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Objective, Questions for the Panel & Schedule

• Objective:  identify & characterize factors that affect the impact 
of Moore’s Law on embedded applications

• Questions for the panel
– 1).  Moore’s Law:  what’s causing the slowdown?
– 2).  What is the contribution of Moore’s Law to improvements at 

the embedded system level?
– 3).  Can we preserve historical improvement rates for embedded 

applications?

• Schedule
– 1540-1600:  panel introduction & overview
– 1600-1620:  guest speaker Dr. Robert Schaller
– 1620-1650:  panelist presentations
– 1650-1720:  open forum
– 1720-1730:  conclusions & the way ahead

Panel members & audience may hold diverse, evolving opinions
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Panel Session:
Amending Moore’s Law for Embedded Applications

Moderator:  Dr. James C. Anderson,
MIT Lincoln Laboratory

Dr. Richard Linderman,
Air Force Research Laboratory

Dr. Mark Richards,
Georgia Institute of Technology

Mr. David Martinez,
MIT Lincoln Laboratory

Dr. Robert R. Schaller,
College of Southern Maryland
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Four Decades of Progress at the System Level

1965

Gordon Moore publishes 
“Cramming more components 

onto integrated circuits”
Computers lose badly at chess
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System-level Improvements Falling 
Short of Historical Moore’s Law
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Timeline for ADC Sampling Rate 
& COTS Processors (2Q04)
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Representative Embedded Computing Applications

Sonar for anti-submarine rocket-launched
lightweight torpedo (high throughput 

requirements but low data rates)

Radio for soldier’s 
software-defined comm/nav
system (severe size, weight 

& power constraints)
Radar for mini-UAV surveillance 

applications (stressing I/O data rates)

~3m wingspan

Wingspan < 3m
Cost- & schedule-sensitive real-time applications with high 
RAS (reliability, availability & serviceability) requirements
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Embedded Signal Processor Speed & Numeric 
Representations Must Track ADC Improvements
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Objective, Questions for the Panel & Schedule

• Objective:  identify & characterize factors that affect the impact 
of Moore’s Law on embedded applications

• Questions for the panel
– 1).  Moore’s Law:  what’s causing the slowdown?
– 2).  What is the contribution of Moore’s Law to improvements at 

the embedded system level?
– 3).  Can we preserve historical improvement rates for embedded 

applications?

• Schedule
– 1540-1600:  panel introduction & overview
– 1600-1620:  guest speaker Dr. Robert Schaller
– 1620-1650:  panelist presentations
– 1650-1720:  open forum
– 1720-1730:  conclusions & the way ahead

Panel members & audience may hold diverse, evolving opinions
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Conclusions & The Way Ahead

• Slowdown in Moore’s Law due to a variety of factors
– Improvement rate was 4X in 3 yrs, now 2-3X in 3 yrs (still substantial)
– Impact of slowdown greatest in “leading edge” embedded applications
– Software issues may overshadow Moore’s Law slowdown

• COTS markets may not emerge in time to support historical levels of 
improvement

– Federal government support may be required in certain areas (e.g., ADCs)
– Possible return of emphasis on advanced packaging and custom 

devices/technologies for military embedded applications
• Developers need to overcome issues with I/O standards & provide 

customers with cost-effective solutions in a timely manner:  success 
may depend more on economic & political rather than technical 
considerations

• Hardware can be designed to drive down software cost/schedule, but 
new methodologies face barriers to acceptance

• Improvements clearly come both from Moore’s Law & algorithms, but 
better metrics needed to measure relative contributions

“It’s absolutely critical for the federal government to 
fund basic research.  Moore’s Law will take care of itself.  
But what happens after that is what I’m worried about.”

- Gordon Moore, Nov. 2001
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Points of Reference

• 6U form factor card
– Historical data available for many systems
– Convection cooled

 Fans blow air across heat sinks
 Rugged version uses conduction cooling

– Size:  16x23cm, 2cm slot-to-slot (0.76L)
– Weight: 0.6kg, typ.
– Power:  54W max. (71W/L)

 Power limitations on connectors & backplane
 Reliability decreases with increasing temperature

– Can re-package with batteries for hand-held applications (e.g., 
walkie-talkie similar to 1L water bottle weighing 1kg)

• 1024-point complex FFT (fast Fourier transform)
– Historical data available for many computers (e.g., fftw.org)
– Realistic benchmark that exercises connections between 

processor, memory and system I/O
– Up to 5 bits processing gain for extracting signals from noise
– Expect 1µsec/FFT (32 bit floating-point) on 6U COTS card ~7/05

 Assume each FFT computation requires 51,200 real operations
 51.2 GFLOPS (billions of floating point operations/sec) throughput
 1024 MSPS (million samples samples/sec, complex) sustained, 

simultaneous input & output (8 Gbytes/sec I&O)

COTS (commercial
off-the-shelf) 6U 

multiprocessor card
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Moore’s Law & Variations, 1965-1997

• “Original” Moore’s Law (1965, revised 1975)
– 4X transistors/die every 3 yrs
– Held from late ’70s - late ’90s for DRAM (dynamic random access 

memory), the most common form of memory used in personal 
computers

– Improvements from decreasing geometry, “circuit cleverness,” & 
increasing die size

– Rates of speed increase & power consumption decrease not 
quantified

• “Amended” Moore’s Law:  1997 National Technology Roadmap 
for Semiconductors (NTRS97)

– Models provided projections for 1997-2012
– Improvement rates of 1.4X speed @ constant power & 2.8X density 

(transistors per unit area) every 3 yrs
– For constant power, speed x density gave max 4X performance 

improvement every 3 yrs
– Incorrectly predicted 560 mm2 DRAM die size for 2003 (4X actual)

Historically,
Performance = 2Years/1.5
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Moore’s Law Slowdown, 1999-2003
(recent experience with synchronous DRAM)

• Availability issues:  production did not come until 4 yrs after 
development for 1Gbit DDR (double data rate) SDRAMs (7/99 –
7/03)

• SDRAM price crash
– 73X reduction in 2.7 yrs (11/99 – 6/02)
– Justice Dept. price-fixing investigation began in 2002

• Reduced demand
– Users unable to take advantage of improvements as $3 SDRAM chip 

holds 1M lines of code having $100M development cost (6/02)
– Software issues made Moore’s Law seem irrelevant

 Moore’s Law impacted HW, not SW
 Old SW development methods unable to keep pace with HW improvements
 SW slowed at a rate faster than HW accelerated
 Fewer projects had HW on critical path
 In 2000, 25% of U.S. commercial SW projects ($67B) canceled outright with 

no final product
 4 yr NASA SW project canceled (9/02) after 6 yrs (& $273M) for being 5 yrs 

behind schedule

System-level improvement rates possibly slowed by 
factors not considered in Moore’s Law “roadmap” models
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The End of Moore’s Law, 2004-20XX

• 2003 International Technology Roadmap for Semiconductors (ITRS03)
– Models provide projections for 2003-2018
– 2003 DRAM size listed as 139 mm2 (1/4 the area predicted by NTRS97)
– Predicts that future DRAM die will be smaller than in 2003
– Improvement rates of 1.5X speed @ constant power & 2X density every 3 

yrs
– Speed x density gives max 3X performance improvement every 3 yrs
– Limited by lithography improvement rate (partially driven by economics)

• Future implications (DRAMs & other devices)
– Diminished “circuit cleverness” for mature designs (chip & card level)
– Die sizes have stopped increasing (and in some cases are decreasing)
– Geometry & power still decreasing, but at a reduced rate
– Fundamental limits (e.g., speed of light) may be many (more) years away

 Nearest-neighbor architectures
 3D structures

– Heat dissipation issues becoming more expensive to address
– More chip reliability & testability issues
– Influence of foundry costs on architectures may lead to fewer device types 

in latest technology (e.g., only SDRAMs and static RAM-based FPGAs)

Slower (but still substantial) improvement rate predicted, with greatest 
impact on systems having highest throughput & memory requirements
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High-Performance MPU (microprocessor unit) & 
ASIC (application-specific integrated circuit) Trends

Year of production 2004 2007 2010 2013 2016 

MPU/ASIC           
1/2 pitch, nm 90 65 45 32 22 

Transistors/chip 553M 1106M 2212M 4424M 8848M 
Max watts @ volts 158@1.2 189@1.1 218@1.0 251@0.9 288@0.8V
Clock freq, MHz 4,171 9,285 15,079 22,980 39,683 
Clock freq, MHz, 
for 158W power 4,171 7,762 10,929 14,465 21,771 

 

• 2003 International Technology Roadmap for Semiconductors
– http://public.itrs.net
– Executive summary tables 1i&j, 4c&d, 6a&b
– Constant 310 mm2 die size

• Lithography improvement rate (partially driven by economics) 
allows 2X transistors/chip every 3 yrs

– 1.5X speed @ constant power
– ~3X throughput for multiple independent ASIC (or FPGA) cores while 

maintaining constant power dissipation
– ~2X throughput for large-cache MPUs (constant throughput/memory), 

but power may possibly decrease with careful design
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Bottleneck Issues

• Bottlenecks occur when interconnection bandwidth (e.g., 
processor-to-memory, bisection or system-level I/O) is 
inadequate to support the throughput for a given application

• For embedded applications, I/O bottlenecks are a greater 
concern for general-purpose, highly interconnected back-end 
vs. special-purpose, channelized front-end processors

Can developers provide timely, cost-effective 
solutions to bottleneck problems?
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Processor Bottlenecks at 
Device & System Levels

• Device level (ITRS03)
– 2X transistors & 1.5X speed every 3 yrs

 High-performance microprocessor units & ASICs
 Constant power & 310 mm2 die size

– 3X throughput every 3 yrs possible if chip is mostly logic gates changing 
state frequently (independent ASIC or FPGA cores)

– 2X throughput every 3 yrs is limit for microprocessors with large on-chip 
cache (chip is mostly SRAM & throughput/memory remains constant)

– Possible technical solutions for microprocessors:  3D structures, on-chip 
controller for external L3 cache

• System level
– 54W budget for hypothetical 6U COTS card computing 32 bit floating-point 

1K complex FFT every 1µsec
 10% (5W) DC-to-DC converter loss
 40% (22W) I/O (7 input & 7 output links @ 10 Gbits/sec & 1.5W ea., RF coax, 2004)
 50% (27W) processor (51 GFLOPS sustained) & memory (5 Gbytes)

– Possible technical solutions for I/O
 RF coax point-to-point serial links with central crosspoint switch network (PIN 

diodes or MEMS switches)
 Fiber optic links (may require optical free-space crosspoint switch) & optical 

chip-to-chip interconnects
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Examples of Hardware vs. Algorithms

• Static RAM-based FPGAs
– 2002:  system-level throughput improved substantially vs. 1999
– 2/3 of improvement attributable to new devices, 1/3 to 

architecture changes

• Chess computers
– 1997:  Deep Blue provided 40 trillion operations per second using 

600nm custom ASICs (but 250nm was state-of-the-art)
– 2001:  Desktop version of Deep Blue using state-of-the-art custom 

ASICs feasible, but not built
– 2002-2003:  improved algorithms provide functional equivalent of 

Deep Blue using COTS servers instead of custom ASICs

• Speedup provided by FFT & other “fast” algorithms

Contributions of HW vs. algorithms may be difficult to 
quantify, even when all necessary data are available
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Cost vs. Time for Modern HS/SW Development 
Process (normalized to a constant funding level)

Cost (effort & 
expenditures)

Time
(SW release version)

100%

75%

50%

25%

0 1 2 3 4

Software

Hardware
Management

Frequent SW-only “tech 
refresh” provides upgraded
capabilities for fixed HW in 
satellites & space probes, 

ship-based missiles & 
torpedoes, radars, “software 

radios,” etc.

HW delivered 
with IOC SW

Initial operating capability SW has 12% HW 
utilization, allowing 8X growth over 9 yr lifetime (2X 
every 3 yrs):  HW still programmable @ end-of-life
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Timeline for
Highest Performance COTS ADCs, 2Q04
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Improvement Rates for
Highest Performance COTS ADCs, 2Q04
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Evolution of COTS Embedded 
Multiprocessor Cards, 2Q04
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improving 3X in 3 yrs
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improving 3X in 3 yrs

General-purpose RISC (with on-
chip vector processor) cards (~10 
FLOPS/byte) improving 2X in 3 yrs
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Timeline for Highest Performance 
COTS Multiprocessors, 2Q04
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Pathfinder1(2) ASIC

2@80(120) MHz

Quad PowerPC RISC with AltiVec

Open systems architecture goal:  
mix old & new general- & special-
purpose cards, with upgrades as 
needed (a new card may replace 

four 3-yr-old cards)

Future Virtex FPGA 
3@250 MHz

100

6U form factor cards <55W

Future FPGAs & ASICs

3X in 3 yrs

Future microprocessors 

2X in 3 yrs
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TM-44 ASIC
2@100 MHz
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Timeline for COTS Processor I&O Rate 
and ADC Sampling Rate (2Q04)
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