
A Group Theoretic Approach to Metaheuristic

Local Search for Partitioning Problems

by

Gary W. Kinney Jr., B.G.S., M.S.

Dissertation

Presented to the Faculty of the Graduate School of

the University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

The University of Texas at Austin

May, 2005

20050504 002

REPORT DOCUMENTATION PAGE • Form ApprovedREPORT_____ DOCU ENTTIO PAGEOMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

1 26.Apr.05 DISSERTATION
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A GROUP THEORETIC APPROACH TO METAHEURISTIC LOCAL SEARCH
FOR PARTITIONING PROBLEMS

6. AUTHOR(S)

CAPT KINNEY GARY W JR

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

UNIVERSITY OF TEXAS AT AUSTIN REPORT NUMBER

C104-1045

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

THE DEPARTMENT OF THE AIR FORCE AGENCY REPORT NUMBER

AFIT/CIA, BLDG 125
2950 P STREET
WPAFB OH 45433

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unlimited distribution
In Accordance With AFI 35-205/AFIT Sup 1

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS 15. NUMBER OF PAGES

125
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Copyright

by

Gary W. Kinney Jr.

2005

The views expressed in this dissertation are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or the
U. S. Government.

A Group Theoretic Approach to Metaheuristic

Local Search for Partitioning Problems

Publication No.

Gary W. Kinney Jr, Ph.D.

The University of Texas at Austin, 2005

Supervisor: J. Wesley Barnes

Recent work has demonstrated the power of combining group theory with

metaheuristic search methodologies to solve discrete optimization problems. Group

theory provides tools to characterize the underlying structures in move

neighborhoods, solution representations and solution landscapes. Exploiting these

structures with group theoretic techniques produces highly effective and efficient

search algorithms.

Using group theory we develop a methodology for partitioning the solution

space into orbits. The partitioning is performed by clustering the variables based on

the reduced costs of the LP relaxation creating "good" and "bad" orbits. We are able

vi

to calculate the size of each orbit and place upper and lower bounds on the solutions

contained within. The search efforts can then be directed on the "good" orbits.

Based on these ideas, we develop a Group Theoretic Tabu Search (GTTS)

algorithm for solving the unicost Set Covering Problem (SCP), GTTS-USCP. We

tested our algorithm on 65 benchmark problems and compared the results against the

previous best known and solutions obtained by CPLEX 9.0. GTTS-USCP discovered

46 new best known solutions. GTTS-USCP converged significantly faster than

CPLEX for all problem sets.

We explore the general integer linear program (ILP) by way to the group

minimization problem (GMP). By examining the local search in terms of the GMP,

we gain insights that will help us solve the ILP. We describe the local search for the

comer polyhedron in the space of the non-basic variables. Integer points in the comer

polyhedron that produce an all integer basis form a sub-lattice. We develop identity

move neighborhoods that allow the local search to traverse this sub-lattice. We also

develop bound strengthening of the non-basic variables based on reduced costs.

These bounds effectively shrink the corner polyhedra reducing the size of the solution

space we must search.

Based on this research, we develop a GTTS algorithm for solving the GMP,

GTTS-GMP. Since the GMP can be formed from any ILP, this algorithm solves the

general ILP. The algorithm performs well on a diverse set of benchmark problems.

vii

Table of Contents

N O TA TIO N ... X I

C H A PTER 1 - IN TR O D U C TIO N .. 1

CHAPTER 2 - LITERATURE REVIEW .. 4

2.1 A N INTRODUCTION TO G ROUP THEORY .. 4
2.1.1 G roups ... 4
2.1.2 Subgroups .. 5
2.1.3 Cosets .. 5
2.1.4 Cyclic G roups .. 5
2.1.5 The External D irect Product of G roups ... 6
2.1.6 Factor G roups ... 6
2.1.7 H om om orphism ... 7
2.1.8 G roup Action ... 7
2.1.9 Examples .. 8

2.2 H EURISTIC M ETHODS ... 9
2.2.1 Local Search M ethods .. 9
2.2.2 Tabu Search ... 10
2.2.3 Landscape Theory .. 10

2.3 G ROUP THEORY AND O PERATIONS RESEARCH ... 12
2.3.1 Integer Program m ing and Cutting Planes ... 12
2.3.2 The G roup M inim ization Problem .. 13
2.3.3 Corner Polyhedra .. 14
2.3.4 Recent W ork .. 15

2.4 G ROUP THEORY AND M ETAHEURISTICS ... 15

CHAPTER 3 - PARTITIONING THE SOLUTION SPACE .. 17

3.1 PARTITIONING INTO ORBITS (ORDERING PROBLEMS) ... 17

3.1.1 Theory .. 17
3.1.2 Application .. 19
3.1.3 Observations .. 20

3.2 PARTITIONING INTO ORBITS (PARTITIONING PROBLEMS) .. 21
3.2.1 Variable Clustering .. 22
3.2.2 W hich Variables D o W e Cluster? .. 23

3.3 O RBIT EXPLORATION .. 25
3.3.1 Intra-O rbit M ove Neighborhoods .. 25
3.3.2 Inter-Orbit Move Neighborhoods.......... 26
3.3.3 Bounding the Solutions in an O rbit ... 27

3.4 O RBIT SIZE .. 29
3.5 O RBIT LAND SCAPES .. 31
3.6 ESCAPING A TTRACTORS : .. 31
3.7 PARALLEL EXPLORATION ... 31
3.8 CONCLUSIONS ... 32

CHAPTER 4 - A GROUP THEORETIC TABU SEARCH ALGORITHM FOR UNICOST SET
COVERING PROBLEMS (GTTS-USCP) ... 33

4.1 PROBLEM DEFINITION AND HISTORICAL BACKGROUND .. 33
4.2 M ETHODOLOGY .. 35

4.2.1 O verview .. 35

viii

4.2.2 Clustering Variables Based on the LP Relaxation ... 36

4.2.3 Partitioning the Solution Space into O rbits .. 37
4.2.4 Inter- and intra-O rbit Neighborhoods ... 38
4.2.5 Tabu Lists and Tabu Tenure ... 40
4.2.6 Finding a Starting Solution .. 41

4.2.7 Prim ary Search Strategy ... 42
4.2.8 Expanding the Search .. 45

4.3 COM PUTATIONAL RESULTS ... 46
4.3.1 Test Cases .. 46

4.3.2 Test Procedures .. 47
4.3.3 CPLEX 9.0 ... 47
4.3.4 Results ... 48

4.4 CONCLUSION ... 52

CHAPTER 5 - LOCAL SEARCH NEIGHBORHOODS FOR GENERAL IP 53

5.1 THE GROUP MINIMIZATION PROBLEM (GMP) ... 54
5.1.1 D erivation of the GM P .. 54
5.1.2 The Fractional G roup ... 58

5.1.3 The Suffi cient Condition for XB Ž 0 60

5.1.4 Colum n Reduction ... 61
5.1.5 The Factor Group Minimization Problem (FGMP) ... 63
5.1.6 Another View of the GM P ... 64

5.2 CORNER POLYHEDRA .. 64
5.2.1 Corner Polyhedra in X Space ... 64
5.2.2 Com er Polyhedra in XN Space ... 66

5.3 LOCAL SEARCH NEIGHBORHOODS IN XN SPACE ... 70
5.3.1 Identity M oves .. 70
5.3.2 G enerating Identity M oves ... 72
5.3.3 Identity M ove Neighborhoods .. 76
5.3.4 Bound Strengthening .. 77

5.4 CONCLUSIONS .. 77

CHAPTER 6 - A GROUP THEORETIC TABU SEARCH ALGORITHM FOR THE GROUP
MINIMIZATION PROBLEM (GTTS-GMP) ... 78

6.1 M ETHODOLOGY .. 79
6.1.1 O verview .. 79
6.1.2 Solving the LP Relaxation ... 80
6.1.3 Finding a Starting Solution .. 81
6.1.4 Identity M ove neighborhoods .. 82
6.1.5 Tabu Search and Tabu Structures ... 85

6.1.6 Escape Procedures ... 88
6.1.7 Cutting Planes .. 89
6.1.8 Bound Strengthening .. 90
6.1.9 Strategic Oscillation ... 91
6.1.10 Stopping Criteria .. 91

6.2 COM PUTATIONAL RESULTS ... 92
6.2.1 Test Cases .. 92
6.2.2 Test Procedures .. 93

6.2.3 CPLEX 9.0 ... 94
6.2.4 Results ... 94

6.3 SUPER O PTIM AL SOLUTIONS ... 99
6.4 CONCLUSION ... 100

ix

CHAPTER 7 - CONCLUSION & FUTURE RESEARCH ... 102

7.1 CONCLUSIONS ... 102
7.1.1 Partitioning into Orbits ... 102
7.1.2 The Group M inim ization Problem ... 103

7.2 FUTURE RESEARCH ... 104
7.2.1 Other Clustering Techniques ... 104
7.2.2 Embed GTTS-GM P in Branch & Cut .. 104
7.2.3 Equality Constraints .. 105
7.2.4 M ixed Integer Linear Programs .. 105

BIBLIO G R APH Y ... 106

VITA ... 111

x

Notation

Acronyms

AR(1) 1st Order Auto Regressive Time Series

FGMP Factor Group Minimization Problem

GMP Group Minimization Problem

GTTS Group Theoretic Tabu Search

GTTS-GMP GTTS algorithm for the group minimization problem

GTTS-USCP GTTS algorithm for the unicost set covering problem

ILP Integer Linear Program

MDKP Multi-Dimensional Knapsack Problem

m-STSP Symmetric Traveling Salesperson Problem (multiple)

RTS Reactive Tabu Search

SCP Set Covering Problem

SOS Special Ordered Sets

TS Tabu Search

TSP Traveling Salesperson Problem

WSCP Weighted Set Covering Problem

Symbols

S& symmetric group on n letters

(g) group generated by group element g

gn n-fold product of group element g

e group identity

Shg conjugate of g by h

N < G N is a normal subgroup of G

GT group action of G on T

G (D) group of fractions of the form kID, k, D Z 2, 0•< k < D

xi

Z(D) cyclic group of size D consisting of elements

{0,1,...,D-1 }

M(I) group of integer vectors of size m

M(B) subgroup of all linear-integer combinations of columns

in the optimal LP basis

M(J)/M(B) factor group M(I) modulo M(B)

P feasible polyhedron of an LP

CP corner polyhedron

0p characterization matrix for orbit p
zuBk upper bound on cost/benefit of variables in cluster k

A size m x n incidence matrix for an LP or ILP

x size n column vector of decision variables

c size n row vector objective function costs

b size m column vector of right hand side values

s size m row vector of slack/surplus variables

B size m x m matrix composed of the basic variable

columns

N size m x n matrix composed of the non-basic variable

columns

XN size n column vector of non-basic variables from

optimal LP solution

XB size m column vector of basic variables from optimal

LP solution

FN size n row vector of reduced costs for the non-basic

variables

x0 size n column vector starting solution for a search

algorithm

xii

xu, size n column vector containing an optimal solution to

an LP

ZLP value of an optimal solution to an LP

ZLB lower bound on ILP solution value

ZUB upper bound on ILP solution value

z value of current solution to an LP or ILP

XNUj jh non-basic variable at upper bound

XNLj jth non-basic variable at lower bound

CNUj reduced cost for jth non-basic variable at upper bound

CNLj reduced cost forj non-basic variable at lower bound

fl(OP) orbit hash function used in GTTS-USCP

o(x) solution hash function used in GTTS-USCP and

GTTS-GMP

Aip(x) change in solution hash function as a result of the move

19i column vector containing the fractional parts of B1'Nj

ao column vector containing the fractional parts of if 1b

H(a) subgroup generated by the columns of the GMP

D absolute value of the determinant of the basis B

K(B) cone generated by the columns of B

11 N LI norm of vector Nj

X collection of decision variables excluding slacks

XN collection of non-basic variables

CPX corner polyhedron in X space

XN

CP corner polyhedron in XN space

K cone formed by binding constraints at xL*

xiii

XN

P polyhedron formed by relaxing the GMP constraints

Vx change in decision variables for identity movej

Vs change in slack/surplus variables for identity movej

di jsize n + m column vector detailing Vx and Vs for

identity move j

Pi multiplier for identity movej for a compound move

k bound on sum of absolute value of pj's

1 lower bound on pj's

u upper bound on pj's

N(k, 1, u) identity move neighborhood based on k, 1, and u

XGM size n column vector containing the current best

solution found for the GMP

ZGMP value of the current best solution found to the GMP

ZGMP value of the current solution for the GMP

lbj lower bound for decision variablej

ubj upper bound for decision variablej

xiv

Chapter 1 - Introduction

Recent work has demonstrated the power of combining group theory with

metaheuristic search methodologies to solve discrete optimization problems. Group

theory provides tools to characterize the underlying structures in move

neighborhoods, solution representations and solution landscapes. Exploiting these

structures with group theoretic techniques produces highly effective and efficient

search algorithms.

Discrete optimization problems may be divided into three distinct groups:

partitioning, ordering and partitioning-and-ordering problems. Partitioning problems

such as set covering, knapsack and min-cut network flow problems have no ordering

context and require only that the solution variables be placed into mutually exclusive

sets. Ordering problems such as single-agent traveling salesman, single-machine job

shop scheduling and single-vehicle routing problems require that a permutation of the

solution variables be stipulated. Partitioning-and-ordering problems such as multiple-

agent traveling salesmen, multiple-machine job shop scheduling and multiple-vehicle

routing problems require that the solution variables be partitioned and ordered within

each partition.

Since previous group theoretic metaheuristic research has focused on either

ordering or partitioning-and-ordering problems, only the symmetric group on n

letters, Sn, the group of permutations of n distinct objects, has been employed. Sn is

inappropriate for strict partitioning problems. An appropriate direction for current

research is to investigate whether group theory can improve the performance of

metaheuristic search methodologies for partitioning problems.

In this dissertation, the use of group theory for the characterization of move

neighborhoods, solution representation and landscape structures for partitioning

problems is discussed. Search methodologies that exploit these structures appear to

achieve better solutions in less time than competing approaches.

In addition, Gomory's long neglected group minimization problem (GMP) is

addressed. The GMP seeks to construct the optimal solution to an integer linear

problem (ILP) from the optimal solution to its linear relaxation. In the 1970s, there

were several attempts to solve the GMP with dynamic programming. This research

reexamines the GMP from a metaheuristic perspective and describes local search

neighborhoods for solving the general ILP in this context.

We will now overview the remaining chapters in this dissertation. Chapter 2

provides a brief overview of group theory and a review of previous operations

research literature involving group theory. Chapter 3 considers the general

partitioning problem and presents group theoretic strategies for partitioning the

solution space to enhance the exploration of that space. Chapter 4 provides a highly

effective and efficient reactive tabu search (RTS) implementation of one of these

strategies for the unicost set covering problem (SCP).

Chapter 5 describes move neighborhoods for the general IP in terms of group

theory and the GMP. Since any ILP can be transformed into a GMP, these ideas can

be applied within most metaheuristics to create a search algorithm that solves the

2

general ILP. Chapter 6 presents a powerful RTS algorithm for the GMP employing

these neighborhoods and ideas.

Finally, Chapter 7 provides conclusions from this research as well as

directions for further research.

3

Chapter 2 - Literature Review

This chapter presents a synopsis of group theory and the previous research

relevant to the goals of this dissertation. Section 2.1 presents a brief overview of

group theory. A more comprehensive treatment can be found in countless abstract

algebra texts such as Fraleigh (1976) or Herstein (1975). Colletti (1999) provides a

robust treatment of group theory from the perspective of metaheuristics. Section 2.2

provides a short discussion on metaheuristics, focusing on tabu search (TS). Section

2.3 provides a literature review on the use of group theory in operations research

(OR). Section 2.4 reviews recent work on group theoretic metaheunistic search

methods.

2.1 An Introduction to Group Theory

2.1.1 Groups

Given a set of elements G and a binary "multiplication" operation (then

(G, @) is a group if

1.Vg,heG = g heG (Closure)

2. g8(hGj)=(gEGh)Gj Vg,h,jcEG (Associativity)

3.BeeG s.t.g(ie=g VgEG (Identity)

4. 3g-1 E G s.t. g E g - = e Vg E G (Inverse)

An abelian group embodies a commutative binary operation (Fraleigh 1976, Herstein

1975).

4

2.1.2 Subgroups

Let G be a group with H c G. If H is also a group under the operation G of

G, H is a subgroup of G denoted H _• G. H must be closed under D, contain the

identity element e, and contain g - H Vg (H.

2.1.3 Cosets

If H < G and g E G, gH = {g E h, h r H} is a left coset of H in G and Hg is a

right coset of H in G. The left (right) cosets are disjoint and partition G into equal

sized sets. The number of left (right) cosets is IGI/IHI (Colletti 1999). If G is

abelian, gH = Hg Vg e G.

2.1.4 Cyclic Groups

For n > 0, define g' as the n-fold product of g (i.e., g multiplied by itself n

times). For n < 0, g' is the n-fold product of g-1. Finally, define go = e. The order of

g is the minimum positive value of i such that gi = g0 = e.

Group closure implies if g e H then g' e H Vi E-. Let g e G then the cyclic

group, H ={gI n nc= (g) is the smallest subgroup of G that contains g

(Fraleigh 1976). The group K = (g,h, j) is the smallest subgroup that contains g, h,

andj.

5

2.1.5 The External Direct Product of Groups

Let G1, G2, ... , G, be a collection of groups. Define the group G to be the

Cartesian product of the Gi, i.e., the external direct product of the groups Gi. The

binary operation in G is component-wise multiplication:

(g.1g21,...,g)J(t,h2,) h) (gA ,g21 g hn). - The identity of G is

(e1,e 2,...,e,,)and the inverse of any element is (gl,g2 g,)-Y =(g 1 -l,g2 gn-)

(Fraleigh 1976, Herstein 1975). If all Gi are abelian then G is abelian.

2.1.6 Factor Groups

For g,h E G, define gh = h-'gh to be the conjugate of g by h (Fraleigh

1976). If 3j E G such that gj =h, g and h are conjugates. For abelian G,

g h = h-Igh = hh-g = g and Vg E G the only conjugate element is g itself. N _< G is

a normal subgroup of G, denoted N i G, if Ng = N Vg E G. For abelian G, all

subgroups are normal.

If N < G, the left cosets, gN Vg E G, form the factor group of G modulo N,

denoted G / N, under the set product operation (Fraleigh 1976):

ADB={ab:a EA,bEB}VA, BcG

6

2.1.7 Homomorphism

A function f mapping between two possibly distinct groups, (G1, D) and

(G2,®), is a homomorphism if the mapping preserves the group operation. If

f : G1 -> G2 then f is a homomorphism iff f (g @ h) = f (g) f (h) Vg, h e G1 . Ifin

addition the homomorphism is a bijection then it is an isomorphism. Two groups

which are isomorphic are essentially identical with the elements relabeled. If N < G

then the natural homomorphism is f : G -> G / N mapping each g -G into the

coset gN (Colletti 1999).

2.1.8 Group Action

Given a group G and a set T, the group action of G on T, GT, is a remapping

of T such that Vg c G and Vs e T, we have s A g = t E T (Colletti 1999). Additionally

GT must have the following properties:

1. t A e = t Vt E T (where e is the identity of G)

2. (tAg)Ah=tA(gh) VteT andg,heG

A group action partitions T into disjoint orbits. For group action GT, the orbit of

t eT is Orbit(G,t)={tA gIg EG}. If s, t eT are in the same orbit then 3 g eG

such that s A g = t.

7

2.1.9 Examples

S,, has been used in significant recent work in metaheuristics (Colletti 1999,

Crino 2002, Wiley 2001). A permutation may be represented by a 2 by n matrix

corresponding to a 1-1 and onto mapping of the integers { 1,2,....,n} where the integer

in the top row is replaced in the order by its image in the bottom row. For example, if

n=6 then

=(13 2 3 4 5 6/ q 16 2 3 4 5 64)

P 3 1 2 4 6 5 q= 1 5 3 24

p and q are permutations. The set of all permutations of degree n along with the

binary operation of function composition, p) q = pq = q(p(x)), form Sn.

Permutations are often written in cycle notation for example p = (132)(4)(56)

= (132)(56). Single character cycles or 1-cycles map a letter onto itself and are

typically not shown. Cycles with 2 characters (2-cycles) are transpositions. The

letters moved by p are denoted move(p). In chapters 3 and 4, we will use a group

action based on a direct product of Sn.

Another important group in this research, G(D), is based on fractions under

addition modulo 1. The group elements are kID for some k,D E= Z, 0 <_ k < D.

G(D) is closed under addition modulo 1, has identity OlD, and each element kID has

inverse (D-k) / D. G(D) is abelian, cyclic with generator 1ID and has size D. Since

we can relabel the elements by multiplying each by D, the group is isomorphic to the

set of integers under addition modulo D, denoted Z(D). The group Z(D) consists of

8

the integers { 0, 1... D- 11. In chapters 5 and 6, we will use a subgroup of an external

direct product of m of these groups.

2.2 HeuristidVlethods

Many discrete optimization problems are NP-hard (Wolsey 1998). Such

problems are difficult, i.e., polynomial time algorithms to solve these problems do not

exist. For such problems, the number of solutions grows exponentially with problem

size and all solutions must be explicitly or implicitly enumerated to guarantee

optimality. Consequently, heuristic methods are often used to address these types of

problems. While no guarantee of solution quality is achieved, empirical results have

shown these methods often return acceptable solutions in a very short amount of time.

2.2.1 Local Search Methods

Heuristic methods such as steepest descent, simulated annealing and tabu

search are local search methods (Glover and Laguna 1997, Reeves 1995). In a local

search method, a starting solution is chosen. A move modifies the current incumbent

solution and all solutions that can be reached in one move comprise the incumbent's

neighborhood. The new solution is chosen from the neighborhood based on a merit

function and the details of the algorithm. The new solution becomes the incumbent

and the procedure repeats until a termination criterion is satisfied.

9

2.2.2 Tabu Search

In tabu search (TS) (Glover and Laguna 1997), we prohibit recently visited

solutions from being revisited for tabu tenure iterations. At each iteration the best

non-tabu neighboring solution is selected. The tabu memory structure allows escape

from local optima to continue the search. TS has been shown to be quite effective in

solving complex optimization problems (Crino 2002, Glover and Laguna 1997, Wiley

2001).

Reactive Tabu Search (RTS) was developed by Battiti and Tecchiolli (1994).

In early TS implementations, the length of the tabu tenure was fixed or randomly

chosen. In RTS, the current tabu tenure is based on the occurrence of repeated visits

to the same solutions. When the algorithm detects sufficient repetitions, the tabu

tenure is increased to encourage the algorithm to diversify into a region of the

solution space not yet explored.

The tabu memory structure in RTS also helps detect the occurrence of cycling

- revisiting the same solutions repeatedly. When the algorithm detects cycling, an

escape procedure is implemented to attempt to break the cycle and hopefully diversify

into a region of the solution space not yet explored.

2.2.3 Landscape Theory

An often ignored but very important aspect of local search methods is the

problem landscape. The landscape structure is determined by the objective function,

the solution space and the neighborhood definition (Barnes et al. 2003). The

10

neighborhood definition determines whether the solution landscape will be favorable

for local search.

Weinberger (1990) addresses the idea of correlated and uncorrelated

landscapes. He classifies landscapes with approximate decaying exponential

autocorrelation spectra to be AR(1) (first order autoregressive) landscapes.

Considering only regular and symmetric neighborhoods, Grover (1992) derives a

difference equation for the neighborhoods similar to a well known differential

equation used in mathematical physics. For landscapes that satisfy Grover's

difference equation, all local minima are less than the average solution value over the

landscape and all local maxima are greater than the average solution value.

Using group theory, Colletti (1999) proves that symmetric multiple traveling

salesmen problems (m-STSPs) with move neighborhoods based on an arbitrary

collection of k-city exchange moves will satisfy Grover's difference equation for any

value of k.

Again considering only regular and symmetric neighborhoods Stadler (1996)

develops his Laplacian and forms the matrix version Grover's equation. He shows

that if the normalized objective vector is an eigenvector of his Laplacian matrix then

the landscape will satisfy Grover's equation. He calls the associated landscapes

elementary. He also claims that for regular symmetric transition matrices, the

associated landscape is elementary if and only if it is an AR(l) landscape.

Barnes et al. (2003) extend the theory of elementary landscapes by using a

more general Laplacian matrix that also embraces arbitrary transition matrices. They

11

also define two types of elementary landscapes: smooth and rugged. Dimova et al.

(2005) extend Stadler's results on AR(I) processes to arbitrary transition matrices.

For any transition matrix, the landscape is elementary if and only if the random walk

on the landscape follows an AR(l) process.

2.3 Group Theory and Operations Research

2.3.1 Integer Programming and Cutting Planes

Gomory (1963, 1965, 1967, 1969) developed a methodology for adding valid

inequalities or cutting planes to an integer linear program (ILP) to drive the relaxed

linear program (LP) to an integer solution. The inequalities are formed using the

fractional components of an integer combination of the constraint rows in the LP

optimal tableau. Each inequality renders the current LP optimum infeasible. In

principle, repeatedly adding cuts and resolving will eventually yield the optimal

solution to the original ILP.

Gomory (1963) shows:

(1) The fractional components take the form kiD for some k e , 0• k < D

where D is the determinant of the optimal basis to the original LP

relaxation.

(2) The fractional cuts form a group under component-wise addition mod 1.

12

(3) The group is isomorphic to a factor group M(T)/M(B) where M(o) is the

group of all integer vectors of size m and M(B) is the subgroup of all

linear integer combinations of the columns in the optimal LP basis.

Pure cutting plane methodologies fell out of favor in the 1980s due to their

lack of convergence in practical implementations. Nevertheless, the combination of

cutting planes and branch and bound algorithms (branch & cut) are among the most

popular and effective methodologies for solving ILPs and mixed ILPs today.

2.3.2 The Group Minimization Problem

The group minimization problem (GMP) (Gomory 1965, 1967, 1969) is a

mathematical formulation for solving ILPs (Johnson 1980) by perturbing the non-

basic variables from the associated LP relaxation while ensuring the integrality of the

basic variables. Since any such perturbation degrades solution quality, the goal is to

minimize such changes. When the GMP yields non-negative basic variables, it solves

the original ILP, i.e., an algorithm that solves the GMP also solves the general ILP.

The GMP can be expressed using either one of two abelian groups, H(a) or

M(I)/M(B). As alluded to in Section 2.1.9, H(a) is a subgroup of an external direct

product of m G(D) groups where m is the number of rows in the basis. The group

operation is addition modulo 1 and the group is generated by the fractional

components of the non-basic columns in the optimal LP tableau. The size of the full

group containing H(a) is D'.

13

M(I)/M(B) is the factor group described above. Each non-basic column is

mapped to an element of the factor group using the natural homomorphism. The

elements then generate the full factor group which also is of size < D. M(I)/M(B) is

isomorphic to H(a).

Gomory (1969) shows how the GMP can be used to transform the problem

into an integer program with one constraint. The problem's decision variables are the

integer multipliers for each group element. Early GMP solution approaches (Glover

1968, Shapiro 1968a, 1968b) attempted to enumerate the group using dynamic

programming or network flow optimization. Since these approaches could manage

only trivially sized GMPs, the GMP was largely forgotten and subsequently ignored

by the operations research community.

2.3.3 Corner Polyhedra

Gomory (1967, 1969) described the geometry associated with his cutting

planes and GMP. Let P be the feasible region for the LP relaxation of an ILP. Given

any vertex of P, we relax all constraints not passing through the vertex to form a

cone, K. The convex hull of the integer points in K is the corner polyhedra (CP) for

that vertex.

Gomory shows if the vertex is LP optimal then the optimal solution to the ILP

is a vertex on the corresponding CP. Gomory's fractional cuts are the faces of CP.

CP can be expressed in terms of the original decision variables or in terms of the non-

14

basic variables. The feasible region for the GMP corresponds to the CP in terms of

the non-basic variables.

Corner polyhedra may also be expressed in terms of the full group generated

by the elements associated with the non-basic columns. This increases the dimension

of CP to D. This is the master CP. Any facet of the CP is a facet of the master CP

and any facet of the master CP is a face of the CP but not necessarily a facet. Many

problems with different CP will share a common master CP. Gomory (1969)

generated facets of the master CP in hopes of finding facets to all corresponding CP.

2.3.4 Recent Work

Gomory's work with corner polyhedra and master comer polyhedra to

generate cutting planes has mostly lain dormant for the last two decades. Recently,

Gomory and others have begun to resurrect the research (Gomory and Johnson 2003a,

2003b, Gomory et al. 2003, Ardoz et al. 2003). The focus of that new research is still

on cutting planes and the faces of the CP. The research documented in this

dissertation focuses on the interior of the CP.

2.4 Group Theory and Metaheuristics

Although not commonly acknowledged, many aspects of metaheuristics can

be defined in terms of group theory. Colletti (1999) gives a comprehensive treatment

of group theory in the context of metaheuristics. Using the TSP and TS, he classifies

and defines current move definitions in terms of group theory and develops composite

15

move strategies that would be difficult to generate using other methods. He provides

efficient methods for escaping from chaotic attractors during the search and for

generating search neighborhoods.

This Group Theoretic Tabu Search (GTTS) approach has been very

successfully applied to several complex problems. Wiley (2001) implements

Colletti's ideas to solve the Aerial Fleet Refueling Problem. A solution representation

is developed using S, and dynamic move neighborhoods are developed based on

conjugation and function composition to explore the solution space. Crino (2002)

extended these ideas in solving the military theater distribution problem. He used

group actions to partition the solution space into orbits and orbital planes. Our work

in chapters 3 and 4 is based on Crino's approach.

The next chapter considers the general partitioning problem and presents a

group theoretic strategy for partitioning the solution space to enhance the exploration

of that space.

16

Chapter 3 - Partitioning the Solution Space

Since the solution space for a typical NP-hard problem is immense,

appropriate partitioning of the solution space can improve the search by aiding in

diversification, intensification, and cycle prevention. Group Theory provides many

methods for such partitions.

3.1 Partitioning Into Orbits (Ordering Problems)

3.1.1 Theory

Colletti (1999) represents solutions to the single and multiple agent TSPs as

elements of S, and proposes the use of group actions and orbits to partition the

solution space. For example, a solution to a 10-city 2-TSP may be (4 6 2 9)(3 1 10 8

5 7) with agent 1 visiting cities 4, 6, 2, and 9 in order and agent 2 visiting cities 3, 1,

10, 8, 5, and 7. Each agent's tour is a cycle and the number and size of the cycles in

the solution is the solution's cycle structure.

Two elements with the same cycle structure are conjugates and are in the

same conjugacy class. A group action on Sn based on conjugation with H • S,, does

not change cycle structure. A conjugacy class with b a-cycles and d c-cycles is

denoted by abcd.

17

Example 3.1

Let S10 be our solution space and let H = ((1 2),(1 3)) (H • S0). Let the current

solution be x = (4 6 2 9)(3 1 10 8 5 7) E 4161 . The orbit neighborhood for H given x,

xH , is all solutions reachable by rearranging 1, 2, and 3 in x, i.e, all solutions

constructed by conjugating x with any element of H:

xA(1 2) = (4 6 1 9)(3 2 10 8 5 7)

XA(1 3) = (4 6 2 9)(1 3 10 8 5 7)

XA(2 3) = (4 6 3 9)(2 1 10 8 5 7)

XA(1 2 3) = (46 1 9)(2 3 10 8 5 7)

xA(1 32)=(4639)(1 2 10857)

xAe=(4629)(3 110857)

To change to another orbit with the same cycle structure we can use

conjugation with a permutation not in the subgroup H. We must use some other

operation, like function composition, to move to an orbit with a different cycle

structure. A transversal of the orbits is a list containing one element from each

possible orbit. Changing the current solution to an element in a different orbit moves

the search to that orbit and conjugation with the subgroup H allows the search to

explore the orbit. Unfortunately, creating transversals can be quite costly as the

number of orbits increases.

Performing the group action on S, using all of Sn partitions the solution space

into orbits each representing a different cycle structure or conjugacy class (i.e. 101,

1191, 2181, 2', 3 22, etc.) . For example, orbit 4161 would contain all solutions

18

assigning 4 cities to agent 1 and 6 cities to agent 2. Alternatively, we can perform the

group action using subgroups of Sn.

Colletti (1999) also discusses the pros and cons of using different sized

subgroups of S, for the group action. A small subgroup yields smaller orbits (each

possibly small enough to search exhaustively) but a greater number of such orbits.

Using too many orbits demands an effective method to search for an orbit to explore.

A larger subgroup yields fewer orbits, likely so large that exploring any orbit is

difficult.

3.1.2 Application

Crino (2002, 2004) implements Colletti's ideas to solve the theater

distribution routing and scheduling problem (TDVRSP). He partitions the solution

space into orbits and further partitions the orbits into sub-orbits. This is accomplished

by using a group action on each orbit with a subgroup of the group used to create the

orbit. Crino uses a reactive tabu search procedure to search for orbits which are small

enough to be exhaustively enumerated. Once an orbit has been explored the orbit is

made tabu.

The first partition is based solely on cycle structure or conjugacy class. The

second partition is based on cycle order (i.e. 2181 vs 8121). Group theory does not

distinguish elements of S, by cycle order abcd is equivalent to cdab; however, this

distinction is required as the TDVRSP vehicles assigned to each cycle are non-

homogeneous.

19

If the search discovered a good solution with 4 cities assigned to the first

vehicle and 6 assigned to the second, it is likely that there are other good solutions in

the same orbit. Similarly if the search has trouble finding a feasible solution in orbit

9111, we may begin to believe that the orbit does not contain any feasible solutions

and we can abandon it. While we may not know which orbits are good or bad a

priori, we may be able to narrow down the good orbits shortly into the search and

focus our efforts there.

Crino further partitions the above orbits by assigning customers into sets. The

number and size of the sets creates the first partition, an orbital plane. The orbital

planes are then partitioned into orbits based on which customers are assigned to each

set. All of these partitions are created by a group action with some subgroup of Sn.

Exchanging 2 or more customers between the sets will move to a new orbit on the

orbital plane. Modifying the size or number of sets will move to a new orbital plane.

3.1.3 Observations

Tabu search and other local search heuristics have been shown to be quite

effective at finding good solutions quickly without partitioning (Glover and Laguna

1997, Combs 2004). When we partition the solution space, we restrict the movement

of the search algorithm. If this is a good restriction, limiting the search to the "good"

areas of the solution space, the partitioning can be quite effective. However, arbitrary

partitioning or too many partitions may trap the search in bad regions of the solution

space.

20

The first two levels of partitioning used by Crino, cycle structure and cycle

order, have some relevance to the problem being solved. It is reasonable to assume

that this partitioning scheme would create partitions containing solutions of similar

value. The third and fourth levels of partitioning created by grouping the customers

into arbitrary sets have no logical link to the problems being solved. One good

solution in an orbital plane need not indicate a higher or lower probability of other

good solutions in that plane. Superior results could probably be achieved if only the

first two levels of partitioning were applied. In general, partitioning the solution

space into "good" and "bad" partitions will allow the search to focus on the good

partitions.

3.2 Partitioning Into Orbits (Partitioning Problems)

For strict partitioning problems, using S, for the solution representation is

inappropriate. A vector of integers suffices. For binary programs, the solution

representation is a binary vector of size n and the solution space, X, is the set of all

binary vectors of size n.

We can create a group action on X using Sn or a subgroup of S, and partition

the solution space into orbits. Given a permutation p e S, and a solution vector x, we

define the group action of p on x as moving the value at vector element i to vector

elementj ifj follows i in p. For example, ifx=(10 125 0 131 0) andp =(23 4)

thenxAp =(120 1501 3 1 0).

21

This operation is a valid group action because the result of the action is in X

and the properties from 2.1.8 hold. Using all of S, for the group action on X creates

only a single orbit. In the next section, we show how to use a subgroup of S, by

clustering the elements of the solution and restricting movement of the values to

within the clusters.

3.2.1 Variable Clustering

Grouping the problem variables into clusters and using an external direct

product of S, subgroups creates orbits and partitions the solution space. Let there be

nk variables in cluster k and let r be the number of clusters. The group acting upon

the set of n vectors is Snlx ... XSnr where - n,. = n. For example, if n = 10, nl = 3,

n2 = 3, n3 = 4 and r = 3 a solution may be x =I1 1250113o10]. The group acting

upon x is SO X SO X Sn, and the orbit containing x contains all solutions where the

first cluster contains two Is and a 0, the second contains a 2, 5, and 0, and the last

contains two Is, a 3 and a 0. The orbit of x is

[101125011310] [110125011310] [011125011310] [101152011310] [110152011310]

[lO15O21131o] [111o5o21131o0 [o1150o211310] [ol0lsOl2O310] [o011o2511o31]

[101102511310] [110102511310] [011102511310] [101120511310] [110120511310]

[110105211130] [11o010213110] [015lo213110] [10 52l3110] ...

22

If we define cardinality as the number of times a value appears in the cluster,

an orbit can be characterized by the cardinality of the components of each cluster. If

a problem is of order d (i.e. variable values are 0 thru d-1) and has r clusters, we can

capture the orbit characterization in a d-1 by r matrix, 0P, where element OPik is the

number times non-zero value i appears in cluster k in orbit p. For example, assume

the orbit above is from an order 10 problem, the orbit matrix is

F2 o 21
0 1 0

0 0 1

0 0 0

OP 0 1 0

0 0 0

0 0 0
0 0 0

L oo1

3.2.2 Which Variables Do We Cluster?

Clustering the variables is easy. Since the goal is to group solutions of similar

quality in the same orbits, determining how many clusters to create and which

variables to assign to each cluster can be more challenging.

Often, a logical clustering of the variables is obvious from the context of the

problem. For knapsack problems, it seems reasonable to assume that orbits with

more non-zero values in clusters with high benefit/cost ratios would be superior to

other orbits. If our problem contains special ordered sets (SOSs) then they provide a

very natural clustering. For example, if we have 3 SOSs of type 1 (only 1 member of

23

the set can be non-zero), we create 3 clusters, 1 for each set. Any orbit containing

more than 1 non-zero element in each cluster is an infeasible orbit and can be

discarded.

Borrowing from the ideas of Gomory (1963, 1965, 1967, 1969), we can solve

the LP relaxation of our problem and cluster the variables based on reduced costs.

We can place all of the basic variables in the same cluster and cluster the non-basic

variables separately based on their reduced costs.

We cannot use reduced costs to explicitly determine which non-basic

variables will change values in the near optimal solutions (see Section 3.3.3).

However, we can use reduced costs as a heuristic indicator of such changes. To

reduce the number of orbits, we place the variables in the same cluster if their reduced

costs are within a certain range of each other.

The number of clusters must also be decided and may also be determined by

the problem context. If it is not clear how many clusters to create, it is preferable to

have too few as opposed to too many. Creating too many clusters leads to too many

orbits, and too many orbits restricts the movement of the search making it difficult to

find the good regions of the solution space. If we assign each variable to its own

cluster, exhaustive enumeration is implied. Alternatively, if we assign all variables to

the same cluster, general tabu search is implied. Clearly the latter is preferable.

24

3.3 Orbit Exploration

3.3.1 Intra-Orbit Move Neighborhoods

If the orbits are small enough we may be able to enumerate them; however,

this is not likely to be the case. So we must create a move neighborhood that is of

manageable size, restricts the search to the current orbit, and provides connectivity to

all solutions within the orbit. Let G = S,, x ...x S,,r be the group used to create the

orbits, we can use any -set of elements H c G that generates G as a move

neighborhood possessing these desired properties. H is a subset but not a subgroup of

G. A subgroup by definition is closed and therefore no proper subgroup can generate

the full group, therefore H cannot be a subgroup of G.

Every element of H is in G and since G is closed all combination of elements

of H are also in G. By property 2 of a group action, we know

(xAg)Ah=xA(gh) VxcX andg,h=H, so executing multiple moves in

succession is equivalent to executing one move using the product of the move

elements. Therefore the neighborhood based on H restricts the search to the current

orbit. Given any solution in the orbit, any other solution in the orbit can be generated

using an element of G. Since the elements of H generate G, executing multiple

moves will eventually generate all of G and the entire orbit. The size of the

neighborhood is simply the size of H.

25

Every permutation is a product of transpositions and so the set of all

transpositions in Snk generates Snk. For G the number of transpositions is k n J.

This set is essentially a within-cluster swap neighborhood (including duplicate

solutions). The size of a full neighborhood without regard to the clusters would be a

much larger (n)" So in addition to partitioning the space the orbit restriction acts as

a candidate list restricting neighborhood size.

There are even smaller neighborhoods available. The subset of transpositions

containing all transpositions in Snk with the same first element will also generate Snk

(i.e. {(l 2),(1 3),...,(1 nk)}) as will the following set of transpositions

{(1 2),(2 3),....(nk -1 rk)}. For G the size of each of these neighborhoods is

jr=l(nk--)

3.3.2 Inter-Orbit Move Neighborhoods

Any action that changes the orbit's characterization matrix causes the search

to leave the current orbit and enter a new one. We can increment or decrement the

cardinality of one or more of the non-zero values in one or more clusters. What we

cannot do is change the number of clusters or what variables are assigned to each

cluster. Doing so would change the partitioning structure as opposed to which

partition we are currently exploring.

26

3.3.3 Bounding the Solutions in an Orbit

We can use the objective function coefficients and the orbit's characteristic

matrix to calculate an upper and lower bound on the solutions (not necessarily

feasible) in the orbit. Using these bounds, it may be possible to determine if an orbit

contains any feasible solutions without actually exploring the orbit. We may also be

able to avoid searching an orbit if its solution bounds are dominated by the best

solution found so far.

Let cjk be the cost associated with variable j in cluster k. Let nZk be the

number of non-zero elements in cluster k (i.e. the sum of column k in 0). We can

calculate the upper bound objective value for each cluster k by performing the

following:

1. Sort (within cluster k) the cjk in ascending order

k2. Setj = nk - nzk + 1, i = 1, and ZUB = 0

3. WhileO"ik •0

3a. ZUBk = ZUBk + i*Cjk

3b. j =j + 1

3c. OPik = OPik - 1

4. i=i+1

5. Ifi < d, go to 3.

The upper bound for the orbit is =ZUBk . We can calculate the lower bound of an

orbit in the same fashion by traversing the columns of OP from bottom to top.

27

Example 3.2

Assume we have the following orbit matrix

[- IF2 o 2--
0 1 0

0 0 1

0 0 0
OP = 0 1 0

with n =10, n, 3, n2 =3, n3 =4, d =10 and r = 3. Let our cost (sorted by cluster

then in ascending order) be

[1 24113 512 24 6]

The upper bound for cluster I is

I1. ZUB1 = 1"2 =2

1 010

2. ZU1= ZUBO + 1* = 6

We also have zuB 2 =31 and zuB 3 =24 SO zuB = 61. No solution in the orbit feasible

or infeasible will have a solution greater than 61. We also have ZLB = 3 + 11 + 12=

26.

We may be able to get tighter bounds by representing the orbit characteristics

as additional constraints and solving the LP relaxation for that orbit. Let xjk be the jth

variable in clu ster k. The co n straint or cut associated with cluster k is
[i nk 2 1 3 d-1 Op2 4

j=1. k1* i=1=2

28

Adding the above cut for each cluster and solving the LP relaxation gives us an upper

or lower bound depending on whether we are maximizing or minimizing. If the LP

relaxation is infeasible the orbit is infeasible.

If we are maximizing and have an upper bound on our solution from some

relaxation method and the lower bound of the orbit is greater than that upper bound,

the entire orbit is infeasible and can be discarded. If we have a current best solution

greater than the upper bound of the orbit then the orbit is dominated and can be

discarded. Similar arguments can be made for minimization.

If we have clustered the variables based on reduced costs we may be able to

put a bound on an orbit using the reduced costs. By assigning the non-zero values in

a cluster to the smallest reduced costs of the variables in the cluster and adding across

all clusters, we can calculate the minimum weighted distance from the LP optimal

solution. We subtract this value from the value of the LP optimal solution and we

have an upper (max) or lower (min) bound on solutions in the orbit.

3.4 Orbit Size

Not all orbits will be of the same size. The size of the orbit is based on the

number of clusters and the number of combinations of the non-zero elements in the

clusters. The number of iterations the search spends in an orbit should be a function

of orbit size.

Again let d be the order of the vector elements, r the number of clusters and nk

the number of variables assigned to cluster k. For orbit p cluster k, the number of

29

ways to assign the first non-zero value is n() . After assigning the first non-zero

value the number of ways to assign the second is nk "OPlk J and so on. So theSOPk

number of combinations for orbit p cluster k is

n k m=l m
i=1nZIOPik

The number of solutions in orbit k is the product of the number of combinations for

each cluster in the orbit. So the size of the orbit is

k i=1 OP
jik

Example 3.3

For the following orbit

F20-2
0 1 0
0 0 1

0 0 0

OP =0 1 0

0 0 0

0 0 0

0 0 0

th sz 2i 1 1 2 1

30

3.5 Orbit Landscapes

As stated in Section 2.2.3, if a landscape is elementary all local optima are at

least better than the average solution. The orbits partitioning the solution space are

distinct. While they may share the objective function and neighborhood definition,

each orbit has its own set of solutions. A neighborhood that creates an elementary

landscape in each orbit implies all of the orbit's local optima are better than the

orbit's average solution. This can greatly enhance the search if the solution space is

partitioned into "good" and "bad" orbits.

3.6 Escaping Attractors

Orbits also provide a deterministic method of escaping chaotic attractors

(Colletti 1999). Battiti and Tecchiolli (1994) describe chaotic attractors as landscape

characteristics that keep the search confined to a limited region of the solution space.

Reactive tabu search is designed to detect and escape from such regions. Such escape

procedures can cause a significant change in the current solution. Search methods

like those described above can escape the attractor simply by moving to a different

orbit.

3.7 Parallel Exploration

Since the orbits are disjoint, this type of partitioning lends itself well to

parallel search. A centralized control algorithm could generate orbit characteristic

matrices and pass them to available parallel processors. After the search of an orbit is

31

completed, based on stopping criteria, the processor could return the results to the

control algorithm and be assigned a new orbit.

3.8 Conclusions

Partitioning the solution space into orbits allows the algorithm to intensify the

search in areas of the solution space believed to contain good solutions. The orbits

keep the search contained in these areas and the clusters work as an enhanced

candidate list, reducing the total number of moves in the neighborhood while still

retaining the "good" moves. In the next chapter, we present a reactive tabu search

implementation of these concepts for the unicost set covering problem.

32

Chapter 4 - A Group Theoretic Tabu Search Algorithm for

Unicost Set Covering Problems (GTTS-USCP)

In this chapter we develop a group theoretic tabu search (GTTS) algorithm for

solving the unicost set covering problem (SCP), the GTTS-USCP. We solve a linear

programming (LP) relaxation of the problem and use the LP optimum to construct a

quality solution profile. As described in the previous chapter, we use group theory to

partition the solution space into orbits based on this profile. We tested our algorithm

on 65 benchmark problems and compared the results against the previous best known

and solutions obtained by CPLEX 9.0. GTTS-USCP discovered 46 new best known

solutions. GTTS-USCP converged significantly faster than CPLEX for all problem

sets.

4.1 Problem Definition and Historical Background

The set covering problem (SCP) is a well-known combinatorial optimization

problem. Given a 0-1 incidence matrix A with m rows and n columns, the problem is

to select the minimum weight subset of columns while ensuring every row is covered.

Formally, the problem is:

Minimize Z wix1

Subject to I=laixj >Ž1 i =1.....m (P1)

x E{0,1} jl n

33

If aij = 1, columnj covers row i and wj is the weight or cost of column j, a1 . If a1 is

selected to be in the subset, xj is set to l and wj is added to the cost of the solution.

When wj = 1 for all j, the problem is the unicost SCP (Grossman and Wool 1997).

The cardinality of any P1 solution, x, is the number of x, =1, which, in the case of the

unicost SCP, is the value of the objective function, z. The linear programming (LP)

relaxation of P1 where the xi can be non-integer is denoted by P1 which has optimal

solution, xpI and optimal objective function, ZLP-

The SCP has many practical applications including crew scheduling (Balas

and Carrera 1996, Ceria et al. 1998, Combs 2002, Combs and Moore 2004),

emergency facility location (Daskin and Stem 1981, Toregas et al. 1971) and political

redistricting (Garfinkel 1970). The SCP is known to be NP-Hard and both exact

(Balas and Carrera 1996, Balas and Ho 1980, Beasley 1987, Daskin and Stem 1981,

Garfinkel 1970, Toregas et al. 1971) and heuristic (Beasley 1987, Beasley and Chu

1996, Ceria et al. 1998, Chvatal 1979, Grossman and Wool 1997) approaches have

been proposed for it. Several of these have made extensive use of Lagrangian

relaxation (Balas and Carrera 1996, Balas and Ho 1980, Beasley 1987, Beasley and

Chu 1996, Ceria et al. 1998) and column dominance; neither of which are as effective

for unicost SCPs.

Grossmann and Wool (1997) explore the performance of nine different

heuristic algorithms on the unicost SCP. Most algorithms tested were LP rounding-

based and construction-based approaches. A neural network algorithm was also

34

included in the study. A randomized version of the greedy construction algorithm

(Chvatal 1997, Johnson 1974) produced the best results.

4.2 Methodology

4.2.1 Overview

We propose to solve the unicost SCP with a group theoretic tabu search

(GTTS-USCP) algorithm. Local search heuristics provide a distinct advantage in

solving the unicost SCP as they allow the search to be based on the cardinality of the

solution. As described in chapter 3, we use group theory to partition the solution

space into orbits based on a solution profile created from the optimal solution to the

LP relaxation. The LP relaxation of an IP is used extensively in exact methods, but

with the exception of the LP bound, is not commonly used in metaheuristics. For the

SCP, the P1 solution provides valuable information for a direct search approach.

The choice of the non-basic variables, xN,, the basic variables, xR, and the reduced

costs of the xN, ICN, can provide valuable insight into the characteristics of high-

quality IP solutions.

The methodology is presented in detail in the sections that follow. However,

for the purposes of clarity and ease of understanding, we provide a global overview

here. First, CPLEX solves P1. The associated optimal basic variables, the xBj, and

the FN are used to assign the xi to clusters. A TS starting solution, x 0 , is generated

35

by setting XB = 0 and then selecting a subset of the xBi to raise to value 1 so that all

rows are covered in P1. A RTS procedure is used to explore the orbits with

cardinality between that of x° and x* . A separate RTS procedure is also used to find

quality orbits to explore. The algorithm terminates when a GTTS-USCP solution

value equals the P1 lower bound, ZLB ZLp or when the allotted time has expired.

4.2.2 Clustering Variables Based on the LP Relaxation

The CPLEX solution to P1 details z X, x CN, and which xN are at their

upper (1) or lower (0) bounds. All XBi join the same cluster. The upper bound

variables, XNUj, and lower bound variables, xNLj, cluster separately based on their

reduced costs, CNuj and CNLj. For unicost P1, all c-NLj _<1 . If CNLj = 1, a, does not

cover any of rows associated with the binding constraints at optimality. A C-Nuj ="-1

implies that if a, is removed from the solution, we must select at least two new

columns to render the LP solution feasible. While it is possible for C-Nuj to be less

than -1, it is quite unusual. To avoid creating too many clusters and too many orbits,

we place the XNj in the same cluster if their cNj are equal to the nearest 0.1 digit. As

illustrated in Figure 4.1, the clusters are created in the following order: upper bound

variables, basic variables, lower bound variables.

36

Upper bound Basic Lower bound
-0.2 -0.1 -0.0 0.0 0.0 0.1 0.2 1.0

Figure 4.1 - Variable

We initially set all xNuj = 1, all xNLJ = 0 and all xBj =0 making the solution

integer feasible. Integer feasibility is then maintained throughout the algorithm.

Since the problem is binary, the elements of the solution are order 2. The orbit

characterization matrix is then a 1 by r vector, where r is the number of clusters. For

example, a solution to a 22 variable problem could be

[111111110111010010011000000]

where the solution cardinality is z = 10 and the orbit characterization vector is

Op=(4 3 2 1 0).

4.2.3 Partitioning the Solution Space into Orbits

The solution space is partitioned into orbits first by total solution cardinality,

z, and second by the cardinality of the individual clusters as described in OP. Initially

all orbits are open. A list of orbits visited is maintained and an orbit is closed to

further search after it has been searched for MAXORBITITER iterations or has

been visited MAXORBITVISITS times. An orbit hash function (Woodruff and

Zemel 1993), f2(k), is used to facilitate access to orbit information. Orbit hash

values are calculated by generating a random number, r-j, for each cluster j. The

orbit's hash value is Q(O") = lr=, rjO . Orbits can be further distinguished by the

37

number of free ones and free zeros in the orbit. Free ones (zeroes) are the number of

ones (zeroes) in clusters that are not all ones (zeroes). For example, the solution

below has 6 free ones and 6 free zeroes.

[I I Il11011i0100l001o000000]

Any orbit with 0I.=10pj less than ZLB contains only infeasible solutions and
J

may be immediately closed. Once a feasible solution is found with cardinality zuB,

all orbits with -".=Opj > ZuB are dominated and may be closed. It is probable that

orbits with large O"P in the upper bound clusters and small 0P" in the lower bound

clusters will contain good solutions. This partitioning scheme permits the

concentration of search effort within these good orbits.

4.2.4 Inter- and Intra-Orbit Neighborhoods

As shown in Section 3.3.1, our group acting on the set of binary vectors size n

is G = Snl X ... X Snr where n, = n. For our intra-orbit neighborhood we need a

set H _ G such that G = (H). We let H equal the set of all transpositions in G. This

is equivalent to all moves swapping two elements in the same cluster.

Any move that changes OP is an inter-orbit move. We use 3 different inter-

orbit neighborhoods at different points in the GTTS-USCP algorithm. 0P" is

increased (select neighborhood) or decreased (unselect neighborhood) by "toggling"

the value of a single cluster j variable. Both O"j and OPk may be changed by

38

swapping values of variables in clusters j and k. When searching inter-orbit

neighborhoods we consider only open orbits.

For all neighborhoods, the best move is defined in terms of deficit, the number

of unsatisfied rows, and surplus, the total amount that rows are over-satisfied. A row

is over-satisfied when it is covered more than once. A row covered by 3 columns has

a surplus of 2. Once a feasible solution is found we decrease z by unselecting a

column, therefore GTTS-USCP is usually searching an orbit for feasible solutions.

The best move yields the smallest deficit. Deficit ties are broken by largest surplus

and surplus ties are broken by order of evaluation (lexicographically).

A complete swap neighborhood (which ignores cluster membership) would be

O(n2). For intra-orbit swaps, this effort is reduced by considering swap pairs only if

they are in the same cluster. Further, if 0P" = n1 or 0Pj = 0 no swaps are considered

in cluster j. However, even with this reduction a complete within-cluster or outer-

cluster swap neighborhood is too costly for large problems. Both the intra-orbit and

inter-orbit swap neighborhoods are based on a conditional select move. First, moves

that unselect a non-tabu selected column in the current solution are evaluated. The

best of such moves is chosen. Given that chosen column will be unselected, we next

find the best non-tabu unselected column to select.

A complete select neighborhood is O(n). This neighborhood's size may be

reduced by incorporating a candidate list heuristic that also helps diversify the search.

A column selection is considered only when the current solution is infeasible. We

39

first find the row that has been unsatisfied for the longest number of iterations, then

we only select from the columns that will satisfy that row.

Since ties in surplus are broken lexicographically, the order in which the

clusters are evaluated affects the performance of the algorithm. For select

neighborhoods, we first examine the upper bound clusters then the basic cluster and

finally the lower bound clusters. This favors increasing the cardinality of the upper

bound clusters over the rest. Unselect neighborhoods are examined in the opposite

order of select neighborhoods favoring decreasing the cardinality of the lower bound

clusters over the rest.

4.2.5 Tabu Lists and Tabu Tenure

Two types of tabu structures are used in our algorithm. The first is a broad-

gauge structure which tracks the last iteration a column was selected or unselected. A

selected or unselected column's status cannot be changed again for tabu tenure

iterations. The tabu tenure may increase or decrease when the algorithm detects

cycling.

The second type of tabu structure is a fine-gauge structure which tracks each

individual solution, noting when it was last visited, and how many times it has been

visited. For efficiency, another hash function (Woodruff and Zemel 1993), qO(x), is

used. A random number, pj, is generated for each xj. The solution's hash value is

40

(o(x) = pjxj. Solutions can be further distinguished by their deficit and

surplus.

Each orbit maintains its own tabu structures. In addition, a separate tabu

structure is used during the RTS procedure to find quality orbits. The default tabu

tenure for select moves is SELECTTENURE and the default tabu tenure for unselect

moves is UNSELECTTENURE.

The solution tabu structure is used to detect cycling and to control the tabu

tenures. If a solution is repeated, the tabu tenures are increased by a multiplicative

factor (* 1.618). If MINNEWSOLS consecutive new solutions are visited, the tabu

tenures are returned to their default values. If MAXREPEATEDSOLS solutions

are repeated MAXREPEATS times, the search is presumed to be in a chaotic

attractor basin (Battiti and Tecchiolli 1994) and an escape is achieved by departing

the current orbit or by increasing the tabu tenure if we are still searching for an orbit.

4.2.6 Finding a Starting Solution

To obtain a starting solution, all xNj are fixed at their values in x * and the

xBi are set to zero. As illustrated in the pseudo code of Figure 4.2, basic columns are

then selected until ZLB is reached. If that solution is not feasible, intra-orbit swap

moves are performed within the basic cluster, until no improving move is available

(steepest descent). If the solution is still not feasible, a select move is performed

within the basic cluster and the process repeats until feasibility is achieved. Since

41

selecting all columns would certainly be a feasible, albeit poor, solution we will

converge to a feasible solution in a maximum of n - ZLB steps. After feasibility is

achieved, any identified redundant columns, columns whose unselection will not

destroy feasibility, are removed.

Generate Feasible Starting Solution
Select columns from the basic cluster until the ZLB is reached
If feasible

Terminate with optimal solution
Else {

While not feasible {
Select a column from the basic cluster
While improving move found

Execute intra-orbit swap move
}
Attempt to unselect redundant columns

}
Save the solution and ZUB

Figure 4.2 - Starting Solution Algorithm

4.2.7 Primary Search Strategy

A pseudo-code of the primary search strategy is presented in Figure 4.3.

After the initial solution is obtained, the GTTS-USCP still focuses on the basic

variables. A non-basic variable's status is modified only if doing so achieves

feasibility. Since the duality gap, zUB - ZLB , is known, F(ZuB - ZLB)/2] columns are

unselected from the basic cluster. Next, an RTS procedure, based on the intra-orbit

swap neighborhood, is applied to the resulting orbit until (1) a feasible solution is

found, (2) MAXORBITITER iterations have been performed, (3)

42

MAXNIORBITITER iterations have been performed without improving the best

orbit solution, or (4) the time limit is reached. If a feasible solution is obtained, the

duality gap is recalculated, [(ZUB - ZLB)/2] columns are unselected from the basic

cluster and the process repeats.

If a feasible solution is not found, the search departs the current orbit and the

orbit's best solution is instantiated as the current incumbent solution. Next, the

current inter-orbit swap neighborhood is evaluated in pursuit of a move leading to a

feasible solution. If that search yields feasibility, the duality gap is recalculated and

the process repeats; if not, the current select neighborhood is evaluated. If feasibility

is achieved, the duality gap is recalculated and the process repeats. If both

neighborhoods fail to find a feasible solution, a basic cluster column is selected and

the new orbit is searched. If ZUB is reached without achieving feasibility, the search

is expanded.

43

Primary Search
Search Orbit with a RTS procedure

Perform intra-orbit swap moves until a feasible solution is found or
termination criteria is met

If feasible {
Attempt to unselect redundant columns
Save the solution and ZUB

If ZUB = ZLB

Terminate with optimal solution
Else {

Remove (ZUB - ZLB) / 2 columns from the basic cluster

Goto Primary Search

}

Else {
If feasible inter-orbit swap move found {

Execute swap
Goto Primary Search

}
Else If z + I < zu,{

If feasible select column move found {
Select the column
Goto Primary Search

}
Else {

Select a column from the basic cluster
Goto Primary Search

}

Else
Goto Expanded Search

Figure 4.3 - Basic Search Algorithm

44

Expanded Search
Search for a feasible solution with a RTSprocedure

Perform intra-orbit and inter-orbit swap moves until a feasible solution
is found or termination criteria is met

If feasible {
Attempt to unselect redundant columns
Save the solution and ZUB

If ZUB = ZLB

Terminate with optimal solution
Else {

Unselect a column
While feasible solution found {

Search Orbit with Reactive Tabu Search
Perform intra-orbit swap moves until a feasible
solution is found or termination criteria is met

If feasible {
Attempt to unselect redundant columns
Save the solution and ZUB

If ZUB = ZLB

Terminate with optimal solution
Unselect a column

}

Goto Expanded Search

Figure 4.4 - Expanded Search Algorithm

4.2.8 Expanding the Search

A pseudo-code of the expanded search strategy is presented in Figure 4.4.

After exploring the orbits near the optimal LP solution, GTTS-USCP expands the

search to other areas of the solution space. A RTS procedure, based on both inter-

orbit and intra-orbit swap neighborhoods, is used to find a good region for

45

exploration. This RTS procedure continues until either a feasible solution is found or

the time limit is reached.

If a feasible solution is found, we unselect a single column (from any cluster)

and explore the resulting orbit. If a feasible solution is found while exploring the

orbit, we unselect a column again and the process repeats. If a feasible solution is not

found while exploring the orbit, we begin another RTS procedure at the new z. The

process ends when the time limit is reached or a solution equal to ZLB is found.

4.3 Computational Results

4.3.1 Test Cases

The benchmark problems solved were obtained from Beasley's OR-Library

(Beasley 1990). Problem sets 4-6 originally appeared in (Balas and Ho 1980),

problem sets A-D appeared in (Beasley 1987) and problem sets NRE-NRH appeared

in (Beasley 1990). All problems were randomly generated based on the strategy of

(Balas and Ho 1980). All of these problems were generated as weighted SCPs.

Grossman and Wool (1997) solved all but NRG and NRH as unicost SCPs. One

problem set, E from (Beasley 1987), is unicost but is not solved here due to its trivial

size (all algorithms reach an optimal solution in 0 seconds).

46

4.3.2 Test Procedures

All tests were performed on Dell Precision 530 Workstations running SuSE

Linux with two 1.8GHz Pentium Xeon processors and 1GB of RAM. The machines

are multi-user platforms. An attempt was made to find machines that were not too

busy, but as each problem ran for at least an hour, CPU usage surely fluctuated during

processing. Each problem was solved using CPLEX 9.0 and GTTS-USCP. The time

limits used were 7200 seconds for CPLEX and 3600 seconds for GTTS-USCP. The

GTTS-USCP algorithm was coded in C.

The previously published best known solutions for these problems were

published in Grossman and Wool (1997). They performed their tests on an IBM

RS6000 model 370 workstation with 128MB of RAM. They also coded their

algorithms in C.

4.3.3 CPLEX 9.0

The algorithms tested by Grossman and Wool (1997) are unsophisticated by

today's standards. To provide a more modern benchmark, we compare our results to

CPLEX version 9.0. CPLEX uses a very sophisticated branch and cut algorithm to

solve mixed integer programs (MILPs). The algorithm is further aided by two

heuristics. The first attempts to create a feasible solution from the fractional solution

at the node. The second attempts to improve the incumbent integer solution through a

neighborhood search (ILOG 2003).

47

CPLEX was also used to solve P1 for the GTTS-USCP algorithm. The dual

simplex LP solver was used for the smaller problem sets, 4-6 and A-D. The sifting

LP solver was used for the larger problem sets, NRE-NRH. The default settings were

used for all other parameters.

4.3.4 Results

Tables 4.1 and 4.2 contain the results of our tests as well as the problem

details and previous best known solutions. The best solution found for each problem

is highlighted in bold. GTTS-USCP found the best solution on 59 of the 65

problems. It outperformed CPLEX on 47 of 65. It significantly outperformed

CPLEX on the larger problem sets NRG and NRH. Curiously, neither CPLEX nor

GTTS-USCP were able to do as well as R-Gr (Grossman and Wool 1997) on the

problem sets with higher density, NRE and NRF. None of the solutions were proven

to be optimal.

It should be noted here that CPLEX was executed using the default settings

while GTTS-USCP, as well as the algorithms from Grossman and Wool (1997), were

specifically designed to solve the unicost SCP. A researcher well-versed in CPLEX's

parameters and settings would likely be able to improve its performance through

experimentation. However, the disparity in performance between CPLEX and GTTS-

USCP is quite dramatic and we do not believe any such improvements would be

enough to close this gap.

48

problem number number density previous CPLEX 9 GTTS-
of of best known best USCP

rows columns (seconds) best
(seconds)

4.1 200 1000 2% 41 38(11) 38 (938)
4.2 200 1000 2% 38 37 (42) 37 (5)
4.3 200 1000 2% 40* 38 (28) 38 (1)
4.4 200 1000 2% 41 39 (851) 38 (272)
4.5 200 1000 2% 40 39 (64) L8 (23)
4.6 200 1000 2% 40 38 (50) 37 (3)
4.7 200 1000 2% 41 39(211) L8 (413)
4.8 200 1000 2% 40 38(131) 38(6)
4.9 200 1000 2% 40 38 (835) L8 (35)
4.10 200 1000 2% 41 E8 (1772) L8 (161)

problem set 4 average 40.2 38.2 (399.5) 37.8 (185.7)
5.1 200 2000 2% 35 35(824) 35(5)
5.2 200 2000 2% 35 35 (137) 35 (6)
5.3 200 2000 2% 36 35 (373) 34 (39)
5.4 200 2000 2% 36 35 (122) 34(1182)
5.5 200 2000 2% 36 35 (2257) 34 (12)
5.6 200 2000 2% 36 36 (29) 34 (989)
5.7 200 2000 2% 35* 35 (33) 34 (75)
5.8 200 2000 2% 37 35 (85) 34 (74)
5.9 200 2000 2% 36 36(113) 35(6)

5.10 200 2000 2% 36 35 (4739) L4 (1873)
problem set 5 average 35.8 35.2 (871.2) 34.3 (426.1)

6.1 200 1000 5% 21 22(3) 21 (5)
6.2 200 1000 5% 21 21(2) 21 (6)
6.3 200 1000 5% 21* 22(3) 21 (10)
6.4 200 1000 5% 22 22 (40) 21 (4)
6.5 200 1000 5% 22 22 (2) 21 (25)

problem set 6 average 21.4 21.8 (10) 21(10)

Table 4.1 - Results for problem sets 4-6
* - Solution found by Neural Network algorithm (Grossman and Wool 1997)

49

problem number number density previous CPLEX 9 GTTS-USCP
of of best known best best

rows columns (seconds) (seconds)
A.1 300 3000 2% 40 42 (19) 39 (337)
A.2 300 3000 2% 41 41(21) 39(79)
A.3 300 3000 2% 40 40 (398) 39 (179)
A.4 300 3000 2% 40 42(19) 38(1715)
A.5 .. 300 3000 2% 40 39 (4598) 38 (771)

,problem set A average 40.2 40.8 (1011) 38.6 (616.2)
B.1 300 3000 5% 23 23 (826) 22(719)
B.2 300 3000 5% 22 23 (134) 22 (17)
B.3 300 3000 5% 22 23 (12) 22 (698)
B.4 300 3000 5% 23 23(77) 22(1910)
B.5 300 3000 5% 23 23 (2422) 22 (46)

problem set B average 22.6 23 (694.2) 22 (678)
C.1 400 4000 2% 45 48 (3251) 43(1524)
C.2 400 4000 2% 45 46 (4488) 44 (197)
C.3 400 4000 2% 45 49 (41) 43 (1029)
C.4 400 4000 2% 46 47 (3994) 43 (1325)
C.5 400 4000 2% 45 48 (6006) 44 (149)

problem set C average 45.2 47.6 (3556) 43.4 (844.8)
D.1 400 4000 5% 26 27 (2823) 25 (395)
D.2 400 4000 5% 25A 26 (32) 25 (1890)
D.3 400 4000 5% 25 26 (445) 25(91)
D.4 400 4000 5% 26 26 (178) 25 (226)
D.5 400 4000 5% 26 26 (3489) 25 (200)

problem set D average 25.8 26.2 (1393.4) 25 (560.4)
NRE.1 500 5000 10% 17 18(77) 18(38)
NRE.2 500 5000 10% 17 18 (77) 18 (27)
NRE.3 , 500 5000 10% 17 18 (455) 18 (32)
NRE.4 500 5000 10% 17 18(71) 17 (54)
NRE.5 500 5000 10% 17 17 (586) 18(176)

problem set NRE average 17 17.8 (255.2) 17.8 (65.4)
NRF.1 500 5000 20% 10 11(90) 11(29)
NRF.2 500 5000 20% 11 11 (94) 11 (39)
NRF.3 500 5000 20% 11 11 (132) 11 (30)
NRF.4 500 5000 20% 11 11(1083) L1(22)
NRF.5 500 5000 20% 11 10 (482) 11(23)

problem set NRF average 10.8 10.8 (376.2) 11(28.6)
NRG.1 1000 10000 2% - 74(582) 63 (1089)
NRG.2 1000 10000 2% - 76(175) 61 (3401)
NRG.3 1000 10000 2% - 75 (6426) 62 (901)
NRG.4 1000 10000 2% - 74 (3723) 63(1045)
NRG.5 1000 10000 2% - 73 (577) 63 (406)

problem set NRG average - 74.4 (2296.6) 62.4 (1368.4)
NRH.1 1000 10000 5% - 40 (756) 35 (2008)
NRH.2 1000 10000 5% - 39(5716) 36 (297)
NRH.3 1000 10000 5% - 39 (1527) 36 (968)
NRH.4 1000 10000 5% - 40 (748) 35 (940)
NRH.5 1000 10000 5% - 37 (5734) 36 (454)

problem set NRH average - 39 (2896.2) 35.6 (933.4)

Table 4.2 - Results for problem sets A-D and NRE-NRH
A - Solution found by Alternating Greedy algorithm (Grossman and Wool 1997)

50

Since GTTS-USCP and CPLEX were executed on the same platform, we can

make an accurate comparison of the convergence properties. For the purposes of this

dissertation we define convergence as the time or effort required to reach a similar

level of solution quality. Table 4.3 shows the average CPU seconds for each problem

set for GTTS-USCP and CPLEX. Since the algorithms achieved different quality

solutions, the time to the best common solution is used for the comparison whenever

possible. When no common quality solution exists, the next lower solution for

GTTS-USCP is used. GTTS-USCP converged significantly faster than CPLEX for

all problem sets.

Table 4.4 compares the convergence properties of GTTS-USCP to R-Gr

(Grossman and Wool 1997). R-Gr was executed on a slower computer and for 5 of

the problems GTTS-USCP did not reach the same quality solution. As expected R-Gr

is faster than GTTS-USCP; however, GTTS-USCP significantly outperforms R-Gr in

terms of overall solution quality. If R-Gr was executed for a longer period of time or

for more iterations, it is unlikely to improve upon the solutions it has already found.

problem CPLEX 9 GTTS-USCP
set avg (sec) avg (sec)
4 38.2 (399.5) 38.2 (116.6)
5 35.2 (871.2) 35.2 (4.4)
6 21.8(10) 21.8(2.8)
A 40.8 (1011) 40.8 (21.2)
B 23 (694.2) 23 (26.8)
C 47.6 (3556) 47.4 (7.2)
D 26.2 (1393.4) 26 (46.2)

NRE 18 (150.6) 18 (57.8)
NRF 11(296.2) 11 (27)
NRG 74.4 (2296.6) 68.6 (114.4)
NRH 39 (2896.2) 38.2 (175)

Table 4.3 - CPLEX vs GTTS-USCP solve time

51

problem R-Gr GTTS-USCP
set Avg (sec) avg (sec)
4 40.3 (1.6) 39.6 (0.8)
5 35.9 (3) 35.8 (2.6)
6 21.6(2) 21.6(3.4)
A 40.2 (6) 40 (7.8)
B 22.6 (8) 22.6 (167.4)
C 45.2 (10) 45.2 (20.8)
D 25.8 (14.2) 25.8 (54.8)

NRE 17 (38) 17.8 (65.4)
NRF 10.8(71.2) 11(27)

Table 4.4 - R-Gr vs GTTS-USCP solve time

4.4 Conclusion

The use of variable clustering and group theory allowed our algorithm to

intensify the search in the areas of the solution space believed to contain good

solutions. The orbits kept the search contained in these areas and the clusters worked

as an enhanced candidate list, reducing the total number of moves in the

neighborhood while still retaining the "good" moves. These techniques proved very

effective for the unicost SCP discovering 46 new best known solutions to the

benchmark problems. However, these techniques are very problem dependent. In the

next chapter we examine group theoretic local search techniques for the general IP.

52

Chapter 5 - Local Search Neighborhoods for General IP

The feasible region for a linear program (LP) is a convex polyhedron (P)

which may be bounded or unbounded. If the LP decision variables are constrained to

be integer, the result is an integer linear programming problem (ILP). The convex

hull of P, conv(P), is the smallest polyhedron containing the integer points of P. If

we can define conv(P), we can relax the ILP integrality requirements and solve the

corresponding LP. Our solution will be integer and we will have the optimal solution

to the original ILP. Unfortunately defining conv(P) is impractical for most problems.

Often we are able to find a feasible integer solution within P. We can perform

a local search by starting from this solution and moving to an adjacent feasible point

by increasing or decreasing a variable value and checking the constraint set to ensure

we remain in P.

The group minimization problem (GMP) developed by Gomory (1965, 1967,

1969) is the mathematical formulation for deriving the optimal IELP solution from the

optimal solution to the corresponding LP (Johnson 1980). Under certain conditions

(detailed below), the optimal solution to the GMP is the optimal solution to the

original ILP. When we solve the GMP, we solve the ILP and vice-versa.

Furthermore, the form of the GMP is the same regardless of the context of the

original ILP, so an algorithm to solve the GMP can also solve any ILP.

The feasible region for the GMP is also a convex polyhedron, called the

comer polyhedron (CP). The objective function costs in the GMP are the reduced

costs of the non-basic variables from the optimal LP solution. These costs are the

53

penalties for moving away from the LP optimal point, xp along each non-basic

variable's axis. So xLp acts as an anchor point for our search. By examining the

local search in terms of the GMP, we gain insights that will help us solve the ILP.

5.1 The Group Minimization Problem (GMP)

5.1.1 Derivation of the GMP

Given an ILP, we derive the associated GMP by first solving the LP

relaxation. Consider the ILP (5.1).

Max e.

s.t. A!• < b (5.1)

> Ž0 and integer

where e is a size n row vector, i is a size n column vector, A is a mxn integer

matrix and b is a size m integer column vector. Adding positive slack variables to

change the constraints to equalities yields (5.2) where c = [e 0], x'= [i'l s], and

A=[AII].

Max cx

s.t. Ax = b (5.2)

x Ž 0 and integer

Let B be the optimal basis from the LP relaxation and N be the matrix

containing the non-basic columns, separating A into B and N yields (5.3) where CB

54

and xB are the cost coefficients and variables associated with the basic columns and

CN and XN are those associated with the non-basic columns.

Max cEXE +C"NXN

S.t. BxE + NxN = b

xB> 0 and integer (5.3)

XN >_ 0 and integer

Solving for xB in terms of XN yields

XB = B" (b - NxN)nb -B"NXN (5.4)

Substituting for xB using Equation 5.4 yields

Max cBB'b-(cBB'N -cN)xN

s.t. XE =B'b - B'NxN (5.5)

XB Ž0 and integer

XN Ž0 and integer

The reduced costs from the optimal LP solution are defined as

FN = (CBB"N- CN). Since we are maximizing and the variables do not have upper

bounds, c-N Ž!0 at optimality and the objective function value is zLP = cBBb.

Therefore, the objective function in (5.5) can be rewritten as z = zLP -F XN and the

problem can be restated as

Min -NXN

S.t. X B B -'b - B "'1 Nx (5.6)

XB Ž0 and integer

XN Ž0 and integer

55

The basic variables, XB, will be integer if they satisfy the congruence

relationship B-b - B 1 NxN =- 0 (mod 1) which is equivalent to

B-'NxN =- B-b (mod 1). Substituting in this constraint and relaxing the non-

negativity requirement on XB yields

Min cNXN

s.t. B"NxN - B-'b (mod 1) (5.7)

XN Ž 0 and integer

Since the constraint in (5.7) is based on modulo 1, all that is needed from the

columns BffN and B'1b are the fractional parts, f1, = BtNij -LB 1 N1 jj and

f,.= B'b -LBbi1J. For example, the fractional part of 3.25 is 0.25 and the

fractional part of -3.25 is 0.75. Let aj be a column vector containing the fractional

parts of B 1Nj and ao be a column vector containing the fractional parts of B 1b. The

resulting GMP from (5.1) is

Min CNXN

s.t. .=1 ajxj=- a0 (mod 1) (5.8- GMP)

XN Ž 0 and integer

Example 5.1

Consider the following integer linear program (ILP) (Jensen and Bard 2003).

Max -2xl + x2

s.t. 9x1 - 3X2 Ž: 1I
x1 + 2x2 •< 10 (P1)

2x, - x2 <7

xl, x2 Ž 0 and integer

56

The feasible region is shown in Figure 5.1. The optimal solution to the LP relaxation

is x, = 52/21, x2 = 79/21, and z = -25/21. The dashed lines are the isovalue lines of z

and the shaded area is the feasible region for P1 with optimal solution x, = 2, x2 = 2,

and z = -2, which is not the closet integer point to x*p in Euclidean distance. It is the

first integer point encountered as we move the isovalue lines of z into the feasible

region.

X2 -2 -4 -6
4- / IL5 - . ," I / S , • / °

iI ,I ,/ l/

LP Sl l

II I/

3 • • / , ,
3 - 10 .2 / 1 /

T/1 // °

/ , -/---

/ ,/1 ,/2 ,/3 4 5 6 xi

Figure 5.1 - feasible region in X space

Adding slacks yields

Max -2x, + x2

s.t. 9x 1-3x 2 -s 1 =11

x1 + 2x2 +s2 = 10

2x1- x 2 +s3=7

x1, x2,s1 , s 2 , s 3 > 0 and integer

57

At x~p the basic variables are xi, x2, and S3 with

[9-3 01 [2/21 3/2101 [52/211 [-2/21 3/211
B=:1 2 0 B-' = -1/21 9/21 0 B 1b: 79/21 BI1N = 1/21 9/21

L2 -1 1- L-5/21 3/21 - [122/21J 5/21 3/21J

The reduced costs for s, and S2 are 5/21 and 3/21 respectively. The resulting GMP is

Min 5/21s1 +3/21S2
s.t. 19/21 s, + 3/21 S2 -10/21 (modl1)

1/21 s, + 9/21 S2 -16/21 (modl1) (GMP1)

5/21s1 +3/21S2 -17/21 (mod1)

s1, s 2 Ž 0 and integer

Note element all = 19/21 instead of -2/21 based on the previous definition of

fractional part.

5.1.2 The Fractional Group

The problem defined in (5.8) is called the group minimization problem

because the vectors aj and ao are elements of a finite abelian group under component-

wise addition modulo 1. The group equation is the congruence relationship

I= ax- a0 (mod 1) (5.9)

Let D be the absolute value of the determinant of the basis B. By Cramer's

rule, the form of each vector element aij is I, /D where Ii' is integer and Ij < D.

Since each element of the vector can take on any one of D distinct values, the size of

the full group is Dm where m is the number of rows in the problem (size of the

vector). However, the elements aj generate a subgroup of size < D (Johnson 1980,

58

Salkin and Mathur 1989). Let H(a) =(a 1) be the subgroup generated by the

columns of the GMP.

Example 5.2

For P1 we have

F19/211
a] = g1 =/21

L5121J

The ij in element g, are all relatively prime with D = 21, therefore gi generates the 21

element cyclic subgroup, H(a) (Salkin and Mathur 1989). (a 2 generates a cyclic

subgroup of order 7 which is subsumed in H(a).) The elements of H(a) are shown

below.

ga g2 g3 g4 g5 g6 g7

-19/21- [17/21- 15/21- 13/21- -11/21- -9/21 [7/211
1/21 2/21 3/21 4/21 5/21 6/21 7/21

[5/21i [10/21] L15/21] [20/21] [4/21] _9/21] [14/21]

98 g9 g9O gii gl2 9l3 914

-5/21 - [3/21- [1/21- [20/21- 18/21- 16/211 14/21-

8/21 9/21 10/21 11/21 12/21 13/21 14/2119/21_ _3/21_ [8/21_ 13/21_ _18/21_ [2/21] [7/21_

g15 g16 g17 g18 g19 g20 g21

-12/21] 10/21- [8/21- [6/21- [4/21- F 2/211 0-

15/21 16/21 17/21 18/21 19/21 20/21 012/21_ _17/21_ _1/21 6/21 [11/21_ _16/21 _0.

59

We have a, = gl, and a2 = g9 = g1*9 = g9. The Iij in element g9 share a

common divisor with D, namely 3, so the order of element g9 is 21/3 = 7. Since ao =

g116 = 16g, = g16, setting s, = 16 and S2 = 0 satisfies the GMP1 constraints. The

corresponding xBj (from Equation 5.4) are x, = 4, x2 = 3, S3 = 2. This yields a feasible

but not optimal solution for P1 with z = -5. A lower cost solution is generated by ao

= g16 = g1 + g15 = g1 + 4g9 which implies that s, = 1 and S2 = 4 and, further, that x, = 2,

x2 = 2, S3 = 5. This yields the optimal solution for P1 with z = -2.

Incidentally, the relaxations of the rows in (5.8) from = (modl) to > are the

Gomory fractional cuts. These row vectors also generate a finite abelian group under

component-wise addition modulo 1 that has a size of < D. The group generated by

the rows and the group generated by the columns are isomorphic (Gomory 1963).

Gomory also notes the group is often cyclic and therefore can be generated by a

single element.

5.1.3 The Sufficient Condition for xB_ 0

The GMP attempts to find the integer point with the minimum weighted (by

-) Euclidean distance to x* . As illustrated in Figure 5.1, the optimal solution to an

ILP need not be the closest integer point to x. in unweighted Euclidean distance.

We can solve the GMP, given in 5.8, for any ILP and when XN* is found, xB can be

derived using Equation 5.4. If XB > 0 then x* = [X* XN] is the optimal solution

to the original ILP.

60

Gomory (1965, 1969) provides a sufficient condition under which XB will be

non-negative, From the LP, we have BxB = b and XB >_ 0, which implies that b is

contained in the cone generated by the columns of B, K(B). Solving the GMP implies

an associated XB. Since BXB = b - NXN, if b - NxN is contained in K(B), xB Ž 0.

If b is on the surface of K(B), the solution is degenerate and at least one of the

basic variables is equal to 0. Since we are perturbing b, by (NxN)i, we need to have

b a sufficient distance from the perimeter of K(B) to ensure the optimal solution to the

GMP yields XB Ž 0. In other words, the basic variable values from the LP optimal

must be sufficiently greater than zero. If the LP yields a degenerate solution, then b is

on the boundary of K(B). Based on this observation, Balas (1973) shows the

sufficient condition is never satisfied for binary programming problems.

5.1.4 Column Reduction

Gomory (1969) provides two cases for eliminating a column from the GMP.

From a strictly GMP perspective, if all of the elements in a non-basic column are

integer, that redundant column will map to the group identity (zero vector) and

contribute nothing to forcing the basic variables to be integer. Since FN > 0, an all

integer non-basic column will never appear in the optimal solution to the GMP and

may be eliminated. Similarly, if two or more non-basic columns have the same

fractional components, they map to the same group element. Again, from a strict

61

GMP perspective, the column with the smallest -j can be retained and the other

redundant columns may be discarded.

Unfortunately these redundant columns might be needed to construct an

optimal solution to the original ILP. If the optimal GMP solution yields a negative

xB, the more costly "redundant" columns may be needed in the ILP to ensure xB > 0.

For example, we could have two columns, Nj and Nk, with identical fractional

components. If -j > Ck and N j iNk 1, it may be necessary to absorb the additional

cost of -j so that xB > 0. Additionally, if we have xB, < 0 and an all-integer Nj with

B'Ni. < 0 we may need to use Nj to ensure xB > 0.

Example 5.3

Assume the solution to the LP relaxation generated the following

S[50/21- [21/21 8/21 29/21

F0N=[2/21 3/21 2/21] B"N |42/21 5/21 26/21

- 3/21 [-42/21 24/21 66/21

The associated GMP is

Min 2/2lxN1 + 3/21xN2 + 2/21xN3

s.t. OXNl +8/21XN 2 +8/21xN 3 -8/21 (modl)
OXNl +5/21xN2 +5/21xN3 -5/21 (moda)

OXN1 +3/21XN2 +3/21XN3 =- 3/21 (modl)

XNXN 2,9XN 3 > 0 and integer

62

The first column has' all integer values and maps to the group identity. The second

and third columns have the identical fractional components and -N2 > -N3. So the

first and second columns can be eliminated from the GMP.

Cleary the optimal solution to the GMP is XN1 = 0, XN2 = 0, and XN3 = 1 with a

cost of 2. However, this GMP solution yields XB1 = 1, XB2 = 4, and XB3 = -3 which is

an infeasible solution .to ILP. The minimum cost solution for the GMP that yields

XB > 0 is XN1 = 1, xN2 = 1, and XN3 = 0 with cost 5. The resulting basic variables are

XBI = I,xB2 = 3, and XB3 = 1.

5.1.5 The Factor Group Minimization Problem (FGMP)

An alternate form of the GMP exists based on a factor group M(f)/M(B)

where M(I) is the group of all integer vectors of size m and M(B) is the subgroup of

all linear integer combinations of the columns in the optimal LP basis. The size of

the factor group is <D and the group is isomorphic to H(a), therefore, the solutions to

both versions are identical (Gomory 1969, Salkin and Mathur 1989).

The FGMP formulation is found by finding the row and column operations

required to translate B to the Smith-Normal form and performing those same row and

column operations on N and b. If the method used to solve the GMP relies on the full

group not just the subgroup, as many early approaches did (Glover 1968, Salkin and

Mathur 1989, Wolsey 1971), it may be beneficial to use the FGMP formulation

(Johnson 1980).

63

5.1.6 Another View of the GMP

We can view the GMP generically in group theoretic terms. Given some

arbitrary group G we want to find the minimum cost combination of group elements

that sum to some group element go.

Min _gcGc(g)t(g)

s.t. -gEG gt(g) = go (5.10)

t(g) Ž_ 0 and integer V g E G

where c(g) is the real-valued weight or cost for group element g and t(g) is the power

or multiplier for element g (Gomory 1969).

5.2 Corner Polyhedra

In this section, we explore the geometry behind the GMP. Gomory (1967,

1969) defines comer polyhedra as the main area of interest in an ILP and the feasible

region for the GMP.

5.2.1 Corner Polyhedra in X Space

Let X represent the original decision variables of the ILP (excluding the slack

variables). The corner polyhedron in X space (CPx) is found by first relaxing the

bounds on the basic variables from the optimal solution to the LP relaxation (Gomory

1967, 1969). For each x E X , if variable xj is basic then xj > 0 and the hyperplane

x,. = 0 does not pass through XLP*. Similarly, if a slack variable sj is basic then sj > 0

and aix < bi, where ai is the ith row of A, and the hyperplane aix = bi also does not

64

pass through XLp*. So relaxing the lower bounds on the basic variables is equivalent

to relaxing all non-binding constraints at XLp*.

We are left with only the hyperplanes passing through XLP* which form an

unbounded polyhedral cone K. All of the feasible integer solutions to the original ILP

are contained in this cone. The comer polyhedron, CPY, is the convex hull of the

integer points in K (i.e. CPx = conv(K)). The optimal solution to the ILP is a vertex

of CPY which will often have significantly less vertices than the original feasible

region conv(P) (Gomory 1969).

Example 5.4

For P1 at XLP*, we have xj, x2, and S3 basic. Relaxing the lower bounds on

these variables yields unbounded polyhedral cone K shown with solid lines in Figure

5.2. The associated convex hull is the comer polyhedron shown as the shaded area in

Figure 5.2. The ten original feasible points are labeled A through J. C is the optimal

ILP solution.

65

X2A

5- 0 0 0 0 0 0 6 0

4 9 XLp * 0 • 0 & a

Figure 5.2 - corner polyhedron in x space, CPI

5.2.2 Corner Polyhedra in XN Space

Let XN represent the non-basic variables from the optimal solution to the LP

relaxation, the variables in the GMP (including non-basic slack variables). We can

XN
also construct the corner polyhedron in XN space (CP) (Gomory 1969). To do so

we relax the congruence relationship (5.9) to

=laixj aio Vi = 1,.., m (5.11)

Certainly any feasible point for (5.9) satisfies the set of equations in (5.11). The

XN

equations in (5.11) are the classical Gomory fractional cuts. Let P be the

unbounded convex polyhedron formed by (5.11) and the non-negativity of XN. The

XN

convex hull of the integer points in P that satisfy (5.9) is the corner polyhedron in

66

XN XN
XN space, CP . Any vertex v of CPx corresponds to a vertex of CP and vice-

XN
versa, so the optimal solution to the original ILP is also a vertex of CP (Gomory

1969).

Example 5.5

For P1 at XLP*, we have s, and s2 non-basic. Relaxing the constraints yields

the following constraints:

19/21s, +3/21s 2 Ž10/21

1/21s, +9/21S2 Ž16/21
5/21s, + 3/21s 2 Ž17/21

The convex hull satisfying these constraints yields the corner polyhedron in XN space

as shown as the shaded area in Figure 5.3.

7 3:

FF~6

.. S 9 *x;:S . : :}::: : :: .5 - o 0 0 ° 0 0 0 0 •

3 -

LP

3 * 0 0 ** 0 0 0 0 0 S 0 0 0 03 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24si

Figure 5.3 - comer polyhedron in XN space, CPN

67

The reduced cost of each non-basic variable represents the cost of moving one

unit away from the origin in XN space along that variable's axis. Of course, not every

integer point in XN space yields integer basic variables when XB is calculated using

Equation 5.4, only those points satisfying (5.9). These integer-basis points are circled

in Figure 5.3 and labeled based on their corresponding point in X space. For instance,

point K is an integer-basis point and is GMP1 feasible but it is infeasible for P1 as it

yields XB < 0. The integer-basis points comprise a sub-lattice on the integer lattice of

XN
CP Of course this sub-lattice is not random; it follows a distinct pattern based

XN.

on the group H(a). The density of these points within the integer lattice of CP is

related to the order of the group elements associated with each non-basic variable.

Theorem 5.1

The frequency of integer-basis points along axis k of the integer lattice is order(ak).

Proof

Let 'N be an integer-basis point in XN space. Fix xi= .ij, E=x XN then choose

some Xk C XN to become free. So we have one degree of freedom and are exploring

integer lattice points along kth axis. From the congruence relationship (5.9) we know

the point is an integer-basis point iff

akXk ao - Zi.N 6•a.j a* (mod 1).
j~k

We know xk = xk satisfies the above relationship and therefore a* is a power of ak. If

akxk -a*(mod 1), then we must have ak(ik +p order (ak))a* (mod 1) for all

68

integer p by the definition of the order of a group element. Therefore the frequency

of integer-basis points along axis k of the integer lattice is order(ak). u

As noted earlier, the form of the elements of aj is II/D where Iij is integer

and I0j < D. Let gcd(D,/j) be the greatest common divisor of D and the Iij overj. The

order of element aj is D/gcd(D,Ij) (Salkin and Mathur 1989).

Example 5.6

In problem P1, we have order(a1) = 21 and order(a 2) = 7. In Figure 5.3, we

can clearly see that integer-basis points are 21 lattice points apart along the sl axis

and 7 lattice points along the s2 axis.

The order of any element in a group must be less than the size of the group.

Since the size of H(a) is < D, D gives us an upper bound on the frequency of integer-

basis points along any axis. It is well known that if D = 1, the LP relaxation will

yield an all integer basis. In GMP terms, D = 1 implies H (a)ll = 1 and every integer

point in XN space is an integer-basis point.

If B-1b is integer then ao in (5.8) is the group identity or zero vector. In this

case, XN = 0 is a feasible solution to the GMP and the origin in XN space is on the

integer-basis sub-lattice and inside the corner polyhedron. Since the group identity

must be a power of every group element, there are integer-basis sub-lattice points on

each axis in XN space. So the comer polyhedron becomes the positive quadrant and

the origin its only vertex.

69

5.3 Local Search Neighborhoods in XN Space

We can solve the GMP by searching the corner polyhedron in XN space. One

simple neighborhood is to increment or decrement by 1 a single non-basic variable

XNj with cost ±+j forj = 1 to n. This neighborhood would traverse the integer lattice

in XN but would require a penalty function to drive the search to the sub-lattice points

yielding an integer basis. While this neighborhood is simple to implement and allows

us to take advantage of the fine grain gradient provided by the individual Z-j, it is

affected by the size of D. Experimentation has shown it to be ineffective for all but

very small problems. The distance between the points on the sub-lattice is too great

and as the problems get larger the algorithm failed to find a single sub-lattice point.

So let us consider how to traverse the integer-basis sub-lattice.

5.3.1 Identity Moves

Let -N and .N be integer-basis points. Since both satisfy the congruence

relationship (5.9), define d 'N -Y-N, So En=Z a di = 0(mod1) with 0 being the

group identity. Note that 'N + p d is an integer-basis point for all integer p. The n-

dimensional vector d allows us to move from one integer-basis point to another in

direction of d; it captures the direction and the step size.

The move value FNd measures the change in weighted Euclidean distance to

XLP* and is independent of the current point. Given a known set of identity moves,

we can order them by move value from best to worst. At every iteration we take the

70

first available move based on our search parameters and avoid searching the entire

neighborhood.

Example 5.7

In Figure 5.4, GN = (13, 5) with ZGMP = 80/21 and JN = (16, 7) with ZGMP =

101/21. Letting d = JN - GN = (3, 2), then -Nd = 21/21. Moving along this line we

have GN - d = (10, 3) = DN with ZGMP = 59/21 and GN - 2d = (7, 1) = AN with ZGMP =

38/21. Calculating XB using Equation 5.4 yields solutions D and A from Figure 5.2

with zip = -4 and zIp = -3 respectively.

S2 A L I

7A -

6_-

2-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 si

Figure 5.4 - identity moves in XN space

Deriving identity moves as the difference between two solutions does not

require either solution to be feasible. The solutions of course must be integer.

However, they may have some xB < 0 and/or XN < 0. Since we calculate XB from

Equation 5.4 will have always have Ax = b. The difference between two infeasible

71

moves still gives us a valid identity move and we may be able to use such moves to

guide the search into the feasible region.

Example 5.8

Although solutions x = (0, 0, -11, 10, 7)t and y = (0, 1, -14, 8, 8)t satisfy

Ax = b from P1, they are infeasible because both have s, < 0. The associated non-

basic variable vectors are xN = (-11, 10) and YN = (-14, 8). Letting d = XN--YN = (3, 2)

gives us the same identity move found earlier. Unfortunately, since the vector

connecting xN and YN does not intersect the P1 feasible region, we cannot reach the

feasible region using just this move.

5.3.2 Generating Identity Moves

Generating identity moves as the difference between integer solutions can be

difficult if integer solutions are hard to come by. Fortunately, these solutions need

not be feasible. :We now define a set of easily generated atomic identity moves. As

Theorem 5.3 will show, all possible identity moves can be expressed as a linear

integer combination of these atomic moves.

Using xj =0 Vx1 E X as our baseline solution, we can create additional

solutions by setting each xj to 1 in turn and adjusting the slack variables. We then

subtract the difference between each new solution and the baseline solution

(including corresponding slack variables). The resulting difference vector details the

change in each non-basic variable and each basic variable as a result of the move.

72

The value of the move can be calculated by multiplying the vector of reduced costs

by the difference vector since Z-j = 0 if xj is basic.

Here is the procedure that builds atomic identity movej (denoted d) forj < n:

1. Set Vx, =1, Vxk=OVxk c X,k j

2. For each slack variable si

-biij if constraint i is <Vsi = where a. is from A in Equation 5.1{f,. if constraint i is > a

3. d' =[Vx Vs]' has cost Ed1

Example 5.9

For P1, build d1 from Vx1 =1, Vx2 =0, Vs1 =9, Vs 2 =-1, and Vs 3 =-2 so

d1 = (1, 0, 9, -1, -2)t. The reduced cost vector is F = (0, 0, 5/21, 3/21, 0) so -d' = 2.

For d2, use Vx1 = 0, Vx2 = 1, Vs1 =-3, Vs2 =-2, and Vs3 = 1 so d 2 = (0, 1, -3, -2, 1)t

and Ed2 = -1. Starting from any integer-basis point in XN space we can add linear-

integer combinations of these moves and reach another integer-basis point. Going

back to our previous example x = (0, 0, -11, 10, 7)' with cx = 0. We add the two

identity moves to getx + 2d' + 2d2 = (2, 2, 1, 4, 5)t = C and cx - 2Ed' - 2 Ed 2 = 0 - 4

+2= -2.

Since the d's change basic and non-basic variables to guarantee an integer

basis, we need not compute the basic variables using Equation 5.4. We can simply

update XB using the d's. The atomic identity move d is column j of the (n+m) by n

matrix whose upper part is the n by n identity and whose lower part is VA where V is

73

the diagonal matrix of constraint signs (1 for > and -1 for _) and A is from Equation

5.1.

Theorem 5.2

The cost of di is c1 .

Proof

The cost of di is

Ed ==.[vxjvsl t + c-+ .vsi (5.13)

If constraint i is > then Z-+ = ;,i and Vs, = aij. If constraint i is < then C,-+i =--ri and

Vsi = -ai,. So (5.13) becomes

-cd J i Jq iI7'.i = -C + Y rAj c C 7- A + 7EAj C j [

Theorem 5.2 should not be surprising as di only changes one variable with a non-zero

cost, xj. So when we traverse the integer-basis sub-lattice in XN space via identity

moves, we are simultaneously exploring the integer lattice in X space and vice-versa.

By viewing the search in terms of XN space, we gain insight we can use to enhance

our search.

Example 5.10

Let GN = (13, 5) be the incumbent solution. Using Equation 5.4 yields XB = (3, 1, 2)

so GN is the XN space image of solution G in X space (Figure 5.2). The cost of

solutions G and GN is -5. If we apply move d2 = (0, 1, -3, -2, 1)t, we move from GN =

(13, 5) to DN = (10, 3). Using Equation 5.4 yields XB = (3, 2, 3) so DN is the XN

74

space image of solution D in X space (Figure 5.2). The cost of solutions D and DN is

-4. Move d2 increased x2 by 1 and did not change x, so the change in solution value

was c2 = 1 as expected.

Theorem 5.3

Any move from one integer-basis point to another can be expressed as an integer

linear combination of the atomic identity moves.

Proof

There is a bijection between the integer points in X space and the integer-basis points

in XN space. Given any integer point in X space, we can calculate the corresponding

slack variables. Removing the basic variables gives us the corresponding point in XN

space. Given a point in XN space, we can calculate the basic variables using Equation

5.4. Extracting the variables in X gives us the corresponding point in X space. Given

any two points in X space, the difference between them is an n-dimensional vector

that can be expressed as an integer linear combination of n n-dimensional unit

vectors. We have n atomic identity moves each changing a single xk e X by 1 while

fixing all other xj E X at their current values so move d j is equivalent to the n-

dimensional unit vector j in X space and the same integer linear combination of

atomic identity moves transitions between the images of the two points in XN space. o

Also by Theorem 5.3, the atomic identity moves provide us with connectivity in our

search space.

75

5.3.3 Identity Move Neighborhoods

The search neighborhood is comprised all of the solutions reachable from the

current solution in one iteration. Given a current integer solution xr, a move from the

current solution to the next is defined as

Xr+l =Xr +n.p j di pjE Vj=l...n (5.14)

However, evaluating all such combinations is equivalent to enumeration. A

larger neighborhood increases the likelihood of finding good solutions but also

increases the computational effort required, so we must compromise. We can restrict

the neighborhood size by imposing a limit on the atomic identity move coefficients,

Pi.

We define a k-step move as one where m pJ = k then k restricts our

neighborhood size. We can have multiple levels of k where kl+k 2-step implies the

restriction In=m PI-=-kl or -j I= k2" We can further restrict the neighborhood

size by imposing bounds on the individual coefficients as 1 <_ p1 <_ u. Of course if

Ill > k and/or Jul > k then k becomes the only restriction. Similarly if k > nill and

k > nju] then 1 and u provide the only restrictions. Finally, we can denote an

unrestricted parameter as the wildcard *. Therefore a neighborhood N can be defined

by (5.14) and the triplet (k, 1, u). For example, the neighborhood N(1,-1,1) is

comprised of all solutions reached by adding or subtracting a single atomic identity

move, the 1-step identity move neighborhood. Regardless of the neighborhood

76

chosen, the costs of the moves are still fixed. Therefore we can sort them from best

to worst and choose the first feasible move.

5.3.4 Bound Strengthening

We can use the reduced costs and the geometry of XN space to strengthen the

bounds on the non-basic variables as the search progresses. Let ZGMP be the objective

value of the current best solution found to the GMP, iGM. Then zG• is the gap

between the objective value of the corresponding integer solution to the ILP and the

objective value to the optimal solution of the LP relaxation, zLp . If >-j > zc' then

non-basic variable xj must be 0 in any solution better than 'GM. Otherwise xj can be

nonzero in solutions better than where [Gz'/Z- J bounds xj.

5.4 Conclusions

The combinations of non-basic variables that yield an integer basic variables

form a sub-lattice in XN space. The density of this sub-lattice is bounded by the

determinant of the LP basis. Any search of the integer feasible sub-lattice in XN

space must incorporate the atomic identity moves. Using the full set of moves

provides us with connectivity throughout the solution space (Theorem 5.3). The

neighborhoods presented here are general enough to be applied to almost any

metaheuristic search method. We present an example Group Theoretic Tabu Search

implementation of these ideas in the next chapter.

77

Chapter 6 - A Group Theoretic Tabu Search Algorithm for

the Group Minimization Problem (GTTS-GMP)

In this chapter we develop a group theoretic tabu search (GTTS) algorithm for

solving the group minimization problem (GMP), the GTTS-GMP. Given an integer

linear program (ILP), we solve a linear programming (LP) relaxation of the ILP and

use the LP optimum solution to formulate the GMP. We use identity move

neighborhoods to explore the solution space and bound strengthening based on

reduced costs as described in Section 5.3.4.

As previously noted, an algorithm that solves the GMP solves the general ILP.

Tabu search implementations for the general ILP have been largely ignored.

Algorithms developed to exploit the specific characteristics of special case problems

tend to be more effective and dominate the literature. However, a general purpose

implementation is important to develop techniques that are universal in their

effectiveness and to avoid developing a new implementation for each new problem

set (Glover and Laguna 1997).

We use multi-dimensional knapsack problems (MDKP), both integer and

binary, and set covering problems (SCP), both unicost and weighted, to test the

versatility of our approach. GTTS-GMP performs very well on this diverse problem

set.

78

6.1 Methodology

We will first present a short overview of the methodology and provide details

on each aspect of the algorithm. At certain points, such as in the discussion of escape

procedures, more than one alternative will be described. We will test each of these

alternatives and present the results in Section 6.2.

6.1.1 Overview

First, CPLEX solves the linear relaxation of the ILP. The associated LP

optimal basic variables, xBi, and non-basic variables, xNj, and the reduced costs, CN

are used to formulate the GMP. A GTTS-GMP starting solution, x 0 , is generated by

rounding the non-slack xB without regard to constraint feasibility. The start values

for the slack variables, both basic and non-basic, are then calculated from Ax and b.

A 1-step identity move and its inverse is created for each of the original decision

variables and placed in move list in ascending order by cost. A reactive tabu search

(RTS) procedure is used to explore the solution space using an identity move

neighborhood. When cycling is detected an escape procedure is invoked. The

algorithm terminates when a GTTS-GMP solution value equal to mnn (Uj) is found or

when the allotted time has expired.

79

6.1.2 Solving the LP Relaxation

The pseudo code for the initialization phase of the algorithm is shown in

Figure 6.1. CPLEX is initialized and the problem data is input. We extract the

problem information from CPLEX and relax the integrality restriction on the decision

variables. CPLEX is then asked to solve the problem and the solution and reduced

cost vectors are retrieved.

In the previous chapter, we assumed the original ILP was a maximization

problem with no upper bounded variables. When we remove these assumptions, we

introduce some reduced costs that are not positive and some non-basic variables that

are not zero (at their lower bound) in the LP optimal solution. If the original problem

is a maximization problem, a non-basic variable at its upper bound will have Z-j < 0

while a non-basic variable at its lower bound will have cj > 0. If the variable is at its

upper bound, Z-j represents the penalty for decreasing the variable by 1. If the

variable is at its lower bound, c-j represents the penalty for increasing the variable by

1. Let Vx. be the change in non-basic variable j. Our objective function value

ZGMP = j Vxj regardless of which variables are at their upper or lower bounds.

For a minimization problem, the signs on c. are reversed, but ZGMP is calculated in

the same manner. For maximization ZGMP Ž0 and for minimization ZGMP •0. In

both cases, zip = ZLP - ZEGMP •

80

The reduced costs returned by CPLEX are prone to round-off and truncation

error and occasionally can cause a small valued •. to carry the wrong sign. For this

reason, care must be taken to avoid exacerbating this error when using the -j. As

discussed in Section 5.3.2, to reduce the potential for error, we use the original

objective function cost cj for the move value of each 1-step identity move (Theorem

5.3).

Relax integrality and solve the LP with CPLEX
Retrieve the reduced cost vector, F, optimal LP solution, XLP

optimal LP objective function value, z* , and basis information
Generate the starting solution x°

Round each non-slack basic variable to the nearest integer
Calculate the slack variables as s = b - Ax
Calculate the objective function

if max ZG1 = ZLP -cx°

else ZGMP = ZLP + CX0

Generate 1-step identity move neighborhood, N(1, -1, 1)

Figure 6.1 - Initialization Phase

6.1.3 Finding a Starting Solution

To begin our search, we must have a starting solution. Generating a feasible

starting solution for a general IP is not an easy task. Typically, problem specifics

must be used to create a feasible starting solution efficiently. We have shown in the

previous chapter the use of identity moves allows us to move from a solution outside

81

the feasible region to a solution inside the feasible region. So, for our search

methodology, feasibility of the starting solution is not as important as integrality.

We would also like to be close to XLP* to hopefully reduce the number of

iterations required to move to an area containing good solutions. Perhaps the easiest

way to do this is to round XLP*. We round each non-slack basic variable to the

nearest integer and then recalculate the slack variables as s = b -Ax. This produces

an integer solution on a vertex of the hypercube surrounding XLp* in X space. The

solution may or may not be feasible.

6.1.4 Identity Move neighborhoods

Theorem 5.3 assures that any neighborhood containing the 1-step identity

move neighborhood, N(1,-1,1), will guarantee connectivity throughout the solution

space. Futher, Theorem 5.3 assures any identity move neighborhood is a composite

of N(1,-1,1). However, larger composite move neighborhoods may perform better

because they reach more solutions in a single iteration. The size of N(1,-1,1) is

simply 2n.

The full 2-step identity move neighborhood, N(2,-2,2), contains all solutions

reached from the current by combining any 2 1-step moves. The size of N(2,-2,2) is

2 -n+2n= +n. Since a small problem with n = 1000 implies a

neighborhood with precisely 2 million members, using N(2,-2,2) is not practical for

most problems.

82

Candidate lists are often used in tabu search to restrict neighborhood size

(Glover and Laguna 1997). For example, in a TSP we may restrict swap moves to

only consider swapping cities within ten positions of each other in the current

solution. Such a restriction is often arbitrary, but is valid as long as connectivity

within the solution space is maintained. Using N(1,-1,1) in conjunction with a

candidate list comprised of any subset of N(2,-2,2) assures connectivity.

One possible candidate list is constructed as follows: create N(1,-1,1) and sort

the moves in ascending order by move value. (This list is symmetric: the bottom of

the list is the inverse of the top.) Next combine each move with the 2 moves

immediately preceding and following its inverse in the list. This strategy excludes the

extreme combinations, combining two really good moves or two really bad moves,

and creates "fine-tuning" moves with smaller move values. The number of combined

moves is 2n - 2, so the size of the neighborhood is 2n + 2n - 2 = 4n - 2.

Example 6.1

N(1,-1,1) Subset of N(2,-2,2)
Move 3 -150 Move 5, -2 -25
Move 5 -140 Move 2, -1 -25
Move 2 -115 Move 3, -5 -10
Move 1 -90 Move 1, -4 -10
Move 4 -80 Move 4, -1 10
Move -4 80 Move 5, -3 10
Move -1 90 Move 1, -2 25
Move -2 115 Move 2, -5 25
Move -5 140
Move -3 150

83

An alternate approach is to create combination moves dynamically during the

search. Given that the best feasible non-tabu move is taken at each iteration and that

the values of the moves are fixed, if the move just executed is feasible it will be

chosen again. This will continue until the move is no longer feasible. In other words,

we have reached a boundary of the feasible region. So changes in a chosen move

occur at the boundaries of the feasible region.

We can create N(1,-1,1) as described above and begin our search. When the

current 1-step move being executed is different than the previous one, we combine

the two moves and add the new composite move (and its inverse) to the move list.

Our algorithm now learns the "shape" of the solution space. Of course, a restriction

will need to be in place to limit the number of dynamic moves created in this manner.

Regardless of the neighborhood used, the moves are sorted in ascending order

and the first (best) feasible non-tabu move is chosen. If a feasible non-tabu move

cannot be found, the first infeasible non-tabu move is chosen. If the current solution

is infeasible, the first non-tabu move reducing infeasibility is chosen. If a non-tabu

move reducing feasibility cannot be found, the first non-tabu move is chosen.

Finally, if two or move moves have the same value and are non-tabu the move

with the greatest normalized-surplus is chosen. The normalized surplus is sum of the

surplus in the constraints, each normalized by their respective right hand side values.

We are essentially choosing the more "interior" solution. Any further ties are broken

lexicographically. In our testing, we compare the dynamic approach versus the basic

N(1,-1,1) neighborhood.

84

6.1.5 Tabu Search and Tabu Structures

The pseudo code for the search phase is shown in Figure 6.2. When using a

search neighborhood, we may become trapped in local optima. Tabu search (TS)

helps us to escape local optima by allowing non-improving moves and making

recently visited solutions tabu (Glover and Laguna 1997).

After a move is executed an attribute of the current solution or move is added

to the tabu list. For a number of iterations, tabu tenure, solutions or moves on that

list are not permitted unless such a move leads to a solution superior to any found to

that point in the search. Solution attribute strategies typically allow a more flexible

search than move based strategies.

From Section 5.3.3, a move neighborhood is specified by the triplet (k, 1, u)

where k is the sum of the multipliers for the atomic moves, 1 is the lower bound of the

multipliers and u is the upper bound of the multipliers. If 1 = -u then we have a

symmetric neighborhood. When a move is performed we can add its inverse move to

the list. This tabu strategy would work for simple neighborhoods like N(1, -1, 1), but

for more complex neighborhoods where k > 1 there will be more than one way to

return back to the same solution. For such neighborhoods a solution attribute is

required if returning to a previously visited solution within its tabu tenure is to be

prohibited.

In a reactive tabu search (RTS) we also implement a tabu structure to track the

frequency in which solutions are visited (Battiti and Tecchiolli 1994). This structure

85

is used to detect the whether the search is trapped in an attractor basin and to adjust

the tabu tenure or implement escape procedures when such a basin is detected. When

a solution is repeated within a predetermined interval the tenure is increased to

facilitate diversification into new areas of the solution space. When a predetermined

number of consecutive new solutions are encountered, tenure is reduced to facilitate

intensification of the search within the current subset of the solution space. When a

predetermined number of solutions have been repeated, we conclude the presence of

an attractor basin and an escape procedure is invoked.

Due to the immense size of the solution space, we can not explicitly store each

solution encountered. Further, since all previous solutions must be checked at every

iteration we must have an efficient way to store and access solutions. Just as in

Section 4.2.5, a hash function (Woodruff and Zemel 1993), (p(x), is used. A random

number, pj, is generated for each xj. The solution's hash value is

(po(x)= pjj . Solution information, such as number of visits and iteration last

visited, is then stored in a table based on (p(x). When two or more distinct solutions

produce the same hash value, a collision occurs. We can limit collisions by further

distinguishing a solution by its deficit or surplus.

We can implement a solution-based tabu strategy using the solution tabu

structure and ý9(x). Since p(x) is an additive function, we can calculate the change

in 9p(x), Ao(x), for each move. As we evaluate each move, we can use A~o(x),

86

the solution tabu structure and the current solutions hash value to determine if the

move leads to a recently visited solution.

We use a combination of move-based and solution-based tabu strategies in our

algorithm. A move is tabu if the move's inverse has been executed in

MOVETENURE iterations or if the solution has been visited in SOLTENURE

iterations. If a move leads to a new best found solution, tabu status is ignored.

Search loop iteration i
If x' is feasible

Find the first feasible non-tabu move
else

Find the first non-tabu move the reduces infeasibility
Execute the move
If xi 1 feasible and better than best found

Update best found
Check for optimality
Update bounds

If using dynamic neighborhoods
If the current move is different then the previous one

Combine the moves and add the new move to the list
Update move and solution tabu structures and get search status
If status is intensification

Decrease tabu tenure
If status is diversification

Increase tabu tenure
If status is cycling

Escape
If stopping criteria not met repeat search loop

Return best solution found

Figure 6.2 - Search Phase

87

6.1.6 Escape Procedures

We considered two escape strategies - random restart and using a surrogate

objective function. Both escape strategies strive to break the current cycle or capture

basin while returning the search to the vicinity of XLP*

For random restart, we round XLp* in a random fashion. For each non-integer

xi the probability it is rounded to FxJ 1 is Fxj 1- x1 and the probability it is rounded to

[xi] x1 - [xi j The current solution is then set to the newly rounded xLP

solution. Again this solution may or may not be feasible. The move-based tabu

information is reset as it was based on the previous location and the search is

resumed. When generating a random solution, we do not allow a restart solution to

be a solution that has been visited more than MAXRESTARTREPEAT times.

For the surrogate objective function strategy, we change our objective to that

of minimizing the Euclidean distance to xLp*. The surrogate objective function is

mrin (j XLP (6.1)

Minimizing Equation 6.1 requires us to search the entire neighborhood not just the

top of the sorted list. We do require the xj to be within their bounds but do not require

the solution to be feasible with respect to the constraints.

Of course, an optimal solution in terms of Equation 6.1 is our starting

solution, x0 . However, the tabu structure keeps the escape procedure from

converging to the same solution each time and we do not continue the escape

88

procedure for very long. We minimize with respect to Equation 6.1 until a local

optima is reached or MAXESCAPEITER iterations have been performed.

6.1.7 Cutting Planes

Since we are using XLp* to guide the search, it makes sense to consider adding

cutting planes to the LP to move XLp* closer to the optimal IP solution and hopefully

improve our guide. There are many types of cutting planes each with their own

advantages and disadvantages depending on the problem being solved. Instead of

developing an algorithm to generate and implement of these cuts, a massive

undertaking, we simply let CPLEX apply the cuts.

CPLEX provides several callback routines that allow an algorithm to interact

with CPLEX's solvers as they are executing. The user provides CPLEX the address

of a subroutine to be called when a specific event occurs. When the user's routine is

completed, control is passed back to CPLEX (unless the user terminates it).

One such callback for the mixed integer program optimizer (mipopt) is the

heuristic callback which calls the user's specified routine at every viable node

(feasible, not fathomed) in the branch and bound tree. The solution to the current LP

relaxation, xLP, as well as pointers that can be used to access the other information

from the current LP is passed to the user's routine. At node 0 in mipopt, CPLEX

adds cuts and solves the node LP repeatedly until the cuts no longer make significant

progress. CPLEX invokes the heuristic callback after solving each node LP.

89

We call CPLEX's mipopt to solve our problem. Cuts added at node 0 are

global cuts applying to the whole problem. We retrieve the new solution, basis status,

and reduced costs after every node 0 LP. Once node 0 is completed, we use the final

node LP as our XLP* and terminate CPLEX. Which XLP* we used affects the starting

point, the escape procedure, and bound strengthening. We test our algorithm using

the XLP* with and without cuts to determine if the cuts do indeed improve

performance.

6.1.8 Bound Strengthening

We employ the bound strengthening in our algorithm as described in Section

5.3.4. Given an objective function value ZGMP, the bounds on xj are

lb1 = min(Ibj,ub-(LzMP/'•jJ+)) for upper bound non-basic variable j and

ub1 = min(ubj,,lb+LzGMP/ J) for lower bound non-basic variablej. The bounds are

updated whenever a new best solution is discovered.

CPLEX also performs bound strengthening as part of the pre-processing for

each node. We can use a callback function as described in the previous section to

retrieve the strengthened bounds from node 0 in the mipopt algorithm. The details of

the bound strengthening performed by CPLEX are not provided. The reduced cost

based bound strengthening is implemented in all versions of GTTS-GMP tested. The

algorithms are tested with and without the CPLEX bounds to determine their effect

on performance.

90

6.1.9 Strategic Oscillation

Strategic oscillation is allowing the search to exit the feasible region at

strategic points then driving it back inside in hopefully a new area of the feasible

solution space. We maintain bounds feasibility of the decision variables throughout

the algorithm. However, our initial solution may be infeasible in terms of the

constraint set. We attempt to reduce infeasibility at each iteration until the feasible

region is reached. Once feasible, we allow only feasible moves. If the neighborhood

does not contain a feasible non-tabu move the best infeasible non-tabu move is

chosen.

We incorporate strategic oscillation in both escape procedures. In the random

restart strategy, the random starting solution is most likely infeasible. We then move

towards the feasible region as described above. In the surrogate objective function

strategy, we completely ignore feasibility of the constraint set as we move towards

XLP allowing the search to exit the feasible region if it improves the objective.

6.1.10 Stopping Criteria

Since we are using a search heuristic, it is unlikely we will be able to prove

that a global optimal solution has been found. Since some of our basic variables are

fractional we know at least one of the non-basic variables must change by at least 1.

Therefore, Z:Lp-lmin(ý-j) is an upper bound on a global optimal solution for the ILP.
J

91

If we find a feasible solution that equals this bound then we can terminate with a

global optimal solution. Otherwise, we continue to search until a maximum time

limit or number of iterations has been reached.

6.2 Computational Results

6.2.1 Test Cases

We use set covering and multi-dimensional knapsack problem sets to test our

algorithm. These problems contain a diverse set of characteristics. SCPs are

minimization problems and MDKPs are maximization problems. SCPs are binary

while MDKPs can be binary or general integer programming problems. We solve

both versions here. SCPs have relatively sparse constraint matrices consisting of all

Is and Os while MDKPs have relatively dense matrices containing almost any values.

problem set number of number of number of density
problems columns rows

4 10 1000 200 2%
5 10 2000 200 2%
6 5 1000 200 5%
A 5 3000 300 2%
B 5 3000 300 5%
C 5 4000 400 2%
D 5 4000 400 5%
E 5 500 50 20%

NRE 5 5000 500 10%
NRF 5 5000 500 20%
NRG 5 10000 1000 2%
NRH 5 10000 1000 5%

Table 6.1 Characteristics for SCP sets

92

The benchmark problems solved were obtained from Beasley's OR-Library

(Beasley 1990). For set covering, problem sets 4-6 originally appeared in (Balas and

Ho 1980), problem sets A-E appeared in (Beasley 1987) and problem sets NRE-NRH

appeared in (Beasley 1990). All problems were randomly generated based on the

strategy of (Balas and Ho 1980). All of the problem sets except E were generated as

weighted SCPs. Problem set E is a unicost SCP. The characteristics of the SCP sets

are shown in Table 6.1.

For knapsack, problem set 1 appeared in (Petersen 1967), problem sets CB 1-

CB9 appeared in (Chu and Beasley 1998). All problems were generated as binary

problems; however, we solve each problem as binary and as general integer. Problem

set I contains small easy to solve problems. Problem sets CB 1 -CB9 get progressively

more difficult. There are 30 problems in each set. We solve the first problem in sets

CB1-CB8 and the first 10 problems in CB9. The characteristics for the MDKP sets

are shown in Table 6.2.

problem set number of number of number of binary
problems columns rows

1 7 6-50 5-10 n
lb 7 6-50 5-10 y

cb11-cb81 8 100-500 5-30 n
cb I lb-cb8 b 8 100-500 5-30 y
cb91-cb910 10 500 30 n

cb91b-cb910b 10 500 30 y

Table 6.2 Characteristics for MDKP sets

6.2.2 Test Procedures

All tests were performed on Dell Precision 530 Workstations running SuSE

Linux with two 1.8GHz Pentium Xeon processors and 1GB of RAM. The machines

93

are multi-user platforms. An attempt was made to find machines that were not too

busy, but as-some problems ran for at least an hour, CPU usage surely fluctuated

during processing. Each problem was solved using CPLEX 9.0 and GTTS-GMP with

a time limit of 3600 seconds for either method. GTTS-GMP was coded in C.

6.2.3 CPLEX 9.0

To provide a high benchmark, we compare our results to CPLEX version 9.0.

CPLEX uses a very sophisticated branch and cut algorithm to solve MILPs. The

algorithm is further aided by two heuristics. The first attempts to create a feasible

solution from the fractional solution at the node. The second attempts to improve the

incumbent integer solution through a neighborhood search (ILOG 2003).

It would be naYve to think that we could outperform CPLEX with a general

ILP algorithm. CPLEX was developed with millions of dollars and man-centuries of

effort. CPLEX achieves the optimal or best known solutions for nearly every test

problem. We simply hope to perform well against this benchmark to demonstrate the

potential of our approach.

6.2.4 Results

In our testing, we found that the dynamic neighborhoods performed better

than the 1-step neighborhoods on the MDKP problem sets. However, we found the

opposite to be true for the SCP problems sets. This may be a factor of neighborhood

size. The largest MDKP test instance has 500 columns while the smallest SCP test

94

instance has 1000 columns. So for the SCP sets the 1-step neighborhoods are

significantly larger than for the MDKP sets.

We used the dynamic neighborhood option for the MDKP sets and the 1-step

neighborhood for the SCP sets for all algorithm configurations. The tabu tenure also

differs between problem sets. The default move tenure is a function of problem size,

n*0.1. The default solution tabu tenure is smaller when dynamic neighborhoods are

used. It makes sense to revisit solutions more frequently when the neighborhood has

changed. Since we are using reactive tabu search, both tabu tenures change

throughout the search.

We next examine the surrogate objective function escape strategy. The results

for the SCP sets are presented in Table 6.3. The results for the MDKP problem sets

are presented in Table 6.4. We tested each problem with cuts and bounds from

CPLEX, with cuts only, with bounds only, and without cuts or bounds.

With the exception of the smaller problems adding cuts and/or bounds from

CPLEX improves the performance on the SCP sets. The bounds from CPLEX for

SCPs are generally stronger than those derived using reduced costs. Also the

algorithm has these bounds at the start and does not need to wait for new solutions to

generate them. The bounds seem to affect performance more than the cuts. All

things considered, GTTS-GMP with cuts and bounds performs best.

For the MDKP sets the effect of bounds and cuts is less significant. For the

general integer problems, the bounds from reduced cuts quickly dominate those from

CPLEX. In either case the bounds from CPLEX are not as strong as they are for the

95

SCP sets. In general, the cuts do not have as much of an impact on the algorithm as

we anticipated. However, we still feel that GTTS-GMP with cuts and bounds

performs best.

problem optimal or CPLEX GTTS-GMP average - (time in seconds) - % gap
set *best known average cuts & cuts only bounds none

average (time sec) bounds only
510 511.2 512.3 511.3 510.4

4 510 (0) (10.2) (3.7) (0.5) (0.9)
0.22% 0.45% 0.25% 0.08%

257.2 259.2 259 259.2 258.8
5 257.2 (0.3) (8) (12) (6.9) (6.5)

0.78% 0.70% 0.78% 0.62%
144.2 147.8 148.2 146.6 148.2

6 144.2 (0) (41.6) (32.2) (6.8) (5.4)
2.5% 2.77% 1.66% 2.77%

241.4 245.6 246.8 246.4 246.6
A 241.4 (1.2) (54.2) (69) (73.2) (19.2)

1.74% 2.24% 2.07% 2.15%
75.2 76.8 77.8 77 77.4

B 75.2 (1.8) (56.8) (44.8) (61.2) (29.4)
2.13% 3.46% 2.39% 2.93%

224.6 233 233.4 232.4 232.6
C 224.6 (1.8) (88) (107.2) (41.4) (131)

3.74% 3.92% 3.47% 3.56%
64.2 66.8 66.4 67.4 67

D 64.2 (8) (65.8) (117.2) (55) (138)
4.05% 3.43% 4.98% 4.36%

5 5 5 5 5
E 5 (0) (0) (0) (0) (0)

0.0% 0.0% 0.0% 0.0%
28.4 29.4 29.6 29 29.8

NRE 28.4 (390.2) (147) (291.4) (785.8) (56.4)
3.52% 4.23% 2.11% 4.93%

14 14.2 14.8 14 15
NRF 14 (721) (14) (105.2) (621.2) (8.8)

1.43% 5.71% 0.0% 7.14%
166.8 180 181.6 180 180.6

NRG *166.4 (625.6) (479) (1180) (430.6) (1522)
8.17% 9.13% 8.17% 8.53%

61.2 65.8 66 66 68
NRH *59.6 (1361.2) (183) (798.6) (226.8) (208)

10.40% 10.74% 10.74% 14.09%

Table 6.3 SCP results for surrogate objective function escape strategy

96

problem optimal or CPLEX GTTS-GMP avera e (time in seconds)
set *best known average cuts & cuts only bounds none

average (time sec) bounds only
13604.41 13604.27 13603.56 13603.56 13604.27

1 13604.41 (0) (0) (0.3) (0.6) (0.1)
0.0% 0.01% 0.01% 0.0%

8885.16 8883.16 8883.16 8885.16 8885.16
lb 8885.16 (0) (0.1) (1.3) (0) (1.4)

0.02% 0.02% 0.0% 0.0%
78337.5 78173.63 78157.63 78179.75 78179.63

cbl 1-cb18 *78337.5 (166.5) (119.5) (311.3) (430.3) (295)
0.21% 0.23% 0.20% 0.20%

60330.13 60192.5 60188 60202 60183.13cbl8b *60330.13 (441.38) (515.9) (686.7) (849.5) (510.6)
0.23% 0.24% 0.21% 0.24%

125682.8 125194.6 125165.4 125163.2 125154.1
cb9l-cb910 *125682.8 (1773.5) (1118.6) (1391.5) (1020.9) (1211)

0.39% 0.41% 0.41% 0.42%

cb9lb- 115553.9 115239 115229.4 115227.5 115232.8

cb910b *115553.9 (1736.9) (1357) (1348.6) (918.2) (1122.5)
1 0.27% 0.28% 0.28% 0.28%

Table 6.4 MDKP results for surrogate objective function escape strategy

Next we examine the random restart escape strategy. The results for the SCP

sets are presented in Tables 6.5. The results for the MDKP problem sets are

presented in Tables 6.6. We tested each problem with cuts and bounds from CPLEX,

with cuts only, with bounds only, and without cuts or bounds. The results are the

average of three runs for each configuration.

With the exception of set 1 adding cuts and/or bounds from CPLEX improves

the performance on the SCP sets. The bounds have a much greater impact on

performance than the cuts. One possible reason for this is that the cuts reduce the

fractional parts of x LP which then limits the variability of the random restart

solutions. On average we still feel that GTTS-GMP with cuts and bounds performs

best.

97

Again for the MDKP sets the effect of bounds and cuts is less significant for

the same reasons as above. GTTS-GMP with cuts and bounds also performs best on

he MDKP sets.

problem optimal or CPLEX GTTS-GMP average - (time in seconds) - % gap
set *best known average cuts & cuts only bounds none

average (time sec) bounds only
510 512.37 511.9 514.06 510.2

4 510 (0) (6.3) (10.1) (3.23) (12.5)
0.46% 0.37% 0.80% 0.04%

257.2 258 258.33 258.6 258.17
5 257.2 (0.3) (17.5) (18) (24.4) (15.9)

0.31% 0.44% 0.54% 0.38%
144.2 145.13 145.6 145 145.53

6 144.2 (0) (19.4) (41.9) (31.5) (36.7)
0.65% 0.97% 0.55% 0.92%

241.4 243.6 243.93 244.2 244.8
A 241.4 (1.2) (79.9) (103.3) (84.1) (101.4)

0.91% 1.05% 1.16% 1.41%
75.2 75.87 76.2 75.8 76.27

B 75.2 (1.8) (57.9) (60.1) (105.2) (85.5)
0.89% 1.33% 0.80% 1.42%

224.6 230.53 230.53 230.33 231.33
C 224.6 (1.8) (108) (133.5) (78.9) (124.1)

2.64% 2.64% 2.55% 3.00%
64.2 65.13 65.73 65.47 65.87

D 64.2 (8) (92.3) (111.7) (88.5) (80.1)
1.45% 2.39% 1.97% 2.60%

5 5 5 5 5
E 5 (0) (0) (0) (0) (0)

0.0% 0.0% 0.0% 0.0%
28.4 28.6 29 28.53 28.73

NRE 28.4 (390.2) (433.3) (146.67) (930) (654.5)
0.70% 2.11% 0.47% 1.17%

14 14.07 14.2 14.13 14.07
NRF 14 (721) (341.1) (62.8) (239.1) (345.1)

0.48% 1.43% 0.95% 0.48%
166.8 179.07 178.93 178.5 178.4

NRG *166.4 (625.6) (605.3) (612.1) (1132.3) (391.3)
7.61% 7.53% 7.29% 7.21%

61.2 63.67 63.33 63.73 63.73
NRH *59.6 (1361.2) (1078.1) (1015.8) (564.3) (1241.9)

6.82% 6.26% 6.94% 6.94%

Table 6.5 SCP results for random restart escape strategy

98

problem optimal or CPLEX GTTS-GMP average (time in seconds)
set *best known average cuts & cuts only bounds none

average (time sec) bounds only
13604.41 13604.03 13604.03 13603.27 13600.6

1 13604.41 (0) (0.1) (0.3) (0.4) (0.8)
0.0% 0.0% 0.00% 0.03%

8885.16 8884.49 8883.16 8883.59 8877.97
lb 8885.16 (0) (0.2) (0.1) (1.1) (0.2)

0.01% 0.02% 0.02% 0.08%
78337.5 78199.42 78205.83 78198.92 78200.96

cbl1-cbl8 *78337.5 (166.5) (222.6) (307.8) (341.1) (540.9)
0.18% 0.17% 0.18% 0.17%

60330.13 60225.5 60229.46 60205.5 60198.21"cb"lb *60330.13 (441.38) (555.6) (513.6) (452.9) (669.83)
cbl8b 0.17% 0.17% 0.21% 0.22%

125682.8 125379.7 125382.7 125398.3 125372.8
cb91-cb910 *125682.8 (1773.5) (1685.8) (1374.7) (1384.9) (1782.5)

0.24% 0.24% 0.23% 0.25%
115553.9 115361.9 115323.8 115336.6 115313.1

cb9lb 115553.9 (1736.9) (1615.9) (1311.4) (1511.5) (1781.1)
6910b 0.17% 0.20% 0.19% 0.21%

Table 6.6 MDKP results for random restart escape strategy

The random restart escape strategy is clearly superior to the surrogate

objective function. Although both strategies are able to escape from cycling, the

surrogate objective function drives the search towards the same point, x°, every time.

While the tabu structure stops the procedure from visiting the same solution from one

escape to the next, it still does not provide the diversification that we get from the

random restart strategy.

6.3 Super Optimal Solutions

Our algorithm oscillates in and out of the feasible region during the search.

Often high quality solutions can be found with very minor violations in feasibility.

We call such solutions super-optimal (Carlton and Barnes 1996). The constraints in

99

our models are often the result of some simplifying assumptions and are rarely

pristine. The decision maker may want to evaluate these super-optimal solutions to

determine if they could accept the violations given the value of the solution. Tables

6.7 and 6.8 contain examples of the super-optimal. solutions found. For MDKP the

violation is normalized by the right hand side. For example, if the constraint is < 500

and the value is 525 then the violation is 25/500 or 0.05.

problem optimal super-optimal violation
44 497 470 1
49 641 630 1
58 288 265 1
64 131 123 1

Table 6.7 Some super-optimal solutions from SCP sets

problem optimal super-optimal violation
12 10970.9 11082.7 0.004

12b 8706.1 8886.2 0.009
cb21 93127 93216 0.0005
cb31 175856 176082 0.0009
cb71b 21946 22008 0.007

Table 6.8 Some super-optimal solutions from MDKP sets

6.4 Conclusion

Our GTTS-GMP algorithm performs well, finding solutions well within 5% of

the best known for all but 2 problem sets. Many of these techniques, rounding the LP

relaxation, bounding by reduced costs, using cuts, etc., are universal and can be

applied to tailored algorithms designed for specific problems.

For our test, the random restart strategy with cuts and variable bounds from

CPLEX performed the best overall. More research needs to be done to improve the

performance of the general algorithm. However, even if a general algorithm is used it

100

is clear that tuning parameters, such as dynamic neighborhood and tenure, for a

specific problem type will improve performance.

101

Chapter 7 - Conclusion & Future Research

7.1 Conclusions

In this work we explored the use of group theory in metaheuristic search

methods for partitioning integer linear programs (ILPs). To the best of our

knowledge, this is the first time local search methods for these types of problems

have been viewed through this framework. Past efforts have demonstrated the power

of group theory in metaheuristic search methods for problems with an ordering

component.

7.1.1 Partitioning into Orbits

Using group theory we defined procedures for partitioning the solution space

into orbits. By clustering the variables, we are able to create "good" and "bad"

orbits. We developed neighborhoods to explore the individual orbits and transition

between them. We also developed methods for bounding the solutions in each orbit

so that the may be discarded as infeasible or dominated by the incumbent solution.

We tested these techniques by developing a group theoretic tabu search

algorithm to solve the unicost set covering problem, the GTTS-USCP. Our variable

clustering was based on the reduced costs of the LP relaxation of the problem. The

use of variable clustering and group theory allowed our algorithm to intensify the

search in the areas of the solution space believed to contain good solutions. The

orbits kept the search contained in these areas and the clusters worked as an enhanced

102

candidate list, reducing the total number of moves in the neighborhood while still

retaining the "good" moves. These techniques proved very effective for the unicost

SCP discovering 46 new best known solutions for the set of 65 benchmark problems

and outperformed CPLEX in both solution quality and speed.

7.1.2 The Group Minimization Problem

Next we looked at the general ILP by examining its associated group

minimization problem (GMP). We demonstrated why valid column reduction for the

GMP is not valid in terms of the original ILP. We examined the comer polyhedron in

the space of the set of non-basic variables. We proved that the density of the integer

points in non-basic variable space that yield an all-integer basis is bounded by the

determinant of the basis. We defined new search neighborhoods, identity move

neighborhoods, to traverse the sub-lattice formed by these points. Finally, we

developed procedures for strengthening the bounds on the non-basic variables using

the reduced cost from the optimal solution to the LP relaxation. These bounds reduce

the size of the comer polyhedron and the solution space of the GMP.

Based on these results we developed a GTTS algorithm for the GMP, GTTS-

GMP. Since a GMP can be.formed for any ILP, our algorithm solves the general ILP.

We are able to add cuts and additional variable bounds from CPLEX at the beginning

of our algorithm. The algorithm performs well against a diverse set of test problems.

103

7.2 Future Research

7.2.1 Other Clustering Techniques

For the unicost SCP problem, the LP solution provided a good profile of

quality ILP solutions and provided a good basis for variable clustering. This is not

likely to be true for all problems types. In addition, for problems where solving the

LP relaxation is not reasonable other methods of clustering will need to be developed.

Heuristic methods, such as benefit/cost ratio for knapsack problems, may provide a

more efficient and accurate clustering and should be explored.

Another possible future enhancement to the partitioning algorithm is the use

of composite moves, By using only single transpositions, we only implemented

simple swap moves in our move neighborhoods. It might be worthwhile to create

composite moves by combining transpositions from each cluster.

7.2.2 Embed GTTS-GMP in Branch & Cut

GTTS-GMP could be embedded within a branch & cut program such as

CPLEX. The branch & cut algorithm could execute a short version of the GTTS-

GMP algorithm at each viable node to attempt to find a new feasible incumbent

solution. The local bounds at the node provide diversification for the GTTS-GMP

algorithm and the solutions found by GTTS-GMP help the branch & cut algorithm to

fathom more nodes. We feel this concept holds a lot of promise and should be

explored further.

104

7.2.3 Equality Constraints

The method for creating identity moves presented in Section 5.3.2 does not

consider equality constraints. One approach may be to replace each equality

constraint with a > and < constraint and proceed as normal. This may present

difficultly in maintaining a feasible solution during the search. Another approach

may be to create the 1-step neighborhood ignoring the equality constraints and

penalize the search based on the violation of these constraints. It may also be

possible to use the coefficients in the equality constraints to combine 1-step moves

into compositemoves that maintain the feasibility of these constraints. An efficient

and effective method for dealing with these constraints is another area of research.

7.2.4 Mixed Integer Linear Programs

The GTTS-GMP is for all integer problems. How can we apply these

techniques to mixed integer problems? There is a mixed integer version of the GMP

developed by Araoz (1973). The columns of his problem form an abelian semigroup.

A semigroup lacks the inverse and identity properties of a group. Perhaps the

semigroup minimization problem can help us develop techniques for the mixed

integer case.

The research documented here was supported by a grant for the Air Force Office of

Scientific research.

105

Bibliography

Ardoz, J. 1973. Polyhedral Neopolarities. PhD Dissertation, Dept of Computer
Science and Applied Analysis. University of Waterloo. Waterloo, Ontario.

Ardoz, J., L. Evans, R.E. Gomory, and E.L. Johnson. 2003. Cyclic group and
knapsack facets. Mathematical Programming 96(2): 377-408.

Balas, E. 1973. A Note on the Group Theoretic Approach to Integer Programming
and the 0-1 Case. Operations Research 21(1): 321-322.

Balas, E., A. Ho. 1980. Set Covering Algorithms Using Cutting Planes, Heuristics,
and Subgradient Optimization: a Computational Study. Mathematical
Programming 12: 37-60.

Balas, E., M.C. Carrera. 1996. A Dynamic Subgradient-Based Branch and Bound
Procedure for Set Covering. Operations Research 44: 875-890.

Barnes, J.W., B.W. Colletti, and D.L. Neuway. 2002. Using Group Theory and
Transition Matrices to Study a Class of Metaheuristic Neighborhoods.
European Journal of Operational Research 138: 531-544.

Barnes, J.W., B. Dimova, S.P. Dokov and A. Solomon. 2003. The Theory of
Elementary Landscapes. Applied Mathematical Letters 16: 337-343.

Barnes, J.W., V.D. Wiley, J.T. Moore and D.M. Ryer. 2004. Solving the Aerial Fleet
Refueling Problem using Group Theoretic Tabu Search. Mathematical and
Computer Modeling 39: 617-640.

Battiti, Roberto and G. Tecchiolli. 1994. The Reactive Tabu Search. ORSA Journal
on Computing 6(2): 126-140.

Beasley, J.E. 1987. An Algorithm for Set Covering Problem. European Journal of
Operational Research 31: 85-93.

Beasley, J.E. 1990. A Lagrangian Heuristic for Set Covering Problems. Naval
Research Logistics 37: 151-164.

Beasley, J.E. 1990. OR-library: Distributing Test Problems by Electronic Mail.
Journal of the Operational Research Society 41(11): 1069-1072.

106

Beasley, J.E., A. Chu. 1996. Genetic Algorithm for the Set Covering Problem.
European Journal of Operational Research 94: 392-404.

Carlton, William B. and J.W. Barnes. 1996. Solving the traveling-salesman problem
with time windows using tabu search. liE Transactions 28(8): 617-630.

Ceria, S., P. Nobili, A. Sassano. 1998. A Lagrangian-Based Heuristic for Large-
Scale Set Covering Problems. Mathematical Programming 81: 215-228.

Chu, P.C. and J.E.Beasley. 1998. A genetic algorithm for the multidimensional
knapsack problem. Journal of Heuristics 4: 63-86.

Chvdtal, V. 1979. A Greedy Heuristic for the Set Covering Problem. Mathematics
of Operations Research 4(3): 233-235.

Codenotti, Bruno and L. Margara. 1992. Local Properties of Some NP-Complete
Problems. TR-92-021 (March 1992), International Computer Science
Institute, University of California at Berkeley.

Colletti, Bruce W. 1999. Group Theory and Metaheuristics. Ph.D. Dissertation, The
University of Texas at Austin.

Colletti, Bruce W. and J. W. Barnes. 2000. Linearity in the Traveling Salesman
Problem. Applied Mathematical Letters 13: 27-32.

Colletti, Bruce W. and J.W. Barnes. 2001. Local search structure in the symmetric
traveling salesperson problem under a general class of rearrangement
neighborhoods. Applied Mathematical Letters 14: 105-108.

Combs, T.E. 2002. A Combined Adaptive Tabu Search and Set Partitioning
Approach for the Crew Scheduling Problem with an Air Tanker Crew
Application. Ph.D. Dissertation, Air Force Institute of Technology.

Combs, T.E., J.T. Moore. 2004. A Hybrid Tabu Search/Set Partitioning Approach to
Tanker Crew Scheduling, Military Operations Research Society Journal 9:
43-57.

Crino, John R. 2002. A Group Theoretic Tabu Search Methodology for Solving
Theater Distribution Vehicle Routing and Scheduling Problems. Ph.D.
Dissertation, Air Force Institute of Technology.

Crino, J.R., J.T. Moore, J.W. Barnes and W.P. Nanry. 2004. Solving the Theater
Distribution and Scheduling Problem using Group Theoretic Tabu Search.
Mathematical and Computer Modeling 39: 599-616.

107

Daskin, M.S., E. Stern. 1981. A Hierarchical Objective Set Covering Model for
EMS Vehicle Deployment. Transportation Science 15: 137-152.

Dimova, Boryana, J.W. Barnes and E Popova. 2005. Arbitrary Elementary
Landscapes and AR(l) Processes. Applied Mathematical Letters 18: 287-292.

Fraleigh, John B. 1976. A First Course in Abstract Algebra. Addison-Wesley,
Reading MA.

Garfinkel, R. 1970. Optimal Political Districting by Implicit Enumeration
Techniques. Management Science 16(8): 495-508.

Glover, Fred. 1968. Integer Programming Over a Finite Additive Group. AMM-4,
School of Business, the University of Texas at Austin.

Glover, Fred and M. Laguna. 1997. Tabu Search. Kluwer Academic Publishers,
Boston MA.

Gomory, R.E. 1963. An Algorithm for Integer Solutions to Linear Programs. In
Recent Advances in Mathematical Programming. R. Graves, P. Wolfe (eds),
McGraw-Hill, New York: 269-302.

Gomory, R.E. 1965. On the relation between integer and non-integer solutions to
linear programs. Proceedings of the National Academy Science 53(2): 260-
265.

Gomory, R.E. 1967. Faces of an integer polyhedron. Proceedings of the National
Academy Science 57(1): 16-18.

Gomory, R.E. 1969. Some polyhedra related to combinatorial problems. Journal of
Linear Algebra and Its Applications 2(4): 451-558.

Gomory, R.E., E.L. Johnson. 1973. The Group Problem and Subadditive Functions.
In Mathematical Programming. T.C. Hu, S.M. Robinson (eds.), Academic
Press, New York, 157-184.

Gomory, R.E. and E.L. Johnson. 2003a. An approach to integer programming.
Mathematical Programming 96(2): 181.

Gomory, R.E. and E.L. Johnson. 2003b. T-space and cutting planes. Mathematical
Programming 96(2): 341-375.

108

Gomory, R.E., E.L. Johnson, and L. Evans. 2003. Corner polyhedra and their
connection with cutting planes. Mathematical Programming 96(2): 321-339.

Goodman, Frederick M. 2003. Algebra: Abstract and Concrete - Stressing
Symmetry. Prentice Hall, Upper Saddle River, NJ.

Grover, Lov K. 1992. Local search and the local structure of NP-complete problems.
Operations Research Letters 12: 235-243.

Grossman, T., A. Wool. 1997. Computational Experience with Approximation
Algorithms for the Set Covering Problem. European Journal of Operational
Research 101: 81-92.

Herstein, I.N. 1975. Topics In Algebra. Xerox College Publishing, Waltham MA.

ILOG. 2003. ILOG CPLEX 9.0 User's Manual. ILOG, Mountain View, CA.

Jensen, Paul and J. Bard. 2003. Operations Research Models and Methods. Wiley
& Sons Inc, Hoboken, NJ.

Johnson, D.S. 1974. Approximation Algorithms for Combinatorial Problems.
Journal of Computer and System Sciences 9: 256-278.

Johnson, Ellis L. 1980. Integer Programming--Facets, Subadditivity and Duality for
Group and Semi-Group Problems. SIAM Publications, Philadelphia, PA.

Petersen, C.C. 1969. Computational experience with variants of the Balas algorithm
applied to the selection of R&D projects. Management Science 13(9): 736-
750.

Reeves, Colin R. (Ed.). 1995. Modern Heuristic Techniques for Combinatorial
Optimization Problems. McGraw-Hill Book Company Europe.

Salkin, Harvey M. and K. Mathur. 1989. Foundations of Integer Programming.
Elsevier Science Publishers, Salem, MA.

Shapiro, J. 1968a. Dynamic Programming Algorithms for the Integer Programming
Problem-I: The Integer Programming Problem Viewed as a Knapsack Type
Problem. Operations Research 16(1): 103-121.

Shapiro, J. 1968b. Group Theoretic Algorithms for the Integer Programming
Problem-II: Extension to a General Algorithm. Operations Research 16(5):
928-947.

109

Stadler, P. F. 1996. Landscapes and their correlation functions. Journal of
Mathematical Chemistry 20: 1-45.

Toregas, C., R. Swain, C. Revelle and L. Bergman. 1971. The Location of
Emergency Service Facilities. Operations Research 19: 1363-1373.

Wiley, Victor. 2001. The Aerial Fleet Refueling Problem. Ph.D. Dissertation, The
University of Texas at Austin.

Weinberger, E. 1990. Correlated and Uncorrelated Fitness Landscapes and How to
Tell the Difference. Biological Cybernetics 63: 325-336.

Woodruff, D.L., E. Zemel. 1993. Hashing Vectors for Tabu Search. Annals of
Operations Research 41: 123-137.

Wolsey, L. 1971. Extensions of the Group Theoretic Approach to Integer
Programming. Management Science 18(1): 74-83.

Wosley, Laurence A. 1998. Integer Programming. John Wiley & Sons, Inc., New
York NY.

110

