (Duncan). Given manning
shortfalls and a shortage of technical staff within the DoD, outsourcing IT services can
increase the risk that the DoD’s will not be able to provide proper oversight of the
acquired service.

Currently program managers are increasingly forced to rely on contractors to
provide technical guidance, because in-house expertise either does not exist, or it is
overburdened supporting other programs. This has however, added another level of
complexity to the management of information systems. Outsourcing efforts require
additional discipline and management oversight that may not be necessary with in-house
development and maintenance of information systems.

Outsourcing requires skill in software acquisition as well as project management.
In many cases new processes must be created to manage the relationship between the

organization and the outsourced contractor. Issues such as the level of access to

26

information, reporting chain, problem resolution procedures, reporting mechanisms,
common software, and roles and responsibilities will have to be negotiated. In-house
activities already have established operating procedures. Software acquisition also
involves activities such as requirements determination, solicitation preparation, contractor
and proposal evaluation, requirement change management, risk assessment, contract

management and oversight, and contractor performance management. (SA-CMM)

F. PERFORMANCED-BASED SERVICE ACQUISITION (PBSA)

The Department of Defense has been shedding its internal development activities
for a number of years. The DoD has moved from a producer of end-items to a consumer.
Many of the services that were once performed by the military and DoD civilians are now
being performed by commercial entities. Development activities such as SPAWAR and
NAVAIR spend more of their effort managing outsourcing contracts than they do
actually producing end-items.

As a result, acquisition of services and end-items has increased in importance due
to the DoD’s reliance on the commercial sector to meet its demands. To ensure that
quality services or end items were being acquired, the government developed very
detailed military specifications (Mil-Specs) and standards (Mil-Stds) that not only
described their requirements, but it also described steps (processes and procedures) that
the contractor needed to take to meet those requirements. Unfortunately the use of Mil-
Specs and Mil-Stds did not necessarily result in a quality product. Eventually, the DoD
stopped requiring most of the Mil-Specs and Mil-Stds because they were difficult to
enforce, they were difficult to understand, they allowed the contractor little innovation or
flexibility in meeting the requirements, they were not being used correctly, they were
expensive, and the government was loosing the expertise to develop and enforce them.

After the DoD stopped utilizing Mil-Stds and Mil-Specs, their acquisition strategy
concentrated on defining their requirements, and allowing the contractor to determine the
method to best meet those requirements. The DoD strategy of creating requirements,
passing them to a contractor to develop a product, then testing the final product did not
result in improved quality. While this approach has a lot of advantages, including
allowing contractors increased flexibility to derive solutions, it allows contractors to

27

utilize the best business procedures and latest technology, it increases innovation, and
allows more contractors to compete for programs, it also has problems. One of the major
problems is that the requirements have to be very explicit, they have to be unambiguous,
quantifiable, and measurable; this is not always the case. Another problem with this
approach is that the DoD advocates any responsibility for quality control until the test
phase. This presents major problems if requirements were not met. This approach also
does not foster good communication as requirements are “thrown over the wall” to the
contractor, and discussions tend to be limited to better defining requirements and
evaluations of the testing process and results. This approach lacks monitoring and quality
control on the part of the government.

This strategy has been further refined into a new strategy called Performance-
Based Service Acquisition (PBSA). Like the previous acquisition strategy, PBSA
concentrates on defining service requirements in terms of performance objectives. PBSA
does not dictate processes; instead it depends upon the contractor to determine the most
effective and efficient means to deliver the requested service. A USD (AT&L)
memorandum of 5 April, 2000 stated that at least 50 percent of service acquisition are to
be performed under PBSA by 2005. (USD (AT&L))

While both strategies advocate early planning and spending the appropriate time
to develop well-defined requirements, the difference in the strategies is that PBSA
concentrates on stating measurable requirements, determining acceptable performance
parameters, it requires a performance assessment plan to determine how contractor
performance will be measured and assessed, and the PBSA also encourages the use of
incentives (positive and/or negative reinforcements for meeting stated requirements).
The PBSA also advocates a team approach in developing the requirements, as well as
performing a risk analysis associated with the requirements and development proposals.

The PBSA strategy focuses on insight into the contractor’s performance, not
oversight. PBSA as opposed to the prior acquisition strategy encourages periodic
assessment of contractor performance to promote quality control and enhance

communication. This approach does not concern itself with the processes that the

28

contractor chooses to incorporate during development, but it does assess the deliverables
resulting from the development process used.

The PBSA applies to the field of software acquisition as well. However, the
PBSA strategy needs to be expanded to meet the unique needs associated with software
acquisition. As the DoD has become more dependent on commercial sources to meet its
software development needs, it needs to adopt a software acquisition strategy that
emphasizes quality, not only in the end product, but also in project management, process
control, and post-production support. This dissertation proposes the use of SLAS to
achieve that end.

SLAs incorporate many of the elements of PBSA. In particular, SLAS support the
performance assessment plan required by the PBSA approach. SLASs specify measurable
performance thresholds, the methods by which the requirements will be measured, the
periodicity of the monitoring, and incentives for meeting or failing to meet requirements.
SLAs help to institutionalize many of the quality control measures that were lacking in
prior acquisition approaches. SLAs focus on non-functional quality factors, while PBSA
traditionally focuses on function requirements only. SLAs also encourages all
stakeholders participate in the requirements engineering process.

While SLAs can be used to enhance PBSA, they can also be used to improve
other software acquisition strategies in the commercial sector as well. As such,
subsequent discussions in this dissertation will not specifically mention the PBSA
approach. Instead, standard contracting terminology will be utilized. The remainder of
this dissertation is intended to demonstrate how SLASs can be utilized to improve software

quality.

G. SUMMARY

IT systems are the primary enabler to an organization’s critical business
processes. However, managing software-intensive information systems has been
problematic for both DoD and industry. The difficulty recruiting and retaining skilled 1T
personnel, the rapid change of technology, and program manager’s inexperience with IT

has lead to software quality problems. Software quality has also suffered due to

29

organizations perceived need to rush software to market, poorly designed software, lack
of programmer training, and dependence on testing to discover errors.

However, one of the primary reasons that many software-intensive information
systems fail to meet expectations is due to the organization’s lack of a quality control
methodology. Program managers are not only responsible for defining the quality
metrics that they need to ensure the success of their program, they must initiate the steps
to ensure that quality is incorporated into the design, that quality is delivered, and that

quality is maintained throughout its lifecycle.

30

. SERVICE LEVEL AGREEMENTS

Service level agreements are becoming more common as organizations are relying
on IT systems to provide their core business functionality. The increasing trend of
outsourcing has also highlighted the need for a contractual mechanism, such as SLAs,
which describes the services to be outsourced, but also holds the contractor accountable
for their performance through penalties. This chapter will describe SLAs and provide
some background on why they are becoming more popular. It will also illustrate a
recommended format for the SLAs. The proposed format was a result of our extensive
research and is designed specifically for IT system development, management, and
lifecycle support. The chapter will conclude with a discussion on how SLAS can act as a

framework to incorporate and integrate organizational and technical considerations.

A. DEFINITION

A SLA is a contractual agreement between a provider of services and a customer
that defines a level of performance. (Aries, Strum, Factor, Surmacz) This agreement
defines in measurable terms the service to be performed, the level of service that is
acceptable, and the means to determine if the service is being provided at the agreed upon
levels. SLAs define the quality of service, and how it is measured.

In general, there are two types of SLAs. The first is a contractual SLA and the
second is an in-house SLA. The contractual SLA is used when dealing with third party
providers or External Service Providers (ESPs) that are outside of the organization. In-
house SLAs are used within an organization to describe the services the IT department
provides to other departments. Both types of SLAs define the services offered in great
detail, and are very explicit in stating customer expectations, however, contractual SLAS
are more formal, and because of their legal implications, generally take more time to
develop.

Contractual SLAs are used by organizations to specify their requirements and to
protect their interests. Contractual SLAs usually have incentive or penalty clauses tied to

the attainment of the service levels. These clauses provide the ‘teeth’ in the contract in

31

an effort to instill in the service provider a level of accountability. If organizations
cannot receive the services that they specified in the contract, they will want some form
of remediation. The remediation can be in the form on monetary penalties, or it may be
an escalation of the issues to upper management for resolution. Some organizations try
to avoid an adversarial relationship that penalties may cause by using incentives. An
incentive clause may state that if an ESP meets all of the SLAs for a particular month,
then an additional fifteen percent bonus will be added to the monthly payment. The goal
of penalty or incentive clauses is to focus additional emphasis on meeting the quality
thresholds or performance goals stated in the SLAs. In many cases if SLAS are not met,
business processes are adversely impacted; it is not unreasonable that the ESP should
share some of that risk.

SLAs explicitly define the services to be performed and the levels of service (this
dissertation will also refer to levels of service as quality thresholds or performance levels)
that an organization requires to support its underlying business processes. However, it is
not uncommon to read service contracts that go to great lengths to define the services an
organization requires, but neglect to include verbiage concerning the quality of those
services. There are a number of reasons that quality thresholds are not specified in the
contract, including time constraints and lack of clear requirements, but it is usually a
result of the organization’s lack of the technical expertise. If SLAs are not included in
the contract, the customer can do little if the service levels do not meet their expectations.
In many cases the customer has to tolerate the poor service until the contract expires, or
the customer may be forced to renegotiate or terminate the contract.

When constructing a house, a contract may state that the upstairs shower must be
functional before acceptance. However if the contract did not specify metrics by which
to measure the term “functional’, the contractor could legally pipe the water into the
shower with a ¥4 inch pipe, or utilize a 10-gallon hot water heater, and still be in
compliance with the contract. Fortunately, there are building codes that protect the
consumer, but the same is not true in the IT arena. This is why SLASs are so important in

IT acquisition.

32

The SLAs provide a common understanding on the services that will be
performed, the levels of service are expected, how they will be measured, as well as
define the responsibilities of both parties. Both parties must mutually agree upon
contractual SLAs, or there will never be a contract. It is commonplace to negotiate on the
services and the performance levels that are requested and ultimately agreed upon. A
SLA should contain a definition of service requirement that is both achievable by the
provider, and affordable by the customer. The customer and the ESP must also define a
mutually acceptable set of indicators of the quality of service. (Sturm) It is important to
note that SLAs can and should be modified throughout the lifecycle of a system as
requirements change, technology improves, and efficiencies are gained.

The second type of SLA is an in-house SLA, which is used within an
organization. This type of SLA provides the same type of information that a contractual
SLA provides, but it is generally less formal. It is however, no less important. In-house
SLAs specify the services and levels of performance that the internal IT department
provides to other departments. These types of SLAs are becoming more common as they
play an important role in quality control. The quality of services that the IT departments
deliver are receiving more scrutiny as essential business processes are becoming more
dependent upon the services delivered by the IT departments.

In some cases IT departments do not provide the services or the level of services
that are needed by other departments, or they provide and charge for services that are not
wanted. The in-house SLAs highlight the users needs, so the IT department can better
align itself to providing those needs. (Hiles) The in-house SLAS ensure that departments
get the level of service they need to support their requirements, the IT department can
take the steps necessary to meet service levels that may exceed those currently being
offered, and management can measure service against the agreed upon thresholds.

SLAs define an acceptable level of service that both parties agree to. Most
program managers will demand 100 percent availability going into SLA development
efforts. However, when they discover the costs associated with even 99.5 percent
availability, they begin to relax their requirements. Program managers need to

understand the levels of service associated with their current systems and the affect that

33

those levels have on their business processes, before they begin to develop SLAS for new
services or systems. The in-house SLAs set a reasonable level of expectation that
everyone, especially the end-users can understand.

In-house SLAs typically do not generally contain a lot of information on
responsibilities or mediation procedures as those are usually covered elsewhere in the
organization’s policies. They also do not include penalty or incentive clauses. However,
just because penalty clauses are not included does not mean that poor performance will
not result in fiscal implications. In-house SLAs allow management to compare the costs
of the IT department against the services they provide. If management is not satisfied
with the performance of the IT department, these same SLAS can be used to determine if
outsourcing may be a better option. Additionally, in-house SLASs provide a good
business case for justifying positions, expenses, or needed capital investments. In-house

SLAs are also an important part of an organization’s quality control methodology.

B. BACKGROUND

SLAs originated from the dissatisfaction of users of IT services and the lack of
objective measurements to assess service quality. (Hiles) Service level agreements are
not a new concept, they have been around since the 1960s, however they are gaining
more acceptance in both government and industry. There are a number of reasons that
organizations are beginning to embrace SLAs. The main reason that SLAs have gained
popularity is that there are now tools in the marketplace that provide the measurement
capability to monitor SLA compliance. Another reason is that organizations have
become increasingly dependent upon information technology (IT) to satisfy their business
needs. As managers realize that their processes are tied to IT services, they are
demanding more quality control over those services. One way to establish that control is
through SLAs. The growing trend towards outsourcing IT functionality to ESPs has also
encouraged SLAs as both a contract mechanism to define services, and as a marketing
tool for the ESPs.

There has been a shift in industry from centralized funding of the IT department

to handling the department as its own cost center. It is very difficult to allocate all of the

34

IT costs among the various business units. The direct costs associated with developing a
specific project can be captured, as well as the costs associated with the software and
hardware procured, the labor involved in the development and testing effort, and training
can be captured. However indirect costs such as the costs associated with the entire
network infrastructure, IT staff not directly associated with a project (e.g., firewall
administrator), facilities, and help desk support are difficult to assign to an individual cost
center. (Atre, Byron) The difficulty of assigning costs to individual departments resulted
in many organizations centrally funding the IT department with little regard to the
support provided to the other departments. However, as IT becomes more integrated in
business processes, and IT costs continue to escalate, organizations are reassessing the
way they perform IT accounting, resulting in reallocation of IT costs among the business
units.

Organizations are increasingly under pressure to cut costs. Competition is fierce
and all business units must justify expenditures in terms of benefits to the organization.
IT departments must also justify their expenses. Unfortunately it is difficult to perform a
cost-benefit study when expenditures cannot be tied to the specific business processes the
funding is supporting. As a result, many IT departments have initiated charge back
systems where business units are charged for the IT services that they require.
(Chutchian-Ferranti, Ellett) Charge back is an effective mechanism for balancing the
shape and quantity of the IT services with the requirements and resources of the business
units. (ITIL p.64)

The main benefit of this type of IT accounting is that it provides management
information on the costs of providing IT services that support the organization’s business
needs. This information is needed to enable IT and business managers to make decisions
that ensure the IT service organization runs in a cost-effective manner. (ITIL)

Charge back systems focus a great deal of attention on the services that the IT
department provides, and the quality of those services. Departments that pay for IT
services want to quantify the levels of service, so they can determine whether the service
is worth paying for. When individual business units are charged for IT services, an

agreement must be developed between the business unit and the IT department that

35

outlines the services performed, the charge back mechanism utilized, and the level of
services that the customer can expect. The agreement that is developed usually forms the
core of the in-house SLA.

Even if a department is still funded centrally, organizations are demanding IT
departments specify the services they provide, and the corresponding levels of service
that other departments can expect. As IT systems become more pervasive in business,
they are increasingly receiving scrutiny. The performance of the IT systems directly
affects the business processes they support. Business managers need to know the level of
performance they can expect from the IT systems. Utilizing SLAs, the levels of service
are defined and the business impacts and financial repercussions of IT service levels can
be identified and evaluated. SLASs have been a popular means of both defining the levels
of service the IT system can provide, and providing remediation procedures if they fail to
meet performance thresholds.

Monitoring tools consists of the software, hardware, agents, and databases used to
collect and record information on the state of the underlying hardware, software, or
infrastructure that provides the services specified in the SLA. In the past SLA
performance thresholds were difficult to measure because good monitoring tools did not
exist. Consequently, it was difficult for a customer to hold the service provider
accountable for poor performance. As a result older SLAs were generally informal
agreements that specified performance goals, but contractually they were very difficult to
enforce.

Monitoring tools today are much more sophisticated. Products such as Hewlett-
Packard’s OpenView, Tivoli’s Management Framework, and BMC’s Patrol are pervasive
in the IT industry. There are well over 800 vendors which market monitoring tools that
measure performance. (Sturm) Unfortunately, few vendors can provide a complete
monitoring solution. In many cases tools from multiple vendors may have to be utilized
to ensure all services are adequately monitored.

Monitoring tools are bringing credibility to SLAs. Organizations are more willing
to utilize SLAs when they realize that monitoring tools exist that can verify performance

thresholds. Monitoring tools make SLAs more contractually binding; penalties or

36

incentives can be used more effectively to ensure that service levels are being adhered to.
If a service cannot be adequately monitored to the satisfaction of both parties, it should
not be included in a SLA as disputes will be difficult to resolve.

Organizations are outsourcing functionality for a number of reasons including
cost reduction, taking advantage of commercial best practices, interoperability concerns
with partners, utilizing technology that may not be otherwise available, and acquisition of
expertise. (Loeb, Duncan, Greaver) Many organizations are struggling to keep up with
the rapid technology change. Quality IT personnel are difficult to hire or retain, and it is
hard to keep employees proficient in the latest technology.

Today’s competitive pressures are forcing organizations to drive down costs and
optimize on efficiency and effectiveness. If IT services such as infrastructure
management, application development, application maintenance, and hosting activities
can be outsourced to an organization that because of specialization or experience is more
efficient and cost effective, then organizations must consider outsourcing as a strategic
business tactic. It is also difficult to keep employees trained in the latest technology.
(Feeny) Outsourcing IT functionality puts the risk and burden of managing a competent
workforce on the service provider instead of the organization. This strategy also
complements the fact that many organizations are focusing on their core competencies, or
those IT services that offer the most strategic business advantage, and are outsourcing the
remaining IT services needed by the organization.

The outsourcing decision generally revolves around a cost-benefit study, a review
of business processes and strategies, a determination of the current levels of service (as
opposed to those offered if the services are outsourced), reviewing core competencies,
and an evaluation of opportunity costs. (Domberger, Norris) Issues such as costs to
obtain the outsourced functionality or end product must be weighed against variables
such as flexibility, complexity/uniqueness of the technology, business criticality, staffing
skills, time criticality,risk, and organizational bias. (Nelson, King)

IT outsourcing has continued to experience significant growth. In 2000 the IT
outsourcing market was worth over $100 billion. Outsourcing IT as a strategic business

practice has gained credibility by its acceptance in many of the largest corporations.

37

(Kern, EDS) In addition, IT outsourcing is no longer just considering non-strategic
services (e.g., those that do not affect business critical processes); businesses are now
outsourcing strategic IT services. (Nelson, Duncan) As organizations begin to outsource
business critical functionality to ESPs, SLAs become even more essential as they define
the services to be provided, the performance levels associated with those services,
responsibilities, and obligations of both parties. The lack of clearly defined requirements
will ultimately lead to problems with the ESPs. There is much more to a good
partnership than a contract, but the contract provides a foundation by which to develop
the relationship.

It is important to make a subtle distinction between SLAs and requirements.
SLAs are a subset of requirements and they are more contractually binding than
requirements are. SLAS contain penalties and/or incentives if thresholds are or are not
met. Other requirements do not have the same contractual rigor. In most contracts, the
only recourse if a requirement is not met is to cancel the contract, or terminate any
ongoing contractor support. Terminating a project is difficult, especially if the project is
business critical. The difference between requirements and SLAS is the degree of
recourse if a requirement is not met.

The major reason for the contractual nature of traditional SLAs has been the
perceived need to penalize the ESP for nonconformance or failure to meet agreed upon
threshold levels. The usefulness of penalties is subject to debate. Some believe that
service rebates or penalties are difficult to enforce and are normally nominal in nature.
The failure to hold ESPs accountable has reinforced the view that the contractual nature
of SLAs restricts the scope and usefulness of such agreements without adding any
significant value to the process. (Factor) Others feel that penalties focus management
attention on the service quality and penalties provide a method to distribute risk to both
parties.

Many ESPs have SLAs already developed for the services that they provide.
Each level of service that they are willing to provide is priced out so organizations can
select from a menu of services and service levels. However, it is not advisable to accept

SLAs that are generated by the service provider. In most cases organizations should

38

generate their own SLAS, and negotiate to levels that satisfy both parties. The SLAs
developed by the ESPs are generally very vague, usually do not provide access to
monitoring tools or reports, rarely have penalty clauses associated with them, and
ultimately are designed to favor the service provider. Additionally due to the vague
nature of the SLAs, they are difficult to legally enforce. SLAs generated by the ESPs are
usually marketing devises, designed to look appealing, but they almost always give the
ESP a more favorable contractual position.

To date, the vast majority of SLAs have been written to cover services associated
with the post-production support of an application (e.g., network services, help desk
support, problems response). This dissertation proposes an original approach to software
acquisition by utilizing SLAs throughout the lifecycle of a software-intensive system.
Many of the advantages of utilizing SLAs in post-production support can be leveraged in
requirements engineering, development, program management, and testing. This
dissertation will demonstrate how SLAs can be used throughout a program’s lifecycle to

improve quality.

C. SLA FORMAT

SLAs serve as a mechanism to notify all parties of services that will be
performed, performance expectations, responsibilities of all parties, penalties for non-
performance, and SLA resolution procedures. SLAs also define the oversight and
interaction between the program managers and the service provider.

Service level agreements have many formats depending upon how they are used.
Internal SLAS between management and the IT department can be more informal because
many of the procedural issues are stated elsewhere. SLAs involving ESPs need to be
more formal.

There are numerous variations to the format of the SLAs, although most have a
couple data elements in common. SLAs should describe the service to be provided in
enough detail to ensure that both parties understand the requirement. The description of
the service should be concise, understandable, and accurate. SLAs must also describe the

performance thresholds for the services provided. Most SLAs will also contain data

39

elements describing the roles and responsibilities of both parties, penalties or rewards,
escalation procedures, and assumptions. Good SLAs will also describe how the service
level thresholds will be measured, which reports are required, data sources, and contract
exceptions.

As was mentioned in the introduction of this dissertation, one of the original
contributions of this dissertation is that it introduces a unique format for SLASs that
combines some of the common elements found in SLAs with new elements that
emphasize support for business processes, monitoring, conflict resolution, and identifying
responsibilities. This section will outline the unique format of the SLAs that were used
for the hosting services covered in appendix (A). The SLAs for hosting services added
some additional data fields to provide clarity, ensure that the underlying business
processes were being taken into consideration, and that there were people identified to
validate the SLAs. The section that is indented is utilized for sub-services. For example
if the service name is Help Desk Support, a sub-service category may be Customer Wait
Time. If there is no sub-service, the indented section will be used with the main service
category.

The following is the SLA template used in Appendix (A):

Service Name: This is the name of the service category that is being measured (e.g., help
desk support).

Service Description: This is a detailed discussion of the service that is to be performed.
The service should be as detailed as possible. In the government, the development team
needs to be careful not to get to the level of detail where the government is telling the
contractor how to perform the service.

Reason for Measuring: This section should provide the rational for this SLA. In this
section the core, primary and secondary processes that are being supported by this
specific SLA should be identified. This will help to justify the SLA, and it will help the
program management team track which processes are tied to SLAs. This section is
intended to ensure that the SLAs are linked to a strategic or tactical business concerns.
Time Frame: This is the time period during which measurements are taken (e.g.,
24x7x365, or from 0700-1900 Monday through Friday)

40

Scope: This section defines where the services apply (e.g., this applies to the system
software only). This section also provides amplifying information such as categorization
of problem calls (e.g., priority 1 equates to an emergency), and information necessary to
ensure all parties understand the areas that are covered by the SLA. The scope also
details areas not covered by the SLAs.
Performance Category: This section names sub-services that must be measured
to determine the over-all efficacy of the service. There can be numerous
performance categories associated with one SLA. The following subsections are
associated with every performance category:
Performance Metric: This section describes the metric that will be utilized to
measure performance.
Threshold Levels: This section describes the various service levels that must be
met. There can be multiple levels of service for each sub-service. In the
NAVSUP hosting SLA, three service levels are used, corresponding to the
essential, enhanced, and premier services as outlined in the SOW.
Formula: The formula describes how the metric(s) will be computed.
Assumptions: All assumptions that went into the development of the SLA should
be stated in this section.
Contractor Responsibility: This section details the contractor’s responsibilities
in meeting the service level requirements.
Customer Responsibility: The program manager or the end-user’s
responsibilities are outlined in this section (e.g., a trouble call must be initiated
before metrics covering the help desk can apply).
Frequency: This is the period of time over which measurements will be taken to
determine SLA compliancy (e.g., monthly, quarterly). This usually equates to the
periodicity of the reporting requirements.
Measurement Techniques: This describes the procedures that will be used to
collect or verify whether the threshold levels have been met.
Reports Required: This section details the reports required from the service

provider to verify actual performance against SLA thresholds. It also details the

41

periodicity requirements of the reports (e.g., Trouble Tickets — Monthly). In some
cases, the person reviewing the SLASs has access to the report-generating tool, and
can manipulate the reports as needed. An example is if the reviewer has online
access to the trouble tickets, that individual can do daily, weekly or monthly
reports, at whatever level of abstraction is needed. Details of the report contents,
format, periodicity and distribution are detailed in the SOW or another document
called the Contract Data Element Requirement (CDRL).
Person Responsible for Verification: This section details who will be reviewing
the SLA measurements and determining compliancy. In the government, this
person is usually the Contracting Technical Representative (CTR).
Escalation Procedures: This section describes actions to be taken when thresholds are
exceeded, and who should be notified. For example if help desk response time is 15
minutes for a critical application, and 30 minutes have passed, who should be notified?
This also includes situations where thresholds are violated on numerous occasions
throughout the reporting period. Another use of this section is to describe the escalation
procedures if the CTR and service provider cannot agree that a threshold violation has
occurred.
Contractual Exceptions: This section describes any exceptions to the SLA. For
example an emergency situation may require the service provider to violate a SLA
threshold.
Penalties/Rewards: An SLA without penalties or rewards is nothing more than an
agreement. SLAs must have a mechanism to enforce compliancy. This section describes
what action will be taken if thresholds are violated, or if SLAs are met. It is important to
identify minor and major thresholds to ensure that the service provider is taking action to
correct the problems. If the service being performed is mission critical, it is helpful to

have a termination clause to ensure thresholds are not violated multiple times.

D. SLAS AS A FRAMEWORK
This section will illustrate how SLASs can be used to bridge the gap between

organizational factors (this term includes social, organizational and programmatic issues)

42

and the more traditional technical factors associated with software engineering. Early
approaches to software engineering was based on the perception that modern scientific
methods, with an emphasis on formalism, rationality, objectivity, and decomposition,
could provide a solution to problems associated with software development. Software
engineering was attempting to apply engineering approaches by applying objective
standards to computer programs to test their correctness. Much of the early software
engineering literature was associated with technical issues such as structured analysis and
decomposition, modular structure, information hiding, reducing complexity, and process
models intended to present a series of actions necessary to produce a quality product.
(Ewusi-Mensah) However, this approach makes the assumption that real world problems
can be isolated, rationalized, and solved utilizing technology. This assumption has not
been correct to date, as the complexity of real world problems has evaded attempts at
rationalization.

In real-world software development projects the final product must not only be
technically sound, but it must meet stakeholder and organizational needs. Software
projects are always embedded within an organizational context that includes
organizational norms and culture, varying stakeholder perspectives, politics, economic
considerations, as well as external business forces. Post-modernists believe that these
organizational aspects must also be considered in the development of software, as a
technically perfect software program is worthless if it does not meet the needs of the end-
user. The social or organizational variables are often difficult to identify, and they are
difficult to model. Organizational variables often present the largest problems in
software development, and are the primary reason that software development fails (e.g.,
unrealistic project goals and objectives, project management and control problems,
requirements churn, lack of executive support, and insufficient user involvement.)
(Ewusi-Mensah)

A successful software development project depends upon many interacting
variables including technical, economic, organizational, environmental, and managerial
factors. Successful software projects take a holistic view of problem solving,

incorporating technical considerations with the environment in which the problem is

43

framed. Andelfinger has developed a conceptual framework that helps understand the
merging of technical and organizational factors in real world software development. His
framework involves the concept of reflective practice where technical, social,
organizational and economic perspectives are taken into consideration through problem
solving and problem framing activities. (Andelfinger)

This dissertation also proposes a framework utilizing SLAS as a means to
intertwine the organizational and technical factors associated with software development.
Project success depends upon three main factors: the design must satisfy user needs, there
must be collaboration between users and designers throughout the development process,
and finally there must be constant communication between designers and users to ensure

prompt resolution of conflicts and misunderstandings. (Ewusi-Mensah)

Businmess Environment Stakeholder Opinions Risks Organizational Values
Constraints Cuswomer Relations Business Needs Manage ment Support
Requirements Chum Resistance to Change Business Rules Contractor Relatons
A— o " .
ORGANIZATIONAL CONSIDERATIONS
Qualaty Factors l I Quality Control
Coniractor Monitoring - ~, Reporns
Benshmarking ‘ Quantifiable Metrics
Change Review Board | | PenaltiesIncentives
Define Responsibilities = SI- AS " Process Control
Problem Resolution ‘ Problem Analysis
Finamcial Charge Back ' " S Cost/Benefit Analysis
Service Level Management l Quality Assurance

TECHNICAL CONSIDERATIONS

Interfaces Legacy Systems Architechare Deployment Securny
Configuration Control Development Processes. Test Plans Tools Lifeeycle Suppon
Documentation Quality of Service Standards Capacity Planning Maintenance
Domain Knowledge Data Management Resource Management System Specifications

FIGURE 1. SLA FRAMEWORK

44

The SLA development efforts and subsequent quality control efforts associated
with SLASs not only produces meaningful and measurable requirements, but the
monitoring efforts encourage constant communication. Figure 1 provides a framework
that illustrates how elements of SLAs and the activities associated with managing the
SLAs help the program manager factor in organizational considerations and technical
considerations in the problem solving process.

To achieve a successful project, the program manager must understand how
organizational factors can influence technical considerations and visa versa. While this
framework will not be discussed in further detail, it was presented at this point to provide
a foundation. When reading subsequent chapters this framework may be helpful to see
how SLAs can help the program manager develop a quality solution to the problem
proposed, while accounting for technical and environmental factors. The SLA
development process discussed in the next chapter will illustrate how technical and
organizational factors must be taken into account in the requirements engineering phase

of development.

E. SUMMARY

SLAs were developed as a means to reinforce contractual provision to increase
the probability that the services provided by a contractor or the IT department meets the
quality requirements necessary to support the underlying business process. The SLAS
describe the services to be provided, the levels of service that must be attained,
quantifiable metrics to validate compliance, responsibilities of both parties, and penalties
or incentives associated with meeting or failing to meet service levels. Service level
agreements improve quality by identifying quantifiable quality requirements that are
incorporated into the requirements engineering process, and ensuring the test strategy
evaluates the implementation of those quality factors from design to deployment.

SLAs are gaining in popularity as outsourcing is becoming more common. The
owners of business processes are tying to gain more control over the IT services that
support their business. Financial personnel are looking at SLASs as a means to allocate

service costs to the appropriate cost centers. SLAs are also becoming more popular

45

because there are now commercial tools that are capable of performing the monitoring
functions required by SLAs.

The format of the SLAs presented in this dissertation are unique in that they not
only help to tie the quality requirements back to the underlying business processes, they
also help to establish quality controls necessary to monitor contractor performance. The
SLAs elements incorporate many of the organizational and technical considerations that
affect the project. As such, the SLAs provide a framework for generating the
communication and oversight necessary to identify and monitor technical and

organizational risks and challenges.

46

M1, APPLYING SLAS

This chapter proposes an 8-step process to develop SLAs that is applicable to
most projects. This process helps to identify constraints that may make applying SLAS
difficult, it determines those quality factors that are necessary to support the system, and
it prepares the development team for the negotiation phase. This chapter will also discuss
common traits found in successful SLAs. The last section is a detailed case study that
illustrates the approach utilized to develop the SLAs contained in appendix (A).

A. DEVELOPMENT

There are numerous methodologies for developing SLAs. The approaches to
development vary due to organizational culture, the type of SLA, the skill sets of the
personnel involved, and the criticality of the process affected by the SLA. However,
there exist some common steps that need to be addressed that span most SLA
development efforts.

1. Define the Problem

Before SLAs are developed, management and the program management team
must determine whether they should be used at all. While it is intuitive that SLAs should
be used for outsourcing to ESPs, resource constraints, lack of management support, and
lack of the appropriate skill sets may make the effort of developing the SLAs wasteful.
The same is true for in-house SLAS, they may cause more problems than they are
solving.

Charles F. Kettering stated that a problem well stated is a problem half solved.
The first step in developing SLAs is to define the problem that the SLA is supposed to
solve. When the SLAs involve ESPs, then the problem solved by the SLAS is how an
organization can ensure that the services provided by a third party meet requirements.
SLAs help solve the problem by explicitly defining the services, the quality of the service
required, responsibilities of the parties, and methods to measure service levels.

When dealing with in-house SLAs, the problems become more difficult to define.

SLAs used within an organization should be solving problems such as explicitly stating

47

the services required by various departments, producing measurable quantifiable data to
support a level of service, and improving communications by explicitly stating service
levels. SLAs can also be used by the budgeting personnel to tie the costs of IT services
to the business processes those services support. This makes cost/benefit analysis much
easier. SLAs can also help the IT department justify infrastructure or capital
improvement expenditures by linking IT service costs to the underlying business process
the services support. Unfortunately, in-house SLAs can also be used for political reasons.

In-house SLAs should be invoked as part of an organization’s quality
management initiative or program. In-house SLAs will not necessarily make a poor
performing IT department better, but it will identify problem areas so management can
address those issues. Some IT departments do not like SLAs because they feel that other
departments use them as a hammer every time an SLA is not met. In situations where
internal power struggles are common and the environment is highly competitive, SLAS
may put the IT director at a disadvantage by tying that individual’s performance to
quantifiable metrics, while the other directors are not. Additionally, in some cases the IT
department may not have input into the SLA, they may be dictated from upper
management.

Another important issue to evaluate is whether upper management will support
the SLAs. Service-level management (SLM) in the context of SLAs deals with the
generation and oversight of the SLA contract, and ensures that the agreed upon services
are delivered within acceptable thresholds. SLM must have management support and
resources to succeed. The world’s best SLAs will fail if there is not someone or a group
of people that are responsible for monitoring, revising, and enforcing the SLAs. SLM
generally requires additional personnel to provide the oversight necessary. If
management is not willing to hire additional personnel or reassign personnel within the
organization, the SLAs will not have the impact needed to ensure quality.

SLM also requires personnel with the skill sets necessary to understand the
technical issues associated with the SLAs. With in-house SLAs, these personnel should
not be solely from the IT department, as that is tantamount to the fox guarding the hen

house. It is often difficult for organizations to find personnel with the skills necessary to

48

contribute to SLM that are outside of the IT department. Management must be willing to
contract or hire the personnel with the skill sets necessary to provide the proper level of
SLM.

It is important that the end users and business process owners understand the level
of services that are necessary to support their business processes. If end users or the
process owners are not willing to devote the time necessary to develop the SLAs, or if
management is not willing to bring all stakeholders into the SLA development process,
then little benefit will be gained from developing SLA that may not support the
underlying business processes.

Knowledge of the business processes supported by the IT system is critical in
developing the SLAs. Developing SLAs for services that do not have a direct impact on
the business process may not be worth the effort. In some situations, external forces have
more influence on a business process than the IT services that would be covered in the
SLA. Resource constraints, fiscal constraints, market forces, and other variables can
render even the best SLAs meaningless. If SLAs cannot improve the quality or
performance of the supported business process, then the SLAs should not be pursued.

Upper management must be willing to take action if SLAs are not adhered to.
With in-house SLAs, upper management must be willing to take action if the IT
department continually fails to meet SLAs. This may be an indication that the SLAs are
unrealistic, but it could also be that the IT department is not allocating the assets or
attention to solve the problem. If the problem is the latter, management must take action;
otherwise the SLA will have no value, and the end users will quickly become
disillusioned. In the case of contractual SLAs, management must be willing to enforce
penalties, or withhold incentives. In some cases, contracting personnel within the
organization are not willing to perform the work necessary to monitor contractor
performance, document problems, and take the actions necessary to ensure requirements
are met. The team must understand the environment in which they are working before
embarking on the efforts to develop the SLAs. If they are not going to receive the

support they need, SLA development should not be started.

49

The team developing the SLAs must weigh the costs and time of developing the
SLAs against the intended benefits. SLAS are essential when dealing with ESPs, but
management must devote the proper resources to perform contractual oversight. Without
monitoring and enforcement, contractual SLAs become nothing more than goals. In-
house SLAs should only be attempted with managerial concurrence, and the agreement of
both the IT department and the recipients of the service. Without agreement, the SLAS
can cause more problems than they solve.

2. Develop a Team

Once the decision to proceed with SLA development is made, the next step is to
create a team to develop or review a proposed SLA. This team should consist of all
stakeholders. At a minimum representatives from the IT department and the recipient of
the services need to be represented. The recipients can be individual programs or entire
departments. Representatives from ESPs do not need to be included in discussions at this
stage, although they can be. The team members should be able to contribute to the
development of the SLA. From the end users perspective, their members should
understand the business processes, application functionality, and the services needed to
support their requirements. The IT department needs personnel that understand the
technical aspects of the services offered, the quality levels they are capable of providing,
and monitoring tools necessary to ensure delivery.

The team structure will vary with every organization, but there are a couple
important elements that will help the development process. The team leads from the IT
department and the user community should be on the same level, and should have
decision-making authority. There should be a charter outlining the membership,
responsibility of the team, leadership, structure, chain of command, and deliverable. The
team should have a specific amount of time in which to deliver the SLAs, or review a
proposed SLA. Representation on the team is needed from each stakeholder group, but
the team should be as small as possible. A representative team would consist of

membership from the IT department, program manager’s organization, management, the

50

business process owner and end users (personnel inputting information or products into
the business, or recipients of the output of the process). In a medium organization four to
ten people is typical. (Sturm)

3. Service-Level Management

Service level management (SLM) is the disciplined process of ensuring that
adequate levels of service are delivered to all IT users. (Sturm) SLM normally refers to
the procedures and methodology that the IT department or an ESP utilizes to ensure that
the services they provide meet specified service levels. In the context of developing
SLAs, service-level management refers to the process of managing the SLA contract.
SLM involves validating the levels of service against the quality thresholds outlined in
the SLA, coordinating the change management process, evaluating the performance
reports, and managing the business relationship with contractors and process owners.

The development team needs to determine the SLM functions that need to be
performed, and then they need to scope those functions to determine the resources to
allocate to ensuring that tasks are successfully executed. Then the development team
needs to get management support to ensure that there are people assigned to perform
those functions. SLM is resource intensive. If the development team becomes resource
constrained, they may have to scale back the number of SLAs, modify their oversight
roles, or decide not to proceed with developing SLAS.

As part of the SLA development process, the development team must determine
how to verify whether service levels have been met. Depending upon the services
provided, there are many ways to validate performance. In some cases there are
automated tools that will assist in the verification process. In other situations, someone
may have to review the raw data in server logs to determine compliance. Another
common verification technique is to audit the contractor’s processes for compliance. If
customer satisfaction is a part of the SLA, someone needs to be responsible for
administering the survey and compiling the data. One of the SLAs for backup tape

accuracy requires that the contracting technical representative (CTR) physically audit the

51

backup tapes to ensure that they are properly documented, and that they are not
corrupted. Depending upon the scale of the contract, multiple people can be involved in
monitoring and verifying service levels.

The person responsible for managing the contract should also be identified. This
person will play an important role in managing the business relationship as well as being
a key member of the change review board. Any changes that impact the service levels, or
computing resources can involve additional contractual modifications as well as funding.
If contract modifications are necessary, the program manager will work with the
contracting official to develop and negotiate the modification. The contract manager is
also responsible for mediating any disputes between the customer and the service
provider. Any escalation procedures should involve this individual. In the case of the
hosting SLAs, the person identified to deal with escalation procedures is the Contracting
Officer Representative (COR).

The SLA development team along with the program manager should determine
the representatives needed at the change review board. At the very least the program
management staff needs representation, the contract manager, the fiscal manager, the
person or people responsible for monitoring the service levels, the user community and
technical representatives from the IT department should be represented along with the
service provider. Depending upon the requirements volatility associated with the
program, the meeting could be held weekly. Additionally, the program manager’s staff
and the IT department personnel need to determine before the meeting the affect that
changing requirements are going to have on the SLAs. For example if the application is
going to be used by another command, and the concurrent user count is going to double,
then the service provider will have a good case for requesting additional funds to
purchase hardware for load balancing. In some cases the change review boards can
involve discussions on the need for additional services or the need to modify existing
service levels. The man-hours associated with these meeting, and the preparation for the
meeting needs to be considered.

SLAs require considerable time and resources from the program management

staff. If service level agreements have not been used in the past, the program

52

management group responsible for the development of an application, or the fielding of
the application is going to have to devote additional time to developing, reviewing, or
modifying template (already existing) service levels. The program management staff will
have to participate in the development of the SLAs. They will also have to review the
SLA reports, attend the change review boards, attend SLA review meetings, and spend
time managing the relationship with the service provider. As service level reports are
distributed to the user community and upper management, the program management staff
will be forced to be more involved in managing the performance of the service provider.
The program manager is expected to take action if performance does not meet service
levels. The process of managing service provider performance will be much

more labor intensive under SLAs than before. The program managers and the
development team need to make sure that there are proper assets in place to handle this
additional workload.

IT accounting personnel will also be tasked with additional work when SLAs are
deployed. Procedures should be developed for how to handle the penalty or incentive
provisions in the contract. They need to determine whether funds are budgeted up front
anticipating incentives, or whether additional funds will have allocated if incentives are
warranted. If requirements change drives new SLA services, or capacity, they need to
determine whether there are there enough funds to cover the costs. The IT accounting
personnel will have to work closely with the program manager and the COR to ensure
that contract modification will not exceed the budget, and if they do, they will assist in
preparing the justification for the financial review.

Personnel involved in SLM need to also constantly review the service levels
against the underlying business process. They need to determine if the service levels are
in fact supporting the business processes, or whether they need to be modified.
Additionally, it is possible that some services though to be essential to the performance of
the business process are in fact not needed. It is also possible that some service will have
to be added to the SLA because they were not though of previously, or because additional

requirements were added to the application.

53

SLM is the process that an organization utilizes to ensure that the contractor
adheres to the requirements in the SLA. Poor SLM will undermine the efforts of
establishing the SLAs in the first place. When developing the SLAs, the development
team needs to not only identify manpower shortfalls, but they need to brief management
and the program manager of the roles and responsibilities that they are expected to
perform. The development team must also assess whether they have personnel with the
skill sets necessary to verify service performance. If management or the program
managers are not willing to allocate the time or resources, then the development team
must determine whether to proceed with developing the SLAs. If the service levels are
not monitored and verified by the customer, then they will quickly loose their
effectiveness. The trust between the end users and the program manager will quickly
erode. Users will become frustrated when service quality is poor, and the service
provider will quickly determine that they will not be held to the threshold standards.

4. Review Current Services

SLAs can be utilized for the development of new systems, maintenance of
existing legacy systems, or for post-production support. They can also be used for
outsourcing services that were previously performed in-house. Before the SLAs are
developed, it is important that the team has a foundation understanding of services and
service levels that are currently being used within the organization. Once that foundation
is built, services and service levels can be evaluated and applied to the new system,
outsourcing project, maintenance action, or in-house project under consideration.

The development team needs to understand the underlying business processes that
the IT system must support or enable. The team needs to not only understand the main
process being supported, but it must also evaluate the numerous interlinked, feeder, and
cascading processes it supports, or is being supported by. When evaluating processes it is
useful to divide the processes into the core business process, primary supporting
processes, and secondary supporting processes. The core business describes the end-to-
end activities involved in supplying a deliverable or a service. The primary supporting
processes are those sub-activities, organized in a logical sequence, that make up the core

business process. The secondary processes are those activities that support (directly and

54

indirectly) the primary processes. (Tricker) It is difficult to control quality unless the
quality objectives of the core, primary and secondary processes are defined.

When developing the SLAs the team must determine the organization’s key
business processes and determine the types and levels of service that are needed to
support those processes. It is difficult to develop SLAs without first knowing what
services are being provided, and at what level. The team should develop a list of all of
the services currently supporting the primary and secondary processes, and then try to
define quality levels associated with each of the services. The list of services should be
as extensive as possible. If the team is reviewing services that are currently being
offered by an ESP, a review of the existing contract, interviews with end users and ESP
personnel, and a review of any required reports will be helpful. Interviews with the end
users are especially important because many of the users may not be aware of the
contract, and they may not be receiving services that they should be.

If the SLA is to be used internally, the IT department should list all of the services
that they provide (relating to supporting the business processes). This is their opportunity
to show all of the work that goes into providing their current services. There are many
functions that must be performed that end users may not be aware of such as 24 X 7
physical security, monitoring of hardware and software, application testing, configuration
management, or tuning the server to optimize application performance.

The SLA development team must also interview end users to determine what
services they are in fact receiving. There may be differences between what the 1T
department claims they are providing and services the end users say they are receiving.
The SLA development team must determine reality by observation and reviewing reports,
trouble tickets, logs, and monitoring tools.

Once a list of services has been developed, the next step is to define the quality of
the service. Each service should have a quantitative measurement of quality. However,
it is not uncommon to discover that an organization does not have defined levels of
service. If service levels have not been previously defined, the SLA development team
will have to determine them. Interviews, observation, or benchmark testing will have to

be performed to determine the level of service that is currently provided.

55

Benchmark testing is typically used in measuring performance based services
such as application response time, network bandwidth utilization, or processor
capabilities. However, benchmark tests can be utilized to measure service levels such as
file retrieval, disaster recovery, or trouble ticket resolution times. Benchmark testing not
only helps to quantify the level of service, but it also helps verify that defined levels of
service are actually being met.

If the SLA development team is not comfortable relying upon the IT department
to perform the benchmark tests, they may find it advantageous to contract with a third
party to perform the benchmark testing. In some cases a third party may be necessary
because the current IT department is not trained on the necessary monitoring tools, they
do not have the background to develop a benchmark testing plan, or because the licensing
costs of the monitoring tools are prohibitive. A third party would also provide impartial
results that may make lessen conflict between the IT provider and the end users.

In some cases it is very difficult to assign quantitative values to the services that
are provided. In some cases the services will have to be rolled into a higher service. For
example the service ‘tuning a server’ may have to be rolled into the service ‘availability’
for that server. Conversely services such as “security’ may need to be broken into
smaller services such as ‘data integrity”.

5. Determine Requirements

Once the SLA development team has determined the services that are being
provided, and at what level, they must determine if those services and service levels are
appropriate for the business processes they support or are intended to support.
Additionally, the team must determine if additional services are required, or if some
current services can be deleted. New services must be defined, quantified, and assigned a
level of quality that meets every stakeholder’s needs.

IT managers need to understand their customer’s requirements in order to provide
the services necessary to meet those requirements. However, it is not uncommon for IT
managers to make assumptions about customer requirements. IT managers often make
IT investments based on customer’s past requirements, customer’s perceived future

requirements, or they plan for improvements to the IT infrastructure to meet their own

56

needs. (Briones) Software cannot function in isolation from the system in which it is
embedded, thus a systems level view must be used when performing requirements
analysis. (Neseibeh) A purely technical approach without regard to the underlying
business processes that IT supports will not satisfy the end user’s needs. The end users,
management and the IT department must be involved in the requirements analysis
process to ensure that the services needed are identified, that they support the current and
future business processes, and that the IT department can provide those services. The
team approach to developing SLASs is essential in producing a product that is workable
for all stakeholders.

If the SLA concerns the development of a new system, it is important for the team
to understand the core, primary and secondary business processes that the IT systems
(hardware, software, and infrastructure) are supporting. Part of this analysis is to gather
information on the business processes that the IT system is enabling. The team can start
by asking some simple questions. Is the process data query, data input, e-commerce,
real-time collaboration, report generation, information sharing, or data warehousing?
How does this process tie into the organization’s business strategy? Is this a dynamic
process or a relatively stable process? Is the information used by the process internal or
external to the organization? If the information is external, what is the source, who
controls it, and how is the information extracted? Is the data sensitive? How does this
process tie into the overall IT architecture? Does the process have to interface with any
other processes? How do they interface? In two years, how might this process change?
Do people outside of the organization (e.g., partners, suppliers, customers) need access to
the data? How old is the technology supporting this process? Are there manual
processes in addition to those being automated?

The team must then determine how the application is or is intended to be utilized.
Interviews will help determine batch processing times, the amount of response time that
is acceptable to users and management, the hours that the end users actually use the

application, location of the users, methods for accessing the application (e.g., intranet,

57

internet, remote dial-in), and timeframes for required reports or queries. It is also helpful
to understand how downtime or reduced capabilities will affect the end user’s ability to
perform their tasks.

The team should also analyze the business criticality of the system from the end
user and management’s perspective. The financial implications of downtime should be
determined so an accurate cost/benefit analysis can be performed. Implications of
downtime can include not only lost sales and clientele, but also frustration and lost
productivity by the organization’s staff. In some cases, especially those in the military,
the implications of downtime could cost lives. Highly critical business systems should
also be viewed in terms of information assurance to protect both the data and the system
itself from external and internal threats.

The business criticality of the business process gives the team a good indication
of the types of services needed by the application, as well as how much funding the
organization is willing to invest in those services. Applications considered business
critical will be capable of justifying a larger budget, and consequently will be able to
request more services at higher quality levels. If the application is being phased out for
another application that works more effectively with partners or customers, then the
services needed may be less that those needed by the replacement application.

Administrative requirements also need to be addressed in the SLAs. Program
managers want the ability to quickly monitor the contractor and IT system performance
to ensure they are meeting requirements, so the SLAs must address the reports that are
required from the service provider. Reports are the vehicle to demonstrate whether actual
performance met, that which was required. The team needs to determine who will be
reviewing the reports. The reports (generated by the contractor, CTR, or through access
to monitoring tools) will need to reflect the proper layer of abstraction to meet the
manager’s needs. Management may not understand the technical details of the reports, so
they may need summary reports, whereas the personnel verifying the SLAs may need
very granular data. The team will need to determine the content of the reports, their
frequency, their distribution, the source of the reports, who prepares the reports, the

report format, how the report relates to the measurement of the service, and how the

58

report can be verified. Any current reports can provide a baseline to determine the level
of detail required, an acceptable periodicity, and management’s comfort with the formats.

The development team must not only determine the services and service levels
associated with product quality, but they must also incorporate any process, project, or
post-production quality requirements into the SLAs. Reviewing SLAs that other
companies have written for similar projects (template SLAS), or reviewing the
contractor’s SLASs can help identify services that the development team may not have
considered.

Template SLASs can significantly reduce the time spend developing SLAS as they
already contain definitions of services, they have quality thresholds that at least one
organization found acceptable (hopefully, industry standards can be developed for certain
SLAs), they contain the methodology to measure the service, and they explicitly state the
assumptions that were used when developing the SLAs. Template SLAs provide a good
framework to use. The development team can then modify the template SLA to
incorporate the organization’s requirements.

Benchmark testing produces information on the levels of service that are currently
being provided. The requirements analysis further defines those services to determine if
the services are needed, and if they are needed, whether the levels of service are adequate
to support the application. Requirements analysis also determines if new services are
needed and defines their associated level of service. Once requirements are defined, the
team needs to be prepared to negotiate on the service levels. Realistic maximum and
minimum thresholds should be developed for each service. Depending upon the costs
associated with the maximum threshold, the team may decide to reduce the threshold
level to at or near the minimum.

In most organizations, all costs must be justified, and as such, the team must be
prepared to justify all of the services and their corresponding levels of service. The
justification should be directly related to the primary or secondary process supporting the
core business process. The team should be able to explain the business impact of the

various levels of service. If resources are limited, the team should be prepared to

59

compromise requirements, so they should be prioritized. Before negotiations begin with
either the IT department or an ESP, a draft SLA should be prepared.

6. SLA Preparation

Once requirements have been defined, and service thresholds have been
established, the team can start to prepare the SLA. In this stage, the SLA format must be
decided determined, then populated with all of the required information. This can be a
difficult task, as the team will have to determine meaningful, measurable, and
quantifiable metrics to measure the services needed. They will also have to define the
scope of the contract, the services that must be performed, the service level thresholds,
and all other required fields.

Part of the development process is to determine the format of the SLA. A
recommended format will be presented later in this chapter. This same format was used
in the SLA for post-production support in appendix (A). However, there are numerous
formats that can be utilized depending upon the services requested, whether the SLA is
in-house or contractual, and the needs of the organization.

The SLA development team needs to determine how the service required will be
measured to ensure that the service levels are being adhered to. The customer should
never rely upon the service provider to determine whether the SLAs have been met. The
team must determine if monitoring tools, logs, software agents, or monitoring software
packages are available to provide the information necessary to verify service levels. It
may be necessary to perform audits or run benchmark tests to determine performance.
The team should also determine if there are personnel in the organization (outside of the
IT department if in-house SLAs are used) with the technical expertise to perform the
audits.

If the team is not experienced in developing SLAs, or if they lack the technical
expertise necessary to determine how SLAs should be enforced, they should hire
consultants that work with SLAs or outsourcing contracting. Consultants can assist in
determining the types of performance reports that should be generated by the service

provider, and the means to audit those reports.

60

Services that cannot be measured or verified should not be included in the SLA.
Those types of services should be listed in the SOW. In some cases the determination of
performance is subjective, and it is difficult to get an objective measurement that both
parties agree to. In some cases a survey can be used to determine an overall subjective
measurement regarding attributes such as customer satisfaction. So long as the sample
size is agreed upon, statistics can generate mean scores, which can be used in a SLA.
Proxy attributes may be used to measure the performance.

Proxy attributes attempt to assign objective attributes to a subjective objective. A
proxy attribute does not directly measure an objective, but can be used to describe the
degree to which an objective has been met. It indirectly measures an objective. Rather
than explain the Bayesian theory and probability distributions used, an example illustrates
the concept better.

The overall concept of security is a subjective one. Many of today’s IT systems
are comprised of distributed, heterogeneous systems that pull information from multiple
sources. There is not one simple measurement to determine if a system is secure or not.
There are many objective indicators that can indicate a degree of confidence in a systems
ability to withstand an attack. Attributes such as all servers are set up in accordance with
the National Security Agency (NSA) approved configurations, the firewall is configured
in accordance with the Navy Firewall Policy, adherence to Common Criteria guidelines,
and intrusion detection software is deployed within the system, generates a measure of
confidence in the security of the system. However, that confidence is still subjective.

None of those attributes directly measures security, but they can provide objective
values that can be used to calculate a level of confidence in the security. It is ultimately
up to the team and the service provider to determine if the proxy attributes can adequately
be used to measure security. This means that the team and service provider must be able
to understand the implication and extent that the proxy attributes relate to security. The
goal is to provide as much objective information as possible so that a decision regarding
compliance with a service can be justified.

The next step in developing the SLA is to determine who will be responsible for

ensuring SLA thresholds are being met. That individual or team of individuals must have

61

the authority and resources necessary to provide the oversight necessary to audit
performance and enforce noncompliance. Managing service levels can be a time
consuming effort and cannot usually be assigned to the program manager of an IT
system. In some organizations, a quality assurance department is responsible for SLM.
The development team and the program manager must review the level of work
necessary to perform the intended SLM functions when assigning the individual or
individuals necessary to monitor SLAs. In many cases multiple people will be employed
in the SLM effort

The SLA development team also needs to determine the scope of the SLA. The
boundaries of the agreement need to be defined. This seems straight forward, but in
some cases the service provider may have not control all aspects of an IT system’s
performance. A good example is where a service provider is being tasked to host an
application in its server environment. The SLA specifies a threshold of a 2 second
response time for a specific query in a client-server architecture. In this case the service
provider has no control over the client PC, the client network to the Internet Service
Provider (ISP), or from the ISP to the service provider’s firewall. In this case, the scope
should be defined to the service area that the service provider actually has control over.

Once the team has developed the SLAs, they are almost ready for the negotiation
phase. The last step is to present the draft SLAs to the organizations attorneys. The
attorneys will review the SLAs as they would any contract between the organization and
a third party provider. They will undoubtedly modify the SLAs to add clarity and ensure
there is verbiage to protect the organization if the services specified in the SLA are not
delivered at the thresholds specified.

When an organization wants a contractor to propose a bid for the services that
they want accomplished they prepare a request for proposal (RFP). In this dissertation
the RFP sent to the service provider will include the Statement of Work (SOW) and the
SLAs in separate sections of the RFP. It is important that the development team is
familiar with the SOW. The SOW can define services that will be performed, but the

SOW really concentrates on the functional requirements of the system. SLASs concentrate

62

more on the non-functional, quality requirements of the system. The SLAs should
support the SOW, not conflict with it.

7. Negotiation

The SLAs must be agreed upon by both parties in order to be successful. SLAs
that give undue advantage to either the organization or the service provider will cause
problems. As service levels are not achieved, or expectations are not met, disputes and
finger pointing ultimately occur. SLAs should not be viewed so much as a contractual
mechanism to force the service provider into compliancy, but as a contract that defines
expectations for both parties.

The contracting officials are generally responsible for leading the contract
negotiations. SLAS are contracts, and as such, members of the contracting branch or
department should be part of the development effort, or they should at the very least
review the draft before negotiation processes begin. The program management team and
the contracting official needs to determine if the process owners, IT personnel,
contracting personnel, or management will be involved with the negotiations. Although
the SLAs and SOW will probably be negotiated as a package, it is recommended that if
they are negotiated separately, whoever negotiates the SLAs is also the same person or
group that negotiates the SOW. This provides consistency and helps to ensure that the
SLAs and SOW do not conflict. (Sopko)

Once the SLAs are drafted, they are incorporated into a Request for Proposal
(RFP) along with the SOW. In government contracting section H is where the SLAs are
placed. Section H provides additional guidance to the SOW. The contractors respond to
the RFP and the SOW with a proposal that lists the services that they will provide along
with the technical specifications on how they will achieve those services. The contractor
must also respond to the SLAs. The contractors must not only determine whether they
are capable of providing the services, but they must also be capable of performing to the
service levels defined in the SLAs. In-house SLAs are usually presented to the head of
the IT department for consideration.

It is important that both parties understand the terminology and technology that is

associated with the SLA. Both parties need to understand and agree upon the verbiage in

63

the SLA. If there are areas that need clarification, then mutually determined
modifications will have to be made. This may entail several meetings, especially when
attorneys are involved.

The service providers must evaluate the SLAs for software and hardware
requirement, staffing needs in terms of skill sets and effort to accomplish requirements,
infrastructure needs, and managerial oversight needed. Once the service providers
understands the hardware, software and resources needed to satisfy the service thresholds
outlined in the SLAs, they can start to determine the costs associated with providing
those services. They can also start to estimate the time frames associated with software
development or software maintenance projects.

The service providers will also look at the deliverables and the responsibilities of
both parties as defined in the SLA. Every section of the SLA is subject to negotiation, as
this is a contractual document that is legally binding. Any areas that are subject to
interpretation should be defined as much as possible to ensure both sides understand the
services to be delivered. Attorneys from the service provider will also review the SLAS
and they will play a role in the negotiation process.

It is extremely important that the development team have good information from
their benchmark studies. The team should know the service levels that are currently
being received and to the maximum extent possible, they should know or be able to
estimate the costs associated with providing those services. If that information is not
known, then the team is entering the negotiation process in the blind. The team will not
be able to determine whether the services requested exceed requirements, nor will they be
able to determine if the services and service levels that are ultimately decided upon will
meet the requirements to support the underlying business process.

Once the service provider has scoped the requirements and has determined costs
to provide the services, the negotiation process can begin. It is important that both sides
show flexibility in their approach to the negotiation process. Both parties should attempt
to arrive at terms that satisfy their mutual needs. Inflexibility will not only drive up costs,

but could jeopardize the entire negotiation process.

64

When the development team has reviewed the service provider’s estimated costs
associated with the team’s proposed SLAS, they need to weight their requirements against
the costs, and determine the services and associated quality levels that they can afford.
Understanding the business impacts of the various levels of service is essential in this
phase. The team must understand the minimum service requirements to support a
business process, so funding is not wasted on satisfying requirements that are greater than
necessary.

It is recommended that the type of services should be negotiated first, then
technical issues, then legal terms, and finally price. (Sopko) When services, their
associated service levels and costs have been negotiated, the remaining sections of the
SLA detailing responsibilities, penalties, incentives, deliverables, documentation,
methodology for verification, escalation procedures, and management of the SLAs will
have to be mutually agreed upon. An important part of this negotiation is agreeing on the
tools or products that will be used to monitor performance. Another area that must be
discussed is the required reports, their format, their periodicity, and their distribution.
Reports are extremely important in that they provide the mechanism by which
management can determine whether actual performance meets service thresholds. The
reports and other deliverables are usually outlined in the Contract Data Requirements List
(CDRL).

SLAs also delineate areas of responsibility, which can make troubleshooting
faults much easier. When a fault occurs, the SLASs can be used to achieve a team effort in
which everybody understands their respective areas of responsibility. Poorly defined
roles and responsibilities will lead to contractual challenges if SLA thresholds are
violated.

Depending upon an application’s criticality, and the services being offered,
acceptance testing may be necessary. For example in a contract for hosting services, the
application can be loaded on a server in the host facility and tests can be run to determine
monitoring capabilities, resource utilization, software compatibility, and response times.
Some vendors will object to this tactic, but the tests will ensure that the service provider

can perform. It is not unusual for a service provider’s sales staff to oversell their

65

capabilities in their zeal to close the deal. Acceptance testing not only ensures that the
service provider has the technical skills to perform the service, but it establishes that the
organization will be actively monitoring the contractual terms of the agreement.
Depending upon the services being offered, the organization can run the acceptance test
and maintain current operations in parallel. If the acceptance test fails, then it is easy to
terminate the agreement. Details of the acceptance testing, including the methodology,
tools needed, duration and associated costs will have to be negotiated.

8. Contract

When both parties are satisfied with the terms of the SLAs, the agreement needs
to be formalized as a contract. It is important that everything that was agreed to is
documented in the contract, especially termination and penalty clauses. It is also
important that both parties agree to the terminology used in the contract.

The roles and responsibilities of each party should be clearly defined in the
contract. The better defined the responsibilities are, the better the relationship between
the two parties. Functions such as the method of communication, chain of command,
points of contact and management of change need to be agreed to and documented.
Additionally, issues such as who can place orders or modify requirements with the
service provider, and what procedures are used to modify those requirements needs to be
identified. In very dynamic environments it may be more important to manage the
relationship than the contract.

Part of the negotiation process is to determine the scope and the duration of the
contract. The scope clearly defines the services to be provided, and the boundaries for
those services. The contract needs to specifically state those areas that are within the
scope of the SLAs, and those services that are outside. For example, in a hosting services
SLA, the service provider might not be held accountable for the latency experienced in
the Wide Area Network (WAN) outside of the host environment. The scope also
includes limitations such as the number of users supported, or application upgrades
allowable. Availability services scoped for 100 users on the same infrastructure are very

different from when the user base expands to 1,000 users distributed throughout the

66

country. Capacity requirements should be determined in the baseline tests, the service
provider should not be held accountable for service levels when the application or the
user base changes significantly.

The contract should also state the duration of the agreement. It is not
recommended that a SLA contract be signed for more than a two-year period.
Technology is changing too rapidly to be tied into a long term contract. In addition, the
underlying business processes supported by the IT system can also be dynamic and
rapidly changing.

The contract should also have provisions for review or revision of the SLAs. This
is especially important if the development team was not able to capture good data on its
benchmark analysis of the IT system. Often organizations have not adequately monitored
their IT systems, so they are not sure of the level of service needed to support their
business processes. As procedures are better defined, they may need to adjust the SLAs
to reflect better defined requirements. Reports and monitoring tools may also need to be
revised to better present the information to various levels of management and oversight
personnel.

The service provider should also be able to address revisions to the SLAs. In
many cases the service provider will not have the ability to conduct a thorough analysis
of the IT system or application to be supported. Lack of due diligence may result in
dependencies, resource utilization, bandwidth requirements and support that was not
originally noted. Additionally disagreements on interpretation of the SLAs will have to
be worked out. It is also possible that technical problems will force modifications to the
SLAs, such as a particular monitoring tool that was agreed to will not interface with the
application in the way it was intended.

SLAs are not static, as the workplace itself is not static. As experience is gaining
in tuning and monitoring the application, SLAs will need to be modified or refined. Both
parties should agree to modification of procedures and requirements as additional
information is discovered regarding services provided and the efforts required to support

those services. SLAs should be reviewed on a weekly basis for the first two or three

67

months. Any changes or modifications to the SLAs will have to be mutually agreed
upon. The contract needs to be explicit in explaining the process by which modifications
or refinements of the SLAS occur.

The contract also needs to discuss procedures to modify the SLAs because of
changes as a result of application modifications, or configuration updates to supporting
software or hardware. A mechanism such as a change review board must be instituted to
address hardware or software changes initiated by either the customer or the service
provider. The change review board should have membership from the program
management team, the service provider, contracting representatives, end users, and
possibly the business process owner. The change review board will review and approve
software or hardware changes to the application or the supporting environment,
determine if those changes will affect the SLAs, and if so, whether new SLAs should be
agreed to. Changes that have not been approved by the change review board are
unauthorized and the offending party will be held accountable. Additionally, the change
review board should have a mechanism for identifying who should pay for additional
resources (hardware, software, personnel) as a result of application changes, or changes
to the system software.

Additional contractual provisions will have to be worked out if the nature of the
application or its underlying business process is rapidly changing. This is especially true
for prototype applications. Although the stability of the application should have been
identified in the negotiation process, it is important that remediation processes are
identified in the contract to account for rapid changes to the application. For highly
dynamic applications or applications associated with businesses that must react quickly to
external forces, mechanisms will have to be built into the contract to allow the
contracting official and the change review board to quickly modify requirements and
their associated service levels. SLAs are intended to protect business processes, not
hinder them.

B. SUCCESSFUL SLAS
The method of developing SLAs as well as the formats of the SLAs may differ,
but all good SLAs have similar qualities. This section outlines some lessons learned that
68

might assist in developing successful SLAs. The lessons are not presented in any
particular order of importance.

" The SLAs should only focus on those requirements that drive a business need, or
directly support a primary or secondary process. Focusing on the business need ensures
the SLAs are meaningful, have management support, and can be justified financially.
SLAs should be based on what is important to measure, not what is easy to measure.

" Service level agreements that measure the technical aspects of a service, yet fail to
meet the requirements of the underlying business process will not be successful.
Including the end users in the development process will help to focus on the customer’s
requirements.

" The number of SLAs should be kept relatively small. If there are too many SLAS,
the service provider looses focus on what the mission essential service are, and
monitoring and validating the SLAs will be more difficult and time consuming.
Additionally, too many SLAs may deter good service providers from competing for the
services. Too many SLAs will also prolong the negotiation process and ultimately cost
the organization more.

= Robert F. Kennedy stated, “Progress is a nice word. But change is its motivator
and change has its enemy.” SLAs are only one part of quality control. The entire
organization needs to be involved in quality management to achieve success. Upper
management needs to implement the policies, drive the training, and allocate the
resources to support the quality management initiative. Without upper management
support, SLAs will not achieve the success they are capable of.

. Communicating the results of the SLAs to all of the stakeholders, in a timely
manner is important. This is part of an organization’s quality assurance effort to ensure
that stakeholders have confidence in the quality of the services that they are receiving. A
great deal of effort goes into developing SLAs, upper management should take the credit
for initiating and managing SLAs as part of a quality control program. Both good and
bad results should be shared. If SLA results are not being communicated, then
stakeholders may believe that they are not being met, thereby eroding confidence in the
ESP or the IT department.

69

. James Magory said, “computers can figure out all sorts of problems, except the
things in the world that just don’t add up.” In other words, technology does not solve all
management problems. SLAs should be used as part of a quality control plan, not as a
tool to correct bad management. SLAs can identify where quality is not being provided,
but SLAs will not solve the problem.

" Penalties or incentives must be used. Without them, the SLAs are just
agreements. The penalties or incentives should not be too large, but they must command
the attention of the service provider.

. SLAs must be easily understood by all parties. If the end users cannot understand
the SLAsS, then they are probably concentrating too much on the technical aspects of the
service and not enough on supporting the business processes. Response times in a router
mean little to the end user. The SLAs should reflect business terminology that the end
users understand, such as the overall availability of the application, or mean time to
failure instead of the listing the technical components that comprise the availability
formula.

" If a service cannot be accurately measured, in a timely manner (enough to support
the business process, which may include real-time), it should not be included as part of
the SLA.

" SLAs should be reviewed frequently. SLAs will change, and they must be
approached as a dynamic agreement. Change management processes need to be
addressed in the development process, and agreed to in the negotiation process. Capacity
planning is another area that needs to be addressed as new requirements may require
additional resources.

" If prior service performance is not known, or if a new service is being initiated,
trial SLAs without penalties or incentives may be necessary for a brief period (3 to 6
months). A cost-plus type of contract may also be helpful.

" A SLA is a contract and should be treated as such. To prevent any
inconsistencies, the SLA and SOW should be negotiated as a whole. Most ESPs are very

experienced in negotiating SLA contracts. They have the expertise; most organizations

70

do not. Organizations should not be afraid to bring in outside contractors experienced
with negotiating service agreements to assist in the negotiations.

" If possible SLAs should reflect end-to-end services. It is important to look at the
entire IT system. In a multi-tiered system, it is possible for all of the components to meet
their individual availability thresholds, but when combined they still do not satisfy the
end user’s requirements. End-to-end SLAs are aligned more to the business processes
they support.

" It is very important that both parties agree to terminology. For example, the term
‘downtime’ can be defined in many different ways. An ESP may consider ‘downtime’ to
be when a server has a hardware failure, whereas the organization may consider
‘downtime’ to be when the end user cannot access the server from his or her PC. Unless
the terminology is agreed upon, there will be many contractual issues. How will
intermittent ‘downtime’ be handled?

" The SLAs or SOW need to address how the data and reports will be generated and
stored. Issues such as who has access to the service level reporting tool, how information
will be stored, and for how long, need to be discussed.

. Cascading SLAs can be a problem. This is when the service provider has to rely
upon other third parties to perform a portion of the service being offered, and actions by
the third party provider alters the original agreement. For example, service provider X
may offer end-to-end SLASs to customer A. However service provider X has to rely on
the long haul WAN services of provider Y. Service provider X and Y have a service
level agreement for the long haul services. Service provider Y upgrades security
protocols to meet the requirements of another customer. Service provider X must adopt
the new protocol, which is not supported by customer A.

" End-to-end SLAs are difficult to achieve, especially in a highly distributed
environment. Achieving high levels of availability for distributed applications requires
control (physical or contractual) over the component pieces that make up the entire
system and infrastructure, strict configuration control, proper monitoring tools, and a

change control methodology that can adapt to rapid changes.

71

. SLAs are part of a quality control methodology. Once service levels have been
measured and compared against the agreed upon thresholds, root cause analysis needs to
be performed to determine why thresholds were violated. Once cause has been
determined, the SLM organization needs to take the steps necessary to correct the

problem.

C. POST-PRODUCTION SUPPORT

The SOW and thirteen SLAs in appendix (A) illustrate how SLAs can be used to
improve the management and quality of software post-production support by establishing
a monitoring program to support process and quality control measures. The SOW and
SLAs in appendix (A) provide a detailed listing of post-production services and quality
thresholds. A discussion of how those services and quality thresholds improve the
management and quality of the software-intensive system would be redundant. Rather
than focus on the specifics of how the SLAs in appendix (A) contribute to the quality of
post-production services, this section will discuss how those SLAs were developed.

In the previous sections, we have discussed how SLAs should be developed, and
offered some characteristics of good SLAs. In this section we will offer another
approach at developing SLAs that will illustrate more of a top-down approach. The
approach outlined in this section was utilized in the development of the statement of work
(SOW) and SLAs in appendix (A) that were part of an actual request for proposal (RFP)
to obtain quotes for post-production services.

1. Background

Today’s computer environment differs significantly from the more centralized,
mainframe-intensive environment of the past. Stand-alone and/or clustered servers have
rapidly replaced mainframes as a result of the rapid adoption of the client-server
architecture, the increased computing and storage capabilities found in today’s servers,
the dramatic reduction in server size, and dramatic drops in the cost of computer
hardware. In addition, advances in distributed-computing technology, increased network
speeds associated with broadband technology, and advances in web technology have also

made the location of the server a moot issue. Low cost hardware coupled with

72

distributed-computing technology allows program managers to quickly purchase,
configure, and deploy a system. Distributed-computing technology also increases the
ease at which a program manager can outsource the hosting services associated with the
application, as the server can be easily accessed using the Internet. While the current
computing environment makes deploying a system easier for the program manager, it
makes managing the applications, and servers more difficult at the enterprise level.

In an interview with a Chief Information Officer (C10) staff member, he
commented on the difficulty he was having tracking and managing servers. He said,
“servers are worse than rabbits, | swear they are breeding. | am finding them everywhere,
including under desks and in closets.” Unless all of the IT funding is coordinated through
the C10O organization, it is very easy for program managers to buy servers and deploy
applications with little or no oversight. The proliferation of servers has caused numerous
problems for IT departments.

One problem with the decentralization associated with servers vice mainframes is
that it is difficult to standardize policies and procedures. Within the government it is not
uncommon to find host service support ranging from twenty four hour support in a
monitored hosting environment to servers that are receiving no support at all. This range
of support can be the result of funding constraints where programs are trying to save
funds by reducing the level of support. It can also be the result of a program manager’s
lack of technical knowledge.

It is difficult to manage post-production hosting contracts at an enterprise level
unless the contracts are with a couple of stable, reliable contractors, and the services are
similar. If program managers have the ability to independently contract with ESPs for
hosting services, the range of services and quality requirements can vary dramatically.
Even when host services are provided by an internal IT staff, services can differ due to
varying business priorities, hardware differences, and obsolete operating systems
necessary to support legacy systems.

Problems can also result when development was outsourced but hosting services
were kept internal. Good communication is needed between the developers and the

internal system administrators to ensure that network quality of service (QOS),

73

interoperability concerns, resource constraints, monitoring software, and security
concerns are discussed and conflicts are resolved.

A third problem is that many of the program managers do not have the
appropriate IT experience or background to be contracting for hosting services. Many of
the program managers do not know what services are required to host their applications,
nor do they know what levels of quality they should require in their contracts. In the
government, contractors provide much of the technical expertise necessary to develop
software-intensive systems. Some of these contractors are very familiar with the tasks
necessary to support an application in post-production, but it is more common to find that
the contractors specialize in particular areas of the development process.

Many of the larger IT consulting companies offer their own host services, which
they include as part of the development contract. These contracts provide many of the
services necessary to support an application, but the contracts are written to minimize the
risk to the hosting organization. In most cases, the application is properly supported, but
if problems occur, the host provider will have little if any liability.

2. Post-Production Services

The SOW and SLAs in appendix (A) were part of an effort by the Naval Supply
Systems Command (NAVSUP) to consolidate their numerous servers, managed by
multiple program managers and commercial entities, into a single hosting environment.
As part of their server consolidation effort, NAVSUP wanted to explore the possibility of
outsourcing hosting services. One of the sources considered was Electronic Data
Systems (EDS). At that time the Navy was in the process of implementing the
Navy/Marine Corps Intranet (NMCI), an effort to outsource all desktop and network
support to EDS. Contract line item number (CLIN) 29 of the NMCI contract was written
to include additional IT services, including hosting services. Although CLIN 29 was part
of the negotiated NMCI contract, it was not priced, so the services provided under that
CLIN had to be negotiated separately.

One of the security issues with NMCI was defining trusted boundaries. If EDS
provided hosting services, the servers would be within the NMCI trusted boundary,

offering greater security. Any other service providers would be outside of the trusted

74

boundary, and access to those services would have to travel through the NMCI external
firewalls. Outside access would require greater security restrictions at the external router
and firewall (e.g., port restrictions and protocol restriction such as use of Active X). As
such, the Navy was exploring the option of having EDS provide hosting services as part
of CLIN 29.

Since hosting services under CLIN 29 had to be negotiated, the author was tasked
by NAVSUP to develop a contract for hosting services. Since the NMCI contract had
already been awarded to EDS, the author was able to negotiate a hosting contract with
EDS that would provide the services necessary to support NAVSUP’s applications,
contained enough flexibility to meet the requirements of specific projects, and was
capable of being performed by EDS. The author presented initial requirements and SLAS
to EDS. The resulting SOW in appendix (A), was a collaborative effort between the
author and EDS (specifically Scott Price and Joe Vickery). The final product of the SOW
and SLAs were written to augment CLIN 29 of the NMCI contract, so they could be used
by any Navy activities requiring hosting services.

The SOW and SLAs contained in appendix (A) were intended to provide a listing
of services and service levels that the program manager could use in outsourcing
contracts, or in negotiations for support with an internal IT hosting provider. Appendix
(A) provides thirteen SLAs and three levels of service, which should contain sufficient
options for most programs. Although the SOW and the SLASs in appendix (A), are
intended to be used as a template to be modified to meet specific needs of an application.

At the time of this writing the NMCI program office had not accepted the SOW
and SLAs as part of the NMCI contract, although working groups were formed to further
define CLIN 29. The work in appendix (A) was provided to the group for their
consideration. There are numerous business and political reasons for not immediately
adopting the work in appendix (A), but due to the sensitive nature of these issues they
will not be discussed in this dissertation.

The SOWs and SLAs were however, used by NAVSUP to contract for server
hosting services. Although two commercial entities bid on the work, and a source

selection board was convened, the contract had not been awarded at the time of the

75

contract. Again a detailed discussion of why the contract was not awarded will not be
discussed due to the proprietary nature of the bids and the sensitivity of the information.
However, the failure to award the contract was not attributed to either the SOW or the
SLAs.

3. Developing the SOW and SLAs in Appendix (A)

The first step in developing SLAs is to define the problem that needs to be solved.
In this case the problem was that NAVSUP wanted to consolidate their servers under one
hosting service provider. NAVSUP needed to generate a requirements document that
listed the services and service levels necessary to support its applications. Ultimately,
these requirements were to be used to form a proposal under CLIN of the NMCI contract.

Although recommended, a team approach was not utilized in the creation of the
SLAs in appendix (A), although the SOW was formed with a small team. Before a team
was formed, we conducted an initial inquiry to determine the services that program
managers needed to support their applications. Initial interviews and inspections revealed
that there were no standards or procedures for application hosting. While almost all of
the applications were receiving adequate services, the services and service levels varied
greatly. Mission critical systems received good support, while those programs struggling
for funding provided little support. The disparate services being provided, and difficulty
gathering program managers and stakeholders for a SLA development effort did not
allow for a good bottom-up approach to developing the requirements. A better approach
was for the program managers and stakeholders to validate a list of services and service
levels that were derived from a top-down approach.

The top-down approach consisted of the author determining which hosting
services and service levels were necessary to support an application. The personnel
requirements and activities associated with SLM were assumed as some of the personnel
that were displaced as a result of any outsourcing were going to fill needed SLM
positions. The initial requirements were developed from a review of the hosting services
that were being performed at that time. Requirements were also derived from conducting

benchmarking studies, reviewing previous contracts, literary searches (Philcox, Nemeth,

76

Minasi, Sjouwerman, Harney, OGC, and Factor), interviews, and collaboration with EDS
personnel. The resultant product formed the initial requirements generation document.

As was mentioned previously, SLAs have been used for a number of years.
However, a review of many commercially provided SLAs and those contained in
previous contracts were ambiguous, difficult to measure, lacked qualitative
measurements, or lacked penalties/incentives. The SLAs also lacked many of the
elements that we felt were necessary to address in both the development of the SLAs and
the enforcement of the SLAs.

The author attempted to address many of these deficiencies by writing the SLAS
utilizing a new format that required more information on the services being performed,
how those services will be measured, and the responsibilities of all parties. The author
also attempted to use the SLAs as a process and quality control mechanism to assist the
program managers in the performance of their oversight duties. As such, the author also
had to develop additional quality requirements for security, documentation, maintenance,
tape backups, and technology refresh. These requirements were derived from prior
experience, interviews, literary searches, review of current services, and prior contracts.

Once the initial requirements were gathered, the author met with EDS to assist in
the development of the SOW. It was decided that the majority of the programs evaluated
could be grouped into three packages of services (essential, enhanced, and premier).
After much collaboration, the services were grouped into one of the three categories.
Although most of the programs could be adequately supported by the services in the
essential package, some programs required additional services due to their mission
criticality. Once the services were grouped into the three packages, the SLAs had to be
modified to reflect three levels of quality thresholds. The SLAs were also reviewed by
EDS and were modified to increase readability, reduce ambiguity, incorporate better
monitoring capabilities, and reflect penalties that were within the range of compromise
(penalties are not designed to financially cripple an organization, they are designed to
entice an organization to comply with requirements).

The final product was presented to program managers, the NAVSUP CIO staff,

System Administration personnel, EDS management, and two IT consulting groups for

77

their feedback. Their responses were very favorable, but a common concern was that the
services would be too expensive.

Once comments concerning the SOW and SLAs were addressed, NAVSUP
decided to utilize seven programs in a Request for Quotation (RFQ) utilizing the SOW
and SLAs. The RFQ was given to EDS and one other activity. Although details of the
proposals cannot be discussed in this dissertation given the business sensitivity of bids,
general impressions from the source selection board and the two organizations involved
was very favorable. The companies liked the level of detail contained in the SOW and
SLAs, although they did not like the penalties associated with non-performance. The
program managers also liked the comprehensive list of services that were being offered,;
in many cases they had not though to include some of the services in their own contracts.
The source selection board indicated that due to the level of detail contained in the SOW
and SLAs, they were able to better compare the services offered by the two organizations.
They were able to disregard services (in many cases marketing hype) that were offered by
the companies, but were not contained in the SOW. This allowed a better “apples to
apples” comparison.

Although a contract for host services was not initiated for these seven programs,
the SOW and SLAs in appendix (A) were still being evaluated for inclusion as part of the
CLIN 29 of the NMCI contract. Due to political and business sensitivity, and the
possibility that the source selection between EDS and the other organization is still a
possibility, the author felt that it was more appropriate to use generalities in this

discussion.

D. SUMMARY

Many of the benefits from SLAs are derived from the process of developing the
SLAs. The development effort is best when a team approach is utilized, where each of
the stakeholders is represented and has input. When the team members feel that they are
a part of the process to improve the software quality, they are more likely to take
ownership of the quality assurance and quality control processes established.

One of the major benefits of developing the SLAs is improved communication
between all of the stakeholders. The SLA development team identifies critical business

78

processes and jointly determines the quantifiable quality factors necessary to support the
process and meet the organization’s needs. The team must also determine the means to
determine whether quality factors have been met, which encourages communication with
the test community. Developing the SLAs fosters a common understanding about quality
and performance requirements across the organization. The SLASs also explicitly state the
quality thresholds, which helps to limit unrealistic expectations by management and the
end users.

The SOW and SLAs in appendix (A) demonstrate how SLAS can be written to
improve the quality of post-production services. The SLAs establish many of the quality
and process control measures that program managers need to properly manage post-
production support. The SOW and SLAs in appendix (A) incorporated three levels of
service to satisfy the majority of program needs, but they could be easily tailored to meet
the specific needs of a program. The SOW and SLAs also helped the average program
managers by detailing services and quality thresholds that they many not have thought of.
Appendix (A) offers a good template that other program managers can utilize in their
software acquisitions and post-production support contracts.

The discussion outlining how the SOW and SLAs in appendix (A) were
developed illustrates some of the difficulties associated with software acquisition. It is
not always possible to get all of the stakeholders together for a development effort. In the
case of the SOW and SLAs in appendix (A), a top-down approach, which was later
validated by stakeholders proved to be the best approach.

79

THIS PAGE INTENTIONALLY LEFT BLANK

80

V. SOFTWARE DEVELOPMENT MODELS

One of the original contributions of this dissertation is to apply SLAs, which are
used primarily in post-production support contracts with ESPs, to the entire lifecycle of
software development in an effort to increase the management of the development
process, or increase the quality of the deliverable or output from the development
process. However, before we explain how SLAs can positively affect the various
lifecycles of the software, those lifecycles bear discussion.

Models have been used for a long time to describe work processes by utilizing a
top-down approach of decomposing the processes into discrete sets, then showing how
information flows among them. (Nutt) Process models abstract the real world into sets
of entities that flow through a system of activities such that they can explicitly capture the
process artifacts, and information flows. (Martin)

Software production is an extremely complex process. The complexity stems in
part from the difficulties in comprehending the various facets of the design problem in
order to derive a robust and reliable design. (Ewusi-Mensah). One means of reducing the
complexity is to develop a model that describes a set of activities (in sequential order,
recursive, or conducted in parallel depending on the model) that needs to be
accomplished to produce a software product that meets requirements. Presenting the
development process in an abstraction allows a better understanding of the tasks to be
accomplished, as thus assists in the selection of the proper methods and tools to
accomplish those tasks.

Early developers modeled their processes in an attempt to improve software
development and product quality by applying a systematic development process based on
lessons learned from other software development projects. As new tools, procedures, and
lessons emerged; new process models have been developed. These software process
models are used to guide development efforts by outlining a deliberate set of activities at
an appropriate level of abstraction to create a software product that addresses end-user

requirements.

81

In addition to providing a strategy to address the requirements initially proposed
in the Statement of Work (SOW) or Performance Work Statement (PWS) process models
can be utilized for a number of purposes. Process models form the basis for planning,
organizing, staffing, budgeting, scheduling, and directing software development
activities. The models also can be used for analyzing or estimating resource
requirements, determining what software engineering tools and methodology will be
most appropriate to support various development activities, and providing a basis for
empirical studies to analyze and evaluate the effects that the prescribed activities had on
cost, schedule, and performance. (Scacchi) Software process models are also useful in
contracting to identify milestones and deliverables. Test plans can then be developed to

evaluate the deliverables for conformance to stated product and quality requirements.

A. TYPES OF PROCESS MODELS

Every software development effort follows some process. The development
process may be informal, ad-hoc (some prefer the term chaotic), or it may be well
documented with procedures to actively monitor the process. There are numerous
process models that range from general models at high levels of abstraction to models
that are specific to a particular domain and are at a very granular level.

Over the last three decades there have been numerous software process models
developed in an attempt to improve efficiency, effectiveness, and quality in the
development process in an effort to improve quality in the end product. The models
differ in their approaches, methodologies, level of abstraction, relevance to the real
world, structure, and incorporation of variables, such as user interaction. The models
also differ in techniques used. The models can incorporate modeling techniques such as
data modeling, object modeling, entity diagrams, process programming (uses
programming notation and formalism to model the process), precedence networks, or
Petri Nets (formal mathematical notation). (Gibson)

There are numerous ways to categorize process models. There are also as many
ways in which the models are utilized (i.e., some models estimate effort or duration,

others analyze risk, some are intended to improve quality, and others are intended to

82

improve documentation). Three methods of categorizing software process models are
presented below. It is also important to realize that the software product lifecycle can be
viewed from a number of perspectives. Albin describes four perspectives on how
management, software engineers, software architects, and software designers can view
the same development model differently. (Albin)

Martin and Raffo broke software models into two categories. (Martin) The first
category included models that estimated development characteristics (e.g., quality,
duration, effort) by identifying key variables and determining their effect on the
development process. Examples of this type of model include COCOMO Il (Boehm,
2000), and Software Lifecycle Management (SLIM) (Putnam). The other category of
models attempts to estimate development characteristics by modeling and analyzing the
details of the development process. Examples of this approach include models by Raffo,
Harrison, and Vandeville (Raffo), the Software Engineering Institute’s Software
Capability Maturity Model (SW-CMM) and Personal Software Process (Humphrey).

Schacchi also broke the process models into two categories, but each had several
subcategories. (Schacchi) The first category was software lifecycle models which
included those models that provided a framework to organize and structure how software
development activities should be performed and in what order. Subcategories included
Classic Software Lifecycle models (software evolution proceeds through an orderly
sequence of transitions from one phase to another), Stepwise Refinement (systems are
developed through progressive refinement of high-level specifications (requirements and
design) into more concrete low-level specifications capable of being converted to code),
Incremental Development and Release (development consists of providing core
functionality, then incorporating new requirements for an improved release), Industrial
and Military Standards (these include the CMM models, which provide standardization of
procedures and deliverables), and a subcategory called alternatives (focuses on the
product, product processes, or production setting) which includes models such as rapid
prototyping, joint application development, and component based development.

The other category was software production process models, which are models

that represent a networked sequence of events, activities, objects and transformations that

83

form a strategy for accomplishing software evolution. These models use rich notation,
syntax and semantics to develop more precise and formalized descriptions of software
development activities. Schacchi broke the software production process models into two
subcategories of operational and non-operational models. Operational models can be
viewed as computational scripts or programs, where many of the processes are automated
within a software language or tool. These models take a formal specification and
generate code, which can constitute a functional prototype. The code can also be
analyzed for certain characteristics and parameters. Many of the fourth generation
techniques (4GT) are operational models. Non-operational models present conceptual
approaches to development, but they have not been developed to the point where they can
be automated or codified. He sites the Spiral model, (Boehm, 1988) as an example of
this type of model because it incorporates elements of specification and prototype process
with a traditional lifecycle model. (Schacchi)

Pressman broke software process models into 7 different categories. (Pressman)
The first category was linear sequential models, like the waterfall model, that defines
development activities and illustrate a sequential process to execute those actions.
Another category is prototype models, which include iterative steps of defining
requirements, designing the system, developing a prototype to test the concept, revising
or enhancing requirements and repeating the process until a final product is developed.
Rapid Application Development models are another type of process model where very
short development cycles are utilized to quickly develop specific functionality in a
system, modules within the system, or if the project is small enough, the entire system.
Another large category of models is Evolutionary Software Process Models, which are
iterative in nature. These models provide an initial release, then add or enhance
functionality. Formal Models are another category in which formal mathematical
specifications are used to apply more rigor. The last category includes those process
models that incorporate fourth generation techniques, which include automated activities

that translate specifications into source code.

84

B. SELECTING APPROPRIATE PROCESS MODEL

Software products are unique. Requirements, resources, budgets, personnel,
interface requirements, and external influences are never constant from one project to the
next. As a result it is better to think of software as being developed rather than produced.
As a result, software process models have to be tailored to meet the specific needs of a
particular project. (Verlage) The choice of development model (including tailoring for a
particular project will depending upon the specific performance dimensions (e.g., defect
rates, KLOC produced per day) that must be optimized. (MacCormack)

Selecting the appropriate process model is one of the most important activities in
the project development planning effort. The appropriate model can streamline a project,
maximize resource utilization, systematically ensure that activities are accomplished to
achieve stated objectives, satisfy user needs, increase tracking and control, minimize risk,
and improve quality. Conversely, the wrong process model, or no process model can
result in longer schedule times, rework, unnecessary work, poor requirements, and
frustration. (Alexander, McConnell) While choosing an appropriate process model is
important, is should be noted that adhering to specific processes does not guarantee a
successful project.

Software development models used today vary in approach, methodologies,
domains of interest, areas of development, and level of abstraction. Given the large
number of software development practices and models, selecting the right mix of
practices and models is difficult. It is not possible to find a single model that will
incorporate a set of practices that will optimize performance on all dimensions. As such,
program managers must tailor the process models to each project’s specific requirements.

At the beginning of a project, the program manager should determine the primary
performance objectives for the software deliverable, as those objectives will drive the
type of development model utilized as well as the mix of practices they should utilize.
(MacCormack) A software development model should also be selected based on the
nature of the project and application, the methods and tools to be utilized, the controls

and deliverables that are required, and the application domain. (Pressman)

85

The IEEE Standard 1074 (IEEE Standard for Developing Software Life Cycle
Processes) outlines the activities necessary to develop software processes specific to a
software project. The first step is to select a software lifecycle model (IEEE Std. 12207
describes 4 models and IEEE Std. 1012 describes Boehm’s Spiral Model). Once a model
is chosen they must be tailored to the project at hand. This activity is described as
mapping where the project-specific sequence of activities are selected or added to the
software lifecycle model. The result of the mapping is the project software life cycle.
The next step is to evaluate an organization’s environment (policies, standards, tools,
procedures, and metrics). When the organization’s environmental variables are
incorporated into the project software life cycle, then the software life cycle process is
determined. (Schmidt)

Eljabiri and Deek describe software process models as a problem-solving
framework designed to solve real world problems, within time and resource constraints.
They identify a number of factors that have influenced the evolution of software process
models. (Eljabiri) These same factors also need to be evaluated when selecting a process
model to ensure that the model is accounting for the relevant factors. One of the factors
they discussed was the time dimension of the project (i.e., the anticipated length of the
project). The length of the project impacts other variables such as requirements churn
resulting from environmental change, the degree of visualization, complexity, software
economics, and changes in technology. Projects with a long development cycle should
select a different and more flexible process model than projects with shorter cycles.

Other factors that need to be considered include the amount of automation, the
degree of control required/desired, the degree of interaction with other systems, and
experience with the development process proposed. Eljabiri and Deek also identified the
importance that cognitive psychology had on process models. Behavioral models, use-
case approaches, and prototyping are effective strategies if requirements are not well
known, or if there is organizational conflict concerning requirements.

Alexander and Davis also presented guidelines for selecting the appropriate
software process model. (Alexander) They described 20 criteria that they felt could be

utilized in selecting the most appropriate software process model for a specific project.

86

They selected three grades for each criterion, and evaluated a number of software process
models to determine whether the model satisfied the criterion at any of the three grades.
To determine the best model for a particular project, each criterion would be graded
based on the characteristics of a particular project. The model with the highest ranking
(satisfied the most criteria) would then be selected.

The criteria were broken into five categories, each containing sub-categories.
Each of the sub-categories was scored using three values that corresponded to the type of
sub-category. The categories were personnel, problem, product, resource, and
organization. The category of personnel was further divided into user experience in
application domain (corresponding values for experience were novice, experienced, and
expert), user’s ability to express requirements, developers experience in application
domain, and developer’s software engineering experience. The category of problem was
subdivided into maturity of application, problem complexity, requirements for partial
functionality, and frequency of change. Product category was subdivided into product
size, product complexity, non-functional quality requirements, and human interface
requirements. The resource category was broken down into funding profile, funds
availability, staffing profile, staff availability, and accessibility of users. The
organizational criteria were subdivided into management compatibility and quality
assurance/configuration management. Matching the appropriate project criteria against
the variety of models to determine which model best meets the program manager’s needs

is an important part of the problem solving process required in software development.

C. PROCESS MODELS

As mentioned earlier, there are numerous software process models, including
MIL-STD-2167-A, the Rapid Prototyping model, the WinWin Spiral model, 1SO-12207,
Incremental Development and Release model, the Component Assembly model, the
Concurrent Development model, the Cleanroom model, hybrid models, object oriented
models, and fourth generation models. This section will describe some of the process

models and will point out the advantages and disadvantages of using each.

87

A common model is the early days of software development was the code and fix
model. In this model the developers have a general idea of requirements, then they use a
combination of methods to code and debug the software until they have a final product.
This approach has the advantage of low overhead (little effort on documentation,
standards enforcement, quality control), and anyone can use this model, as it requires
little or no experience. This approach can be useful for very small projects with a well-
defined solution space, a proof of concept, or throw away prototypes. (McConnell)
Despite its obvious faults, this model is the most common of all software development
methods, as it is the default model if no other process models are utilized. (Charvat)

1. Waterfall Model

The waterfall model (Royce) was the first attempt at formalizing the development
process by identifying an ordered set of work steps. (Becker) The waterfall model is a
sequential software process model that was based on traditional industrial engineering
techniques. Despite the fact that it was developed in 1970, it still serves as the basis for
many, more effective software process models. (Eljabiri, Rakitin)

In the waterfall model, development starts with the initial concept for the
software-intensive system and progresses through a sequence of phases until the system
undergoes testing and is approved. The phases or steps do not overlap. Each phase is
dependent upon the products produced in the prior phase. The waterfall model also
contains transition criteria for progression from one stage to the next. Only when a
deliverable or documentation is produced for a specific phase, and is approved by the
program manager, can development continue to the next step. If a deliverable is not
complete, then the project must remain in the current phase until the deliverable is made
acceptable. If an error is discovered at some point in the process it is possible, although
difficult, to return to an earlier step.

The model begins with understanding the requirements for the entire system.
Functionality is then assigned to hardware and the software components. Software
requirements are generated, documented, and in many cases modeled. The requirements
are then analyzed for accuracy, consistency, conflicts, level of detail, amount of

information, and adherence of overall system requirements. The deliverable from this

88

phase is the software requirements specifications, which are then used by the software
programmers to develop the software design. In the design phase the software
architecture is developed and functionality is assigned to the various software
components or modules. The documentation from the design phase is then used by the
programmers to translate the requirement specifications into code. The test phase
validates that the coded software meets defined requirements. When the software has
completed testing and has been approved, it is then released to its intended customers and
the operations phase begins. As maintenance activities are required, the model begins
anew.

The waterfall model is still popular in that it is easy to understand, it has well
defined deliverables at the end of each stage, and it emphasizes requirements analysis
(define before design, design before code). (Rakitin) The waterfall is a rigid model, but it
works well when requirements are well known, the technology is mature, and developers

are experienced.

AEGUIREMENTs
=\
~ REGURENENTS
— ™\
ANALYSIS
h- -:I-Gnm
DESIGN ‘ﬂ
‘-‘ CODING
—\
-
Y =

FIGURE 2. WATERFALL MODEL

The major disadvantage of the model is the assumption that once requirements are

defined that they will not change. As such the model does not reflect the true iterative
89

nature of development and requirements churn, therefore, it is rarely adhered to in actual
use. Another disadvantage is that testing is conducted too late in the process to prevent
problems. Despite its major disadvantages, the waterfall model is still widely used.

2. Spiral Model

Instead of the traditional document-driven or code-driven process models, the
spiral model was an evolving risk-driven model. (Boehm 1988) The spiral model is
broken into four quadrants: planning, risk analysis, development and assessment. The
spirals through the various quadrants represent increased costs. Each cycle of the spiral
begins with requirements engineering, analysis and selection of alternative methods of
implementation. The purpose of the system or software component is determined with
respect to functionality, quality attributes, and performance. Alternative methods are
then determined (COTS, reuse, different designs), and constraints are identified (cost,
schedule, interfaces, resources). The next step is to evaluate the alternatives in respect to
the requirements, constraints, and risks. Part of this step is risk mitigation by identifying
areas of uncertainty and collecting more information, or by developing prototypes,
simulations, or conducting benchmark studies. The next step depends upon the risks
identified. During the first spiral many of the risks involve requirements, so efforts are
made to improve and refine requirements. As the spirals expand outward, the risks
associated with the development effort increase, and detailed designs of the system are
developed. The last step in the spiral is planning for the next level of prototyping or
development of a more robust design. As requirements become more defined, and
program development risks dominate, the steps will start to follow an incremental version
of the waterfall model (requirements determination, design, code and test). (Boehm 1988)

The spiral model has a number of advantages over more traditional models. The
largest advantage is that it represents the real world iterative approach to software
development. It also incorporates the best of the waterfall model (stepwise approach) and
the rapid prototyping model. The model also demands a risk assessment (requirement as
well as technical risk) at each stage within the spiral. The risk mitigation focus of the
model as well as emphasis on prototypes, simulation, and benchmarking, if properly

applied should reduce risks before they become problematic. (Pressman) The spiral

90

model also has some disadvantages. The major disadvantage is that it requires
considerable risk assessment expertise. It is not a widely used model as it is difficult for
managers without a technical background to understand. It is also difficult to convince
customers that an evolutionary approach with multiple prototypes is cost effective,
controllable, and fast enough to meet market demands. Another disadvantage is that the
model is risk based, so if a major risk is missed, problems may result. (Rakitin) Although
performance and quality requirements can be addressed with risk analysis, the model
does not specifically address those issues, so it is incumbent upon the users or the
developers to include those areas in the risk assessments. (Schmietendorf) A final
critique is that it can be difficult to define verifiable milestones that indicate whether a

program is ready to proceed to the next layer of the spiral. (McConnell)

- Cumuistese Cost
=
Progrioss
Thrcargh

e wyem— Shizps
T -
-E:}I ! I'III'I--I'II I Evaksabe Alcsmntves:
Bpeclves, —— il i
Albsr nal heiss il T s . Ll

Consiraings

Risk Analyss
."(=l

[8 N
Commiment | |ty Prototype,,

Ot adianal

Prolotypa
I 'n,q:.l:,l[u-.l_
| 1 |

CanLlaminn |)

I . |
- .I|I _Mode:s | Bonchmarks |

Rirviray

Partiion |
Cancapl ol
Operation

Soltware
Rugts

Demeeldop, Veriy
M- Lol
Process Plans

Detailed
Dizs g

aoftvian:
Prodasct
Design

Dhmehop- Rerguirements

‘alidnticr
mer Plan| Validation

- F] i R I
o ' i I’
- It |_|r..|f.||\|;| Design Validation :
¥ and le :
i ! g and Venbeaton H
e Evaluate Process ; Plan |
e AL eTnaliwes, 4 |
£ —_— ntoagrntien
identify, Resobe ;° Dotormine _\—I 1 : I i grobon,
Process Risks i Procoss, ond Test

L]
I|'|[|h'-|r||'|| § At plonce :

P Ohjecives,
! Alernatives, Lokiom : st
Consirainks i

Dewelop, Werity
Plan oy 4

Next Ph Moad-Level Produa
o} X H 5

ook 7 005]

FIGURE 3. SPIRAL MODEL

91

3. Evolutionary Prototyping Model

There are a couple of models that are considered evolutionary prototype models.
These groups of models have similar characteristics. These models develop the system
concepts and requirements through the various iterations or evolutions of the model. The
models begin with requirements elicitation and analysis. The developers try to capture
the most stable and visible requirements. They design and code that portion of the
system as a prototype, test it for functionality and conformance to stated requirements,
and show it to the customer. After customer feedback and additional requirements
engineering, the developers begin another iteration of the development cycle, adding
additional functionality to the prototype. This process continues until the users determine
that the system is “good enough”, at which point it is released. (McConnell)

Figure 4 shown below, from Wiegers’ book on software requirements (Wiegers),
presents a model that incorporates three types of prototypes. Vertical prototypes are
designed to function like the actual system at a specific structural level. Vertical
prototypes act as a proof of concept to ensure interfaces function, algorithms perform to
expectations, or architectural approaches are sound.

| Gather user

| reguirements
||_|“|-|._. o
user |
hodln ne
reguirements DEgin next
increment
| 2 1 Construct | P ==l
Develop thnoweway e | Comstruct vertical |
——p| ovolutionary 1
horizontal prototype . prototype
l | prototype l)
Design user :'u'rv rify amd deliver CIL-~_=.||:11!1 software |

interface Increments architecture

Construct and |
werify product |

l

Darlivier product

FIGURE 4. EVOLUTIONARY PROTOTYPE

92

Horizontal prototypes are used primarily to demonstrate portions of the system to the
user. These types of prototypes show some functionality (e.g., graphic user interfaces,
screen layout) without the actual implementation. The evolutionary prototype differs
from the other prototype types in that it provides a solid architectural foundation for
building the software incrementally as the requirements become better defined over time.
(Wiegers)

In this model the developers can utilize several approaches to refine requirements.
Horizontal throwaway prototypes are being used to refine user interfaces, while parallel
efforts utilizing vertical prototypes test concepts. Both prototypes feed back into the
evolutionary prototype, which also goes through a number of iterations until the final
product is delivered.

The advantages of this model are that many of the processes occur in parallel, the
model has stepwise refinement and multiple iterations to reflect real world experience.
Some of the disadvantages to this type of model include determining when a project is
“good enough” to deliver to customers, documentation and configuration management is
a challenge, and it is difficult to keep the same stakeholders engaged in prototype
evaluations through multiple iterations.

4, Commonality Among Models

Most of the software process models have the same basic activities, although the
order of the activities, the iterations through the activities, and the deliverables associated
with the activities differ. The models all begin with an evaluation of the system to be
built. The project may be adding functionality/updating technology on an existing
system, or it may consist of building a new system. System requirements are then broken
into components and functionality is assigned to either the hardware or software. The
software requirements are derived from the system requirements.

Another group of activities can be grouped into requirements engineering
activities include defining stakeholder needs, business objectives, system functionality
and performance parameters, resources, and constraints. Prototypes are often used as part
of this activity to refine or capture user requirements. This activity also includes

requirements analysis to ensure the requirements are not in conflict, that they are

93

complete and quantifiable. The requirements are then gathered and incorporated into
specifications, which document the requirements.

An additional series of activities involve design. The requirements will specify
what they want the system to do in terms of system behavior and performance. The
designers will determine how the system will meet those requirements. The designers
start by identify objects of computation, their attributes and relationships, operations to
transform the objects, and constraints on system behavior. Then they divide the system
into components denoting logical subsystems. These components can then be evaluated
to determine if existing software already exists that can meet requirements (software
reuse, component-based engineering, object-oriented designing), or whether new
software will be needed. The architecture design is also conducted to define the
interconnection, and resource interfaces between subsystems, components, and modules.
Detailed component design then determines the means that specific modules will
transform inputs into outputs. (Scacchi)

Coding is the activity that transforms the design specifications into actual source
code. As the code is completed for each module, it is packaged into the overall system
software. As errors are discovered in either the module or interfaces between
components or modules debugging efforts are performed to correct the code.

Testing is another activity. In some models the testing validates the final
deliverable, while other models conduct testing to validate the deliverables at each stage
of the model. The goal of testing is to discover errors, validate design, and verify
conformance to user requirements. All models conduct some form of testing at the unit
level, module level, subsystem level, system level, or a combination of levels. In
addition to evaluating the code or design, testing is also used to verify and validate other
deliverables such as documentation.

The final activity is the post-production deployment of the system. This action
consists of documenting the system (user guides, installation instructions, configuration
documentation, system support information), installing the system in its host
environment, configuring access, tuning the application, and performing system backups.

This activity also includes training the end users, management, and system

94

administrators. The final activity is maintenance of the system, which includes repair of
the existing system, modification of the system, and rehosting of the system.

D. SLAs AND SOFTWARE PROCESS MODELS

Many of the software process standards are based on the assumption that
following a defined engineering process and having a quality management system, that
higher quality software can be consistently produced. (Gibson) This is not necessarily
the case. Despite claims that adherence to a specific process model improves software
quality, the data to support most models is anecdotal and biased towards reporting only
successful projects. (MacCormack)

Software models should act as guides. High-level models should be interpreted as
an expression of general intent. (Nutt) Strict adherence to the models will result in
problems as a model’s abstractions hides many of the problems and tasks that must be
accomplished at lower level design. Real world problems such as incomplete and
changing requirements, unplanned dependent activities, time constraints, and design
rework as a result of discovery can force organizations to deviate from planned processes.
It can also cause inconsistencies between high-level processes and those that are more
granular.

Software process models describe the sequence of activities necessary to produce
a software product, processes involved, tools necessary to perform those functions, and
exit criteria (deliverables) for moving from one activity to another. However, these
models are abstractions, and thus, do not capture some of the important variables that can
impact program success. For example, many of the models do not deal directly with
performance or non-functional requirements, and if they are addressed it is only
indirectly and without systemic background. (Schmietendorf) Few models, if any, focus
on representing organizational goals and process improvement. (Turk)

Although, there are some models that address software program management
activities in the process model, such as Abdel-Hamid and Madnick’s model, which
simulated the effects of staffing delays, schedule pressure, and unplanned work

(undiscovered errors) on a projects’ planned cost and schedule, and Boehm’s Spiral

95

Model which included risk analysis, no model incorporates a holistic view of software
development management. (Abdel-Hamid, Martin)

There are good software process assessment model such as CMM and PSP that
measure how well processes are defined and adhered to, but they do not specify which
processes are most appropriate, nor do they evaluate the quality with which the processes
are executed. The focus on these models is on process management and process control,
not on process quality or development quality. Critics have complained that approaches
such as 1ISO 9001 and CMM emphasize managerial tasks and ignore the more important
technical considerations.

Most of the software process models lack quality control and monitoring methods.
All process models have transition criteria for progressing from one phase, activity, or
module to another. The models typically have completion criteria for a current phase,
and entrance criteria for the next stage. (Boehm 1988) Due to the abstract nature of the
models and the recognition that the models will need to tailored, quantitative parameters
for criteria acceptance is not specified. As a result, additional tools are necessary to
compliment the software process models at the practical implementation level. SLAs are
one of those tools.

SLAs can be used with any process model in an attempt to incorporate process
control and interject quality and performance requirements into the completion and
entrance criteria for the various stages of a process model. In the requirements
engineering phase of the development process SLAs help to identify non-functional
quality and performance requirements that are usually not considered until later in the
development cycle. In the design phase, SLAs can be used for process control and to
ensure the deliverables meet stated quality requirements. SLASs can also be written to
monitor and evaluate a contractor’s compliance to agreed-upon processes, methods,
standards, tools, and procedures. SLAS can assist testing by identifying quantitative
quality requirements for the deliverables at each phase of the process model. In the post-
production phase SLAs can be used for process control and to identify the quality

requirements necessary to ensure the application is properly supported.

96

As was previously mentioned selecting the appropriate process model is one of
the most important activities in the project development planning effort. The selection of
the appropriate process model is based primarily on the project’s primary performance
objectives. SLASs assist the selection process by identifying performance and quality
objectives in addition to functional objectives. Non-functional requirements may well
require a different process model than if only the functional characteristics of the
software were considered.

The remainder of this dissertation will demonstrate in more detail how SLAs can
be utilized at the various phases of software development to establish performance and
quality requirements for deliverables as well as establishing monitoring actions to
measure process compliance and detect problems through all of the major development
steps. The dissertation will also demonstrate how SLAs can also be utilized to assign
quality parameters to many of the management processes and activities associated with

software development.

E. SUMMARY

This section was intended to illustrate the numerous approaches to developing
software. Although there is a lot of commonality, each model represents a unique
approach to development, including different processes, methods, and tools.
Additionally, the need to tailor the models makes strict comparisons of models even more
difficult. However, regardless of the development model selected, SLAs help to establish
quality control measures by defining quantifiable quality thresholds for the deliverables
expected at the various steps. SLASs also help to establish a process control program to

measure adherence to whatever process is selected.

97

THIS PAGE INTENTIONALLY LEFT BLANK

98

V. REQUIREMENTS ENGINEERING

The first step in the software-development process is the requirements
engineering process, which entails those activities necessary to determine a system’s
functions, capabilities, and behavior in order to satisfy the customer’s needs.
Requirements engineering is a process of discovery, refinement, modeling, specification,
and validation. (Pressman) Skilled requirement engineers, management and stakeholder
commitment, time, and proven processes are needed to deliver a good product.
Requirements engineering can be very difficult, but the level of effort dedicated to
requirements engineering will have a direct impact on software quality.

Requirements engineering provides the building blocks for all other efforts in the
software engineering process, so if quality is not addressed at the beginning of the
software engineering process, it is usually addressed at the end of the project in the form
of testing. Unfortunately, quality evaluations are usually implemented too late, and the
architecture that was already developed will dictate the solution space for addressing
problems that were discovered.

Unless the requirements engineering process is performed correctly, there will be
an expectation gap between what the developers though they were supposed to build, and
what the stakeholders really needed. (Wiegers) Errors made in the requirements stage
account for 40 to 60 percent of all defects found in a software project, yet organizations
still practice poor requirements engineering processes. (Weigers) This chapter will
discuss the requirements engineering process and demonstrate how SLAs not only
improves the requirements engineering process, but how they help to inject quality
requirements into the beginning of the development cycle.

A. SYSTEM REQUIREMENTS

Software requirements engineering begins with the overall system requirements,
as specified in the requirements engineering portion of system engineering. Before
software can be developed, the requirements for the system in which the software resides

needs to be defined at some level of abstraction. When developing a new system,

99

requirements engineering is used to determine the customer’s needs. The process starts
with the customer developing an initial problem statement. Users, program managers,
and system engineers need to determine how the system must behave to support the
overall objectives of the system. From that problem statement, the system engineer must
determine the product’s mission, functionality, performance levels, availability, design
and interfacing constraints, information needs, communication needs, and other system
specifications. System engineers then need to scope the system; identify the roles of
hardware, databases, and software; factor in user interaction; define processes and data
sources; identify constraints; and determine interfaces with other systems.

Requirements engineering consists of requirements elicitation, requirements
analysis and negotiation, requirements specifications, requirements validation, and
requirements management throughout the development process. (Pressman, Weigers)
One of the main objectives of system level requirements engineering is to determine
which components will be used to satisfy specific requirements. (Sawyer) Will a specific
requirement be satisfied through hardware, software, or a combination of both? When
system level requirements are defined, the software engineer will then go through similar
steps to convert system, user, and program requirements into a software design
specification that developers can use to start coding.

This chapter will discuss requirements in the context of software requirements;
however, SLASs can assist and play a role in system engineering as well. It is important to
keep in mind that software is but one portion of a greater system. The quality standards
that are determined through the systems engineering process will flow down to the
software requirements. Software quality must be considered in the context of the entire

system, not just the software.
B. REQUIREMENTS ELICITATION

Once the system requirements are understood, the requirements engineer can then

determine the software’s function, its interfaces, its behavior, constraints, data elements,

100

and relation to the overall system. The process for gathering that type of data is called
requirements elicitation. There are a number of methods for gathering data from users
and developers.

Requirements can be broken into four overlapping categories. Business
requirements represent the rationale for the system and its vision and scope. User
requirements represent the goals of the user and the tasks that a user must perform.
Functional requirements are the behavioral characteristics of the software. The last
category is non-functional requirements such as quality factors, security, performance
goals and constraints. (Heldman, Wiegers) The challenge is to capture all four categories
of requirements from as many perspectives as possible.

Requirements elicitation can be a challenging task. The software engineer tries to
develop precise, specific requirements from the stakeholder’s (users, program managers,
process owners) initial problem statement. In the beginning of the process, the
stakeholders may not know exactly what he or she needs or wants. It is not unusual for
stakeholders to make broad, vague statements, such as, the “system must be user
friendly.” It is also common that stakeholders present inconsistent requirements that are
driven by a specific individual’s wants, needs, or bias. Requirement elicitation involves
intensive interaction with stakeholders to drill down into the problem to determine what
the stakeholder wants the system to do. Once the requirements are identified, they can be
analyzed and checked for such things as internal consistency and consistency with respect
to policy and business rules.

This dissertation will use the term requirements engineer to describe the person
responsible for the requirements engineering process. In many cases this individual is a
software engineer and is part of the software-development effort, in other cases the
individual specializes in only requirements gathering. This dissertation assumes that the
requirements engineer is a contactor. This individual may or may not be involved in the
development of the SLAs. In many cases outside contractors may be necessary to
develop the SLASs to ensure objectivity, as most ESPs do not want SLAs. While
requirements engineering and SLA development may be handled separately, good

cooperation and information sharing is absolutely necessary to obtain maximum benefits.

101

The software-development organization may want membership in the SLA development
team to ensure knowledge sharing is occurring. It is important to keep in mind that the
quality requirements developed in the SLAs must be fed into the overall requirements
engineering process.

Requirements elicitation requires a great deal of interpersonal skills. It is not
always easy to get people to clearly articulate their ideas. Everyone has his or her own
societal beliefs, biases, values, parochial interests, agendas, educational backgrounds, and
perspectives. The requirements engineer needs to understand the beliefs of the
stakeholders (epistemology), what is observable in the world (phenomenology) and what
can be agreed upon as being objectively true (ontology). (Nuseibeh)

Given the different viewpoints, social and political issues, and the stakeholder’s
various perspectives, requirements elicitation utilizes a number of techniques to obtain
complete, and accurate requirements. Traditional requirements elicitation methods
involve meetings, interviews and group meetings with the various stakeholders to
determine requirements. Some techniques include the use of collaborative software,
group support systems and various scenarios or use cases. (Hickey) Others include
ethnomethodological approaches (Sommerville, 1993), socio-technical modeling,
stakeholder analysis methods, and artifact based elicitation. (Sutcliffe) In determining a
methodology to use in requirements elicitation, the requirements engineer needs to
understand an organization’s perception of society and plan the approach accordingly.
(Bickerton) All techniques have their advantages and disadvantages, and most software
engineers utilize a combination of approaches.

One of the first steps in the requirements elicitation process to identify all of the
stakeholders and external forces that provide inputs and or constraints to the system.
Obviously everyone cannot be consulted for their input, so the requirement engineer must
determine those stakeholders that can provide meaningful input. Then representatives
from each of the major stakeholder groups need to be determined so they can be
consulted, or included in the elicitation process.

Once stakeholders have been identified, the stakeholders need to determine the

overall project or system mission or goal. Everyone needs to understand the problem that

102

the system is attempting to solve, as well as the means in which the intended system will
solve that problem. The requirements engineer needs to gain consensus among all of the
stakeholders on the problem to be solved and the approach that will be used to resolve
that problem. “The primary measure of success of a software system is the degree to
which it meets the purpose for which it was intended.” (Nuseibeh) Requirements
elicitation is concerned with discovering that purpose, and determining the functional,
non-functional, and behavioral characteristics of a system that will meet that purpose.

The requirements that are generated as a result of interviews, market and
environmental analysis, and interoperability constraints should be evaluated against the
system’s mission or goal to ensure that the requirements support and add value to the
mission. Requirements that are ‘must haves’ need to be separated from those that are
‘nice to have.” The task of determining the scope of the project becomes easier when the
system and software engineers can tie the requirements back to the goals of the system.

Another important task during requirements elicitation is to document as much
information as possible about each requirement. The documentation should describe the
requirement, assign it with a unique identifier, list the stakeholders, classify the
requirement by type, group the requirements into a parent/child relationship if necessary,
and eventually assign a priority to the requirements.

As requirements are generated, the process of categorizing the requirements helps
in the analysis process. There are numerous ways of categorization, and the methodology
and detail used by the requirements engineer varies based on experience and the
elicitation process being used. In many of the techniques utilized, the requirements are
categorized according to whether the system requirement is part of the core system
business process, whether it provides primary support to the process, or whether it
provides secondary support. The core requirements describe the functional
processes/actions that the system must perform to meet the system’s mission. The
primary supporting requirements are usually derived from the higher-level core
requirements, from system constraints or interoperability requirements (other systems or
data). The secondary support generally lists the quality or non-functional requirements, or

requirements that are necessary to support the primary supporting requirements.

103

Requirements classification should also include whether the requirement is for the system
itself (product) or for the process (standards, constraints, analysis model, etc...). Good
requirements classification will help the requirements engineer assess the requirements to
ensure that they support the system’s goals.

Some common problems in requirements elicitation are managing the information
from multiple sources (representing distinct viewpoints), tracing requirements back to
their source and rationale, determining when the elicitation process has completed, and
realizing that requirements are not always there to be elicited (there may not be a
stakeholder). (Sommeville 1998, Sawyer)

SLAs assist requirements elicitation in four major areas. The development or
modification of template SLAs provide an excellent starting point for group meetings,
use cases based on those SLAs, or other techniques. The SLAs not only generate
meaningful discussion, but they focus that discussion on non-functional attributes that are
often overlooked. SLAs also tend to involve more management interaction in the
requirements engineering process due to the contractual implications associated with
SLAs. Template SLAs may address quality issues that the stakeholders did not consider.

This dissertation is making the assumption that the SLA development process is a
part of the overall software requirements elicitation process. The SLA development
effort can provide valuable feedback to the overall elicitation process. The team
approach to the SLA development tries to ensure that all stakeholders are identified and
that they are represented in the discussions. The SLA development/tailoring effort is
usually a facilitated meeting with the stakeholders. The meetings allow brainstorming,
debate, consensus, and can be a great way to identify conflicting requirements at the very
beginning of the elicitation process. Group elicitation techniques aim to improve
communication, foster stakeholder agreement and buy-in, while exploiting team
dynamics to generate a richer understanding of needs.

In addition to identifying stakeholder requirements and needs, the formulation of
SLAs helps the requirements engineer better understand the business domain,
organizational culture, and operational environment. The process of developing SLAS is

similar to the elicitation techniques of use cases and scenarios. Use cases describe the

104

interaction required between the users and the system necessary to meet the business
objectives of the system. Use cases help to determine what users need to accomplish, as
opposed to what they want the system to do or how it is expected to behave. The
objective of the use case approach is to describe all of the tasks that users will need to
perform with the system. (Weigers) It is important to keep in mind that use cases are
from the perspective of the end user only, and should be used in conjunction with other
requirement elicitation techniques to ensure all perspectives are accurately represented.

The process of developing the SLAs highlights and fosters discussion on the goals
of the system, the processes and tasks that the system must perform to meet those goals,
as well as identifying operational and organizational needs, policies, and constraints.
Discussions necessary to develop the SLAs will generate information about the
application domain, business and organization processes/culture, and the intended
operating environment that the system will be placed in. The discussions will help the
requirements engineer capture tacit knowledge, identify constraints, and justify how
quality factors support business needs.

SLAs focus everyone’s attention on quality factors at the beginning of the
development cycle. Once the quality factors are included in the requirements, they will
be incorporated into the design, and tracked throughout the product’s lifecycle. The
quality requirements will also be incorporated into the test plan at the beginning of
development. SLAs also support the software quality metrics methodology
recommended by IEEE. (IEEE Std. 1061-1998)

Quiality factors can be affected by functional and non-functional requirements
generated from sources other than the stakeholders. Requirements can also be generated
from the operating environment, the application domain, regulatory or policy constraints,
as well as interoperability constraints. Requirements can also be derived from the service
needs of other systems in the environment. The formulation of the SLAS help to make
some of these requirements explicit in that quality is affected by all of these
requirements.

Additionally, SLAs are concerned with how quality factors or performance

attributes will be measured. As such, requirements that cannot be measured,

105

requirements that do not provide value to the underlying business process, and
requirements that are not realistic will not be proposed or accepted. The goal of
requirements elicitation is to gather all of the requirements in a concise document with
good objective outcomes that can be measured. (Heldman)

SLAs also focus attention on those requirements that directly support the system’s
goals. SLAs are difficult to write and they require time and resources. As a result,
superfluous requirements and “gold plating” are less common. Additionally those
requirements that do not directly contribute to the goals of the system are generally
eliminated as they create additional work that cannot be justified to management.

In many organizations, managements involvement in and commitment to
requirements engineering is low. As a result, requirements are not normally related to
business visions and objectives. (Bubenko) SLAs help mitigate this problem to some
extent, because the format of the SLAS requires that the development group tie the
quality requirements to the business plan. The contractual penalties and incentives
involved with SLAs tend to capture more managerial attention than requirements
gathering alone. If an organization is not willing to devote the time and effort necessary
to tailor or develop SLAs, it is a good indicator to the requirements engineer that
management will probably not be devoting as much resource support as is desired.

Use of a template SLAs can be useful when management or market forces do not
allow sufficient time for requirements engineering. It is much easier to take the template
and modify the SLAs than it is to develop the SLAs from scratch. Instead of spending
time on determining a SLA format, writing the SLAs, and deciding how to measure a
quality factor, effort can be spend on determining which SLAs best support a particular
business process, and determining the specific quality thresholds to utilize. The template
SLAs are also helpful to illustrate to stakeholders and management what SLAs are, how
they are developed, how they are utilized, and how they support business needs.

The SLAs in appendix (A) are an example of how SLAs can assist. Appendix (A)
contains services and accompanying SLAs for hosting services. The SLAs are based on
industry standards, common practices, and thresholds that the author felt were essential to

provide support for the hosted applications. SLAs in appendix (A) are intended to be

106

used as a template. These template SLASs provide good building blocks to guide
discussion and focus thought on non-functional requirements and quality; and they are
intended to be modified to suit the system being developed. The fact that services and
SLAs are already defined greatly assists both users and program managers in establishing
their requirements with respect to hosting services. Instead of every program developing
their own services and SLA requirements from scratch, they can utilize the template,
which already represents good business practices. The SLAs in the template can be
continually updated to reflect better/best business practices and lessons learned from
other program’s contracting efforts. The SLAs in Appendix (A) are specific to hosting
services, but SLAs and the template concept can be applied to any stage of software
development or lifecycle management.

When the requirements engineer feel comfortable that requirements from the
representative stakeholder groups have been identified, the process of analyzing the
requirements begins. There is conflicting guidance as to whether the process of
validating requirements is part of the elicitation process or the analysis process, but in
this dissertation the process of determining which requirements support the system’s

goals will be in the analysis section.

C. REQUIREMENTS ANALYSIS

The goal of requirements analysis is to identify the goals of the system and
develop an acceptable set of requirements that will meet those needs. The requirements
should be necessary and sufficient; there should be nothing left out, and nothing
superfluous added. (Sawyer) The requirements engineer wants to ensure that the analysis
verifies the goals and scope of the system, identifies the requirements necessary to meet
the goals of the system, ensures there is sufficient documentation to evaluate the
requirement, resolves conflicting requirements, assesses risk, identifies constraints, and
assigns requirement functionality to the various software components.

This dissertation is also assuming that SLAs will be analyzed in the same manner
as the requirements captured in the elicitation process. The requirements engineer will

want to ensure the SLA thresholds support other functional requirements, that they are

107

technical and fiscally feasible, that the functional and non-functional requirements do not
conflict, and that the SLAs support the overall system goals and quality requirements.

It is important to note that the requirements analysis phase overlaps with the
beginning of the software-development phase. Software developers will start to become
more involved towards the latter stages of the requirements analysis when requirements
are allocated to software components, models and/or prototypes are developed, and the
software architecture development is started.

Before the analysis process starts, the team that will conduct the analysis of the
requirements should be selected. The team is generally composed of the requirements
engineer, designer representatives, representatives from the stakeholders, and in some
cases system engineering representatives will want to be on the team to ensure better
integration between hardware and software. It is important that the users participate in
the analysis process, as this will influence user acceptance and help to establish user
expectations.

One of their first tasks of the analysis process is to review the documentation
gathered on the requirements collected in the elicitation phase. Requirements should be
as descriptive as possible to eliminate ambiguity and allow those analyzing the
requirements the opportunity to assess the requirements in terms of support to the
underlying business process, whether the requirement is excessive, or not sufficient
enough to meet its goals, whether it is technically feasible, and how it will be verified.

If additional information is needed, the stakeholders will be asked to comment on
the missing information. The requirements engineering process is not a linear-sequential
model, various parts of the process acts concurrently, and often feedback or additional
information will be needed from a prior phase.

Once a baseline level of information is collected on each requirement, the
requirements engineer can start the process of analyzing the requirements. The
requirements engineer needs to understand the domain environment, mission needs,
underlying business processes, and the organizational culture in order to analyze the
requirements. Once the requisite information is obtained, the requirements engineer must

evaluate the requirements in the context of the stakeholder needs, business needs, and

108

environmental conditions in order to determine the requirement’s implications, conflicts,
interaction, scope, and feasibility. Part of the assessment is to ensure that the
requirements either directly or indirectly support the system’s goals. The requirements
are also evaluated for costs, risks, organizational acceptance, and whether they can be
verified. Requirements analysis must not only address functionality, it must also take
into account non-functional attributes such as quality factors, as well as programmatic
constraints (budget and schedule).

It is not uncommon for stakeholders to have conflicting requirements, differing
solutions to the problem being solved, or to demand differing levels of quality. The
requirements engineer is responsible for negotiating a resolution these conflicts. It is
important that the solution be worked with the various stakeholders so as not to alienate
one party for the sake of another. This is not an easy task as there are multiple political
and social agendas at work. An important step in the requirements analysis process is to
document the priority of the requirements. This is essential in order to analyze the
priorities against the budget, and it may help alleviate some of the conflicts, or at least
identify them up front. In some cases, the primary customers (those in charge of the most
business critical processes) will have to make the final decision. In other cases, if a
consensus cannot be reached, it will be necessary to have management dictate a solution
in decisions that affect multiple stakeholders. Boehm’s win-win model (In) was
developed in an effort to resolve this type of requirement conflict.

The requirements engineer also needs to perform a risk assessment of the
requirements in context of defined constraints on the system and development effort. The
budget and time constraints may have a dramatic impact on the system development.
Additionally, environmental, technical, interface, and implementation considerations also
affect the development effort. Requirements also need to be evaluated against the project
timetable to determine if certain requirements with new or complex technology will
present a risk to the project schedule.

Another step in the requirements analysis process is to determine the scope of the
system and how it interacts with its organizational and operational environment. This is

best shown through the use of conceptual models. There are numerous models that can

109

be used to model the problem and proposed solution set. These models include OOA,
formal models, data and control flows, state models, event traces, state transition
diagrams, entity-relationship diagrams and user interactions. (Sawyer) There is no best
type of model as the use of a particular type of model depends upon the skill set of the
software engineering and design team, the type of problem to be solved, availability of
certain tools, interface requirements, and user/customer input.

Once the requirements have been analyzed and accepted by the stakeholders, the
process of requirements allocation, or assigning/partitioning the requirements to the
various subsystems, software components and sub-components can begin. This process is
part of the architectural design. The functionality assigned to the components and their
interaction ultimately determines the extent to which the system will exhibit the desired
properties. (Sawyer)

It is important to note that many of the non-functional quality attributes can only
be satisfied by more than one component. The various components of the system must
act together or interoperate with other components to achieve the specified quality
requirements. Two examples are reliability, which depends upon the mean time to failure
for each of the components involved in a particular function, and built in redundancy.
Another is response time, which depends upon the speeds at which the servers,
application, firewalls, and supporting LAN/BAN/WAN operates.

Once requirements have been allocated to components it is often necessary to
conduct further analysis to start the process of translating the high level requirements into
technical specifications that the programmers can use to code. Details of the application
domain, interfaces, protocols, types of data to be used, legacy components, and additional
technical requirements will be derived from each system requirement. It is often
necessary to begin another round of requirements analysis as new questions are raised.

Some of the issues associated with capacity management should be addressed in
the requirements analysis portion of software design. Issues as simple as the anticipated

number of users can have a large effect on resource requirements. Servers will have

110

excess capacity if the estimated users are too small. On the other hand if the users are
underestimated, the server and application may not be capable of handling that amount of
concurrent users.

The process of developing SLAs helps the requirements engineer in the analysis
phase as well. SLAs assist in the collection of documentation, risk analysis, and conflict
resolution.

A dynamic and rapidly changing business environment has forced end-users to
demand more and better services from IT service providers. Businesses are demanding
faster speed, more flexible systems, and near real-time computing. SLAS are an essential
part of measuring and making explicit those needs. Part of requirements analysis is
determining both functional needs as well as user expectations.

SLAs help the analysis process by ensuring that the quality factors and
requirements are quantifiable and verifiable. The process of generating the SLAs focuses
the effort on determining quantifiable attributes of the quality factors being considered.

In some cases proxy attributes that are quantifiable will have to be used. The SLA
process specifies the metrics that will be used to verify if the requirement is satisfied, the
method of measurement, and the acceptable threshold value.

Requirements must be verifiable; otherwise they are just wishes that can consume
and inordinate amount of time and resources. In order to verify a requirement,
quantifiable attributes must be assigned to the requirement. Quality attributes can be
difficult to express in quantifiable terms, however, this is a necessity to determine if the
desired quality attribute was ever attained, or can be attained.

SLAs assist with the determination of technical feasibility and risk assessment by
forcing the stakeholders to quantify requirements and then determine how they will be
measured. The specified thresholds also assist in determining technical feasibility.
During the SLA development, each requirement should be justified by a business case,
which defines the benefits that the requirement provides to the overall business plan. The
quantifiable requirements allow the developers and designers the opportunity to assess
whether the system can be designed to meet those requirements given schedule and fiscal

constraints.

111

SLAs also help in assessing the risks associated with the requirements included in
the SLAs. The software engineer and developers can assess the various thresholds
specified in the SLAs and determine whether they are technically feasible with respect to
other requirements, proposed architectures, external forces outside of the system, whether
the organization has end-to-end control, whether the thresholds are realistic, and to what
extent the threshold levels indicated in the SLAs will support the system’s goals.

In some cases SLA development will address and solve some of problems
associated with conflicting requirements before the requirements engineer has to
intercede. SLAS should always be tied back to the business process that the system is
supporting. A business case should be made for each SLA, and a prioritization of the
SLAs should occur during the development process. The SLA development process
should begin by discussing and agreeing on the system’s goals, goal hierarchies and
priorities, and project scope. Requirements supporting a particular stakeholder’s agenda
(social, political, or organizational) will not be supported unless that stakeholder can
make the case that the requirement supports the system’s goals and is worth the
investment (SLAs will drive up the cost of the contract as it imposes additional risk on
the developer).

The group effort to develop the SLAs also helps stakeholders understand other
stakeholder’s perceptions, politics, and desires. A group decision forces everyone to
justify their requirements in terms all other stakeholders understand, disputes can then be

based more on logic than emotion.

D. REQUIREMENTS SPECIFICATION

Requirements specification is the process of documenting the requirements. This
generally takes the form of three documents. The first document defines the system
vision and scope. This document is known by many names such as user requirements
document, concept of operations, or scope and vision document, but it typically includes

four parts. (Wiegers, Sawyers)

112

1. Vision and Scope Document

The first part of the vision and scope document outlines the business rationale for
the new system. This section lists the reasons the system is being developed and its
intended benefits. The intended benefits or business objectives of the system need to be
defined in quantifiable terms so the success of the system can be measured. This section
provides information on the customer base, target environment, and the risks associated
with the project.

The second part is the vision statement. This section details the long-term
purpose for the system or product. It describes why the system is needed, its intended
customers, and how it is different/better than other systems already in the market place.
This section also details the major functionality or features of the system as well as
describing dependencies and constraints.

The third section describes the scope of the project. This includes a summary of
the features that will be included as well as those that will not be included. This section
is intended to focus the development effort and establish user expectations. Without a
good scope document, there is a good chance of requirements creep. This document will
also discuss release strategies. In some cases certain functionality is needed before
others, so a base release with the main functionality may be planned, followed by
upgrades introducing additional functionality.

The last section describes management issues associated with the project. This
section lists the stakeholders, system functionality that concerns them, how they will
benefit from the system, and their concerns. Project priorities are also outlined in terms
of cost, schedule, features, and quality. Additionally this section describes the operating
environment and the non-functional quality factors that will be necessary to achieve the
business objectives. The document may also include a conceptual model that further
illustrates the boundaries of the system, interfaces, data flows, and control.

The scope and vision document outlines the business case for the system allowing
the requirements engineer to tie requirements back to the original business case. This is
an important part of requirements tracing. As requirements change it is important to

constantly evaluate them against the original business case to ensure that the

113

requirements support the vision and scope. If they do not, it may be necessary to update
the vision and scope or disregard the requirement modification request.

2. Business Rules

The next document describes the business rules that apply to the system. The
business rules incorporate internal business policies and procedures, regulations,
formulas or algorithms that will be incorporated/impact the system, and external
forces/market conditions that will influence or constrain the system. Generally each
business rule has a unique identifier, a description, taxonomy or classification, and the
reference.

3. Software Requirements Specification

The third document is the software requirements specification (SRS). The SRS
states the functional and non-functional requirements of the system. This establishes the
contractual basis of the agreement between the customer and the developer of the system.
Since the SRS provides the foundation for project management, requirements
verification, test and evaluation, design, cost estimation, and development it is essential
that it describe as accurately as possible the behavior of the system under expected
conditions. (Weigers)

There are several recommended standards for developing a SRS, including IEEE
p123/D3 guide, IEEE std. 1233, IEEE std. 830-1998, ISO/IEC 12119-1994 and IEEE std.
1362-1998. (Sawyer). IEEE std. 830-1998 suggests a template composed of six sections
and three appendixes. The first section discusses the purpose and scope of the system
(readers can be referred to the vision and scope document if applicable), document
conventions, and references. The next section is a high-level overview of the system, its
intended operating environment, constraints, assumptions, and dependencies. The third
section lists in detail the system features, the priorities attached to those features, and all
requirements that are associated with that feature. The fourth section lists all external
interface requirements, including user interfaces. The fifth section lists all non-functional

requirements such as performance criteria, quality factors, safety, and security. The sixth

114

section lists requirements that were not listed elsewhere. The appendixes of the SRS
included a glossary, any of the analysis models used, and a list of all outstanding issues.
(Weigers)

SLAs can assist in the formulation of the specifications in three important areas. If
a format similar to that used in appendix (A) is utilized, the sections discussing why the
measurements are necessary, scope of the measurements, assumptions, and
responsibilities, provides good information to incorporate into the specifications. During
formulation of the SLAs, the format of the SLAs will drive communication and
discussion among the stakeholders with respect to the scope of the system, ensuring that
the requirements levied are necessary and support the business objective of the system,
and that they are quantifiable and measurable.

The SLAs must be written to withstand legal scrutiny. The SLAs must be
verifiable, concise, unambiguous, and understandable. The requirements that are
included in the SRS should contain those same attributes. The examples included in a
template SLA provide a good starting point that stakeholders can use for generating other
requirements. If new SLASs need to be generated, the team will quickly discover the
difficulty of writing clear requirements that can withstand the rigor of analysis by other
team members, project managers, legal staff, developers, and/or the contractor. Either
way, the lessons learned during the SLA development effort can be applied to the other
requirements outlined in the SRS.

The SLAs can be written to ensure quality in the specification documents
themselves. SLAs can specify quality factors such as adherence to specified formats, text
structure, requirements labeling and tracing, completeness of the requirements (not all
requirements must have all the needed information, but those that do not should be
annotated, and tracked for resolution), and a consistent level of detail in the requirements.

Davis has outline 24 quality factors that he feels are essential in a SRS. (Davis)

E. REQUIREMENTS VALIDATION
Once the specifications are written they need to be formally reviewed to ensure

they are accurately represent stakeholder’s requirements, and that the specifications

115

reflect the desired quality. The intent of the verification is to find any errors before they
are incorporated into the design as the costs, as the cost to correct defects once
incorporated into design is approximately 100 times more that it costs to correct them in
the requirement engineering phase. (Cross) Poor requirements engineering will result in
poor product quality, cost and schedule overruns, and poor customer satisfaction.

The validation is generally a formal inspection consisting of a team comprised of
the software engineer’s staff, stakeholder representatives, and developers. The group is
looking for errors, omissions, assumptions, as well as implicit constraints and
assumptions. Stringent quality factors may generate implicit validation requirements.
For example, the requirement for an exceptionally high degree of reliability or safety may
implicitly drive the need for formal specifications and analysis to determine if the quality
requirements can be met. (Sawyer)

The verification of the quality of the requirements documentation is an essential
part of the requirements validation process. The documentation should be validated to
ensure that it conforms to established standards, is understandable, modifiable, consistent,
traceable and complete. Validation also ensures that proper documentation or knowledge
management is applied to the models. A documented history of the rationale, reasons,
and trade-off discussions is extremely valuable as the project progresses and tacit
knowledge is lost.

The requirement documents are also checked to ensure they contain the requisite
amount of information necessary to validate requirement feasibility and necessity. The
documents are reviewed to ensure that the requirements do not contain any significant
conflicts, the specifications contain enough information to start design (concise with no
ambiguity), the requirements are within the project scope, the software requirements
support/do not conflict with system requirements, and that business rules were correctly
applied.

Requirements validation also refers to the models that are used in the analysis
phase of the requirements engineering process. Any modeling technique biases the
perceptions or views of the stakeholder as they offer only a limited number of primitive

concepts for modeling its intended subject matter. (Mylopoulous) Validation, through

116

formal walkthroughs or inspections will help to identify errors, emissions, or identify
assumptions. Validation can also help to ensure that the modeling used is sufficiently
robust to capture the problem and proposed solution.

The models also need to be validated to determine whether the analysis models
accurately reflect stakeholder’s requirements. One problem encountered when gathering
requirements is the fact that a requirement engineer’s perception and description of
problems can be influenced by the tools and methods that they utilize to capture
requirements. If stakeholders do not agree with that perception or frame of reference,
then they are not likely to agree on the representation of the requirements.

The approach utilized to capture requirements can be broken into two
philosophies. The first is a positivist approach where the requirements are founded and
verified by empirical observation. This approach has been criticized because it tends to
force stakeholders to model reality into neat empirical terms, where others argue that
reality is not that simple. The other approach is an ethnomethodological approach that
stresses value-free observations by not imposing modeling constructs. However, the
synthesis of the information gathered must still be presented and communicated in some
form. It is possible for the requirements engineer to taint the requirements with their own
biases and social values. (Nuseibeh) The validation process checks the requirements to
ensure the stakeholders, developers and management agree on the frame of reference and
the resultant models.

Prototyping can also be used to validate both the models, and requirements.
Prototypes are advantageous in that they can quickly demonstrate the requirement
engineer’s assumptions and allow stakeholders to provide feedback. However,
prototypes can distract users from the core functionality by shifting attention to cosmetic
user interface issues and any problems that may arise with the prototype. (Sawyer)

The validation process is also another check to ensure that requirements do not
conflict. The conflict can be caused by numerous reasons, including problems describing
the requirements in the specifications, new knowledge, problems missed in the analysis
phase, new requirements as a result of prototypes or changing environments, missing

requirements, and any aforementioned bias interjected during the requirements

117

engineering process. Disputes are not unusual given the diverse backgrounds, cultural
differences, inter-organizational politics, and different approaches to solving the
perceived problem. Disputes can be resolved through goal hierarchies, prioritizing
requirements, utilizing Boehm’s win-win model (In), and negotiating compromises.

SLAs can also be used to specify quality factors for the specifications and the
models. SLAs can specify specific procedures and processes to utilize and it can specify
the accuracy of the documentation. A designer or developer of the system can then know
the level of quality that is contained in the specifications and models. Otherwise they
would have to evaluate the models to ensure accurate notions such as events, states, cause
and effect relationships, compatibility, and mutual exclusion.

A common problem found in software projects is that they did not quantify the
benefits or risks of different designs and requirements. In many cases intangible benefits
are not mentioned. (Bubenko) The SLAs are quantifiable which allows the requirements
to be measured to determine how well a design solution satisfies the requirement. One of
the most important traits of a requirement is that it is verifiable. If there is no way to
determine whether the requirement has been met, it should not be included in the
specifications. Part of the requirements verification effort is to determine whether a
requirement as it is specified in the SRS can be verified, so an acceptance test can be
developed to determine whether the system meets the requirement.

Template SLAs are also helpful in that many of the methods used to measure the
non-functional or quality aspects of a system are already defined, and used in other
projects. Verification of the SLAs is generally quicker that other requirements in that
template SLAs have already withstood the scrutiny of verification. However, that does
not mean that SLAs should not be verified, they must be reviewed in relation to the

systems they support.

F. REQUIREMENTS MANAGEMENT
Requirements management is the process of documenting new requirements and
ensuring that any changes to the system that affect the requirements or their supporting

information are accurately documented. System and software requirements are not static;

118

they are constantly evolving as users gain more knowledge by analyzing models or
prototypes, as designers discover omissions or need additional clarification, and as
business environments are changed. As change occurs, it is important that the
documentation on any requirements affected by that change be updated to reflect any new
information. Requirements management occurs throughout a product’s lifecycle.

Requirements management can be broken into three separate but related tasks.
The first task is updating the requirement’s documentation to reflect change. The second
task is requirement’s tracing, which is concerned with identifying sources and rational for
a requirement, as well as identifying where that requirement is reflected in the
architecture. The third function is an impact analysis of the proposed change.

Requirements engineers have to be very organized to ensure that all of the
information on a requirement is captured accurately. The quality of the documentation is
essential to the development effort as well as the life-cycle support of the system. Every
requirement needs to have a unique identifier, a classification, dependencies on other
requirements should be noted, hierarchical relationships and the requirement’s rationale
(why the requirement is justified and how it supports the business process) needs to be
recorded, as well as the source of the requirements and the software component(s) it was
assigned to.

Since change is inevitable it is necessary to have a management system in place to
ensure that when the system or requirements are changed, that there is a mechanism in
place to capture that information. The requirements engineer also needs to ensure that
when change does occur that the documentation is updated. It is important to note that
the documentation does not just include the specification in the SRS, it also includes all
ancillary information that is used to interpret and manage that requirement. (Sawyer) In
addition any context models that were used should also be updated to reflect that change.

In many cases system characteristics and user perceptions of need change faster
than the requirements engineering process. (Bubenko) Changes in the design stage still
need to be documented by updating the original specifications. When updating the
documentation, it is extremely important to utilize version control of the individual

requirements, as well as the vision and mission documents, SRS, and context models.

119

(Weigers) Automated tools are making the process of updating documents and version
control easier, but multiple data formats (including conceptual models), distributed
working environments, and extremely large and complex systems still limit the
effectiveness of these tools. (Bubenko)

Requirements tracing is concerned with establishing links with the requisition
(request for the requirement), its source, its specification documentation, other
requisitions that would be affected by any change, higher-level system requisitions, and
the business plan/process it supports. In addition the requirements should also be
traceable to the design element that satisfies it.

It is very important that a requirement be traceable back to its source and/or
rationale (business objectives, business rules, system requirements, dependencies, etc...).
If there are no links between the business plan and the specifications, then it becomes
very difficult to determine the impact that a change in the business plan/process will have
on the system. It is also difficult to determine the impact that a requirement change will
have on business processes. In addition it makes risk management difficult when
changes in the business environment cannot be evaluated in terms of which requisitions
are affected.

The third function of requirements management is performing impact studies on
the effect of any proposed change. Changing requirements need to be assessed to
determine the affect of the change on the system’s cost, schedule, and performance. As
requirements are changed a cascading effect can occur in which dependent requirements
are affected, conflicts can be introduced, the architecture can be affected, and
performance and quality requirements can be impacted. When the impact analysis is
completed the software engineer, program managers, and stakeholders will have to
determine if the change is necessary.

Another consideration when conducting impact studies of proposed changes is
user expectation. Management and stakeholders need to understand the effect that
requirements will have on the costs and schedule associated with the program. In some
cases change is needed and should be embraced, but in other cases the change is a result

of requirements creep. Impact studies may also inform stakeholders and management of

120

proposed changes that they may not have been aware of. Stakeholders spend a great deal
of effort and time during the elicitation and analysis of requirements, and they will not be
pleased if the system is modified without them being informed.

Requirements management is often a neglected part of the requirements
engineering process. It can be very time consuming, it is difficult to manage, it is not
glamorous, and it is often neglected in the rush to market a product. Additionally,
programmers are notoriously poor at documenting anything.

SLAs can be are extremely useful in the area of requirements management
because it institutionalizes a change management review board that is responsible for
impact analysis and change approval. SLASs are contractual documents that generally
have incentives or penalties associated with levels of performance or quality goals. Any
changes to the system that affects those specified quality or performance goals must be
negotiated as part of the contract. For example the new requirement for a content
screening program on the e-mail system may affect performance thresholds. This new
requirement may necessitate a renegotiation of the SLA.

As stated earlier, SLAs can be written to apply to the quality of the requirements
documentation. Audits of the system and the corresponding requirements documents will
determine compliance with threshold levels (probably a percentage such as 98%
accuracy).

Requirements management continues throughout the system’s lifecycle. A
common problem with documentation is that once the system is fielded, it is turned over
to another team to manage in its operational phase. The more accurate the
documentation, the easier the transition to the new team, and the system will be easier to
maintain. Unfortunately, there is generally little incentive to keep the documentation up

to date, or accurate. This is where SLAs enforce some rigger.

G. SUMMARY
The central theme of this dissertation is that SLAs can help program managers
and software engineers produce higher quality software. One of the ways that SLASs help

is that they focus attention on the non-functional requirements of a system. Specifically

121

the quality factors (including performance requirements) that users, program managers,
and software engineers feel are essential in a system to support the underlying business
process. They also help make explicit many of the quality factors that users may
implicitly assume. SLAs also specify the quality metrics by which the software quality
factors are measured. Measuring and monitoring quality allows an organization to
determine whether quality requirement have been met. Measurements also support early
detection and resolution of quality problems.

The process of developing SLAs improves the requirements engineering process
by involving all stakeholders in discussions that result in a common understanding of the
business factors that drive the need for certain quality factors. Ends users and program
managers collaborate to determine quality factors and performance characteristics as well
as functional requirements. Those quality factors are taken into consideration when the
system is designed, and that design is verified. In addition to specifying quality
characteristics SLASs can be used to specify and enforce standards and processes that also
lead to quality software development. The quality thresholds incorporated into the SLAS
will also be represented in the testing scenarios to ensure compliancy. SLAS not only
assist in the requirements engineering, but they are one of the first steps towards
establishing a quality control process.

122

VI. DESIGN

The intent of this chapter is to demonstrate how SLAs can influence software
design to achieve a higher quality product. The section will discuss how specific quality
factors can drive design, it will discuss quality metrics that can be incorporated into SLAS
that are specific to the design phase, and it will discuss how SLAs can help in the
development of the test plan. This chapter will not however provide an in depth
discussion on how software is developed, as that is outside of the scope of this
dissertation.

SLAs can be used to specify quality factors specifically related to the design
process, but SLAs real contribution to generating quality software is in the fact that the
quality factors that are addressed in the SLAs drive the design. When customer
requirements have been collected and specified, design is the process that translates those
requirements into a blueprint that programmers can use to build the product. The design
can then be assessed for quality, as it is a representation of the final product. (Pressman)
The design model can be reviewed to ensure that the quality factors were adequately
addressed. In this way quality is designed in the beginning phases of the lifecycle.
Waiting until the testing phase of development to determine whether quality factors have
been met is too late. It is much easier and less expensive to achieve specified quality
factors if they are addressed at the beginning of the application lifecycle. Discovering
problems during testing requires significant time in evaluating the symptoms and
working backwards to discover a root cause. (Cross)

The quality factors identified in the requirement specifications enables the
application developers to employ the pertinent technologies and products, in order to
achieve a design that meets the desired level of quality. (ITIL) “From a technical
perspective, quality attributes drive significant architectural and design decisions.”
(Weigers) If developers know which of the characteristics are most critical to project
success they can select the architecture, design, and programming approaches that best

achieve the specified quality goals.

123

The quality factors specified in the SLAs have penalties or incentives associated
with them, as a result, the development team will focus more attention on ensuring those
attributes are incorporated into the design. Program managers and developers tend to
concentrate more on functional requirements than non-functional requirements. This is
especially true when the program is experiencing significant schedule and/or monetary
pressure. The SLAs help to ensure non-functional requirements are not overlooked in the

design process.

A. ARCHITECTURE ANALYSIS

Where the requirements define what a system is supposed to do, the design
represents how the system will do it. The architecture of a software system models or
defines the system in terms of the structure, behavior, organization of computational
components, and interactions among those components. (Shaw, Pressman, Bass)
Architecture also shows the correspondence between the system requirements and the
elements of the constructed system, thus providing some rationale for the design decision.

Software architecture is a compilation of design models representing the various
aspects of the software system at different levels of abstraction. Although there can be
numerous levels of abstraction, depending upon how far the designers want to decompose
the system, there are three general levels of abstraction. The first level represents
topographical arrangement of components (a unit of computation or data storage) and
connectors (an entity that facilitates communication). (Dias) This level maps system
requirements with components and describes the interactions among the components.

The next level involves design issues involving algorithms, data structures, primitive
operators, primitive language operators, and threads of control. The bottom level consists
of design issues involving memory maps, call stacks, and register allocations. (Shaw)

The architecture also represents multiple views or perspectives of the system
depending upon the information to be modeled. These different architectural structures
or models are interrelated and provide a holistic view of the system. Some common
structures are module structure, logical structures, process structures, physical structures,

uses structures, call structures, data flows, control flows and class structures. (Bass)

124

These structures can also be broken into architectural design, data design, interface
design, and component design. (Pressman) They can also be broken into functional areas
such as presentation services, information services, communications, interface design,
transaction services, environmental services, and base services. (Goodyear).

The different types of structures guide design with their own sets of components,
notations, analysis techniques, and issues. In addition each structure may have multiple
levels of abstraction, which also have components, rules of composition, and rules of
behavior. Each structure and level of abstraction provides a unique perspective and can
be considered a separate software blueprint. (Bass) The structures are not necessarily
independent, as they will often overlap. As such, each structure and the interface with
other structures need to be evaluated in terms of the quality factors defined in the SLAs.

As more business essential processes and functionality rely on IT intensive
systems, it is not realistic to expect that organizations will take a vendor’s word that the
system under development will meet all of their quality requirements. The organization
should be able to independently evaluate the vendor’s architectural decisions and design
as early in the software-development cycle as possible to ensure their requirements are
being addressed. (Clements)

Software architecture analysis is used to predict the quality of a product before it
has been built. The analysis provides information that can be used for architectural trade-
offs, risk analysis, and to ensure quality factors have been addressed. Architectural
analysis cannot be utilized to obtain qualitative measures (precise estimates) of the
effectiveness of a particular design on a certain quality attribute. (Dobrica) As a result,
architecture analysis provides support for SLAs by ensuring the design addresses quality
requirements, but caution should be used when utilizing analysis results as threshold
measurements. Although there are a number of methods to analyze architectures (Hulse,
Dobrica, Garlan, Clements, Land, Bass), further work is needed before these models can
produce qualitative or quantitative quality measurements needed for incorporation into
SLAs. (Dobrica) They can however provide an estimate of how well the design will

satisfy a particular quality factor.

125

SLAs also help to ensure that once the software architecture has been analyzed
and accepted the architecture is not modified during the code phase. Although an explicit
software architecture is one of the most important software engineering artifacts to create,
analyze, and maintain, it is difficult for developers to remain faithful to an intended
architecture as design and implementation proceed. (Cross) SLA penalties help to focus
management attention on satisfying mission essential quality factors.

B. SOFTWARE QUALITY FACTORS EFFECT ON DESIGN

This section is intended to illustrate how quality factors can influence design. The
designer must choose an architecture that not only meets functional requirements, but it
must also meet quality requirements. In making that decision the designer needs to
ensure requirements are met, risk are evaluated, trade-offs studies are performed,
alternative designs are evaluated, and potential quality conflicts are resolved. This
section will briefly discuss some of the design considerations in meeting three quality
requirements, but it is not intended to be a detailed study on design approaches and their
effect on quality.

1. Maintainability

System maintainability is important to the availability of the system and lifecycle
support. Although the costs of developing a system increase as maintainability is
improved, the end result is improved product performance and lower life-cycle costs.
(Markeset) Although it is difficult to quantify an overall measurement of system
maintainability, proxy attributes and scenario-based measures can be utilized in SLAs.
The attributes generally assess commonly accepted software engineering practices and
processes. Specific scenario based measures, such as the time it takes to recover the
system from a power failure, can also be utilized.

There are numerous design considerations that will affect maintainability. Many
of these properties can be measured utilizing automated tools once the code is
constructed, but the designer must consider these properties before programmers begin to

code. The software needs to be designed with maintenance in mind. There are a couple

126

of key design considerations that will help a design meet maintainability quality
requirements, including modularity, testability, documentation, and complexity.

Modularity is the decomposition of the system into specific components that
satisfy assigned requirements. These components are developed as part of the software
architecture process. Modules should be highly cohesive (perform only one task) with
low coupling (simple interfaces between modules). Other module characteristics that
must be considered when designing for maintainability are intra-module control
complexity, intra-module data complexity, and inter-module connectivity. Intra-module
control complexity is concerned with the flow of decisions within a module. (Callis) This
quality factor can be measured by the number of decision statements and nesting levels
within statements (function calls shall not be nested more than 2 levels deep (Weigers)).
(Callis) Intra-module data complexity measures the average number of live variables per
statement, the span of variables, and the number of operators and operands in the average
statement. (Callis) Inter-module connectivity measures information flow, including the
number of information flows into a module, the number of data structures from which
information is received, the amount of data produced from a module, the number of data
structures that use that data, and the complexity of the information flow (Kitchenham)

Maintainable software is also designed for testability. Testability and
maintainability have many of the same proxy attributes, as many of the characteristics
that would make a program testable would also make it more maintainable. Some of
these characteristics include operability, observability, controllability, decomposability,
simplicity, stability, and understandability. (Pressman) Some of the design
considerations for meeting these proxy attributes would include adopting common coding
standards, managing change volatility, ensuring field verification so incorrect input and
output are easily identifiable, functional separation, internal instrumentation, and error
handling.

As discussed previously, documentation is essential to good maintainability.
Documentation needs to be well organized, accurate, accessible, and it must contain the
appropriate level of detail necessary. Requirement changes and modification during

design is normal. If those changes are not documented properly maintainability suffers.

127

Trouble shooting becomes more difficult if requirements are not mapped or recorded
properly, models and the architecture were not updated, new interfaces are not recorded,
and design rationale is not explained.

The development team needs to have established procedures to ensure that once a
change has been approved that all necessary documentation has been updated. An audit
of the processes used to implement an approved change can indicate whether the new
requirement was properly documented, requirements models were updated, whether the
change was properly approved and recorded, whether the change was communicated to
others, and whether the architecture was updated. SLASs can help ensure documentation is
accurate.

Programmers must also document their code, so it can be easily audited. The
comment lines in the code capture the programmer’s tacit knowledge, and allows others
to understand the programmer’s decision making rationale. Once coding starts, another
method to improve maintainability is to specify in the SLA an acceptable ratio of
comment lines.

Complexity is another measure of maintainability. The less complex a program,
the easier it is to maintain. There are numerous metrics that can be used to measure
complexity. Two common models are McCabe’s cyclomatic complexity and Halstead’s
theory of software science. Both models can be utilized throughout the development
process to ensure that the system in not overly complex. Specific design considerations
to reduce complexity include reducing lines of code and keeping operators and
independent paths as small as possible.

There are many other design considerations and models that impact and measure
maintainability (Pearse, Basili). Although maintainability of a system is difficult to
measure holistically, specific metrics can be utilized in SLAs to influence design
considerations. The SLA development team in coordination with the developers can
select the metrics or models that will be used to measure maintainability.

2. Security

There is a fundamental tension between designing for functionality and designing

for security. There are several reasons for poor security in today’s software, including

128

lack of training on defensive programming techniques, programmers relying on
compilers to identify errors, and the demand for novelty means that much software
development is on the *bleeding edge’ and is thus less reliable. (Gilliam) Another reason
for poor security is the lack of a code analyzer that can parse through code, identifying
common software vulnerabilities such as buffer overflows.

The intent of a security SLA is to ensure that software security is incorporated
into the design effort at the beginning of design efforts. If designers concentrate all of
their efforts on functionality and wait until testing discovers security vulnerabilities, the
result will be schedule delays, less than optimal security, and greatly increased costs.

The security of the system needs to be evaluated from a number of perspectives.
The application, operating system, network (including firewall), data bases, PC, and the
physical security of the host environment need to be evaluated for security, and all
contain security metrics that can be utilized in SLAs. An end-to-end SLA for security is
difficult unless all parts of the system are managed and controlled by one entity, however
pieces of the system can be analyzed and designed with security in mind.

It is difficult to measure security as a holistic measure, however there are specific
security metrics that can be utilized in an SLA to influence design. One way an SLA can
be utilized to address security concerns is to write the SLA such that an independent
auditor will evaluate the security of the software design and in coordination with the
software developers, they can develop a plan to correct deficiencies. The SLA can
stipulate the time necessary to perform the security corrections, or the SLA can mandate
a percentage of the problems that must be corrected by a given date.

Some of the most common security vulnerabilities include buffer overflows,
script injections, changing environmental variables, numeric overflows, race conditions,
information exposure, default settings, and programmer backdoors. (Gilliam) Designers
must also consider security vulnerabilities resulting from interfacing with other programs
or systems.

To combat these types of security problems, designers need to concentrate their
efforts on four security requirements: identification and authentication, access control,

audit, and system integrity. (Goodyear) Identification and authentication ensures that the

129

system can uniquely identify an entity in a transaction. Each entity must have a unique
identifier, and there must be a way to bind the identifier to the entity. (Goodyear)
Designers should utilize strong authentication where at least two authentication methods
(what the user knows, what the user has, and what the user is) are used. An example of a
strong authentication is a smart card along with a biometric verification.

Some examples of design considerations that address authentication include
ensuring strong passwords (at least 8 characters that incorporate capitals, numbers, and
special characters), establish an authentication period where the system times out after a
period of inactivity, (Kabay) utilizing encryption protocols such as kerberos, ensuring
passwords are strongly encrypted, and support for tokens or smart cards. Controls also
need to be established if the application is accessed via a portal where a single log on is
utilized for all applications on the portal.

Access controls determine what resources an entity can utilize. Access controls
will determine whether an entity has been granted permission to access a program or a
file. The access controls also determine the rights that the entity has with respect to the
resource (i.e., the entity can only read the file and not modify, or the entity has full rights
and can read, write, save, delete). Access controls are usually implemented by access
control lists (ACLs) which specify the entity or a group that the entity is associated with,
and the types of access that the entity has been granted with respect to specific files,
systems, databases, application functions, or other resources. Another way to implement
access control is through role based access control (RBAC), which associates a job
function to a set of resources, then assigns an entity to a job function. (Goodyear) It is
also important to track those people that have root authority, and to keep root access to a
minimum.

Design considerations include ensuring essential files, operating system ports and
files, database files, and application functions are restricted by access controls. This also
includes the ability to copy files. The designer also needs to evaluate any interfaces with
other systems to ensure that those programs are only given the access that they need.

Auditing is the process of monitoring the system to record who accessed a

specific resource and when. Designers can ensure logs capture the resources that were

130

accessed, the identification of the entity, times, what functions were performed, and the
success of those actions. The logs should contain enough detail to allow security
personnel to reconstruct events in the case of a security breach. It should also be
powerful enough to be used as an analytic tool for determining the root cause of poorly
behaving systems. (Goodyear)

System integrity is the assurance that a system’s implementation (or component)
conforms to its design. Virus and worm attacks are probably the best example of system
integrity attacks. Other examples are faulty parameters (setting that can be exploited),
operational misuse, and data leakage. (Goodyear, Kabay) Designers need to keep system
integrity in mind when designing the system. lIdentifying all points where the program
receives input from users and other programs and implementing procedures to
authenticate, restrict, and validate input parameters will help to improve a system’s
integrity. In addition data integrity can be protected utilizing programs such as Tripwire.

Security also includes the communication between the PC, servers, and database
as well as network security. Encryption, intrusion detection software, restrictive firewall
policies, and security policies (remote access, placement of web servers) should also be
addressed in the system design.

Test personnel need to evaluate the project in all phases of its lifecycle to ensure
that all security requirements were considered and incorporated. They should also
incorporate security requirements into their test plan to ensure security is evaluated in the
development and testing phases.

3. Performance

Performance is another quality factor that is often ignored in the design process.
Unless performance requirements are explicitly stated, developers will concentrate on
ensuring the design meet functional needs. Performance is often not considered until the
testing phase, assuming it is incorporated into the test plan. Unfortunately, if you design
poor performance into a system, correcting the problems can be extremely difficult,
resulting in cost and schedule overruns. (Loosley)

Performance must be measured throughout the software’s lifecycle. To manage

performance, SLAS need to quantitatively define performance goals, so systems can be

131

designed to meet those objectives. Performance models can be utilized to verify that the
design incorporates the specified goals and test plans can be developed to ensure the
performance requirements have been met. Once the system has been fielded, the system
must be monitored and tuned to ensure actual performance meets requirements.

Software performance engineering (SPE) is a method for constructing software
systems to meet performance objectives. (C. Smith, 1996) It is designed to augment other
software engineering processes. There are 10 fundamental activities of SPE including
identify key business factors, specify performance objectives and priorities, evaluate
design alternatives, summarize application workload mix, predict performance, monitor
ongoing software performance, analyze observed performance data, verify performance
expectations, tune application or system, and manage ongoing system performance.
(Loosley) SLAs drive many of the steps in SPE.

Part of the SLA development effort is determining the performance qualities that
are necessary to support critical business processes. The development effort also needs to
identify key business factors that will affect the processing load placed on the system.
Information processing needs depend on statistics like the number of customers, number
of customer inquiries a day, peak hours, orders per hour, service hours, anticipated rate of
growth, scheduled business events (monthly close-out), and use of remote sites. (Loosley)

Performance is dependent on a given workload; therefore an anticipated workload
should be included in any SLA with specific performance targets. It is important to
establish a baseline workload for the SLA, so that performance issues caused by
excessive throughput that is outside the scope of the SLA may be identified. Most of the
components in the IT infrastructure have limitations on the level to which they should be
utilized. Beyond this level of utilization, the resource will be stressed and the
performance of the application will be impaired. (ITIL) For example, if the SLA is based
on an average usage of 1,000 employees, and the application is actually being used by
10,000 employees, the service provider may not be able to meet agreed upon SLAs. In
this case the service provider should not be held accountable due to revised user numbers.

A system’s performance can be described in terms of workload (instruction sets or

transactions), response time (the time to process a single unit of work), throughput (a

132

measure of the amount of work that can be done in a certain amount of time), resource
utilization (the level of use of a particular system component), and resource service time
(latency and queuing time for resources). (Loosley) Some qualitative performance
metrics that can be incorporated into a SLA include speed (processing time, retrieval
time, response time), throughput (transactions per second), and timing (soft and hard real
time demands). Strict performance requirements significantly affect software design
strategies and hardware choices.

Once performance quality factors have been determined, the next step is to
develop models to assess the performance qualities of proposed designs, and select a
design that best meets the performance requirements. The performance of a system must
be evaluated in terms of the structure of the software program (instruction length, data
accesses, instruction mix), and characteristics of the target system (CPU speed, bus
width, operating system, 1/O characteristics, memory). The performance should also be
analyzed at a number of different abstractions. There are numerous models that can be
utilized to predict performance qualities. (C. Smith 1998, Menasce, Lazarescu) These
models tend to focus on the essential processes of the system, resource usage and speed,
and queuing theory. The models used depends on where in the lifecycle the model is
being applied, the skill level of the design team, the size of the system being developed,
the time, resources and funds available, and the level of abstraction being modeled.

The models are usually grouped into analytic models and simulation models.
Analytic models utilize queuing theory and mathematical analysis to evaluate the impact
of all processes on each resource, then computing the delays each process experiences
waiting for service. Simulation involves running a simulated process through a software
model of the system, which includes modeling each resource, models of the queue for
each resource, models of processes within the resource, a model of the clock, and running
a simulated process. (Loosely) Depending upon the size of the application, its
architecture and its distributed nature, multiple models may be necessary. Ina

client/server architecture, it may be necessary to model message communication between

133

the client and the server, as well as model application procedures at the client and server
side to capture the application logic and the pattern of access to the system resources.
(Menasce)

The results of analytic or simulation models can be used to validate performance
quality factors specified in SLAs. However, the models should be independently
verified, and the quality factors should be rather general, (i.e., a specific procedure should
process in less than 5 seconds) as the models are estimates and are not intended to be
highly accurate (formal real-time models are an exception). As the system progresses in
its lifecycle more accurate testing can be performed against actual code. Performance
models are used more as a method of evaluating different designs than providing accurate
quantitative values.

Modeling performance is not without difficulty. Estimations at the source level
have problems taking into account compiler optimations such as loop optimizations,
copying global variables into machine registries, dead-code elimination and constant
propagation. (Lazarescu) It is also difficult to account for constructs using dynamic data
structures, recursive procedures, and unbounded looping. (Suzuki) In addition, as the
level of abstraction rises, the structure of the software becomes more difficult to take into
account as it becomes further removed from the abstract representation. (Suzuki)
Approaches for dealing with these problems include modeling a program in terms of a
pre-calculated instruction code size and execution time, or where execution time is a
function of the number of instructions and the MIPS rating of the target system. (Suzuki)

The intent of including performance quality factors in SLAS is to ensure
performance is considered in the design of the system. There are numerous design
alternatives that can improve performance at the system architecture level through to the
software components. Some design considerations include load balancing (managing
how processes are input into the server), thread architecture (taking advantage of
parallelism and multiprocessor systems), balancing disk traffic (storing data on disks
efficiently and strategically), locking strategies (identifying where locks are necessary,

and when), resource management (identify resource intensive processes and potential

134

bottlenecks), and optimizing code for space as smaller code fits in fewer pages, leading to
a smaller working set, fewer page faults, and it fits in fewer cache lines. (Reilly)

High performing systems also demand efficient use of memory (strategic use of
cache). Modern processors are so much faster than RAM that they need at least two
levels of memory cache. Memory cache consists of the fast L1 cache and the slower, but
much larger L2 cache. A reference to L1 may cost 1 CPU cycle, L2 may cost 4-7 cycles
while reference to main memory may cost 12-100 cycles. (Reilly) If data that is used
together (temporal locality) is not stored together (spatial locality), it can lead to poor
performance. Arrays have excellent spatial locality, while linked lists and pointer based
data structures do not. Packing data into the same cache line usually helps performance,
but not necessarily on multiprocessor systems, as cache sloshing (different processors
updating the same cache line with their data) may be a problem. Caching must be done
carefully. If the wrong data is cached, it is wasted memory. If too much is cached, less
memory will be available for other operations. Not enough cache will result in wasted
processor cycles, as the information missed in the cache will have to be retrieved. (Reilly)

To meet the performance quality factors specified in SLAs designers will have to
increase their attention on performance issues such as memory allocations, cache lines,
caching data, thread proliferation, locking strategies, resources available in the host
environment, blocking calls, efficient algorithms, and resource utilization. Performance
models will help the designers to analyze tradeoffs and independent evaluation can verify
that a particular design will or will not come close to meeting performance thresholds in

an actual system.

C. DEVELOPMENT QUALITY

This section will briefly discuss how SLAs can be used to influence project and
process quality. Chapter 1 mentioned a number of project and process metrics and
models. This section will discuss a few of the project and process metrics, and whether
they can be incorporated into SLASs to help improve software quality. The metrics
chosen to measure project and process quality will depend upon the size of the project,

the skill of the developers and program managers, time to market, funds and resources

135

available, the return gained from the measurement effort, and the ability of the metric to
accurately measure the quality objective.

1. Schedule

It is very important to choose the correct metric to measure a quality factor. For
example, cost, schedule and function are the most important metrics to a program
manager. However, cost and schedule may not be the best metrics to utilize in a SLA.
There are numerous models that attempt to estimate cost and schedule (COCOMO I,
Function Points), but these models are not accurate enough to utilize in a SLA. Another
difficulty is that establishing a software project’s true duration schedule can be one of the
trickiest measurement tasks in the entire software domain. (C. Jones, 1995) Determining
when a project starts and is truly complete is difficult and must be precisely defined in the
contract. In addition the pressure to meet those thresholds may result in the developers
skipping important development steps that will ultimately result in large maintenance
costs later in the lifecycle. It is difficult to develop a contract that is so all encompassing
that the developers will not be able to “cut corners.” Cost and schedule are metrics that
are best included in the development contract, but not in a SLA.

2. Process Quality

One use of SLAs is to ensure that processes and standards are being adhered to.
There are numerous standards that can be incorporated into SLAs. The SLA will specify
the standards that must be adhered to and it will define the method to verify compliance.
A third party can easily be utilized to verify compliance. Incorporating standards in
SLAs provides a number of benefits. Standards provide a common methodology that
makes management easier as they provide the basis against which activities can be
measured and evaluated. (Horch) Standards are also useful in that they generally reflect
industry best practices. Standards can be applied to development, coding, naming
conventions, documentation, user interfaces, interoperability, architecture, and operating
procedures. However, just because standards exist does not mean that they will be
utilized. Incorporating standards in an SLA ensures that developers are aware of the

standards, and that the standards will be incorporated into the development effort.

136

Some standards include ISO/IEC 12207and IEEE 1074, which specify processes,
activities and tasks for software acquisition, development, operation, and maintenance
that should be accomplished throughout an application’s lifecycle. NIST 4909 (Wallace)
and IEEE/EIA 1498 provide standards on documentation. IEEE 1059 provides standards
on testing, as does ISO 9126. IEEE, ANSI, ISO and the Electronic Industries Association
(EIA) have numerous other standards that can be incorporated. Although standards are
useful, the SLA development team needs to be careful when selecting the standards to
utilize. Some standards are very general and are open to much interpretation, and others
may not be applicable to the project being developed.

Development processes can also be specified in a SLA. Specifying specific
processes has many of the same advantages of specifying standards. Applying well
defined, standardized software-development processes increases software quality and
makes the development effort more cost effective and predictable. (Gnatz) Specifying
the processes in the SLA helps to ensure that they are recognized and adhered to. Unless
processes are contractually mandated, cost and schedule pressures quickly become more
important, and necessary procedures are skipped.

One example of a commonly utilized development process standard is the CMMI
model. The CMMI model defines specific key performance indicators (KPI) that must be
established to obtain a specific level. A SLA can easily state that a development agency
must abide by CMMI level 3 or higher. The Software Engineering Institute can be used
to validate compliance. Many of the KPIs cover procedures that need to be performed to
ensure a quality product. However, it must be noted that just because an organization has
a process in place, it does not mean that they are utilized on a specific project. The SLA
needs to be specific that all procedures at a particular CMMI level are in fact applied to
the project, and that they are applied correctly.

3. Defects

Another common metric used to measure the effectiveness of a development
effort is the amounts of errors found at a particular milestone. Some common metrics
include defect density per software product, defect density per lifecycle phase, defects

found by review, defects found by testing, user detected defects, cost of defect detection,

137

cost of defect correction, requirement errors as a percentage of total errors, defects
incorrectly corrected, mean time to correct a defect, trouble tickets outstanding, and
anticipated defects based on statistical analysis. (Horch)

Incorporating defect rates in SLAS is intended to encourage developers to
implement their own software quality control procedures. Most development plans will
contain formal quality control procedures such as audits, code walkthroughs, and testing.
These plans should detail the quality control procedures, when they will be applied, and
by whom. The quality control procedures are intended to measure product quality and
provide feedback on the development process. Any errors found during the reviews or
tests can be corrected and analyzed to determine their cause. Unfortunately, there are
some developers that rely almost entirely on testing to discover any defects. This
approach will ultimately result in more maintenance and costs. SLAS can be utilized to
ensure reviews and audits are performed by third party inspectors at significant
milestones. SLASs can also be utilized to ensure that the errors identified in the reviews
are corrected.

A common metric that can be utilized in a SLA is defect density per KLOC (no
more than 6 defects per 1000 lines of code). When dealing with defects it may be a better
strategy to offer an incentive rather than a penalty. The goal is to encourage the
developers to do their own internal reviews before the formal reviews to ensure they are
using proper standards, procedures, and quality control procedures to analyze and correct
defects.

If defects are used in an SLA, it is important that all stakeholders, including any
third party auditors understand the definition of a defect, what constitutes a significant
defect and what does not, and the methods that will be used to audit the project or
product. A defect can be defined in terms of documentation errors, code errors, standards
violations, requirements that were not met, improper output, model errors, module
attributes (cohesion, coupling, complexity), or scheduling errors.

The SLA should also establish thresholds based upon the severity of the defects
discovered. Stakeholders need to determine the various categories of defects and rate

them based upon their impact to the mission and quality of the system. All errors do not

138

need to be fixed immediately, as some errors will not affect the functions or performance
of the system. Those errors should be identified and fixed at a later time, as more effort
can be expended working on more significant problems.

Defect audits have the potential to anger or demoralize the development team.
Nobody likes to have their work scrutinized by personnel outside of their organization.
The fact that audits are designed to improve the overall quality of the product needs to be
stressed. The program manager will have to work hard to ensure that everyone views the
audits and reviews in a positive light. This is one reason to utilize incentives rather than
the more negative connotations of a penalty. Another approach is to write the SLA such
that a percentage (95%) of all identified defect must be accurately resolved based on

results from a follow-up inspection.

D. TESTING

This section will demonstrate how SLA development can assist the test
community in the development of their test strategy. The main goals of testing are to
challenge the software implementation of the requirements and the early detection of
problems. Testing needs to be performed throughout a system’s lifecycle to predict and
evaluate the quality of the proposed design and implementation. SLAs can assist the
testing and evaluation process in a number of ways, including identifying business
critical processes, defining quantitative metrics to measure quality factors, identifying
testing procedures, and ensuring testing is conducted throughout the system’s lifecycle.

Much like the development effort, testing must be carefully planned, designed,
executed, and reported. The test strategy outlines how the software system will be tested
throughout its lifecycle and at the end of each development phase. It specifies what will
be tested, when it will be tested, how it will be tested, the type of test needed, who will
perform the testing, who will witness or verify the testing, what resources are needed
(hardware, software, tools), calibration requirements for equipment, and acceptance or
exit criteria. Part of the SLA development process is determining how quality factors
will be verified. The SLA development process facilitates communication between the

developers and the testing community at the beginning of the development effort.

139

Developers and testers need to have procedures and processes in place to identify and
remove errors during requirements engineering and design before they are translated into
code. (GSAM) Developing the SLAs will encourage both communities to develop a
mutually agreed upon test strategy for the quality factors. Hopefully, this communication
will encourage the developers and testers to also collaborate on a test strategy to address
the functional requirements.

The software-development plan should detail all of the processes to be performed
at each phase in the lifecycle. Each process should have deliverables, which will be
validated and verified. Verification ensures the deliverable is complete, correct,
conforms to standards, and was developed using proper procedures. Validation checks
that the deliverables satisfy specified requirements (requirements tracing), and ensures
that the deliverable does not have unintended consequences. Once the deliverables have
been validated and verified, testing will be conducted to ensure that each specification
has been properly implemented or satisfied. (Goodyear) These phase end reviews
include the software requirement review, the preliminary design review, the critical
design review, test readiness review (against product baseline) and the formal acceptance
audits. (Horch) SLA can be used to ensure that phase end audits are incorporated into the
test strategy and that they are performed.

SLAs can also ensure that other audits are performed. Some other audits include
documentation reviews, requirements reviews, design reviews, test plan reviews, user
documentation reviews, and implementation reviews. (Horch) SLAs can also ensure that
certain tests are performed to ensure quality factors are being addressed. Some of the
tests include unit testing, module testing, integration testing, coexistence testing, system
testing, user acceptance testing, performance testing (stress tests), implementation testing,
regression testing, and pilot implementation testing. (Philcox)

The amount of time, effort, and money that needs to be devoted to the testing
effort is often underestimated. It is not uncommon for standard systems to spend
between 50 and 80 percent of the development budget on test related activities (test
execution, analysis, and error resolution). It is impossible to fully test a program. (Kaner)

Traditional testing approaches only cover approximately 40 percent of the application

140

code. (Goodyear) SLAs help the test effort by focusing attention on the business critical
processes that were identified in the SLA development process. As a result testing can be
prioritized and focused on those processes that present the greatest business risk.

SLAs specify quantifiable quality metrics. These metrics should be incorporated
into the test plan to assess the system’s quality. This helps to guide the testing strategy
and it prevent situations where the test program is aimed at showing that the software, as
produced, runs as it is written, instead of challenging requirement compliance. (Horch)

To the extent that SLA encourages testing and the involvement of developers and
the test community, it also drives testability in the design. Several key drivers for
testability include fault tolerance (log data errors rather than allowing a crash), controls
(input validation, access control, database balancing), error handling (identify and log
errors), multiple operating modes (the system should have a production and test mode),

and self-testing (validation of entry criteria). (Goodyear)

E. SUMMARY

SLAs improve the quality of software by incorporating quality factors into the
development effort. The product quality factors specified in the SLASs drive design in
much the same way as functional requirements. SLAs force quality to be addressed at the
beginning of development and SLAs ensure quality is monitored throughout
development. Once quality requirements are identified, the developers can select an
architecture and design a system to best meet those goals. The test strategy will measure
and evaluate those quality factors throughout the lifecycle to identify any areas that may
not meet quality requirements.

Process quality and development quality can also be addressed by SLASs to
improve the overall quality of the software. Although adherence to standards and
processes does not guarantee a quality product, their use will greatly improve the
possibility of obtaining higher quality. Monitoring the quality factors associated with
process and project quality will also help to quickly identify problem areas and risks so

they can be addressed early in the lifecycle.

141

THIS PAGE INTENTIONALLY LEFT BLANK

142

VIlI. SOFTWARE QUALITY FACTORS

This section on software quality factors provides additional information on how
quality factors are determined. It is expected that the processes discussed in this section
were performed during the SLA development and/or requirements elicitation. The intent
of this section is to demonstrate some of the difficulties associated with determining
which software quality factors to utilize, and how the template SLAS can provide some
help in making that determination.

Determining software quality factors that contribute to the success of the system
or project can be difficult. It is easy to state that a system must be maintainable,
available, dependable, portable, usable, or secure, but determining the correct level of
abstraction to apply those factors, and quantifying them is more difficult. This difficulty
is one of the reasons that non-functional quality factors are not always incorporated into
the requirement specifications.

There are numerous quality schemes. Chapter Il outlined some of the models.
Papers from Charette, McCall, Boehm, and 1SO 9126 discuss quality factors and their
applicability to various situations. However, a detailed discussion of quality factors and
quality metrics is beyond the scope of this dissertation. Instead, the purpose of this
section is to discuss a methodology for selecting quality factors, highlight some of the
difficulties associated with some of the quality factors, and propose how template SLAs

can assist in the selection of quality factors.

A. DETERMINING QUALITY FACTORS

Chapter I outlined four areas where quality factors can be applied. This section
will illustrate an approach to determining product quality, although this approach and
discussion has applicability to project, process, and post-production quality factors. IEEE
standard 1061-1998 presents a good framework for determining what product quality
factors are needed and what metrics will determine whether those goals have been

achieved.

143

The first step is to determine the quality factors for the system. The quality
factors specified for the system requirements also need to be incorporated into the
software components of the system. In addition to system quality factors, the software
will need quality factors to ensure the software supports the underlying business process.
Each of these quality factors should have direct metrics that specify quantitative
measurements. In some cases it will not be possible to directly measure a quality factor.
It may be necessary to specify surrogate or proxy attributes during each of the
development stages. For example, code complexity can be a surrogate for reliability,
testability or verifiability. (Schneidewind 1997, Weigers)

Part of this step is to determine those qualities that contribute to project success.
The quality attributes may be prioritized based upon criticality to achieving a project
goal, or it may be based upon a return on investment. Regardless of the methodology
used to prioritize the quality factors, the fact that they are prioritized makes conflict
resolution easier. The requirements engineer and the stakeholders can then evaluate the
alternative design options and determine a solution that will satisfy the requirements.

The next step is to assign quality sub-factors to the software quality factors. This
is essentially decomposing the quality factors into measurable software attributes.
Building goal trees can assist in finding sub-factors. An example is the quality factor
‘usability” which may be further decomposed into flexibility and sharing of information.
Flexibility may be further decomposed into future growth and flexible work processes.
Future growth can be further decomposed into design for extra personnel and design for
modularity. (Mylopoulos) The quality sub-factors are usually more tangible and have
greater meaning to programmers and analysts.

This step also focuses on the object of the measurement. Different parts of the
same project may require different quality factors. In a N-tiered architecture, the front-
end piece may need the quality factor of ‘usability’, whereas the back-end database may
need the quality factor ‘security’ or “integrity’. Differentiate the quality attributes that
apply to the whole system from those that apply to specific components. (Weigers)

The final step is determining the specific metrics to assign to the sub-factors. This

phase will also assign threshold values to the metrics and identify the means to measure

144

the metrics. This decomposition of quality attributes or factors helps the requirement
engineers and software architects better understand the application domain, as well as
highlights potential conflicts between the software goals.

This process should be evaluated at each stage of the software’s lifecycle, and as
changes are made to requirements. It is important to note that measurements obtained
early in the development lifecycle will not be as quantifiable as those in the later stages of
development. As development progresses, requirements and processes will evolve; those
artifacts measured during requirements analysis will generally not be the same as those
measured in the testing phase. In the early stages measurements will be taken on static
objects such as architecture design, or specifications. In the later stages the
measurements will be taken on dynamic objects such as the code itself. (Schneidewind
2002)

Template SLASs are SLAs that have already been developed for specific services.
Template SLASs represent the best of breed or industry standard. Although there is
currently not an industry standard, appendix (A) represents an attempt at establishing a
template SLA for host services. Template SLAs that can be used to help in the quality
factor selection. In many cases the user and program manager do not know what quality
factors to utilize, nor do they know how to prioritize the attributes. Questions such as
how reliable does the system have to be can be difficult to quantify. In the elicitation and
validation process, requirements engineers are able to use methods to extract this type of
information from users, but template SLAs are a good place to start in that they provide
good examples of the types of software factors and goals that other organizations felt
were important to their projects. Template SLAs also provide good examples of the level
of abstraction to apply specific quality factors as well as presenting a scenario that
illustrates the number of software factors and thresholds that should be used. It is not
unusual for organizations to collect too many measurements. Excessive information is
difficult to manage, and often leads to casual analysis or frustration. (Baker) Finally,
template SLAs help the program manager by defining the quality metrics, specifying

thresholds, and identifying their method of measurement. Some quality factors can be

145

difficult to define. For example the quality factor of usability can only be used in the
context of the target user population, but it is often developed from the program

manager’s perspective. (Nuseibeh)

B. CONFLICT RESOLUTION

“Excellent software products reflect an optimum balance of competing quality
characteristics.” (Weigers) Determining the optimal balance is difficult in that the users,
program managers, and developers all have different perspectives, and their respective
quality factors will be determined from that perspective. Each stakeholder will have
different priorities supporting the qualities that they feel best meet their needs.

The requirements engineer must first collect all of the quality attributes that the
stakeholders feel are important. The next step is to work with the stakeholders to
prioritize the quality factors. The goal of prioritizing the quality attributes is to focus on
those attributes that best support the mission or goal of the project. Prioritizing the
quality factors is important because some quality factors conflict with one another. The
prioritization helps in the resolution of any possible conflicts.

Resolving requirements conflict is not easy as some combinations of quality
attributes conflict with one another. It is important to understand the interrelationships
that exist between the various quality attributes. Some attributes complement each other
such as reliability and availability or flexibility and portability. Other attributes do not
work well together. The attributes of flexibility and security often conflict as the
measures to make an application secure also make it less flexible.

Attributes, such as efficiency, conflict with numerous other quality attributes.
Tight precise code often conflicts with maintainability, portability, interoperability and
flexibility. Additionally, attributes such as flexibility, usability and portability often
conflict with performance goals. (Weigers) It is important to understand the trade-offs
associated with each quality attribute as the choice of attributes will drive the
architecture, coding, and testing. Understanding the attribute trade-offs also helps to

form or manage user expectations.

146

Template SLAS can assist in the determination of what quality factors were
important to other projects. The template SLAS can be used as a case study to see how
other organizations weighed the benefits of the various quality factors against the mission
or goals of their project. The template SLAS can be used as a starting point to determine
which attributes are important to the stakeholders. The requirements engineer can then
work on prioritizing the attributes, weighing the trade-offs, and resolving conflicts.

C. RESPONSE TIME

This intent of the next two sections is to discuss two quality attributes in depth
and illustrate how they can be incorporated into SLAs. The focus of these two sections
will be on the post-production phase of the lifecycle. Many of the issues discussed in this
section were debated and the end result was incorporated into the SLAs in appendix (A).
This section will discuss response time as a quality attribute, and the next section will
discuss availability.

Response rates are extremely difficult to measure, and may in some cases, be too
difficult to utilize in SLAs. The quality metric response time is a good indicator of
customer satisfaction. Many quality metrics are technical in nature, but response time
maps well to end-user’s needs. If an application does not respond within a certain time
parameter, the user becomes frustrated and their perception may be that the IT
department or the service provider is not doing their job, or that the application does not
meet quality requirements. Response rates are most useful from the perspective of the
end-user. When a user enters a command, that individual is only concerned with how
fast an answer or response is provided. Therefore, an end-to-end measurement of
response time best satisfies the end user.

Response time is generally described as a measure of how long it takes from the
time a transaction is initiated until all of the results are received. However, this definition
needs additional clarification for use in a SLA. The definition must state at what point
measurements begin and when they terminate. Additionally the SLA must state how
response time will be measured. The definition above assumes an end-to-end response

time from the client to the server and back, but the service provider may not own the

147

entire infrastructure. Many organizations have included response time SLAS in their
contracts, but most of these SLAs do not adequately define the parameters of the
measurements, nor do they define how measurements will be conducted. The measuring
of response times is a complex process even if the service is an in-house application
running on an intranet. (ITIL) It is very important that the SLA defines response time in
sufficient detail that all stakeholders understand its meaning and how it will be measured.

End-to-end response times are possible when working within an intranet structure,
where the PC, server, and infrastructure are all owned and operated by one provider.
Unfortunately, this architecture is rarely the case. In the case of the Navy/Marine Corps
Intranet (NMCI), the PC is owned and operated by Electronic Data Systems (EDS), the
infrastructure to the outbound firewall is owned by EDS, the NIPRNET connectivity for
the DoD intranet is managed by the Defense Information System Agency (DISA),
external connectivity to the Internet is either managed by DISA, or contracted with local
service providers such as SMARTLINK (AT&T), an application’s server and host
environment may be owned and managed by another service provider, and finally the
application itself can be run by a Navy activity, DoD, or a commercial service provider.
In this scenario it is extremely difficult to guarantee any level of service, since no one
provider owns all of the pieces between the PC and the application.

The distributed nature of today’s environment further complicates response time
SLAs. Applications may have to query back-end databases over the Internet to gain the
information necessary to satisfy a request. In this case, Internet latency can significantly
affect response time. Issues such as bandwidth and control over the database are also
issues. If the same service provider did not manage all of the servers in the tiers it may
be necessary to specify response times for the various tiers at the server level. For
example, when a front-end application receives a HTTP request, it may be necessary to
measure the time from receipt of the request until the web server sends a request to the
mid-tier server.

It is possible to study the service level contracts that have been negotiated with
each of the component service providers and develop an overarching response time. For

example, in a scenario where there are three service providers covering services from the

148

PC to the firewall, Internet access, and a host service provider, the response time for each
can be added to determine a threshold. If the service providers agree that 1-second is an
acceptable response time for their portion of the transaction, then an end-to-end SLA can
be written for 3 seconds. In this scenario, a separate SLA will have to be negotiated with
each service provider, or if there is one overarching organization responsible for the
compute environment, then the third party agreements with other service providers will
be tallied to arrive at an overall figure.

In reality this scenario is still difficult to manage and enforce. The application
may have to be reengineered to incorporate certain APIs, time stamps, or exceptions to
gain the response time information or monitoring devices would have to be established
along the route from the PC to the server and back. All of the monitoring devices must
be synchronized to identify and track a specific transaction. This would require that the
service providers allow agents or monitoring software to be installed within their portion
of the transaction. This may pose too much of a management challenge and security risk
for most ESPs, as they do not want every client insisting on installing their own
monitoring devises.

One problem with specifying response times with an application is that certain
application functions may take longer than others. Some financial applications can take
hours to calculate end-of-month returns. The question is whether it is possible to identify
specific transactions and track and record their response time. If this is the case, then the
application owner will have to identify those functions that are business essential,
determine a response time threshold, and then tie a response time SLA to the specific
functions. For example a web server should load a page within 2 seconds, while a
database may take 30 seconds to a minute to execute a complex report. It is best to
survey users to determine what response time is adequate for a given transaction.
Typically the minimum and average measurements of response time are of interest.
Benchmark studies of similar types of transactions can help determine acceptable
thresholds for different types of queries.

It is also difficult to measure and aggregate the response times for multiple

threads within the same program. If a session on the server consists of numerous threads

149

that in turn produce additional threads, some of which may execute distributed or
sequential tasks, can the agents or measuring devices aggregate the total output? This
becomes even more difficult if processing occurs on both the servers and the PC.
Especially if some of the events are sequential.

Determining the cause of a delay may be difficult. If the operating system (OS) is
the cause of the delay, how is that information being captured? Network and firewall
delays, Internet latency, application errors, and user errors can all contribute to slow
response times. To effectively isolate the cause of delays, monitoring devises will have
to be installed at the various pieces of the infrastructure.

Another difficulty in accurately measuring response time is that the software
performing the monitoring must be able to identify inputs, and the corresponding outputs.
This means that whatever software is performing the packet sniffing operation must be
able to not only identify the header addresses, but it must also be capable of determining
packet content and determining whether the packets are inputs to a transaction, or are
simply communication protocols. They must also be capable of determining whether the
application is responding to the input in sequential order. If the server receives input 1
and input 2, before responding, can the software determine if the server is responding to
input 2 before input 1?

If an end-to-end measurement appears to be too difficult, another approach is to
monitor response time on the server itself. This approach does have some drawbacks.
From an end user perspective, this is not a satisfactory solution as the application
response time is the only part that is measured. It is not representative of the end users
needs. Coordination problems with tracking individual inputs and their associated
outputs still occur in the server. Additionally, the overhead associated with recording
response time for applications with hundreds of concurrent users may actually slow down
response time.

Rather than attempt to monitor the response time for every session, it is much
easier to utilize the windows consoles on the server to run a program on the server itself

that will measure response times to specific inputs. This type of a program is essentially

150

a synthetic transaction. In essence this is an end-to-end measurement from the server
console through the operating system, to the application, and back.

In this approach, the program manager needs to determine the most important
application functions to monitor. A program can then be developed to send input
representing the various functions to the server to monitor response time. The program
can execute at various times, testing all of the functions, or selecting individual functions
randomly. This approach measures response times using statistical analysis, and is not
concerned with attempting to measure response times for each concurrent user.

This program could also be run remotely using active X, although this will not be
allowed under NMCI, and will probably not be allowed through the server environment’s
firewall. To ensure that the service provider does not tamper with the results, the server
can e-mail the results to both the program manager and the service provider. A read only
file will not work as the service provider has root authority, and can change permissions.

One disadvantage with this approach is that a program has to be written to
perform the synthetic transactions. A third party solution would be preferable, and some
do exist for testing web sites, but application specific transactions will have to be
developed. Benchmark tests can help determine response times for each function
executed. The response times for specific synthetic transactions can be incorporated into
a SLA. Although this may not satisfy the end-user, it will ensure the server is operating
effectively, and it will help to trouble shoot problems.

If response time SLAS are used, automated tools are essential in measuring
compliance with the threshold requirements. SLAs that require help desk calls to
determine whether response times have or have not been met should be discouraged.
Automated tools are a necessity to remove the subjectivity associated with determining if
the service is responsive or not. Help desk metrics put all of the reporting responsibility
on the end users and the help desk approach also does not scale well. How many people
have to report the incident before it is considered a violation of the SLA? What if there
are thousands of potential users?

The SLAs in Appendix (A) do not contain response time as a quality metric. It

was too difficult to develop a SLA given thousands of different applications, multiple

151

service providers, and security concerns. Synthetic transactions can be used, but each
program will have to determine whether they want to use that approach or not.

D. AVAILABILITY

Availability can be defined as the ability of an IT service or component to
perform its required function at a stated instant or over a stated period of time. (ITIL)
Availability indicates the percentage of time that a system or service is expected to
operate satisfactorily. (Wang) The formula for computing availability is composed of
reliability and maintainability data. Reliability is the probability that a system will not
fail. Reliability is generally defined in terms of the mean time between failures (MTBF)
or mean time to failure (MTTF). Maintainability is defined as the time it takes to repair
the system and restore it to operating condition. Maintainability is often expressed as a
mean time to repair (MTTR). A common formula for availability (a) is a =
MTBF/MTBF + MTTR. Another formula is uptime/uptime + downtime, where uptime
consists of operating time and standby time, and downtime consists of unscheduled and
scheduled downtime. (Hurst) Although the formulas appear to be straightforward,
availability is difficult to incorporate into a SLA.

Overall availability is a function of the availability of the components (hardware,
network, application software), the speed at which failures can be identified and repaired,
the skill sets of the support personnel, the complexity of the infrastructure and
application, the security of the system, logistical support, built in redundancy, and the
application of tested procedures and processes.

Availability directly influences business and user satisfaction. However, unlike
response time, availability is more technical in nature and does not map as well to an end-
user. Many argue that response time is a better indicator of customer satisfaction. Some
even argue that an availability quality metric is not necessary, as problems with
availability will be reflected in response time measurements. For example, a server may
be available, but the application may not be usable due to delays as a result of too many
concurrent users. Response times would indicate situations where on-line shoppers

disconnected due to slow processing times, where availability may not.

152

There has been much discussion on whether SLAs should concentrate on the
technical side which concentrates on metrics associated with server, OS, infrastructure
and application performance, or should be SLAs really be concerned with the perceptions
of the end-user and the business processes owners. If the end-user inputs a transaction
and receives a result within an acceptable time, are any other SLASs really needed? Is it
necessary to specify server performance thresholds (CPU utilization, available table
space) if the application is responding to input requests within specified time frames?

The author believes that, if possible, both response time and availability should be
included in SLAs. Availability metrics require that the network, servers, and operating
system be monitored for performance compliancy. This monitoring activity is essential
in performing trend analysis, capacity management, troubleshooting, and measuring the
effects of configuration changes. Availability monitoring is a proactive measure that will
help to alleviate problems before they occur. Response time monitoring is reactive in
that it will only report a problem once it has occurred.

Before SLASs can be determined for availability it is necessary to determine the
level of availability that is needed by the application. Availability thresholds must be
realistic. The higher the availability needed, the more costs will be incurred. If a system
has an availability of 99.9 percent, the cost of improving the system’s availability to
99.99 increases from 5 to 10 times for every additional 9. (Factor) A cost benefit analysis
is highly recommended to determine the business losses or opportunity losses resulting
from application downtime as compared to the price of maintaining a certain level of
availability.

Availability is another area that is difficult to manage if the entire supporting
infrastructure is not owned by a single entity. Unless the contractor has control over the
PC, the entire infrastructure and the server, end-to-end SLAs will be difficult. Before any
end-to-end agreements are made, the program manager needs to review the proposed
SLAs with the service provider and all other third party service providers. It may be

necessary to review the agreements with each infrastructure service provider to ensure

153

that the appropriate conditions and controls necessary to comply with the SLA are met.
However, this assumes the contractors and third party providers are willing and capable
of meeting proposed SLAs.

To properly determine an end-to-end SLA for availability, it is necessary to map
and monitor all of the components necessary to provide full functionality. The reliability
of each component must then be determined. Components can include server and
network hardware, operating system software, as well as application software. It is
important to remember that in order to achieve an aggregate reliability figure for a
system, the reliability of each component is multiplied. If three items (PC, network,
server) have 99 percent reliability, their aggregate reliability figure is .99° or 97.03
percent. The reliability of all of the component pieces in the system will determine the
end-to-end SLA.

If reliability is the probability that a system will not fail, then it is essential that
the SLA define what a failure consists of. That definition will also drive how the
application, server, and infrastructure are measured and monitored. Is a failure defined in
terms of server crashes (e.g., no input processing or output processing), poor response
time, inability to handle multiple threads, or incorrect results? If the application is
performing poorly because of limited server resources does that poor performance count
against reliability metrics? How is reliability measured if the application is working in a
degraded mode, but the server appears to be functioning? Without an explicit definition
of a failure, organizations will have difficulty legally enforcing availability SLAs.

Maintainability is another important part of the overall availability of a system.
Maintainability consists of the time it takes to identify that a failure has occurred, the
time to isolate the cause of the failure, administrative and logistics lead times if parts or
root access is required, the time to restore the system to operational capability, and the
time to test the system to verify operational capability. In hardware maintainability can
be improved through its design and documentation. The same is true for software.

An important part of the maintainability is the documentation. Accurate, timely
documentation can mean the difference between meeting SLA and not. This

documentation can include configuration data, documentation from the CRB, operating

154

procedures, recovery instructions, incident reports, monitoring information and trend
analysis. It may be as simple as correct recall numbers of staff members.

Another very important part of maintainability is how well the backup tapes are
documented and controlled. If the application is being backed-up correctly, and one
week supply is kept on hand, the ability to restore a file or entire program is much
quicker. The ability to quickly locate the correct tape and restore the necessary file
depends upon proper documentation.

Maintainability is also dependent upon the skills and training of the staff. A well-
trained staff will be able to isolate problems and repair them quickly. Additionally, good
staff will be able to predict problems through trend analysis and good monitoring
procedures before a failure occurs. A service provider may have the most reliable
hardware and software available, but may not be able to meet availability SLA thresholds
if their ability to correct problems is poor.

It is important that the program manager and the contractor define the concept of
‘restored to operational condition.” The SLA should specify whether testing is required
to validate restoration, or whether the contractor can make repairs and immediately return
the system to its operational state. The SLA should also specify if someone from the
program manager’s staff needs to verify that the system was restored. The SLA needs to
state the metrics that will be used to determine if the program is restored to operational
condition. A method of determining the time the system went down and was considered
restored also needs to be negotiated.

The SLA should also specify how planned maintenance will be addressed.
Scheduled maintenance is predictable in that the time to perform the maintenance and
restore the system to an operational state is known. Scheduled maintenance contributes
to the downtime of the system, but some are reluctant to include scheduled maintenance
in availability figures. Others feel that scheduled maintenance should be added into
availability figures, as they are not able to utilize the system during the maintenance.
Those that advocate not using scheduled maintenance are fearful that if they included

scheduled maintenance time in availability figures, that the contractor will rush or skip

155

procedures to ensure that overall downtime was minimized. Either approach is
acceptable so long as the SLA addresses the issue.

One of the problems with utilizing availability in SLASs is that the mean time to
failure and the mean time to repair are estimates based collected data. In some cases
enough historical data is available to calculate reliability and maintainability figures. In
other cases, formal analysis such as a failure modes, effects and criticality analysis
(FMECA) can be conducted by reliability engineers to estimate availability. In the case
of new software, historical data may not exist. In other cases, estimates are suspect
because of the small data sample size. In some cases it may be more appropriate to
utilize confidence limits instead of a specific figure for determining availability in the
SLA. (Wang) Another problem is that most estimates are based on ideal conditions, not
on actual operational performance. Additionally, anytime new patches or versions of
software are introduced, past historical performance may no longer be relevant. The
same is true when software is operated in a new environment, or interfaces with new
software.

The SLA needs to determine how availability measurements will be collected and
applied. The program manager and the contractor will have to determine whether the
measurements will be end-to-end, or whether specific components or pieces of the system
will be measured. They will need to decide how many samples will constitute an
accurate estimate of reliability and maintainability. The SLA will also have to define the
time period over which the data is collected. A one-month period may be too small to
collect enough data, and six months may be too long given the dynamic nature of most IT
systems.

The SLA that pertains to host environment availability in appendix (A) takes a
different approach. Because of the difficulty in determining a legally enforceable
definition of a failure, and the difficulty in obtaining enough samples to evaluate whether
availability thresholds were met, the author felt another approach was needed. If
availability was defined in terms of an ‘opportunity to compute,” then key server and
infrastructure performance parameters can be identified, quantified, and measured. The

SLAs can identify key performance thresholds that must be maintained for an application

156

to properly function. If the thresholds are violated, the application is considered
impacted, and the service provider will be penalized accordingly. The SLA will also
specify expected recovery times based on the severity of the impact. If the server,
operating system, and infrastructure are operating within parameters, then the application
should be able to perform all of its functionality. If the application is programmed
properly, then by guaranteeing the appropriate resources and latency, the application
should always be able to meet operational needs.

This approach alleviates many of the problems found with defining and
measuring availability. This approach is more straightforward, and there are numerous
tools that can monitor the key performance metrics. It is not however, without its own set
of problems.

Utilizing an “opportunity to compute’ approach makes the assumption that server
and network performance is a good indicator of whether an application will perform as
expected. In the SLAs in appendix (A), the application was developed and is maintained
by the government. In this case, it is a reasonable expectation that the application will
perform given adequate resources and bandwidth. Although it is possible to have a
poorly designed application fail even if it has all required resources and bandwidth.

Unfortunately, specifying the appropriate resource requirements to meet
operational requirements can be difficult and will vary depending upon the type of server,
the operating system, and the architecture being used. Network parameters are relatively
straight forward, but server resources are more difficult to equate to application
performance. Most system administrators have their own set of key indicators and
thresholds to monitor, based on experience, skill levels, and the equipment they are
utilizing. The metrics in appendix (A) are commonly utilized by the system
administrators interviewed.

Approaching availability as an opportunity to compute also makes the SLA more
adaptive to changes. Historical data on reliability and maintainability is not needed. In
terms of availability, the Configuration Review Board (CRB) only has to evaluate any
hardware or software changes or modifications in terms of the key performance

indicators, capacity management, and documentation.

157

E. SUMMARY

The choice of quality factors depends upon the mission of the system, quality
requirements from stakeholders, and the external environment. Part of the SLA
development process is to identify mission critical business processes and determine
those quality factors necessary to support those processes. Once the stakeholders have
identified all of the quality factors, they must be prioritized and any conflicts must be
resolved. The quality factors are also broken down into sub-factors, if possible, and
assigned quality metrics that will measure the quality factors. The use of template SLAs
can help identify various quality factors, but they must still be modified to meet the needs
of each system.

Quality factors are not always easy to measure. The quality factor ‘response time’
is a good indicator of performance from the end-user’s perspective, but it is difficult to
obtain end-to-end measurements, especially if the host provider does not own the
infrastructure. Response time can be measured at the server level using synthetic
transactions, but this measurement has limited value to the end-user. Availability is also
difficult to measure, as the contract must explicitly define downtime, statistical
measurements are suspect because of the small sample size, and restore to operational
condition must be defined. Measuring availability as an ‘opportunity to compute’ makes
the measurements easier, and it accomplishes the same goal.

158

VIiIl. CONFIGURATION MANAGEMENT

This section will discuss configuration management in some detail. The detail is
necessary to show the difficulty of managing software configuration, but it also
demonstrates the areas where SLASs can be utilized. Quality factors can be established in
the SLAS to ensure that proper procedures are followed, that the documentation is
correct, that changes are being tracked, and that releases are managed properly.

Configuration management is an integral part of both development and
maintenance of software. In its simplest form configuration management is how an
organization manages change. However, a better definition is that configuration
management is the discipline that ensures that the state of the software at any given time
is known and reconstuctable. (Horch) Another more complex definition is that
configuration management is the disciplined approach to managing the evolution of the
software’s development and maintenance practices, the resultant products and artifacts
(data, tests, web content) and the processes involved in creating and changing them.
(Dart) Configuration management can apply to software, hardware, and firmware, but
this section will only discuss configuration management in the context of software.

The business environment is constantly changing as organizations attempt to gain
competitive advantage. All projects will have changing requirements whether they are a
result of external environmental pressures, new ideas, more efficient processes, changing
technology, or corrections to problems encountered. Change is the one constant in any
project. For example, from the time that the initial conceptual design was frozen to when
the first production 767 rolled off the production line, 12,000 changes were made to the
design. (Simpson) Good software engineering practices, as reflected in the CMM and
IEEE standards, require a strong configuration management process to manage change.
(Estublier, 2002) Organizations that cannot manage change will quickly have chaos.

Configuration management is incorporated throughout the software development
and maintenance lifecycles. Configuration management captures information on every
artifact (requirements, design, models, code), every action (edit, pass code to the QA
department for testing, notify), and every person working on the system (developer,

159

tester, software engineer, program manager). (Dart) Some of the benefits of
configuration management include better quality, dramatic productivity improvements,
cost reductions, error/defect reductions, easier maintenance, and better technical support.
(Leon) Other benefits include easier auditing, visibility into all work status, knowledge
management, better forecasting and planning, and better adaptability to changes in
business processes. (Dart) Unfortunately, despite the benefits, some developers feel that
configuration management is just additional documentation and is not worth the extra
work. Some developers are also willing to sacrifice configuration management in their
rush to bring the software to market. SLAs can help to ensure that the contractor has an
accurate and effective configuration management system.

Configuration management consists of four basic areas: configuration
identification, configuration control, configuration accounting, and configuration audits.
Another area of configuration management that is discussed in Appendix (A) deals with
asset management, which is very important when dealing with recovery, maintenance
support, trouble shooting, and disaster recovery. This section will also discuss the effects

of configuration management on post-production maintenance activities.

A. CONFIGURATION IDENTIFICATION

IEEE Standard 828-1998 defines configuration identification as a process of
selecting the configuration items for a system, and recording their functional and physical
characteristics in technical documentation. Configuration identification also includes the
process of uniquely identifying the version or instance of every configuration item
(documentation, models, files, tests, specifications) that makes up or supports a software
product. These items can also include the tools that were used to create or modify the
software such as the HTML editor, Java interpreter, modeling tools, and code generator.
(Dart) These configuration items can refer to versions of the entire system, modules, or
they can refer to the smallest units of code that can be compiled. Each item needs to be
identified and described so the organization has knowledge of its existence, its status, its
interrelationships, its dependencies, and the effect that changing it will have on other

items and the system.

160

One of the first steps in managing software configuration is determining what
constitutes a configuration item. If every grouping of code that is capable of being
compiled is included in the configuration management process the administrative efforts
to document the code, report and analyze changes, and track status can overwhelm the
developers and management. One the other hand if the level of abstraction is at the
module level, it may not provide management with enough documentation of the
subroutines contained within the module. At the module level, any changes within the
module will require testing of the entire module instead of the individual subroutine that
was changed. Selecting the level of decomposition at which to apply configuration
management is important and can depend upon many factors such as size of the project,
importance of tracking changes at the lowest levels (safety or timing issues), whether the
item is standalone, new technologies, interfaces, requirements volatility, complexity, and
risk aversion.

Another important decision is what information needs to be collected on each
configuration item. Ideally all characteristics of the configuration item is collected to
include its content, the documents that describe its function, the requirement that it is
satisfying, data needed for operation of the software, the different versions as the
software is changed, interface information, dependencies, and any other information that
makes the software what it is. (Leon) However, the type of project will dictate the data
that needs to be collected on each configuration item.

As each artifact or documentation is developed, reviewed, and approved, it must
be included in the configuration management repository where it is assigned a unique
identifier. When the configuration item is first entered into the repository, it is considered
baselined. A baseline is a configuration item that is frozen in time to represent a specific
state of a product. (Dart) Items that are in the process of development can be changed
quickly and easily, but once they are baselined in the repository it must go through a
formal process before it is modified. Once modified, it is assigned a unique identifier, so
it can be distinguished from its earlier version.

The task of assigning a unique identifier has been made easier by a number of

good automated configuration management tools. These tools ensure that a standardized

161

methodology is applied to assigning the identifier. Simple identification codes will
include information on the parent or next higher component, when the item was created,
and the version number of the item. More complex identifications include the project
number, project type, item type (document, program, data, test), relationships,
dependencies, release, version, and edition. (Horch).

The final step is to store the configuration item, documentation, and execution
software (operating system, compilers, tools) in a secure repository where the item can be
retrieved and reproduced when required. This is especially important when software
needs to be rolled back to a previous version, or when software needs to be reinstalled to
correct problems.

SLAs can be written to specify quality factors that deal specifically with the
accuracy of the configuration identification and the information collected on each
configuration item. SLAs can also be written to verify the accuracy of the repository to

ensure configuration items can be recovered if needed.

B. CONFIGURATION CONTROL

Configuration control consists of those processes necessary to ensure that every
change to a configuration item is reviewed, authorized, tracked, and documented. Once
an item has been baselined, more formal procedures need to be instituted to ensure that
only approved changes are made to an item. Changes need to be reviewed to determine
their relevance, their impact on other configuration items, and their impact on cost,
schedule, and performance.

A software change order may be needed for a number of reasons including the
need to rework a component with poor quality, the need to rework a component to
achieve better quality, or because of a user directed change in requirements. The first
two types of change need to be closely tracked as they are indicators of the quality of the
product, and they provide a solid basis for estimating maintainability. (Royce)

Configuration control also provides a documented evolution of how and why the
file or module evolved to its present form, and the changes that were made along the way.

The history of changes on a configuration item helps personnel understand why changes

162

were made, it helps with trouble shooting, and it helps maintenance personnel determine
why specific changes were made.

The goal of configuration control is to prevent ‘guerrilla programming,” where
developers are making changes to software without considering the effects that those
changes will have on overall functionality, quality, or other configuration items.
Configuration control ensures that changes are documented, analyzed, incorporated into
the schedule, tracked, tested, and incorporated into user documentation. Configuration
control also ensures that only known and approved changes are being worked on which
helps focus the work effort on those areas that provide the most utility. Configuration
control also helps to avoid situations where developers are working on “nice to have’ or
unspecified functionality that they think the user might need.

Configuration control can be broken down into four slightly overlapping areas.
The change review board reviews proposed changes to evaluate their need and their
impact. Change management is concerned with tracking the status of the change.
Notification is the process of keeping programmers informed about changes that impact
their area of responsibility, and release management is concerned with releasing and
tracking updates and patches to a baseline configuration. Quality factors can be specified
for each area, and they can be incorporated into SLAS so their respective quality metrics
can be monitored.

1. Change Review Board

Configuration control starts with a change request form. In most cases this form
is now automated and is a part of the configuration management software package. The
change request form identifies the configuration item to be changed, it describes why the
change is necessary, it describes the type of change, it describes the priority of the change
it describes what changes will take place, and it provides an impact analysis. The impact
analysis evaluates whether any other configuration items will be affected by the change
and what actions will have to be taken in those configuration items. The impact analysis
can also look at how long it will take to effect the changes, their costs, and the benefits.

The change request form is often initiated from a software trouble report. Once the

163

configuration item is baselined, a change request form should be utilized, as it has to be
approved by the change review board.

Once a change request has been submitted, it is passed to the change review board
for approval. The change review board (CRB) is tasked with evaluating the change
requests and determining whether they will be approved, delayed, or denied. The change
review board also monitors the progress of every approved change. The change review
board also determines which reported defects to correct, and when they should be
corrected (what release).

The change review board should consist of the configuration manager, the
program manager and members of that team (especially contracting personnel),
developers, the test community and quality assurance, marketing, and essential
stakeholders. The head of the change review board should be the configuration manager
as that person best understands the need for configuration control, and that individual is
typically impartial, and does not have an agenda other than enforcing configuration
mandates. (Harris) The CRB is designed to make informed business decisions regarding
all proposed changes, which will provide the greatest business and customer value while
controlling the system’s lifecycle costs. (Wiegers)

Depending upon how the configuration management process is implemented,
change requests may include impact statements, or they may be ordered after the CRB
makes an initial determination as to whether the change is warranted. Before approving a
change request the CRB needs to analyze the change with respect to the effect the change
will have on functionality, the impact on other configuration items, and how it will
impact cost and schedule.

The CRB must first determine whether the change is necessary. The change
request form should contain the information necessary to make a determination. If not,
the form will be returned for further information. The CRB needs to evaluate the
criticality of the change and determine whether it should be implemented in the current
release (which will probably impact schedule), whether it is delayed (the change is
incorporated into another release), or whether it should be rejected (the change was a

result of an unauthorized request, the impact to the system was negligible). Changes that

164

are submitted to fix errors or improve quality need to be weighed against the benefits that
those changes provide. If the package meets requirements, but can be made better, the
CRB must decide whether the change is warranted given other considerations such as
time, money, goodwill, and lifecycle costs. New requests must also be evaluated in terms
of when they will be incorporated into the release. Many projects have failed as a result
of being unable to maintain a release baseline. At some point changes need to be
deferred to future releases or the baseline release will never be fielded.

It is important that the CRB determine what types of changes need to be
reviewed, and which can be automatically authorized (automated) or referred to a lower
level manager. Minor changes still need to be logged into the configuration management
system, but they do not need the attention of the CRB. If the change approval process is
too stringent, programmers will discover ways to circumvent the procedures.

The CRB also needs to review the changes to ensure that they do not adversely
impact any requirements. All proposed changes should be linked to the requirements that
the configuration item satisfies. The CRB needs to ensure the test community
incorporates the revised configuration item into the test plan to ensure performance and
functional requirements are met. The CRB must also take a holistic look at the impact
the change will have on SLA mandated non-functional quality requirements. New
requirements must be reviewed to ensure they do not conflict with functional or non-
functional requirements. Any conflicts will have to be resolved by the program manager,
stakeholders, and the contractor.

A good configuration management system will specify the other configuration
items that interact with the file or module that is being changed. The impact analysis will
determine the amount of work necessary to modify those configuration items that are
affected by the change. A small change in one file or folder may cause a great deal of
change in other areas. The changes must also be reviewed to determine their impacts on
the software architecture and supporting models that will need to be updated.

The CRB must also evaluate the changes with respect to costs and schedule. New
requirements may require revisions to both costs and schedule. A contracting person

from the program management office and the contractor should be part of the CRB to

165

ensure that contract modifications are drafted and approved before any changes are
approved that will affect price. Depending upon the requirements, SLAs may need to be
revised.

If SLASs are utilized in a contract, a CRB must be established to ensure that any
proposed changes do not impact the quality factors specified in the SLAs. Since the
SLAs are contractually binding any unauthorized change that impacts that contractor’s
ability to satisfy a quality threshold can, in a worst case scenario, result in legal
proceedings. In most cases, the change will have to be reengineered so it will not impact
the quality threshold. If the change still impacts the SLA, then contractor will not be held
accountable for meeting the SLA requirements, and new SLAs will have to developed
and negotiated. The lack of a CRB or a similar process will quickly undermine all of the
efforts to establish the SLAs and will make them worthless.

2. Change Management

A good configuration management system is capable of tracking every phase that
a change request goes through (the change request form, the impact analysis, results and
comments from the CRB, task assignment, the new or modified code, test, acceptance,
and assignment of a new configuration identification). (Dart) The CRB is responsible for
tracking and maintaining status on the configuration items that have been approved.
Although most of those tasks are automated, the information still needs to be entered into
the system. Each time a change goes through a phase, that information needs to be
captured in the configuration repository.

Another function of change management is coordinating the work on a
configuration item. The configuration manager or software librarian generally controls
this function. One of the main functions of configuration control is to coordinate the
access to and modification of configuration items when multiple people could be working
with the same configuration items. (Sarma) One approach to avoiding having multiple
people modifying the same file or folder is when authorized changes are approved, the
developer copies the file or module to be modified, and sets a lock on that file (check-
out) so another programmer does not make concurrent changes to the same file. Only the

authorized programmer is allowed to create a new version of the file (check-in). (Mei,

166

Estublier, 2000) Part of the control process is defining who has authority to perform a
specific change, when that change can be performed, and what changes can that
individual make. Controlling concurrent programming or distributed programming can
be difficult, but lack of control can be disastrous.

Change management also includes risk analysis. The CRB and the program
manager need to assess the risks associated with introducing new requirements at either
the system level or the software level. At NASA they use several factors to assess that
risk, including the size of the change, the location of the change, its criticality, the
number of modifications, and resources needed to make the change. (Schneidewind
2001) The program manager needs to carefully monitor the amount of new requirements
that are generated during development. It is very difficult to limit changes to a baseline
version (political factors, changing business environment, new ideas), but there has to be
a cutoff point where additional changes are moved to later versions. High requirements
or change volatility throughout the initial stages of development indicates that the
stakeholders do not really know what they want, or the development effort was more
difficult than anticipated. In either case the risk to the success of the project increases
with change volatility.

3. Notification

The Lantau Airport Railway project was a complex system of systems project to
build a railway from the airport to the urban areas in Hong Kong. It was a seven year
project that consisted of over 40 contracts. The command and control system and the
billing system accounted for the majority of the software. One of the major problems that
they encountered was a failure to communicate changes among all of the contractors. As
the lifecycle of the project matured they discovered that the contractors would make
small changes to the interface specifications. These changes were not always
communicated to other contractors that may have to interface with that system. This was
due in some cases to time differences in development schedules, and the lack of a central
repository for all contractors. (Wong)

To coordinate access to a common set of configuration items by multiple

programmers working on the same project, most configuration control systems utilize

167

workspaces (part of a file system where the file of interest is located) where the developer
can work isolated from the outside world and other developers. The workspaces support
concurrent engineering in two ways. The first is controlling who has access to the
workspace, and the second is resynchronizing (merging concurrent changes to the same
file) where algorithms can identify changes to the file and blend them into one file.
(Estublier,2000) Control can be accomplished by locking files (which forces serial
development) or concurrent changes and resynchronizing can be utilized. Unfortunately,
the workspace does not allow developers to know what changes are being made in
parallel to their efforts as they cannot see into other workspaces. Configuration
management systems are still struggling with concurrent development issues and
notification, although there is some good research in this area. (Sarma, Estublier, 2000)

Despite the notification problems at the working level, configuration management
systems are able to identify at a higher level, those configuration items that will be
changed, and what the changes will consist of. The difficulty is determining how to
convey that information to the developers and the stakeholders. Notifying all of the
people that need to know about an approved change is a process that needs to be planned,
controlled, and monitored. It is also important to note that the software CRB has
representation on the system CRB, so as system changes are made, the appropriate people
are notified, and the system changes are incorporated into change requests at the software
level.

The configuration management system also needs a method to notify users of the
status of their change request. Users need to know whether their request has been review,
whether it was accepted, who was assigned the work, and when the change will be
incorporated (what release). Some management systems have an e-mail notification that
lets them know when their request was reviewed.

4, Release Management

Large organizations also have a representative release committee, which controls
the content and timing of releases. The release committee is responsible for coordinating
releases with the stakeholders. All projects have stakeholders with different agendas,

priorities, and beliefs concerning how the project should be run. The release committee

168

works with the stakeholders to achieve some form of consensus concerning the
functionality that will be incorporated into the baseline and future releases. The release
committee also tries to ensure that all stakeholders have consistent information regarding
what functionality will be included in the various releases. (Dikel)

Another part of configuration control is monitoring which release stakeholders are
using. While this appears to be straightforward, it is not. It is not uncommon for multiple
versions of the same software to be deployed by various stakeholders due to beta
versions, unique functionality integrated into a specific version for a particular
stakeholder, failure of the system administrators to load the new version, lack of
resources to run the new version, or failure to receive/download the new version. It is
also important to know what version of environmental software (the operating system or
database management system (DBMS)) stakeholders are using. Changing environmental
software can be extremely time consuming as all applications and tools residing on the
current operating system will have to undergo regression testing before migrating to the
new operating system. The Navy and EDS discovered how difficult that was when they
migrated applications into the NMCI system.

Coordinating version releases can be very difficult, especially when they interface
with legacy applications. The move to Oracle 91 may have a huge effect on some of the
older systems. In addition, the applications will have to be thoroughly tested to ensure
that they are compatible with the new DBMS. Some applications will have to be
reengineered. This will require time, money and manpower, all of which are in scarce
supply. This gets even more difficult with distributed systems that reach back into old
databases that may not be under the control of the program management team.

C. CONFIGURATION ACCOUNTING

Configuration accounting is process of tracking and reporting the status of all
versions of the software (from the configuration items to the entire software system),
models, architectures, documentation, and change requests. Configuration accounting
starts with determining the baseline of the software system. This is normally done during

the major reviews that mark the end of a lifecycle phase such as the software

169

requirements review (SRR) or the CDR (critical design review). The baseline can also be
established once a package of configuration items has been tested and approved.

Configuration accounting ensures information regarding the baseline (date, who
approved it, how it was established) and any subsequent changes is captured.
Configuration accounting maintains records regarding the change request, actions of the
CRB, status of the change request, status of the change, the expected completion date,
and the assigned release number. Another purpose of configuration accounting is to
ensure that the name, release, version, and edition of each configuration item, and each of
its subordinate items are recorded, monitored, and when necessary updated. When
changes are made, the configuration identification of all affected configuration items
must be updated. (Horch)

Configuration accounting should support queries such as how many change
requests are pending CRB review, how many changes have been rejected, the number of
change requests in a particular module, as well as a breakdown of the type of requests.
The configuration management system should also be a useful management tool in that it
should be able to track all change requests that are in progress (being developed, awaiting
testing, in testing, awaiting approval, completed and assigned new configuration
identification) completion dates for those changes, how many changes are pending for a
future release, the priority of the change, and which changes are not meeting schedule.

D. CONFIGURATION AUDIT

Configuration audit is the area that SLAs have the most utility. Configuration
auditing is the process of keeping an audit trail of all actions, events, notifications, and
testing that happened to a configuration item. Configuration audit also constantly
monitors the configuration management system to ensure that at any time configuration
items are accurately identified and that the configuration management process is working
correctly. (Dart)

Establishing a good configuration management system can be very time
consuming and the tools are expensive. Unfortunately, the system is only as good as the

people running it and the information that is being fed into the system. If the information

170

in the configuration repository is not accurate or lacks the necessary information, then the
systems usefulness as a quality control tool can be questioned. The system must be
audited to identify areas that may need more attention or training. Additionally, auditing
can also determine if the right changes were made to the configuration item by comparing
the change request form to the documentation that was provided as part of the item’s
modification. A quality software product is dependent upon an accurate configuration
management system and process.

SLAs help the program manager audit the configuration management system
through the use of quality metrics and the monitoring process implemented by the SLAs.
SLAs can specify that configuration identification accuracy on weekly spot checks must
be 98 percent and the accuracy of the accompanying documentation must be 95 percent.
Spot checks can also determine the effectiveness of the CRB in controlling changes.
SLAs can specify that of the changes that need to be reviewed by the CRB, 99 percent of
the changes must have been reviewed by the CRB. Similar quality thresholds can be
applied to documentation requirements, notification procedures, configuration accounting

accuracy, change management procedures, and audit trails.

E. ASSET MANAGEMENT

Program managers also need to maintain tight configuration control in the host
environment once the application or system has been fielded. Appendix (A) includes
threshold values on the accuracy of the configuration management system in the host
environment. Accurate configuration data is essential for troubleshooting, disaster
recovery, and it is an important element in capacity management.

Accurate information regarding the hardware and environmental software that is
hosting the software system will help evaluate the effect that changes to the software or
environmental software will have on the system. If developers are writing the program
using the fastest available PCs, their users may experience performance problems
because they are using PCs that are two or three generations old. If distributed sites are

using different firewalls and have different restrictions regarding port utilizations,

171

problems may occur. Troubleshooting and planning will be easier if there is enough
information concerning all hardware and software assets in the host environment.

Asset management is critical during disaster recovery, especially is a cold site is
used. If new equipment needs to be procured and installed, knowing the type of
equipment being used, the infrastructure and network configuration, environmental
software, and system software is critical. Small errors in the versions of software being
utilized can take hours of troubleshooting to resolve. Good configuration control will
also help to ensure the proper files are restored in case of problems. Installing the wrong
file can have disastrous effects.

Capacity management ensures that the IT infrastructure is capable of supporting
the computing demands of the systems being supported. In the post-production phase the
change management process should also identify the performance requirements
associated with each change. Any changes (modification or new requirements) to the
software may also affect the infrastructure in terms of throughput, performance, port
utilization, security, CPU utilization, memory usage, response time, and availability. For
example a new requirement to encrypt any e-mail notifications that the system generates
may impact the performance of user’s PCs, internal network performance, or it may
require modifications to the firewall. The configuration repository should be updated to
include the technical specification for each change item (e.g., disk space, speed of
processor, expected workload, demands on IT services). New requirements may
necessitate negotiating new SLAs. (ITIL)

The CRB does not go away after a product is fielded. Maintenance of the
software needs the same configuration controls as development, or the fielded system
will quickly develop problems. Program managers need to understand the implications
that maintenance actions are going to have on their systems. They also need to assess

how changes in the system requirements or architecture will affect their entire system.

F. SUMMARY
Configuration management gets little attention if it is done correctly, but if it is

done poorly, the entire development and subsequent or maintenance process suffers, cost

172

and schedule predictions will be underestimated, and the defect rates will increase as
programmers make changes that affect other artifacts. Program managers can utilize
SLAs to monitor the contractor’s configuration management procedures and accuracy.
SLAs reduce the risks associated with poor configuration, and they promote quality

throughout the configuration process.

173

THIS PAGE INTENTIONALLY LEFT BLANK

174

IX. PROGRAM MANAGEMENT

Organizations are increasingly relying upon information technology to enable
their critical business processes. Despite the increasing complexity of today’s systems,
organizations are demanding extremely high levels of quality in the IT systems that they
are acquiring or producing. In many industries the efficiency and effectiveness of an
organization’s IT systems is what gives them a competitive advantage in the market
place. Poorly performing IT systems can result in lost market share, lost customers, and
lost opportunities. As a result, upper management is placing great pressure on program
managers to deliver quality products.

It requires a great deal of management to produce quality software. Program
managers have to ensure that quality considerations are addressed early in the lifecycle
and they must provide the proper amount of oversight to ensure those quality factors are
incorporated into the final product. One of the major difference between a software
project manager and other areas of management is that the software project manager must
not only understand the intricacies of management (requirements, planning, budgeting,
contracting, oversight, tracking), but they must also understand all aspects of the
software-development process, as well as understanding the application domain for
which the software is being developed. Unfortunately, there are not many program
managers that have the software experience necessary to effectively manage a large
software intensive project.

Service level agreements can assist program managers in many of the tasks
necessary to ensure quality is delivered in the final product. SLAs are particularly useful
in the areas of risk management, financial management, contract management, quality

management, and customer satisfaction.

A. RISK MANAGEMENT
A risk in the context of program management is a potential event that can
adversely affect the project. Risk management is the proactive process of identifying and
mitigating potential risks throughout the lifecycle of a system. When developing
175

software there are many types of risk that have the potential to affect the project such as
product risk (the system may not meet expectations), project risk (cost and schedule),
financial risk (another investment may provide more benefit), business risk (the system
will not generate expected competitive advantage), and technical risk (design, interfaces,
compatibility). The program manager is responsible for developing a risk management
plan to deal with each type of risk. SLASs can help to identify risks in the requirements
engineering phase, they can mitigate risks through the use of standards and performance
monitoring, they provide valuable input to the test plan, and they help manage risks in the
post-production phase.

Another categorization of risk proposes that there are three types of risk, known
risk (can be discovered after careful evaluation), predictable risk (based on past
performance and lessons learned), and unpredictable risk, which are very difficult to
identify in advance. (Pressman) Senior management and stockholders of the organization
expect that the program managers will take all necessary steps to address the first two
risks. In the government, program managers have to submit their risk management plan
to the director of the Office of Management and Budget (OMB), as OMB has been tasked
with analyzing, tracking and evaluating risks and results of all major capital investments
in information systems. (Clinton) The government and industry realizes that failure to
address risks can have serious ramifications. The result of project failure can result in
fiscal loss, a loss of reputation, loss of market share, damage to the brand name, and a
loss of competitive advantage. (Frost)

Although the program manager is generally tasked with risk management, it is a
team effort that involves the input of all stakeholders. Risk is a subjective notion, and it
is important that risk, from the perspective of all stakeholders is examined. It is also very
important that the program management team understand the level of risk that upper
management is willing to take regarding the program. Factors such as the maturity of the
company, its financial stability, its portfolio of other programs, and the expected return
on investment all influence the level of risk management is willing to accept.

The program manager needs to take a holistic look at risk management. Risks

need to be identified to the greatest extent possible at each stage of development and at

176

multiple levels of abstraction from the system level to component design. It is also
important to realize that risk management involves uncertainty and the intent of risk
management is to take actions that reduce risk to levels that management is willing to
accept. It is not possible to eliminate all risk.

The risk management process generally consists of five steps. The first is to
properly scope the project and determine the risks associated with the project. The next
step is to analyze the risks to determine their impact, identify factors that will affect those
risk areas, and evaluate the likelihood of occurrence. The third step is to prioritize the
risks. The next step is to determine a course of action that will mitigate the risk if
possible. The final step is to monitor the effectiveness of the risk mitigation plans.
(Peltier, P. Smith) Each phase of the development cycle will contain risks unique to
those phases, but the impact of those risks has the potential to affect the entire project.

In the requirements phase, risks are evaluated in terms of the extent to which
stakeholders can define what they want the system to do, project size, technical
feasibility, interoperability concerns, project cost and schedule, and the effects the system
will have on the business processes it supports. In the development phase, the
architecture, design, code, requirements churn, and processes are evaluated to determine
whether the system will be delivered with the required functionality and quality within
budget and schedule. Once the system is deployed risks are analyzed in terms of
customer satisfaction, resource availability, maintenance actions, disaster recovery, and
configuration management.

1. Risk Management in Requirements Phase

The first step in the development of a risk management plan is to scope the
project and identify the risk drivers. Most organizations utilize a risk identification
checklist that is developed from industry standards, benchmarking other organizations, or
they are internally developed to incorporate a specific organizational culture. The
checklists consist of primarily predictable risks, but they also include some known risks.
The risks are then ranked based upon the probability of occurrence. Then next step is to
analyze the impact that the risk, if it occurs, will have on the project. The risks can then

be assessed to determine impacts on cost, schedule and performance. A risk management

177

plan can then be developed to mitigate the occurrence of risk, monitor risk areas, and
reduce the impact if the risk occurs. Although risk management occurs throughout the
lifecycle of a system, much of the plan is developed during the requirements engineering
phase. The SLA development process contributes to the development of the risk
management plan by improving communication between stakeholders, challenging
assumptions, prioritizing risks, identifying risks, and proposing steps to mitigate risks.

Before the project is even started management must determine whether they
should invest the time, resources, and capital in the system. Management must evaluate
their customers, employees, competitors, available resources, and the environment to
determine where they should invest their capital to obtain the greatest return or position
themselves in the market to obtain a competitive advantage given a dynamic business
environment. Some of the risks in the concept phase of the project are whether the
system will return the benefits expected, whether other projects could return more
benefits, whether the project can be completed in time to leverage its capabilities for
financial gain, whether new technology will quickly make the investment obsolete,
whether new partners will be able to interface with the system, and whether the end users
will embrace the system.

If the concept is approved, the program manager must first determine the proper
scope and of the system. When defining the scope of the project, the program manager
must determine what functions the system will and will not perform.

Some systems are inherently more risky than others. Systems that utilize existing
technology to support low value business processes are not as risky as systems that utilize
complex or emerging technology to support a critical business process.

Before specific requirements are gathered, the program manager should already
be considering general risks associated with interoperability considerations, the operating
environment that the system will be deployed in, whether emerging technology will be
utilized, the skills of the management team, the experience of the contractor or in-house
developers, schedule and cost constraints, the size and complexity of the projected

system, and the affects of a dynamic market place.

178

During the requirements engineering phase, the scope of the system will be
refined, and a better understanding of the requirements will lead to more risk
identification. In addition to risks associated with the system, there are also risks
associated with the requirements engineering process itself. Some of the common
program risks associated with requirements is whether customers were involved in the
requirements engineering process, whether stakeholders have realistic expectations,
whether requirements are stable, and whether the requirements are complete. (Pressman)
The SLA development process addresses many of the requirement risks.

Risk management tries to reduce the amount of uncertainty as much as possible.
The SLA development process in beneficial in bringing stakeholders and the contractor
together to discuss project scope, assumptions, functional requirements, as well as non-
functional quality requirements. Risks can be reduced by gathered as much information
as possible concerning stakeholder and management’s expectations in terms of system
functionality, performance, costs, schedule, and budget. The process of developing SLAs
fosters communication among stakeholders and will serve to identify many assumptions
and make explicit many implicit requirements. The development team can provide the
program management team with a great deal of information to reduce some of the
uncertainty.

The development team consisting of individuals with different backgrounds and
perspectives can also help the program management team in identifying risk areas that
the program management team did not consider. Many risk identification checklists do
not include non-functional requirements, despite the fact that there are many risks
associated with those requirements. Template SLAs can also help to identify risks.

The program manager must also evaluate the assumptions associated with the
system. Some of the assumptions include the amount of support management is willing
to give the project in terms of talented workers, resources, facilities, and power. Other
assumptions include the degree to which requirements are known, whether all
stakeholders have been identified, whether new technology will be mature by the
implementation date, whether COTS packages should be incorporated into the system

(Schneidewind 1998) and whether internal and external business trends will continue.

179

Assumptions should be evaluated in terms of the degree of uncertainty, possible impacts,
whether they are valid, and how they will be addressed.

The SLA development process is also helpful in defining and prioritizing those
business critical processes that must be supported in the new system. Identifying critical
processes allows the program manager to concentrate risk management efforts in those
areas. In a large project it is very difficult to manage the all of the risks that have been
identified. Efforts need to be focused on those areas that have the largest potential to
cause damage, or that have the highest probability of occurring. Resources are too scarce
to waste effort on low risk areas.

Identifying critical processes also helps in assessing the security requirements and
risks to the information used, processed, and sent from the system. The efforts spent
protecting the information in the various pieces of the system has to be weighed against
the business criticality of that information and the processes they support. Stringent
security requirements provide more protection for the information, but they also make the
system less flexible. SLAs that deal with security focus on those critical information
areas.

SLAs can be utilized to mitigate and monitor product and process risk.
Depending upon the risk identified, SLAs can be developed to establish quality
thresholds for that area. For example if one of the risks identified is in the schedule
planned for the project, then measurements can focus on total project effort, aggregated
schedule slippage, project staffing, requirements churn, critical path analysis, size (i.e.,
COCOMO II), and complexity. The monitoring process and reports generated as a result
of SLAs focus management and the contractor’s attention on the areas covered by the
SLAs.

SLAs can also be used to encourage the contractor to devote additional attention
to risky areas through the use of incentives or penalties. If schedule risk is a high priority,
then incentives can be offered if the actual schedule is better than the estimated schedule.
In determining what to measure it is helpful to determine the behavior you want from the
contractor, and determine what measurements will most likely encourage that behavior.

(Kendrick) The SLAs mandate monitoring of the quality factors associated with process

180

and project quality. If quality thresholds are not met, program managers and the
contractor are informed of the violation, and the program manager is at least aware of the
increased risks associated with that particular quality factor. That knowledge may lead to
closer monitoring or corrective action to reduce the risk and improve the quality.

Project managers should review risks identified in prior projects for lessons
learned. Evaluating risks identified in prior projects, remediation actions taken, and their
effectiveness can offer valuable insights. Risk management is easier when common
processes and procedures (i.e. standards) are utilized. Historical data can be gathered and
statistical analysis can be applied to new projects. Applying historical data on projects
that differ in processes and methodologies is more difficult and less accurate.

SLAs can be utilized to ensure management and contractors understand the
standards to be used in the project. As discussed earlier standards SLAs will also ensure
that the project is monitored to ensure that the specified standards are being implemented
correctly. Deviations from prescribed standards are an indication that the software-
development process is veering away from the production of quality software. (Horch)
Test plans can also incorporate audits of processes to measure contractor compliance.

2. Performance Monitoring

Performance management reduces overall program risks by ensuring that mission
critical services, processes and procedures are being followed. A good performance
management plan will help the contractor identify potential problems throughout the
system’s lifecycle before they result in loss of business functionality. SLAs support
performance management through performance data collection, real-time monitoring,
problem detection and diagnosis, and trend analysis. (Simitchi)

To reduce and manage risk, program managers need to measure or monitor
contractor and system performance throughout the project’s lifecycle to ensure
requirements, standards, and quality factors are being met. Monitoring performance,
whether through progress reports, milestone reviews, real time software monitoring,

audits, or formal inspections, serves to inform the program manager of potential problems

181

(risks), it allows the program manager time to take corrective action, it influences
contractor performance, it provides information for future projects, and it helps to achieve
a higher quality product.

The program manager must develop a plan or methodology to determine whether
the contractor is performing in an effective (requirements are being met) and efficient
(economical utilization of resources and time) manner. Program managers cannot simply
place requirements in a contract, award the contract, and test the final product to
determine compliancy. The risks and potential for failure are too great using that
approach. The plan must also cover system performance to ensure that it is operating
within specifications.

Performance management is a process whereby the contractor is given concise
quantitative requirements, feedback mechanisms are put in place to evaluate compliance
with the requirements, consequences for noncompliance are discussed, contractor
behavior and subsequent performance is monitored, and actions are taken by both parties
if problems persist. (Richman, De Waal) Part of the SLA development process is
identifying those functions, quality factors, standards, and processes that are critical to
ensuring the delivery of a high quality product. The SLAs not only specify the quality
factors and thresholds that need to be adhered to, but they also specify the means and
timeframes to measure compliance with those quality thresholds, they establish resolution
procedures, and they contain penalties for noncompliance. The program manager can
utilize the information contained in the SLA as part of the overall performance
monitoring plan.

Analyzing the data collected from monitoring can identify trends that can also
reduce risks. Most SLAs require periodic as well as real time reports that provide
performance information on the system. By regular monitoring and comparison against
SLA thresholds, exception conditions can be defined, and near misses of SLAs can be
reported upon. For example, analysis of monitoring data may identify issues such as
contention (data, file, memory, processor), inappropriate locking policies, inefficiencies
in the application design, unexpected increased in transaction rates, and inefficient use of

memory. (ITIL) The data can also be used to modify the SLAs if necessary, predict

182

future resource usage, or evaluate the SLAs in terms of their effectiveness in reducing
risk, improving software quality, and driving contractor behavior.

Template SLAs specify quality requirements in many of the common critical
success areas (e.g., if the results obtained in those areas are satisfactory, the project will
be successful). Although template SLAs have to be tailored to each project, they are
useful in that they may highlight areas that other development teams felt were important
to the success of their system. Contractors are more likely to devote effort to areas that
they know will be inspected. As such, SLAs are useful in focusing the contractor on
processes, procedures, and designs that will reduce risk and improve quality.

Performance monitoring should also apply to the host environment. In addition to
monitoring system performance (throughput, resource utilization, response time) the
program manager should monitor infrastructure performance (jitter, latency), security,
problem response, end-to-end quality metrics, and availability. Risks are reduced by
monitoring the entire spectrum of the system because problems can be quickly identified
and resolved, trend analysis can identify potential problems, and a holistic view of the
system may identify end-to-end risks that were not seen by monitoring system
performance only.

3. Test Plan

A good test plan helps to reduce product risk. Managing risk attempts to reduce
the amount of uncertainty as much as possible. A well-developed and executed test plan
can assist the program manager in reducing some uncertainty. The purpose of testing is
to validate that requirements have been met and to discover problems or defects.
Reviews, inspections, and testing can create a great deal of information on the
performance of the system and the contractor. Testing provides confidence in the system,
it provides an additional perspective on risk, and it reduces overall product risk.

The additional personnel that conduct the testing also help to reduce risk by
bringing additional skill sets and perspectives to the analysis of the module, architecture,
system, or processes. Additional input from the test community can be helpful in

identifying problems and developing solutions or better processes.

183

Testing gives the program manager a certain amount of confidence in the product,
and in the contractor’s ability to deliver a quality product. Much like performance
management, testing allows the program manager to measure the level of success in
achieving specific critical success areas. If a contractor is not performing well in unit or
module testing, then the overall risks to the project being completed on budget and on
time increase. Testing in the early phases of a project allows the program manager to
take action to resolve the risks.

Testing also reduces risks by discovering defects before the project transitions to
operational status. Risks to schedule and budget increase the longer a defect remains
undetected in the system, as it is much easier to correct deficiencies in the beginning
phases of a project. (Horch) A rigorous test plan reduces risk that is passed on to the
customer in terms of functional problems, software safety and security, and user
dissatisfaction.

The previous chapter discussed how SLAS can help program managers in the
development of the test plan by helping to identify critical quality factors, increasing
communication with the test community, quantifying quality thresholds, and defining
how the requirements would be verified.

4. Post-Production Risk

The program manager is also responsible for managing the risks associated with
post-production support. In post-production support the program manager is not only
concerned with the performance of the system (meets functional and non-functional
requirements), but they must also be concerned with the risks associated with the host
environment (facilities, servers and infrastructure), the communications channels, and
follow on maintenance actions. SLAS can be written to address many of the post-
production risks including physical security, problem resolution, disaster recovery, and
security.

One of the risks that the program manager must address is the physical security of
the host environment. Physical security is not only concerned with employee access, but

it also deals with issues such as whether the data center has fire detection and suppression

184

systems, the condition of the electrical grid, whether water pipes run through the data
center, the condition of the heating and air condition system, and the amount of dirt or
dust in the air.

The system can be designed with great application security, but if unauthorized
employees or maintenance personnel have access the data center or tape storage area,
then those application security measures can be easily bypassed. The data center should
be restricted to only those personnel that must have access to perform their daily work,
access to secure areas must be protected by an electronic access control system, and
security must be monitored 24 x 7. The security system must also have a log of when
employees accessed those secure areas for auditing purposes. Appendix (A) lists a
number of physical security requirements in the facilities requirements section. When
security procedures and processes have been agreed to, SLASs can be used to ensure those
processes and procedures are adhered to.

The availability of a system depends in part on the speed at which the system can
be restored once a crash has occurred. If files or programs need to be restored from
backup tapes, then those tapes need to be quickly accessed, and they must be accurate.
The risk that the system will not meet availability goals increases if the host provider
does not have good backup and tape management procedures in place to ensure that all
system software and related storage configuration can be recovered if an operational or
hardware failure occurs. Appendix (A) contains a number of backup and recovery
requirements. SLAS can be utilized to ensure agreed upon procedures and documentation
requirements are being implemented correctly.

The program manager must also evaluate risks in terms of a natural disaster or
terrorist attack. The host provider must have a disaster recovery plan to cover the
possibility that a hurricane, tornado, flood, or blizzard damages its ability to operate for
an extended period of time. Disaster recovery, or business continuity involves the
planning and implementation of procedures to ensure critical business operations resume
following a disaster and that they return to normal operations as soon as possible. Part of
the process is determining which applications are critical and which are not, then

deciding upon the time frames for recovery and site recovery necessary to meet the

185

recovery needs. In most cases organizations are too dependent upon their IT systems for
their core business functions to loose that functionality for more than a couple of days.
Some organizations cannot afford to loose their systems for more than a couple of hours.

Good disaster recovery plans utilize backup sites that are not in the same
geographical proximity to the data center. Appendix (A) describes three types of backup
sites that are commonly used, shell sites, warm sites and hot sites. A shell site just
provides the necessary facilities for computing, it does not provide any equipment. A
warm site provides facilities and equipment, but all system software would have to be
installed on the equipment. A hot site provides facilities, equipment, and system
software, which receive backup data from the host site at least daily or depending upon
the criticality of the system in a near real time. The hot site should mirror the system in
the host environment to the greatest extent possible.

Good recovery plans should have a disaster recovery team listed with cell phone
numbers, a blueprint of where equipment and infrastructure are located, a list of vendors
to call to replace equipment and software, a complete inventory of the hardware (model
numbers, purchase date, associated software with version numbers), a complete inventory
of the software (version numbers, licenses, license keys, date purchased), maintenance
contracts, all relevant phone numbers (especially the recovery site), installation and
operating procedures for the hardware and software, and personnel requirements to
recover the existing site and run the remote site. (Philcox) The recovery plan must be
exercised periodically to ensure the host service provider can provide recovery in the
time frames stipulated in the contract or the SLAs.

SLAs help to reduce risks by identifying risk areas and proactively monitoring
development processes and procedures and system performance to identify problems
before they become serious. The SLAS also encourage the adoption of standards, which
reduce risk, increase effectiveness, and standardize operations throughout the
organization. The SLA provide quality metric verification methods which can be used to

test product risk, and it can be used to decrease post-production risks.

186

B. FINANCIAL MANAGEMENT

One of the most important tasks that a program manager performs is obtaining
and retaining funding for the project. Before a project is started a mission need statement
(MNS) or a project overview statement (POS) must be approved. The MNS and POS
essentially define a problem that needs to be addressed, it describes how the problem will
be solved or what the project will consist of, it states why the project is needed, and it
details what specific business value or operational advantage it will provide. (Wysocki)
This section makes the assumption that management has already approved a MNS or
POS, and funding necessary for a detailed project plan has already been received.

The development of SLAs provides valuable information that will assist the
program manager in managing the projects finances. SLAs specifically help financial
management in determining the scope of the project, identifying business critical
processes and functions, they help to allocate costs, they provide justification for service
related expenditures, and they coordinate the IT strategy with business strategies.

In the requirements engineering phase of development, stakeholders must
determine the scope of the system. Stakeholders need to determine what they need and
do not need in the system. As was discussed in Chapter 111, the SLA development process
provided an additional venue and methodology to explore requirements, it concentrated
on business essential non-quality factors that support critical success criteria, and it looks
at long term requirements that will affect lifecycle costs.

Once the system has been scoped, and requirements have been generated, it is
possible to estimate the costs, schedule and resource requirements to development the
system based on function points, KLOC analysis, COCOMO II, or other software
estimation techniques. The program manager can then take these more concise estimates
back to management to give them a rough idea of the costs associated with the project
(estimates early in the project are not as accurate as those made later in the development
process). Those costs can then be compared to the expected benefits to determine
whether to proceed with the project.

Program managers are typically fighting for funding with other competing

interests. Management will fund those projects that it believes will return the greatest

187

return for the least amount of risk. Management also expects that they are purchasing a
quality product. If management is confident that the program manager has conducted a
comprehensive analysis of the requirements, has identified critical success areas or
factors, has developed a risk management plan, has formulated a plan to closely monitor
development and has developed a comprehensive test plan, they are more likely to fund
that project over another project that is not as well organized. SLAS provide management
with that confidence.

Chapter X outlines research that demonstrates that IT professionals believe that
the use of SLAs will improve software quality. Research has shown that quality
improvement, although expensive in the short run can produce cost savings over the
lifecycle of the product. The same research also demonstrated that quality improvements
were most cost effective at the beginning of the project. (Slaughter) However, the
marginal return on quality improvement decreases as more effort in that area is applied.
As such, program managers need to determine how much to invest in quality
improvement. The SLA development process attempts to make a business case
(demonstrate how the IT investment supports and advances business practices) for every
SLA. As such, many requirements that are ‘nice to have’ are eliminated or are deferred
to another release. The business case allows management to see the effect of funding
cuts on specific SLAS, or their return on investment. It also allows the program manager
and management to prioritize the SLAs based on business needs. The SLA development
process helps to ensure funding is only spent on mission critical requirements.

To gather the information necessary to negotiate or develop SLA thresholds, it is
often important to gather measurements on existing systems. It is important to measure
actual performance against that which is expected. In many cases stakeholders have
unrealistic expectations such as wanting 100 percent reliability. The SLA development
process and template SLAs will help to identify those requirements that deviate from
industry standards or benchmarked measurements. Program managers cannot waste

funds on unrealistic or unsupported requirements. SLAS can be expensive and it is very

188

important that the quality thresholds specified can be justified (what are the upper and
lower threshold boundaries and what affect will they have on the supported business
process).

SLAs are also useful in reducing overall lifecycle costs by concentrating on
quality at the beginning of development. Quality factors such as maintainability and
security can have long term financial implications if either are not incorporated in the
requirements or the design. Quantifiable software metrics assist in making good design
tradeoffs between development costs and operational costs. This is important when tight
development schedules and limited funding could cause contractors to skimp on quality
factors such as maintainability, portability or usability. (Boehm 1991) It is also important
to remember that in large software systems, the majority of costs occur after the
development phase. Unfortunately, few organizations make conscious tradeoffs between
development and maintenance costs. (Vigder)

SLAs are also useful in supporting IT accounting where costs are allocated to
specific budget centers or stakeholders. Since SLAs are justified based on business case
analysis, the services or benefits that the SLA supports can be traced back to the program
management effort, the development effort, or to a specific stakeholder requirement (e.g.,
finance department). The fundamental benefit of IT accounting is that it provides
management information on the costs of providing IT services that support the
organization’s business needs. This information is needed to enable IT and business
managers to make decisions that ensure the IT services organization run in a cost-

effective manner. (ITIL)

C. QUALITY CONTROL

Program managers are expected to produce high quality products. Unfortunately,
there are numerous examples of failed software projects because program managers did
not or could not exercise proper quality control. Quality control consists of the actions
necessary to certify that desired standards and quality requirements are adhered to during

design, implementation and production. (Tricker) In addition quality control consists of

189

those activities necessary to detect, document, analyze, and correct defects. (Horch)
SLAs are a quality control mechanism.

SLAs help the program manager institute a quality control program by identifying
business essential quality factors throughout the system’s lifecycle, quantifying those
factors in measurable terms, defining how and when the quality requirement was going to
be verified, and encouraging the contractor to meet quality goals through penalties or
incentives.

The development of SLAS helps make those involved with the process more
aware of how quality considerations influence design, lifecycle costs, and performance.
SLAs also make management and the contractor more aware of quality in general. The

penalties/incentives will help to focus stakeholder’s attention on quality issues.

D. MAINTENANCE

Software maintenance is the modification of a product after delivery to correct
errors, improve performance, or adapt the product to a modified environment. The
modification relates to the code as well as the underlying documentation. The object of
software maintenance is to modify the product, while preserving its integrity. (Bennett)
The program manager must still maintain quality control over the software even after it
has been deployed. Configuration control processes and performance monitoring are
essential elements in post-production IT management.

Maintaining IT systems is every bit as challenging as developing new systems,
however post-production support does not receive the same resources as a system in
development. New systems generally receive the funding, support and oversight
necessary to develop the system. Once a system is developed, program management is
typically turned over to a functional specialist who deploys and maintains the system.
Deployed systems do not generally receive the same funding and personnel resource
considerations that they deserve. Businesses are constantly trying to divert more funding
from support expenditures to new production.

Maintaining systems is especially difficult with older legacy systems. Older

systems are often plagued by inconsistent, inadequate, or missing documentation. These

190

systems also tend to be fragile when it comes to software migration or modifications.
These legacy systems are constantly being pressured to adopt the latest technology,
architectural mandate, or respond to new customer or market driven enhancements.
Additionally, contractors or junior programmers, who may not understand the “big
picture” view of the system, often because of their junior status, are assigned to
implement the changes to these older systems. (Prouten)

Ensuring the integrity of the original requirements is extremely difficult as a
system ages. As personnel with the tacit knowledge of the original system leave the
program office and the contractor’s team, the need for accurate documentation becomes
more important. To maintain the integrity of the original system, all modifications and
maintenance actions must be entered into the configuration management system, where
they will be submitted to a CRB with the appropriate documentation, the changes will be
tracked and controlled, new identification will be issued, and the change release will be
carefully managed. Unfortunately, as systems age, it is not uncommon to discover that
programmers have violated standards, architectures and procedures in order to make a
system operational.

Software maintenance is extremely important because some studies indicate that
maintenance costs can account for up to 70 percent of a system’s lifecycle costs, (Hulse)
and other place the figure at three to four times the initial cost of the system. (Vigder)
Additionally, the maintenance philosophies incorporated into the system design
influences programmers’ ability to quickly and reliably change software. Slow change
equates to lost business opportunities. (Bennett) An example of a systems designed for
software maintenance is one that contains architecture that are well defined, clearly
documented, and promotes design consistency through guidelines and design patterns.
(Hulse) The maintenance philosophy can also have a tremendous influence on the total
lifecycle costs of a program. Unfortunately, few organizations make conscious tradeoffs
between development and maintenance costs. Many systems are delivered without
proper documentation and are given to the maintenance centers without the necessary
knowledge. This increases the cost of maintenance and reduces the quality of the work.
(Vigder)

191

In the post-production phase, any proposed maintenance changes or changes to
requirements still needs to be reviewed by the CRB. Although the composition of the
members of the CRB may change as maintenance contractors or personnel replace those
that were involved in the development (an ideal situation is when the people performing
the development work are also involved in the long term maintenance of the system) the
functions that the CRB perform are still essential.

The CRB review the proposed maintenance action and the effects it will have on
the operating system, architecture, functionality, service level agreements, documentation
and training. The board also discusses the time frames to implement, security of the
source code, methods of issuing the update, effect on interfaces, and scheduling server
down time to implement changes. The board also reviews the effect that the maintenance
action will have on the underlying processes and business logic built into the system.

It is still important to include stakeholders in the CRB as it is difficult to fully
understand and analyze such process issues as information flow, division of work, and
coordination without including organizational context in the analysis. Organizational
context refers to characteristics of relationships between process participants. (Briand)

The CRB also helps to ensure that the test community is involved in the change
management process. The changes need to meet specific performance requirements that
need to be specified as part of the maintenance package. The changes need to be
incorporated into the testing package so when changes are made, the test community will
verify that the changes actually meet the specified requirements. In some cases it is
difficult to determine the actual status of a program. Many organizations that do not
include the test community in the CRB are forced to declare a task complete when the
person responsible for the task declares it to be complete. (Vigder) The test community
will have processes and metrics in place to determine if a maintenance effort was
completed correctly.

The CRB can also be helpful in evaluating the effects that new technologies will
have on the system. As business needs change and new technology is introduced, the
system may have to undergo dramatic change to incorporate proposed modifications.

Often, management proposes the adoption of new technologies without consideration of

192

what happens when the software has to be changed. For example, object oriented
languages were supposed to make maintenance much easier, however, these languages
must be designed with care (e.g., controlling inheritance and threads) or their
maintenance can be more difficult that traditional languages. (Bennett) The CRB along
with contractors can help the program manager scope the maintenance project and what it
will take to accomplish in terms of cost and schedule.

Quality control is stressed during the development of software, but it is rarely
evaluated after the application goes to production, unless there are major problems. The
program manager must constantly monitor the program throughout its lifecycle to
measure the effectiveness of the program, quality, and to detect early signs of problems
that may require maintenance action. The SEI quality framework lists attributes that may
help program managers track and categorize problems. This information can improve
overall knowledge about problems within the program, and can be used to determine if
maintenance action is warranted. (Kajko-Mattsson)

SLAs can be utilized for the maintenance actions in much the same manner as
development efforts. Software quality can be improved in the maintenance phase by
utilizing SLAs to ensure the contractor adheres to SLA mandated documentation
requirements, specific standards and processes (configuration management process),
quality requirements (defects, complexity, security), and performance requirements
(throughput, availability, response rate). As most of the program managers in the post-
production phase do not have a technical background, template SLASs can help them
understand the metrics that should be collected when maintenance action is performed.
Although the program manager may need assistance modifying the template SLAS to
meet the unique maintenance needs of the system, the major quality areas will be

addressed, and the program managers will be more informed.

E. CONTRACT MANAGEMENT
Organizations are becoming more reliant upon IT as a tactical and strategic
business tool. IT has provided organizations with the increased computational powers

and communications to rapidly process and act on data. The advent of e-business

193

(business utilizing the Internet) has introduced a new distribution channels for goods and
services, increased corporate partnerships, introduced new markets, and has lead to
innovations such as just-in-time inventories. IT has also enabled organizations to become
flatter, allowing them to respond and adjust to external forces quicker and more
effectively. Organizations that can leverage IT better than their competitors will gain a
significant competitive advantage.

As technology rapidly advances, these mission essential IT systems are becoming
more complex and more difficult to manage internally. Many organizations have
discovered that they do not have the necessary IT skills within their organization to
develop and/or manage these systems. Rather than hire IT specialists, or invest in
training for their staff, they are considering outsourcing their IT work as a strategy. This
is especially true for smaller businesses that cannot afford to keep the in-house IT staff
necessary to develop, maintain, and monitor IT intensive systems.

Outsourcing is the process of contracting with a service provider to perform a
function or functions that used to be performed by the organizations own (in-house) staff.
Outsourcing has been a business strategy for a number of years. Organizations are
generally more comfortable assigning functionality to in-house staff as it gives them
more flexibility, they do not need to contract for the services, in-house staff already
knows the organization’s policies and procedures, they have greater trust in their own
staff, and in many cases they were cheaper than contractors. However, as more
specialized skills are needed to develop and maintain IT intensive systems, outsourcing is
becoming more advantageous.

The emergence of companies specializing in providing IT services (external
service providers (ESP)) have provided a source of IT specialists that can in many cases
provide high quality service for lower prices than internal IT organizations can. 1T
outsourcing is gaining popularity and is increasing in volume worldwide. In many cases
IT managers have little choice but to outsource as ESPs provide access to cutting edge
technology and skilled staff, they share the project risk, and they allow organizations to
concentrate on core competencies, and they can be cheaper. (King, Goth, Greaver,

Nelson)

194

However, outsourcing efforts require additional discipline and management
oversight that may not be necessary with in-house development and maintenance.
Program managers not only need to be involved in requirements determination, risk
assessment, quality management, change management, and test and evaluation, but they
must also be involved contract preparation, contractor evaluation, proposal evaluation,
contract tracking and oversight, and contractor performance management. The program
manager must be an informed buyer. (Feeny) Program managers must develop strategy
to deal with ESPs that includes how the program manager will manage the contract
relationship, access to proprietary information, chains of command, monitoring policies,
dispute resolution procedures, and early termination.

Contract management is one of the program manager’s most important tasks. The
purpose of contract management is to obtain the services that are defined in the contract
and achieve a return (business value) on the investment. (Lewis) A poorly developed and
managed contract can quickly lead to performance and fiscal problems. Contractors are
profit driven, nothing that they do is altruistic; their stockholders will not allow it. As a
result, contractors are looking for every cost cutting measure that they can employ to
maximize their profits. While not the majority, there are contractors that will not fully
meet requirements (e.g., cutting corners) if they believe they can get away with it. Other
contractors will take advantage of vague requirements to deliver a cheaper product that
may not meet user expectations. The program manager needs to develop a contract that
accurately specifies the requirements (terms and conditions for acceptance of the
deliverable); while at the same time holds the contractor accountable. The program
manager must also balance the desire to constantly monitor and control the contractor
with the reality that a partnering relationship works better than an adversarial one.

1. Contact Preparation

This section will discuss contracting as it applies to outsourcing of IT services,
but the same concepts can be used internally between a business entity and the IT
department. Contracting for IT services can be very complex, especially when dealing
with the government where the Federal Acquisition Regulations (FAR) and Defense

Federal Acquisition Regulations (DFAR) must be followed. A detailed discussion on

195

contracting is outside of the scope of this dissertation; therefore this section will
oversimplify the contracting process to emphasize the positive affects that SLAs have on
the process.

When contracting for IT services, the organization requesting the services needs
to first determine their requirements. Those requirements (including the SLAS) are
incorporated into a document called a request for proposal (RFP). The RFP is sent to
organizations that the contracting officer believes can perform the work requested. In the
government, the RFP is advertised in the Federal Business Operations, (formerly the
Commerce Business Daily). Those organizations responding to the RFP or to the Federal
Business Operations submit a statement of work (SOW) that describes how they will
meet the requirements requested in the RFP. The SOW also includes the organization’s
estimate on how much it will cost to provide the service, and a schedule that defines how
long it will take to start or provide the service. When the contracting officer has received
SOWs from the organizations interested in performing the work, proposal evaluation
begins. The contracting officer evaluates the SOW for competency (demonstrating an
understanding of the domain and contracting procedures), professionalism
(responsiveness to RFP), risk, costs, schedule, past performance, and technical
proficiency. When a contractor is selected to perform the work, a contract is written,
which specifies the requirements, and contract type (e.g., firm fixed price, cost-plus, cost-
plus incentive). At this point the contracting officer and the organization negotiate a price
and timeline for the service, as well as other terms such as control of intellectual property
rights and whether equipment or material will be furnished to the contractor to perform
the requested service. When a price is agreed to, the contract is awarded, a contracting
officer representative is assigned to manage the contract performance, and work begins.

Throughout the contracting process (i.e., before contract award), the contractors
and the organization’s contracting officer are meeting and exchanging questions to ensure
that the contractor understand the requirements, and in some cases to educate the
contracting officer and the program manager about conflicting requirements or technical
feasibility. The vendors bidding on the contract want to ensure they perform due

diligence so they understand the scope, the work to be accomplished, performance and

196

quality criteria, the operating environment, what deliverables are expected, schedule
constraints, and acceptance criteria. When the vendors feel they understand all of the
requirements, they can begin to prepare their SOW that will detail how they will
accomplish the work.

The foundations of contract management are laid in the contract itself. The
contract should specify agreed levels of service, quantifiable functional and non-
functional attributes, incentives, timetables (milestones), measures of performance,
communication channels, escalation procedures, change control procedures, and price.
(Lewis) Well written contracts also define the authority that each party has to assign,
remove or supervise personnel from the contractor’s team, intellectual property rights,
ownership of the source code, terms and conditions to terminate or modify the contract,
use of third party contractors, transfer or purchase of equipment, migration plans, and
acceptance critieria. (Chorafas)

SLAs help to form the foundations of the contract because many of the elements
of the contract such as escalation procedures, quality thresholds, points of contact, and
roles and responsibilities are already incorporated if a template SLA similar to those
found in appendix (A) is used. Strong formalized requirements along with performance
monitoring can help to improve the working relationship between the vendor and the
contractor. Poor contracts lead to friction, which in turn leads to distrust and ultimately
results in poor performance. (Chorafas)

A common understanding of the goals of the project and a monitoring system that
identifies and resolves problem issues before they affect contract performance creates an
environment that is more conducive to forming a good partnership. A good working
relationship requires continuous meaningful two-way dialog between the organization
and the contractor. SLAs help establish communication by identifying the chain of
command, escalation procedures, and identifying the individual(s) that will be monitoring
the SLA. In addition, the very process of monitoring the SLA will in many cases open
dialog between the monitor and the contractor that may identify problems, or signal that

the contractor is meeting or exceeding all requirements.

197

Contracting for services requires that all stakeholders and the contractor have a
clear understanding of the requirements. It requires a great deal of time and effort to craft
a contract that accurately describes the deliverables and acceptance criteria. There is a
tendency to write ambiguous language into the contract in the hope that as the contract
progresses details can be worked out. This is common when there are time pressures
forcing the program manager to get the contract signed and get the work started.
Unfortunately, unless there is a great working relationship between the organization and
the contractor, there will be conflicts when it comes to defining the small details. In
many cases contract modifications are needed to better define the requirements, and extra
funds will be needed before the contractor will execute those new requirements.
Organizations will have little contractual recourse if they disagree with the contractor’s
interpretation of their ambiguous requirements.

The SLAs development process and template SLAs show organizations the value
of writing very detailed requirement specifications for the product. Detailed
specifications make it much easier for any organization (in-house or outsourced) to
deliver a quality product on time. (McLaughton) Detailed specifications also make it
much easier for contractors to put together a bid on the RFP. Precise requirements allow
the contractor to make better estimates of the resources (manpower, skills, funding) and
time that it will take to complete the project. (Lewis) The more effort that the contractor
can put into the bid, the easier it is for the organization to evaluate.

It is not unusual for organizations to bid low (i.e., low ball or buying in) on a RFP
to get the contract. Once they get the contract, they send in a team to perform true due
diligence to determine what it will cost to actually perform the services specified in the
contract. If they underbid the contract, they look for additional work that was assumed,
but not implied in the contract, and they look to recoup funds by overcharging on
additional requirements that are generated during the development or support effort.
Either approach tends to strain the contract relationship. It is important to note that any
additional work must be accomplished through a contract modification, where the
contractor must demonstrate that there were deficiencies in the RFP, or that new

requirements have been generated. When SLAs are included in the contract, contractors

198

are more likely to take the time to develop good estimates and determine what steps are
necessary to accomplish the tasks while reducing their risks, because the financial risks
(penalties or incentives) of not doing so can be severe.

SLAs are useful in contracts not only because they concentrate on quality factors,
but they also have the ability to penalize the contractor for non-performance without
having to resort to termination clauses (In government contracting the term ‘penalty’ is
used to represent the withholding of any incentive payments or bonuses associated with
the SLA, the FAR does not allow a fine for nonperformance). Most contracts include
termination provisions where a contract can be terminated if the contractor is not abiding
by the terms and conditions of the contract (requirements, processes, cost or schedule
constraints, personnel turnover). Unfortunately, while it may be advantageous to
terminate a contractor for fiscal reasons, it achieves little in terms of fielding the system.
As a result some contractors will work at the minimum accepted levels of performance in
an effort to gain more profits. To motivate contractors to perform better many contracts
include incentives, which are normally based on cost and schedule thresholds. Incentives
are normally based on passing milestone reviews, with the assumption that the reviews
will determine whether functional requirements have been met or not.

SLAs support standard contracts by providing incentives or penalties for
achieving or not achieving quality thresholds throughout the lifecycle, not just at the
milestones (In government contracting the SLAs provide the quality threshold and the
associated penalties or incentives, but the contract itself, which will refer to the SLAs,
provides the incentives). This gives the program manager more options. In most
contracts, if a contractor has met functional requirements on time and on budget, but its
configuration management system is poorly maintained, there are few options that the
program manager has other than writing a poor evaluation/recommendation to resolve the
problem. Termination clauses generally do not address quality issues, which have a lower
priority than functional requirements, cost, and schedule. If SLAS are used, incentive pay
can be withheld for the reporting period agreed to in the SLA (monthly or quarterly) or
the contractor can be fined until the configuration system meets the quality threshold. If

the problem persists, the program manager has the option of terminating the contract

199

(write termination clauses into the SLAs for persistent failure to achieve thresholds), or if
the program manager sees improvement, the incentive pay can continue to be withheld
until thresholds are met.

In outsourcing contracts, quality is best achieved by comprehensive and detailed
requirements specifications coupled with well defined SLAs with built-in penalties
should service levels go awry. (Chorafas, Baron) The SLAs help to reduce overall
contract risk by monitoring quality throughout the lifecycle. Most SLAs measurement
periods are over a monthly or quarterly time period. Accordingly, problems with meeting
quality thresholds are identified long before a milestone review. This contract
monitoring allows the program manager to quickly take action to resolve the problem,
and if necessary to terminate the contract before too much time and money is spent.

2. Proposal Evaluation

Once SOWs are received from contractors interested in performing the requested
services the organization must develop a methodology to select the contractor that can
best meet their requirements. The criteria used to evaluate proposals should be
determined before the RFP is completed to ensure that the RFP effectively communicates
all of the areas that need to be evaluated. The evaluation criteria must be included in the
RFP. In most cases the evaluation consists of a balance scorecard type of approach
where weights are attached to specific attributes such as reputation, price, schedule, risk,
and processes.

The process of selecting a business partner should be well thought out. A good
partnership can provide benefits to both organizations; however, a poor relationship can
jeopardize the project, alienate customers, anger stockholders, and damage both
organizations’ reputation.

In some cases a pre-qualification can be accomplished to limit the amount of
applicants. Pre-qualification audits or screens are done to ensure that the organization is
not wasting its time evaluating a contractor that does not have the capability to satisfy the
conditions of the contract. (Roberts) Pre-qualification audits review the SOWs to

evaluate the number of staff and their skill sets, the financial condition of the contractor,

200

pending lawsuits, the reputation of the contractor (check references), CMM ratings if
applicable, the type of work (technical level and complexity) the contractor has done in
the past.

SLAs aid organizations in the pre-qualification of applications. SLAs contain
quantifiable quality requirements along with a methodology to confirm whether the
requirements have been met. The detail of the requirements along with non-performance
penalties will generally discourage all but the most serious contractors. The SLAs tend to
limit the proposal to only those that are capable of providing a quality product or service.

When the pre-qualification has been completed the remaining proposals are
reviewed. A more detailed analysis is conducted of the proposals and the contractors.
Although many factors are scored (balance scorecard), the selection criteria can be
grouped into seven main categories. The categories and the way they are scored should
be aligned to the underlying business processes that the IT system supports, and the
overall business goals of the organization. The first category evaluates a contractor’s
quality control and quality management processes. The second category looks at the
technical competency of the contractor in terms of employee skills, tools, training
programs, innovation, and past performance. The third category analyzes the contractor
resource management practices in terms of employee management (employee turn-over,
pay, training opportunities) and knowledge management (how is tacit knowledge
captured, how is information collected and shared). Determining the financial strength of
the contractor is the forth category. The fifth category determines whether there is a good
cultural fit between the organization and the contractor (e.g., a contractor may operate in
an environment that has to rapidly respond to the business environment, the contractor
will have to be have quick, flexible processes to accommodate that need). The sixth
category evaluates the contractor’s program management processes, such as
configuration control and change management. The last category is the costs of the
project and projected costs over the lifecycle of the project. (Roberts)

SLAs are also helpful when scoring the proposals. The quality factors
represented in the SLAS represent those areas that stakeholders felt were essential to

achieving a quality deliverable. As a result, the quality factors identified in the SLAs

201

should be scored higher than other non-essential factors such as the contractor’s
administrative support. In addition SLAs make it easier to focus part of the assessment
on the contractor’s ability to meet the quality thresholds specified in the SLAs. If
maintainability is a major concern to the organization, the assessment can evaluate the
configuration control system that the contractor used on past projects. The SLAs allow
the assessment team to focus on specific areas rather than conducting a general overview
of the contractor’s processes and past work.

3. Contract Oversight

After the proposal evaluation is completed and a contractor is selected the details
of the contract are negotiated. When both parties sign the contract, the process of
contract oversight starts. The main purpose of contract oversight is to ensure that both
parties are fulfilling their contractual obligations. (Hill) SLAs were developed in part to
provide contract oversight by monitoring the quality factors specified in the contract. In
this dissertation contract oversight is broken into maintaining a good relationship
between the parties, and ensuring the contractor is adhering to the terms and conditions of
the contract.

There are a couple of different types of contractor-organization relationships. A
partnership is a formal business relationship that is established to achieve common
business objectives. Partnerships are usually long term and are characterized by a close
working relationship where the contractor is an active team member. In partnerships the
organization and the contractor have a vested interest in the success of the project. (Hill)
An affiliation is also a formal business relationship where pre-qualified contractors are
engaged, as their services are needed. Examples of an affiliation are buyer purchase
agreements (BPAS), where the service and price have already been negotiated, and a
contract is executed only when the service is needed. Another formal relationship is the
project specific relationships where the contractor is needed on a specific project. This
type of relationship is very common and it includes RFPs, SOWs and a selection process.
The last type of relationship is a service provider relationship where the contract may be
formal or informal. An example of this type of relationship is the local server hardware

maintenance professional who has been pre-approved to do preventive maintenance work

202

(i.e., run diagnostics, vacuum dust) for the organization. When the maintenance man’s
services are needed, he is called. The maintenance man provides a quick estimate of the
cost of the job, and if the price is acceptable, the organization will contract for the
services (in many cases an account already exists). (Hill) In each case a good working
relationship is beneficial to both parties.

There is a common misconception that SLAs can cause an adversarial relationship
between an organization and a contractor as a result of penalties for noncompliance.
However, many contractors like SLAs because they define the services that must be
performed in detail, they provide the quality thresholds that must be met, and they state
the means by which those services will be measured. The detail provided in the SLAS
helps to prevent much of the ambiguity that causes disagreements. Both parties agree to
SLAs; and if a contractor does not meet requirements, then they understand the
repercussions, because they also understand the effect that not meeting those
requirements has on the organization. Contractors expect to be penalized for poor
performance; problems arise when there are differing interpretations as to the services
being provided, and their associated performance requirements. Specifying the
methodology to verify compliancy also eliminates many of the arguments that may occur.
As was discussed previously, depending upon the organization-contractor relationship,
the maturity of the technology, or how well requirements are understood, it may be better
to structure the SLASs as incentives instead of penalties.

Managing the relationship between a vendor and an organization is a difficult but
extremely important task. Both parties need to understand the motivations of the other
party to be successful. Contractors are motivated by profit, but they must price their
services to be competitive with other contractors and the internal IT shop within the
organization. Contractors try to not only win the contract, but they want to establish a
good long term working relationships to gain more work and generate additional profits.
Organizations want a system that performs to specifications, so the system can enable
business processes that will allow them to generate profit. The solicitation process is the
means that the organization uses to ensure they are not paying too much for the service

(competition will lower the price of the service), and the contract is the process that they

203

use to ensure they will receive the functionality and quality that they desire.
Organizations must also understand that if the contractor is not making profits, the risk of
default or non-performance on the contract increases significantly. SLAs tie the vendor’s
most important concern, profits, with the program manager’s most important concerns,
performance and quality. (Agarwal)

The program management office needs to develop procedures and processes to
manage the contractors. The program manager needs to determine the type of
information that the contractor needs access to, whether the contractor is included in daily
meetings, whether they are managed at a distance, how information will be shared (e-
mail, meeting minutes, central repository), the chain of command, security clearances,
and the degree of freedom that the contractor has to develop solutions or to resolve
situations. If the SLAs include end-to-end components or if the system is a part of a
system or systems, the program manager may have to manage multiple development and
maintenance contracts with many different contractors. The program manager will have
to determine how to manage the various contractors and their interactions (i.e., are
contractors allowed to communicate among themselves, or do they have to communicate
through the program management office).

SLAs provide information that helps both parties manage their relationship better.
SLAs identify the individual who is responsible for managing the SLA. Depending upon
the complexity of the system, manpower availability, and the criticality of the system the
SLA will assign an individual to act as a contract monitor who is responsible for
verifying that quality thresholds have been met, but an addition individual may be needed
to act as a contract facilitator who would be responsible for working with the contractor
to resolve day-to-day issues relating to the SLA. (Currie) In smaller projects, the same
individual will perform both functions. Although one individual may be responsible for
multiple SLAs, it is helpful to specify the specific point of contact for each SLA as it
helps to build and maintain the organization-contractor partnership.

Conflict is a normal part of the development process, requirements are not always
known well enough to specify in exacting detail, systems are complex, and the business

environment is dynamic. The ability of both parties to resolve these disputes amicably

204

will determine the strength of the working relationship. SLAs help to provide some
structure by designating responsibilities for various tasks as they relate to the SLA. This
definition of roles and responsibilities provides greater clarity and better defines the
working relationship. The SLAs also state assumptions that were used to build the SLAsS,
which may also resolve possible disputes before they occur.

4, Contractor Performance Management

SLAs help to manage the contractor by defining the quality factors and metrics
that must be met, they define how the metrics will be collected, they increase
communication between the contractor and the program management team, and they
define roles and responsibilities of both parties.

The key to contractor performance management is oversight. The program
manager is responsible for ensuring that the contractor is complying with the terms and
conditions of the contract. The program manager must also verify that any deliverables
meet stated requirements. It is very important that quality control measures are in place
to inspect and verify the contractor’s product at each milestone. (Hill) SLAs explicitly
state the quality factors that an organization expects in the end product. SLAs also
explicitly state the metrics and the collection mechanisms that will be utilized to verify
that the quality requirements have been met. SLAs also establish a monitoring process to
verify compliance with quality requirements. As such, any deviations from the
organization’s expectations can be quickly resolved before they become major problems.
Additionally, monitoring provides information to utilize in forecast analysis.

When the contractor was preparing the solicitation in response to the RFP, the
contractor had an opportunity to challenge or question any of the SLAs. If the contractor
decided to bid on the contract, then they agreed to abide by the SLA. SLAs establish a
clear understanding of the product quality, process quality, production quality and post-
production quality expectations. Although SLAS place constraints on the behavior of
contractors, numerous contractors interviewed have indicated that they favor contracts
that clearly articulate expectations as it resolves may of the conflicts that normally occur

over interpretation of requirements.

205

During the solicitation process, or in some cases if the contractor participated or
lead the requirements engineering process, the SLAs generated meaningful
communication between the contractor and the organization. The SLAS not only
introduce quality requirements at the beginning of the development cycle, they also
generate discussion on standards, testing, monitoring, design, critical business processes,
change management, quality models, and quality control. These discussions hopefully,
improved the SLAs, established common frames of reference, and established a good
working relationship between the parties. The reports generated as a result of the SLAs
also help establish communication between the contractor, program manager, end users,
and upper management.

Many contracts drafted by lawyers include long, tortuous statements full of
legalese and cross references that are difficult to understand. (Nellore) Lawyers do not
draft SLAS, they are written by end users, management, IT personnel, and business
process owners. Lawyers should review SLASs to protect the organization, but they need
to be understandable by all parties involved. The ease of reading makes SLAS more
effective in communicating requirements than some contracts.

Contractor performance management is more than monitoring quality metrics and
assigning blame if they are not met. Contractor performance management also needs to
monitor the relationships between all parties. Blaming the contractor for quality problems
does not solve the problem. If relations between the organization and the contractor
reach a point where both sides are blaming the other for problems, then both parties
loose.

Although both parties may not have the same objectives or policies, and both have
constraints (internal and external) that influence their behavior, SLAs can be used to
influence both parties to take appropriate actions to come to the mutually accepted
behavior as agreed upon in the contract. (Milosevic) SLAs specify the roles and
responsibilities of both parties, they specify the assumptions, they specify quality
expectations, and both parties agree them upon. SLAs also specify procedures for

dispute resolution, so issues can be resolved quickly.

206

F. CUSTOMER SATISFACTION

Another important task that the program manager has is ensuring that all major
stakeholders are pleased with the delivered product. A program can meet cost, schedule
and performance parameters, but if the stakeholders are not pleased with the product, the
perception will be that the project failed. Customer satisfaction is an important role for
the program manager. The program manager must ensure that the delivered product is
acceptable to the stakeholders; however, the program manager must also ensure that once
the product is delivered, that it is properly supported through the use of SLAs.

The process of developing the SLAs helps the program manager by establishing
buy-in from the major stakeholders. Representatives from the major stakeholders are
able to participate in the development process, and they determined the quality
requirements and quality metrics that they felt best support the business critical
processes. They also have the ability to state their own expectations and make a case for
quality factors that they feel are important. When those stakeholders return to the
positions they left, they are generally advocates for the program manager and the SLAs
because they helped develop them.

The program manager can utilize the SLAS to set customer expectations. The
SLAs define the quality factors and the quality thresholds that the user can expect. The
SLAs also demonstrate that the program manager has an aggressive plan in place to
monitor performance and penalize the contractor if quality thresholds are not met. SLAs
also help institutionalize the change review board, which helps to inform users of
approved changes to the system. The SLASs help to prevent expectation creep, a situation
where users constantly want better and faster performance. The program manager can
easily point to the SLAs and declare that despite the user’s concerns, the stakeholders
have determined that the current quality levels are sufficient to support the critical
business processes.

Program managers need to monitor customer satisfaction to ensure that the
services are meeting end user needs. A survey is one method of measuring whether end
users are satisfied with the services that a contractor is providing. SLAS can be written

such that the contractor needs to achieve a certain score (90% satisfactory or above) to

207

meet a quality threshold. Before SLAs are developed for surveys, the program manager
should assess the environment to ensure that the contractor will have a chance of meeting
the quality thresholds. If the internal IT department lost jobs because of work outsourced
to the contractor, end users may have a hostile attitude toward the contractor. In that
case, the program manager may want to wait until attitudes towards the contractor have
softened.

An important part of customer service is monitoring the performance of the
system to ensure that it is supporting the critical business processes in a manner
acceptable to the customer. In the deployment or post-production phase of a system’s
lifecycle the host provider (whether those functions are outsourced or kept in-house) must
perform certain services to keep the system operational. Service-level management
(SLM) is the proactive methodology used to ensure that adequate levels of service are
provided to all users in accordance with business priorities. (Sturm) SLM involves
monitoring, reporting, modifying, and improving the quality of the services being
provided to an organization. SLAs are a part of SLM in that they define the services to
be performed, and the levels of service expected.

Some of the areas of SLM include availability management, quality of service,
and resource management. An integral part of maintaining an availability threshold is the
constant monitoring of each of the hardware and software components that comprise the
system’s infrastructure. Components that are not performing as expected, should be
examined and action should be taken to resolve any problems. This may require
additional monitoring, trend analysis, or changing to another component from another
vendor.

When measuring the network infrastructure performance, traffic behavior needs to
be evaluated with respect to four characteristics: importance, time sensitivity, size, and
jitter. For applications that are critical to the success of the organization, efforts need to
be taken to protect its performance. This may mean allocating bandwidth specifically for
the application, or prioritizing those packets in a QOS scenario. Application traffic that is
time sensitive, interactive, or subject to latency problems will also need prioritization

(e.g., telnet or Oracle). Applications that have network traffic that expand to meet the

208

amount of bandwidth available, or produce large surges of packets (e.g., FTP, streaming
video, *.jpg files) can have a negative impact on other applications. Bandwidth hungry
applications can deprive higher priority traffic of necessary bandwidth. Streaming
applications need a minimum bits-per-second rate to deliver acceptable performance.
The bandwidth needed to support these types of applications (e.g., VolP, Real Audio)
need to be balanced against available bandwidth, the business value of the application,
and the needs of other applications. (Packeteer, May 2002)

Capacity management provides the necessary information on current and planned
resource utilization of individual components to enable organizations to determine which
components to upgrade, when to upgrade and how much the upgrade will cost. (ITIL)

Service capacity management needs to monitor, analyze, tune, and report on
service performance, establish baselines and profiles of use of services, and manage
demand for services. (ITIL) Itis important that a good baseline be established so the
service provider understands the resources and capability requirements of the application.

Capacity management helps mitigate risks associated with resource requirements.
Proper planning ensures that an application will have the resources necessary to execute
all functionality to specifications. Capacity management is also involved in analyzing the
resource needs resulting from any application modifications approved by the change
review board. In the host environment, new applications, or modifications to existing
applications can affect the resources (e.g., infrastructure) used by other applications.
Accurately predicting resource needs of the new application, in addition to information
collected on the usage of other applications will ensure that there are enough resources
for all of the application, or identify the need for additional resources. (ITIL)

G. SUMMARY

The use of SLAs helps the program manager with many of the tasks necessary to
managing complex IT systems. The development of SLAs improves the communication
between the stakeholders, management, and the contractor. Increased communications
helps to improve relationships, identify risk areas, better understand the requirements,

and it leads to better problem resolution. The monitoring processes resulting from the

209

SLAs help the program manager monitor performance and contractor compliancy. SLAS
need to define the quality requirements in great detail to ensure that all parties understand
the quality expectations for the system. Well defined quality requirements reduce the
possibility of conflict due to misinterpretations of requirements, and helps to set user
expectations regarding performance. SLAs can also be utilized to entice the contractor to
take the necessary measures to ensure that their quality control measures are in place and

are accurate.

210

X. RESEARCH METHODOLOGY

A. PHILOSOPHICAL APPROACHES

The objective of the questionnaire is to gather evidence to support the hypothesis
that service level agreements can increase software quality and management of IT
intensive systems. If the hypothesis is supported, the results of the questionnaire can be
predicted. If the outcome of the questionnaire is similar to predictions, then the
hypothesis is supported. The questionnaire is designed to demonstrate the causality
between the hypothesis and expected results. (Xia)

There has been a great deal of debate on research methodology within software
engineering field. Much of the debate centers on the various philosophical approaches to
ontology (the nature of being) and epistemology (the theory of knowledge). Those
beliefs drive the methodology in conducting research and engaging in problem solving.
The various philosophical approaches can be grouped into four distinct groups. (Reeves)

The first group is the analytic-empirical-positivist-quantitative group. This group
is most often identified with mathematicians and physicists. This group believes that the
world is deterministic, or it is operated by the laws of cause and effect. Research
methodology associated with this group is generally highly structured and is centered on
laboratory experiments. This group believes in empiricism, or the idea that observations
and measurements are the core of the scientific endeavor. (Trochim) Problems are
decomposed into elements, variables, covariants, attributes, and values. Tests are
conducted under controlled conditions to not only establish a repeatable test, but also to
systematically alter the variables, observe the phenomena, and measure outcomes against
predictions. This group only tests what they can measure and observe.

The second group is the constructivist-hermeneutic-interpretivist-qualitative
group. This group does not subscribe to the detached, objective, nomothetic approach to
research. This group views the nature of reality differently. This group believes that
reality can only be defined by multiple perspectives, and that factors such as culture, sex,
context, and emotion influence individual perspective. They believe that laboratory
experiments are a poor substitute for testing ideas in organizational contexts using real

211

practitioners. (Moody). They view information technology as an applied science instead
of a pure science. Scientific rigor does not apply well to applied science. This group
tends to borrow many of the research methods used in anthropology and sociology.
(Travis) This group utilizes focus groups, interviews, and case studies. These are the
same techniques used in requirements elicitation. (Pressman, Nuseibeh, Galliers)

The third group is not as representative as the other two, but they bear
mentioning. They are the critical theory-neomarxist-postmodern-praxis group. This
group believes that all assumptions must be challenged. This group is essentially anti-
establishment, believing that there are hidden agendas and contradictions in most
research. They are critical of our ability to know reality with certainty. (Trochim) They
challenge the underlying cultural, legal, scientific assumptions that form the basis of
reality. (Reeves) For example, Einstein postulated that light (c) has a constant speed
regardless of the frame of reference. Numerous experiments have confirmed his
postulation, however recent work by Montgomery and Dolphin are challenging that
postulation. Their research has indicated that the speed of light decreased over time, thus
the atomic clock is decreasing with respect to dynamic time. (Montgomery)

The last group is the eclectic-mixed methods-pragmatic group. This group is not
averse to using techniques of the other three groups to collect data and solve problems.
The approach used depends upon the problem to be solved (i.e., hypothesis), the context
in which it resides, and the purpose of the research. (Travis, Moody) This group tends to
be more practical and they are not as philosophically driven as the other groups. They
recognize the weaknesses of the various methodologies and try to construct an approach
that maximizes the value of the information gained in relation to the objectives of the

research.

B. APPLYING VARIOUS METHODOLOGIES

Developing a pure positivist approach to supporting the hypothesis in this
dissertation is difficult. In scientific rigor, all variables that affect the end result (i.e.,
quality software and post-production support) must be identified. To ascertain that

results are only caused by the hypothesis, and not other conditions, other irrelevant

212

factors must be controlled and kept constant to eliminate their influence. (Xia) It is
therefore necessary to identify all of the factors that lead to quality software and support.
This approach makes the assumption that the concepts of quality and support and their
associated properties can be defined in measurable terms. It is possible to use the quality
measures derived by McCall, Hewlett-Packard, and 1SO 9126, but these measures are
indirect measurements of quality, and are often subjective.

It is possible to rephrase the hypothesis in terms that are more quantitative, but
that does not make defining the terminology any easier. For example, if the hypothesis
stated that SLAs could reduce coding errors, the end result is still not clearly defined, and
it does not address the underlying theory. The hypothesis does not state whether the
errors that will be reduced are in the development, coding, or maintenance stage of the
application’s lifecycle. The hypothesis also fails to explain how coding errors are
reduced. To properly test the hypothesis, all of the factors contributing to coding errors
would have to be explicitly defined. Establishing a control group to test the hypothesis
will be difficult, when variable factors such as education, experience, code complexity,
fatigue, and time pressures contribute to coding errors. Researchers ascribing to the
positivist beliefs need to be careful to avoid the pitfall of focusing only on problems that
can be researched (using scientific rigor) rather than those problems that should be
researched (i.e., provide practical knowledge). (Moody)

Interpretivists claim that software cannot function in isolation from the system in
which it is embedded, and a systems view necessitates evaluation of human factors. They
believe that many software methodologies, heuristics, and guidelines are dependent not
upon pure scientific research (i.e., positivist approach), but upon human cognition (Xia),
social action, and even the human body (Mingers). An interpretivist approach to testing
the hypothesis would consist of group discussions or individual interviews to determine
people opinions regarding the hypothesis. The core of interpretivist research is the need
to understand the relationship between an individual’s behavior and that individual’s
mental state of preparedness to act in a predetermined way. (Smith) The researcher starts

with an existing (theoretical) knowledge of the topic under investigation. Through a

213

process of interviews, the researcher gathers new evidence and compares the results
against what is already known about the phenomenon under investigation. (Smith)

It is possible to test portions of this hypothesis using an interpretivist approach,
but testing the entire hypothesis will be extremely time consuming and will also be very
difficult. Interpretivist studies are designed more towards the development of concepts,
generation of new theory, examining relations between attitudes and behavior, mapping
an individual’s overall range of behavior and attitudes, and collecting a rich amount of
insight into an issue. (Smith) In qualitative research, the goal is to establish a match
between an aggregation of subject’s view of reality and the reality that the researcher has.
Results obtained from qualitative data are generally not used to support theoretical
propositions. This is due in part to the argument that social sciences (e.g., anthropology,
sociology) cannot explain events by cause and effect, because they cannot capture all of
the contributing factors.

If the hypothesis was that software developers would be more likely to spent the
requisite time and effort to reducing coding errors if SLAs with strong incentive or
penalties were utilized, then individual interviews or focus groups could discuss SLAS,
and whether the incentives or disincentives motivated them to produce faster and better
code. Researchers could ask questions such as, “If you were fined for each error you
produced, would you concentrate more on reducing errors?” Another question might be
“In your company are you evaluated by quality or quantity of code produced?” By
comparing the results of the research against predicted outcomes, the researcher could
determine if the evidence collected supported their view of reality.

The eclectic group believed that it was possible to combine positivist and
interpretivist methodologies to derive a richer solution set. Limiting research to one type
of methodology offers a limited perspective. The best hope of achieving objectivity in
research is to triangulate across many different perspectives and approaches. (Trochim)
Software engineering is not computer science; it involves a great deal of human
interaction and subjectivity. As such neither positivist nor interpretivist approaches can

provide an overall solution. Rather than concentrate on a specific methodology to use, it

214

IS more important to determine what critically, theoretical, and practically informed mix

of methodologies best deals with the problem to be solved. (Clarke)

C. DISSERTATION METHODOLOGY

The research conducted in this dissertation will combine both the interpretivist
and positivist approach. When this approach is used, researchers gather information,
opinions, and attitudes concerning a particular topic by which to form propositions.
When the interviews reach a point of sampling saturation (i.e., the point where new
interviews fail to reveal any new insights), the information is compared to predictions.
New insights are collected and the original proposition is supported, or amended to
reflect the new information. At this point the positivists can start gathering statistical
data such as determining the frequency at which the issues, ideas, or insights occur. The
statistical data will offer additional data to apply towards a new or already existing
hypothesis. Utilizing positivist approaches towards information obtained through
interpretivist research in not unique (Sarker, Kumar, Smith) and can be used very
effectively.

At the beginning of a study it is helpful to utilize qualitatitive research
methodology to establish an aggregate of people’s ‘frame of reference’ toward a given
topic. When issues involve subjective interpretation, it is recommended that researchers
only go directly to quantitative methodology if they fully understand their subject’s view
of reality. Otherwise obtaining qualitative data first is the preferred methodology.
Determining the proper mix of qualitative and quantitative research is dependent upon the
problem to be solved, and it is likely that one methodology will have more weight than
the other. (Smith)

The research conducted in this dissertation will utilize both positivist and
interpretivist approaches. The research will appear to be more quantitative than
qualitative, but only because much of the qualitative information was distilled into the
information presented in the questionnaire.

The qualitative portion of the research consists of a combination of top-down and

bottom up approaches. In a top-down approach to qualitative research, the interviewer

215

begins the research with a particular view of reality and the research is gathered to
support this view. This approach has merit if the researcher’s theory is formulated in
solid normative evidence. It also adds a form of structure and discipline to the subsequent
analysis. (Smith) At the other end of the spectrum is the bottom-up approach. The
bottom-up approach is where the researcher has no preconceived notions and during the
course of interviews and analysis, the formulation of a proposition is created. Most
qualitative research uses a combination of both approaches. The researcher generally has
a rough concept of reality, and uses the information collected from the research to
compare against that view.

The questionnaire in this dissertation started with an informal qualitative analysis
among a number of colleagues. In a series of meetings on server consolidation the issue
of post-production support was discussed. After reviewing numerous government and
commercial contracts for host support, it was determined that none of the contracts
reviewed provided the support required. A new contract needed to be developed. While
writing the SOW for post-production support, and the accompanying SLAS, interviews
were conducted with system administrators, information assurance professionals,
program managers, software developers, database administrators, and commercial
external service providers (ESP). In addition to the interviews over 100 articles and
books were reviewed. The results of these informal interviews and the literary search
formulated the bottom-up approach that generated the starting view of reality.

Once the central theme was developed, an article written by Charles Mann
initiated the top-down analysis portion of the research. His article detailed a number of
reasons that software quality was lacking, and he proposed legislating software quality as
a solution to the situation. His solution was to hold software developers accountable for
faulty code. On the magazine’s web site, readers were able to post comments concerning
the article on a bulletin board. Over 100 people responded to his article. The information
from that sample group in addition to those of Mann and other articles detailing poor

software quality provided additional information to support the starting view of reality.

216

To take advantage of the information gained in the previous qualitative research,
the questionnaire was designed to both validate the information previously collected
(qualitative part), and provide a measurement of the strength of the aggregate opinion

(quantitative part).

D. QUESTIONNAIRE

Interviews traditionally have a moderator that guides the discussion in order to
obtain the information being sought. When the issues are complex, it is often necessary
to provide the appropriate amount of education to ensure that the subjects are
knowledgeable enough about the topic to make informed decisions. The moderator must
ensure that every group or individual is given the appropriate amount of information, and
that all relevant topics are discussed. Additionally, any bias needs to be presented to all
participants in the same manner. This is extremely difficult when more than one
moderator is used. It is even difficult when multiple sessions are conducted with the
same moderator. The approach used in this research is to provide all of the information
needed to form opinions explicitly in the questionnaire. This ensures that all participants
are presented with the same information, and that any bias that is introduced is presented
to all participants.

To generate thought on the subject, opinions generated from the earlier ad hoc
qualitative analysis in addition to information derived from literature review is presented
in the first section of the questionnaire. The section discusses Charles Mann’s article,
along with numerous opinions on the issue of software quality. The opinions were from
multiple sources and represent many different perspectives. Also in this section is a
discussion on the merits of SLASs.

To further illustrate the concepts in a real-world scenario, the second section of
the questionnaire is a case study on how SLAs are developed, along with an example of a
SLA for availability. The case study provides additional information and allows the
subject to apply the lessons learned in the first section to a case study. The second
section presents a different perspective from the first section, and also generates thoughts,

opinions, and emotions on the subject.

217

The last section consists of the questionnaire itself. Many of the statements were
based on the opinions already gathered with the prior qualitative analysis. The statements
were designed to provide a more formalistic validation of information previously
collected. Although this approach does not incorporate a mediator, the subject is guided
through the discussions by the first two parts of the questionnaire, and the last part allows
the subject to express opinions concerning the topic. In addition, the questionnaire
includes some open-ended questions in which the subjects are free to express their
opinion in their own words, from their own perspective.

The three parts of the questionnaire were formulated from the information
obtained during the previous qualitative analysis. The subsequent quantitative analysis
will concentrate on how strongly subjects feel about various aspects of SLAs and their
ability to improve the quality and management of software intensive systems.

The quantitative phase of the research consists of a number of statements
(representing the common themes from the qualitative analysis) and an accompanying 5-
point Likert scale. The questionnaire begins with demographic data to provide some
possible insight to the analysis. Statements 4 through 29 utilized a bipolar Likert scale
that ranged from strongly disagree (1) to strongly agree (5). The Likert scale also
incorporates a neutral response (3).

The sample was not random in that IT professionals from both the government
and industry were asked to fill out the survey. The topic was considered too complex for
a random sample of individuals. The IT professionals were also sought for their practical
experience in dealing with SLAs, ESPs, software development, program management,
and post-production support.

A great deal of effort was expended trying to balance information presentation
with the amount of time a respondent would spend on the questionnaire. If the
questionnaire is too long, few people will be willing to exert the time or effort to
complete the questionnaire. If the questionnaire is too small, the respondent does not
have enough information to form an educated opinion.

Good surveys will contain some catch questions or statements. These statements

are closely related to as a previous question. The respondent should answer the same

218

way to both questions. If the respondent answers differently to both questions it may be
an indication that the respondent was simply completing the questionnaire without much
thought. This survey contains two such questions.

The questionnaire was loaded on a web page, and the URL was e-mailed to
numerous IT professionals soliciting their responses. The questionnaire consisted of four
web pages. The first page explained the purpose of the questionnaire, and instructions.
The second and third pages correspond to the sections on software quality and the case
study. The fourth page was the questionnaire itself. When the respondent accessed the
fourth page to provide input to the statements, they give their permission to utilize the
information they provided in the research. Appendix (B) contains the actual

questionnaire.

E. RESULTS

Results from the questionnaire were captured in an access database. The results
were then converted to an excel spreadsheet and statistical information was generated and
the results are displayed in appendix (C). A Likert scale was used on the questionnaire to
determine the degree to which a respondent agreed, disagreed or was neutral on a
statement. Using standard statistical analysis on Likert scale responses can be
problematic.

In the questionnaire, responses ranged from 1 to 5. All responses were discrete
vice continuous. As such using measures such as a mean (average of all values in the
sample) and standard deviation (variability of observed values from the mean) can lead to
inference problems. For example, what does a mean of 2.5 infer? Is the difference
between strongly agree and agree the same as neutral and agree? Additional information
was needed to reinforce the results of the mean and standard deviation. As such
measures such as median (the middle value when observations are ordered from smallest
to largest) and mode (the value that occurs most frequently in the sample) have also been

calculated.

219

Appendix (C) lists the individual questions, the mean, mode, median, standard
deviation as well as a bar chart to visually display the results in percentages. Appendix
(C) also lists the T-value and the P-value to determine if the results were significantly
significant.

The null hypothesis (H,) was that u = 3, or a neutral response. The alternative
hypothesis (Hy) was that u = 3. Since the values above and below the mean both have
meaning (agree and disagree), a two-tailed test was conducted. Given a sample of 43
responses, a Z value could be used (central limit theorem states that a normal distribution
curve can be used with a population over 30), but a T-value would give better results

given that the population was not much greater than 30. The significance level (o) is .05.

So the null hypothesis would be rejected if t > tyon1 Or t < - tyon1. The value of typn-1iS
2.021 using a population of 41. The extrapolated value for a population of 43 was 2.023.
This means that the probability of a type | error (H, is rejected when it is true) is o. or 5
percent.

P-values were also calculated to give a better understanding of where the H; value
would be rejected. Simply comparing the calculated t value against 2.023 forces the
reader to accept the significance value of .05. The P-value is the smallest level of
significance at which H, would be rejected. Once the P-value has been determined it can
be compared against whatever specified level of significance an individual desires. If P <

a the H, should be rejected at level a. (Devore)

F. INTERPRETATION OF RESULTS

The first analysis was to evaluate the responses on the catch questions. These are
questions that are closely associated with one another. Questions 18 and 22 both
concerned program management. There were only three responses where there was a 2
Likert scale difference. Overall the means of the two questions were the same.
Questions 9 and 23 dealt with the affect of SLAs on software quality in the development
stage. There were two responses where there was a difference of 2 Likert scales. The
difference in the means of the two questions was .0148. A t-test on the means of the two
groups of samples showed that the differences between the means were not significant.

220

Additionally some of the questions that the author predicted a response of agree
or strongly agree were intentionally worded to be negative, so the respondent would be
expected to answer with a response of strongly disagree, or disagree. The respondents
did actually respond with a mean towards 2 on those statements with negative wording.
This meant that the respondents were actually reading the questions and were not
randomly selecting answers.

Statistics on the respondents indicated that the majority had over 6 years of
experience in IT. The respondents were well represented in management (58.1 percent)
and IT implementers (41.9 percent), and almost half had more than 1 year of experience
working with SLAS.

Questions 4 through 29 only had 3 questions that were not statistically different
from a mean of 3 or a response of neutral using the T-value test. The H, could not be
rejected on the questions of whether respondents were satisfied with the quality of
software they use, and whether a lack of in-house skills would prevent the development
of SLAs. Similarly the question of whether it was too difficult to enforce penalty clauses
was too difficult also could not be rejected.

Respondents agreed that SLAs would improve software quality throughout its
lifecycle. Results strongly indicated that respondents felt that SLAs could improve
software quality in the development and post-production phase. However, in the
comments column some of the respondents felt that SLAs must be backed up my
managerial commitment to be affective. They also felt that SLAs were not a silver bullet,
and must be used in conjunction with other quality initiatives. Along this same vain
respondents felt that SLAs could not resolve the quality issue associated with
management rushing software to market. The results also indicated that there was neutral
to mild agreement that software quality in the software they were currently utilizing was
acceptable.

Overall, respondents felt that SLAs would improve software program
management. Results indicated significant agreement that SLAs would improve program
management through configuration management, change management, managing user

expectations, focusing on key performance issues, source selection, and ensuring

221

underlying business processes were supported. Comments indicated that respondents felt
that SLAs could contribute to software lifecycle management, but the level of success
depended upon management’s commitment to those SLASs.

Respondents also felt that SLAs assisted in the development of requirements.
Results indicated that subjects felt that the SLA development process not only facilitates
the involvement of end users, but in doing so it also helps to manage the end user’s
expectations. Respondents indicated that they believed that the team development
concept helps to identify those quantitative metrics that are critical to the success of the
underlying business process. The survey also indicated that subjects felt SLAs could help
inject quality and security into the early parts of the development process.

The respondents approved of the format of the SLA presented in the survey.
Results indicated that they felt that the format was easy to understand and clearly defined
the services and the methodology to measure whether a requirement met the specified
threshold levels.

People taking the survey believed that the work required to generate the SLAs
were worth the effort. They also felt that developing SLAs were not too difficult for their
organization. The two of the questions that had no significant deviation from a neutral
response were on whether the skill sets to develop SLASs existed in their organization and
whether penalty clauses were too difficult to enforce.

G. RESEARCH USING HOSTING SLAS

The SOW and SLAs in Appendix (A) were developed to determine in a practical
business environment whether SLAs could assist program managers maintain quality in
their post-production applications. Appendix (A) contains SLAs that have been
developed for hosting services for the NAVSUP claimancy. The intent of the SLAs were
to demonstrate the potential to utilize SLAs to manage information-intensive systems and
inject software quality in the post-production environment.

The NAVSUP claimancy, like most, has been hit by fiscal cuts, IT manpower
shortages, and a lack of strong centralized policy. To combat these problems NAVSUP

has been aggressively pursuing a policy to consolidating their servers. During the

222

inventory of servers it became obvious that there was no standard for how servers or
applications were maintained or hosted. Additionally, many of the program managers
that were interviewed did not know enough about hosting services to be able to contract
for those services. The contracts that did exist did not provide a good definition of the
services to be provided, nor were there any SLAs mandating performance levels.

The SLAs in appendix (A) were developed for the program managers to assist
them in the management of their post-production applications. The SLAs outline the
standard hosting services that should be used across the claimancy. The intent was that
these services would provide the necessary functions to properly monitor and host an
application. The levels of service are broken into three levels of support: essential,
enhanced and premium. The levels of service would depend upon the type of application,
its criticality and fiscal constraints on the program.

The SLAs were designed to be used as a template. Each program will have to
select those services and service levels that best meet the needs of their respective
applications and the underlying business process. The use of a template alleviates the
necessity for each program manager to research and develop hosting requirements. The
template also offers services that will provide the appropriate quality and performance
standard that can be used by all program managers in the claimancy. The performance
thresholds were based on industry standards, or current NAVSUP standards. Program
managers are expected to use benchmarking of their current services, forecasting future
needs, and consulting with stakeholders to gather information to determine whether the
thresholds specified in appendix (A) will meet their needs. Based on preliminary reviews
most of the applications in the NAVSUP claimancy will use the standard services as
outlined in the three levels of service, although some of the thresholds will have to be
modified.

The SLAs are grouped in thirteen service areas that cover many of the services
that were outlined in the previous chapter. Each SLA contains 17 data elements that
define the service, specify the quantitative metrics that will be used to measure
performance, outline roles and responsibilities, methods for collecting measurements, the

threshold levels that must be met, and associated penalties or incentives.

223

The original intent of the dissertation was to utilize the SLASs in appendix (A) in
an actual contract, and gather information from the program managers and the contractors
to determine their reaction to the SLAs, their thoughts on the process of developing
SLAs, and whether they felt that the SLAs were effective in delivering quality services.
Unfortunately, the contract negotiations were stalled numerous times for various political,
fiscal, and technical reasons. As a result, negotiations were still ongoing at the writing of
this dissertation. The answers to the questions posed above would make a good follow
on thesis or dissertation.

The SLAs and SOW in appendix (A) were however, used by NAVSUP in
contract negotiation to compete hosting services between two organizations. Before the
source-selection board met, Gartner and MetaGroup (both IT consultants) reviewed the
SOW and SLAs. Both groups felt that the documents were excellent, but that the price to
achieve that level of service may be too expensive. The NAVSUP source-selection board
for the contract stated that the SOW and SLAs made it easy to compare the bids, as the
two organizations had to address the specific services and service levels outlined in the
documents. It allowed the selection board to make more of an apples-to-apples
comparison. Many of the extraneous service claims from the service providers were
discarded, as they did not apply to the services specified in the SOW or SLAs. Based on
the estimates from the two organizations, the source-selection board applied a balanced
scorecard approach and selected a winner. Unfortunately, comments and results from the
source-selection board are considered proprietary, so they could not be used in this
dissertation.

NAVSUP is in the process of negotiating hosting service with the winner of the
source-selection board using the SOW and SLAs in appendix (A). The SLAs and SOW
in appendix (A) are also being reviewed at NAVAIR, NAVFAC, SPAWAR, and
NAVNETWARCOM for inclusion into a Navy-wide contract for hosting services under
CLIN 0029 of the NMCI contract. To date the SLAs have received very favorable

review.

224

H. WEAKNESSES

After evaluating the data, there were a couple weaknesses in the research used for
this dissertation. The first weakness was that the questionnaire was biased toward
supporting the hypothesis. The questionnaire did not go into the disadvantages of SLAs,
nor did it mention case studies where SLAs were not effective. Although some negative
aspects of managing SLAs were addressed in the questions in the questionnaire, all of the
arguments were designed to show the user that SLAs could be used to help improve
software quality and manage IT intensive systems. As the survey was targeted to IT
professionals, the questionnaire was designed to present an argument that the respondents
could provide comments on. The questionnaire was not intended to convince an
uninformed individual of the benefits of SLAs. However, the fact that 9 percent of the
respondents had less than 4 years of IT experience and over 30 percent had not dealt with
SLAs before, could lead one to believe that some respondents were biased in support of
the hypothesis.

In the bottom-up analysis the qualitative analysis did not consist of formal
interviews with predetermined questions and documented results. Additionally
information obtained from the interviews often concentrated on specific problems, and as
such, the sample size contributing information on a specific topic would not be
representative.

The top-down analysis also had some weaknesses. In qualitative analysis, the
researcher must to some degree interact with the subject. In the top-down analysis, the
researcher did not interact at all with the subjects. As such, the subjects were free to
comment on the article in whatever direction they chose, and at whatever depth they
determined. Although a great deal of information was obtained, this approach lacked
regiment.

The survey had 43 responses. A greater number of responses would have
provided more statistically meaningful data with respect to how the different groups
answered the same questions. Unfortunately the size of the survey coupled with the busy

schedule of most IT professionals made gathering more responses a difficult task. It

225

would have also been useful to add a question on whether the respondent represented
public or private industry. That information may have lead to some additional insight.
Finally, the respondents were only allowed to see one example of a SLA.
Respondents may have made more informed decisions if they could see a SLA for
development work, maintenance, and hosting services. Unfortunately, that was not
possible as the length of the survey was overly burdensome for some respondents. The
amount of information presented in the questionnaire had to be weighed against the fact

that fewer people would fill out the questionnaire if it became too large.

l. SUMMARY

The research utilized a pragmatic approach where both postitivist and
interpretivist approaches were utilized. The survey results indicated that the respondents
felt strongly that SLASs could be used to increase software quality. They also felt that
SLAs helped in the management of IT intensive systems. However, comments collected
from the survey indicated that SLAs, while helpful, would not be successful without

upper management support.

226

XI. CONCLUSION

A. REASON FOR STUDY

To maintain a competitive advantage, organizations have to rely more on
software-intensive information systems to support or enable their critical business
processes. As a result, organizations are starting to look upon software quality
management as a critical, strategic aspect of the product-development process. Despite
advances in the principles and mechanics of software engineering, the quality of software
is still lacking. This can be attributed in part to poor practice, including but not limited to
marketing pressure, improper training, and lack of managerial oversight.

Another reason for poor quality is that contracts for outsourcing are not as explicit
as they need to be. As software-intensive information systems become ever more
complex and large, organizations are increasingly tempted to outsource IT development
and support to companies specializing in providing IT services. While organizations are
now able to take advantage of external expertise, they must write good outsourcing
contracts to take the maximum advantage of that expertise. However, there are many
real-world examples in which outsourcing contracts do not contain a good specification
of requirements. In some cases, principle stakeholders, such as the end user, are not
involved in the requirements specification activity; quality requirements are not
incorporated into the requirements; and quantifiable, measurable, meaningful metrics are
not identified.

Another problem leading to poor quality is that many program managers do not
have the technical expertise to manage IT systems. Program managers not only need to
understand the technology associated with architectures, standards, software-
development processes, and software-systems engineering, but also need a firm
grounding in contract management, project scheduling and tracking, risk assessment, and
budgeting.

This study was conducted in an effort to determine whether SLAs could be
utilized to improve software quality, and in turn, the overall quality of software-intensive
information systems. This is a foundational study with the aim of determining feasibility

227

and collecting feedback from IT professionals on whether they believed that SLAs would
improve the management and quality of IT systems. Follow on studies can evaluate the
effectiveness of SLAs in providing software quality in actual projects. The SLAS in

Appendix (A) have not been incorporated into the NMCI contract at this time.

B. KEY POINTS

This dissertation has explored the concept of utilizing SLASs as a tool to improve
the management and quality of software-intensive systems throughout its lifecycle. We
demonstrated how SLAs could be used in the requirements, development and post-
production phase of software development to improve software quality. We also showed
how SLAs could aid the program manager by improving configuration management,
contract management, risk management, quality control, and customer satisfaction.

This dissertation demonstrated how many of the problems with software
acquisition could be addressed from a software acquisition perspective. Program
managers need to do more than add quality requirements to their software development
contracts. In many cases requirements are not measured until the end of a major
milestone, and if there are any problems with the requirements, the program managers
have little recourse short of canceling the program. Although SLAs are also
requirements, their format makes them a more effective contracting tool. SLAs provide a
detail description of the services, service levels, and the method to measure and monitor
the service level. SLAs are also more effective because the measurement period is short
enough to resolve problems and the penalties in the SLAs give the program manager
recourse if quality levels are not met.

SLAs can help to improve quality in the various phases of the software lifecycle.
In the requirements engineering phase of software development SLASs help to bring all
stakeholders together to focus on identifying quantifiable quality factors that they feel are
essential in a system to support the underlying business process. SLAs specify the
quality metrics and quality thresholds that allow an organization to determine whether
quality requirement have been met. As such, SLAs make explicit many of the quality

factors that users may implicitly assume. Measurements and monitoring resulting from

228

SLAs also support early detection and resolution of quality problems. SLAs help
reinforce the notion that quality management is a strategic, critical aspect of the quality
control process throughout a system’s lifecycle.

In the development phase, the quality factors that are addressed in the SLASs drive
architectural and design decisions. If developers know which of the characteristics are
most critical to project success they can select the architecture, design, and programming
approaches that best achieve the specified quality goals. SLASs help ensure that quality is
designed in at the beginning phases of the lifecycle. SLAs can also improve software
quality in the development phase by contractually mandating that certain quality control
measures (e.g., adhering to specified standards and processes) be performed.

In the post-production phase of software development SLAS can be used to
specify the quality requirements for application performance, software maintenance
efforts and hosting services throughout its lifecycle. Monitoring the performance of the
application and its supporting infrastructure once it is deployed is essential in
implementing process and quality control, as well as maintaining customer satisfaction.

It requires a great deal of management to produce quality software. Program
managers have to ensure that quality considerations are addressed early in the lifecycle
and they must provide the proper amount of oversight to ensure those quality factors are
incorporated into the final product. SLAs provide quality control measures that can assist
program managers in many of the managerial tasks necessary to ensure quality is
delivered in the final product.

Program managers need to measure and monitor contractor, project, and system
performance throughout the project’s lifecycle to ensure requirements, standards,
processes, and quality requirements are being met. SLAs mandate monitoring of the
quality requirements associated with process, product, and project quality. If quality
levels are not met, program managers and the contractor are informed of the violation and
potential risks, allowing them to take the action necessary to correct the situation.

The thirteen SLAs in appendix (A) illustrate how SLAs could be used in the post-
production phase of software lifecycle to assist the program manager by establishing

process and quality control measures necessary to support a software-intensive system.

229

The SLAs in appendix (A) introduced a new format that was useful in coupling the
quality requirements back to the business processes they supported. If used properly, the
new SLA format improved on standard SLA formats by provided greater detail with
respect to the services required, the means of measuring the services and the
responsibilities of all parties.

The survey of IT professionals indicates agreement that SLAs can play an
important role in addressing software quality. SLAs can drive product, process, project,
and deployment quality solutions. SLAs can help ensure that quality requirements are
established early in the development cycle in order to be incorporated into preliminary
designs. SLAs help program managers with the oversight of the various aspects of the
projects. SLAs also carry sufficient weight through penalties and incentives to focus
management and contractor attention on the quality issues that will impact business

critical areas.

C. FUTURE WORK

Although SLASs are not uncommon in application-hosting services, they are not
usually found in software-development contracts. There are a number of areas that can
build upon the work conducted in this dissertation.

1. Evaluation in Actual Contracting

Future study is necessary to determine the magnitude and direction of effects of
utilizing SLAs in actual contracts for host services, as well as application development.
Studies can evaluate how well the SLASs helped in requirements engineering, design,
post-production support and program-management tasks. This research can also evaluate
whether SLASs helped in the negotiation and source-selection process, or whether they
complicated the contracting process. These studies should also focus on the reactions of
program managers, end users, and contractors, as well evaluating upper level
management’s support of the SLAs, and whether they believe SLAs are effective tools
for quality control.

SLAs in theory should lead to higher levels of software quality, but additional
research utilizing actual contracts is needed to test the hypothesis proposed in this

230

dissertation. If quality is defined as the extent to which a system, process or component
meets specified requirements and meets user needs, studies can be conducted to compare
similar software projects with SLAs against those without SLASs to determine if the SLAS
improved quality. Future studies can also evaluate the success or adoption of the concept
of SLAs within public and private organizations. Studies can also focus on the
effectiveness of SLAs on large and small software-development projects.

Template SLAs, such as those found in Appendix (A), are designed to assist
program managers that may not have the technical skills necessary to lead the SLA
development effort on their own. Program managers can modify the existing template
SLAs to suit their application requirements. Additional research can focus on the
effectiveness of template SLAs. Studies can evaluate whether template SLAs helped the
program manager, contractor, or end users incorporate quality requirements into the
software specifications.

2. Quiality Factors

Although there has been a great deal of research on software metrics, few models
have been widely adopted in the commercial sector. There are no industry-accepted
standards that define quality factors, quality metrics, and their associated quality
thresholds. In many cases quality models are not used because automated tools do not
exist to make measurements easy to gather, or because the measurements are too
subjective to be of value outside of a particular organization.

Research is needed to determine the quality factors, their associated quality
metrics, and meaningful quality thresholds that can best measure product, process, and
project and post-production quality. Studies are ne