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INTRODUCTION:

Update on cancer cachexia, August 2004. The previous (first annual) progress report
provided an extensive update. We provide only information new since then. Substantial
progress has been made to identify biochemical mechanisms leading to muscle wasting and
atrophy, but there have been no substantive breakthroughs in development of new animal models
of cachexia, identification of additional circulating factors responsible for the syndrome, or the
development of novel patient treatments (Tisdale, 2003).

Biochemical mechanisms of cachexia have been explored in vivo and in vitro. It now
appears that muscle wasting involves paracrine factors in the microenvironment surrounding
muscle that regulate its overall activity, in particular insulin-like growth factor-1 (Glass, 2003)
and the TGF-beta superfamily member myostatin, also known as GFD-8, which is a negative
regulator of muscle mass. (Roth & Walsh, 2004). IGF-1 appears to stimulate the P13 kinase/Akt
signaling and Foxo transcription factor pathways (Lee et al, 2004; Stitt et al, 2004; Sandri et al,
2004). The same pathways appear to be activated during muscle wasting in response to multiple
causes; so these are likely also to be activated during cancer-induced muscle wasting (Lecker et
al, 2004). Myosin heavy chain is a major substrate for degradation in cachectic skeletal muscle
(Acharyya et al, 2004).

Role of the proteasome. Skeletal muscle proteolysis in cachexia is probably due to
increased activity through the proteasomal pathway, rather than via lysosomes or soluble
sarcoplasmic proteases. Certain cancer treatments can either enhance or inhibit this muscle
degradation pathway. Thus, cancer chemotherapy may alter cachexia in patients. Omega-3 fatty
acids and other eicosanoids can regulate the activity of the proteasome, providing a biochemical
rationale for the dietary treatment of cancer cachexia. It is not yet clear that activation of
proteasomal degradation is the central or the only pathway for muscle wasting in cancer cachexia
(Glass, 2003; Lecker, 2003), but this seems increasingly likely and may involve specific
activation in muscle cells of the specific ubiquitin E3 ligases, atrogin and MuRF1 (Dehoux et al,
2004; Sachek et al, 2004).

This report described progress on our project (now in its second year) to establish
whether autocrine motility factor/phosphoglucose isomerase is a systemic cachectic factor. It
has been known for 50 years to be elevated in patients with advanced, metastatic breast cancer,
and we previously observed that it was also elevated in the circulation of nude mice that were
cachectic due to advanced breast cancer metastases restricted to bone.
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BODY OF PROGRESS REPORT

Timetable: The award of this grant was made just as the Principal Investigator was
moving from the University of Texas to the University of Virginia. Initial work was commenced
upon arrival in Charlottesville Virginia in October 2002. A new research associate was recruited
to work on this project, Ms. Lisa Wessner, who has learned all of the techniques specific to the
project, which has now been active since January 1 of 2003. Thus, this progress report represents
work carried out over a 12 month period from July 2003 to July 2004, and the report ends after
18 months of research have been carried out in total. The animal results reported below,
although gratifyingly successful, were substantially delayed by a serious, documented outbreak
of the lethal mouse pathogen Burkholderia gladioli (Foley et al, 2004) in our animal facility.
This caused two problems. Burkholderia can be easily transmitted from regular lab mouse
strains to immunocompromised ones. Under our quarantine conditions, animal handlers can only
handle nude mice if they have been completely decontaminated after handling non-nudes. This
is highly impractical, since a central part of our research involves growth of human tumor cells
in nude mice, typically in 6-month experiments. The only practical solution to this problem has
been to carry out ALL animal experiments in nudes. Our ultimately successful quarantine
approach was to avoid initiation of all new anima experiments, while the source of the outbreak
was determined and infected animals were identified and sacrificed. This took six months. Our
animal experiments, shown below, have thus been delayed by six months. For this reason we
have requested a one-year no-cost extension of funding to permit us to complete the remaining
tasks. Thus, we anticipate filling the final progress report for this proposal in August 2005.

The revised application contained 3 Specific Aims and 9 Tasks in the revised Approved
Statement of Work:(Revised 01/04/02 with original Aims 4 & 5 deleted):

Task 1 (Aim 1) Determine dose range and Alzet mini-pump size for administration of mnAMF to
achieve effective blood levels of-10ng/mL. [28 mice] Year 01, months 1-6.

Task 2 (Aim 1) Demonstrate cachexia with mouse AMF infused into mice, compared to controls
and to mice bearing CHO-KI [mAMF-] and CHO-1C6 [mAMF+] IM tumors. [56 mice] Year
01, months 7-12.

Task 3 (Aim 1) Carry out routine pathology and histology of animals from Task 2. Year 01,
months 10-12.

Task 4 (Aim 1) Determine host concentrations of 4 host cytokines in baseline and sacrifice
blood samples of animals from task 2. Year 02, months 1-4.

Task 5 (Aim 2) Construct two mutants of mAMF [E357A and 4S/T-A] and sequence. Year 02,
months 1-4.

Task 6 (Aim 2) Express and purify mutant mAMF proteins and determine Km and Vmax and
binding to phosphocellulose. Year 02, months 5-8.
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Task 7 (Aim 2) Carry out Task 2 & 3 protocols with wt & 2 mutant mAMFs by pump infusion.
[24 mice] Year 01, months 9-2; Year 02, throughout.

Task 8 (Aim 3) Carry out Task 2 & 3 protocols with mouse versus 3 concentrations of human
AMF. [40 mice] Year 02, months 1-12.

Task 9 (Aims 1-3) Analyze data, prepare and submit results for meeting presentations, progress
reports, and peer-reviewed publication. Year 01-02, throughout.

Total mice requested = 148 [adult female Balb/c & Balb/c nudes, 32 mice were eliminated in
deleted Aim 5]. All use of human cell lines and radioisotopes was eliminated with the deletion
of Aims 4 & 5. Animal use has been reported separately to the DoD. Since the annual animal
usage and progress reports cover different times, the most recent animal usage form did not
include the mice that were used in Figures 1 and 2.

Progress:

Task 1 was completed in the first year.

Task 2 has been carried out in this report period. Previous experiments demonstrated that a
simpler approach than originally proposed successfully gave substantially increased steady-state
blood concentrations of mouse PGI/AMF. In this experimental protocol, animals were given the
factor as sterile intraperitoneal (i.p.) injections of protein in PBS at 8 AM, noon, and 4 PM.
Blood levels of PGI/AMF were measured at the 4PM time, and the animals were weighed. The
injected mouse AMF/PGI was entirely cleared from the blood stream by 24 hours. Figures 1
and 2 show the result of a substantial animal experiment in which nude mice were injected 3
time per day for 3 days with 100 gl of sterile PBS containing purified mouse AMF/PGI (positive,
shown in square symbols) or BSA (negative control) at either 150 or 500 pLg of protein per dose.
The experiment was carried out with Balb/C nu/nu mice and 5 or 10 mice per group. Statistical
significance was determined by analysis of variance using the 2-way ANOVA facility plus post-
test analysis of the GraphPad Prizm graphics program. The data demonstrate that 150 gg doses
were ineffective to cause weight loss (Figure 1), while 500 pLg doses (Figure 2) caused a
statistically highly significant cachexia by 24 hours after the initial injection, which appeared to
persist for 24hrs after the cessation of injection following three days of treatment.

Mouse AMF/PGI for these experiments was prepared in E coli and purified by NiNTA
chromatography using the 6xHis C-terminal extension. As detailed in the first progress report,
these recombinant protein preparations were carefully analyzed for contamination with bacterial
endotoxin and determined to be free of this material to well below a level that would cause
inflammation in the animals. The laboratory animal personnel report that the AMF/PGI
treatments did not cause any apparent pain or discomfort to the mice.

On the basis of the results shown in Figures 1 and 2, the experiments for Tasks 3 and 4
will be carried out in the next funding period by direct i.p. injection of recombinant protein 3X
per day at the dosage used for Figure 2. In addition to the routine histology proposed in task 3,
we will assess whether a series of muscle genes are activated. Mice will be sacrificed at the end
of the third day of treatment. Muscle RNA will be assayed by real-time PCR with mouse-
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specific primer pairs for a series of markers discussed in the Introduction, above: IGF-1,
myostatin, atrogin, MuRF-1, myosin heavy chain, and Foxo 3. We will also prepare muscle
homogenates from treated and control mice and assay them for proteasomal activity (Reinheckel
et al, 2000) as shown in Figure 3.

Tasks 5 and 6 have been completed. The catalytically inactive mutant E357A has been
constructed, expressed and purified. In collaboration with Dr Christopher Davis at the University
of South Carolina, the x-ray crystal structure of this mutant has been determined. The data were
originally included in the manuscript submitted to J Mol Biol, now in press as Solomons et al
(below under Research Accomplishments, but the data on the mutant were removewd to keep the
paper within acceptable page limits and will be submitted later. The role of isomerase (PGI)
activity in relation to autocrine motility factor (AMF) activity remains controversial in the field.
Much of the published AMF cytokine work has not taken into account the current knowledge of
PGI structure. We (Davies et al, 2003) and others (Arsenieva & Jefferey, 2002), have shown that
ligand binding to mammalian PGIs results in only very small conformational changes in the
surface of the protein away from the active site (where binding to the AMF receptor almost
certainly takes place). These conformational changes are almost certainly insufficient to have
any effect on a receptor-mediated cytokine-like action of the protein. We believe that mouse
E357A AMF/PGI will be active in the cachexia assay. This is proposed in Task 7, which will be
carried out in the final funding period.

We are also ready to carry out Task 8, the cachexia model, by injecting mice with 500
jig/dose of human AMF/PGI. Our extensive preliminary data, presented previously, showed an
approximately 100-fold species preference for mouse versus human factor acting on cells of the
same versus the opposite species. We thus expect that this dose of the human protein will be
without effect. 100X higher should be effective, but it is impractical both for the investigator
and the mouse to repeat the experiment with 50 mg of purified protein per dose.

KEY RESEARCH ACCOMPLISHMENTS:

1) Purification of recombinant AMF/PGI with low endotoxin content finalized.

2) Animal model of direct i.p. injection of mouse AMF/PGI established in previous year
successfully used to cause statistically significant (4%) weight loss in 24hrs compared to
equivalent control protein treatment. Partial dose-response established between 450 (ineffective)
and 1500 (effective) jtg/mouse/day.

3) Human AMF/PGI prepared to carry out species-specific test of the results found in
accomplishment 2) in 3rd (final) year.

4) Crystal structure of mouse AMF/PGI, used in all of the work for this proposal, solved and
published.

5) In vitro assay for proteasome activation in mouse C2C12 myoblasts established and responses
to mouse AMF/PGI demonstrated.
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REPORTABLE OUTCOMES (since previous report):

Six manuscripts published, which include reviews of the contributions of bone metastases to
cancer cachexia, while the sixth paper derives directly form the work carried out for this
proposal:

Chirgwin JM, Guise TA. Interactions between tumor and bone alter the phenotypes of both. J
Musculoskel Neuronal Interact, 3:278-281, 2003.

Chirgwin JM, Guise TA. Molecular mechanisms of cancer metastases to bone. Curr Opin
Orthop, 14:317-321, 2003.

Guise TA, Chirgwin JM. Role of TGFP in osteolytic bone metastases. Clin Orthop, 415:S32-38,
2003.

Chirgwin JM, Guise TA. Cancer metastasis to bone, Science & Medicine, 9:140-151, 2003.

Chirgwin JM, Mohammad KS, Guise TA. Tumor-bone cellular interactions in skeletal
metastases. J Musculoskeletal Neuronal Interact 4:308-318, 2004. Copy in appendix.

Graham Solomons JTG, Bums S, Wessner L, Krishnamurthy N, Zimmerly E, Swan MK, Krings
S, Muirhead H, Chirgwin J, Davies C. The crystal structure of mouse phosphoglucose isomerase
at 1.6 A resolution and its complex with glucose 6-phosphate reveals the mechanism of sugar
ring opening. J Mol Biol. 342:847-860, 2004. Copy in appendix.

Two manuscripts in press or accepted for publication, which include reviews of the
contributions of bone metastases to cancer cachexia:

Guise TA, Chirgwin JM. Biology of bone metastases. Chapter in Diseases of the Breast, 3rd
edition. Harris, Lippman, Morrow, and Osborne (eds). Lippincott Williams & Wilkins, in press,
2004.

Clines GR, Chirgwin JM, Guise TA. Skeletal complications of malignancy: central role of the
osteoclast. Chapter for Topics in Bone Biology, Vol 2, accepted for publication, 2004.
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CONCLUSIONS

Purified mouse autocrine motility factor/phosphoglucose isomerase was found to cause
statistically weight loss (cachexia) after 3 days of 3X daily intraperitoneal injection at a dose of
0.5 mg/injection, which was accompanied by significant increases in serum concentrations of the
factor. This is a simpler animal model than originally proposed. Thus, the main hypothesis of
the original proposal has been validated.

Progress in the second year has been fully successful but substantially delayed by a disease
outbreak in the P.I.'s animal facility. Experiments for 2004 were delayed until June and July.
We have requested and received a one-year no cost extension of the grant from the DoD and now
plan to complete the work proposed by the end of July 2005.

Structures of the AMF/PGI proteins, including mouse and human proteins and the enzyme
complexed with inhibitor have been solved by x-ray crystallography and published or accepted
for publication. Mutant forms of the protein have been prepared. Experiments have been
successfully completed to improve the purity of the recombinant protein and to characterize the
effects of the factor on both intact animals and on a mouse muscle cell line in vitro. The
structural data are now complete for analysis of the species-specific effects and their structural
bases
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Figure 1. In the experimental protocol, Balb/C nu/nu mice, approximately 25g in weight, were
given the factor as sterile intraperitoneal (i.p.) injections of protein in PBS at 8 AM, noon, and 4
PM. Blood levels of PGI/AMF were measured at the 4 PM time. Animals were weighed at the
same time. Animals were injected on days 1, 2, and 3 and allowed to recover for two more days.
Injections were of 150 jig purified mouse AMF/PGI or BSA (Sigma) in 100 p.1 of sterile PBS.
The curves are not statistically significant (p > 0.05) between the two groups by 2-way ANOVA,
with n = 10 mice/group.
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Figure 2. Protocol was similar to that described under Figure 1, except that the injections were
of 500 pg aliquots of the proteins, in the same volume of PBS as before. There were n = 5 mice
per group. The curves were analyzed for statistical significance by 2-way ANOVA, and p <
0.0001. Significance of differences between the two curves at each time point were calculated by
comparing replicates of the means by row with Bonferroni's post-test using the statistics
programs in GraphPad Prizm. ** p < 0.01; *** p < 0.001. Other points n.s. (p > 0.05).
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Figure 3. C2C12 mouse myoblasts (ATCC) were grown to confluence, changed to serum-free
medium for 24 hrs, and then treated for 24 hrs with the indicated concentrations of recombinant
mouse PGI/AMF. These cells are routinely studied for the induction of proteasomal activity

(Coulombe et al, 2003: You et al, 2003), as well as being used for models of skeletal muscle cell
function and differentiation (Yamaguchi, 1995). Cells were harvested, lysed by three cycles of
freeze/thawing, homogenized, and centrifuged for 10 minutes at 14,000xg and 40C to sediment
debris. The supernatants were adjusted to a constant protein concentration of 50 Pg/ml and
assayed for 20S proteasomal chymotryptic activity (Reinheckel et al, 2000) with the fluorogenic
substrate, succinyl-LLVY-AMC (Calbiochem) for 1 hr at 37°C. Control values not shown, since
these continue to be highly variable, and we have not yet succeeded in establishing a
reproducible negative control for the assay. Differentiation of the myoblasts into myotubes, by
culturing in the presence of horse serum, may resolve this problem (experiments underway).
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Tumor-bone cellular interactions in skeletal metastases
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Abstract

Human tumor cells inoculated into the arterial circulation of immunocompromised mice can reliably cause bone metas-
tases, reproducing many of the clinical features seen in patients. Animal models permit the identification of tumor-produced
factors, which act on bone cells, and of bone-derived factors. Local interactions stimulated by these factors drive a vicious cycle
between tumor and bone that perpetuates skeletal metastases. Bone metastases can be osteolytic, osteoblastic, or mixed.
Parathyroid hormone-related protein, PTHrP, is a common osteolytic factor, while vascular endothelial growth factor and
interleukins 8 and 11 also contribute. Osteoblastic metastases can be caused by tumor-secreted endothelin-1, ET-1. Other
potential osteoblastic factors include bone morphogenetic proteins, platelet-derived growth factor, connective tissue growth
factor, stanniocalcin, N-terminal fragments of PTHrP, and adrenomedullin. Osteoblasts are the main regulators of osteoclasts,
and stimulation of osteoblast proliferation can increase osteoclast formation and activity. Thus, combined expression of
osteoblastic and osteolytic factors can lead to mixed metastases or to increased osteolysis. Prostate-specific antigen is a pro-
tease, which can cleave PTHrP and thus change the balance of osteolytic versus osteoblastic responses to metastatic tumor
cells. Bone itself stimulates tumor by releasing insulin-like growth factors and transforming growth factor-f. Secreted factors
transmit the interactions between tumor and bone. They provide novel targets for therapeutic interactions to break the vicious
cycle of bone metastases. Clinically approved bisphosphonate anti-resorptive drugs reduce the release of active factors stored
in bone, and PTHrP-neutralizing antibody, inhibitors of the RANK ligand pathway, and ET-1 receptor antagonist are in clin-
ical trials. These adjuvant therapies act on bone cells, rather than the tumor cells. Recent gene array experiments identify addi-
tional factors, which may in the future prove to be clinically important targets.

Keywords: Cancer, Breast, Prostate, Bone Metastasis, Parathyroid Hormone-Related, Protein, Endothelin, Adrenomedullin,
Transforming Growth Factor-f, Prostate-Specific Antigen

Introduction The released growth factors enrich the local microenviron-
ment. A main effect of the factors appears to be alteration of

The majority of patients dying from cancer of the breast the tumor cell phenotype rather than an increased growth
or prostate have metastases to the skeleton. The affinity of rate. Tumor cells in turn secrete additional factors that act
these and several other solid tumors for this metastatic site upon bone cells, causing the responses that characterize the
is the consequence of the special microenvironment provid- osteolytic and osteoblastic metastases. Local interactions
ed by bone. Stephen Paget in 1889 proposed the seed and between tumor cells and bone form a vicious cycle, which
soil hypothesis: bone provides the fertile soil in which certain underlies the development of skeletal metastases2' 3.
cancer cell seeds prefer to grow. We now appreciate that Interactions between tumor cells and bone cells change the
mineralized bone matrix is a rich storehouse of growth fac- phenotypes of both.
tors', which are mobilized by osteoclastic bone resorption. The basic mechanisms of cancer metastases to specific

sites have been controversial. Cancer cells in vivo continue to
mutate. The ability of cancer cells to metastasize is charac-

The authors have no conflict of interest. teristic of advanced disease and could occur only after the
gradual accumulation of a necessary set of pro-metastatic
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of variants from a heterogeneous population of cells within of a breast cancer cell line by gene expression profiling'.
the primary tumor, plus changes in gene expression induced They identified mRNAs whose expression strongly correlated
by bone factorse. Cells of the osteoblastic lineage appear to with increased bone metastasis. Five of the mRNAs encoded
be the main targets of tumor-secreted factors. Bone-derived IL-11, matrix metalloproteinase (MMP)-I osteopontin, con-
transforming growth factor-P (TGFO) is a major factor regu- nective tissue growth factor (CTGF), and CXCR-4. MMP-1 is
lator of tumor cell behavior in bone. an interstitial collagenase made by osteoblasts. It cleaves col-

There are no convenient animal models where primary lagen at a site resistant to osteoclastic enzyme hydrolysis and
tumors reproducibly metastasize to bone. Many of the may be rate-limiting in normal bone resorption"7 .
results described here use an animal model in which human Osteopontin plays a complex role in metastasis, including
tumor cells are inoculated into immuno-deficient mice. modulation of anti-tumor immune responses'8 and is differ-
Injection into the venous circulation most often results in entially regulated in tumor cells metastatic to bone versus
tumor cell entrapment within the capillary beds of the lung other sites". CTGF is a potent osteoblast-stimulatory fac-
or liver. However, careful tumor administration directly into torm, as well as being expressed by tumor cells. CXCR-4 is
the left cardiac ventricle can result in 100% incidence of the receptor for the chemokine SDF-1 and functions in the
bone metastases with many tumor cell lines (Table 1). attraction of breast cancer cells to specific metastatic sites
Osteolytic lesions are detected by X-ray as early as 3 weeks including, but not limited to, bone2'. Kang et al.5 found that
and can be quantified by image analysis. Osteoblastic lesions the pro-metastatic gene set was coordinately increased in
may take up to 6 months to develop in nude mice, and the cells that pre-existed in the original cell population. The
lesions cannot be quantified radiographically. authors attempted to convert low-metastatic MDA-MB-231

breast cancer cell line clones into ones highly metastatic to
Osteolytic metastases bone by overexpressing each of the five individual factors.

They found that conversion of the cells to a phenotype of

Destructive bone lesions are characteristic of breast can- aggressive metastasis to bone required co-transduction of

cer. The most prominent cause of bone destruction is combinations of four of the five factors. The results strongly

parathyroid hormone-related protein, PTHrP, which is support a multi-factorial mechanism underlying organ-spe-

secreted by many cancer types and, when systemically ele- cific metastases.
vated, is responsible for humoral hypercalcemia of malig- Many osteolytic factors act via osteoblasts and stimulate

nancy (HHM)7. Breast and lung cancer cells that secrete osteoclastic bone resorption indirectly, rather than acting

PTHrP in concentrations insufficient to induce HHM still directly on cells of the osteoclast lineagen. This has been

cause extensive osteolytic bone destruction in nude mice. shown for PTHrP, which induces osteoblastic expression of

Bone lesions and tumor burden can be significantly RANK ligand'. IL-11 can act similarly, while M-CSF and

decreased, and survival increased, by treatment with PTHrP- VEGF serve as co-factors for the RANK ligand-stimulated dif-

neutralizing antibody,'. The antibody has been humanized ferentiation of hemopoietic precursors into active osteoclasts.

and is in clinical trials against HHM.
PTHrP was originally suspected to play a role in osteolytic Osteoblastic metastases

metastases based on its known role as a stimulator of hyper-
calcemia7, plus its high expression by tumor cells in bone ver- Metastases with net formation of disorganized new bone
sus soft tissue sites in patients°'"'. These results suggested that are characteristic of prostate cancer24 and also occur in 15%
PIMrP expression by the primary tumor might be prognostic of breast cancer bone metastases. The tumor-induced
of metastases to bone. This is not the case. In a prospective lesions are characterized by formation of new but abnormal
study, PTHrP expression by the primary tumor was an inde- and disorganized new bone, and they are accompanied by
pendent prognostic marker of improved survival and increased bone resorption. A number of candidate factors
decreased metastasis to bone'2. PTHrP is a complex, multi- made by tumor cells could stimulate osteoblasts, but
functional protein and appears to play independent roles in progress has lagged in the area until recently. Endothelin-1
primary and metastatic cells. It is likely that the expression of (ET-1), a 21-amino acid vasoactive peptide, is a potent stim-
PTHrP by breast cancer cells in bone is the result of induction ulator of new bone formation. It is secreted by tumor cells'
of its gene by factors in bone, such as TGF' 3P. and can cause osteoblastic metastases in the nude mouse

PTHrP cannot be the only factor responsible for bone model. Metastases are effectively blocked with a selective
metastases, and a number of other proteins play either con- antagonist of the endothelin A receptor". This orally
tributory or PTHrP-independent roles2. Candidate factors active antagonist is in clinical trials in men with advanced
that may contribute to PTHrP-induced osteolytic lesions are metastatic prostate cancer"O. The vicious cycle model pre-
interleukin (IL)-11, macrophage colony-stimulating factor dicts that osteoblasts, osteoclasts and tumor cells cooperate
(M-CSF), and vascular endothelial growth factor (VEGF)'4 . to cause the pathology of bone metastases. The endothelin
PTHrP-independent factors have also been reported, includ- receptor antagonist blocks the activation of osteoblasts by
ing IL-8, which can directly stimulate the osteoclast' 5"6. tumor-produced ET-1. It also decreases osteoclastic bone

Kang et al. compared less- and more-metastatic variants resorption, as indicated by decreases in markers of resorp-

309



J.M. Chirgwin et al.: Metastatic tumor-bone interactions

Cell Line Bone PTHrP IL-6F IL-11F VEGF Other ET-1 AM Other

Metastases Osteolytic Blastic

Factors Factors

Breast

ZR-75-1 OB 0 0 0 99±t 1.5 81t5

MCF-7 OB 0 3.3±0.2 0 180±2 19t2 +A PDGFB

[171--20]M

T47D OB 0 [6 8 -+1 2]M 227--.12 +A

BT483 M 0 22t6

MDA- OL 0.54t0.1 360 240±3 1258±34 IL-8c 0 + CTGFD

MB-231 [1021 +2 3]M

BT549 OL 0.44±0.12 0

MDA- OL 0.29t0.12 [9 1 - 7]m 0

MB-435s

HS578T N 0.46±0.05 3±2

MDA- N 0.4±0.4 0

MB-436

MDA- N 0 0

MB-361

Prostate

DU-145 N 0.75±0.08 23t2x 78±10K

[4+0.3]

LNCaP N 0.08-±0.08 47VL 0 0K

_________ _________ 1.2_+0.2]' ___

PC-3 OL 12±0.8 < 2 5L 0 +E

[5+0.3]J 7 1 _+9 K

Lung

RWGT2F OL 64t2 117±2 0 1233±t.14

SBC-5G OL +

A549 OL + H + +

HARAI OL +

Ovary

CHO-KI OL +

Table 1. Cancer Cell Lines and Phenotypes of Bone Metastases. PTHrP in pM/105 cells/48 hr by Nichols Institute 2-site IRMA. ET-1, IL-6,
IL-11, VEGF in pg/ml/i0s cells/48 hr by R&D Systems immunoassays. OB = osteoblastic, OL = osteolytic, M = mixed, N = none, when cells
are inoculated into the arterial circulation of nude mice via the left cardiac ventricle. Most data from Yin et al.27. AAM = adrenomedullin
(Miller et al.)40. BPDGF = platelet-derived growth factor B chain (Yi et al.)97 CIL-8 = interleukin-8 (Bendre et al.)15; DCTGF = connective
tissue growth factor (Kang et al.) 5; EAM = adrenomedullin (Abasolo et al.)43; F(Gallwitz et al.)1; G(Miki et al.)12 ; H(Hastings et al.)42; l(Iguchi
et al.) 9; J(Chiao et al.)93; KFmol/mg protein (Rocchi et al.)41; Lpg/mg protein (Dall'Era et al.) 94; mArbitrary mRNA units (Scott et al.)95.
Remaining data, indicated by pluses, are unpublished from the authors' laboratory. Note that some of these cells (MCF-7 and MDA-MB-
231, for examples, vary in PTHrP production depending on source of the cell line). A number of cell lines, scored N here, cause bone respons-
es when injected directly into the marrow cavity of the tibia or femur 96. Most of the cell lines are of human origin.
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tion seen in the patient trials. Conversely, bisphosphonates osteoblastic factor, ET-1, into the PTHrP-secreting MDA-
effectively reduce skeletal-related events in prostate can- MB-231 breast cancer cell line. Instead of converting the
cer"1. These observations support an important role for the bone response from osteolytic to osteoblastic, the bone-
vicious cycle in patients. destructive effects were enhanced by ET-1. Some of this

Other factors responsible for osteoblastic metastases effect may be caused by autocrine responses of the tumor
remain to be identified. Such factors need to meet two initial cells to ET-1. We believe that osteoblastic factors can stimu-
criteria: 1) ability to stimulate osteoblastic new bone forma- late osteoblast proliferation, increasing the population of
tion, and 2) expression by cancer cells. The bone morpho- early osteoblasts'. The enlarged pool of early osteoblasts
genetic proteins (BMPs) are obvious candidates, but a causal responds to osteolytic factors by increased expression of
role in bone metastases has not been demonstrated. CTGF, RANK ligand49. A similar mechanism may be involved in the
identified in the experiments of Kang et al.' is another factor metastases caused by A549 and PC-3 cells, described in the
that stimulates osteoblasts2°0 . It is a normal product of preceding paragraph. Both cell lines secrete PTHrP and
hypertrophic chondrocytes and is the second of three close- adrenomedullin, and A549s make ET-1 as well (unpub-
ly related gene products CCN1-3, which are selectively lished). Thus, expression of an osteoblastic factor may not
expressed in certain tumor types33. It is possible that CCN1 simply convert an osteolytic tumor cell line into one that
and CCN3 may contribute to bone metastases. CCN3 is causes osteoblastic metastases.
expressed by prostate cancers34, while CCN1, cyr6l, is Another puzzling question has been the role of PTHrP in
expressed by breast" and other cancers. osteoblastic metastases, especially those due to prostate can-

Adrenomedullin (AM) is a 52-amino acid vasoactive pep- cers, which nearly always express PTHrP. A partial explana-
tide with potent bone-stimulatory actions in vitro', 7 and in tion was provided by the observation that prostate-specific
vivo38'91. It is made by many cancers39, including breast' and antigen (PSA) is a serine protease, which cleaves PTHrP after
prostate41. We have recent data that it increases bone metas- phenylalanine residues 22 and 23"°'. The resulting fragment
tases in vivo. We tested the A549 human lung adenocarcino- fails to activate the classical PTIPTHFIrP receptor. This is not
ma cell for its ability to form bone metastases when inocu- the end of the story. It was later observed that the inactive
lated into the left cardiac ventricle. Animals developed oste- fragment PTHrPI-16 increased contraction of cardiac
olytic metastases after five weeks. These cells express myocytes apparently by binding to the endothelin A receptor.
PTHrP 42, ET-1, and AM. AM secretion was reduced 50% by Binding was attributed to a 4 amino acid near-identity
stable expression of AM siRNA. These cells, made by Dr between the two peptides"2 . We have extended these observa-
Alfredo Martinez at the National Cancer Institute, caused tions to bone. PTHrP1-23 is a potent stimulator of calvarial
fewer metastases and increased survival, compared to empty new bone formation at concentrations as low as lnM (unpub-
vector-transfected A549 cells (unpublished results). In lished results), although this polypeptide has no detectable
experiments the human prostate cancer cell line PC-3 was affinity for the type 1 PTH receptor. New bone formation was
transfected with an AM expression DNA, resulting in a blocked by the endothelin A receptor antagonist, ABT-627.
greater than ten-fold increase in AM secretion. These cells The results suggest that PSA proteolysis of PTIrP, rather
showed slower growth in vitro and as subcutaneous tumors43; than inactivating it, converts the protein from an osteolytic
this response is opposite to that found with many other factor to a potent osteoblastic one. These preliminary results
tumors, where AM is an autocrine growth stimulatory and are in vitro and require confirmation of their physiological sig-
pro-angiogenic factor39. However, when these same PC-3 nificance in vivo. PTHrP can also be cleaved by the neutral
subclones were inoculated into nude mice, animal survival endopeptidases, neprilysin, which is expressed on the surface
was less than half that of mice receiving control PC-3 cells. of prostate and bone cells5 3; so N-terminal fragments of
Mice with AM-overexpressing tumors showed accelerated PTHrP could play a role in normal bone metabolism.
osteolytic lesions and also adjacent areas of osteoblastic new
bone formation (unpublished). Actions of bone on tumor cells

Another factor that could play a role in osteoblastic metas-
tases is stanniocalcin, a polypeptide that is produced by can- The effects of bone-derived factors on tumor cells remain
cer cells"' 45 and can stimulate new bone formation",". understudied. Van der Pluijm et al. elegantly demonstrated

that several mRNAs are increased in bone versus non-bone
Mixed osteolytic/osteoblastic metastases sites of human breast cancer metastases in nude mice14 . RNA

abundances were determined by species-specific RT-PCR.
Mixed lesions are characteristic of both breast and PTHrP, VEGFs and M-CSF were increased specifically in

prostate cancers. The effect of combined expression of oste- bone, while several mouse markers of host angiogenesis were
olytic and osteoblastic factors on bone has not been studied, similarly increased. These experiments did not identify the
so the net response of bone at the metastatic site is unpre- factor(s) responsible for the bone-specific mRNA induction.
dictable. As noted above, osteolytic factors such as PTHrP Hauschka et al.' found that insulin-like growth factors (IGFs)
and IL-11 act on osteoblasts to increase expression of -2, then -1, were the most abundant factors in bone matrix,
RANK ligand. We tested the effects of introducing the followed by TGFA, after which were lower concentrations of

311



J.M. Chirgwin et al.: Metastatic tumor-bone interactions

Canevr Cells

ObI.Prohtfera"Uve Faclom
Bone•derived Out olybit

Factors Growth Factora

Figure 1. Tumor stimulation of osteoblasts can increase both new bone formation and resorption. Tumor products, such as endothelin-1
and adrenomedullin, stimulate osteoblast (ObI) proliferation. Immature osteoblasts respond to osteolytic cytokines, such as parathyroid
hormone and interleukin-ll, by expressing RANK ligand (Y). RANK ligand stimulates bone resorption by osteoclasts, which releases
growth factors, such as transforming growth factor-P, from mineralized matrix. Mature osteoblasts synthesize growth factors, which are
incorporated into bone and also enrich the local microenvironment. Growth factors stimulate tumor cells. Osteoblasts lose RANK ligand
expression during maturation. The balance of osteoblast proliferation versus maturation, plus tumor production of factors like PTHrP,
determines whether bone metastases are osteoblastic, osteolytic, or mixed. The new bone synthesized in osteoblastic metastases is disor-
ganized and of poor mechanical quantity.

BMPs, fibroblast growth factors -1 and -2, and platelet- matrix' have been generically named as growth factors.
derived growth factor'. Of these, only TGFP has been shown However, tumor cell proliferation is generally growth factor-
to play a direct role in stimulating tumor cells. TGFP is independent, and such proliferation is not rate-limiting for
growth-inhibitory in the early stages of tumorigenesis. the progress of bone metastases. Experiments with inhibitors
Advanced cancers lose growth inhibition but retain TGFP3 of bone responses to tumor cells (but which do not directly
regulation of metastasis-promoting genes"4, such as CTGF target the tumor cells) effectively decrease tumor bur-
and IL-11, identified by Kang et al.', and PTHrP', 5 . In the den8'27',8'59. These results suggest that paracrine interactions
MDA-MB-231 model of breast cancer metastasis to bone, between tumor cells and bone cells are central regulators of
detailed experiments showed that tumor cell expression of skeletal metastases, and that the regulation is not via control
PTHrP is the major target of TGFf3 and that TGFj3 is the of cell proliferation.
most important regulator of PTTrP5 6 . These experiments
also showed that dual pathways in the tumor cells, through The vicious cycle
p38 MAP kinase and through the Smad proteins, transmit
TGFP3 signaling to the nucleus. Osteoclastic bone resorption Animal models have established that bone metastases
specifically activates TGFP3 from its stored form in bone involve a vicious cycle between tumor cells and the skeleton
matrixW'. This step may be another point at which the efficacy (Figure 1). The cycle is driven by four obvious contributors:
of bisphosphonates against bone metastases is exerted31. the tumor cells, bone-forming osteoblasts, bone-destroying

It is likely that in patients, tumor cells secrete sets of mul- osteoclasts, and organic bone matrix. Osteoclast formation
tiple proteins with actions on bone cells', and these sets may and activity is controlled by the osteoblast, adding complexi-
vary between metastatic sites within individuals. The list of ty to the vicious cycle. The mineralized matrix of bone pro-
the factors contributing to bone metastases is already large vides a rich store of growth factors, such as insulin-like and
(Table 1) and will continue to grow. The effects of multiple transforming growth factors'. These factors are synthesized
factors and their relative expression levels probably change by osteoblasts and released by osteoclasts. The factors reach
during the course of growth of a metastatic lesion, and the high local concentrations in the bone microenvironment and
responses of the host cells at the metastatic site will also can act on tumor cells to encourage metastatic growth. The
change over time. Many of the factors isolated from bone products released from resorbing bone attract tumor cells6W.
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In turn, breast cancers secrete many factors that act on bone supply of osteoblastic precursors and also alter the differen-
cells. It is likely that at sites of osteoblastic metastases, the tiation of hematopoietic precursors into osteoclasts22 . The
tumor cells continue to secrete osteolytic factors, such as animal model that is the focus of this article relies on T-cell
parathyroid hormone-related protein, which stimulate bone deficient nude mice, which ignores the contribution in
resorption. Therapies targeting the vicious cycle can decrease patients of the immune system to both normal bone cell
metastases by lowering the concentrations of growth factors function76, as well as to cell-mediated immune surveillance
in bone. It is characteristic of skeletal metastases that the and killing of tumor cells.
properties of the bone are altered, contributing to the clinical
pathology seen in patients. As disease progresses, the bone Clinical applications
and the bone cells probably become more and more abnor-
mal, under the continuing influence of tumor-secreted fac- The bisphosphonates are a class of drugs that resemble
tors. It should be borne in mind that the images of metastases pyrophosphate. The replacement of the central oxygen of
seen in animal models represent a much-simplified version of pyrophosphate by a carbon in the bisphosphonate backbone
the clinical picture. The animal models are of much shorter results in resistance to hydrolysis and confers high affinity
duration and involve homogeneous tumor lines, whereas for bone mineral, which is the basis for bisphosphonate-
bone metastases in patients are much more heterogeneous, radionuclide conjugates as diagnostic bone-scanning agents.
even within individual patients6 1. The bisphosphonates have high affinity for bone, where they

can persist for years'. They are released at high concentra-
Roles of other cells in bone to skeletal metastases tions in areas of active bone remodeling and are absorbed by

nearby cells. They inhibit cells by several mechanisms,
It is an oversimplification to consider only osteoblasts and including the stimulation of apoptosis. Bisphosphonates are

osteoclasts as the interacting partners of tumor cells in the effective in animal models and the clinic. Whether bisphos-
vicious cycle of cancer bone metastases. Vascular endothe- phonates have significant effects in vivo on tumor cells or
lial cells are a major fourth cellular component. Most of the angiogenesis', especially at non-bone sites where their con-
tumor-produced factors discussed above are vasoactive and centrations are low, is controversial.
many are pro-angiogenic, including endothelin62, An inhibitor of intracellular src signaling, when modified
adrenomedullin6 3, IL-8', the CCN proteins 33'65, stanniocal- by the addition of a pair of phosphonate groups, inhibited
cin", as well as VEGF. PTHrP may be anti-angiogenic67. osteoclastic bone resorption'. This approach could add
These same angiogenic factors are also increased by the bone specificity to existing chemotherapeutic and adjuvant
hypoxic response in tumor cells, including endothelin6", compounds. Recombinant osteoprotegerin decreased oste-
adrenomedullin69, the CCN proteins,"'7 , and stanniocalcin 72. olytic destruction and tumor burden in bone, without affect-
To further complicate the situation, many of these factors ing metastases to soft-tissue sites in an animal model59, and
are both regulated by and regulators of VEGF, and many are decreased cancer bone pain'. Recombinant osteoprotegerin
also TGFP3-regulated genes. Thus, there must be an extreme- entered clinical trials but is likely to be superceded by neu-
ly complex cross-talk between endothelial cells, bone cells, tralizing antibodies against RANK ligand.
and tumor cells at the metastatic site. Making sense of these A recent study identified 6-thioguanine and 6-thioguano-
interactions will require the development of novel and sub- sine as effective inhibitors of PTHrP transcription. These
tie experimental strategies. agents have long been used against leukaemias and several

Endothelial cells in bone differ from the cells lining blood inflammatory disorders. They were effective in animal models
vessels in other organs, which could contribute to the bone- of humoral hypercalcemia of malignancy and breast cancer
tropism of certain tumors'. Just as tumor-secreted factors bone metastases8". Endothelin receptor antagonists are in
can alter the phenotypes of bone cells in the vicinity of extensive clinical trials, and their efficacy against osteoblastic
metastases, such factors will probably also alter the behavior metastasis is discussed above. Most of these adjuvant treat-

of endothelial cells. Van der Pluijm et al. observed specific ments target bone cells, but it may be possible to block the
changes in host vascular markers in bone versus non-bone effects on tumors of bone-derived factors such as TGFA9 2.

metastatic sites"4. Di Raimondo et al. similarly detected
angiogenic factors at higher concentrations in bone marrow Treatment options
plasma than in the peripheral circulation of patients with
multiple myeloma74, suggesting the specific induction of Bisphosphonate drugs are currently approved for skeletal
angiogenic factor expression within the bone microenviron- metastases due to multiple myeloma and solid tumors of the
ment of patients with cancer in the skeleton. Tumor cells are breast and prostate. In the last case, an anti-resorptive is
also likely to perturb the lineages of cells in bone. Bone mar- effective against what are predominantly osteoblastic metas-
row is a major site of stem cells, including the stem cells of tases. In fact, osteoblastic metastases are accompanied by
the bone stromal lineage75 , and cells in bone such as peri- active bone remodeling, and prostate cancer patients with
cytes could alter their differentiation under the influence of bone metastases have markers of bone resorption higher
tumor-produced factors. Thus, tumor cells could alter the than those seen in patients with osteolytic disease".
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Bisphosphonates are also effective in animal models of ing of skeletal muscle89. These syndromes are of great con-
osteoblastic bone metastases84. The results are consistent sequence to the patients who suffer from cancers of the
with the importance of the vicious cycle, outlined above and breast and prostate, which are incurable once they become
in Figure 1, to both osteolytic and osteoblastic diseases. The housed in bone3 . It is now appreciated that the standard
role of a vicious cycle in osteoblastic metastases is also sup- treatments for patients with cancers of the breast and
ported by the observation that when patients with advanced prostate result in bone loss. Not only does this result in
metastatic prostate cancer were treated with the endothelin skeletal morbidity for the patients, but increased bone
A receptor antagonist ABT-627, atresentan, markers of turnover could enhance metastases to bone by stimulating
bone resorption were decreased 29'31. Trials are now under- the vicious cycle. Patients with treatment-related bone loss
way to test whether combining a bisphosphonate drug with should benefit from therapy with bisphosphonate anti-
an endothelin receptor antagonist is more effective than the resorptive drugs'. Tumor-bone interactions, and the secret-
single agent treatments. ed factors which mediate them, offer targets for future ther-

apeutic intervention to ameliorate or perhaps prevent skele-
Future directions and limitations tal metastases.
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The Crystal Structure of Mouse Phosphoglucose
Isomerase at 1.6 A Resolution and its Complex with
Glucose 6-Phosphate Reveals the Catalytic Mechanism
of Sugar Ring Opening
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'Department of Biochemistry Phosphoglucose isomerase (PGI) is an enzyme of glycolysis that
and Molecular Biology, Medical interconverts glucose 6-phosphate (G6P) and fructose 6-phosphate (F6P)
University of South Carolina but, outside the cell, is a multifunctional cytokine. High-resolution crystal
Charleston, SC 29425, USA structures of the enzyme from mouse have been determined in native form
2Research Service, Veterans and in complex with the inhibitor erythrose 4-phosphate, and with the

Administration Medical Ceter substrate glucose 6-phosphate. In the substrate-bound structure, the

San Antonio, TX 78230, iSA glucose sugar is observed in both straight-chain and ring forms. This
n Astructure supports a specific role for Lys518 in enzyme-catalyzed ring

3School of Medical Sciences opening and we present a "push-pull" mechanism in which His388 breaks
University of Bristol, Bristol the 05-Cl bond by donating a proton to the ring oxygen atom and,
BS8 1TD, UK simultaneously, Lys518 abstracts a proton from the C1 hydroxyl group. The
4Department of Medicine reverse occurs in ring closure. The transition from ring form to straight-

chain substrate is achieved through rotation of the C3-C4 bond, which
University of Virginia brings the C1-C2 region into close proximity to Glu357, the base catalyst for
Charlottesville, VA 22908 the isomerization step. The structure with G6P also explains the specificity
USA of PGI for glucose 6-phosphate over mannose 6-isomerase (M6P). To

isomerize M6P to F6P requires a rotation of its C2-C3 bond but in PGI this
is sterically blocked by Gln511.
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Introduction with direct roles in glycolysis and gluconeogenesis
and, indirectly, other branches of carbohydrate

Phosphoglucose isomerase (PGI; EC 5.3.1.9) cata- metabolism such as the pentose phosphate path-
lyses the interconversion of glucose 6-phosphate way. In addition to its enzymatic activity, PGI acts as
(G6P) and fructose 6-phosphate (F6P),'a reaction a cytokine in a wide variety of extracellular

activities,1-3 and hence the enzyme now carries
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11973-5000, USA. how the protein functions in this context is unclear.

Abbreviations used: PAB, 5-phosphoarabinonate; AMF, PGI is better characterised as an enzyme, but some
autocrine motility factor; tiME, 0-mercaptoethanol; E4P, key aspects of its catalytic mechanism remain
erythrose 4-phosphate; EST, expressed sequence tag; F6P, unresolved, and these are addressed here.
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isomerase; PGI, phosphoglucose isomerase; PGI/PMI, atom between C1 and C2 of their respective
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isomerase. of two mechanisms: as a proton via a cis-enediol/
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davies@musc.edu hydride.4 The existence of the cis-enediol mechanism
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is well established for PGI,4 but for many years, the 2.1 M ammonium sulphate buffered in the pH
identity of the enzymatic base responsible for proton range 6.5-9.5. The native crystal used in this study
abstraction from C2 of G6P or Cl of F6P was was harvested from 1.9 M ammonium sulphate,
unknown. Recent determination of the crystal struc- 100 mM Tris-HCl (pH 8.5). The crystals grow as
tures of PGI from mammalian sources, however, have large plates of approximate dimensions 1 mm X
led to proposals that Glu357 is responsible.5' 6  1 mm X 0.2 mm and were typically cut into smaller

In contrast to other aldose-ketose isomerases, pieces for data collection. Initial diffraction analysis
such as triose phosphate isomerase, PGI uses a revealed that the crystals belong to space group P2
sugar substrate that exists in solution overwhelm- or P21 with cell dimensions a=69.2 A, b= 116.1 A,
ingly in the hemiacetal or hemiketal ring form,7 and c = 73.1 A and P = 101.3'. An estimate of the solvent
indeed, a crystal structure of rabbit PGI in complex content (46.2%, v/v) indicated that the asymmetric
with F6P shows the substrate bound in the ring unit of these crystals is a dimer of PGI,13 which
form.8 But for proton transfer to occur between Cl corresponds to the biological form of tjhis enzyme.
and C2, the substrate must be in the open-chain A complete dataset extending to 1.6 A resolution
form and, hence, the enzyme catalyzes a second was collected (Table 1) and examination of the
activity, that of ring opening. In agreement with systematic absences revealed the space group to be
this, crystal structures of inhibitor-bound PGIs P21. The structure was solved by molecular replace-
show the ligand to be in the open-chain confor- ment and refined to a crystallographic R-factor of
mation.6' 9"1° The nearest residues to the sugar ring 21.2% (Rfr 24.5%) with excellent stereochemistry.
oxygen atom are His388 and Lys518 (mammalian The final model comprises two PGI subunits
numbering), and, of these, histidine is most likely to (residues 1-556), 1017 water molecules as well as
act as an acid catalyst in ring opening but how the molecules of sulphate, 0-mercaptoethanol (OME)
lysine residue contributes to this process, if at all, is and glycerol, derived from the crystallization
unknown. solution. For both subunits, only the methionine at

Another unresolved issue in the catalytic func- the N terminus and the C-terminal residue are not
tioning of PGI is how the enzyme permits rotation visible in the electron density map.
of the substrate within the active site without
compromising specificity. Such a rotation must Structure description
occur after the ring-opening step in order to bring
the C1-C2 region of the substrate in close proximity As expected, the fold of mouse PGI is essen-
to Glu357 for isomerisation. A similar rotation tially the same as PGls from other mammalian
might occur during the anomerisation of its sub- sources5',"14"15 and, hence, will be described only
strates (a third enzyme activity for PGI). In briefly. Each subunit comprises two domains of
principle, such rotations when coupled with iso- nearly equal size, but historically these have been
merization could generate mannose 6-phosphate. n termed small and large. The small domain is built
However, PGI is essentially specific for F6P and around a five-stranded parallel T sheet, whereas the
G6P, and it will not isomerase mannose 6-phos- large domain contains a mixed six-stranded parallel /
phate to F6P except at an extremely slow and no antiparallel - sheet. Both sheets are packed on both
physiological rate.' Interestingly, distantly rsides by o helices. Two interesting features of this
members of the PGI superfamily from certain fold are a "hook" comprising residues 440-465 and
Archaea do show dual phosphoglucose/phospho- a 45 residue extension at the C terminus, both of
mannose isomerase (PGI/PMI) activities' but how which make extensive interactions with the partner
"conventional" PGI prevents the epimerisation of subunit in the dimer. The active site comprises

G6P to M6P is unknown. highly conserved residues, including Glu357,
Here, we present a series of high-resolution His388 and Lys518, all of which have a role in

crystal structures of PGI derived from mouse. catalysis. The histidine residue belongs to the
These include complexes with the inhibitor ery- partner subunit of the dimer and thus the active
throse 4-phosphate and with the substrate, glucose site is comprised of protein chains from both
6-phosphate. The complex with G6P provides subunits.
unique insight because in this structure the sub- The two subunits in the dimer superimpose
strate is present in both the open-chain form and the closely with an rms deviation between all main-
ring form. Together, these data permit a definitive chain atoms of 0.93 A. The only structural differ-
and comprehensive description of the catalytic ences of significance map to the active-site regions,
mechanism of this interesting multifunctional which correlate with the binding of species from the
enzyme. crystallization solution, and there is a slight shift in

the relative position of the hook structure. In
molecule A, the active site contains one sulphate

Results ion, which occupies the same position as the
phosphate group of the substrate molecules for

Structure determination PGI. There is some electron density located between
threonine residues 211 and 214 and Lys518, which

Phosphoglucose isomerase from mouse crystal- might be a molecule of OME. The view in the active
lized relatively easily over wells containing 1.6- site of molecule B is different: two sulphate ions
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Table 1. X-ray diffraction data and refinement statistics

A. Data collection Native E4P G6P
Concentration of soak (mM) 5 5
Time of soak (minutes) 90 45
Resolution range (A) 50-1.6 (1.66-1.60) 54-1.7 (1.76-1.70) 45-1.6 (1.66-1.6)
Rmerge (%) 7.5 (42.2) 6.7 (27.1) 5.7 (36.9)
Redundancy 7.3 (5.9) 4.2 (3.0) 6.0 (2.8)
Completeness (%) 99.5 (96.4) 97.5 (81.8) 94.7 (79.9)
/)/(WT) 5.4 (1.5) 7.4 (1.9) 34.1 (3.1)
B. Refinement
Resolution range (A) 15.0-1.6 50.0-1.7 45-1.6
Sigma cut-off applied 0.0 0.0 0.0
No. total reflections used 146,126 118,864 143,578
No. Il-mercaptoethanol molecules 5 6 1
No. glycerol molecules 7 6 12
No. sulphate molecules 10 7 8
No. water molecules 1017 832 858
R-factor (%) 21.3 19.2 17.9
Rwork (%) 21.1 19.0 17.8
Rfr.e (%) 24.6 21.5 20.7
rms deviations from ideal stereochemistry
Bond lengths (A) 0.010 0.008 0.011
Bond angles (deg.ý 1.16 1.05 1.21

Overall B-factor (A) 24.4 19.1 23.8
Mean B-factor (main-chain) (A2) 22.4 17.7 21.7
rms deviation in main-chain B factor (A') 0.42 0.31 0.45
Mean B-factor (side-chains and water molecules) (A2) 26.1 20.3 25.6
rms deviation in side-chain B-factors (A.) 1.31 1.01 1.39
Ramachandran plot
Residues in most-favoured region (%) 89.4 90.0 89.1
Residues in additionally allowed regions (%) 10.6 9.8 10.9
Residues in generously allowed regions (%) 0.0 0.1 0.0
Residues in disallowed regions (%) 0.0 0.1 0.0

Rerge = E Ili - I.,1/ E Ii, where Ii is the intensity of the ith measured reflection and Im is the mean intensity of all symmetry-related
reflections. Figures within parentheses are for the outer-resolution shell.

have bound and neither overlaps with the phos- to 1.7 A resolution (Table 1). This structure refined
phate-binding site. One is in approximately the with a better agreement between the model and
same position as the OME-like density in monomer data than the native structure and has an R-factor
A, whereas the other occupies a unique position of 19.1% (Rfree 21.5%). Density corresponding to
adjacent to Gly158, Gln353 and Glu357, which bound E4P was clear at both active sites (Figure 2).
corresponds approximately with the site of hydro- Since the phosphate-binding site of molecule B is
gen transfer during the isomerase reaction. now occupied by a phosphate group, the confor-

When comparing previous structures of PGI from mation of the small domain has now switched to a
mammalian sources, we have noted a confor- closed conformation when compared to the native
mational change within the small domain of the enzyme. Hence, the contacts made by E4P are
protein induced by the binding of substrate,14 and essentially the same in both active sites of the
in the case of human PGI, by sulphate alone.5 In dimer. As expected, other known conformational
both cases, either the phosphate group of the sugar changes in response to ligand binding have
substrate or a sulphate ion occupying that position occurred. These are of the 310 helix comprising
induces a closure of some elements of the small residues 383-389, and a section of helix a23
domain around the phosphate-binding site. Inter- comprising residues 512-522. Both of these bring
estingly, in the structure of mouse PGI, both open highly conserved amino acids, His338 and Lys518,
and closed forms are present (Figure 1). In molecule respectively, toward the active site when compared
A, the sulphate ion occupies the phosphate-binding with the sulphate-bound "native" structure. The
site and the conformation is closed, whereas in same structural changes have been observed in
molecule B, although two molecules of sulphate other mammalian PGIs. 10,14,15' 17

have bound, none overlaps with the phosphate- Numerous enzyme-ligand contacts contribute to
binding site and hence the conformation is open. the binding of E4P (Figure 2). The side-chains of

Ser159, Ser209, Thr211, Thr214 and the backbone
Complex with erythrose 4-phosphate amide groups of Lys210 and Thr211, as well as

several water molecules, orient the phosphate
Erythrose 4-phosphate (E4P) is a well-known group. Lys518 contacts both 03 and 04 of the

inhibitor of PGI with a Ki of 0.7 qM against the inhibitor, and 03 is contacted by His388. 02
enzyme isolated from rabbit muscle.' 6 The structure contacts the amide group of Gly158 and a water
of mouse PGI in complex with E4P was determined molecule. The positions of oxygen atoms 02, 03
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Glu357 and Gin353, and the main-chain amide
group of Gly158. 01(B) also contacts Glu357 and
makes a water-mediated contact with Arg272.
Although not charged, this inhibitor mimics
spatially a carboxylate group, and therefore its
mode of inhibition may actually be very similar to
other inhibitors of PGI, such as 6-phosphogluconate
(6PG) and 5-phosphoarabinonate (PAB), which are
carboxylic acids and not aldoses.

Complex with glucose 6-phosphate

Crystals of mouse PGI were soaked in 5 mM
fructose 6-phosphate for 45 minutes, and a dataset

131 extending to 1.6 A was collected on a synchrotron
source. After a single round of refinement, density
corresponding to a bound substrate was observed

do l in the active site of molecule A. Initially, an attempt
was made to model this density as fructose 6-
phosphate, but it soon became apparent that the
ring-shaped density could accommodate only a six-
membered sugar ring, rather than five, and hence
glucose 6-phosphate was modeled instead. The
tight fit of the G6P ring within the density suggests
that the ring bond (05-Cl) may be broken, but this
level of detail cannot be resolved unambiguously at
the current resolution of the data. Irrespective, it is

* clear that, in this crystalline form of the PGI dimer,
one of the active sites is catalytically competent and
has converted F6P to G6P. After further rounds of
refinement, persistent IFo!-IFJ density remained
that was contiguous with that of the substrate. The

phosphate only interpretation for this density was that a
-binding site proportion of glucose 6-phosphate was present in

the open-chain form. Hence, the final structure
Figure 1. Conformational differences between the two contains glucose 6-phosphate in both ring and

subunits of mouse PGI caused by binding of sulphate ions open-chain forms, each assigned an occupancy of
from the crystallization solution. This superimposition of 70% and 30%, respectively. The atoms of each form
the protein backbones of the enzyme shows a section of of the sugar refined to reasonable B values,
the small domain near the active site that exists in both comparable with the overall B value of the"open" and "closed" forms. The backbone of molecule A structure, and both the positive and the negative
is coloured blue and that of molecule B is grey. The contours of thelF0 - IFc difference density contain
sulphate ions are shown in ball-and-stick format in which
the bonds are the same colour as their respective subunits. only minor peaks, supporting the interpretation of
The elements of secondary structure are labeled accord- the electron density. Unbiased electron density
ing to human PGI.s This Figure was prepared using within the active site, corresponding to these two
MOLSCRIPT 35 and Raster3D.A forms of G6P, is shown in Figure 3(a). At the current

resolution, the electron density cannot distinguish a
distinct conformer for the sugar ring of G6P and
suggests a mixed population of boat and chair
forms.

and 04 overlap very closely with those of water Unlike the structure in complex with E4P, the
molecules in the native structure. The most inter- view of the two active sites in the mPGI-G6P
esting aspect of the binding, however, is the complex structure is different because G6P has
apparent dual position of 01. During refinement bound only to the active site of molecule A. The
of the crystal structure, a peak of density in the active site of molecule B appears to be occupied
JFol- IFJ electron density map adjacent to C1 instead by two molecules of sulphate: the stronger
indicated that the 01 atom occupied two alternative of these, as evidenced by the electron density and
conformations, termed 01(A) and 01(B). This was the refined B values, is in the same position as the
observed in both subunits of the enzyme. A series of substrate phosphate-binding site and the other
refinements showed that the magnitude of the weaker site lies close to Gly158 and Glu357. Thus,
]Fo - IFJI peaks were reduced most when these in molecule B, the pattern of sulphate binding has
positions were each assigned an occupancy of 50% changed somewhat between the G6P-soaked and
(in both subunits). 01(A) contacts the side-chains of sulphate-bound "native" structures. The same
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Figure 2. The structure of mouse PGI in complex with erythrose 4-phosphate (E4P) at 1.7 A resolution. A stereo picture
of the active site region, showing unbiased IFo1 - IFJ electron density of the bound inhibitor, contoured at 1 c and
coloured blue. The active-site residues and E4P are shown in bond form. Water molecules are represented as red spheres
and potential hydrogen bonds are shown as broken lines. This shows the active site of molecule A but the view in
molecule B is the same. The hash (#) denotes that a residue comes from the adjacent subunit. This Figure was prepared
using Pymol (http://pymol.sourceforge.net/).

sulphate molecule near Gly158 and Glu357 is seen positions and these could correspond to the two
in both structures but in the G6P-bound structure, a anomers of the substrate. The oxygen atom in the
new sulphate molecule now occupies the phos- cc-like position is close to a water molecule, and that
phate-binding site. As discussed below, it is in the 13-like position is near the Ný atom of Lys518.
possible that these peaks of density correspond The position of the C2 hydroxyl group also differs
instead to a molecule of G6P bound with low between the two binding modes: it hydrogen bonds
occupancy, with a water molecule in the straight chain, but in

For molecule A, the contacts between both forms the ring form contacts Glu357. Continuing along the
of G6P and the active site residues are depicted in substrate chain, the C3 hydroxyl group in the ring
Figure 3(b) and (c). The phosphate group is form occupies the same position at C3 in the
positioned by the same cluster of threonine resi- straight form and is within hydrogen bonding
dues, serine residues and main-chain amide groups distance of Glu357. In the straight-chain form,
as described above for E4P. Other interactions, however, this group hydrogen bonds instead with
however, depend on the conformation of the ligand. the carbonyl group of His388. Thereafter, the
The most striking of these concerns the different remaining atoms of the substrate converge. The
positions of the C1-C2 region of the substrate. In the position of the C4 hydroxyl group in both forms is
ring form, this region of the substrate is near His388, essentially the same and makes potential hydrogen
whereas in the straight-chain form it is positioned bonds with the main-chain amide group of Gly158
on the opposite site of the active site in a pocket and a water molecule. Likewise, the C5 hydroxyl
formed by Gln511, Gly271, Arg272 and Glu357. In group in the open-chain form and its ring oxygen
this position, the 02 atom of the carboxyl group of counterpart occupy the same position.
Glu357 lies approximately equidistant between Cl The binding of G6P to the active site of molecule
and C2. Moreover, in straight-chain form, the C1 A produces almost no shifts in the positions of the
hydroxyl group contacts Glu357 and both the main- amino acid residues surrounding the substrate
chain amide and side-chain guanidinium group of molecule compared to the same subunit in the
Arg272, but the same oxygen atom in the ring form substrate-free structure (not shown). This is in
is located some 6.9 A away on the other side of the contrast to the situation in the E4P complex,
active site, where it is tethered by Lys518. When the where the binding of that ligand causes a large
ring form is present, a water molecule instead movement of cL23 such that both the NM atom of
occupies the same position as 01 in the straight- Lys518 and N82 atom of His388 are equidistant from
chain form. These two distinct binding modes for the ring oxygen atom. In the complex with G6P, the
G6P are direct evidence of a large shift in the N62 atom of His388 is 2.8 A from the ring oxygen
conformation of the substrate that occurs after atom, but the Ný atom of Lys518 remains 4.6 A
the ring-opening step (discussed below). Within away. This has implications for the mechanism of
the ring form itself, 01 appears to occupy two sugar ring opening (discussed below).
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Figure 3 (legend opposite)

Comparison with rabbit PGI structure divergence between the active sites is in the
complexed with fructose-6-phosphate substrate itself and not the protein structure, due

primarily to the altered shape of a five-membered
The structure of mouse PGI in complex with G6P furanose versus a six-membered pyranose ring.

was compared with a published structure of rabbit Overall, the enzyme contacts made by G6P and
PGI in complex with ring-form F6P.8 The two F6P, both in the ring form, are quite similar. There is
structures superimpose with an rms deviation in some difference in the position of C6, but the
all main-chain atoms of 0.47 A (molecule A of phosphate-binding contacts and the contacts invol-
mouse PGI versus molecule A of rabbit PGI) and, ving the C3 and C4 hydroxyl groups of both G6P
most importantly, the individual positions of and F6P are essentially the same in both structures.
residues in the two active sites overlap very closely The principal differences occur in the C--C2 regions
(Figure 4). In fact, surprisingly, most of the of the substrates. In essence, the relative positions of
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Figure 3. The structure of mouse PGI in complex with glucose 6-phosphate at 1.6 - resolution. (a) A stereo picture of
the active site region of molecule A, showing unbiased 1F.1 - IFJI electron density corresponding to G6P, contoured at 1 cr
and coloured blue. The ring form of G6P is shown as cyan bonds and that of the straight chain as green bonds. Water
molecules are represented as red spheres and potential hydrogen bonds are shown as broken lines. The proximity of
Glu357 to carbon atoms 1 and 2 of G6P is denoted by broken lines. This Figure was prepared using Pymol (http://
pymol.sourceforge.net/). (b) The contacts between P GI and the ring form of G6P. The distance between specific atoms
are shown as broken lines and the distances are in A. (c) Contacts between PGI and the straight-chain form of G6P.

the Cl and C2 hydroxyl groups are reversed. The the first structure of PGI bound with its other
C2 hydroxyl group of G6P and C1 hydroxyl group substrate, glucose 6-phosphate. In particular, the
of F6P occupy similar positions, and both are within unique view of PGI of interacting with G6P, in both
hydrogen-bonding distance of Glu357. Likewise, C1 the ring and the straight-chain forms, provides new
of G6P is closer to C2 of F6P than Cl. The respective information regarding its enzyme mechanism.
ring oxygen atoms are positioned differently, but
both are within hydrogen-bonding distance of Implications for catalytic mechanism
His388. A water molecule in the rPGI-F6P complex
occupies the same position as the C1 hydroxyl Phosphoglucose isomerase interconverts glucose
group in the open form of G6P. A water molecule 6-phosphate and fructose 6-phosphate. In solution,
occupies this position also when the ring form of both of these substrates exist predominantly in their
G61? is present in the active site (see above), cyclic hemiacetal or hemiketal forms;7 hence, it is

assumed that PGI catalyzes two discrete activities;
ring opening/closing, and the aldose/ketose iso-

Discussion merization itself. Crystal structures have implicated
Glu357 as the base catalyst in the isomerization

We have determined the crystal structure of reaction,5' 6' 18 and His388 as an acid catalyst in ring
mouse PGI in a sulphate-bound "native" form, opening.8"14 Mutational data of PGI from Bacillus
bound to the inhibitor erythrose 4-phosphate, and stearothermophilus support a critical role for both of
in complex with its substrate molecule glucose-6- these residues in catalysis.19,2 °
phosphate at 1.7 A resolution. While the structure Although His388 appears to be involved inti-
of rabbit PGI in complex with the cyclic form of the mately in the ring-opening mechanism, another
substrate, fructose-6-phosphate, is known,8 this is residue nearby is Lys518. In fact, in crystal
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Figure 4. The structural overlap of active-site residues of PGI whether bound to G6P or F6P. This stereoview shows a
superimposition of the active-site residues of mouse PGI in complex with G6P-bound (red bonds) and rabbit PGI in
complex with F6P (yellow bonds).8 For clarity, only the ring form of G6P is shown. This Figure was prepared using
Pymol (http://pymol.sourceforge.net/).

structures of PGI in complex with 5-phosphoarabi- A comprehensive reaction mechanism
nonate (PAB)6"10 (and in the complex with erythrose
4-phosphate presented here), Lys518 and His388 are The new insight provided by the G6P-bound
equidistant from 04 (the equivalent atom in PAB to structure and, in particular, the role of Lys518 and
the substrate ring oxygen). In this situation, it the rotation of the substrate after ring opening,
remains possible that Lys518, and not His388, is the allows a detailed and comprehensive reaction
acid catalyst for ring opening. Fortunately, our scheme for PGI to be presented (Figure 5). After
high-resolution structure of mouse PGI in complex binding as a hemiacetal, the sugar ring of glucose
with G6P in both the straight-chain and the ring 6-phosphate is opened in a concerted "push-pull"
forms, resolves this ambiguity and clearly shows mechanism mediated by His388 and Lys518, in
the role of Lys518 in catalysis. The relatively long which the histidine residue protonates the C5
distance (4.6 A) between the amino group of Lys518 oxygen atom and the lysine residue simultaneously
and the ring oxygen atom (of G6P in either the deprotonates the C1 hydroxyl group, forming the

straight-chain form or the ring form) shows this open-chain aldose. Rotation of the substrate about

residue is unlikely to abstract a proton from or its C3-C4 bond then transports the C1-C2 region to

donate a proton to 05, and that His388 is much a pocket formed by Gln51l, Gly271, Arg272 and

better placed for this role. However, when the Glu357, where isomerization takes place. In this

substrate is in its ring form, Lys518 forms a close step, Glu357 abstracts the C2 proton and the

contact with the Cl hydroxyl group, which suggests resulting flow of electrons generates a double
bond between C1 and C2, thus forming a cis-

the primary role of this residue is to assist in ring bnd beteen iand T2, thus fo rg ai
opening by abstracting the C1 hydroxyl proton. It enediolate intermediate. The negative charge on
would participate in ring closure by donating the this intermediate is stabilized by the positive charge
proton back to C1 (to form G6P) or C2 (to form F6P) of Arg272 and can resonate between the 01 and 02and y poitiningthee grupsnear05.positions. The outcome of the reaction depends on
and by positioning these groups near 05. where Glu357 re-donates its proton. If it goes back

The complex of mouse PGI with G6P illuminates to C2, then G6P is reformed, but if it is donated
the conformational changes that the substrate instead to Cl, the C2 hydroxyl group loses a proton
undergoes during catalysis. Visualizing the sub- to form a ketone, and the open-chain ketose, F6P, is
strate in both the ring form and the straight-chain the product. As a prelude to ring closure, the C3-C4
form allows us to deduce the rearrangement that bond rotates again to bring the C2 carbonyl group to
results in the transition from ring to straight and vice within bonding distance of 05 and close to Lys518.
versa. It is clear that after ring opening, a simple Ring closure is the reverse of the push-pull ring-
rotation about the C3-C4 bond of the substrate is opening mechanism. Lys518 donates a proton to the
sufficient to swing the C1-C2 region to the opposite C2 carbonyl oxygen atom and His388, now acting as
side of the active site, where it is brought into close a base, deprotonates the C5 oxygen atom, generat-
proximity to the base catalyst, Glu357. No other ing a short lived oxyanion that attacks the electron-
rotation or perturbation to the substrate is required. deficient carbon centre at C2, thus forming the
This movement shows the clear spatial separation hemiketal product.
between the isomerase and ring opening/closing This mechanism fits well with all the structural
activities of PGI on opposite sides of the active site. evidence, but is less easy to reconcile with the pH
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Figure 5. A comprehensive reaction mechanism for phosphoglucose isomerase. This scheme illustrates the critical role
of Lys518 in ring opening and ring closing, as well as the rotation about the C3-C4 bond of the substrate that is required
to bring C1-C2 (the site of proton transfer) alongside the base catalyst, Glu357. See the text for details.

profile of the reaction catalyzed by PGI.21 This residue and a lysine residue, respectively. Similar
shows two transitions, at approximately pH 6.7 and pKa values have been measured in PGI from
pH 9.3; prior to the publication of any crystal different sources including yeast, rabbit and tryp-
structure of PGI, these were attributed to a histidine anosomes.22' 23 In agreement, our mechanism shows
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the ionization of both a histidine residue and a different crystal packing around this subunit. E4P
lysine residue but, in apparent disagreement, that was able to bind to molecule B because of its much
also of a third group, namely Glu357. Worse still, higher affinity compared to G6P (Ki in the micro-
neither of the observed pKa values fits well with the molar range versus K,, in the millimolar range).
ionization of a glutamic acid residue, whose When molecule A of the G6P complex is
unperturbed pKa is close to 4, and yet it is clear compared to molecule A of the substrate-free
from the crystal structures of PGI that Glu357 is the "native" structure, none of the conformational
base catalyst for isomerization. The best expla- changes has occurred: the small domain is already
nation is that the protein structure surrounding in the closed form (due to the presence of sulphate
Glu357 perturbs the pKa of this group upward in the native structure), likewise the 310 helix
toward neutrality, where its pKa overlaps with that carrying His388 has not moved significantly, and
of His388 so that, in the pH profile, these two a23 remains in its native position, further away
ionizations appear as one. from the active site. The same view as molecule A is

seen in the complex of rabbit PGI with F6P in its
Conformational changes ring form.8 The movement of a23 cannot be

constrained by crystal packing interactions, because
A number of conformational changes that arise it has shifted in the complex with E4P. One

after PGI binds various inhibitor molecules have explanation for this configuration is that a23 shifts
been described.'1 4' 17 These comprise a closure of toward the active site only when the substrate isthe small domain toward the sugar phosphate present in the straight-chain form, i.e. after ringgroup, a small inward shift of the 0 helix (residues opening and after rotation of the C3-C4 bond.383-389) that carries His388, and the movement of However, this is unlikely because the complex ofhelix 33 .3 (residue 512-522), which brings Lys5o8 PGI with G6P contains a mixture of substrate incloser to the active site. In the structure of mouse both ring and straight-chain forms. Another expla-PGI, solved in the absence of inhibitor or substrate nation is that the movement in a23 occurs onlymolecules, the shift in the small domain has when PGI binds inhibitors (e.g. E4P as noted above)occurred only in molecule A in response to the and does not occur during the normal catalyticbinding of a sulphate ion at the sugar phosphate- reaction involving F6P or G6P. To prove or disprovebinding site. Two sulphate ions are present in this hypothesis would require a structure of PGI inmolecule B but none overlaps with the phosphate- complex with substrate present wholly in thebinding position and hence the conformation of the straight-chain form. Nonetheless, it is interesting

small domain is open. In common with other to note the lack of structural difference between
inhibitor complexes of PGI, 6,10 all three structural mouse PGI in complex with G6P and rabbit PGI in
changes are observed in the crystal structure of complex with ring-form F6P (Figure 4),8 which
mouse PGI complexed with E4P. The situation in suggests that perhaps the conformational changes
the complex with G6P, however, is more in PGI arise directly from the binding of substrate
complicated, but, once bound, the only movements associated

The active site of molecule B of the complex with with catalysis are of the substrate itself.
G6P is apparently devoid of substrate, but a
sulphate ion now occupies the phosphate-binding Why conventional PGIs do not catalyse a
site. Interestingly, this sulphate ion does not induce phosphomannose isomerase activity
the expected closure of the small domain and
molecule B remains in the open state (not shown). One of the more exquisite features of PGI is its
Close examination of the difference IFoj- IFcI ability to isomerize glucose 6-phosphate to fructose
density in this region, however, shows numerous 6-phosphate but not mannose 6-phosphate to the
peaks of positive density in the loops that normally same product. A very slight phosphomannose
shift in the small domain, all of which lie nearer the (PMI) activity has been measured in the yeast
active site than the current placement of the protein enzyme," but at a non-physiological rate. G6P and
chain, and is evidence that some conformational M6P are epimers and differ only in the configur-
changes are occurring. Clearly then, in molecule B, ation at C2. Interestingly, PGI does bind M6P and
there exists a mixed population of open and closed catalyzes the interconversion of its anomeric
forms with the open form dominating. At first sight, forms.2 4 How then does PGI prevent the isomerisa-
this might suggest some communication between tion of M6P to F6P? The structure of mouse PGI in
the two subunits in the dimer, in which G6P binding complex with glucose 6-phosphate in both the
to molecule A leads to a slight change in the straight-chain form and the ring form provides an
conformation of molecule B and so increases affinity ideal framework with which to answer this ques-
for sulphate at the phosphate-binding site. A better tion. As this structure shows, after the ring-opening
explanation, though, is that the two peaks of step, a rotation about the C3-C4 bond brings the
electron density in the active site of molecule B C1-C2 region of G6P (or F6P) into proximity with
attributed to sulphate ions are actually due to G6P the base catalyst, Glu357. We modeled the straight-
bound with low occupancy. It is unclear why this chain form of M6P into the active site of PGI using
subunit apparently has a lower affinity for G6P the straight-chain form of G6P as a template. M6P
compared to molecule A, but it may be due to the could be positioned so that the proton to be
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Figure 6. The structural basis for the specificity of PGI for glucose 6-phosphate over mannose 6-phosphate. In this
stereoview, (A) shows the active-site region of mouse PGI in complex with the straight-chain form of G6P (coloured
orange). The model of straight-chain mannose 6-phosphate (coloured green) is shown superimposed onto G6P such that
the proton at C2 is directed toward Glu357. To form F6P, any proton abstracted from C2 of M6P must be donated back to
C1. For C1 to reach Glu357, however, requires a rotation of M6P about its C2-C3 bond and this leads to a steric clash of
the Cl hydroxyl group of M6P with Gln511, as shown in (B).

abstracted from C2 was pointing toward the base superfamily in Archaeal species such as Aeropyrum
catalyst, Glu357, suggesting that, at least, abstrac- pernix and Thermoplasma acidophilum function as
tion of this proton is possible in PGI. But, in order bifunctional PGI/PMI enzymes.12 It will be inter-
for the proton to be donated back to C1, M6P must esting to determine whether the active sites of these
undergo rotation about the C2-C3 bond 1" to enzymes permit such a rotation about C2-C3 and so
position C1 near Glu357. Rotation in one direction isomerize M6P to F6P.
is prevented by a clash between the C2 hydroxyl
group and Glu357 (clockwise about the C3-C2
bond, viewed from C3). Rotation in the opposite Materials and Methods
direction is impeded due to a steric clash between
Cl-O1 and the side-chain of Gln511 (Figure 6). This Protein expression and purification
glutamine residue is highly conserved within the
PGI family of enzymes and lies immediately A full-length mouse cDNA was identified by searching
adjacent to Glu357. If 01 were moved to a position the NCBI database of EST clones, using the original
trans to 02 through rotation about C1-C2, rotation sequence entry (Genbank accession no. M14220, mouse

of C2-C3 would be prevented by a clash with neuroleukin). A cDNA corresponding to Genbank acces-
sion number A1037338 was obtained from the IMAGE

Gln353 (not shown). Thus, it seems likely that Consortium, and a 1.7 kb DNA fragment encoding only
GIn511 and, to a lesser extent, Gln353, constitutes the open reading frame was prepared by PCR as
the structural basis for the specificity of PGI for G6P described for rabbit PGI.25 Flanking PCR primers
over M6P. Distantly related members of the PGI changed the 5' end to a methionine start codon within a
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unique Ndel restriction enzyme recognition site, and the processed with CrystalClear.27 The data collected from
normal stop codon was replaced by six histidine codons the crystal soaked in fructose 6-phosphate were collected
followed by a new UAA stop codon plus an EcoRI at beamline 22 at the Advanced Photon Source. For this
recognition site. The PCR primers were used to amplify experiment, the crystal-to-plate distance was 130 mm, the
the open reading frame with a minimal cycle number and exposure time was one second and 360° data were
high-fidelity Vent DNA polymerase (NE BioLabs Inc). acquired using a MAR225 CCD system. These data
The amplified DNA was subcloned into the bacterial were processed using d*Trek.27

expression vector pET5a as an Ndel-to-EcoRI fragment
and expressed in Escherichia coli BL21DE3pLysS (Strata- Structure determination
gene Inc). Bacteria were induced with 0.5 mM isopropyl-
0,D-thiogalactopyranoside (IPTG) for three hours at 30 °C. The structure of mouse PGI was solved by molecular
Cell pellets were collected by low-speed centrifugation, replacement using a dimer of rabbit PGI14 as a search
lysed by sonication without protease inhibitors, and model. The calculation was performed using MOLREP 28
clarified by high-speed centrifugation. Soluble super- and used data extending to 3 A resolution. A single dear
natants were bound to Ni-NTA agarose (Qiagen Inc.) and solution arose with an R-factor of 37.6% and correlation
washed and eluted according to the manufacturer's coefficient of 0.65. This solution was then applied to a
standard protocol. The material eluting in 0.25 M imida- homology model of mouse PGI, which had been
zole was >95% homogenous as estimated from Coomassie generated from the rabbit structure using the Swiss-
blue staining of the protein on denaturing, reducing Model Server.2 9 After an initial refinement using
12.5% (w/v) polyacrylamide gels. Yields were 25-50 mg XPLOR,30 the model was improved by iterative cycles of
per liter of bacterial culture. The purified protein was manual rebuilding, using 0,3' and crystallographic
concentrated to approximately 4 mg/ml and equilibrated refinement with REFMAC. 2 5% of reflections were set
with phosphate-buffered standard saline using Centri- aside from the refinement and used to calculate the Rf,.
con-30 ultrafiltration (Amicon Inc). Molecules of water, glycerol, sulphate and 1-mercap-

When the inserted DNA within the expression vector toethanol were added if visible in both 1Fo- IFcl and
was sequenced, two differences were noted from the 2(IFo1 - IFJI) electron density maps and if within hydrogen
canonical sequence (Genbank accession no. M14220) of bonding distance of at least two other atoms in the
mouse neuroleukin. The first was D94N (codon at structure. Water modeling was performed using ARP/
nucleotides 315-317 changed from GAT to AAT). The wARP. 33 When PGI is purified from rabbit, the N-terminal
second was F263L (codon at nucleotides 842-844 changed residue is alanine34 Although this construct of PGI
from TIIC to TTA). The first change corresponds to a contains a methionine residue at the N terminus, neither
common polymorphism that defines the Gpil-Sa versus of these is visible in the electron density map, and so in
Gpi-Sb alleles, which are used as a routine electrophoretic accordance with the native protein, the final structure is
marker in mouse gene mapping.26 The second alteration numbered 1-557, starting at Alal.
is unusual and did not occur in 50 additional mouse EST, For the ligand-bound structures, the starting model for
expressed sequence tag (EST) sequences that cover this refinement was the sulphate-bound native structure.
region. The F263L protein was stable and enzymatically After initial refinement, each ligand was modeled into
active (not shown). We verified the sequence variant in a its respective JF01 - IFJI density and thereafter the pro-
second sample of the IMAGE cDNA, which was cedure for refinement was the same as for the native
constructed from C57BL/6J male mouse mammary structure. To generate unbiased electron density for
gland RNA. It is unclear whether this is a rare natural pictures showing the binding of ligands to the active
polymorphism or a cloning artifact. site of PGI, an additional round of refinement was

performed in which the occupancies of those ligands
Crystallization and data collection was set to zero. The 0 program was used to model

mannose 6-phosphate into mouse PGI and to perform
The protein was subjected to crystallization trials using rotations of the molecule within the active site.

the hanging-drop method. Crystals of mPGI were cryo-
frozen by passing through a stabilizing solution of 1.9 M Protein Data Bank accession codes
ammonium sulphate, 100 mM Tris-HCI (pH 8.5), with
glycerol added to 30% (v/v) final concentration as The coordinates and structure factors for each structure
cryoprotectant. Diffraction data were collected on a have been submitted to the RCSB Protein Data Bank
RAXIS-IV+ + imaging plate system mounted on an (PDB): code Native, 1UOE; E4P, 1UOF, F6P, 1UOG.
RU-H3R X-ray generator operating at 50 kV and 100 mA
and fitted with Osmic Confocal Optics (Rigaku/MSC, The
Woodlands, TX). The crystal-to-detector distance was
100 mm and 414* of data were collected in 0.5' oscillations
with an exposure time of eight minutes per frame. Acknowledgements
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