
Reconfigurable Computing for Embedded Systems, FPGA Devices and
Software Components

Graham Bardouleau and James Kulp

Mercury Computer Systems, Inc.
Phone: 978-967-1653

Email Addresses: {gpb, jek}@mc.com

In recent years the size and capabilities of field-programmable gate array (FPGA) devices have
increased to a point where they can be deployed as adjunct processing elements within a
multicomputer environment. This enables these devices to become an element within a
reconfigurable system performing processing of high data rate streams of data. Conventionally,
these devices have performed basically fixed-function processing at the input to a system.
However, through the use of component-based programming models, it is possible to view these
devices as general-purpose processing accelerators where the need arises within a system.

A common approach to using FPGA devices in systems at present is based on the use of a
dedicated driver or software proxy mechanism. The driver or proxy is responsible for controlling
the flow of data between the FPGA and other elements within the system. This approach works,
but often the driver or proxy requires intimate knowledge of the algorithm running within the
FPGA device.

As the drive toward reconfigurable computing platforms continues, the need for a standardized
middleware that can be implemented and supported on all forms of processing elements
increases. Through the use of such a middleware it would be possible to interface any form of
processing element, including microprocessors, digital signal processors (DSPs), FPGAs and
even application specific signal processors (ASSPs) and application specific integrated circuits
(ASICs). The middleware would define the mechanism by which data would be transferred
between processing elements and the associated signaling necessary to ensure data integrity
within the system.

Through the implementation of a middleware such as that mentioned above can provide a
framework that supports a component-based application model by relieving the application
implementation engineers of data movement and signaling issues. Various additional benefits are
visible through the use of such a framework, including processor independence, fabric
independence, and platform independence. The development of such a middleware and
associated framework is ongoing at Mercury Computer Systems.

This paper describes the approach taken at Mercury to develop such a middleware and
framework that supports the execution of components on PowerPC microprocessors as well as
Xilinx FPGA devices, treating them as peers in a system of heterogeneous processing resources.
We will discuss also how this approach maximizes the portability of FPGA functional code in
software radio environments.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 FEB 2005

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Reconfigurable Computing for Embedded Systems, FPGA Devices and
Software Components

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Mercury Computer Systems, Inc.

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM00001742, HPEC-7 Volume 1, Proceedings of the Eighth Annual High Performance
Embedded Computing (HPEC) Workshops, 28-30 September 2004 Volume 1., The original document
contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

© 2004 Mercury Computer Systems, Inc.

FPGAs & Software
Components

FPGAs & Software
Components

Graham Bardouleau & Jim Kulp
Mercury Computer Systems, Inc.

High Performance Embedded Computing (HPEC) Conference
September 29, 2004

2© 2004 Mercury Computer Systems, Inc.

FPGAs & Software ComponentsFPGAs & Software Components
Introduction

FPGAs can now be used as scalable processing
resources in heterogeneous multicomputers, not
just I/O enhancers.
Many applications need multiple processor types
for “best fit” (power, weight, etc.).
We must enable FPGAs to be “full peers” without
undue tax on the FPGAs resources.
Our approach has two thrusts:

Component programming models at application level and
component level, building on standards.
Infrastructure elements that enable a common control and
communication model between peer processors, including the
“middleware” for FPGAs

3© 2004 Mercury Computer Systems, Inc.

FPGAs & Software Components FPGAs & Software Components
Programming Models

Application programming must enable all
processing resource types to be easily integrated
(and changed/inserted).

Component (software) model does this
Standards are established for this (OMG and JTRS)
Build on this heterogeneous model to embrace FPGAs

Effective use of FPGA technology still requires
writing VHDL, and sometimes special
features/macros of specific FPGAs.

Define and enable standard VHDL interfaces for external
interactions, enabling peering with other component types
Provide more portability and less dependency on choices of
FPGA, fabric technology and peer processor types

4© 2004 Mercury Computer Systems, Inc.

FPGAs & Software ComponentsFPGAs & Software Components
Infrastructure Developments

How to “bring FPGAs into the first world”?
A common control model and mechanisms that can
work across processor classes:

Load, initialize, configure, start, stop, connect, etc.

A data movement and synchronization model that can
be supported locally everywhere

Streaming, data reorg, and request/response messaging

The FPGA driver and proxy code to treat FPGAs as
“computers that can load and run code that talks to
others”
On-chip lean infrastructure (IP) to enable it all to work

© 2004 Mercury Computer Systems, Inc.

FPGAs & Software
Components

FPGAs & Software
Components

Graham Bardouleau & Jim Kulp
Mercury Computer Systems, Inc.

High Performance Embedded Computing (HPEC) Conference
September 29, 2004

2© 2004 Mercury Computer Systems, Inc.

GoalsGoals
FPGAs can now be used as scalable processing resources in
heterogeneous multicomputers, not just I/O enhancers or glue
logic.
Many applications need multiple processor types for “best fit”
(power, weight, etc.).
We must enable FPGAs to be “full peers” in the multicomputer,
without undue tax on FPGA resources.

A Component SystemBox 1

(e.g. Intel 1U Dual
Pentium Server)

Pentium Pentium

Box 3

(e.g. Adapdev+Atlanta+MCOE)

Pentium G4 G4 FPGA

Box 2

(e.g. Intel 1U Dual
Pentium Server)

Pentium Pentium

Box 4

(e.g. 2 Channel
JTRS Radio)

PPC
DSP
DSPFPGA

FPGA
Interchassis Connections

(network, fabric, links)

3© 2004 Mercury Computer Systems, Inc.

FPGAs & Software Components FPGAs & Software Components
Approach

Our approach has two thrusts:
Component programming models at application level
and component level, building on standards.

• How to write applications, as a set of components
• How to write components, as building blocks for apps

Infrastructure elements that enable a common control
model, and common communication model between
peer processors of all types, including the
“middleware” for FPGAs

• How components are managed
• How components communicate with each other

4© 2004 Mercury Computer Systems, Inc.

FPGAs & Software Components FPGAs & Software Components

Application Programming Model

Enable all processing resource types to be easily
integrated (and changed/inserted).
Support real world, flexible mixing of GPPs, DSPs,
FPGAs.
The Component Software model does it.

A hardware-ish way of building software, usable for FPGAs
Application building blocks that can have different
implementations (even different source code), for different
processor types

Standards are established for this (OMG and JTRS).
We build on this heterogeneous model to embrace
FPGAs.

5© 2004 Mercury Computer Systems, Inc.

What’s a Component?What’s a Component?
A (software/FPGA) package which offers services through
interfaces.
A reusable part that provides the physical packaging of
implementation elements.
An independently deliverable package of software that can be
used to build applications or larger components, or be an
application itself.
A unit of software that is pre-built, packaged, self-describing,
which can be individually deployed or updated or replaced in
the field. It can be sent as an email attachment.
A well behaved DLL on steroids?

6© 2004 Mercury Computer Systems, Inc.

What’s a Component?What’s a Component?

Ports that require a service

Ports that provide service
Component Definition

Defined for its “users” by:
Ports that provide a service via an
interface/protocol (component acting as server)
Ports that require (use) a service via an
interface/protocol (component acting as client)
Configuration (instantiation) parameters.
An overall functional behavior

Packaging (e.g. zip archive) of compiled code
files (e.g. DLLs) and descriptive metadata (e.g.
XML).
Metadata allows tools and runtime
environments to know how to use, configure,
run them, after it is compiled and packaged.

Config params:
- Color: red (default)

Component Package
(e.g. ZIP file)

Definition
Metadata

Implementation
Metadata

Compiled
Code

Compiled
Code

csantos
Note

7© 2004 Mercury Computer Systems, Inc.

What’s an Application?What’s an Application?
An application’s functionality is created by using
components as parts in an assembly, and wiring together
their required and provided ports.
Assemblies can be used as components in higher level
assemblies, enabling an application to be used as a
component in a new application.
Assemblies are described in metadata (usually XML), not
code.

8© 2004 Mercury Computer Systems, Inc.

FPGAs & Software Components FPGAs & Software Components
FPGA Component Model

Effective use of FPGA technology still requires
writing VHDL, and sometimes special
features/macros of specific FPGAs.

Define and enable standard VHDL interfaces for
external interactions, enabling peering with other
component types.

Provide more portability and less dependency on
choices of FPGA, fabric technology and peer
processor types.

9© 2004 Mercury Computer Systems, Inc.

FPGAs & Software Components FPGAs & Software Components
FPGA Component Model

Exposed interfaces for the VHDL designer
Local memory (scratch, LUT, or comm buffers)
Data ports for communicating with other components (FIFO
style or randomly addressable comm buffers)
Runtime configuration parameters (scalars)
Execution control (start/stop/reset etc.)
Local FPGA resources or I/O (generally not portable)

Application
Component

Logic

Configuration
Port

Control
Port

Local Memory
Port(s)

Data Input
Port(s)

Data Output
Port(s)

Local HW/IO
Access

Standardized
Interfaces

10© 2004 Mercury Computer Systems, Inc.

Infrastructure ElementsInfrastructure Elements
How to “bring FPGAs into the first world”?

A common control model and mechanisms
that can work across processor classes:

Load, initialize, configure, start, stop, connect, etc.
Top level server manages a collection of
processors, assuming they can all run and connect
components.

11© 2004 Mercury Computer Systems, Inc.

Infrastructure ElementsInfrastructure Elements
How to “bring FPGAs into the first world”?
A control & deployment mechanism that works across
processor classes:

Load, initialize, configure, start, stop, connect, etc.
Top level service manages a collection of processors, that can all run
and connect components.
Each processor is self-managed or managed by proxy (FPGA).

Deployment
System/
Service

Packaged
Components

Computer A

Processor X Processor Y

Component
1

Component
2

Component
3

Computer B

Processor Z
Component

4

Distributed System or Multicomputer

12© 2004 Mercury Computer Systems, Inc.

Infrastructure ElementsInfrastructure Elements
How to “bring FPGAs into the first world”?

A data movement and synchronization model that can be
supported locally on all processor classes, including FPGAs,
with no central control at runtime.

Streaming data flow
Data reorg (striping/partitioning)
Request/response messaging
Interoperable between processor classes on a fabric
Based on current standards, extended to cover a broader set of
processor classes

SIMD
Component Set A

(x3)

Output1

SIMD
Component Set B

(x2)
Output1Input1

Component C
(x1)

Output1

Input1

Input2

Stream#1

13© 2004 Mercury Computer Systems, Inc.

FPGA Infrastructure ElementsFPGA Infrastructure Elements
Outside-the-FPGA support software

The FPGA driver and proxy code to treat FPGAs as “computers
than can load and run code that talks to others.”
Implement the common component control and deployment
model for FPGAs by proxy.

Loading FPGA programs
• Partial loading still a challenge with today’s FPGA technologies

Configuration, control, and communication setup, via touching on-
chip infrastructure elements
Does not participate in data flow or synchronization

Some GPP
FPGA
Proxy

FPGA Processor
FPGA Component

Infrastructure
FPGA

ComponentControl/Deployment

Other Processor
Other Component

Infrastructure
Other

ComponentData Stream

14© 2004 Mercury Computer Systems, Inc.

FPGA Infrastructure ElementsFPGA Infrastructure Elements
On-chip infrastructure

Hardware abstraction (like an OS)
Memory technology
Fabric/Bus attachment technology, with DMA
I/O technology

Component abstraction (like middleware)
Configuration (runtime parameters)
Execution control
Communication with other components,
local or remote
How FPGA components are written
(in VHDL)

On-Chip and Adjacent Hardware

Application Component

Hardware Abstraction

Component Abstraction Application
Component

Interoperable/
Scalable
Dataflow

Control &
Configuration

Memory Buffer
Management

I/O
Timing/Control

/Routing

	Precis:
	Poster:
	Agenda:
	Abstract:

