
MITMWHOI 2004-08

Massachusetts Institute of Technology
Woods Hole Oceanographic Institution

Joint Program
00in Oceanography/

OF v Applied Ocean Science 1930

and Engineering

DOCTORAL DISSERTATION

The Marine Geochemistry of Iron and Iron Isotopes

by

Bridget A. Bergquist

September 2004

Approved [or PUr.Pi, lse
Distribution Un!imited-



MIT/WHOI
2004-08

The Marine Geochemistry of Iron and Iron Isotopes

by

Bridget A. Bergquist

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

and

Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

September 2004

DOCTORAL DISSERTATION

Funding was provided by National Science Foundation grants OCE-0002273 and OCE-99871442. I was
funded by the National Physical Science Foundation, Lawrence Livermore National Laboratory, and the
Education Office of Woods Hole Oceanographic Institution. The Amazon field trip was partially funded by

the Houghton Fund at MIT.

Reproduction in whole or in part is permitted for any purpose of the United States Government. This thesis
should be cited as: Bridget A. Bergquist, 2004. The Marine Geochemistry of Iron and Iron Isotopes. Ph.D.

Thesis. MIT/WHOI, 2004-08.

Approved for publication; distribution unlimited.

Approved for Distribution:

Ken 0. Buesseler, Chair

Department of Marine Chemistry and Geochemistry

Paola Malanotte-Rizzoll John W. Farrington
MIT Director of Joint Program WHOI Dean of Graduate Studies



The Marine Geochemistry of Iron and Iron Isotopes

by

Bridget A. Bergquist

B.S. Geology
B.S. Chemistry

University of Wisconsin-Madison, 1996

Submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

and the

WOODS HOLE OCEANOGRAPHIC INSTITUTION

September 2004

© 2004 Bridget A. Bergquist. All rights reserved.

The author hereby grants to MIT and WHOI permission to reproduce and to distribute
publicly paper and electronic copies of this thesis document in whole or in part.

Author:- /;" ýý--- ••-z'- X,

Bridget A. Bergquist
Joint Program in Oceanography

Massachusetts Institute of Technology and Woods Hole Oceanographic Institution

Certified by: -
Edward A. Boyle

Professor of Marine Geochemistry in Earth, Atmospheric, and Planetary Sciences
Thesis Supervisor

Accepted by:z
Philip M. Gschwend

Professor in Civil and Environmental Engineering
Chair, Joint Committee for Chemical Oceanography



2



2



The Marine Geochemistry of Iron and Iron Isotopes

by

Bridget A. Bergquist

Submitted to the WHOI/MIT Joint Program in Oceanography in July, 2004, in partial
fulfillment of the requirements for the degree of Doctor of Philosophy

Thesis Advisor: Edward A. Boyle, Professor of Marine Geochemistry, MIT

ABSTRACT

This thesis addressed questions about the Fe cycle by measuring detailed profiles
and transects of Fe species in the ocean and also by exploring the use of a new tracer of
Fe, Fe isotopic fractionation. In the subtropical and tropical Atlantic Ocean, transects and
profiles are presented for dissolved Fe (<0.4 g.m), soluble Fe (<0.02 Rm), and colloidal
Fe (0.02 to 0.4 [tm). Surface dissolved Fe distributions reflect atmospheric deposition
trends with colloidal Fe following dust deposition more strongly than the soluble fraction
of Fe. Observed surface maxima and shallow minima in dissolved Fe were always due to
variations in the colloidal Fe fraction. Deep-water dissolved and colloidal Fe
concentrations vary with water mass source, age, and transport path. Elevated dissolved
Fe concentrations (>1 nmol/kg) were associated with an oxygen minimum zone in the
tropical Atlantic at 10°N, 45°W.

Fractionation of iron isotopes could be an effective tool to investigate the
geochemistry of iron. Trace metal clean plankton tows, river samples, aerosol leachates,
and porewater samples were measured for their iron isotopic composition using a GV
Instruments IsoProbe Multi-collector ICPMS. The Fe isotopic composition of plankton
tow samples varied by over 496 (in 'Fe/ 54Fe). North Pacific plankton tow samples had
isotopically lighter Fe isotopic compositions than samples from the Atlantic. The overall
isotopic range observed in the Amazon River system was 1.5%o, with variability observed
for different types of tributaries. The main channel river dissolved Fe samples and
suspended loads were isotopically similar (- -0.2 to -0.459oo relative to igneous rocks).
The isotopically heaviest sample collected was dissolved Fe from an organic rich
tributary, the Negro River (+0. 1696). In contrast, the suspended load from the Negro
River was isotopically light (-1%o). The isotopically lightest sample from the Amazon
region was shelf porewater (- 1.4116). In river water-seawater mixing experiments, the Fe
isotopic signal of dissolved Fe of river water was modified by flocculation of isotopically
heavy Fe. The observed range in the Fe isotopic composition of the natural samples
including biological and aqueous samples demonstrates that significant and useful
fractionation is associated with Fe biogeochemistry in the environment.
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THESIS SUMMARY

This study addressed questions about the Fe cycle by measuring detailed profiles
and transects of Fe in the ocean and also by exploring the use of a new tracer of Fe, stable
Fe isotopic fractionation. Iron distribution, speciation, and dissolution were investigated
on three cruises in the sub-tropical and tropical Atlantic Ocean in regions where dust
deposition varies by three orders of magnitude. Detailed profiles and transects were
collected and analyzed for "dissolved" Fe (DFe, 0.4 Rtm filtered) and "soluble" Fe (SFe,
0.02 tim filtered). The difference between DFe and SFe is inferred to be the "colloidal"
fraction of Fe (CFe). Iron concentrations were measured by a new isotope dilution multi-
collector inductively coupled plasma mass spectrometry (MC-ICPMS) method, which
allows manganese and chromium concentrations to be measured simultaneously. Iron
and manganese comparisons are useful because the source for manganese is aeolian
deposition and it is removed by scavenging like iron, but the DMn profile (0.4 [tm
filtered) is not indicative of a nutrient-type element. In the subtropical and tropical
Atlantic Ocean, surface DFe and DMn concentrations reflect dust deposition trends. CFe
followed dust deposition trends more strongly than the SFe, and observed maxima in DFe
profiles were always due to maxima in the CFe fraction. Where dust deposition was low
(e.g., the South Atlantic), CFe concentrations were also low and sometimes negligible in
surface waters.

SFe and CFe profiles had distinct profiles both in the upper water column and in
deeper waters. SFe profiles were always depleted in surface waters (and in the deep
pycnocline of the gyre sites) and gradually increased to relatively uniform concentrations
in the deep-water (. 0.3 to 0.4 nmol/kg). CFe profiles showed significantly more
variability. At sites with surface maxima, CFe always decreased to negligible levels at 30
to 80 m, remained low or negligible throughout the pycnocline, and increased with depth
below the pycnocline. The low DFe and CFe in the deep pycnocline of the gyre sites
may be due to ventilation with water from higher latitudes with lower dust input (and
thus low CFe). We have not established the mechanisms that cause the shallow minima
in CFe, but they may be due to (1) atmospheric deposition and downward mixing with
low-CFe water and/or (2) a Fe sink within the euphotic zone such as scavenging or
biological utilization (indirect or direct). At a site located on the edge of the equatorial
system (10°N) with a very shallow pycnocline, DFe increased rapidly within the shallow
pycnocline to concentrations >1 nmol/kg associated with an oxygen minimum zone
(OMZ) at depths of 130 to 1100 m. The increased DFe in the OMZ is likely due to re-
mineralization of organic matter under the high-productivity eastern equatorial upwelling
region and then lateral westward spreading. Using estimates of the atmospheric flux of
DFe (Vink and Measures, 2001; Chen and Siefert, 2004), surface residence times for DFe
on the order of 1 to 5 months were calculated in the Atlantic.
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Deep-water DFe and CFe concentrations show variability with water mass and
with the source, age, and path of the water masses. DFe concentrations in North Atlantic
Deep Water (NADW) are higher than DFe in Antarctic derived water masses. NADW
also has a higher fraction of CFe (decreasing from 40% at 100N to 30% at 24.5°S) from
north to south). DFe concentrations in the Antarctic water masses are low
(- 0.4 nmol/kg) with lower fractions of CFe (20%), which may reflect their low-dust and
low DFe source region. SFe in the deep-water of the Atlantic is relatively uniform,
therefore most of the variability observed is due to CFe. A deep-water scavenging
residence time for DFe of 270 _ 140 years was estimated from the DFe decrease in
NADW from the North Atlantic to South Atlantic assuming a transit time of 56 years. If
one assumes there is no exchange from the SFe pool to the CFe pool, then a scavenging
residence time for CFe can also be estimated (140 ± 100 years).

Estimates of aerosol solubility have important consequences for models of the Fe
cycle because dust solubility determines the estimated flux of DFe to the surface ocean.
Currently it is being treated as a constant (usually 1 or 10%) because of the limited and
variable estimates available. Aerosol dissolution experiments were performed with
freshly collected remote Pacific aerosols and natural seawater. The seawater was
changed every 24 hours to avoid saturation of the seawater and to minimize Fe loss to the
bottle walls. Iron was continually released from the aerosols for up to four days. Based
on estimates of TFe, the total amount of DFe released was 37% for the low-TFe
experiment and 6.6% for the high-TFe experiment. These estimates are likely minimum
estimates because Fe was still being released at the end of both experiments.

Fractionation of iron isotopes could be an effective tool to investigate and
quantify the marine geochemistry of iron. Initial studies of stable iron isotopes show
measurable fractionation in both field samples and laboratory studies spanning 4%9
(656Fe, see Section 1.2 for definition). Trace metal clean plankton tows, river samples,
aerosol leachates, and porewater samples were measured for their iron isotopic
composition using a GV Instruments IsoProbe Multi-collector ICPMS. This system uses
a hexapole collision cell to reduce molecular interferences and improve transmission.
Measurements using standard-sample bracketing give an external precision of ± 0.24%o
(2a standard deviation). The uncertainty in the average of 8 56Fe for samples measured
more than once was typically less than t 0.20%o (2a standard error).

The 656Fe of plankton tow samples varied by over 4%/o (-3.87%9 to +0.3696) and
an aerosol leachate from the North Atlantic is indistinguishable from igneous rocks. The
range in the "56Fe of the plankton tow samples demonstrates that significant and
potentially useful fractionation is associated with cycling of Fe in the upper ocean. The
Fe in the plankton tow samples in this study is a mixture of intracellular and extracellular
Fe adsorbed to the plankton. For plankton samples with Fe:C ratios greater than
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70 iimol/mol, the 856Fe values were more variable and were isotopically heavier with
increasing Fe:C ratios suggesting that extracellular Fe is isotopically heavier than the
intracellular Fe. Plankton samples from the Atlantic scatter around a hypothetical mixing
line between a planktonic intracellular 656Fe of --1.5%o and an extracellular component
of Fe that is isotopically similar to igneous rocks (0%o). The North Pacific plankton tow
samples were isotopically lighter in &56Fe than the Atlantic plankton samples.

A plankton tow collected in a low salinity Amazon River plume in the open ocean
had a 656Fe value of -0.34%c and a Fe:C ratio of - 600 11mol/mol. It was inferred from
the high Fe:C ratio that most of the Fe collected in the plankton tow was extracellular Fe
and that the 8'Fe might reflect the composition of particles and Fe attached to the surface
of the plankton. In order to investigate the source of Fe to the Amazon plume water,
samples were collected from the Amazon River and region including filtered river water,
suspended sediment, and a shelf porewater. River water-seawater mixing experiments
were also performed to assess whether Fe flocculation in estuaries affects isotopic
composition of the dissolved flux to the ocean. The overall isotopic variation observed in
the Amazon River system was 1.5%o. The main channel river samples and suspended
loads were isotopically similar (- -0.2 to -0.45%o). The most depleted sample was the
Amazon shelf porewater (-4.4%o). The isotopically heaviest sample collected was
dissolved Fe from an organic rich tributary, the Negro River, in the Amazon River system
(+0. 16%o). Although the Negro River dissolved phase was isotopically heavy relative to
igneous rock, its suspended sediment Fe was very isotopically light (-1%o). The signature
of the Negro dissolved load was not observed downstream near the mouth (- -0.3%7).
The variability in Fe isotopic composition from different types of river tributaries
draining distinct weathering terrains suggests that Fe isotopes may reflect the degree or
type of weathering and overall balance of Fe in a drainage basin.

Based on river water-seawater mixing experiments, the 856Fe signal of the
Amazon River may be modified in the estuary when >90 % of the Fe flocculates upon
mixing with ocean water. The flocculent was isotopically heavy compared with the
riverine dissolved Fe, which would lead to the dissolved Fe that is transported to the
ocean being isotopically lighter than the river endmember (- -1%o or lighter). However,
neither the proposed isotopically light Fe from the modified riverine input nor from shelf
porewater matches the Amazon plume plankton tow 656Fe. If the plankton tow b56Fe is
similar to the plume water W6Fe, then processes in the euphotic zone (biological
cycling/export, scavenging) may modify the proposed light 656Fe (- 1%o) of the Amazon
River input by preferentially removing isotopically light Fe. The above studies of Fe
isotope fractionation demonstrate that aqueous and biological samples in the environment
have a measurable range in 8-6Fe values, and that these signals might be useful in
tracking Fe pathways.
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Chapter 1

Introduction

Iron is the fourth most abundant element in the Earth's crust and an essential

nutrient for all living organisms. For example, Fe is necessary for chlorophyll production

and nitrogen assimilation (RUETER and ADES, 1987). Despite its abundance in the

environment, Fe is found at very low concentrations in the ocean due to the low solubility

of Fe under oxidizing conditions and is a limiting nutrient for primary productivity in

many of regions of the ocean (MARTIN and FITZWATER, 1988; MARTIN, 1990; MARTIN et

al., 1990; MARTIN et al., 1994; COALE et al., 1996; HUTCHINS and BRULAND, 1998; BOYD

et al., 2000; BOYD et al., 2004; COALE et al., 2004). This observation has lead to

proposals that changes in Fe flux to the ocean may play a role in climate change by

influencing primary production (and hence the carbon cycle) of the ocean (MARTIN,

1990; KUMAR et al., 1995; FALKOWSKI, 1998). In order to incorporate iron into models

of climate change, it is necessary to understand and quantify the processes that control

iron distributions in the ocean. There have been many attempts to model Fe in the ocean

and to include Fe in models of atmospheric CO2 and climate change (LEFEVRE and

WATSON, 1999; MAHOWALD et al., 1999; ARCHER and JOHNSON, 2000; FUNG et al.,

2000; SIGMAN and BOYLE, 2000; GAO et al., 2001; GREGG et al., 2003; PAREKH et al.,

2004; PAREKH et al., submitted). However, it is difficult to constrain the biogeochemical

models for Fe because of the paucity of data throughout the ocean. New water column

profiles of Fe, especially in areas not previously sampled, and new process studies of Fe

biogeochemistry are necessary to improve and challenge our current understanding of Fe

in the ocean.

1.1. IRON IN THE OCEAN

Iron limitation has been demonstrated in high nutrient, low chlorophyll (HNLC)

regions by iron enrichment experiments in the Southern Ocean, equatorial Pacific, sub-
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artic Pacific, and seasonally in some coastal regions of the ocean (MARTIN and

FITZWATER, 1988; MARTIN, 1990; MARTIN et al., 1990; MARTIN et al., 1994; COALE et

al., 1996; HUTCHINS and BRULAND, 1998; BOYD et al., 2000; BOYD et al., 2004; COALE

et al., 2004). It is also hypothesized that iron could indirectly affect primary productivity

in the low nutrient, low chlorophyll (LNLC) regions of the subtropical gyres by limiting

N, fixing bacteria such as Trichodesmium spp, which bring new nitrate into the system

(LETELIER and KARL, 1996; MICHAELS et al., 1996; KARL et al., 1997; FALKOWSKI,

1998). Although the importance of iron in the ocean has been recognized for the past

decade or two, it is difficult to study because it is especially prone to contamination and

has complicated behavior in the ocean (reviews: JOHNSON et al., 1997; TURNER AND

HUNTER, 2001). Iron is known for its redox chemistry, photochemistry, organic

complexation, adsorption and desorption on particles, and uptake and cycling by

organisms. These factors are further complicated by the low solubility and association of

Fe with colloids in seawater (MILLERO, 1998; WU et al., 2001).

The main sources of Fe to the ocean are rivers, atmospheric deposition, re-

suspension of sediments, and hydrothermal vents. A schematic of the Fe cycle in the open

ocean is shown in Figure 1.1. Fe concentrations are highest near its sources, and

concentrations decrease rapidly with distance from sources due to the reactivity and

insolubility of Fe in seawater (Wu and LUTHER, 1996; JOHNSON et al., 1997). High

levels of Fe (-5 nmol/kg) are found in coastal areas where rivers, re-suspension of

sediments, and atmospheric deposition are the main contributors. However these high

levels are not observed in the open ocean (<1 nmol/kg). Fe concentrations decrease to

values of less than 2% of their coastal values 100 km from the California continental

margin (JOHNSON et al., 1997). Hydrothermal input of Fe is believed to be important

only near its sources (mostly in the deep ocean) because most of the Fe from

hydrothermal vents precipitates near the vents and ridge axis (DE BAAR and DE JONG,

2001). Because Fe from rivers and re-suspension of sediments generally does not

penetrate far into the ocean interior and hydrothermal Fe input is considered localized, it

is believed that the main input of Fe to the open ocean is atmospheric deposition (DUCE

16



OPEN COASTAL

atmospheric dust

surface - ___________________________ rivers
dissolved Fe
(< 0.4 Wun)

biological lateral transport
loop and mixing

bottom .Scavengin.g
mixed layer boei ess~ne

buipl expont and shelf material
refractory dust vertical mixing

s a e g n - remineralization lateral transpo rt

44~l~hydrothermal

---- ----------input

sedirnentary deposition Fe hydrowide

Figure 1. 1: Schematic of the Fe cycle in the open ocean.
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and TINDALE, 1991; WELLS et al., 1995). Scavenging onto particles and biological export

followed by burial in sediments are generally thought to be the primary removal

mechanisms. In the upper ocean, both aeolian deposition and upwelling/vertical mixing

of deeper water are sources of Fe. Therefore, changes in atmospheric dust flux to the

ocean may affect concentrations of bioavailable iron in the upper ocean by changing the

amount of aerosol iron that directly dissolves in the upper ocean and by affecting Fe

delivered to the deep ocean (and hence upwelled Fe).

"Dissolved" iron (DFe: <0.4 or <0.2 Rtm filterable Fe) profiles in the open ocean

are consistent with other nutrient-type elements showing depletion in the surface waters

and an increase with depth due to re-mineralization of organic matter (Figure 1.2)

(MARTIN and FrIZWATER, 1988; BRULAND et al., 1994; JOHNSON et al., 1997). A few

published DFe profiles also show a near surface maximum followed by a minimum in the

upper water column and then increasing concentrations with depth (BRULAND et al.,

1994; Wu et al., 2001). These near surface maxima are interpreted to be due to

atmospheric aerosol deposition. In contrast to many nutrient-type elements (e.g.,P, N,

Cd, Zn), DFe concentrations do not increase with increasing age of deep water as would

be expected if it were accumulated from re-mineralization of sinking organic matter.

This is because DFe is particle-reactive (like Al and Pb) and has a short residence time in

the deep ocean, <300 years (BRULAND et al., 1994; JOHNSON et al., 1997; PAREKH et al.,

submitted). However, unlike concentrations of particle-reactive elements that are usually

higher in the more continentally influenced Atlantic than the Pacific, deep-water DFe

concentrations in both the Atlantic and Pacific are low, - 0.4 to I nmol/kg (review:

JOHNSON et al., 1997).

Another complication in interpreting DFe distributions is that DFe exceeds the

inorganic solubility of Fe (III) oxides in seawater, <0.1 nmol/kg at pH 8.2, 25 °C, and I

atm (KUMA et al., 1996; MILLERO, 1998). This observation is attributed to organic Fe

complexation and colloidal Fe, small particles that pass through 0.4 and 0.2 Rm filters

(RUE and BRULAND, 1995; Wu and LUTHER, 1995; LUTHER and Wu, 1997; Wu et al.,

2001). Organic ligands appear to be ubiquitous in the ocean, are usually found in excess
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Figure 1.2: A schematic of a dissolved Fe water column profile in the Atlantic Ocean in the open
ocean along with Al and Cd for comparison. Similar to Fe, Al is a particle-reactive element with
an atmospheric lithogenenic source and shorter residence time than the mixing time of the ocean.
Cd is a nutrient-type element (like Fe) that is taken up in the surface ocean and re-mineralized at
depth with a longer residence time than the mixing time of the ocean. Iron is both a scavenged-
and nutrient-type element and Fe concentrations exceed the inorganic solubility due to organic
complexation and association with colloids.
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(- 0.5 to 2 nmol/kg) of DFe concentrations, and are characterized by strong conditional

stability constants of 109.8 to 10i4. M` (GLEDHILL and VAN DEN BERG, 1994; RUE and

BRULAND, 1995; WU and LUTHER, 1995; WITRER and LUTHER, 1998; POWELL and

DONAT, 2001). Witter and Luther (1998) also measured rates of formation (> 104 s") and

dissociation constants (< 10'5 s') for the organic ligands in seawater. The excess of these

ligands with strong binding coefficients, fast rates of formation, and slow rates of

dissociation leads to >99% of the DFe being complexed by organic ligands in the ocean.

There have been several attempts to explain and model the unique distribution of

DFe in the ocean (JOHNSON et al., 1997; LEFEVRE and WATSON, 1999; ARCHER and

JOHNSON, 2000; PAREKH et al., 2004; PAREKH et al., submitted). The basic mechanisms

of these models can be summarized as follows: 1) dissolution of atmospheric iron in

surface waters, 2) biological uptake in the surface ocean, 3) transport to the deep ocean

through biological export, 4) re-mineralization of organic material at depth releasing iron,

5) some solubilizing mechanism to keep iron in solution above inorganic solubility (e.g.,

organic complexation), and finally 6) scavenging and removal of iron. Earlier models

assumed that organic ligands kept deep ocean DFe concentrations relatively constant

(- 0.6 to 0.7 nmol/kg) and only Fe in excess of the dissolved ligands was scavenged

(JOHNSON et al., 1997; LEFEVRE and WATSON, 1999; ARCHER and JOHNSON, 2000). The

apparent constancy of the deep-water DFe in the ocean was over-emphasized in earlier

data sets (BOYLE, 1997). There are areas of the open ocean where deep-water values

deviate from the average - 0.6 to 0.7 nmol/kg value. DFe concentrations at 800 m in the

Southern Ocean (0.2 to 0.3 nmol/kg) are much lower (DE BAAR et al., 1999), and recent

data from the ALOHA station in the Pacific observed elevated DFe and particulate Fe

values at intermediate depths likely due to hydrothermal input from nearby Lohini

seamount (463 km from ALOHA) (BOYLE et al., submitted). Huge parts of the deep

ocean have yet to be sampled, such as the Indian Ocean, the South Atlantic, the Artic, and

high dust-flux regions of the North Atlantic. It is more likely that deep-water values of

iron are controlled by a balance between input of dissolved iron in the deep water, both

from re-mineralization and lateral transport, and scavenging of inorganic iron when it
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dissociates from organic ligands (Figure 1.1) (PAREKH et al., 2004; BOYLE et al.,

submitted; PAREKH et al., submitted). The organic ligand pool usually appears to be in

excess of DFe concentrations (WrITER and LuTHER, 1998). Thus organic ligands likely

enhance the residence time and solubility of DFe, but do not lead to uniform deep ocean

values. This mechanism allows for more variable deep-water Fe concentrations.

There are many aspects of the upper ocean Fe cycle that are poorly understood

such as (1) the relationship between changes in dust deposition and corresponding

changes in biologically available iron, (2) the amount of atmospheric iron that becomes

bioavailable (aerosol solubility), (3) the relative contributions of dry and wet deposition,

(4) the residence time of Fe from a dust deposition event in the euphotic zone, (5) the

changes in biological productivity and export due to increases in Fe input, (6) the Fe:C

ratio of both biological uptake and re-mineralization, and (7) the variability in all of these

parameters. Estimates of aerosol Fe solubility in seawater are quite variable (<0.1 to

50%) and depend greatly on the material used in experiments (e.g., atmospherically

weathered aerosols versus soil or loess) and the leaching conditions chosen (pH 1 to 8)

(review: JICKELLS AND SPOKES, 2001). There is also evidence that increased dust

deposition to an area may not lead to a simple increase in the amount of bioavailable Fe.

In laboratory experiments, the fraction of dissolvable iron from aerosols exponentially

decreased with increasing particulate load (SPOKES and JICKELLS, 1996; BONNET and

GuiEu, 2004). Also, the residence time and cycling of iron in the upper ocean are not

well constrained. Jickells (1999) estimated a residence time of Fe in the upper ocean of

200 to 300 days for the Sargasso Sea, based on observations and laboratory estimates of

aerosol solubility and estimates of atmospheric deposition. Newer estimates of residence

time of Fe in the upper ocean are on the order of weeks to months (DE BAAR and DE

JONG, 2001; SARTHOU et al., 2003). Wet deposition also plays an important role

especially in the equatorial regions where rainfall is high. Sarthou et al. (2003) estimated

that input of dissolved Fe was dominated by wet deposition in the ITCZ of the eastern

equatorial Atlantic and dry deposition accounted for 73% to 97% of the deposition north

and south of the Intertropical Convergence Zone (ITCZ) to 200 latitude. Globally,
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Spokes and Jickells (2001) estimated that 30% of the total atmospheric Fe deposition was

due to wet deposition, but that wet deposition may be more important for the dissolved Fe

input due to high dissolved Fe concentrations observed in rainwater.

Another important question concerning the upper ocean Fe cycle is how do

increases in Fe change Fe:C uptake and how subsequent increase in productivity from

increasing Fe affect biological export and the Fe:C ratio of exported material? In a recent

iron addition experiment in the Southern Ocean (COALE et al., 2004), increases in

productivity from iron addition were observed for the full 28 days of the experiment

along with increases in export production (BUESSELER et al., 2004). Finally, Sunda

(1997) challenged the use of constant Fe:C uptake and re-mineralization ratios in models

by demonstrating that this ratio may vary by a factor of two in the different ocean

regimes. Models of Fe distribution are very sensitive to Fe:C ratios as they largely

determine the amount of Fe that is removed from the euphotic zone into the deep ocean.

Another complication in understanding the DFe cycle is that a significant fraction

of DFe is not truly dissolved, which may have consequences in the amount of DFe that is

available to organisms. In addition to organically bound Fe, colloids are an important

fraction of the DFe pool in the ocean. The operationally defined "'dissolved" fraction of

Fe (0.2 or 0.4 ýtm filtered) is based on the minimum size needed to remove most

organisms and particles as well as the availability of clean filters with trusted pore sizes

(review: (BRULAND and RUE, 2001). Wu et al. (2001) found that a substantial fraction

(30 to 70% in deep-water) of DFe was colloidal (0.02 gm to 0.4 gtm) in the North

Atlantic and North Pacific. Also, the <0.02 ptm fraction (soluble fraction) and the

colloidal fraction did not have the same concentration profiles suggesting different

biogeochemical behaviors for the two pools of iron. Wu et al. (2001) only observed

small to negligible amounts of excess <0.02 Rtm filterable ligand in surface waters,

therefore arguing that the large excess of ligand observed in CLE studies was in the

colloidal fraction. Based on these observations, Wu et al. (2001) proposed that labile Fe

introduced by dust was preferentially released into the colloidal fraction and was

complexed by the excess Fe ligands inferred to be in the colloidal fraction. Deep-water
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DFe from the re-mineralization of sinking organic matter was released into both the

soluble and colloidal size fractions. The different behaviors of colloidal and soluble Fe

have yet to be rigorously studied along with the potential biological consequences that a

significant fraction of the DFe in the ocean is colloidal.

In order to understand how Fe in seawater plays a role in the biological pump, it is

necessary to have an understanding of the species of Fe that are available to organisms

and the mechanisms of uptake. A schematic of potential pathways of biological Fe

uptake are summarized in Figure 1.3 (reviews: MOFFET, 2001; SUNDA, 2001). In general

it is thought that Fe can be transported across cell membranes as labile inorganic

dissolved Fe(II) or Fe(III) species (Fe(II)' and Fe(III)'). In laboratory experiments with

marine diatoms, Fe uptake increased with increasing amounts of Fe(III)' and was

independent of iron bound to strong organic ligands such as EDTA (HUDSON and

MOREL, 1990). However, >99% of Fe in seawater is organically bound to strong organic

ligands. It would be advantageous if this pool of Fe were available to organisms. Some

bacteria release strong Fe ligands (siderophores) that bind and help solubilize Fe in the

surrounding environment. The siderophore-Fe complexes can then transported into the

cell by specific transport systems (review: SUNDA, 2001). Marine bacteria have been

shown to produce siderophores in laboratory cultures (RIED et al., 1993), and recent

studies suggest that a fraction of the organic ligand pool in seawater has properties

consistent with siderophores (WrITER et al., 2000; MARCRELLIS et al., 2001). It has also

been shown that many marine organisms can grow on siderophore bound Fe (GRANGER

and PRICE, 1999; HUTCHINS et al., 1999). Despite evidence that marine organisms can

use and produce siderophores, it is still unclear to what extent the siderophore transport

system is used in the marine environment.

Other pathways that may enhance bioavailable Fe involve steps that produce

dissolved Fe(II)' and Fe(III)' from more refractory pools of Fe (Figure 1.3). One such

mechanism is the reduction of Fe (III) species to more labile Fe(II). Photochemistry has

been suggested to play an important role in increasing the amount of available Fe in

surface waters (reviews: MoFFET, 2001; SUNDA, 2001). Photochemical dissolution of
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Figure 1.3: A schematic of potential pathways of biological utilization of various forms of Fe in
seawater. The soluble pool of Fe includes the reactive inorganic species of Fe (Fe(H)' and
Fe(III)') along with organically bound Fe (Fe(III)-L) and excess dissolved ligand (L). Fe may also
be bioavailable from the colloidal and particulate pools. Colloidal Fe may exist as either as
inorganic colloids such as Fe oxyhydroxides or organic colloids. Fe may also be bioavailable in
particulate forms such as amorphous Fe oxide coatings. Photochemical reduction of Fe(III) is
noted by the pathways with hv next to the reaction arrow. The source and identification (?) of the
ligands for Fe in seawater are not known, but they may be cell degradation products (e.g.,
porphyrin-type ligands) or be produced by organisms to specifically bind Fe (e.g., siderophore
ligands). Not shown in this figure is the role of Fe(II) ligands, the various mechanisms for Fe
transport across the cell membrane, or bacteria or colonies living on particles and creating micro-
environments that enhance Fe solubilization. See text for more discussion. Reviews of the
potential pathways for Fe utilization can be found in Sunda (2001) and Moffet (2001).
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colloidal iron oxides and enhanced biological Fe uptake have been observed in laboratory

cultures (BARBEAU and MoFFETr, 2000). Also, it is hypothesized that naturally

occurring Fe ligand complexes may also be photochemically labile (MoFFErr, 2001).

Another mechanism by which labile Fe may be released from colloidal or particulate

phases is through phagotrophy (ingestion) followed by release of Fe within the acidic,

reducing microenvironments (BARBEAU et al., 1996; BARBEAU and MOFFETT, 1998;

BARBEAU and MOFFErT, 2000). It has also been suggested that Fe (III) bound to a

colloid or an organic ligand may be reduced to Fe(II) upon contact with the cell

membrane (MALDONADO and PRICE, 2001; CHEN et al., 2003). Several pathways of Fe

utilization in the marine environment are plausible and many are supported by some

evidence. However, which pathways are used and the extent to which these pathways

occur in natural systems need to be understood in order to fully evaluate the role of Fe in

the biological cycle. Also because biological cycling is a significant player in the

distribution of Fe in the ocean, there is likely a feedback between these mechanisms and

Fe concentrations and speciation.

In summary, the solubility of aerosol Fe, the residence time of Fe in both the

surface and deep ocean, Fe uptake and utilization mechanisms, and the distributions of Fe

in the ocean all need to be better constrained in order to evaluate the role of Fe in the

biological pump of the ocean. Also, a significant fraction of operationally "dissolved" Fe

in the ocean is colloidal. In order to assess the role of colloidal Fe in the cycling of Fe in

the ocean, we need to study the distribution, biogeochemical cycling, and biological

utilization of colloidal and soluble Fe and how these two pools interact.

1.2. IRON ISOTOPES

Stable isotope variations yield invaluable insights into processes in the

environment, such as the use of carbon isotopes to investigate carbon assimilation

pathways (HAYES, 1993) and nitrogen isotopes to quantify nitrate utilization in the upper

ocean (FRANCOIS et al., 1997; SIGMAN et al., 1999). There are four stable isotopes of Fe,
54Fe, 5.84%; 56Fe, 91.76%; 57Fe, 2.12%; and 58Fe 0.28% (TAYLOR et al., 1992), with a
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relative mass difference of 7% from 'Fe to 5"Fe. Significant fractionations (up to 10%o in

656Fe) of Fe isotopes are predicted to occur between Fe phases that are common in natural

systems including fractionation between Fe(II) and Fe(III) aquo-complexes (POLYAKOV,

1997; SCHAUBLE et al., 2001; ANBAR et al., submitted). Iron isotope measurements in

this thesis are reported in delta notation (%o) based on the 56Fe/54Fe ratio where the

standard is the mean of igneous rock samples.

e 6Fe/54Fesample
6L6Fe (%o)= - x 100056Fe/54Festanctard

Isotopic fractionation is dependent on both equilibrium processes (e.g., temperature and

phase changes) and kinetic fractionation (e.g., enzymatic pathways). The biogeochemical

cycling of Fe in the environment is very complicated; Fe is subject to redox cycling,

photochemical reduction, adsorption and desorption on surfaces, biological utilization,

mineral formation, and chemical and biological leaching from mineral sources. With

such active chemistry, interpreting 656Fe variations in nature requires a background in the

mechanistic studies of Fe isotope fractionation.

Although the field of Fe isotope analysis is very young (late 1990s), there are

several laboratory studies that have investigated both biological and inorganic

fractionations (Table 1.1). The strongest evidence for biological fractionation comes

from laboratory culture experiments of Fe reducing bacteria (4Fe+3 + H20 + "CH20" 4-

CO2 + 4Fe&2 + 4H÷). Microbially reduced Fe is depleted in 656Fe (-1.3%o) relative to the

Fe(III) substrate (BEARD et al., 1999; BEARD et al., 2003a; IcoPimN et al., 2004). A

variety of Fe(III) substrates have been used including ferrihydrite, hematite, and goethite.

Icopini et al. (2004) also added an electron shuttle to cultures and observed the same

isotopic depletion in the Fe(II) product suggesting that the Fe fractionation is not related

to the kinetics of electron transfer. Anaerobic photosynthetic oxidation of Fe(II) also

generates products that are isotopically depleted (-1.5%0) (CROAL et al., in press). In

contrast, magnetotactic bacteria produce magnetite that is isotopically the same as the
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Table 1.1: Summary of Laboratory Process Studies of Iron Isotope Fractionation
Ab5 Fe

Study description direction of fractionation (%C)
Biotic:

laboratory bacterial mediated Fe produced Fe(II) was 2 %0 lighter
Bullen and McMahon, 1998 jeduction in Fe(Ill) gel than Fe(Il) substrate -2

suspension

eardlaboratory bacterial mediated Fe produced Fe(II) was 1.2 to 1.3 13
cod et al., 1 ,2004 ; 'eduction, bacteria growing on lighter than Fe(III) substrate
[copini et al., 2004 .ferrihydrite

Asiderite formed by Fe-reducing siderite 0.4 %c lighter than starting _0.4
bar et al., 1999, AGU bacteria in lab culture material

Bullen et al., 1999, AGU Pnagnetite formed by indistinguishable from starting 0
_ agnetotactic bacteria material

Mandemack et al., 1999 magnetite formed by indistinguishable from starting 0.. magnetotactic bacteria material
Fe released lighter than abiotically

Brantley et al., 2001 bo entne d lydissolved hornblende in same -0.8Bateeta.201 hornblende mdu
i hanedium

ahydrous Fe(III)-oxide products
roalaerobic photosynthetic Fe(II) lighter than Fe(lI), starting -1.5Croal et l., 2004 xidation atia

material
Abiotic

FeCI4- ion exchange column (Fe heavy Fe eluted from column
nbar et al., 2000 hloride species) faster than lighter Fe

dependent on solution chemistry -0.8
Bullen et al., 2001 rFe(lI),-ferrihydrite ý(amount of aq. CO2 present), to

-__,pre~ipitate heavy by 0.8 to 1.8 %o -1.8
rnee ,0 organic leaching of hornblende; Fe

Brantley et al., 2001 re(II) aq-horblende released lighter -0.6

Matthews et al., 2001 tFe(II)-bipyridine and FeCI4-
Mfractionation kinetic fractionation

Johnson et al., 2002; Pe(II),q- Fe(III)., equilibrium
Welch et al. (2003) fractionation Fe(Il) light, Fe(III) heavy

re(IH),-hematite kinetic
Skulen et al., 2002 precipitation of hematite aqueous heavy, hematite light +1.3

over 12 hours

Skulen et al., 2002 re(III),-hematite equilibration aqueous light, hematite heavy) -0.1
Wiesli et al. , 2003 Fe(II),-siderite siderite light by 0.6 %5 +0.6
Wiesli et al. 2003 Fe(II),,-green rust green rust was heavy by 0. 16 %1 -0.16
ohnson et al. 2002; Fe(II),,-hematite aqueous light, hematite heavy -3

Welch et al. 2003
3ulter et al. 2003 Fe(II) -FeS aqueous heavy, FeS light +0.3

In experiments where 1/3 of Fe(Il)

copini et al., 2004 in solution with goethite adsorbed -0.8
to goethite, remaining aqueous
Fe(II) was depleted 0.8 %1
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source Fe (MANDERNACK et al., 1999). Based on predicted fractionations between

aqueous Fe and magnetitite, it has been suggested that the null fractionation observed in

the magnetotactic bacterial cultures reflects kinetic isotope effects due to the rapid

precipitation of magnetite by the bacteria (JOHNSON et al., 2004). Brantley et al. (2004)

investigated enhanced dissolution of homblende in experiments with siderophore-

producing bacteria, which is likely a common path of dissolution of mineral Fe in soils.

The Fe released in the biologically enhanced dissolution experiments was isotopically

lighter (-0.8%o) than Fe released in inorganic abiotic leaching experiments.

In addition to large biological fractionations, significant abiotic fractionations of

Fe have also been documented in laboratory studies (Table 1.1). Whether the observed

fractionations are due to equilibrium or kinetic mechanisms is difficult to determine

because obtaining and retaining equilibrium conditions in experiments can be difficult to

prove. Isotopic equilibrium fractionation has been demonstrated by Johnson et al. (2002)

and Welch et al. (2003) between Fe(II) and Fe(III) aquo-complexes. The Fe(II) species is

isotopically lighter than Fe(III) species (-2.9%o). Their results agree well with

theoretically predicted fractionation (SCHAUBLE et al., 2001; ANBAR et al., submitted),

which lends support that the experiment reached and retained Fe(II)-Fe(III) isotopic

equilibrium during the chemical separation of Fe(II) and Fe(III). Skulen et al. (2002)

observed that rapidly precipitated hematite was isotopically light (-1.3%9). However,

estimated equilibrium fractionation from experiments with lower precipitation rates was

much smaller (-0. l%o). This experiment demonstrates how kinetic fractionation

processes can mask equilibrium fractionation based on how the experiment is designed.

Several laboratory experiments have been designed to mimic and isolate

mechanisms of isotopic fractionation observed in nature or in laboratory studies. Bullen

et al. (2001) observed that ferrihydrite deposits from a hydrothermal spring were

isotopically heavy compared to the aqueous Fe(II) in the spring water, and that the stream

water and deposits became isotopically lighter downstream until most of the dissolved Fe

had precipitated (Figure 1.4). Similar fractionations were reproduced in laboratory

experiments by precipitation of Fe(II) in steady-state batch experiments, and results
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followed a Rayleigh fractionation trend. From the observation that the precipitate was

isotopically heavier than the reactant, Bullen et al. (2001) suggested that equilibrium

fractionation between co-existing aqueous species might be responsible for the observed

fractionation. Brantley et al. (2001) leached hornblende with organic chelators and found

that released Fe was also isotopically depleted (-0.6%o) after observing isotopic

fractionation (-0.8%o) in biologically enhanced dissolution of hornblende and no

fractionation in abiotic dissolution (discussed above). A trend in 656Fe with the strength

of the chelator was observed with more isotopically depleted Fe released by stronger

ligands. The organic leaching experiments suggest that the fractionation observed in the

biotically enhanced dissolution experiments may be due to the organic (siderophore)

leaching step in the biotic experiments.

Many of the observed fractionations in laboratory studies are between aqueous Fe

species and solid phases. Another important consideration for aqueous Fe and mineral

interactions, which is also relevant to natural systems, is adsorption of the aqueous Fe

onto mineral surfaces. Icopini et al. (2004) found that Fe(II) in solution was isotopically

depleted (-0.896) after a significant fraction of the Fe(II) had adsorbed onto goethite.

Process studies are important for understanding the potential pathways of Fe

isotope fractionation and the expected magnitudes and direction of isotopic fractionation

in nature. A range of nearly 4%o is observed for natural samples that are formed at the

Earth's surface (Figure 1.4) (reviews: BEARD et al., 2003; BEARD AND JOHNSON, 2004).

This is in contrast to the ultimate source of iron, igneous rock, which shows very little

isotopic variability, ± 0. 10lo (2o standard deviation) (BEARD et al., 2003a). Some of the

largest variations observed in Fe isotopes are found in samples deposited or altered in the

marine environment. Banded Iron Formations (BEARD and JOHNSON, 1999; JOHNSON et

al., 2003) and organic-rich black shales (YAMAGUCHI et al., 2003; MATrHEWS et al.,

2004) have 656Fe values spanning almost the entire observed range. The isotopically

heaviest natural samples have been found in hydrothermally altered mid-ocean ridge

basalts where >80% of the Fe has been leached from the basalt (ROUXEL et al., 2003).

Vent fluids from mid-ocean ridge systems are isotopically light (-0.2 to -0.3%o)
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Figure 1.4: Compilation of observed Fe isotopic compositions of natural samples formed at the
Earth's surface. Data sources are: Banded Iron Formation data from Beard and Johnson (1999)
and Johnson et al. (2003); organic-rich black shale data from Yamaguchi et al. (2003) and
Matthews et al. (2004); deep-sea sediment and hydrothermal deposit data from Rouxel et al.
(2003, 2004); hydrothermal vent fluid data from Sharma et al. (2001), Beard et al. (2003b), and
Severmann, et al. (in press); hydrothermal plume particle and plume derived sediment data from
Severmann et al. (in press); Pacific, Atlantic, Arctic, and freshwater nodule data from Beard and
Johnson (1999) and Beard et al. (1999); Shelf porewater data from Severmann et al. (2003);
natural spring ferrihydrite data from Bullen et al. (2001); sedimentary mineral data from Belshaw
et al. (2000); paleosol data from Zhu et al. (2000) and Arnold et al. (2004); extractable Fe from
soil data from Brantley et al. (2001); summation of loess, aerosols, soil, and river suspended load
taken from Beard et al. (2003b).
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(SHARMA, 2001; BEARD et al., 2003b; SEVERMANN et al., in press) and may reflect

preferential leaching of isotopically light Fe from the basalts. Fe-Mn nodules and crusts

formed in the marine environment also have a large range in &6Fe values with values as

light as -1.36%o observed in the Pacific Ocean (BEARD and JOHNSON, 1999; ZHU et al.,

2000; CHU et al., 2003). Two time-series of Fe isotopes have been reconstructed using

Fe-Mn crusts and nodules from the marine environment. Zhu et al. (2000) observed a

trend of increasing 656Fe values towards the present over the last 6 Ma in a crust from the

North Atlantic. Variations in b6Fe values with time were also observed in a Fe-Mn

nodule in the Pacific near hydrothermal inputs (CHU et al., 2003). If the Fe deposited in

Fe-Mn crusts and nodules precipitated from seawater and has not been diagenetically

altered, then these records might serve as a proxy for the Fe isotopic composition of the

deep ocean. However, an understanding of the mechanisms that control the iron isotopic

composition of the seawater and deposition of Fe isotopes in Fe-Mn crusts is necessary to

interpret the Fe isotope records.

Although it is thought that most of the fractionation in the environment occurs in

the aqueous and biological phases, only a few studies report 6-Fe values for aqueous iron

isotopes in natural systems and non-laboratory biological samples. As stated before, Fe

from mid-ocean ridge hydrothermal vents is isotopically depleted relative to igneous

sources (-0.2 to -0.7%9) (SHARMA, 2001; BEARD et al., 2003b; SEVERMANN et al., in

press). Porewater Fe from the California margin shows isotopic variability with observed

isotopic values as light as -1.3 %9 (SEVERMANN et al., 2003). A terrestrial hot spring

Fe(III) deposit was +0.9%0o heavier than the dissolved Fe(II) (-0.9 to +2. 1%o) from which

it precipitated (BULLEN et al., 2001). Human blood and haemoglobin from animals are

also isotopically variable and depleted compared with dietary sources (WALYczYK and

VON BLANCKENBURG, 2002; ZHU et al., 2002; OHNo et al., 2004).

Iron isotopic studies are early in their development; therefore few studies are

conclusive about the controls of iron isotope fractionation in the environment. However,

they demonstrate that there are measurable fractionations and some observable trends in

the data. The challenge now is to use the observed Fe isotope fractionations in nature to
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obtain information about Fe cycling in the environment. The variability of 8156Fe

observed in marine deposits suggests that Fe isotopes may be a powerful tool to study Fe

cycling in the marine system. Also, laboratory experiments have shown that redox

changes, organic leaching, and biological cycling can all lead to Fe isotopic fractionation.

The cycle of Fe in the ocean was shown in Figure 1.1 and potential pathways for

biological Fe uptake and utilizaion were shown in Figure 1.3. It seems likely from all

these pathways, that Fe isotopic fractionation occurs in the marine system. In order to

illustrate this, two hypothetical applications of Fe isotopes in the upper ocean are shown

in Figure 1.4 and discussed below. The first is a steady-state model and the second is a

model based on Rayleigh fractionation.

Over certain time periods and conditions, steady-state assumptions might be

applicable to the upper ocean Fe cycle (e.g., oligotropic gyres). A schematic of this

model is shown in Figure 1.5a. A question that might be addressed with a steady-state

model of Fe in the upper open ocean is what fraction of aerosol iron becomes

bioavailable. The main inputs of iron to the upper ocean are from the dissolution of

atmospheric dust and the upwelling/vertical mixing of nutrient rich waters from below

the euphotic zone. The major output of iron is through biogenic export and scavenging

onto particulate material. If lateral and downward mixing are neglected, a simple

isotopic mass balance can be made where the flux of dissolved Fe from atmospheric

deposition (Fat and 856Featm) plus the flux of Fe from upward mixing (F"p and 856FeP)

equals the flux of the exported material excluding the refractory dust (Fe~p and 8 56FexP).

Therefore an isotopic mass balance can written:

F., = F. *(8156Fe. - 856Feup)/( 816Fe•-" _ 56Feexp)

If all of the 856Fe values are measured and the F.P estimated from nitrate upwelling and

Fe:N0 3 ratios in the water below the euphotic zone, then F.,, can be solved for. Or one

could make an independent estimate Fat, using the dissolved Fe input values of Duce and

Tindale (1991) or Fung et al. (2000) and solve for FuP. Also, if the 6' 6Fe of the mixed

layer could then be estimated based on dissolved seawater samples or biomass, and the

856Feexp and 6156Featm were known, F.P and Farm could be solved for directly. In order to
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Figure 1.5: 1.5a) Hypothetical schematic of a steady state model for a Fe isotope application in
the upper open ocean. The shadowed boxes highlight the type of samples that should be collected
and measured for iron concentration and isotopic analysis. 1.5b) Hypothetical schematic of how
Rayleigh fractionation could control the 6•Fe of different pools of Fe in the upper ocean. This
model assumes a pulse of dust as the primary source of Fe to a region of the upper ocean. Iron is
taken up by organisms and isotopically fractionated with an assumed fractionation of -2%o. As Fe
is removed from surface waters over time by biologic export, the dissolved pool in the upper
ocean becomes heavier. The graph shows the link between the fraction of the Fe from the pulse
removed from the surface ocean and the 85Fe of the remaining Fe in the mixed layer, the
instantaneous export material, and the accumulated export. Material collected in sediment traps
would reflect some combination of the instantaneous and accumulated products. This type of
fractionation might also be observed as one moved laterally away from a source of iron
(upwelling).
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estimate fluxes, 86Fep and 6-Fe., need to be measurably different. This steady state

model could yield in situ estimates of dissolved Fe input from atmospheric deposition,

which would serve as checks against other estimates based on dust leaching experiments.

Another possible scenario for Fe fractionation in the upper ocean is based on

Rayleigh fractionation in response to Fe utilization by organisms in the upper ocean,

analogous to the use of 8'5N for nitrate utilization (FRANCOIs et al., 1997; SIGMAN et al.,

1999). Two possible questions this model might address are 1) what is the relationship

between a dust event and Fe utilization, and 2) what is the residence time of Fe in the

surface ocean. If Fe input to the upper ocean is episodic (dust events) or local

(upwelling), the Fe will then be taken up by organisms and removed through biological

export. This loss of Fe from the euphotic zone will result in decreasing amounts of

bioavailable Fe over time in response to a pulse source of Fe such as a dust event (or over

space as a water mass moves away from the source of dissolved Fe). If there is

fractionation of Fe isotopes by phytoplankton during uptake (preferentially taking up the

lighter Fe isotopes) and isotopically light Fe is removed through biological export, this

would lead the remaining pool of dissolved Fe in the euphotic zone becoming

isotopically heavier (Figure 1.5b). Surface iron (8bFefj) would follow the following

equation:

65Fe1 f, = 856Fe.e - E In(f)

where 6'Fe___ is the isotopic value of the source of the dissolved Fe (value A in

Figure 1.5b, set to 096), , is the fractionation associated with biological uptake of Fe (set

to 2%o in Figure 1.5b), and f is the fraction of Fe removed from the surface water (Fe

utilization). Exported material will get heavier as Fe utilization increases. It is likely that

Rayleigh fractionation behavior does exist for Fe isotopes in regions of highly episodic

dust flux or seasonal upwelling. If iron utilization trends exist in nature, they could be

correlated with dust flux, productivity, and export for different regions of the ocean.

With these data, quantitative relationships could be defined between bioavailable Fe and

dust flux, along with residence times of Fe in different regions of the upper ocean. 8'Fe

in particulate-bound Fe collected in sediment traps might also be useful to delineate
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between Fe-limited and Fe-replete environments, such as the hypothesized difference

between recent and glacial conditions in the Southern Ocean.

1.3. THsIS OuTLINE

This thesis offers several new insights into the biogeochemical cycling of Fe and

Fe isotopes in the marine environment. First, detailed profiles and transects of dissolved,

colloidal, and soluble Fe in the subtropical and tropical Atlantic Ocean are presented in

Chapter 2. Surface DFe concentrations reflect variations in dust deposition over the

region sampled. Dissolved Fe profiles generally have nutrient-type profiles, although the

profiles have interesting features deviating from classic nutrient-type profiles with

surface maxima, intermediate water minima and maxima, and variations clearly

associated with water masses. The residence time of dissolved Fe in both the surface and

deep ocean was estimated from observations. Detailed profiles of soluble and colloidal

Fe extend the work of Wu et al. (2000) and demonstrate that the two pools of Fe have

distinct profiles suggesting different biogeochernical behavior. In Chapter 3, aerosol Fe

solubility is estimated using natural seawater and freshly collected aerosols from the

North Pacific. The next three chapters investigate Fe isotopes in aqueous and biological

samples in the environment. First, a method for Fe isotopic measurement was developed

on the MIT GV Instruments IsoProbe MC-ICPMS (Chapter 4). Because of the small

sample size processed for many marine samples, accuracy and precision on low-level

samples needed to be addressed including matrix effects, instrumental mass bias stability,

and isobaric interferences. Using the methods discussed in Chapter 4, the Fe isotopic

composition of marine plankton tow samples and an aerosol leachate were investigated

(Chapter 5). Large variations in the 85Fe of plankton tow samples were observed with

8-6Fe values generally depleted (by up to - 496). One plankton tow was collected in

Amazon River plume water in the eastern Atlantic Ocean and had a depleted 85Fe value.

In order to interpret the 85Fe of this plankton tow, knowledge of the isotopic composition

of the source of Fe was needed (Amazon River and shelf region). In Chapter 6, a variety

of samples from the Amazon system were analyzed for &'6Fe including filtered river
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water, suspended sediment from the river water, and an Amazon shelf porewater. River

water-seawater mixing experiments were also performed to investigate potential

fractionation during flocculation of Fe in the estuary. Chapter 5 and 6 demonstrate that

aqueous and biological samples in the environment have measurable ranges in 6•Fe and

might be useful in understanding the Fe cycle.
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Chapter 2

Iron (Soluble and Colloidal), Manganese, and

Chromium in the Tropical and

Subtropical Atlantic Ocean

B.A. Bergquist, MIT/WHOI Joint Program in Oceanography

E.A. Boyle, MIT/WHOI Joint Program in Oceanography

J. Wu, University of Alaska-Fairbanks, International Arctic Research Center

2.1. INTRODUCTION

Studies of trace metals in the marine environment are essential because of the

roles metals play as trace nutrients (e.g., Fe), toxins (e.g., Cr (VI)), and for the

understanding of large scale biogeochemical cycling (e.g., using Mn to locate

hydrothermal vents). However, many of these metals are difficult to study due to their

complex chemistry and the difficulty of obtaining measurements without contamination.

It was not until the mid-1970s that reliable profiles of many trace metals were produced.

Despite a decade or two of research on trace metals and a growing awareness of their

importance in ocean biogeochemistry, there are still limited data on the distribution,

speciation, and behavior of many important metals in the environment.

Iron is an essential micronutrient on both land and in the oceans, and is proposed

to play a role in climate change by influencing primary production in the ocean (MARTIN,

1990; KUMAR et al., 1995; FALKOWSKI, 1998). In Chapter 1, the distribution and

biogeochemical cycle of Fe was reviewed. Briefly, it is believed that atmospheric dust

deposition is the main source of Fe to the open ocean (DucE and TINDALE, 1991).

Changes in dust flux to the ocean may affect concentrations of bioavailable iron in the

upper ocean by both changing the amount of aerosol iron that directly dissolves in the

upper ocean and by affecting the amount of Fe delivered to the deep ocean via sinking
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organic matter (and hence upwelled Fe). The residence time of Fe in both the surface and

deep ocean, cycling of Fe in the upper ocean, the relationship between dust deposition

and bioavailable Fe (e.g., percent of aerosol dissolution), and changes in productivity and

export due to Fe input need to be better constrained in order to include Fe in biological

pump and climate models.

Another complication in understanding the dissolved Fe cycle is that a significant

fraction of "dissolved" Fe (DFe) is not truly dissolved, which may have consequences for

the amount of DFe that is available to organisms. Wu et al. (2001) found that a

substantial fraction (30 to 70% in deep-water) of DFe was colloidal in the North Atlantic

and North Pacific, and the two pools of DFe (colloidal, >0.02 ýLm and <0.4 ptm; soluble,

<0.02 gim) did not have the same concentration profiles. The operationally defined

"dissolved" fraction of Fe (0.2 or 0.4 gm filtered) is based on the minimum size needed

to remove most organisms and particles as well as the availability of acid cleanable filters

with trusted pore sizes (review: BRULAND and RuE, 2001). There is evidence that marine

organisms can grow utilizing colloidal Fe, although growth rates are usually lower than

organisms grown on free Fe (BARBEAU and MOFFETT, 1998; NORDWELL and PRICE,

2001; CHEN et al., 2003). The different biogeochemical behaviors and of colloidal and

soluble Fe have yet to be rigorously studied along with the consequences that a

significant fraction of the DFe in the ocean is colloidal.

Comparisons of Fe with other trace metals may be useful in understanding and

quantifying certain aspects of the Fe cycle in the ocean. In this study, Mn and Cr were

measured along with Fe. Published Al data is also available along a transect near our

transect in the western Atlantic from June 1996 (VINK and MEAsURES, 2001).

Manganese and Al are two other trace metals that are particle reactive and have

distributions in the ocean that reflect their sources. Aeolian deposition is a main source

for both in the open ocean (like Fe); however, unlike Fe, neither of these elements have

profiles and distributions indicative of biological cycling (KLINKHAMMER and BENDER,

1980; LANDING and BRULAND, 1980; ORIANS and BRULAND, 1986; BRULAND et al.,

1994). Aluminum is considered an excellent tracer of atmospheric deposition in the
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surface ocean (MEASURES and E.T., 1996; MEASURES and VINK, 2000). It has elevated

surface concentrations and decreases with depth due to scavenging with residence times

of 3-5 years in the surface ocean (ORIANs and BRULAND, 1986) and <100 years in the

deep ocean (BRULAND et al., 1994).

Manganese also has a surface maximum and decreases with depth, but surface

values are higher than what would be predicted from atmospheric deposition and removal

via scavenging (BRULAND et al., 1994). Manganese has two oxidation states in the ocean

(II and IV) where the reduced form is soluble and the oxidized form is easily scavenged

from the water column (WEISS, 1977; KLINKHAMMER and BENDER, 1980). However in

surface waters, particulate MnO2 is photochemically reduced to Mn(II) (SUNDA and

HUNTSMAN, 1988). Photochemical cycling maintains higher concentrations and results in

a longer residence time of s20 years in surface waters (LANDING and BRULAND, 1980;

LANDING and BRULAND, 1987; SUNDA and HUNTSMAN, 1988). Deep-water Mn

concentrations are generally very low (0.1 to 0.6 nmol/kg) and decrease with the age of

the deep-water due to progressive scavenging (STATHAM et al., 1998) except near

hydrothermal sources (KLINKHAmmE et al., 1977; EDMOND et al., 1979) or suboxic

boundary regions where Mn(II) is present (LANDING and BRULAND, 1987). The

residence time of Mn in the deep ocean is estimated to be very short, <50 years (WEISS,

1977; BRULAND et al., 1994). The short residence time of Mn in deep-water leads to the

Mn distribution being very sensitive to its external sources such as hydrothermal sources.

Very little is known about Cr in the ocean, but it is considered a nutrient-type

element with a residence time of -10,000 years (WHITFIELD and TURNER, 1987;

SIRNAWIN et al., 2000). River input is considered to be the main source (>99%) to the

ocean (JEANDEL and MINSTER, 1984). Cr has two oxidation states, (Ill) and (VI), in

seawater with most of the Cr present in the thermodynamically favored oxidized form in

the open ocean (CRANSTON and MURRAY, 1978; CAMPBELL and YEATS, 1981;

CRANSTON, 1983). Generally, Cr concentrations are lower in the surface ocean than

deep-water by 10 to 45% and increase to values of 2-10 nmol/kg in deep-water. Cranston

(1983) found that Cr correlated best with silica in the northeast Pacific Ocean and
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suggested that the Cr profile could possibly be explained by release of Cr with dissolution

of biogenic silicate and organic matter.

The idea that Cr is dominantly a nutrient-type element has been recently

challenged. Sirinawin et al. (2000) found that although Cr is correlated with

macronutrients at individual stations, there was no global correlation of Cr concentrations

with phosphate for samples deeper than 200 m in the Atlantic and Pacific. Chromium

concentrations were slightly higher or about the same for deep-water samples from the

Atlantic compared to the Pacific. They suggested that the behavior of Cr could best be

described as intermediate between a nutrient- and conservative-type element. A

conservative element is mostly non-reactive in seawater and varies with physical

parameters such as salinity. The Cr (VI) anion is in the same group as other conservative

elements that form non-reactive oxyanions (e.g., Mo, S). More data on the distribution of

Cr in the open ocean is needed to assess the Cr cycle and its potential to be used as a

tracer or for comparative studies with other metals or nutrients.

The aim of this study was to investigate Fe distribution, speciation, and

dissolution in areas of varying atmospheric dust inputs in the Atlantic Ocean. Iron

concentrations were measured by a new isotope dilution multi-collector inductively

coupled plasma mass spectrometry (MC-ICPMS) method, which allows Mn and Cr

concentrations to be measured simultaneously. We present Fe and Mn data from three

cruises in the sub-tropical and tropical Atlantic Ocean (30*N to 30°S) including both

surface data and profiles of Fe. One profile of Cr was measured in the South Atlantic.

For Fe, we also measured the different pools of dissolved Fe (soluble and colloidal) and,

in particular, we present high-density profiles of dissolved (<0.4 ttm) and soluble Fe

(<0.02 jtm) in the upper 200 m. In this study, the terminology for dissolved Fe species

put forth in Wu et al. (2001) will be adopted: (a) "dissolved" Fe (DFe) is defined as the

Fe that passes though the 0.4 pan filter, (b) "soluble" Fe (SFe) is the Fe that passes

through the 0.02 ttm filter, and (c) colloidal Fe (CFe) is the difference between the DFe

and the SFe (0.02 gm to 0.4 itm).
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2.2. SAMPLWNG AND METHODS

2.2.1. Sampling Sites

Between January 2001 and March 2002, trace metal clean seawater samples were

collected on three cruises in the sub-tropical and tropical Atlantic Ocean (Figure 2.1): 1)

January 2001 (RNV Seward Johnson, SJO101, surface sampling and deep profiles), 2)

June/July 2001 (R/V Knorr, Knr162, surface sampling and detailed euphotic zone

profiles), 3) March 2002 (RNV Endeavor, En367, surface sampling, detailed euphotic

zone and deep profiles). The two 2001 cruises focused on the North Atlantic sub-tropics

and tropics and were part of the NSF-sponsored Biocomplexity MANTRA program (A.

Michaels et al.) in which sampling sites were chosen based on variations in dust input and

possible connections with N2 fixation. Two sites were visited in both the winter and

summer of 2001 (30*N, 45oW and 10*N, 45*W), which allowed for sampling at both

times of year in the upper 200 m. The northern site at 30'N is in the subtropical gyre and

is characterized by oligotrophic conditions, a deep pycnocline, and lower atmospheric

dust inputs than the 10ON site. The 10*N site is on the edge of the subtropical gyre and

equatorial system and has a shallow pycnocline and higher atmospheric dust inputs. The

March 2002 cruise followed along the western part of the Atlantic basin from Barbados

to Rio de Janeiro, Brazil. The deep South Atlantic profile presented in this study was

taken at the southernmost extent of the cruise (24.5"S, 37°W) in the subtropical gyre of

the South Atlantic.

The sampling sites cover an area in the Atlantic where estimated dust deposition

rates vary by orders of magnitude both from north to south and seasonally (DucE and

TINDALE, 1991; MAHOWALD et al., 1999; FUNG et al., 2000; GAO et al., 2001; VINK and

MEASURES, 2001; CHEN and SIEFERT, 2004). Dust deposition rates are highest in the

North Atlantic downwind from the Sahara and decrease rapidly south of the inter-tropical

convergence zone (ITZC) based on satellite data. Generally, more dust is deposited in

the winter than in the summer in the Atlantic. The maximum dust transport off North

Africa is at 5ON in the winter and moves to 20*N in the summer due to the seasonal

migration of the ITCZ (HusAR et al., 1997; MOuLiN et al., 1997). Particulate Fe and
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Figure 2.1: Sample location map for the three cruises discussed in this study. Surface samples
are marked by circles, and profile sites are marked with their latitude. The northwest Atlantic
profile site from Wu et al. (2001) is also shown.
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labile Fe (90-minute, pH 4.5, reducing leach) atmospheric concentrations were measured

concurrently at sea on the North Atlantic cruises by Y. Chen and R. Siefert (University of

Maryland) and the data can be found in Chen and Siefert (2004). Using the atmospheric

particulate Fe concentrations (CHEN and SIEFERT, 2004), a crustal average abundance of

4.3% for Fe (WEDEPOHL, 1995), and a settling velocity of 1 cm d-1, jinsitu dust deposition

rates can be estimated for the North Atlantic sites. Dust deposition rates varied from 0.02

g m 2 y' at 30°N to 6 g mn2 y' at 100N in the winter, and from 2 g m'2y1 at 30'N to 2.5 g

m'2 y1 at 10N in the summer. Contemporaneous dust deposition rates are not available

for the South Atlantic cruise in March 2002. However, Vink and Measures (2001)

derived deposition estimates based on measured dissolved Al along a similar transect in

June 1996 and calculated very low dust deposition rates in the western South Atlantic

around 25*S of <1 g m 2y''. The Al derived rates of deposition for their 1996 North

Atlantic sites agree reasonably with Chen and Siefert (2004) estimates and are also in

general agreement with model derived deposition estimates.

2.2.2. Sampling Methods

The trace metal clean seawater samples collected in this study were collected

using a variety of methods. Many of the samples collected on the cruise were taken with

the Moored In situ Trace Element Serial Sampler (MITESS) water sampler or with a

single MITESS "ATE" (Automated Trace Element) module (BELL et al., 2002). Each

MITESS module opens and closes an acid-cleaned 500 ml polyethylene bottle while

underwater in order to minimize chances for contamination. Near surface samples were

collected by (a) "ATE/Vane", a single MITESS module attached to a "weather-vane" that

is free to rotate around the hydrowire and orients itself such that the module is upstream

of the wire while ship moves forward at 1-2 knots placing the sampler upstream of the

wire and wire contamination, (b) an underway "towed fish" device (VINK et al., 2000)

deployed while the ship is steaming up to -•10 knots or (c) "pole" sampling, extending a

sample bottle from the side of a ship using a long pole while the ship is moving forward

at 1-2 knots. "Pole" samples and "towed fish" samples are collected in the upper meter
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of the water column. The shallow "ATE/Vane" samplers are deployed with a shallow

depth recorder (less than _ 0.5 m precision), or depths are estimated by measuring wire

out and the wire angle (:t 1 m precision). Profile samples were collected using either the

"ATE/Vane" device with a single MITESS module for shallow samples (<200 m) or the

full 12 unit MITESS for deeper samples (>30 m). In order to reconstruct sampling

depths on deeper profiles, MITESS was deployed with a temperature-recording device

and depths were estimated by comparison to a CTD deployed just before MITESS for the

July 2001 and March 2002 cruises. The precision of the depths estimated by this method

is _ 5 m. For the January 2001 cruise, a CTD was deployed prior to MITESS and the

depths were marked on the hydrowire. The precision and accuracy of the depth estimates

by this method are not known, but are probably within 50 m for the deeper samples

(>1000 m) and better for shallower depths.

For profile work, it is especially challenging to collect trace metal clean samples

in the upper 30 m of the water column while maintaining good depth control. Near

surface techniques such as the "towed fish" device or "pole" sampling only allow

samples to be collected in the upper couple meters of the water column, and trace metal

clean Go-Flow collectors and MITESS might be suspect in shallow depths where ship

contamination might occur. Therefore, detailed shallow water profiles for Fe are rare. In

this study, high density profile samples in the upper 200 m were collected on the July

2001 cruise using multiple "ATE/Vane" samplers and the same principle as the "towed

fish" and "pole" sampling methods. Five "ATE/Vane" devices were attached to a

hydrowire running off a winch/crane that extended 3-4 meters off the side of the ship

(Figure 2.2). To reconstruct depths, the spacing between each "ATE/Vane" was

measured, a depth recorder attached to the deepest sampler, and the wire angle measured

for each deployment. All samplers were lowered into the water, and the ship was moved

forward at 1-2 knots. Thus the samplers were being towed along the side of the ship and

the "weather vanes" pointed the samplers upstream of the hydrowire. The forward

movement of the ship insured that the samplers collected water moving parallel to the

ship's path and not water that was in contact with the ship. After a minimum of
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Figure 2.2: Schematic of upper water column sample collection technique used to collect high-
density euphotic zone Fe samples on the summer 2001 cruise in the North Atlantic.
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20 minutes in the water and rinsing by seawater, the samplers open and close after

flushing for 10 minutes. The largest uncertainty of the depth reconstruction in the

"ATE/Vane" sampling technique is the wire angle estimate at the surface. It is not

known how constant the wire angle was under the water. Therefore, the relative

difference between the samples is known better (less than ± 0.5 m) than the absolute

depth (± 1 to 2 m).

After sample collection, sealed sample bottles were taken into a class 100 clean

air flow environment for filtration within 12-24 hours of collection in order to avoid Fe

loss to bottle walls. Splits of each sample were vacuum filtered through acid cleaned

0.4 ptm Nuclepore(® filters and syringe filtered though acid cleaned 0.02 ptm Anotop®

alumina filters (details of 0.02 ptm filtration in Wu ET AL., 2001). Prior to each filtration,

acid cleaned filters and the filter rig were thoroughly rinsed with dilute trace metal clean

HC1 and then several aliquots of seawater. The acid cleaned collection bottles were also

rinsed several times with filtered seawater prior to the final sample collection. Two to

three separate aliquots of the filtrates were collected and the sequence noted on bottles.

The last aliquot is the sample usually measured for Fe concentration because it is

considered to be least likely to have been contaminated during filtration. Random bottle

contamination happened infrequently (less than 10%) and high values were checked

against measurements of earlier filtrates. Filtrates were acidified at sea in a class 100

clean environment to pH 2.5 by addition of triply distilled Vycor 6 N HC1 in a ratio of 1

ml acid to 500 ml of seawater.

2.2.3. Fe, Mn, and Cr Measurement

Iron, Mn, and Cr concentrations on filtrates were measured by a modified version

of the method by Wu and Boyle (1998), which utilizes isotope dilution followed by

Mg(OH) 2 co-precipitation and measurement by ICPMS (Bergquist and Boyle, in prep).

The main differences of the technique used in this study are the use of a 'Fe isotope

spike and a GV Instruments (formerly Micromass) IsoProbe MC-ICPMS. The IsoProbe

incorporates a hexapole collision cell prior to the magnet that eliminates ArO+ and ArN'
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interferences on masses 56 and 54, which allows samples to be measured in low mass

resolution. The multi-collection feature permits simultaneous collection of masses 52

(monitor Cr and correct for Cr interference on 54), 54, 55 (Mn), 56, and 57. The largest

interference correction for Fe is CaO÷ on mass 56. The CaO÷ interference is monitored

by measuring CaOH÷ on mass 57, measuring the CaO/CaOH ratio on a trace metal clean

Ca solution throughout the run, and correcting mass 56 for the CaO÷ interference. Mn

and Cr concentrations are calculated by measuring a recovery efficiency (from spiked

samples) compared to the 'Fe spike and by measuring the relative ionization efficiency

of Mn, Cr, and Fe in the plasma. The recovery efficiency for Mn and Cr is calculated by

measuring several samples with standard addition spikes throughout a run. The recovery

efficiency is a function of time before the precipitate is centrifuged for Cr than Mn.

Therefore, each step in the precipitation procedure was timed and kept as constant as

possible. Typical recovery efficiencies for Mn and Cr are 50 ± 7% and 60 -t 8% (13

standard deviation (SD)) respectively.

In more detail, 1.3 ml sample aliquots were measured for Fe, Mn, and Cr after a

minimum of several months after acidification. A MFe isotope spike was added to each

sub-sample. The Fe and Mn were then co-precipitated with Mg(OH) 2 by adding a small

amount of vapor distilled (sub-boiling) NH4OH. Only enough NH 4OH was added to

precipitate a small fraction of the Mg in the sample (Wu and BOYLE, 1998). The samples

were then centrifuged and the liquid discarded. The precipitate was dissolved in 150 to

200 [tl of 0.3 N Optima HNO3 for analysis on the MC-ICPMS. Procedural blanks for Fe

ranged from 0.08 to 0.17 nmol/kg from run to run with typical precisions of __ 0.03

nmol/kg (I o SD) for individual runs. For Mn, procedural blanks ranged from 0.4 to 1.0

nmol/kg with typical precisions of _± 0.1 nmol/kg (I o SD) for individual runs. Only one

data set was analyzed for Cr. For that run, the Cr blank was 2.16 ± 0.20 nmol/kg (lo

SD). Replicate analysis of samples yield precisions of less than ± 0.05 nmol/kg for Fe,

:t 0.10 nmol/kg for Mn, and ± 0.15 nmol/kg for Cr (Ia SD). Error bars reported in this

study represent the I o standard deviation of replicate analysis of samples.

55



There are two components to the blank in the method described above: (1) a

reagent blank and (2) an instrument blank. Reagent blanks are assessed by processing a

50 RI1 aliquot of a low-Fe seawater sample though the same procedure as the samples.

However, most of the Fe, Mn, and Cr blanks in this method are due to instrument blank

(blanks released from the hardware of the instrument), and not due to reagents. The

0.3 M HNO 3 blank can be measured directly, and the blank associated with the NH4 OH is

negligible (doubling or tripling of NH4OH does not change blank). Because the samples

and procedural blanks have slightly different matrices, the reagent blank does not

correctly characterize the instrument blank. Therefore, multiple consistency samples are

analyzed at the beginning, middle, and end of each analytical session. Consistency

samples are in-house seawater samples with a defined concentration. The reagent blank

is then slightly adjusted (less than 0.1 nmol/kg) in order to bring the consistency samples

into agreement with their defined concentration. The adjusted reagent blank is

considered the full procedural blank of the method (including both the reagent and

instrument blank).

Based on the reagent blank alone, samples can only be compared with confidence

using their individual sample replication within a given analytical session (e.g., less than

_ 0.05 nmol/kg (1SD) for Fe). However, in order to compare samples from different

analytical sessions (e.g., to better than t 0.1 nmol/kg for Fe), the changes in the

instrument blank must also be included. Offsets (up to 0.1 nmol/kg for Fe) from

analytical session to session due to changes in the instrument blank are corrected by using

the consistency samples, which better mimic the matrix of an actual sample. Therefore,

we feel differences between samples in our extended data set are comparable to within

the analytical session sample replication. Comparisons of our data to other published

data sets within 0.1 nmol/kg for Fe should be made with caution, as no inter-lab

consistency sample exists. However, agreement between deep-water concentrations in

DFe in the North Pacific measured in our lab (BOYLE et al., submitted) and

concentrations observed at a nearby station by Bruland et al. (1994) suggest that our

consistency samples are reasonably well defined. No such consistency sample correction
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was used for the Mn data, and the consistency samples were reproduced for Mn to within

± 15%. Chromium was only analyzed in one set of samples, thus analysis session

comparisons cannot be made and no estimate of external precision exists yet.

Periodic contamination still remains a problem in sample analysis (- 10%),

therefore samples were always analyzed in triplicate. When at least two replicates agreed

within expected reproducibility, the average of two or three replicates was taken as the

sample concentration. If no replicates agree or two replicates were high and one low, the

sample was re-analyzed. If all the sample replicates seem high based on "oceanographic

consistency", then a second filtrate was measured. If the new result was lower and
"consistent", then the contaminated bottle data was discarded. If both replicate filtrates

are high or no replicate exists, then the sample data is reported in the attached data tables

with a question mark. Data is omitted from figures and the discussion where a clear

judgment could be made that the sample was contaminated.

2.3. RESULTS AND DISCUSSION

2.3.1. Surface Water Fe and Mn Variability and Distribution

2.3.1.1. N-S Transect

The surface distributions of DFe, SFe, and dissolved Mn (DMn) from 30'N to

25°S are shown in Figure 2.3 along with published dissolved Al and DFe data from a

similar transect from June 1996 (VINK and MEASURES, 2001). The data are given in

Appendix 2. 1. The N-S transects from the January 2001 (north section) and the March

2002 (south section) cruises were combined to make the figure. Although the two

transects are a year apart and are from slightly different times of the year, the DFe values

are in good agreement where the two transects approach eachother. DFe values are

highest in the North Atlantic (0.60 ± 0.17 nmol/kg, 1 SD, n=16) and decrease by a factor

of 3 south the equator (0.29 ± 0.07 nmol/kg, 1 SD, n=3). SFe does not show such a

dramatic trend as DFe, but also decreases slightly from the North Atlantic (0.36

± 0.10 nmol/kg, I SD, n=6) to South Atlantic (0.25 t 0.02 nmol/kg, I SD, n=3). A

maximum in DFe is seen at 20°N with a peak value of 0.89 nmol/kg.
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Figure 2.3: 2.3a) D~e and SFe surface data along a N-S transect from 30°N to 300S in the
western Atlantic. Transects from the January 2001 and March 2002 cruises were
combined and are marked by a break in the transect. DFe and S~e data for the stations
re-sampled on the summer, 2001, cruise are also shown (30°N and 10°N). 2.3b) DMn
data from the surface samples as in Figure 2.3a. 2.3c&2.3d) Surface transect data from a
similar transect in the western Atlantic from Vink and Measures, 2001. Dissolved Al
data shown in Figure 2.3c, and dissolved Fe data in Figure 2.3d. Error bars are lo
standard deviation of sample replicates (external reproducibility is typically less than ±

0.05 nmollkg (1 SD) for DFe and less than ± 0.08 nmollkg (1 SD) for DMn).
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In general, the observed trend in DFe is similar to trends of other dust derived trace

metals (e.g., Mn and Al). DMn measured along the same transect shows a similar pattern

with average values of 2.62 t 0.45 nmol/kg (1 SD, n=18) in the North Atlantic and 2.22 ±

0.11 nmol/kg (1 SD, n=3) in the South Atlantic. A broader maximum is observed for Mn

between 0 and 25"N with a peak value of 3.20 nmol/kg. Our distribution of DMn

compares well with previously published surface Mn for the Atlantic Ocean (SHniLR,

1997). Dissolved Al data along a similar transect from Vink and Measures (2001) also

shows higher values in the North Atlantic (40-50 nnol/kg) and decrease in the South

Atlantic to concentrations less than 10 nmol/kg in the subtropical gyre (Figure 2.3c).

Dust deposition rates derived from the dissolved Al data from Vink and Measures (2001)

agree well with other model results in the Atlantic.

The general similarity of DFe and DMn with the Al data from Vink and Measures

(2001) indicates that the observed trends in DFe and DMn are also probably due to

variations in dust input along the transect. However, dissolved Al values decrease by

more than a factor of 5 between the North and South Atlantic. DFe values only decrease

by a factor of 3 and DMn decrease only slightly (25%). For DFe, factors such as

biological uptake, biological export, and scavenging result in a shorter residence time of

less than a year in the surface ocean compared to Al (3-5 years). Solubility limits may

also play a role in surface DFe profiles (VmNK and MEASURES, 2001; Wu and BoYLE,

2002). If a proportional amount of Fe to Al was dissolved from atmospheric particles

based on the composition of continental crust (8.0% Al, 4.3% Fe (WEDEPOHL, 1995)),

then one would expect higher DFe concentrations (20-25 nmol/kg) in the North Atlantic.

Therefore, the short residence time of Fe in surface waters and solubility limits lead to

DFe values that are more variable than Al and do not have comparably high values as Al

does in the North Atlantic. As for Mn, the photochemical cycling leads to a longer

surface residence time (:v20 years) than Al (LANDING and BRULAND, 1980; SUNDA and

HUNTSMAN, 1988). Thus, enhanced cycling and lateral transport erases large flux

variations.
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Our surface DFe data is in general agreement with published DFe concentrations

reported for the subtropical and tropical Atlantic. North of the equator, our DFe values

are similar to concentrations (0.4 to 0.8 nmol/kg) measured by Vink and Measures

(2001). However, they did not observe a decrease in DFe values south of the equator.

Their transect extends to 15°S with DFe values remaining high and mostly invariant (0.6

to 0.8 nmol/kg). We only have one data point between 0-150S with a value of 0.27

nmol/kg, which is quite a bit lower. This sample could be isolated and un-representative,

or illustrate the potential temporal variability of DFe. The Vink and Measures (2001)

transect also may not have sampled far enough south to observe a decrease in DFe. A

transect of DFe in the eastern Atlantic (October 2000) from 28°N to 200S was recently

published (SARTHOU et al., 2003) and shows a similar trend as our transect with average

values of DFe of 0.40 __ 0.18 jxmol/kg in the North Atlantic and 0.11 ± 0.07 nmol/kg in

the South Atlantic. The observed eastern Atlantic concentrations were typically lower

than our values and may represent values to be expected in the fall. The dustiest season

for the Atlantic is in the winter (CHIAPELLO et al., 1995), and by October DFe values

would be expected to be lower based on the short residence time of DFe. Sarthou et al.

(2003) reported very low DFe south of equatorial upwelling zone (- 0.02 nmol/kg),

which is an order of magnitude lower than our lowest value from the western transect.

Both our DFe and DMn transect data show maxima in the North Atlantic near

20°N. This is in agreement with estimated surface DFe derived from dust deposition

models (FUNG et al., 2000; GREGG et al., 2003; PAREKH et al., submitted). These models

use dust deposition models (based on satellite data, observations, and/or climatological

dust parameters) and assume some constant dust solubility for Fe in aerosol particles

across all particle size classes, usually I or 10%. In Fung et al. (2000) the

upwelling/vertical mixing component of DFe to the upper ocean was also modeled using

dissolved nitrate and a Fe:N0 3 ratio based on available data. For the tropical and

subtropical North Atlantic, the modeled aeolian contribution to DFe to the upper ocean

was predicted to be more than an order of magnitude higher than the vertical

upwelling/mixing component. The maximum dust deposition also occurred between 0-
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20*N decreasing to the north at - 25-30°N and south of the equator. In the western South

Atlantic, the modeled atmospheric contribution to DFe was still higher than the

upwelling/vertical-mixing component. However, it was not as dramatically higher than

the upwelling component as the North Atlantic modeled estimates. In the eastern South

Atlantic, the atmospheric component and the upwelling/vertical mixing terms were more

comparable. Although the deposition flux patterns modeled by Fung et al. (2000) are

similar to our DFe distribution, Fung et al. (2000) did not estimate DFe in surface waters.

Surface DFe distributions were modeled seasonally in Gregg et al. (2003),

although only an atmospheric Fe flux to surface water was included (no upwelling flux).

There is good agreement between our measured DFe trend along the N-S transect and the

modeled derived DFe. However, the modeled DFe in the winter are higher (>1 nmol/kg)

than our measured values and the maximum around 20°N was much broader. The

modeled DFe decrease in the South Atlantic to values of 0.2-0.3 nmol/kg in the

subtropical gyre, which agrees well with our data. Differences between the model and

measured DFe may be due to model assumptions, such as constant dust dissolution

percentages and constant scavenging rates, but the general pattern and reasonably good

agreement for the DFe values indicates that a 3-D general circulation model including

dust dissolution, scavenging, and biological uptake for Fe is capturing many of the

processes controlling surface DFe in this region of the ocean. Part of the good agreement

between modeled DFe and observed DFe may be due to the dominance of the

atmospheric flux of Fe over the upwelling flux in the Atlantic sub-tropics and tropics. In

other regions where dust deposition is low, models with an upwelling flux will be needed

to better estimate the DFe in surface waters (PAREKH et al., submitted).

The north and south endpoints of the North Atlantic transect were sampled both

on the January 2001 and the July 2001 cruises. The 30°N station had a peak surface DFe

of 0.68 nmol/kg in the winter and 0.50 nmol/kg in the summer. The peak value at 30°N

is part of a well-defined surface maximum. The integrated mixed layer value for this

station was 0.51 nmol/kg, therefore the winter and summer surface DFe are similar at this

site. Large differences in the DFe from winter to summer are also not observed at the
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higher dust site, 10*N, with winter surface DFe at 0.59 nmol/kg and summer at

0.56 nmol/kg. The climatological trend of higher dust input in the winter than in the

summer is not reflected in our DFe data. Chen and Siefert (2004) measured total dust,

total Fe, and labile Fe (90 min, pH-4.5, reducing leach) concentrations in the atmosphere

concurrently with our DFe on the same cruises. At the 10°N station, total and labile

atmospheric Fe flux estimates show the overall climatological trend of more dust in the

winter than in the summer with 30 ± 16 jig m"2 d' of labile Fe in the winter and 6.1 ± 3.3

tLg m2 d' in the summer. However at the 30 °N station, concurrent dust measurements

are actually higher in the summer than in the winter with labile Fe fluxes only at 0.7 ± 0.3

tig m"2 d"' in the winter and 3.2 ± 3.0 jtg m"2 d-' in the summer.

The poor correlation of our sea surface DFe concentrations and the concurrent

dust flux estimates demonstrates the problem of trying to compare in situ atmospheric

measurements with sea-surface DFe measurements. DFe integrates over weeks to

months of dust deposition events and is biologically cycled with possible solubility

controls. Dust deposition measurements at sea are made daily and may not represent the

regional or seasonal input because of the episodic and spatially inhomogeneous nature of

dust events (PROSPERO, 1996; JICKELLS and SPOKES, 2001). Some models use satellite

data and average over multiple years to constrain their dust deposition fields (GREGG et

al., 2003) or use seasonally averaged climatological data (MAHOWALD et al., 1999),

therefore they probably capture a more integrated picture.

Although dust deposition models provide more temporally integrated dust

deposition estimates, satellite- and climatological- based dust deposition models still need

more ground-truthing from observations in order for modeled estimates of DFe

distributions to be more quantitative. Both the models and the in situ (field)

measurements assume depositional velocities in order to estimate deposition fluxes from

atmospheric concentrations (usually 1 cm d-' (CHEN and SIEFERT, 2004)). Because field

measurements are made near the sea-surface, they may capture what actually gets

deposited better than the models. Models also assume a constant fraction of Fe dissolved

into seawater from atmospheric particles. Insintu measurement studies such as Chen and
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Siefert (2004) and Sarthou et al. (2003) include estimates of labile Fe from chemical

leaching experiments. In the Chen and Siefert (2004) study, the percentage of labile Fe

to total Fe varied from 2 to 5% at the 10*N station from summer to winter, and from 28

to 3% from winter to summer at the 30°N station. The large percent of labile Fe in

aerosols, 28%, at 300 N winter occupation was associated with particles in which the Fe

was correlated with Cu, Ni, and V instead of Al indicating that the Fe was not associated

with crustal material and likely was of anthropogenic origin (CuEN and SIEFERT,

submitted). Not only does the amount of dissolution vary with aerosol type, but it also

varies with particle size with more labile Fe in the finer fractions (SMFERT et al., 1999;

JOHANSEN et al., 2000; CHEN and SIEFERT, submitted). Atmospheric cycling and lifetime

in the atmosphere will also affect the potential amount of Fe that is dissolvable in the

surface ocean. All these factors need to be incorporated into dust deposition models.

Because most of the N-S variation is seen in the DFe and not in the SFe, much of

the structure seen in the DFe transect is due to CFe. Wu et al. (2001) suggested that most

atmospherically derived DFe was preferentially released into the colloidal pool. This

assumption was based on profiles from oligotrophic gyre sites in the North Atlantic and

North Pacific where surface maxima in the DFe were observed without corresponding

maxima SFe. Our CFe and SFe distributions support that interpretation; CFe follows the

dust deposition variations and the Al distribution from Vink and Measures (2001). In the

southern part of the transect where dust deposition is the lowest, the colloidal fraction of

Fe disappears and then increases slightly at the southernmost station where the Al data

also starts to increase again. It is interesting that SFe does not show a strong trend from

north to south. This observation implies that the SFe distribution is not strongly

influenced by dust inputs directly and may be controlled by other mechanisms (possibly

solubility).

2.3.1.2. E-W Transect

DFe and DMn were measured along an E-W transect (23cW to 45*W) along 30*N

on the July 2001 cruise (Figure 2.4, Appendix 2.1). DFe shows a relatively minor E-W
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Figure 2.4: DFe and DMn along an E-W transect at - 30*N in the North Atlantic from the
June/July 2001 cruise. Error bars are Io standard deviation of sample replicates (external
reproducibility is typically less than ± 0.05 nmol/kg (1 SD) for DFe and less than ± 0.08 nmol/kg
(1 SD) for DMn).
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trend with slightly higher values towards the west. The easternmost stations had an

average DFe of 0.39 ± 0.02 nmollkg (1 SD, n=3) and the westernmost samples had 0.53 ±

0.06 nmol/kg (1 SD, n=3) (difference is significant at the 95% confidence level using a t-

test). DMn remained relatively invariant along the transect with an average concentration

of 1.93 ± 0.23 nmol/kg (1 SD, n=6). The concurrent atmospheric Fe measurements made

by Chen and Siefert (2004) also show an increase in dust deposition toward the west,

which is reflected in the DFe transect and not in the DMn concentration data. Once

again, dust deposition events are episodic and sea-surface DFe and DMn integrate over

different periods (months for Fe and years for Mn).

Strong E-W gradients in dust deposition or DFe at 30°N are not predicted by

models except for very high values close to the African continent where most of the

larger particles are deposited (MAHOWALD et al., 1999; FUNG et al., 2000; GREGG et al.,

2003). 30°N is north of the zone of maximum dust transport, and the E-W transect was

sampled the summer when there is generally lower dust deposition. Sarthou et al. (2003)

measured surface DFe of greater than 1 nmol/kg closer to the African continent at 15°W

and 28°N. Our easternmost sample is at 23.60W and had a DFe concentration of

0.40 nmol/kg suggesting that a longitudinal gradient may exist, but only to the east of our

easternmost sample. Generally, our DFe and DMn E-W distributions suggest that finer

particles transported to the west of - 20*W are not preferentially deposited closer to

Africa in the summer.

2.3.2. Surface Aerosol Solubility

On the summer 2001 cruise, trace metal clean incubation experiments were

performed by D. Capone and coworkers (University of Southern California) in order to

investigate the effects of dust and Fe additions for phytoplankton at both the 10*N and

30°N stations. The mesocosm experiments were done in large carboys (20 L) in

incubation chambers on deck, allowed to incubate for varying amounts of time (0 to

5 days), and sampled by our group for DFe. A summary of the Fe data is given in

Table 2.1. Atmospheric dust was collected for several days on large volume acid-cleaned

65



Table 2.1: Fe Data from Surface Solubility and Mesocosm Experiments
Excess Excess

days DFe SWeDFeb I IW
of (nmol/ (nmol/ I (nmol/ (nmol

esocosm Experiments' e k SDd n. k1 kSi kg) 1 kSD ) 1 SD
*Nstation__ __ Il-

urface water-0.2 m 1 0.51 0.04 {3 g

urface water-3.7 in 0.54 0.03 2 0.43 0.03 3 3 _

urface water-5.5 m 1 0.56 0.03 3 0.29 0.02 2 1 i
nesocosm-control#1 5 0.53 0.02 3 I __ I
nesocosm-control #12 5 0.54 0.02 2 I
nesocosm-control #8 5 0.46 0.02,2 t
nesocosm-filter control #20 5 0.54 1 _

nesocosm-filter control #4 5 0.50 1 _ H
average of controls and blanks: 0.52 0.03 8 0.36 0.10 ,2

esocosm-dust addition #13 5 0.62 0.03 2. 0.33 0.02 31 0.08 0.04 -0.04 0.10
nesocosm-dust addition #22 5 0.52 0.00 2 0.33 0.02 3 -0.02 10.0341 -0.04 0.10
nesocosm-dust addition #7 5 0.50 1 0.46 10.02 3 -0.04 i0.0 3 H 0.09 0.10
10ON station-L j -

urface water-0.2 in 0.60 0.03 3 0.41 0.0512 . -surface water-1.8 m n 0.71 0.04 3 0.37 10.0443[ I+ -

esocosm-filter control #4 5 0.61 0.03 2 it 0 04 3 0.37 -

mesocosm-control#16 5 0.66 0.01 2I L -

mesocosm-control #18 5 0.75 1 2 -

mesocosm-control#6 3 I 0.56 0.03 2 ! ,
average of controls and blanks: 0.65 0.07 ]6 0.39 0.03 2 _

mesocosm-dust addition #13 5 i 1.10 - , 0.43 10.09
mesocosm-dust addition #21 5 t 1.20 1f 0.54 0.09
mesocosm-dust addition #23 3 i 0.48 0.02 2 -0.19 !0.08t Fe I

Da I ddition! Excess
(DnmlW SFe j SFe"

((nmoV (nmoVFe (H) addition experiments _ kg) 1SD n kg) 1 SD n kng)1' SD n L kg) 11

1[N Fe(hr) solubility experiment 0.48 0.05 3 0.40 0.05,13 0.62 10.04 51 0.22 0.06

a) Mesocosm experiments were coducted by D. Capone and coworkers (University of Southern California) on
the summer 2001 cruise. Trace metal clean large volume seawater incubations (20 L) were performed in
carboys in incubation chambers on deck. Dust was collected for several days on acid cleaned filters (by R.
Siefert and Y. Chen, University of Maryland), and then was sectioned and added to individual carboys.
Mesocosm experiments were allowed to incubate for several days (3-5 days) before samples were collected for
Fe analysis. DFe, and in some cases SFe, were collected and processed in the same way as surface and profile
samples.
b) Excess DFe is the difference between the sample DFe measured for an individual dust addition experiment
and the average of the blanks and controls.
c) Excess SFe is the difference between the sample SFe measured for an individual dust addition experiment
and the average of the blanks and controls.
d) I SD is the standard deviation of sample replicates. A representative 1 SD of 0.05 was used for error
propagation for samples where only one measurement was reported.
e) Fe addition SFe is the SFe measured in samples in which 20 nmo/kg of Fe(U) was added and allowed to
equilibrate for 24 hours.
e) Excess SFe is the difference between the SFe measured in the Fe addition sub-sample and the SFe of the
unperturbed sub-sample.
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filters(by R. Siefert and Y. Chen), and then the filters were sectioned and added to the

mesocosm experiments. Chen and Siefert (personal communication) estimated that each

section of dust filter had about 100 jtg total Fe at the 30'N station and 900 jtg total Fe at

the 10N station based on sections kept for later analysis. Fe samples were collected at

the end of each experiment and processed for DFe and periodically for SFe.

Excess DFe from the dust filter additions was observed at the 10ON station for the

two 5-day incubation experiments. At the 300N station and for the 3-day incubation

experiment at 10N, no detectable amounts of additional DFe dissolved from the dust

filters. The 5-day 10*N experiments reached total concentrations of - 1.15 nmol/kg with

an excess DFe of - 0.50 nmol/kg. Although a large amount of aerosol Fe was added to

these experiments (900 tLg), the amount of Fe released into the dissolved pool was very

small (<0.1%). The upper concentration reached in these experiments may represent the

saturation of the organic ligand in the dissolved pool. Excess dissolved organic ligand

concentrations were measured by Wu and Luther (1995) and Luther and Wu (1997) in

surface water of the northwestern Atlantic Ocean. Excess ligand concentrations of 0.45-

0.60 ± 0.20 nM were observed, which agrees well with our observed excess DFe for the

5-day mesocosm experiments. It is unclear why no excess DFe was observed at the 30*N

station and in the 3-day dust addition experiment at 10*N. Dust concentrations were

much lower at the 30*N station, and perhaps there is a kinetic barrier to dissolving the Fe

off the dust filters.

Unfortunately we did not measure the SFe at the 10*N station, so we cannot

calculate how much of the excess DFe is CFe. However, a solubility experiment was

performed on a 10 m sample from the station. Fe(LI) was added to an aliquot of seawater

and allowed to equilibrate for 24 hours, and then was filtered through a 0.02 gim filter in

order to determine how much excess SFe could be put into solution (Wu et al., 2001).

This excess SFe is interpreted to represent the amount of excess strong ligand that is

present in the soluble fraction. An excess SFe of - 0.2 nmol/kg was observed arguing

that perhaps 60% of the excess dissolved DFe from dust observed in the mesocosms

experiments was colloidal.
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2.3.3. Fe Water Column Profiles

Figures 2.5 to 2.8 show water column profiles of DFe and SFe at three sites along

the N-S transect: 1) 30'N, 45*W, 2) 10*N, 45*W, and 3) 24.5°S, 36 0W. DFe and SFe

profiles from a station near the Bermuda Rise (35 0N, 58 0W) from Wu et al. (2001) are

shown for comparison in Figure 2.7 and 2.9. The 30°N and 10N stations were sampled

both on the January and the July cruises. Deep-water profiles were collected in the

winter (Figures 2.5a and 2.5c) and high-density euphotic zone profiles collected in the

summer (Figures 2.5b and 2.5d). The South Atlantic site was sampled on the March

2002 cruise (Figures 2.6a and 2.6b). Tables 2.2 and Appendix 2.2 summarize the data

from the profiles. The DFe concentration profiles generally have nutrient-type profiles

with lower concentrations in surface waters than in deep-water, although the profiles

have interesting features deviating from classic nutrient-type profiles with some surface

maxima, intermediate water minima and maxima, and variations clearly associated with

water masses. Also, the different pools of DFe (CFe and SFe) have distinct vertical

profiles. Profiles will be discussed in terms of their upper and deep-water column

profiles. Residence time calculations were made for surface Fe where steady-state

assumptions could be made and also for deep-water Fe.

2.3.3.1. Upper (Surface to - 1000 m) Water Column Fe Profiles

The two subtropical gyre sites (30*N and 24.50 S) along with the profile from Wu

et al. (2001) near Bermuda have very different upper water column profiles of Fe

compared with the 10N site (Figures 2.5 through 2.8). The pycnocline extends deeper

at the gyre sites (- 750 m), whereas the pycnocline at 10ON is much shallower (<250 m).

At all three gyre sites, surface maxima in DFe are observed followed by broad minima in

the pycnocline before DFe increases below depths greater than 600 m (Figure 2.7a). At

the 10°N station (on the edge of the equatorial system), a surface maximum in DFe is

observed in the summer and not in the winter (Figure 2.5c and 2.5d). DFe values

increase dramatically at this site to values >1 nmol/kg below the mixed layer and remain
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Figure 2.5: DFe and SFe water column data at the 30*N, 450W and 10°N, 45"W stations from
both the winter and summer cruises, 2001. 2.5a) The winter 30*N station is plotted with salinity.
2.5b) The summer 30*N station is plotted with salinity. 2.5c) The winter 10N station is plotted
with salinity. 2.5d) The summer 10*N station is plotted with chlorophyll fluorescence. Error bars
are I a standard deviation of sample replicates (external reproducibility is typically less than
± 0.05 nmol/kg (1 SD) for Fe).
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Figure 2.6: DFe and SFe profiles for the South Atlantic station at 24.5"S, 370W occupied in
March 2002. Figure 2.6a is the full Fe profile to 4000 m plotted along with silicate data measured
on the same cruise. Figure 2.6b is a blow up of the upper 1000 m plotted along with CTD salinity
data. Error bars are 1y standard deviation of sample replicates (external reproducibility typically
less than t 0.05 nmol/kg (1 SD) for Fe).
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Figure 2.7: Fe water column data for the three deep stations sampled in this study (30°N, 450W;
10°N, 450W; 24.50N, 36*W) along with a station sampled near the Bermuda Rise from Wu et al.,
2001 (35 °N, 56 °W). The DFe (<0.4 gim Fe) profiles are shown in figure 2.7a, the salinity in
figure 2.7b, the SFe (<0.02 Vam Fe) profiles in figure 2.7c, and the CFe (0.02 to 0.4 pim) profiles
in figure 7d. In figure 2.7b, the core of North Atlantic Deep Water (NADW) is marked.
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Figure 2.8: 2.8a) DFe and SFe from the winter 10N, 45"W station. Error bars are lo standard
deviation of sample replicates (external reproducibility is typically less than ± 0.05 nmol/kg
(1 SD) for Fe). 2.8b) Phosphate and AOU data from the nearby GEOSECS station 39 (7.8 *N,
43.9 *W). Temperature and salinity overlays for our station and the GEOSECS station were
nearly identical.
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a) lo standard deviation of depths used in sample grouping (not the same as analysis replicates).
b) Number of depths used in sample grouping.
c) CFe/DFe is the percentage of DFe that is CFe. Uncertainty in this estimate is ± 5-10%.
d) Fe* is defined by Parekh et al (submitted) and is calculated with the following formula:
[DFe] - [PO4']*(FeIP),4.p m. Phosphate data from nearby GEOSECS stations 39 and 57 was used respectively for the 10°N and
24.50S stations. For the Wu et al., 2001, station, Bermuda time series data was used from the winter of 2001. A biological
uptake Fe:P ratio of 0.47 rneol/mol was used (Parekh et al., submitted). Fe* is a measure of the Fe deficiency of the water for
biological growth with negative values indicating that there is not enough Fe to support the growth that could be sustatined by
phosphate.
e) Fe:C ratios are calculated using the measured AOU from nearby GEOSECS stations (above) and a organic re-mineralization
ratio of 02:C of -1.6 (similar to the method used by Sunda (1997)).
f) North Atlantic Deep Water (NADW) values. The deep profile samples from >1500 mn at the 35°N (Wu et al., 2001) and 10 *N
stations. The mid-depth samples from the 24.5°S stations were chosen based on salinity, oxygen, and nutrient profiles.
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high to a depth of 1050 m before decreasing to an average of 0.73 nmol/kg in deep water

(Figure 2.5c and 2.8).

One of the most striking features of the upper ocean profiles is the different

vertical distribution of DFe and SFe suggesting distinct biogeochemical behaviors for the

SFe and CFe pools. At all sites with surface maxima in DFe, the surface maxima are due

to CFe. This is shown in Figures 2.7c and 2.7d where maxima are observed in the CFe

profiles, but not in the SFe profiles. A pronounced surface maximum in CFe was

observed at the 30*N site in the winter, where a peak value of CFe was observed at the

surface of 0.34 nmol/kg (Figure 2.5a). CFe decreased within the mixed layer to

negligible amounts (0.04 : 0.05 nmol/kg) by 77 m. The disappearance of CFe was

observed at all sites with surface maxima at depths of 30 to 80 m (Figure 2.7d). At

depths greater than the minima, CFe values increased to 30% of the DFe pool at 150 m at

the 30*N station in the winter and the 10*N station in the summer. At the South Atlantic

site in contrast, the CFe pool remained negligible throughout the pycnocline to depths

greater than 550 m (Figure 2.6). The northwestern Atlantic site at 35°N that was sampled

by Wu et al. (2001) may be similar to the South Atlantic site in that the CFe is also

negligible at 400 and 500 m (Figure 2.7d). In general, the SFe profiles show much less

structure than the CFe profiles indicating that much of the structure in the DFe profiles is

due to CFe (Figure 2.9). SFe concentrations do increase with depth with most of the

increase occurring below the pycnocline.

High sample density profiles in the upper 200 m were collected at the North

Atlantic sites in the summer of 2001. The goal of this sampling protocol was to examine

the upper water column Fe pools in more detail. At both sites, CFe had a surface

maximum and decreased to negligible amounts at 30 to 50 m. The DFe and SFe for the

30°N site are plotted with salinity in Figure 2.5b. The mixed layer was very shallow at

the time of sampling (11 m) and distinct salinity features in the upper 30 m are present.

The DFe and SFe profiles show similar patterns to the salinity profile suggesting that the

Fe values are correlated with shallow water mass properties. A similar correlation was

observed along a transect in the Sargasso Sea for DFe and temperature (Wu and BOYLE,
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Figure 2.9: CFe plotted against DFe. This plot illustrates that much of the structure observed in
DFe data is due to variations in CFe, especially at DFe concentrations above 0.3 nmol/kg.
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2002). Although the residence time of Fe in surface waters is probably less than a year, it

must be sufficiently long enough that young, shallow water masses retain a memory of

their original surface Fe conditions. The same station in the winter was characterized by

a deep mixed layer of 100 m; CFe concentrations exhibited a surface maximum and

decreased to negligible levels within the mixed layer. This observation contrasts with the

summer profile implying that the residence time of CFe is less than the mixing time of

the mixed layer during the winter. The winter surface maximum in CFe may be due to a

dust deposition event prior to our sampling, as very low atmospheric dust concentrations

were measured concurrently at the station (CHEN and SIEFERT, 2004). The 30 0N station

in the winter is also where a large fraction of labile Fe was measured in the aerosol Fe

with a possible anthropogenic source.

The summer high-density profile at the 10*N station is plotted along with

chlorophyll fluorescence in Figure 2.5d. The mixed layer depth at the time of sampling

was 32 m. The SFe profile shows little variation over the entire depth profile to 150 m

(0.40 ± 0.03 nmol/kg, 1 SD), whereas the CFe exhibits a surface maximum and

variability within the mixed layer, disappears from 50 to 100 m, and increases with depth

to 200 m. The same station in the winter was characterized by a deeper mixed layer

(55 m). The DFe concentration increased with depth with most of the increase in the CFe

pool in the upper 200 m. This station only had 5 depths sampled in the upper 200 m and

may have not sampled a CFe minimum, but likely a DFe and CFe minimum did not have

occured at this time of year due to winter vertical mixing of high DFe deeper waters into

the mixed layer. DFe values increased to high levels at shallower depths in the winter

than in the summer reaching levels of 1 nmol/kg at 130 m versus 0.54 nmol/kg at 148 m

in the summer (Figure 2.5c and 2.5d).

Below the depth where CFe and DFe minima occur (30 to 70 m), DFe

concentrations do not increase much in the deep pycnocline at the subtropical gyre sites

(Figure 2.7a). DFe values reach very low concentrations (<0.3 nmol/kg) with no CFe

present in the pycnocline at both the South Atlantic site (Figure 2.6b) and the 35°N site

(Wu et al., 2001). The DFe minimum at the 30°N station remains low throughout the
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pycnocline as well, but DFe concentrations are higher (0.41 nmol/kg) than the other gyre

sites with 27% of the DFe present as CFe. The pycnocline water in the subtropical gyres

is formed at higher latitudes (400N) in the gyres and spreads along isopycnals

(TCHERNIA, 1980). In the South Atlantic, this water forms in an area of very low dust

deposition. Therefore, the pycnocline waters at the 24.5°S station are probably ventilated

by water that sinks with very low DFe and negligible CFe. The reason for the difference

between the pycnocline waters of the station near Bermuda and the 30 °N station from

this study is less clear, but may reflect differences in the sources of the pycnocline water.

The station at 10ON is different from the gyre stations in that the pycnocline is

very shallow and high levels of DFe are observed in the upper 1000 m. The zone of high

Fe concentration persists from 130 to 1050 m with an average DFe of 1.09

t 0.08 nmol/kg (1 SD, n--9) with 60% of the DFe present as CFe. The Fe maximum is

associated with an oxygen minimum zone (OMZ) and maximum in phosphate

(Figure 2.8). The OMZ in the tropical Atlantic is due to enhanced re-mineralization of

organic matter sinking from the high productivity upwelling region off Northwest Africa

(CHESTER, 1992). The oxygen depletion below the euphotic zone to intermediate depth is

strongest in the eastern basin and becomes weaker westward. The Fe maximum is also

associated with a salinity minimum (Figure 2.5c) of northward moving Antarctic

Intermediate Water (AAIW) (TCHERNIA, 1980), which may be assumed to have low Fe

concentrations based on the 24.5"S profile (<0.40 nmol/kg). Therefore, the high Fe

concentrations in the upper 1000 m at the 10*N site is likely from re-mineralization of

organic matter sinking from the high productivity eastern equatorial region and spreading

of this water westward (FuKuMolR and WuNscH, 1991). There are other observations

that DFe in the OMZ in the eastern tropical Atlantic is very high, on the order of 2

nmol/kg (LANDING et al., 2003).

One can calculate the Fe:C ratio for the re-mineralized organic matter in the

oxygen minimum zone using the same method as Sunda (1997). An Fe:C ratio of 11

±t 1 gmol/mol was calculated using the DFe concentrations, apparent oxygen utilization

(AOU) from GEOSECS station 39 (8*N, 44*W), and an 0 2:C ratio of-l.6 (MARTN et
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al., 1987). Our ratio falls within the range of Fe:C ratios estimated by Sunda (1997) for

the North Atlantic (7 to 12 gtmol/mol) calculated using the Johnson et al. (1997) data

compilation. The North Atlantic estimates of re-mineralized Fe:C ratios are higher than

values for the Pacific or Southern Ocean regions (usually <6 ttmol/mol). Sunda (1997)

interpreted this difference to indicate that the organic matter sinking in the North Atlantic

may have elevated Fe:C ratios compared with most of the ocean due to the higher surface

DFe and luxury Fe uptake by organisms (SuNDA and HUNTSMAN, 1995). It must be kept

in mind that this Fe:C ratio could be over estimating the Fe:C ratio if the water had pre-

formed DFe (meaning it sank with a significant amount of DFe). Finally, we note that

more of the DFe in the oxygen minimum zone is CFe suggesting that re-mineralization of

organic matter may preferentially be released into the colloidal fraction.

Although surface maxima with subsequent minima in DFe have been measured

before (BRuLAND et al., 1994; Wu et al., 2001), only the Wu et al. (2001) study measured

CFe and SFe and observed the CFe pool disappearing completely. Our study is the first

to measure DFe, SFe, and CFe in the upper water column at sufficiently high sample

density to document the disappearance of the CFe at multiple stations. There are two

possible explanations for the disappearance of CFe: (1) atmospheric dust deposition and

downward mixing and/or (2) some removal mechanism for the CFe between - 30 to

80 m. There are several possible removal mechanisms for CFe: (1) colloidal aggregation

and settling, (2) dissociation of colloidal ligand complexes and subsequent uptake by

organisms or scavenging onto particles, and (3) direct use of colloidal Fe by organisms

(i.e., ingestion). The second mechanism can be written in the following manner.

Colloidal-Fe - Colloidal + Fe - uptake or scavenging of Fe

This pathway could be driven to the right if some mechanism existed that enhanced

dissociation of the Fe from the colloid (such as photochemistry or bioreduction at cell

membranes, Chapter 1) at approximately - 50 m. As discussed in Chapter 1 (Figure 1.3),

there is evidence that marine organisms can grow utilizing colloidal Fe, although growth

rates are usually lower than organisms grown on free Fe (BARBEAU et al., 1996;

BARBEAU and MOFFETr, 1998; BARBEAU and MoFFETT, 2000; CHEN and WANG, 2001;
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NORDWELL and PRICE, 2001; CHEN et al., 2003). However, with our data it is impossible

to distinguish a biological removal mechanism from a scavenging/aggregation removal

term at a similar depth (near where there are biological particles and export). The

reappearance of CFe in deeper waters does suggest that CFe is regenerated at depth

probably through re-mineralization of organic matter.

2.3.3.2. Surface Residence Time Estimates

Surface residence time calculations were made at the profile sites for which

reasonable assumptions of steady-state could be made (Table 2.3). DFe concentrations

were integrated over the depth of the mixed layer and concurrent labile Fe deposition

estimates (90-minute, pH 4.5, reducing leach) were used as an input flux of DFe where

available (CHEN and SmFERT, 2004). This method assumes that atmospheric deposition

is the dominant source of DFe to the mixed layer, that the labile Fe flux estimates are

representative of the atmospheric input, and the DFe concentrations are at steady-state.

Excluding the 30'N site, estimates of surface residence times in the North

Atlantic were 1.5 to 5 months (_t 50%). This agrees with other estimates of surface

residence times of weeks to a few months (DE BAAR and DE JONG, 2001; SARTHOU et al.,

2003). The atmospheric Fe concentrations at the 300N station were very low (despite the

high solubility) and the residence time calculation gave unrealistic results. For the 24.5°S

station, concurrent measurements of dust were not available. Estimates of dust

deposition from Vink and Measures (2001) were used from a similar transect in June

1996. Because of the variability of dust dissolution, two cases (3% and 10%) were

chosen based on the observations from Chen and Siefert (2004) and residence times of 14

and 4 months were calculated respectfully. The only way to reduce the residence time to

a few months using our method is to increase the estimated flux to the surface ocean. In

our method, this can be done assuming higher aerosol dissolution. It is also possible that

our estimate of total atmospheric input is too low or some other significant source is

being neglected (i.e. surface water advection from areas with higher DFe). In either of

these cases, our estimate would be an upper limit. Another possibility is that surface

79



Table 2.3: Surface Residence Time Estimates*

mixed total
layer total Fe labile Fe integrated' residence
depth flux fluxc % dust DFe time

Site (i) (ttg/m2/d) 1 Sly (Rg/m2/d) 1 SD dissolution (Ig) (days) 1 SD
10N winter 55 630a 350 30 a 16 5% 2055 69 37
10N summer 32 278k 1171 6.1 a 3.3 2% 1000 164 89
30*N summer 11 203a 122 6.9a 5 3% 318 46 32

30ON winter 100 2.5 j 1.4 0.7" 0.5 28% 2937 4196e 2997

24.5"S (varying 52 8 8 b 2.7d 1.7 3% 1122 424 297
dissolution 52 88b 8.8d 6.2 10% 1122 128 89

*Residence time calculations in this table were made using measured Fe concentrations in the mixed layer

and mixed layer depths. This estimate assumes steady state and that atmospheric deposition is the only
input flux into the system. It does not consider vertical mixing or advection.
a) Total Fe fluxes and total labile Fe fluxes measured concurrently at sea assuming a 1 cm d"' deposition
rate (Chen and Siefert, submitted).
b) Based on an estimate of dust flux for this station from June 1996 (Vink and Measures, 2001). A total
atmospheric dust deposition flux was calculated from dissolved Al data. Total Fe deposition flux was
calculated using an average continental crustal abundance for Fe of 4.3%. Standard deviation estimate
made using typical Chen and Siefert, submitted, estimates of variablilty.
c) Total labile Fe flux is the Fe that was released from a reducing, slighty acidic (pH 4.5) leaching solution
(Chen and Siefert, submitted) measured concurrently at sea on fresh aerosols.
d) Since no estimate of total labile Fe exists for this station exists, three % dust dissolution values were
chosen that are in the range of the observed values from the North Atlantic data.
e) The 30*N had a surface maximum in the mixed layer and decreasing values of Fe in the mixed layer.
The in situ measured dust flux for this region is too low to explain the Fe maximum and/or the steady-state
assumption for the DFe is incorrect. Thus, residence time calculations for this station are unrealistically
long.
f) Standard deviation estimates from Chen and Siefert, submitted, are the lo variability of many stations
within each region.
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residence time is longer in areas without large atmospheric input and low CFe

concentrations.

2.3.3.3. Deep-water Column Fe Profiles

Two deep-water profiles were collected at 10°N and 30°N during the winter 2001

North Atlantic cruise and one deep profile was sampled at 24.5°S on the March 2002

South Atlantic cruise. The 10*N station profile was sampled to 4200 m. Below the high

DFe of the OMZ, DFe values decrease to an average value of 0.73 ± 0.12 nmol/kg (1 SD,

n=3) below 1600 m. The decrease in the DFe concentration is entirely due to a decrease

in the fraction of CFe from - 60% of the DFe in the OMZ to 40% at depths greater than

1600 m. SFe concentrations do not change with depth throughout the OMZ and deeper at

this site. From the salinity profile (Figures 2.5c and 2.7b), the water from 1600 m to

4200 m can be identified as North Atlantic Deep Water (NADW). The Wu et al. (2001)

35"N station also sampled NADW (see salinity profile, Figure 2.7b) and had an average

value of 0.64 ± 0.05 nmol/kg (n=6) at depths greater than 1600 m, which is lower than

our observed value. However, we only have three samples below 1600 m and the 3400 m

sample yielded high concentrations (0.86 nmol/kg) and hence is potentially contaminated.

The concentration was measured in analyses from both filtrate bottles, so the datum is

retained in the sample plots and calculations. Without the 3400 m point, the 10°N

NADW average for DFe would be 0.67 ± 0.05 nmol/kg (n=2) and indistinguishable from

the Wu et al. (2001) 350N NADW value. The 30 0N station was only sampled to 1050 m

and did not sample NADW, but both DFe and SFe concentrations increase below the

pycnocline (Figure 2.5a).

The South Atlantic water column profile Fe data are the first reported and

includes all the major water masses. In Figure 2.6a, the DFe and SFe profiles are shown

along with reactive silicate data. Antarctic Intermediate Water (AAIW) is the high-Si

water just below the pycnocline from 700 to 1200 m and has a DFe value of 0.38

± 0.01 nmol/kg (1 SD, n=4). NADW has lower Si concentration and forms the core of

the deep water from 1700 to 3350 m with higher DFe concentrations (0.47
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-t 0.02 i. ollkg, 1SD, n=7). Below 3500 m, Si levels increase to very high levels at

4040 m (118 [tmol/kg) indicative of Antarctic Bottom Water (AABW). The DFe in the

AABW was 0.42 t 0.01 mnol/kg (1 SD, n=4). There are few measurements of DFe in

the Atlantic sector of the Southern Ocean and those data are mostly from surface water.

Surface waters vary from 0.1 to 0.5 nmol/kg (MARTIN et al., 1990; DE BAAR et al., 1995;

LOSCHER et al., 1997), and DFe concentrations from a profile near the Drake Passage

were 0.10 to 0.16 nmol/kg at the surface and increased to 0.40 nmol/kg at 550 m

(MARTIN et al., 1990). These Antarctic DFe concentrations, which represent the source

water for the Antarctic water masses, are comparable with our observations of DFe

concentrations for AAIW and AABW at our site.

All of the structure in the observed deep-water DFe profile at 24.5"S and in most

of the DFe data in this study is due to CFe (Figure 2.7c, 2.7d, 2.9). The SFe at the South

Atlantic site is invariant at depths greater than 700 m (0.33 -t 0.04 nmol/kg, 1 SD, n=12).

The average value of deep-water SFe from the North Atlantic sites (0.38 ± 0.08 nmol/kg,

1 SD, n=14) is only slightly higher than the deep-water SFe at the South Atlantic site. In

contrast, the deep-water CFe decreases from 0.26 ± 0.11 nmol/kg (I SD, n=13) in the

North Atlantic to 0.11 ± 0.06 nmol/kg (1 SD, n=12) in the South Atlantic. The difference

is significant at the 95% confidence level using both the t-test and a distribution-free test,

the Kolmogorov-Srnirnov test (HOLLANDER and WoLFE, 1973). If one looks only at the

NADW, the CFe fraction decreases from 40-50% of the DFe in the North Atlantic to 30%

at the South Atlantic site. This loss in CFe along the flowpath suggests that CFe is

preferentially lost along the flow path of this water. Despite having lower CFe

concentrations than further north, the NADW at 24.50 S still has a larger fraction of CFe

than the Antarctic water masses. The CFe fraction of the DFe is slightly lower in the

AAIW and AABW (- 20% of DFe) compared to the NADW (- 30% of DFe) at the

South Atlantic site. This difference between the NADW and Antartic derived water

masses is probably due to high dust input to North Atlantic surface waters and

regeneration of Fe-replete sinking organic matter compared to the very low initial Fe

concentrations of Antarctic surface waters. The relatively invariant concentrations of SFe
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are suggestive of some solubility control (perhaps limited organic ligand concentrations

in the soluble fraction).

In Figure 2.9, all of the DFe and CFe concentration data from the Atlantic are

plotted and a positive correlation between DFe and CFe is observed. The y-intercept of

the data is at a DFe concentration of - 0.30 nmol/kg. The CFe fraction of the DFe

disappears below DFe concentrations of less than 0.30 nmol/kg, and there is

approximately a 1:1 relationship between DFe and CFe above 0.30 nmol/kg (re=0.85).

Not only does this relationship illustrate that higher DFe concentrations are usually due to

CFe, but also suggests that there is some limit on SFe concentrations or that CFe only

exists when SFe reaches a certain concentration. Unfortunately not much is known about

the distribution of organic ligands in the CFe and SFe pool, but it is probable that organic

ligands may play a role in establishing this relationship in the Atlantic Ocean. Excess

organic ligands were measured and observed in both the colloidal and soluble fraction of

surface and deep water in the northwest Atlantic and in the subtropical and tropical

Atlantic on the March 2002 cruise (unpublished, CULLEN AND MoFFET, 2003). How the

distributions of these organic ligands relates to the distribution of SFe and CFe still

remains an open question that needs to be explored.

Two qualitatively useful parameters (Fe* and AOU estimated Fe:C ratios) were

estimated for the various water masses sampled in the deep-water at our sites (Table 2.2).

Fe* is defined by Parekh et al. (submitted) and is calculated with the following formula:

Fe* = [Fe] - (Fe/P),k, *[PO4"]. Fe* is a measure of the Fe deficiency of the water for

biological growth with negative values indicating that there is insufficient Fe to support

growth based on the available phosphate. The Fe:P uptake ratio (0.47 mmol/mol) used in

this estimation corresponds to a Fe:C ratio of 4 ptmol/mol (SUNDA and HUNTSMAN, 1995)

and a Redfield C:P of 117 (ANDERSON and SARMIENTO, 1994). The Fe:C ratio is a

reasonable value for a minimum amount of Fe needed for growth by oceanic species

(SUNDA and HUNTSMAN, 1995). Fe* values for the North Atlantic sites are mostly

slightly positive, whereas Fe* is negative for all the water masses at the South Atlantic

site. The most severe Fe deficiencies are observed in the Antarctic-derived water masses.
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The general pattern of Fe* agrees well with model derived estimates of Fe* by Parekh et

al. (submitted).

The NADW, a major source of water upwelling in the Southern Ocean

(TCHERNIA, 1980), is already deficient in DFe relative to phosphate at 24.50S due to

removal of Fe by scavenging (Fe* of -0.15 nmol/kg). The severe deficiency of Fe

relative to phosphate in waters derived from the Southern Ocean is caused by upwelling

water already being deficient in Fe as well as the low dust supply to the Southern Ocean,

which does not supply enough Fe for the biological pump to utilize the entire phosphate

pool. Therefore, a large excess of phosphate is left in the surface waters when it sinks.

The excess phosphate combined with progressive scavenging of Fe as the Antarctic water

masses move north leads to the low Fe* values observed (-0.43 to -0.57 nmol/kg). It is

interesting that the Fe* values in the North Atlantic are positive. This lends support to

arguments by Sunda (1997) that sinking organic matter in the North Atlantic has higher

Fe:C ratios due to luxury uptake of Fe when more Fe is available.

The other quantity estimated from our data set was Fe:C ratios based on AOU

measurements and an O.:C ratio of-1.6 (MARTin et al., 1987; SUNDA, 1997). The AOU

derived Fe:C ratios represents the Fe:C ratio of re-mineralized organic matter, but is only

valid in water masses that sank with very little preformed Fe and have not had significant

loss of DFe due to scavenging (young water masses). The Fe:C ratio of 11 .mol/mol

estimated for the OMZ at the 10*N site may be representative of Fe:C ratios of sinking

organic matter in the North Atlantic due to the high levels of re-mineralized DFe in the

OMZ and the relatively young age of this water. The NADW at 10*N has elevated Fe:C

ratios of - 17 R.mol/mol, which may be due to higher Fe:C ratios in sinking organic

matter or preformed Fe in the NADW when it sank the in the North Atlantic. A

preformed DFe of 0.3 nmol/kg would lower the Fe:C ratio estimate to - 10 ttmol/mol. At

24.5*S, the NADW Fe:C ratio decreases from to 11 P0mol/mol indicating net loss of Fe by

scavenging. The two Antarctic derived water masses (AAIW and AABW) at 24.50S

have significantly lower AOU-derived Fe:C ratios of 5 to 7 itmol/mol, which could
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indicate that re-mineralized organic matter in the South Atlantic and Southern Ocean has

lower Fe:C values than the North Atlantic re-mineralized organic matter.

2.3.3.4. Deep-water Residence Time Estimate

The scavenging residence time of DFe in the NADW can be estimated from the

difference between DFe in the North Atlantic sites and the South Atlantic site. The

NADW at the South Atlantic site (0.47 ± 0.02 nmol/kg, 1 SD, n=4) has significantly less

DFe than the average of NADW from the northern sites (0.67 ± 0.09 nmol/kg, 1 SD,

n=9). Salinity and silicate data indicate that the NADW has not been significantly diluted

with Antarctic water sources during transit from the North Atlantic to 24.5"S station.

The NADW value for the North Atlantic is an average of the DFe concentrations from

depths greater than 1600 m from the 10*N site from this study and the 35"N site from Wu

et al. (2001). Neither North Atlantic site sampled deep enough to include AABW (see

salinity plot, Fig. 2.7b), so all sample depths are included in the average. Again, most of

the decrease from the North Atlantic to the South Atlantic site in the DFe pool occurs in

the CFe pool. The average SFe for the North Atlantic (0.36 ± 0.05 nmol/kg, n=7) is the

same as the SFe at the South Atlantic site (0.33 ± 0.05 nmol/kg, n=4). However, the CFe

in NADW decreases from 0.32 ± 0.12 nmol/kg (1 SD, n=6) to 0.15 - 0.05 nmol/kg (1

SD, n=4). Both measured differences in the DFe and CFe between the North Atlantic

sites to South Atlantic site are significant at the 95% confidence level using the t-test and

a distribution-free test, the Kolmogorov-Smirnov test (HOLLANDER and WOLFE, 1973)

In order to calculate a scavenging residence time for the DFe in the NADW,

several factors were considered including (1) dilution of the NADW with low Fe

Antarctic water, (2) re-mineralization of organic bound Fe along the flow path, and (3)

the transit time of NADW from the North Atlantic (at 10*N) to the South Atlantic site

(24.5"S). As can be seen by the salinity profile (Figure 2.7b), the core of the NADW

salinity from all sites is nearly the same indicating very little dilution of the NADW from

lower salinity Antarctic water. However, if one assumes that the small increase in Si in

NADW observed at GEOSECS stations near our stations (station 39: 8°N, 44°W; station
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Table 2.4: Deep-water Scavenging Residence Time Estimates
[RON

depth DFe I SFe CFe
range I (nmol/ 1SD n (nmol/ 1SD. n (nmol/ 1SD n

_ (m) I kg) (a) (b): kg) (a) (b) kg (a) (b)
lON and 35WNc >1600 0.67 0.09 9 0.36 0.05 7 0.31 0.10 6

_4.5_Sj 1700-3310 1 0.47 0.02 7 0.33 0.05 4 0.15 0.05 4
am or loss due to re-mineralization or I

u•tion from 10*N to 24.5*S _

gain (re-mineralization)r: 0.04 0.02f i 0.0 2 ' 0.01 0.0 2 ' 0.01
loss (dilutionY: -0.01 0.0l Ji -0.01 0.01 0.00W 0.00

net:: 0.03 0.02 I 0.01 0.01 0.02 0.011
scavenging net DFe DFe 1 CFe
residence time I (nmol/kg) (yr) unc' - (Yr) .unc.'
ow net gain (56 yr)J r 0.01 300 160 t _ 160 110

*id net gain (56 yr)J 0.03 270 140 140 100
igh netgain (56 yr)J L 0.05 T 250 130 i[ 130 90
*id net gain (40 yr) k 0.03 200 100 !{ 100 70

WANGANESE
rDMn I transitIi

depth range (nmol/ stdev n time DMn
(m) kg) (a) (b) (yr) Orr) __c._

100N >300m 0.50 0.04 10_ residencetimej 56J 130 50

24.5*S t >300 m 0.20 0.08 I 19 1 _ _ _| | 4 0 k 90 35
a) 1 SD is the standard deviation of the concentration measurements at the depths used in sample grouping (not
the same as analysis replicates).
b) Number of depths used in sample grouping.
c) Fe values were combined from the 10*N site from this study and the 350 N site from Wu et al. (2001). This
was done because the ION site only had three samples in the NADW and one of them was suspect (see text).
Without the one sample, the deep water between the two sites was indistinquishable.
d) The gain due to re-mineralization in NADW from 10*N to 24.5*S was calculated using phosphate data from
GEOSECS stations near our sites (st. 39 and 57 respectively) after correcting for dilution of NADW with
Antarctic waters. A Fe:P ratio of 1 mmol/mol (which corresponds to an Fe:C ratio of 10 grnol/mol and a C:P
of 117) was used to calulate the Fe gain.
e) The loss due to dilution of NADW with low Fe Antarctic waters was calculated by assuming all of the
increase in silicate in NADW from 100N to 24.5°S was due to dilution of low silicate NADW with high silicate
Antarctic waters. 0.4 nmol/kg was used for the Antarctic water Fe concentration.
f) The standard deviation of this estimate is based on changing the Fe:C ratio and changing the dilution factor
by a factor of 2.
g) This is an assumed uncertainty in this estimate. However based on salinity and the small increase in silicate
(2 Itmol/kg), very little dilution has occured in the core of the NADW.
h) The CFe and SFe from re-mineralization was assumed to be 60% CFe and 40% SFe based on the large re-
mineralization zone measured at 10N in the oxygen minimum zone.
i) The CFe and SFe loss from dilution was assumed to be 20% CFe and 80% based on the observed ratio of
these two pools in the AAlW and AABW at the 24.50S site.
j) The difference in age from 10*N to 24.5*S was calculated to be - 56 years based on radiocarbon age
estimates from Broecker and Virgilio (1991).
k) Residence times were also calculated for an assumed transit time of 40 years between 10N to 24.5*S. This
was the age needed to bring the Mn residence time to under 100 years.
1) Uncertainties in residence time calculations are determined by the the uncertainty in the difference between
the north and south Fe concentrations and an assumed uncertainty of 30% in the transit time estimattion.
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57: 24°S, 35 0W) is due to dilution of low-Si NADW with high-Si Antarctic water, a

modest dilution factor of 3.5% can be estimated. Dilution could then account for

0.01 nmol/kg of the DFe decrease from the North to South Atlantic assuming

0.40 nmol/kg DFe for Antarctic deep-water. DFe from re-mineralization of organic

matter was considered by using the phosphate and AOU data from the two GEOSECS

sites. There is a small increase in phosphate from the northern to southern site. If one

accounts for dilution of low-P Antarctic water with the higher-P NADW and uses a Fe:P

re-mineralization ratio of - 1 mmol/mol (corresponds to an Fe:C of 10 jLmol/mol and a

C:P of 117), a regeneration input of 0.04 nmol/kg DFe can be estimated for the transit

from the northern to the southern station. Combining the dilution loss and the

regeneration gain, an increase of DFe of 0.03 t 0.02 nmol/kg was estimated between the

two stations. The uncertainty in this estimate is large because both the Fe:C ratio and the

dilution factor also could be a factor of 2 different. The transit time of NADW was

estimated using radiocarbon age estimates for western Atlantic deep water (STuwVER,

1976; BROECKER and VmGILIO, 1991). Averaging multiple stations around our 10°N and

25"S stations from Broecker and Virgilio (1991) resulted in an age difference of - 56

±t 18 years. This estimate is probably reasonable as a simple linear age model assuming

an age difference of 160 years between 420N and 300 S (STUIVER, 1976), results in an age

difference of- 75 years. Stuiver (1976) inferred that more of the 160 year aging occured

in the North Atlantic, therefore 75 years would be an upper limit.

A summary of the data used and estimated scavenging residence times are given

in Table 2.4. An estimate of 270 ± 140 years was calculated for deep-water DFe based

on the observed loss of DFe (0.20 nmol/kg) and the estimated input of 0.03 nmol/kg DFe

from regeneration minus dilution in the transit from the northern to southern station.

Changing the regenerative- and mixing-induced input to lower and higher estimates of

0.01 and 0.05 nmol/kg does not significantly change the scavenging residence time

estimate (300 ± 150 years and 250 ± 130 years, respectively). Our derived scavenging

residence time is very sensitive to the difference in DFe from north to south and the

transit time estimate. Lowering the transit time to 40 years changes our estimate of
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scavenging residence time to 200 -- 100 years. Our estimate of scavenging residence

time agrees with published estimates of residence time (BRULAND et al., 1994; JOHNSON

et al., 1997; PAREKH et al., submitted), but there is a large uncertainty due to the

uncertainties in the difference between the DFe between the North Atlantic sites and

South Atlantic site and the transit time.

Assuming there is no exchange between the SFe and CFe, it is possible to

estimate a scavenging residence time for the CFe fraction of DFe as well. It was assumed

that 60% of the re-mineralized DFe was released into the CFe fraction (based on the

CFe/DFe of the OMZ at the 10*N site) and that 20% of the DFe from Antarctic sources

diluting NADW was CFe (based on AAIW and AABW from 24.5°S profile). From these

assumptions, a deep-water scavenging residence time for CFe of 140 ± 100 years was

estimated indicating that CFe has a shorter residence time than DFe and SFe. However,

it is not known how the two pools of DFe interact.

2.3.4. Mn Water Column Profiles

Deep-water column profiles of DMn for the 30*N, the 10°N, and the 24.5°S sites

are shown in Figure 2.10a and the data is given in Appendix 2.2. DMn concentrations

are highest in surface waters, well mixed within the mixed layer, and decrease rapidly

below the mixed layer. The surface water DMn levels were discussed in the surface

transect section and follow atmospheric input trends with high levels being maintained by

photochemical cycling in the upper euphotic zone and mixed layer (SUNDA and

HUNTSMAN, 1988). Below the zone of photochemical cycling, the deep-water DMn

(>300 m) decreased to values of 0.51 ± 0.05 nmol/kg (n=16) at the North Atlantic sites

and 0.20 ± 0.08 nmol/kg (n=19) at the South Atlantic sites. The values in the deep-water

of the South Atlantic were near or at our detection limit for Mn. Our values in North

Atlantic deep-waters are slightly higher than previously published values, 0.3 to

0.4 nmol/kg, for mid-latitude sites from 10N to 35°N (YEATS and BEWERS, 1985;

STATHAM and BURTON, 1986; STATHAM et al., 1998). Higher DMn values (0.6 to

0.7 nmol/kg) have been observed at North Atlantic sites at higher latitudes, 45"N to 53°N
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Figure 2.10: 2.1Oa) Dissolved Mn data for the profile stations in the Atlantic. Values are high in
surface waters and decrease with depth. The external reproducibity of the Mn data is typically
± 0.08 nmol/kg (1 SD). 2.1Ob) Dissolved Cr profile from the South Atlantic station at 24.5°S
plotted along with silicate. Error bars are lo standard deviations of sample replicates. The
external reproducibility of the Cr measurement is ± 0.15 nmol/kg (1 SD).
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(YEATS and BEWERS, 1985). There are only two previously published profiles from the

South Atlantic at 15'S and 30°S in the eastern basin. DMn from greater than 300 m at

those sites was 0.2 to 0.3 nmol/kg, which is similar to our observed deep-water DMn in

the western basin of the South Atlantic.

Because Mn is a scavenged element in oxygenated deep-water, DMn

concentrations in deep-water tend to decrease with increasing age of deep-water unless

there is an input of DMn (e.g., hydrothermal vents, suboxic boundary layer) (LANDING

and BRULAND, 1987; STATHAM et al., 1998). Our data follows this trend with decreasing

DMn in the deep-water from the North Atlantic to South Atlantic. We did not observe

elevated DMn levels in the OMZ at 10°N. Elevated levels of DMn have been observed

in the OMZ of the Pacific (KLINKHAMMfR and BENDER, 1980; LANDING and BRuLAND,

1980; LANDING and BRULAND, 1987), but much lower levels of oxygen (<50 ptmol/kg)

are observed in the Pacific OMZ than the minimum oxygen levels at our site

(- 100 tmol/kg). Klinkhammer and Bender (1980) proposed three possible mechanisms

for the Mn maximum observed in the OMZ of the Pacific: (1) reduction of MnO2 to

soluble Mn(II) in reducing sediments of the continental margin, contact of OMZ water

with these sediments, followed by lateral transport of Mn(II) with the OMZ water, (2)

reduction of MnO 2 particles within the OMZ due to low oxygen and lower pH conditions,

and (3) release of Mn(II) from sinking organic matter. The first mechanism has been

argued against due to the low observed Mn fluxes from sediments in the OMZ of the

continental margin of the Pacific (JOHNSON et al., 1992; JOHNSON et al., 1996). Johnson

et al. (1996) modeled the dissolved Mn(II) maxima in oxygen minimum zones using a

model where Mn(II) was released from sinking organic matter and the rate of Mn(II)

oxidation to MnO 2 followed by scavenging was reduced within the OMZ. The reduction

in Mn(II) oxidation and scavenging leads to formation of the dissolved Mn maximum in

the OMZ. However, the model predicts that Mn maxima would only exist in OMZs with

more severe oxygen depletions (<100 umol/kg) than our station.

Deep-water scavenging residence time estimates were made for DMn (Table 2.4)

using concentrations in NADW at 10*N and 24.5*S and a transit time of 56 years, similar
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to the method used for DFe. No gain or dilution factors were considered for Mn because

it does not have a significant source from re-mineralization of organic matter nor is there

a difference between the Antarctic water masses and NADW at the South Atlantic site.

We estimated a scavenging residence time of 130± 50 years, which is longer than

previous estimates of <50 years (WEISS, 1977; BRULAND et al., 1994). In order to reduce

the scavenging residence time, the transit time of the NADW from 10*N and 24.5°S

would need to be decreased or another input of Mn would need to be included. It is

possible that there could be lateral advection of Mn from the shelf to mid-depth water,

although no variations with depth are observed. If the transit time were shortened to 40

years, the residence time of DMn would be less than 100 years.

2.3.5. Cr Water Column Prof'le

Only one profile was processed for dissolved Cr (DCr) at the 24.5"S station

(Figure 2.1Ob and Appendix 2.3). DCr concentrations range from 2.2 nmol/kg in the

surface water to 3 nmol/kg in deep-waters and show a correlation with Si (r2=0.69) and

thus water mass units. The Antarctic water masses have higher DCr (AAIW: 2.85 _-

0.08 nmol/kg, I SD, n=4; AABW: 2.98 ± 0.19 nmol/kg, 1 SD, n=4), and the NADW

values are slightly lower (2.52 ± 0.19 nmol/kg, 1 SD, n=7). A correlation of Cr with Si

(and slightly less pronounced correlation with other nutrients such as P) for individual

profiles has been observed before (CRANSTON, 1983). However, unlike Si, Cr does not

seem to increase from the North Atlantic to the South Atlantic or to the Pacific with

increasing age of deep-water. Observed values in the deep-water of the North Atlantic

range from 3 to 5 nmol/kg (and higher) at open ocean sites (CAMPBELL and YEATS, 1981;

JEANDEL and MINsTER, 1987; SmnuAwwn et al., 2000), and one profile from the eastern

South Atlantic had measured deep-water DCr of,- 5 nmol/kg (SmINAWIN et al., 2000).

Comparable, if not somewhat lower, concentrations have been observed in the Pacific

(CRANSTON, 1983; MURRAY et al., 1983; JEANDEL and MINSTER, 1987). It is unclear

from the data sets how much of the variation in observed measurements is due to real

variability and how much is due to differences in measurement technique. Our method
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suffers from a large blank correction, and we have not assessed our accuracy with

external consistency samples or standards. Therefore, it is difficult to compare our DCr

concentrations with other published data sets. However, our concentrations do fall within

(towards the low end) the range of observed values published for the Atlantic. Our DCr

observations support earlier observations that Cr is involved in biogeochemical cycling to

a limited extent.

2.4. CONCLUSIONS

In the subtropical and tropical Atlantic, surface DFe and DMn concentrations

follow dust deposition trends. The coupling of dust deposition and dissolved

concentrations of these elements is modified by their chemistry in the surface waters. For

DFe, biological uptake and scavenging cause DFe levels to be variable and have

residence times in surface waters on the order of a few months (1 to 5 months). Based on

dust solubility experiments (mesocosm incubation experiments), lower DFe compared to

dissolved Al, and observed excess ligand concentrations in the North Atlantic, there may

be a solubility limit to how much atmospheric Fe can dissolve in the North Atlantic

surface waters (- 1. 15 nmol/kg). DMn has a longer residence time in surface waters

(decades) due to photochemical cycling, therefore the correlation of DMn and dust

deposition is erroded due to cycling and lateral advection.

Two fractions of DFe, soluble and colloidal, were considered in this study. The

CFe followed dust deposition trends more strongly than the SFe, and observed surface

maxima in DFe profiles were always associated with maxima in CFe. These observations

support arguments by Wu et al. (2001) that atmospheric Fe is preferentially released into

the colloidal fraction. Where dust deposition is low and CFe is low (i.e. the South

Atlantic), the residence time of DFe may be longer because of a smaller fraction of CFe.

SFe and CFe profiles had distinct profiles both in the upper water column and in

deeper waters. SFe profiles were always depleted in surface waters (and also in the deep

pycnocline of the gyre sites) and gradually increased to relatively uniform concentrations

in deep-water (- 0.3 to 0.4 nmol/kg). CFe profiles showed significantly more variability.
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At sites with surface maxima in CFe, the CFe always decreased to negligible levels at

depths of 30-80 m either in the mixed layer or below. At two gyre sites (24.5°S and

likely the Wu et al. (2001) 35*N site near the Bermuda Rise), the CFe pool remained

negligible throughout the deep pycnocline. At the 30*N gyre station, which also had a

deep pycnocline, DFe and CFe also remained low throughout the pycnocline with CFe

accounting for 30% of the DFe. The low DFe and CFe in the deep pycnocline of the gyre

sites may be due to ventilation with water from higher latitiudes with lower dust input

(and thus low CFe).

In contrast to the gyre sites, the 10*N station was located on the edge of the

equatorial system and had a very shallow pycnocline (<250 m). It was the only station

that did not have a surface maximum in DFe or CFe, but only in the winter when the

mixed layer was deep. DFe increased rapidly within the shallow pycnocline to

concentrations >1 nmol/kg associated with an OMZ at depths of 130 to 1050 m. A

majority of the increase in DFe (60%) resulted from increasing CFe. The increased DFe

in the OMZ is likely due to re-mineralization of organic matter under the high-

productivity eastern equatorial upwelling region and then lateral westward spreading.

Under the more stratified summer conditions, the 10*N site had a surface maximum

followed by a minimum from 50 to 100 m in the CFe. We have not established the

mechanisms that cause the shallow minima in CFe, but it may be due to (1) atmospheric

deposition and downward mixing and/or (2) a Fe sink within the euphotic zone such as

scavenging or an indirect biological utilization mechanism.

Deep-water DFe and CFe concentrations show variability with water mass and

with the source, age, and path of the water masses. DFe concentrations in NADW

decrease by 30% from the North Atlantic to South Atlantic with most of the decrease

associated with the colloidal pool. Despite the loss in CFe, the NADW CFe and DFe

concentrations at 24.50S are still higher than the concentrations of Antarctic derived

water masses (AAIW and AABW). DFe in AAIW and AABW is low (- 0.4 nmol/kg),

which is consistent with observations of DFe in the Southern Ocean. Approximately

20% of the DFe in the Antarctic water masses is colloidal, which may reflect their low-
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dust and low DFe source region. SFe in the deep-water in the Atlantic is relatively

uniform, therefore most of the variability observed is due to CFe. This was illustrated by

positive correlation between DFe and CFe above a DFe concentration of - 0.3 nmol/kg.

A deep-water scavenging residence time for DFe of 270 ± 140 years was estimated from

the DFe decrease in NADW from the North Atlantic to South Atlantic. If one assumes

there is no exchange from the SFe pool to the CFe pool, then a scavenging residence time

for CFe ws also estimated (140 ± 100 years).

DMn concentrations were also measured at all the profile sites, and a DCr profile

measured only the South Atlantic site. DMn profiles are consistent with observations

with high surface water values (- 2 to 3 nmol/kg) in the mixed layer and euphotic zone

where there is atmospheric input and photochemically cycling. Concentrations drop off

rapidly to low values at depths greater than 300 m. Concentrations decrease with the age

of deep-water with higher values in the North Atlantic (- 0.5 nmol/kg) than at the South

Atlantic site (- 0.2 nmol/kg). From this decrease, a scavenging residence time of 130 ±

50 years was estimated. The South Atlantic DCr profile had depleted surface values (2.1

nmol/kg) and increased with depth to values between 2.3 and 3.2 nmol/kg.

Concentrations varied with water mass unit with higher concentrations associated with

the Antarctic water masses (- 3 nmol/kg) and lower values in NADW (- 2.5 nmol/kg).

With only one profile, it is difficult to contribute to the discussion on the controls of the

Cr distribution in the ocean. However, our data falls within the range of observed values

and supports earlier observations that Cr is involved in biogeochemical cycling to a

limited extent.
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Appendix 2.1: Surface Transect Data
Lat. DFea WeDI
(N, Long. (mnol/ I(nmol/ (nmol/I

Cruise date neg. °S)I (W) kg) 1SDd n I kg) 1SD n kg) 11 SD n
SJOl1 10/14/01 30.0 45.3 0.48 0.04 2 0.37 0.07 I 1.58 !0.06 6
Jan. 2001 1/16/01 26.2 45.0 0.49 0.05 3 - 1.92 10.11 3

_1/17/01 25.1 44.7 ?1.13 0.07 2 _ 2.60 10.03 2
T1/17/01 24.0 45.0 0.73 0.03 2 - 2.28 10.16 3
_ 1/17/01 23.0 45.0 0.79 0.06 4 1 0.40 0.08 __ 2.25 10.14 9
11/18/01 21.7 i 45.0 0.89 0.02 2 t I 3.20 10.10 3
_ 1/18/01 20.5 1 45.0 0.84 0.05 4 i _ 2.75 10.45 6
1/18/01 18.4 j 45.0 0.68 0.04 3 - 2.49 0.09 3
i 1/19/01 18.0 1 45.0 0.63 0.04 4 j 0.51 0.03 2.68 0.13 6
11/19/01 15.8 45.0 0.65 0.04 6 I 0.42 0.04 2.95 10.33 9
_ 1l/20/01 14.4 j 45.0 ?0.91 0.05 3 _ 2.67 !0.10 3
11/20/01 12.3 J 45.0 0.30 0.04 3 _ 2.98 10.07 3
1/20/01 11.6 J45.0 0.43 0.01 2 1 ?0.74 0.02 i 2.86 j0.07 3
1/20/01 10.6 i 45.0 0.37 0.06 3 _ j 2.95 0.33 3

1 1/21/01 10.2 ] 45.0 0.54 0.06 6 1 0.22 0.08 2.17 10.04 6
Kn162 16/27/01 29.2 23.6 0.39 0.02 3 1.76 10.02 3
June/July 6/28/01 29.3 28.0 0.42 0.09 4 1. 1 0.02 3
2001 16/29/01 29.6 31.9 0.37 0.03 3 _ _ 1 .91 10.08 3:6/30/01 29.7 35.9 0.60 0.03 5 1 2.2 810.14 3

7/1/01 29.8 1 39.4 0.49 0.03 4 1.65 0.07 6
7/2/01 30.0 45.0 0.50 0.04 3 1.70 10.07 3

En37 3/4/02 7.0 49.5 0.53 0.01 2 0.38 10.04 3' 2.67 10.06 3
War. 20021 3/6/02 3.5 I 44.5 0.66 0.03 3 0.23 10.02 8 j 2.72 4.09 3

1 3/9/02 -0.5 T35.0 0.63 0.00 13 1 2.77 10.11 9
:3/13/02 -11.7 32.0 0.27 0.02 0.24 0.032318 i 0.163
i3/16/02 -19.0 34.0 0.23 0.03 2 1 0.28 0.01 3 3 .40 107 3
13/18/02 -24.5 1 37.0 0.37 0.05 3 1 0.24 10.02 3 ! 2.76 10.05 3

? Sample data is suspected to be contamination and is not considered in figures and discussion.
a) DFe is the Fe that passes through a 0.4 .Lm filter.
b) SFe is the Fe that passes through a 0.02 pin filter.
c) DMn is the Mn that passes through a 0.4 pm filter.
d) 1 SD is the standard deviation of sample replicates.
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Appendix 2.2: Water Column Profile Data
DFe SFe 'DMn

i depth: (nmol/ (nmol/ i(nm
Cruise-St date Lat. Long. (m) i k) 1 n kg) 1 lSD n kg 1 SD n

_°Npro__le 1/14I01130.0-N 45.3-W 1  0.2 0.68 0.04 3 0 0.34 i0.02 3 1 2.13 0.04 3
SJ0101, 41 0.58 0.03 3 0.34 _ 1 2.13 0.08 3
Jam.2001F I ___ 63 0.39 0.01 3 0.32 10.03 3 16 0.05 3

77 0.37 0.01 2 0.33 0.05 3 2.14 10.10 3
165 0.41 0.02 2 0.28 [0.01 3 1 0.93 0.07 3
2001 ?0.63 0.04 3 0.28 10.05 3 0.90 0.24 13
250 0.42 0.03 3 0.33 0.03 3 0.63 0.02 3
375 ? 1.19 0.08 3 0.35 0.01 3 0 0.54 10.13 3

_ 450 I 0.41 0.01 2 ?0.48 0.03 3 0.49 0.09 3
"j 525 ?0.74 0.03 3 0.36 0.03 2 0.61 0.09 43

850 0.55 0.04 3 0.42 0.01 3 047 0.06 3
950 0.57 0.02 3 0.41 0.00 2 0.51 0.09 3
1050 0.51 0.01 2 0.35 10.01 2 0.53 '0.04 3

0°N profile 1/21/01 10.2°N 45.00W 0_ _ 0.54 0.06 6 0.22 ;0.08 3 j 2.17 _ 0.04 6SJO1o1, 3o0 0.68 0.01 2 0.35 10.11 3 106 0.07 _3

Jan. 2001 Tl130 1.08 0.08 4 ?2.98 j 0.03 2 0.58 0.06 3
165 _ 0.98 0.04 2 0.33 0.17 2 0.59 0.06 3

e3200 _ 1.19 0.16 3 0.41 10.11 3 0.56 0.07 3
2 150 1.05 0.01 2 0.46 0.01 3 0.57 0.07 3

_3 i 175 1.19 0.02 24 0.49 0.04 3
____525 1.11 0.03 2 0.45 10.02 2 0.5546 0.03 3

725 1.06 0.11 2 0.31 0.05 22 0.51 0.089 333
_850_1.16 0.03 0 1105 00 43 010 3 0 0.013

S1050 1.01 0.07 3 0.46 0.02 2 0.56 0.07 i, 8

1250 2 0.98 0.10 3 0.42 106 2 0.46 •.0.06 3
J 21500 0.77 0.02 3 0.58 0.10 0.03 1.3

1750 0.70 0.13 6 0.45 10.02 3 0.43 0.01 3
3400 0.86 0.05 4 0.3610.02 2 0.55 10.08 _8

____ 0.51_0._81 _

4200 _ _0.6360.56 0.3 3 2 0.2 T0.05 2 01 0.024930°N profile 7/2/01 30.0*N 45.0*W 1 0 0.51 0.04 3 1.7 0.0 3

Kn162, _ 2 j 0.49 0.03 2 0.60 0.01 3 1.94 0.12 3
July 2001 2 0.51 0.02 3 1.73 0.0234 0.54 0.03 2 j 0.43 10.03 3 i1.86 0.06 3

S!6 [0.56 0.03 3 10.29 10.02 2 1.94 0.02 3

8 11 0.47 0.02 3 0.33 0.01 2 1.70 0.00i3S8 1i.0.44 0.02 3 , !1.33 0.02 3

Si11 i0.44 0.02 3I 0.34 10.02 2 1.75 0.01 3

141 0.46 0.02 3 0.48 10.03 3 1.80 0.05 3
30 17 1 0.49 0.01 23 ?0.68 0.03 3 1.88 0.17 3

_ _ 19 1 0.45 40.03 2 I 0.23 0.06 2 1.84 0.08 3
_ _ _ __ ___30 0.2 0.023 0.41 0.03 4 1.92 0.09 3

_ _ ____39__ 0.42 0.03 4 0.39 !0.02 3 1.86• 0.02 3

_______7 0.36 002 79 0.36 0.03 3 1.79 0.03 3
79 03 0 ! 1.69 0.05 3
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- _ , 197 0.44 0.05 2 ?0.49 0.00 2 0.90 0.02 3
p l197 0.42 0.03 2 1 0.84 0.01 3

*N profile 7/12/01110.1*N 45.5'w 0 0.60 .0.03 3 0.41 0.05 2 2.40 0.13 3
Kn162, 1 2 0.71 0.04 3 0.37 0.04 3 12.41 0.08 3
July2001 _ 5 0.59 0.033 0.40 0.05 3 2.28 0.12'3

_ _ 7 0.55 0.02 3 1 0.65 0.03 2 2.51 0.123

__ 10 0.48 0.05 3 0.40 0.05 3 2.32 0.06 3
13 0.45 0.02 3 0.34 0.01 2- 2.40 0.10 !3

, 16 0.51 0.00 2 .?2.96 0.27 3 1 2.55 0.13 3
_ 19 0.62 0.04 3 0.36 0.12 3 2.33 0.07 3
_ 22 0.56 0.01 3 0.42 0.00 2 2.21 0.11 3

__________ ___ 25 0.53 0.02 2 0.44 0.0 2 2.33_ 0.07_3

28 0.55 0.04 3 0.45 i0.05 3 i 2.24 0.25 3
49 0.40 0.04 3 0.44 0.03 3 1 2.12 0.06 3

___79 0.37 0.03 3 0.41 0.05 3- 1.91 0.0913
148 0.54 0.03 3 0.40 0.01 3 70.77 0.07 i3

__198 0_o.75 0.04 3 0.82 0.02 3 I0.73 0.02 3

2.50S profile 3/18&A02 24.5*S 37.0*W 1 0.36 0.05 3 0.24 1f0.02 3 2.21 0.123
_En367_ 18 0.39 0.02 2 0.30 0.01 3 1.71 0.39 3

Mar.2002 69 0.24 0.04 2 0.28 0.02 2 - 1.42 0.07 3
113 0.29 0.02 3 0.26 0.05 3 1.28 0.04 i3
239 ? 0.50 0.01 2 ?0.61 0.01 2 0.15 0.09 3
394J 0.26 0.04 3 0.26 0.04 2 0.14 0.17 i 3
544 0.28 0.00 2 ?0.46 1 0.08 0.04 3

__709 0.37 0.03 2 0.31 0.02 3 I 0.10 0.20 3
841 j 0.39 0.03 3 0.31 10.01 3 40.16 0.03 3

985 0.39 0.01 3 ?0.45 i0.03 3 0.23 0.10 3
_ 1181 0.38 1 0.35 0.03 3 0.06 0.07 2

1366 0.45 0.03 3 0.32 0.03 3 0.28 0.11 i3
16491 0.43 0.04 2 0.38 0.05 3 0.08 0.24 i2

1787__ __ 0.45 0.01 3 ? ?3.83 0.29 2 0.26 0.51

1920 1 0.45 0.02 2 ?0.55 0.05 2 0.21 0.16 3
_2198 0.46 0.03 3 0.33 0.01 3- 0.31 0.17 3

2494 0.49 0.05_ 2 0.30 0O.00 .19 2.08 3
_26761 0.50 0.02 2 0.40 [0.01 3 0 0.36 0.11 3

3051 0.48 0.02 3 0.35 !0.01 3 0.18 0.05 1,3
__3308 0.49 0.02 3 0.27 0.02 2 0.16 0.07 3

3556[ 0.41 0.02 3 ?0.48 _ 1 0.25 0.1913
_ 3806 0.43 0.03 3! 0.29 i0.04 3 1 0.27 0.05 i3
__3905 0.43 0.02 3 1 0.163______________ __ 0.15 0.16__

__4029 0.41 0.02 2 1-0.35 10.01 3 i 0.26 0.18 3
? Sample data is suspected to be contamination and is not considered in figures and discussion.
a) DFe is the Fe that passes through a 0.4 g.m filter.
b) SFe is the Fe that passes through a 0.02 Pun filter.
c) DMn is the Mn that passes through a 0.4 tun filter.
d) I SD is the standard deviation of sample replicates.
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Appendix 2.3: En367, 24.5 °S Station Dissolved Cr and Silicate Data

Cr MeDCr S S 3
depth (DmOi depthl (MoI/

date Lat. Long. (m) kg) lSD' n (m) kX!k)
3/18/02T 24.50S 37.0"W 1 2.32 0.07 3 48 0.3

18 2.09 0.08 21 102 0.2

1 69 2.36 0.0 5 31 202 0.8
113 2.32 10.08 3i 303 T 1.5
239 2.33 0.11 3 450 4.3
394 2.37 0.08 3 601 9.9

544 2.51 0.03 3 750 18.8
709 2.79 0.14 3 900 _ 32.7
841 2.81 0.08 3 1051 43.3
985 2.81 0.10 3 1176 43.9
1181 2.97 0.04 2 1299 38.8
1366 2.45 0.12 3. 1426 28.1

_____ 1649 2.38 0.06 2 } 1549 21.1
1787 2.48 0.01 3 1673 17.8

1920 2.47 0.10 3 1800 17.4
2198 2.25 0.19 3! 1949 18.5

_ 2494 2.55 [0.09 3 2100 j 20.2
_2676 2.39 0.03 3 2397 24.3

3051 2.68 0.14 3 2699 28.7
3308 2.81 10.05 3 2998 31.9
3556 2.77 0.18 3 1 3298 1 39.0
3806 2.88 [0.05 3 3599 66.2
3905 3.17 0.07 21 3898 1 101

4029 3.11 t0.12 3 1 4041 118
a) DCr is the Cr that passes through a 0.4 jtm filter.
b) Silicate measurements were made at sea by UV-VIS spectrometry (by M. Reuer and A.
Lima) on unfiltered samples collected from a CTD rosette. Typical sample precisions
were ± 2%.
c) 1 SD is the standard deviation of sample replicates.
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Chapter 3

Dissolution of Aerosol Iron in Seawater

3.1. INTRODUCTION

In order to estimate the effects of changing fluxes of iron to the ocean using

biological pump and climate change models, an improved understanding of the

relationship between iron sources to the ocean, biological productivity and export is

necessary. The dominant source of Fe to the open ocean is atmospheric deposition,

mostly of aluminosilicate mineral soil sources from arid and semi-arid regions (DUCE and

TINDALE, 1991). There are a few models of total atmospheric Fe deposition to the oceans

that incorporate observational data, long term satellite observations, and/or climatological

data (DucE and TINDALE, 1991; MAHOWALD et al., 1999; FUNG et al., 2000; GAO et al.,

2001; HAND et al., submitted). Given the estimated total aerosol iron flux, models must

then estimate the fraction of Fe that becomes bioavailable in seawater (e.g., dissolves).

Aerosol iron solubility is a function of aerosol type and chemical processing in

the atmosphere (reviews: JICKELLS, 1999; JICKELLS AND SPOKES, 2001). Particles are

subject to multiple wetting and drying cycles in the atmosphere, and therefore experience

large chemical variations before being deposited. Cloud droplets can be acidic due to

SO 2 and NO, oxidation reactions and can have high and variable ionic strengths. Iron

solubility in aerosols is very sensitive to pH with Fe being much more soluble under

acidic conditions (ZHUANG et al., 1992; SPOKES et al., 1994; SPoKES and JICKELLS,

1996). Photochemistry is another process that may increase the amount of labile Fe by

photoreduction of Fe(E[I) to more soluble Fe(l) in the atmosphere (BEHRA and SIGcG,

1990; SIEFERT et al., 1996; ZHU et al., 1997). All of these processes act to increase the

amount of labile Fe as particles are transported to the ocean by altering the chemical

species of Fe present and the aerosol solubility in seawater.
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The composition of aerosol particles is also important in determining the amount

of Fe released into seawater. Urban aerosols of anthropogenic origin have more labile Fe

than lithogenic crustal-type aerosols (ZHU et al., 1993; SPOKES et al., 1994; BONNET and

GuIEu, 2004). It is thought that some of the increased labile Fe might be due to higher

organic concentrations (such as oxalic acid) in anthropogenic aerosol and the increased

photolability of the organically bound Fe species (ZHU ET AL., 1993). Also, Fe in

anthropogenic particles is associated with more reactive phases and more acidic

conditions in the aerosol cloud waters (SPoKES et al., 1994; JICKELLS and SPOKES, 2001).

Differences in the composition of crustal aerosols are also reflected in the amount of Fe

that becomes bioavailable in seawater. In laboratory culture experiments, marine

organisms had higher growth rates when grown with lithogenic particles with a higher

fraction of amorphous Fe hydroxides (VISSER et al., 2003). It has been proposed that up

to 50% of the dust in the atmosphere today is from human disturbed soil (TEGAN et al.,

1996). Therefore, the crustal-type aerosols we observe today (perhaps with more soil

material) may not be representative of past aerosol types. Other potential sources of

aerosol particles such as volcanic emissions or extraterrestrial dust may have higher

fractions of labile Fe than crustal-type aerosols (JOHNSON, 2001).

Aerosol particles are deposited onto the ocean surface either by gravitational

settling (dry deposition) or scavenging during rain events (wet deposition), and the

amount of Fe released into seawater from wet and dry deposition is likely different.

Aerosol iron solubility from dry dust has been estimated by leaching experiments under a

variety of pH conditions. Only a few studies have assessed dissolution under high pH

conditions either with artificial seawater or natural seawater, and only one study has

investigated the solubilization of remote oceanic aerosols in natural seawater. Generally,

the amount of crustal aerosol Fe dissolved in laboratory experiments at pH 8 and in

seawater is low. In experiments where Saharan dust was cycled from low pH 2

conditions to high pH 8, high ionic strength conditions, less than 0.3% of the total Fe

remained dissolved in the final solution (SPOKES and JICKELLS, 1996). For Saharan soil

leached with natural seawater, the fraction of Fe dissolved ranged from 0.001 to 2.2%
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and was dependent on particle concentration (BONNET and GutEU, 2004). The

observation of aerosol solubility decreasing with increasing particle loading may be due

to enhanced scavenging of Fe onto particle surfaces (SPOKES and JICKELLS, 1996;

BONNET and GuIEu, 2004). One study with aerosols collected in the remote Pacific

ocean found that - 50% of aerosol Fe could be dissolved at aerosol Fe concentrations of

less than 2 nmol/kg using natural seawater (ZHUANG et al., 1990).

Instead of using high pH seawater conditions, many researchers use leaching

solutions that mimic cloud conditions. The argument is that the low solubilization

observed for crustal material (as for the Saharan dust) does not represent the bioavailable,

labile fraction of Fe from dust. Aerosols leached under low pH (1-5) conditions

mimicking cloud solutions have found leachable fractions of Fe ranging from 2 to 7% for

open ocean Atlantic aerosols (ZHU et al., 1997; CHEN and SIEFERT, 2004) to more than

50% in remote North PAcific aerosols (ZHUANG et al., 1990; ZHUANG et al., 1992).

Zhuang et al. (1992) also found that Chinese loess leached under the same conditions as

remote Pacific aerosols released less Fe to solution than the remote aerosols suggesting

that atmospheric cycling increased the solubility of the aerosol material compared with its

source. Particle size also plays a role in how much Fe can be released from aerosol

particles. More labile Fe is consistently observed in the finer fraction of aerosols

(SIEFERT et al., 1999; JOHANSEN et al., 2000; CHEN and SIEFERT, 2004; CHEN, 2004, in

preparation).

Using a 90-minute, pH 4.5, reducing (hydroxylamine) leach to estimate the labile

fraction of Fe, the leachable fraction of Fe from freshly collected aerosols from the

tropical and subtropical Atlantic ocean was typically 2 to 5% (CHEN and SmFERT, 2004).

Higher solubility was observed in aerosols collected in the central North Pacific in the

summer of 2002 (2 to 16%) (CHEN, 2004, in preparation). However, lower fractions of

labile Fe were observed for Pacific aerosols in the same region in April 2001 (1 to 3%)

(CHEN, 2004, in preparation; HAND et al., submitted). Dust concentrations in the

atmosphere during April in the North Pacific are much higher than in the summer

(PROSPERO, 1996). Recent studies have argued for higher solubilization of Pacific
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aerosols based on DFe budgets in surface water (JOHNSON et al., 2003; BOYLE et al.,

submitted). It takes approximately one week for an aerosol particle to cross the Atlantic

from African sources, whereas it takes 8 to 14 days for a particle to reach the central

Pacific from China (JICKELLS and SPOKES, 2001). Higher solubilization of Pacific

aerosols may be related to longer transit times and/or differences in the composition of

source material.

The compositional ranges in material used in experiments (e.g., remote weathered

aerosols versus soil or loess) and in leaching conditions have lead to a large range in

reported soluble fractions for atmospheric Fe. Jickells and Spokes (2001) suggested that

the overall solubility of Fe from dry Fe deposition was less than 1%. Because of the low

solubility of dry deposition and much higher observed soluble fraction of Fe in rainwater

(- 14%), they suggested that wet deposition may dominate the input of dissolved Fe to

the ocean although dry deposition dominates total Fe input. Reported soluble Fe in

rainwater (pH 4 to 7) ranges from 4 to 48% with an average of 14% (references in

(JICKELLS and SPOKES, 2001)). As a droplet falls, low pH solutions are neutralized by

entrainment of NH3 and other species. When deposited in the ocean, large chemical

gradients are encountered going from mildly acidic pH to basic pH, and low to high ionic

strength. How much of the rainwater Fe remains dissolved as it is neutralized and mixes

with seawater is unknown, but some fraction of it may form complexes with organic

ligands (GLEDHILL and VAN DEN BERG, 1994; RUE and BRULAND, 1995; Wu and

LUTHER, 1995; WrrER and LUTHER, 1998) or precipitate as hydrated Fe oxides which

may be bioavailable (review: SUNDA, 2001).

The fraction of aerosol Fe released into seawater is an important variable in

models of the Fe cycle, yet is very poorly constrained. In this chapter, aerosol dissolution

experiments were performed using freshly collected aerosols and natural seawater from

the North Pacific subtropical gyre in July 2002. These experiments differ from other

studies in that the amount of aerosol dust added to the seawater was low and the seawater

was changed every 24 hours to minimize saturation of the seawater or Fe loss to bottle

walls. For the same aerosols, estimates of labile Fe using the 90-minute, pH 4.5,
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reducing leaching method by Chen and Siefert (2003) are also available for comparison

(CHEN, 2004, in preparation).

3.2. SAMPLING SITES, COLLECTION, AND METHODS

3.2.1. Sites and Sample Collection

North Pacific aerosol samples and surface seawater were collected in July 2002

on the R/V Ka'imikai-o-Kanaloa (KOK0210 cruise) along a transect northwest from

Hawaii (Figure 3.1) from west (25.60N, 173 0W) to east (Station ALOHA, 22.8 N,

158°W). Aerosol samples were collected at sea by Y. Chen and Dr. R. Siefert

(University of Maryland) on 47 mm polycarbonate 0.4 Rtm Nuclepore® filters using a

low-volume dichotomous virtual impactor collector (1.3 m3 hr") with a sector sampling

system, which only allowed collection when the wind direction was ±70* off the bow.

The low volume collectors only collected the fine fraction of aerosol (< 2.5 gim). Filters

were acid cleaned and rinsed with trace metal clean water prior to aerosol collection.

Collection technique details and trace metal considerations are discussed in Chen and

Siefert (2003, 2004). The two aerosol samples used in the dissolution experiments were

collected on July 13 (9 hr) and July 14 (6 hr). The end points of collection were 25.6"N,

173 0W and 24.2"N, 168.6°W respectively. A modeled 2 week back trajectory for the air

mass sampled at the sea surface during the aerosol collection time is plotted in Figure 3.2

(HYSPLIT model, (DRAXLER and RoLPH, 2003) using the 1948-2002 NCAR reanalysis

data. Atmospheric dust concentrations vary seasonally in the North Pacific with the

dustiest season in the late winter/early spring and much lower levels in the summer when

the aerosol samples were collected (PARRINGTON et al., 1983; PROSPERO, 1996). March

and April concentrations of Fe in the atmosphere can be greater than 300 ng mn, based on

measurements of Al in oceanic air at Midway Island from 1981 to 1993 (PROSPERO,

1996). Fe concentrations in the atmosphere measured during July 2002 were much lower

than winter values, and quite different on the two sampling dates with observed values of

3.72 ng m"3 for July 13 and 86.8 ng m-3 for July 14 (CHEN, 2004, in preparation).
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Figure 3.1: Sample location map in the North Pacific. The circles are the locations where trace
metal clean surface samples were collected. Aerosol samples were collected at the first two
stations along the transect. Arrows denote the end point of the aerosol collection period, which
were 6 to 9 hours prior to the stations.
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Figure 3.2: A two week modeled back trajectory for the aerosol sample used in the dissolution
experiment #2. The aerosol sample was collected for 9 hours on July 14, 2002 by Y. Chen and R.
Siefert (University of Maryland). The aerosol sample collection end point was 24.2"N, 168.6"W.
Modeled back trajectories for the aerosol sampled used in experiment 2 were very similar (July
13'; 25.6"N, 173.4"W). Back trajectories were calculated by the HYSPLIT (HYbrid Single-
Particle Lagrangian Integrated Trajectory) Model (DRAXLER and ROLPH, 2003). The author
gratefully acknowledges the NOAA Air Resources Laboratory (ARL) for the provision of the
HYSPLIT transport and dispersion model and/or READY website used in this publication
(http://www.arl.noaa.gov/ready/hysplit4.html). The location of a volcano that was active just
before the sampling period (June 28 to July 1, 2002) is also shown (Karymsky Volcano).
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Surface seawater samples were collected at 10 m depth along the transect using a

single MITESS module (BELL et al., 2002) attached to a "weather-vane" deployed on the

hydrowire on the side of the ship ("ATE/Vane", see Chapter 2 for more details). The

vane rotates around the hydrowire orientating itself such that the module is upstream of

the wire while ship moves forward at 1-2 knots (placing the sampler upstream of the wire

and wire contamination). Each MITESS module opens and closes an acid-cleaned 500 ml

polyethylene bottle while underwater in order to minimize chances for contamination.

3.2.2. Aerosol Solubility Experiments

Two dust dissolution experiments were performed for 3 to 4 days. For each

experiment, the time zero soluble Fe estimate was made by placing the 47 mm filter with

dust into a Teflon filter rig with the dust side up. A known amount of seawater

(- 225 ml) was cycled through the filter 10 times. Volumes were estimated by marking

the bottles at sea and measuring the volumes after the cruise. In order to measure

"dissolved" Fe (DFe, < 0.4 jim) and "soluble" Fe (SFe, < 0.02 gm), splits of the filtrate

were vacuum filtered through an acid cleaned 0.4 gim Nuclepore® filter and syringe-

filtered though an acid cleaned 0.02 pim AnotopO alumina filter (more details of this

0.02 gim filtration are given in Wu et al., 2001). Prior to each filtration, acid cleaned

filters and the filter rig were thoroughly rinsed with dilute trace metal clean HC1 and

several aliquots of seawater. The acid cleaned collection bottles were also rinsed several

times with filtered seawater prior to the final sample collection. Two 30 ml aliquots of

the 0.4 tim and 0.02 [tm filtrates were collected, and a 30 ml aliquot of the original

filtrate was also archived.

After the time zero point, the filter was placed in a 250 ml acid cleaned

polyethylene bottle. Prior to the experiment, the bottle was rinsed with seawater to

remove any residual acid. A known volume (- 225 ml) of freshly collected unfiltered

seawater was added and the bottle gently swirled. Shaking was kept to a minimum to

minimize dust particles from being lost from the dust filter. The dust filter and seawater
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were left in contact with each other for 24 hours under laboratory light and room

temperature. The mixture was gently swirled periodically. After 24 hours, the seawater

was removed leaving the dust filter behind and fresh seawater was added. Splits of the

removed seawater were vacuum filtered through an acid cleaned 0.4 lvm Nuclepore®

filter and syringe-filtered though an acid cleaned 0.02 ltm Anotopl alumina filter similar

to methods described above. Two separate aliquots of the 0.4 ltm and 0.02 lim filtrates

were collected, and a 30 ml aliquot of the original removed seawater was also archived.

This process was repeated for each sequential 24-hour time point Sub-samples and

filtered splits of the original seawater used for each time point were also collected for

DFe and SFe concentration measurements. Seawater and seawater leachate Fe and Mn

concentrations were analyzed by isotope dilution MC-ICPMS [Mg(OH) 2 co-

precipitation] using a modified version of a method developed by Wu et al. (2001)

(BERGQUTIST AND BOYLE, in prep). See chapter 2 for more details.

3.3. Results and Discussion

3.3.1. Aerosol Solubility Experiments

Iron released from the aerosol dissolution experiments is plotted in Figure 3.3.

The amount of excess DFe released from the aerosols into seawater in each 24-hour time

point was generally very low (< 65 pmol), and the excess DFe (DFe,,,,,&, tb -- DFew)

measured in the seawater leaches of the dust filter ranged from 0.00 to 0.29 nmol/kg.

Ambient DFe concentrations ranged from 0.24 to 0.36 nmol/kg (Figure 3.4,

Appendix 3.1) and the measured DFe in seawater leaches (ambient DFe + aerosol

released DFe) never exceeded 0.7 nmol/kg. It is not believed that the excess DFe is due

to contamination based on the absence of excess DFe in the first two time points of

experiment 1. If the filter with dust was contaminated, then the first leaches should also

be susceptible to contamination. However, no filter blanks were performed and therefore

contamination may be responsible for some of the observed increases in DFe. Future

experiments involving filter blanks will hopefully rectify this issue.

Total Fe concentrations in the atmosphere were measured by Chen (2004) in the
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Figure 3.3: Aerosol Fe dissolution with time in natural seawater for freshly collected aerosols
from the North Pacific. The seawater was changed every 24 hours in order to avoid saturation or
Fe loss to bottle walls. The zero time measurement was processed by cycling seawater through
the filter 10 times before starting the first 24-hour leaching experiment. 3.3a) The cumulative Fe
released (pmol) from the aerosols over the course of the experiment. The Fe released is the DFe
(<0.4 Rm) measured in the seawater leachate after correction for the ambient seawater DFe. The
Fe released in nmol/kg on the secondary axis is the Fe released divided by the mean volume of
the experiments. 3.3b) The fraction of the total excess Fe released by the aerosols in each time
interval (excess Fed,•,i xexcess Fetow (c=umuiyc of,&, H firm weIs) where excess Fe is the difference
between the Fe measured in the seawater+dust filter and the Fe in the ambient seawater).
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fine fraction (< 2.5 m) over the periods of aerosol collection from simultaneous collection

of aerosols on 90 mm Teflon filters mounted high volume collectors (experiment 1: 1.97

ng m-3 ; experiment 2: 22.89 ng mr3). Using the flow rate through the low volume

polycarbonate filter and the aerosol collecting time, total Fe (TFe) on the filters used in

the dissolution experiments was estimated to be 0.31 nmol for experiment 1 (low-TFe)

and 2.36 nmol for experiment 2 (high-TFe). This is equivalent to aerosol Fe

concentrations of 1.38 and 10.05 nmol/kg in the seawater and final solubilities of 37%

and 6.6% for the low-The and high-The experiments respectively. The higher solubility

was observed in the experiment with much lower aerosol concentration, which has been

observed in other aerosol dissolution experiments (SPoKEs and JIKEs, 1996; BONNET

and GuIEu, 2004).

In both our dissolution experiments, a significant time dependent dissolution trend

was observed with >90% of the dissolution in the low-The experiment and 50% for the

high-TFe experiment occurring after the 24 hour time point. For remote Pacific aerosols

leached with natural seawater, Zhuang et al. (1990) found no difference in the fraction

dissolved after 2 minutes up to 35 hours. However, a large amount of aerosol Fe

(>200 nmol/kg) was used in the time series experiment with dissolved Fe concentrations

reaching 12 to 13 nmol/kg almost immediately. Because this concentration is much

higher than observations of excess dissolved ligand in surface waters (RuE and

BRULAND, 1995; WU and LUTrMR, 1995) and also higher than the inorganic solubility of

Fe(I1) in seawater (<0.1 nmol/kg) (KUMA et al., 1996; MILLERO, 1998), it could be that a

large portion of the observed excess DFe was in the colloidal phase. Bonnet and Guieu

(2004) observed very low dissolution of Saharan soil leach in seawater after 24 hours, but

but the solubilized fraction of Fe increased to 1.6 and 2.2% after seven days in contact

with the same seawater for their lowest particle concentration experiments. They also

suggested that the observed Fe released may have been lower than the actual Fe

solubilized due to scavenging of released DFe by particles. Iron loss to bottle walls may

have occurred after seven days.

By changing the seawater every 24 hours, wall loss of Fe and saturation of the
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organic ligands were hopefully minimized in our experiments. If enough TFe is added to

a small volume of seawater in a laboratory experiment, it might be possible to saturate the

seawater (i.e., the excess ligands present). As observed in the Atlantic Ocean, DFe

released during incubation experiments with large amounts of atmospheric dust reached

levels of - 1.15 nmol/kg (Chapter 2). It was speculated in Chapter 2 that this might

represent the limit of organic ligands present to keep Fe dissolved. In both experiments,

a decrease in the amount of excess DFe released is observed after 48 hours (Figure 3.3b).

However, particle loss from the filter may have decreased the aerosol concentration for

the later time points. Whether the decrease is due to loss of particles or decreasing labile

Fe is not known. The large amount of Fe solubilized in both experiments (37 and 7%)

support the notion that there was still a significant amount of the aerosol Fe left at the

later time points.

Aerosol Fe was released only after 24 hours of conditioning in seawater in the

low-TFe experiment, whereas the aerosol in the high-TFe experiment continually

released Fe throughout the experiment including the zero time point (cycling of seawater

through the filter 10 times). These observations indicate that the two aerosol samples

collected were different although the modeled back trajectories for both aerosol air

masses were similar (Figure 3.2). Both aerosol samples were transported westward

through the North Pacific for about 2 weeks before they were collected. However, the

July 13 aerosol was collected in an air mass with much lower aerosol concentrations than

the aerosol collected on July 14. One potential source of aerosol Fe during the collection

period besides particles from Asia is particles from volcanic emissions. Just before the

sampling period for our aerosol particles (June 28 to July 5, 2002), seismicity reports for

the Karymksy Volcano on the Kamchatka Peninsula (Russia, 54.1 0N, 159.4°E, plotted on

Figure 3.2) suggested that weak gas and ash blow-outs had occurred and that explosions

may have rose to levels of - 4 km (BGVN, 2002). Volcanic particles may have higher

fractions of labile Fe than crustal particles.

If these experiments had only been performed for 24 hours, it would have

appeared that negligible amounts of Fe was released in low-TFe experiment and only
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3.7% (half of the end percentage) released in the high-TFe experiment. Despite the large

difference in TFe present on the filters, both experiments released similar amounts of

DFe by the final time point (low-TFe experiment: 116 pmol; high-TFe experiment: 164

pmol). As both experiments were still releasing DFe at the end of the experiment, the

fraction of aerosol Fe solubilized represents minima for these experiments. The continual

release for up to 4 days in these experiments is relevant to natural conditions as aerosol

particles have an estimated residence time in the surface water on the order of weeks

(JICKELLS, 1999).

The continual release of Fe from the remote ocean aerosols suggests that a large

fraction of the Fe in these aerosols was present in a labile form. The seawater used for

leaching the aerosols was not filtered and therefore organisms were present. Both the

Zhang et al. (1990) and the Bonnet and Guieu (2004) used filtered seawater and the

Spokes and Jickells (1996) experiments used artificial seawater. Therefore some of the

DFe released in the experiments in this study may have been due to biological processes.

Potential mechanisms of biological enhancement of particulate Fe solubilization were

discussed in Chapter 1 (Figure 1.3). Organisms may produce Fe binding ligands, reduce

particulate or colloidal Fe at cell membranes, or ingest and mobilize Fe internally

(review: SUNDA, 2001). Because the seawater was not filtered, another potential source

of DFe in the experiments might be from cell lysis or degradation of particulate organic

matter. However, the lack of DFe released in the first time point of the low-The

experiment argues against this being a significant source of DFe. Also, the same

seawater was used for different time points of the two experiments. No similarities were

observed for the amount of Fe released in the two experiments when the same seawater

was used. Future experiments involving filter blanks should be performed to fully rectify

this issue. Photochemistry was likely not very significant also because the experiments

were done in the laboratory under artificial light. Manganese, which has an active

photochemistry in surface waters (SUNDA and HUNTSMAN, 1988), was not released in any

of our experiments. Under natural light, photochemical reduction of Fe(Ill) on the

surface of particles may enhance solubilization of Fe (MolFETr, 2001; SUNDA, 2001).
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Chen (2004) performed dissolution experiments on simultaneously collected

aerosols using a reducing pH 4.5 leach solution (formate-acetate buffer with

hydroxylamine) and a 90-minute contact time with the aerosols. This approach is

interpreted to release labile Fe (LFe) (CHEN and SIEFERT, 2003). The fraction of Fe

measured as LFe by Chen (2004) was lower than the observed released of DFe in natural

seawater measured in this study for similar aerosol samples. For the low-TFe aerosol, the

Chen (2004) measurement of LFe was 10% compared to our 4-day seawater solubilized

fraction of 37%. For the high-TFe aerosol, only 1.4% of the TFe was released as LFe in

Chen (2004) as opposed to 6.6% observed in this study's 3-day seawater experiment.

Recent observations of surface water DFe concentrations and aerosol flux

estimates in the North Pacific have lead authors to argue that aerosol solubility must be

higher than 10% to maintain the observed DFe concentrations (JOHNSON et al., 2003;

BOYLE et al., submitted). The observations of high solubility in this study and Zhuang et

al. (1990) lend support to the notion that the fraction of solubilized Fe for Pacific dry

aerosols can be higher than 10%. The dissolution is likely quite variable and dependent

on aerosol source, particle size, aerosol concentration, and chemical processing in the

atmosphere. This is illustrated by the differences in the observed range in solubility for

the two aerosol sampling periods in the Pacific with higher fractions of LFe observed in

the summer of 2002 than in April of 2001 (CHEN and SmFERT, 2004; CHEN, 2004, in

preparation; HAND et al., submitted). More LFe appears to be present in the North

Pacific aerosols in the summer of 2002 (2 to 16%) when the seawater leaching

experiments were performed than LFe in Atlantic aerosols (2 to 5%) (CHEN and SEFT,

2004; CHEN, 2004, in preparation). Chen (2004) measured LFe fraction in both the fine

(<2.5 g.m) and coarse (>2.5 gm) fraction of aerosol Fe for the equivalent aerosols used in

the seawater leaching experiments, which only used the fine fraction. During the

collection period, more Fe and LFe was present in the fine fraction than the coarse. For

July 13, the coarse fraction had only 0.6% of LFe versus 1.4% for the fine fraction. In

the July 14 aerosol sample, the coarse fraction had 6.3% LFe versus 10% for the fine

fraction. Therefore, our estimates of dissolvable Fe from the seawater leaching
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experiments may be over-estimating the overall fraction of leachable Fe from dry

aerosols by excluding the coarse fraction.

Jickells (1999) and Jickells and Spokes (2001) speculated that the flux of DFe to

the ocean might be dominated by wet deposition due to the high solubility of aerosols in

rainwater. Jickells (1999) estimated a residence time of 200 to 300 days for DFe in the

Sargasso Sea using estimates of wet and dry deposition and their solubilities, the

upwelling flux of DFe to the surface water mixed layer, and the inventory of DFe in the

mixed layer. Although wet deposition was estimated to only account for 15% of the total

deposition, it dominated the flux of DFe to the surface ocean (>90%) because of the high

fraction of solubilized Fe used for wet deposition (14%) and the low dissolution used for

dry deposition (<0.1%). Newer estimates for the fraction of Fe dissolved in dry

deposition in the Atlantic Ocean suggest that it is greater than 1% (BONNET and Gumu,

2004; CHEN and SmrFRT, 2004). If the experiments in this study apply to the Atlantic, all

and possibly more of the LFe measured by Chen and Siefert (2004) in Atlantic aerosols

(2 to 5%) may become DFe in surface seawater. If the Jickells (1999) estimates are

redone using a higher solubility for Atlantic dry deposition (- 3%), the estimate of the

residence time of DFe in the surface seawater decreases to 120 to 150 days and the

amount of DFe delivered by wet and dry deposition becomes approximately equivalent.

This estimate of 120 to 150 days is more consistent with residence time estimates of

surface DFe in the North Atlantic estimated in Chapter 2 of this thesis and estimates by

de Baar and de Jong (2001) and Sarthou et al. (2003). Sarthou et al. (2003) also

estimated that dry deposition dominated the flux of DFe (>80%) north of the ITCZ in the

eastern Atlantic Ocean, although wet deposition dominated in the ITCZ. Estimates were

made based on surface seawater observations and concurrent estimates of labile Fe (pH

4.7) in dry deposition as well as measurements of filtered and unfiltered rainwater. The

newer estimates of residence time including the ones made in Chapter 2 are all based on

higher solubilities of dry deposition, so it is not surprising that these methods tend to

agree. However, seasonal and shorter-term changes in surface DFe and the relation

between these changes with dust deposition at Station ALOHA in the North Pacific
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suggest that the residence time of DFe is on the order of months (BOYLE et al.,

submitted).

3.3.2. Soluble (< 0.02 gum) Excess Fe from Dust Solubility Experiments

In Figure 3.4, soluble Fe (SFe) concentrations in the seawater along the transect

from this study are plotted along with DFe (data given in Appendix 3.1). Although DFe

decreases from east to west, the SFe fraction is invariant with a mean concentration of

0.27 t 0.03 nmol/kg. The SFe fraction was measured for four of the aerosol solubility

time points, one for low-TFe experiment and three for the high-TFe experiment. No

excess SFe was observed in the low-TFe experiment sample, but all of the measured

high-TFe time points had a mean excess SFe of 0.17 _ 0.03 nmol/kg (1 SD). This

represented 30 to 100% of the excess DFe released by the dust for those time points. The

total SFe (ambient seawater + dust released SFe) measured in the dust dissolution

experiments including the sample with no excess SFe had a mean SFe concentration of

0.32 ± 0.02 nmol/kg (1 SD). The relatively constant amount of SFe suggests that a

maximum concentration in the soluble fraction was reached. The observed maximum

concentration of SFe released in the dissolution experiments is similar to the value of

DFe at which no CFe is present in Atlantic seawater samples (Chapter 2, Figure 2.9).

The processes that control whether DFe from aerosol Fe is released into the

soluble or colloidal fraction are not clear. From the surface distribution and shallow

water column profiles of SFe and CFe in Chapter 2, it was inferred that DFe from dust

dissolution was preferentially released into the colloidal fraction in the Atlantic. The

observation of excess SFe from the dust dissolution experiments from the Pacific indicate

that aerosol Fe can enter the soluble fraction, at least under low aerosol Fe concentrations

in the remote Pacific Ocean and up to 0.32 nmol/kg. In order to understand why the SFe

fraction in the Atlantic is not strongly correlated with dust inputs, similar dust dissolution

experiments as performed in this study are needed for the Atlantic Ocean. Also,

information on the distribution of SFe and CFe in areas of varying dust deposition is
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was the seawater used in the aerosol dissolution experiments.
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needed to study how the different fractions of DFe are influenced by atmospheric inputs

in the Pacific Ocean.

3.4. CoNcLusioNs

Aerosol dissolution experiments were performed with freshly collected remote

Pacific aerosols and natural seawater. The seawater was changed every 24 hours to avoid

saturation of the seawater and to avoid Fe loss to the bottle walls. Iron was continually

released from the aerosols for up to four days. For the experiment with lower amounts of

TFe (0.31 nmol), negligible amounts of DFe were released within the first 24 hours.

Continual release was observed for the experiment with higher levels of TFe (2.36 nmol).

Despite the slow start for low-TFe experiment, almost as much DFe was released over

four days for the low-TFe experiment (116 pmol) than was released after three days in

the high-TFe experiment (164 pmol). Based on estimates of TFe, the total amount of

DFe released was 37% for the low-The experiment and 6.6% for the high-TFe

experiment. These estimates are likely minimum estimates because DFe was still being

released at the end of both experiments and particles from the dust filters were likely lost

when the seawater was changed every 24 hours.

Comparable LFe measurements (90-minute, pH 4.5, reducing conditions) by Chen

(2004) yielded lower percentages of LFe for equivalent aerosol samples, although a

similar pattern of more labile Fe in the low-TWe aerosols was observed. The high

solubilization observed in the remote Pacific aerosols suggest that Pacific aerosols may

release a higher fraction of their Fe than Atlantic aerosols. Current estimates of the

fraction of dissolvable Atlantic aerosol Fe are low, but pH 8 estimates are based on

experiments in artificial seawater (< 0.1%) (SPOKES and JICKELLS, 1996) or Saharan soil

with natural seawater where the seawater was not changed for 7 days (up to 2.2%)

(BONNET and GuIEu, 2004). Labile Fe estimates from Chen (2004) and Chen and Siefert

(2004) are lower for the Atlantic compared with the Pacific in July 2002. Studies with

open ocean Atlantic aerosols and natural seawater are needed to better constrain the

dissolvable fraction of dry deposition in the Atlantic. Estimates of aerosol solubilization
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have important consequences for models of the Fe cycle because the amount of Fe

released from dust determines the flux of DFe to the surface ocean. Currently the

fraction of Fe released from both dry and wet aerosols is being treated as a constant

(usually 1 or 10%) because of the limited and variable estimates available (FUNG et al.,

2000; PAREKH et al., 2004).

Appendix 3.1. E-W Transect Measurements from KOK Cruise (July 2002)
Fe Measurements

1Lat. T Long. I DFea I SFec
t. # (*N) ("W) date I (nmol/kg) _ SD_ n (nmol/kg) SD n_
12 25.6 173.4 7/12/02 0.29 0.03 2 0.30 0.06 2
13 24.2 168.6 7/13/02 0.39 1 1 d 0.27 I 0.01 3
15 23.6 166.7 7/14/02 0.24 0.05 2 1 0.29 _ 1
16 23.1 164.9 7/15/02 0.29 0.05 3 0.26 0.05 I3
17 22.8 163.8 7/15/02 0.36 1_ 0.24 0.04 2
18 22.8 161.6 7/16/02 0.40 1 0.30 0.07 3

S19 22.7 160.4 7/16/02 0.43 0.06 2: 0.21 0.03 2
S20 22.8 158.0 7/17/02 0.46 1 0.02 21 0.30 1 1
In Measurements

Lat. I Long. DMn j
t. # (0 N) (OW) date 1 SD n__

12 25.6 173.4 17/12/02 1.32 0.02 31_
S13 24.2 168.6 7/13/02 1.32 0.01 3 _

S15 23.6 166.7 7/14/02 1.30 0.06 3
S16 23.1 1 164.9 7/15/02 1.32 0.03 61
17 22.8 163.8 7/15/02 1.37 0.07 31
18 22.8 161.6 7/16/02 1.42 0.04 3_
19 22.7 160.4 7/16/02 1.49 0.01 2i

120 22.8 158.0 7/17/02 1.68 0.01 31 Ii
a) DFe is the Fe that passes through a 0.4 ttm filter.
b) I SD is the standard deviation of sample replicates.
c) SFe is the Fe that passes through a 0.02 pum filter.
d) If only one replicate is reported, then an uncertainty of 0.05 nmol/kg was used for error propragation.
e) DMn if the Mn that passes through a 0.4 g.m filter.
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CHAPTER 4

Measurement of Iron Isotopes by Hexapole

Collision Cell MC-ICPMS in Natural Samples

with Low Concentrations of Iron

4.1. INTRODUCTION

Iron is a vital micronutrient, the 40 most abundant element in the crust, and has

active redox chemistry at the surface of the earth. This makes studies of Fe important for

processes of life, weathering, and earth chemistry. For example, iron's geochemical role

changed drastically during the oxygenation of the earth's atmosphere and ocean.

Because Fe is much more soluble under anoxic conditions, the availability of dissolved

Fe for biological processes decreased greatly when oxygen built up in the atmosphere and

ocean. In the modem ocean, the low solubility of Fe and the great demand for Fe by

organisms (e.g., photosynthesis and nitrogen fixation) leads to Fe limitation of primary

productivity in large regions of the ocean (MARTIN and GORDON, 1988; MARTIN, 1990;

MARTIN et al., 1994). Although the importance of iron is recognized, it is difficult

element to study because of its complicated biogeochenical cycling in the environment

and the ease of contamination in natural samples with low concentrations of Fe.

Fractionation of Fe isotopes could be a useful tool to investigate and quantify Fe

cycling in the environment. Stable isotope fractionation of light elements (e.g., C, 0, N,

H, S) is commonly used to study environmental processes. For example, stable isotope

fractionation in 13C/'2C of natural samples is employed to study carbon pathways and

ocean circulation (DUPLEssY et al., 1988; HAYEs, 1993). There are four stable isotopes

of Fe (5Fe, 5.84%; -6Fe, 91.76%; 'Fe, 2.12%; 58Fe 0.28% (TAYLOR et al., 1992)) with a

relative mass difference of 7% from 'Fe to '8Fe, which is large enough to predict that

natural fractionation of Fe isotopes would occur (PoLYAKov, 1997; SCHAuBLE et al-,
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2001; ANBAR et al., submitted). One of the hurdles in searching for natural variations of

Fe isotopes was the development of analytical tools that could measure the isotopic ratio

with high enough precision. This is because Fe is not amenable to gas source mass

spectrometry, and thermal ionization mass spectrometry (TIMS) is difficult because of

the high ionization potential of Fe. However, Bullen and McMahon (1998) and Beard

and Johnson (1999) provided the first high precision iron isotope measurements by TIMS

that demonstrated natural variability. More promising is the recent development of

multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS), which

combines the high ionization efficiency of the plasma source (-7000 K) and ease of

ICPMS with simultaneous measurement of isotopes on multiple collectors (HALLIDAY et

al., 1995). Instabilities in the plasma source in ICPMS (single detector instruments)

made it impossible to reach similar precision in isotopic ratios as TIMS. This problem

was overcome by the introduction of multiple-collector (MC)-ICPMS. Instabilities in the

ion beam due to the plasma are effectively cancelled out by simultaneous collection of

the isotopes. MC-ICPMS has opened the door to search for variations in the isotopic

composition of previously unexplored elements. Measurable differences in the isotopic

composition of elements using MC-ICPMS have been observed for several elements in

natural samples including Cr, Cu, Zn, Se, Mo, and Fe (review: JOHNSON et al., 2004).

Although there are many advantages, there are two main challenges that need to

be considered when making high precision Fe isotope measurements by MC-ICPMS: (1)

correction of instrumental mass bias and (2) correcting for or eliminating isobaric

interferences produced in the Ar plasma. Both TIMS and MC-ICPMS introduce mass

fractionation that is greater than the fractionation produced in nature (in the case of Fe).

Therefore, to make high precision isotope measurements, the instrumental mass bias must

be well characterized in order to separate the instrumental mass bias from natural

fractionation. In the following discussions, instrumental mass fractionation will be

referred to as instrumental mass bias in order to keep it clearly distinct from natural

isotopic fractionation. In TIMS, instrumental mass bias follows Rayleigh fractionation as

the sample is consumed. Iron isotope measurement techniques by TIMS use a double
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spiking technique to correct for the variable instrument mass bias, and are limited to a

precision of -t 0.2 96 (2a) per mass unit (dalton) for Fe isotopic analysis (BuLLEN and

MCMAHON, 1998; BEARD and JOHNSON, 1999; JOHNSON and BEARD, 1999; BULLEN et

al., 2001).

Instrumental mass fractionation in MC-ICPMS (3-5%/dalton) is an order of

magnitude larger than in TIMS. However, the large instrument mass bias is relatively

constant making it possible to correct for instrument mass bias and still retain high

precision in isotopic measurements. The mass bias in MC-ICPMS appears to dominantly

be a function of mass caused by space-charge effects that result in the preferential loss of

lighter isotopes as the ion beam is extracted through small apertures (sampling and

skimmer cones) from the plasma at atmospheric pressure into the high vacuum

environment of the mass analyzer (LEE and HALLIDAY, 1995; NrU and HouK, 1996;

MARtCHAL et al., 1999; ALBAREDE and BEARD, 2004). The instrumental mass bias for

Fe in MC-ICPMS is typically corrected for by sample-standard bracketing (SSB) and/or

internal standards. SSB assumes that the instrumental mass bias of the sample is

identical to the mass bias of two bracketing standards. The instrumental mass bias for the

sample is corrected for by a simple linear interpolation between the bracketing standards.

In internal standardization, the sample is spiked with another element in the similar mass

range (e.g., Cu for Fe). The mass bias of the instrument is then calculated using a known

isotopic composition of the elemental spike, and this instrumental mass bias is used to

correct the element of interest. This method assumes that the mass bias of the instrument

is only a function of mass (and not the element chemistry) and that the mass bias is some

predictable function of mass (e.g., exponential or power law).

Both techniques have been explored for Fe, and several studies have found no

significant improvement in precision of Fe isotope measurements using Cu internal

spiking compared with SSB (BELsHAw et al., 2000; BEARD et al., 2003). However,

recent studies have highlighted potential pitfalls in relying solely on SSB or solely on

internal spiking (CARLSON et al., 2001; ALBAREDE and BEARD, 2004; ARNOLD et al.,

2004). One potential problem in SSB is the possibility of matrix-induced variability in
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instrumental mass bias. This is a particularly hard problem to assess in real samples, as

instrumental mass bias shifts will not be discernable with traditional checks on data

quality such as double isotopic ratio plots. Both instrumental mass bias and natural mass

fractionation follow similar mass-dependent functions; therefore, samples with altered

instrument mass bias will plot along mass-dependent fractionation trends on double

isotopic ratio plots. Potential changes in MC-ICPMS instrumental mass bias due to

matrix have been discussed and documented in a few studies (MARPCHAL et al., 1999;

ANBAR et al., 2001; CARLSON et al., 2001; ROE et al., 2003; ALBAREDE and BEARD,

2004; ARNOLD et al., 2004). Arnold et al. (2004) compared SSB corrected Fe isotope

data with internal standard corrected Fe isotope data and found that one of three paleosol

samples had significantly different calculated Fe isotopic composition (- 0.6%o) with the

two mass bias correction schemes. This was interpreted to reflect a change in the

instrumental mass bias for that one sample due to its matrix. They also found that the

precision on all of the paleosol samples was degraded when only SSB correction was

used suggesting that instrumental mass bias was more variable in the real samples. It

should be noted that no extra chemical purification techniques were used to remove

organic matter other than one-stage anion exchange.

Albarede and Beard (2004) looked at both the effect of trace constituents and

sample concentration on instrumental mass bias. Increasing shifts in the calculated Fe

isotope values (by SSB) were observed with increasing amounts of trace elements (e.g.,

Mg and La). 70 ppb (ng/g) additions of Mg to sample matrices produced significant

shifts in the calculated 6Fe/"Fe isotopic composition (-t 0.2%9 in the -'Fe/IFe ratio), and

the relationship of concentration of the doped element and induced isotopic shift were not

the same (magnitude or direction) from one analysis session to another. They also

observed a signal-size dependent trend in the calculated Fe isotopic values over a large

concentration range (200 to 600 ppb) with a slope of 0.03%o per volt (5Fe signal).

Calculated iron isotope bias due to signal differences of bracketing standards and samples

of less than 10% are relatively small (less than 0. 1lo), so careful matching of sample and

standard concentrations should avoid this problem. Albarede and Beard (2004) inferred
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from their observations that the matrix-induced variations in mass bias resulted from

changing the space-charge effects or ionization properties of the plasma. Despite the

potential complications with SSB, it is the most common technique employed in Fe

isotopic analysis by MC-ICPMS with reported precisions of 0.05 to 0.15 %9 (2y, 6Fe/PFe

ratio) (BELSHAW et al., 2000; ZHU et al., 2002; BEARD et al., 2003). It is believed that

rigorous sample purification can avoid many matrix problems, although one must be

aware of potential problems when only using SSB to define instrument mass bias.

Arnold et al. (2004) found improved precision in Fe isotopic measurements by

using a Cu internal standard for instrument mass bias correction rather than SSB.

Although it would seem that an elemental spike should be the preferred method, it

assumes that the mass bias of the instrument is only a function of mass and not element

chemistry. Several studies have suggested that elements do not necessarily follow the

same mass bias trends at high precision in ICPMS (MARtCHAL et al., 1999; ANBAR et al.,

2001; CARLSON et al., 2001; KEHM et al., 2003; ROE et al., 2003; ALBAREDE and BEARD,

2004). Albarede and Beard (2004) measured mixed Cu and Zn solutions and found that

Cu was more strongly fractionated than Zn suggesting that the two elements did not

experience the same instrument mass bias. Kehm et al. (2003) found that the relationship

between Cu and Fe isotopic ratios changed from one analysis session to another, and the

Cu spike in the sample matrix could induce changes in calculated Fe isotopic values.

Therefore, Kehm et al. (2003) adopted a method of using both SSB and internal spiking

where care was taken to match the concentrations of Fe and Cu in both the samples and

the bracketing standards. It is also very important that the sample be free of the element

that is being used as an elemental spike. For Fe, the most commonly used ion exchange

chromatographic separation method used for purification will separate Fe from Cu if the

correct procedure is used. Copper slowly elutes off the column at higher eluent

concentrations than Fe. If caution is not taken to insure that all of the Cu is eluted prior

to elution of Fe, then the remaining Cu will co-elute with Fe. High precision isotope

measurement protocols by MC-ICPMS are still in the early stage of development, and
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care should be taken to reduce residual sample matrices and evaluate potential matrix-

induced variability in instrument mass bias.

Another important challenge with MC-ICPMS is the molecular interferences that

form in the Ar plasma and interface. For Fe, many of these interferences are polyatomic

interferences due to the combination of Ar and atmospheric gases. Polyatomic

interferences can also form if significant amounts of Ca or C are present. Some of the

critical interferences on the Fe masses are listed in Table 4.1. Several approaches are

used to reduce the polyatornic interferences including (1) desolvating nebulizers, (2) cold

plasma conditions, (3) high mass resolution, and (4) hexapole collision cells.

Desolvating nebulizers reduce the amount of water that is injected into the plasma

and minimize oxide interferences. Several studies have demonstrated that Ar oxide

interferences can adequately be reduced for high precision Fe isotope analysis using

desolvating nebulizers, and ArN' can be reduced by preparing samples in dilute HC1

solutions instead of the more commonly used HNO3 (ANBAR et al., 2000; BELSHAW et al.,

2000; ZHu et al., 2000). Desolvating nebulizers also have the advantage of increasing

analyte transport to the plasma (50 to 90%) as compared to conventional nebulizers (1 to

4%) (Olesik, 2000). However, oxide interferences can still be significant and high

concentrations of Fe (20 ppm) are needed to overwhelm the interferences (BELSHAW et

al., 2000). "Cold plasma" conditions (lower RF power used to maintain the Ar plasma)

also reduce molecular interferences, but high concentrations (30 ppm) are still necessary

due to the overall loss in sensitivity (KEHm et al., 2003). High mass resolution MC-

ICPMS resolves the polyatomic interferences at the Fe masses (WEYER and ScHwIETERs,

2003; ARNOLD et al., 2004). The ThermoFinnigan Neptune MC-ICPMS has the

capability to make high mass resolution measurements on multiple collectors and

maintain good peak shape. High resolution reduces the transmission of analyte, and

solutions with 1 to 3 ppm Fe are currently used for Fe isotope analysis (although the use

of lower concentrations is possible) (WEYER and ScuwITERs, 2003; ARNOLD et al.,

2004). The use of a collision cell with MC-ICPMS will be discussed in the next

paragraph. The 'Cr interference can not be resolved from 'Fe even at high resolution.
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Table 4.1: Important Isobaric Interferences on Fe Isotopes

Fe isotope -%Fe 56Fe 57Fe

Fe mass, 53.93961 55.93494 56.93540
% abundance 5.80% 91.72% 2.20%

interference 4°ArX1N' 40ArX6O+ 40Ar.16O1H+

mass 53.96546 55.9573 56.96512
% abundance 99.24% 99.36% 99.35%

interference 54Cr °Ca' 60+ 4OCa16O1HI

mass 53.93888 55.95751 56.96533
% abundance 2.37% 96.71% 96.70%

interference 37Cl'60I'HI "Ca2C -56 Fe'H-
mass 53.96864 55.95548 56.94277

% abundancej 24.17% 2.07% 91.71%

Fast, LaminatedManet

Turbomolecular •

pumping system

S.. ," Tube

, ~Beam Focus
S•~& Accelerator I
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Figure 4.1: Schematic of the GV Instruments IsoProbe MC-ICPMS.
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Therefore the Cr interference has to be chemically separated from Fe by ion exchange

chromatography, and either 52Cr or 53Cr have to be monitored to correct for Cr on 'Fe.

Iron isotope analysis in this study was done on the MIT GV Instruments (formerly

Micromass) IsoProbe MC-ICPMS (Figure 4.1). The IsoProbe is a single focusing

instrument that incorporates a hexapole collision cell behind the collimating cone and

before the magnetic sector. The hexapole collision cell has two main advantages: (1)

high transmission of ions to the mass analyzer and (2) destruction of many molecular

interferences. Hexapole collision cells are not new in ICPMS, and have been

incorporated into quadrupole-based ICPMS systems (reviews: FELDMANN et al., 1999a;

FELDMANN et al., 1999b). Usually both a buffer gas and reaction gas are injected into the

hexapole cell. Collisions with the buffer gas (e.g., Ar) thermalize the ions to the energy

of the gas used (collisional focusing), which leads to a small energy spread in the ion

beam (- 1 eV). In other instruments, electrostatic analyzers are used to reduce the energy

spread of the beam. This leads to reduced transmission of the ions, whereas transmission

of ions is not reduced in the hexapole collision cell. In addition to energy focusing, gas

phase reactions are important in destroying and reducing molecular interferences.

Several reaction gases have been employed in collision cells (H2, Xe, N2, 02, NH 3, CH4 )

depending on which molecular species need to be removed. Most of the Ar polyatomic

interferences are essentially eliminated with the addition of H2 as a reaction gas including

ArN÷ and ArO÷ (Figure 4.2). The only Ar interference that remains a problem is ArOH',

which may form in the hexapole by a protonation reaction. Because of the virtual

elimination of Ar polyatomic interferences and the high transmission of ions, Fe isotopic

analysis can easily be achieved on solutions of 200 to 400 ppb Fe (BERGQuIST and

BOYLE, 2002; JOHNSON et al., 2002; BEARD et al., 2003).

In this chapter, the methods used for Fe isotope analysis in this thesis are

discussed along with the various tests used to evaluate the precision and accuracy of the

measurements. Precision and accuracy were assessed through the measurement of
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Figure 4.2: "High resolution" scans of the different masses of the Fe isotopes on the MIT GV
Instruments IsoProbe MC-ICPMS with 1.8 ml/min of Ar gas in the collision cell. 4.2a) A scan of
a 250 ppt (pg/g) "Fe solution is shown with and without 2 ml/nin H2 gas in the hexapole
collision cell. ArN* was eliminated with the addition of the H2 reaction gas. 4.2b) A scan of a
250 ppt 6Fe solution is shown with and without 2 ml/min H2 gas in the hexapole collision cell. In
order to create a significant amount of ArO÷, no H2 gas was used and the Ar collision gas needed
to be reduced to 0.5 ml/min. The ArO÷ was significantly reduced by using 1.8 ml/min of Ar in
the collision chamber and eliminated with the addition of the H2 reaction gas. 4.2c) A scan of a
125 ppt 57Fe solution is shown with and without 2 ml/min H2 gas in the hexapole collision cell.
The ArOHI interference actually increased slightly with addition of H2 reaction gas in the
hexapole chamber. ArO-l can be created in the hexapole by protonation of ArO÷. The "high
resolution" scans were done by narrowing the source slit and setting the detector slit to the "high
resolution" slit, which has a resolving power of - 5000 (m/Am).
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standards including isotopically shifted standards. Process standards were run at various

concentrations and with different isotopic compositions to test for fractionation in the

separation chemistry and significant blank contributions. Proper interference correction

was evaluated by measuring both the 56Fe/I"Fe and 57Fe/4Fe ratios when possible.

Finally, an "isotope standard addition" method was developed to investigate matrix-

induced variability of the instrument mass bias. This method avoids the complications of

using another element by spiking a sample with a very small amount of highly

isotopically modified Fe. The concentration of the sample is not changed, but the

isotopic composition of the sample is shifted. If the instrument mass bias is corrected

properly, the measured isotopic composition of the spiked sample agrees well with

predicted values based on simple isotopic mass balance. It is especially important to this

study to evaluate the Fe isotope measurement method because samples with low

concentrations of Fe were processed for isotopic analysis. Therefore, matrix effects and

interferences are potentially more severe due to the low analyte concentrations.

4.2. METHODS

4.2.1. Fe Purification and Separation

Iron isotope analysis requires clean sample matrices and approximately 200-

300 ng of Fe per analysis. Therefore, Fe needs to be appropriately pre-concentrated, and

purified from each sample matrix-type. Iron was extracted from a variety of samples

with varying concentrations. Short descriptions of the basic methods are discussed in this

chapter with more details (e.g., sample collection) given in the chapters in which the

sample isotopic composition is discussed. It should be noted that sample preparation was

performed in class 100 clean laminar flow environments as much as possible. When

samples were taken out of the clean environment, the samples were kept covered. Only

trace-metal clean reagents were used and all lab-ware in contact with samples was

thoroughly acid cleaned.

Rock samples and suspended sediments (<50 mg) were dissolved in a 4:1

HF:HNO3 solution (trace metal grade Seastar or Optima). Complete dissolution usually
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took 4 to 5 days in a sealed Teflon beaker under low heat (- 80"C). Samples were then

evaporated to dryness with HC1 and HNO3 several times to drive off excess HF,

transferred to covered quartz beakers, and placed in a muffle furnace for 8 hours at 550"C

to destroy organic matter. Samples were then re-dissolved in 7 M HCl (Optima grade)

with heat (60-80"C) prior to Fe separation by anion exchange chromatography.

Trace metal clean plankton tow samples were collected and filtered at sea, then

frozen on their filters for storage in acid cleaned polyethylene Nalgene bottles (HDPE).

For Fe extraction, samples were thawed and a split was removed from the filter with a

plastic scoop or filter tip. The plankton tow material was placed into a quartz beaker and

dried on a hot plate in a class 100 clean laminar flow environment overnight. Samples

were placed in a muffle furnace for 8 hours at 550 0C to destroy organic matter, and then

re-dissolved in 7 M HCl (Optima grade) with heat (60-80"C).

Acidified filtered river water samples, porewater samples, and acidic leaches of

samples (e.g., aerosols and flocculants with filters from river water-seawater mixing

experiments) were evaporated either directly in acid cleaned quartz beakers or larger

volume Teflon beakers in a class 100 clean laminar flow environment. Samples initially

evaporated in larger volume Teflon beakers were transferred to a quartz beaker prior to

taking samples to complete dryness. River water samples were evaporated with a small

amount of concentrated trace metal clean HNO 3 and hydrogen peroxide to create an

oxidative environment. After samples were taken to dryness, they were placed in a

muffle furnace for 8 hours at 550°C to destroy organic matter and re-dissolved in

7 M HC1 (Optima grade) with heat (60-800C).

At this point in the method, all samples were dissolved in 7 M HC1 and the

samples were ready for Fe separation chemistry by anion exchange chromatography

using a method adapted from Marechal et al. (1999). The resin used in this study was

Bio-Rad AG MP-1 resin. In 7 M HC1, the dominant species of Fe'3 is FeC14 ' that binds

to the resin. After the sample is loaded and the matrix washed through the column, the

Fe is eluted by lowering the molarity of HCL. This shifts the dominant species of Fe to

either neutral or positively charged species (FeCl3, FeCl2÷"), which elute from the resin.
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In more detail, a small amount (< 0.1%) of H20 2 (EM Science, reagent grade) was added

to samples prior to loading onto the resin to ensure all the Fe was present as Fe'3.

Samples were loaded onto a 1.8 ml (3.5 cm long x 0.8 cm wide) column of resin and 15

ml of 6 M HCl (triply distilled Vycor HCI) was used to wash the sample matrix through.

Iron was then eluted with 18 ml of 2 M HCl (triply distilled Vycor HCQ). It is crucial that

all chloride is removed from samples prior to isotopic analysis (to avoid ClOH÷

interference on "Fe). Samples were evaporated to dryness twice in HN0 3 and then

finally dissolved in 0.3 M HNO3. For isotopic analysis, samples were diluted with 0.3 M

HNO3 to match the bracketing standard concentration to within 5%.

Iron concentrations were measured before and after the column for most runs.

The solution from the sample matrix wash was also collected, concentrated by

evaporation, and the Fe concentration measured to verify that Fe did not leak through the

column. Iron concentrations were measured by UV-VIS spectroscopy using the

Ferrozine method (STOOKEY, 1970) separating the Ferrozine and hydroxylamine

hydrochloride reagents (to avoid precipitation of the Ferrozine with HCQ). Using a 1 cm

pathlength cell and lab-grade reagents, this method has a detection limit of 0.2 tLM.

Process blanks were always below the detection limit by the Ferrozine method, therefore

blanks were measured on the IsoProbe using a simple two-point linear calibration curve.

Examples of typical sample sets are shown in Table 4.2. Generally, recovery of the Fe

can be verified to _ 2-3%. Leakage of Fe during the separation chemistry was observed

only once (in one of the first sets of samples for a soil sample). The cause of the column

leakage is unknown, but may have been due to Fe÷2 still being present in the sample due

to high organic content or leakage of a organically bound fraction of Fe. It was after this

sample that the pre-column muffle furnace step was added to the method to oxidize

organic matter prior to the separation of Fe by column chromatography.
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Table 4.2: Three Examples of Sample Sets with Fe Re ery Verification
pre- post- column

column column % wash
sample Fe (pg Fe (ug) losstgain Fe
/03 suspended sed SO-B-lst filter 149.0 150 0.8% clean
/03 suspended sed SO-B-2cd filter (+ filter) 120.4 120 0.0% clean
/03 suspended sed NE-B-Ist filter (+ filter) 7.7 7.7 -0.3% clean

5/03 suspended sed AM-Macapa-B- 1 st filter 847.2 831 -1.9% clean
5/03 basalt E 146.8 144 -1.7% clean
5/03 HF filter blank A 0.06 clean
5/03 HF filter blank B 0.07 clean
/03 process std A - 55 ug (0 %o) 54.8 54.4 -0.8% clean
/03 process std B - 55 ug (-1.8 %9) 54.0 57.0 5.6% clean

/02 river water sample AM-Macapa (UF)- 1 195.1 190.0 -2.6% clean
8/02 river water sample AM-Macapa (F)-A 191.6 194.3 1.4% clean
/02 river water sample NE-Manaus (F)-B 39.8 39.9 0.4% clean
/02 river water sample SO-Manaus (F)-B 6.1 6.4 4.8% spilled
/02 granite D 103.3 103.3 0.1% clean
/02 basalt D 198.0 201.2 1.6% clean
/02 process std A (0 %'G) 100.9 90.9 -9.9%' clean
/02 process std B (-1.8 %'o) 11.9 12.3 3.4% clean
/02 process blank A 0.05 clean
/02 process blank B 0.06 clean

7/03 river sample SO-Manaus-H (Filtered) 8.9 9.1 1.6% not run
7/03 river sample SO-Manaus-B (Filtered) 7.6 7.5 -0.3% not run
7/03 river sample NE-Manaus-C (Filtered) 53.7 55.1 2.6% not run
7/03 river sample AM-Manaus-B (Filtered) 20.6 20.6 -0.2% not run
7/03 river sample AM-Macapa-C (Filtered) 26.3 27.1 3.0% not run
7/03 process std A (0 17o) + 200 ml H20 15.8 16.2 2.4% not run
7/03 process std B (-0.6 %o) + 200 ml H20 14.6 14.8 1.1% not run
7/03 process blank J 0.06 1
a) Portion of this sample was spilled.
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4.2.2. Fe Isotope Analysis

Variations in iron isotope ratios have been reported in variety of ways depending

on the ratios laboratories are able to measure. In this study, sample data will be reported

using the delta notation:

8i6Fe (%o) = - 1 x 100056Fe/14 Fe mnad

( 5 7Fe/5 4 Fesample 1857Fe (90,)= - 1 x 1000
57 Fe 54 Fesm dar

Samples in this study are usually referenced to the mean of the individual measurements

of splits of either the Rhode Island Granite (USGS, G-2) and Hawaiian Basalt (USGS,

BVHO-1) rock standard reference material unless otherwise noted. In this chapter, many

of the standards and samples are referenced to the bracketing standard and will be

reported as such (e.g., 6'Fe,,•k ). All samples are originally referenced to the bracketing

standard during analytical sessions and SSB correction, and then later converted to the

86Fe referenced to igneous rocks from the 86Fe., d of the igneous rock samples.

Igneous rocks are a convenient baseline for Fe isotope measurements as the they show

very little variation in their isotopic composition (BEARD and JOHNSON, 1999; BEARD et

al., 2003). Beard et al. (2003) measured nearly 50 igneous rocks and found a mean V5 Fe

of 0.00 ± 0.10 (2a standard deviation).

Iron isotope measurements were made on the GV Instruments IsoProbe MC-

ICPMS at MIT (Figure 4.1). Analyte aerosols from liquid samples were introduced into

the plasma using a Fassal quartz torch (Glass Expansion). The liquid samples were

injected (aspirated) using a variety of sample introduction systems (discussed below).

The ions from the plasma are sampled through a water-cooled interface including Ni

sampling, skimmer, and collimating cones. The IsoProbe can either be run in hard or soft
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extraction mode on the collimating cone. Hard extraction applies a negative voltage to

the collimating cone (typically hundreds of volts), whereas soft extraction applies a

slightly positive voltage (less than 10V). Generally, Fe isotope measurements were made

in soft extraction mode due to the lower Fe, Ni, and Cr blanks. After extraction, the ion

beam is axial-focused and thermalized within a 6 MHz, RF-only hexapole collision cell

followed by focusing by electrostatic lenses with a final acceleration potential of -6000V.

The ions are then separated by a stigmatic-focusing, Cross geometry magnet (review:

TURNER et al., 2000). The ions were detected with a dynamic multiple collector array

consisting of nine Faraday collectors (the MIT IsoProbe also has seven Channeltron

electron multipliers and one axial Daley detector). Simultaneous measurements were

made at masses 52, 54, 56, and 57. All the Faraday collectors used 101! Q resistors

except for the mass 56 Faraday cup, which used a 1010 Q resistor. Chromium was

monitored at mass 52 for correction of "Cr on mass 54 using a 5CrP
2Cr ratio of

0.0237/0.838. Mass 52 is free of interferences except for C1OH*, which is avoided by

introducing samples in HNO3. The Cr correction on 54 was generally very small

resulting in a less than 0.19'6 correction on the -6Fe measurements. For Fe

measurements, Ar and H2 gasses were used in the hexapole collision cell (2 ml/min for

both); the H2 insures that there is no significant residual ArN* and ArO(.

Samples were introduced to the MC-ICPMS in weak HNO3 by a variety of inlet

systems including a "jacketed twister" cyclonic spray chamber (Glass Expansion), the

Aridus desolvation inlet system (Cetac), and the APEX inlet system (Spectron) with and

without desolvation. Low-flow, self-aspirating PFA nebulizers (uptake rates of 100-200

tl/min) were used with the spray chamber and APEX system. Teflon nebulizers,

specifically designed by Cetac for the Aridus (uptake rates of 50-100 gl/min), were used

with the Aridus desolvation system. The APEX inlet system uses a heated cyclonic spray

chamber followed by a cooled condensation chamber. This set up allows for a higher

transmission of the sample analyte to the plasma compared with the normal cyclonic

spray chamber. The sample is evaporated in the heated spray chamber (100TC), and the

aerosol and water vapor are then carried into the cooled condensation chamber (20C)
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where the much of the water condenses (but 50 to 90% of the sample aerosol is

transferred to the torch). A desolvating membrane can be added to the sample-out line of

the APEX to remove any remaining water. Generally a factor of five increased

sensitivity was observed over the cyclonic spray chamber. The main advantages of the

APEX over the Aridus inlet system are (1) shorter sample wash out times (at least a

factor of two) compared with the Aridus inlet system, (2) less spiking compared with the

Aridus inlet system, and (3) the option of running with or without the desolvator. A

summary of the various running conditions is given in Table 4.3.

A 270 ppb Fe solution introduced to the IsoProbe through the APEX with the

desolvator produces a 'Fe signal of - 35 V (10'0 9 resistor = 3.5 x 10.'0 A). With a 3.5-

minute wash-in time and 2.5-minute data collection time, approximately 300 ng of Fe is

consumed per analysis. Wash-in times and data collection times were optimized by

assessing how long it took to reach stable isotopic ratio measurements and obtain isotopic

ratio measurements with <50 ppm internal precision. Using the cyclonic spray chamber,

high precision 6&Fe measurements have been made on samples with 5Fe signals as low

as 4 V (0.2 V on -Fe). It is possible to envision that 8-ýFe measurements could be

achieved on sample sizes of <50 ng using the APEX inlet system if the precision is

limited by signal size. However, the amount of interference correction at these low Fe

levels is not known.

Fe isotopic measurements in this study were done using SSB to correct for

instrumental mass bias (matrix effects will be discussed later). An in-house ultra-pure Fe

standard was used for the working bracketing standard. In each run, several standards

(both IRMM-014 and gravimetric standards) and a granite split were run to evaluate

external long-term precision and accuracy. The ERMM-014 standard (isotopic reference

material available from the Institute for Reference Materials and Measurements,

Belgium) is currently being used by some labs as a reference standard for reported Fe

isotope measurements instead of igneous rocks. It was measured to allow for comparison

of 6 6̀ Fe measurements to other laboratories. Beard et al. (2003) measured the IRMM-

014 standard and found that it had a 6•Fe -0.09 ± 0.10 %'V (2o standard deviation)
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Table 4.3 IsoProbe Instrumental Conditions
Instrumental Parameter f Set Point Unit
Forward power 1370 W
Reflected power <3 W
Hexapole Ar gas flow j 2 mlmin'
Hexapole H2 gas flow 2 1 ml mint
Hexapole ion gauge 4x10" mbar
Analyzer ion gauge 2x10"- mbar
Cyclonic spray chamber

Uptake rate i100 to 200 pyrnin
uptk time 2 mi
Acquisition time 2.5 min
Nebulizer gas flow 0.9 to 1.0 L rain"'
Auxiliary gas flow 0.9 to 1.0 Lmin-'
Cool gas flow 13.5 to 14.0 [ L min`f
ridus inlet system

Uptake rate T 50 to 100 td/min

Uptake time __5 __min

Acquisition time 2.5 min
Nebulizer gas flow 1.0 to .1 L min-'
Auxiliary gas flow [ 0.9 to 1.0 L min`'
Cool gas flow 13.5 to 14.0 L min-'
Sweep Ar gas flow (for desolvator) 1 2.8 to 3.5 L min'
APEX inlet system without desolvator

Uptake rate 100 to 200 ld/min
Uptake time 3.5 min
Acquisition time 1 2.5 min
Nebulizer gas flow 0.7 to 0.8 L nin-'
Auxiliary gas flow 0.9 to 1.0 L min-'
Cool gas flow 13.5 to 14.0 L nun
Secondary Ar nebulizer gas flow i
introduced in between APEX system and torch) 0.25 L min'

APEX inlet system with desolvator

Uptake rate 100to200 pl/min
Uptake time 3.5 numn
Acquisition time 2.5 m main
Nebulizer gas flow 0.9 to 1.0 L min-'
Auxiliary gas flow 0.9 to 1.0 L rmin`
Cool gas flow 13.5 to 14.0 L min*'
Sweep Ar gas flow (for desolvator) 0.8 L min-'
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relative to igneous rocks. Gravimetric Fe standards were also made by adding a known

amount of 'Fe (or 57Fe) to a higher concentration split of the working reference standard.

All quantities were measured gravimetrically to make accurately shifted standards. Many

samples were measured over multiple days and with multiple inlet systems.

The uncertainties in the average 8eFe measurements quoted in this thesis are the

20 standard error (2 standard deviation (SD) divided by the square root of the number of

analysis). If multiple measurements were not performed for a sample, an uncertainty of

-t 0.2296 (2a) is applied to samples referenced to the working standard and - 0.249o (2a)

to samples referenced to mean of the igneous rock. There is a slight increase in the

uncertainty due to error propagation when the sample 86Fet, ,dis converted to 8'Fe

referenced to igneous rocks. The estimates of uncertainty are based on the long-term

external precision of a single granite sample split (-- 0.2296, 2 SD, n=22, Table 4.6,

granite D). The standard deviation (1 SD), standard error (2o), and number of

measurements within an analytical session are reported for all samples in the data tables.

4.3. RESULTS AND DISCUSSION

As reviewed in the introduction, several issues need to be evaluated to ensure that

precise and accurate Fe isotope measurements are made by MC-ICPMS. The discussion

is divided into three main sections: (1) standards, (2) double isotope ratio plots, and

(3) "standard isotope dilution". The first section assesses the accuracy and precision of

the Fe isotope measurement method including both the chemistry, the instrument

measurement, and corrections. This work was done using clean standards and purified

rock samples with high Fe concentrations. Sections 2 and 3 investigate interference

corrections and the instrument mass bias correction more closely on samples with more

complex matrices and lower concentrations of Fe.

4.3.1. Standards and Testing of the Method

Both the chemistry and the instrument measurement technique were assessed

using a variety of standards and samples. The processing of samples in order to extract
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and purify Fe has the potential to bias measured Fe isotopes by either fractionating Fe

isotopes or introducing Fe blanks or interferences. For example, ion exchange

chromatography techniques fractionate metal isotopes during elution including Fe

(ANBAR et al., 2000; ZHu et al., 2002). Therefore, it is important to ensure quantitative

yield from the column separation or any step in the chemistry that might potentially

fractionate Fe isotopes. It is also important to evaluate whether the chemistry procedure

introduces Fe blanks, interferences, or matrix constituents that might affect the measured

Fe isotopes or instrument mass bias.

Before addressing samples and standards processed through the Fe purification

chemistry, the accuracy and precision of the instrument measurement method will first be

discussed. When using SSB to correct for instrument mass bias, one of the factors

governing precision in the measured Fe isotopic compositions is the stability of the

instrument mass bias between the bracketing standard measurements. During set up and

tuning of the instrument, several parameters on the instrument are adjusted to optimize

for both high transmission of the analyte and the stability of instrument mass bias (e.g.,

nebulizer flow, collimating cone extraction, hexapole collision gas flows). A simple way

to assess the stability of the instrument mass bias is to measure the bracketing standard

itself by SSB at the beginning and during an analytical session (0%o standard in Table 4.4

and Figure 4.3). This represents the best possible precision that can be achieved for a

given analytical session. The stability of the instrumental mass bias varied (-, 0.03 to

0. 14 %o, 1 SD, in the 8-56Fe measurement) from session to session and also within sessions,

but was typically better than ±0. 10%o (1 SD). The overall 65 6Fe,,, ktd average for the

bracketing standard itself was 0.00 ±t 0.03%9 (2a, n=32). The concentration of the

bracketing standard was also varied by ±t 5% to ensure that signal size did not affect the

measured isotopic ratio. Within the concentration range measured, no trend was

observed. In order to assess the accuracy of the SSB correction technique, several

isotopically shifted standards (gravimetric standards) were measured during each

analytical session (-0.6, -1.2, -1.8%o standards in Table 4.4 and Figure 4.3). The average

8S6Fe,,, values for the gravimetric standards agree very well with their nominal values
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Gravimetric Standards Process Standards

0.5- 4

0.0 r
o•%

-0.5 - - - - - - - - - -- -
-0.6

-1.2%o-1
- 1 .5 -- - - - - - - - - - - T - -

-2.0 - ----- -

nominal

2.5 (2a error bars) value

Figure 4.3: Summary of gravimetric standards and process standards analyzed along with
samples from October 2001 to April 2004. Gravimetric standards were made by addition of RFe
to the working standard. 65 6Fe for the standards are referenced to the working standard. Process
standards are the gravimetric standards processed through the Fe extraction and separation
chemistry. Data with sample descriptions can be found in Table 4.3. The gravimetric standard
8'Fe measurements for individual analytical sessions are plotted. In contrast, the average 8SFe
values of the process standards over multiple runs are plotted. Error bars are 26 standard errors
of replicate measurements. If multiple measurements were not made within an analytical session,
then a 2a uncertainty of :t 0.2296 is used based on the long term external precision of a granite
sample (t 0.225'oc, 2 SD, n=22, Table 4.6, granite D).
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Table 4.4: Sunmnary of Fe Isotopic Data for Gravimetric and Process Standards
20'

Fe analysis 8"Feftld' (2 stdi

Standards (•g) date MO() 1 SDb error)I n Wlet systemd

Gravimetric Samples __ i_ _ i Y
moinal, 0%0 11/6/01 0.03 0.03 i 0.04 3 pray chamberY5/29/03! 0.01 0.10 ' 0115 2 Aridus

i7/10/03 ! 0.04 0.09 it 0.10 i3 AridnsI 8/1/03 -0.02 0.05 1 0.05 1 3 spray chamber
1/22/04 0.02 0.08j 0.06 6 APEX (no des)
3/31/04 -0.02 0.141 0.10 7 APEX(nodes)4/24/04 -0.03 0.05 0.03 8 APE with des.

I all t 0.00 0.08 0.03 32
nominal,-O.6%Q 5/15/03 1 -0.66 0.101 0.15 2 Aidus15/28/03 -0.54 0.091 0.11 3 Aridus

5/29/03 I -0.61 0.20 0.29 i 2 *dus

7/10/03 1 -0.56 0.08 0.08 4 rdus
- 11/03 -0.48 0.09 007 6 y chamber
8/7/03 -0.58 0.06 0.06 4 pry chamber
8/16/03 -0.53 0.08 0.08 4 pray chamber
11/5/03 -0.50 0.10 0.11 3 WPEX (no des), cu spike
1/22/04 -0.53 0.13 0.10 7 APEX (no des)
3/31/04 -0.72 0.05 0.07 2 IAPEX (no des)
4/24/04 -0.58 0.12 0.09 8 -APEXwithdes.

all -0.55 0.11 i.03 1451
nominal, -12%v 10/24/011 -1.25 0.0 5 i 0.02 2 ilray chamber

11/6/01 -1.22 0.07j 0.10 2 y chamber
all -1.24 0.05i 0.05 4

nominal, -1.8% 8/16/03 -1.87 0.11'! 0.22' i isy chamber
8/7/0 3 L -1.80 0.11i 0.22fI'g y chamber
8/1/03 j -1.70 0.,10 0.12 3 Ispraychamber
5/15/03 1 -1.72 0.11r 0.22f I Aridus
_7/10/03 -1.59 0.11f 0,22' 1 Aridus

5/29/03 -1.63 0.f1 0.22f 1 Aridus
5/28/03 -1.71 0.11"i 0.22' , Aridus

all • -1.71 0.10 0.06 9
roesStandards

11/01 column proc. std. 200 11/6/01 -0.02 0.05 0.07 2 pray chamber
11/01 muffle proc. std. 100 11/6/01 0.02 0.05 0.03 2 pray chamber

r 8/03 aerosol c. std. 15 8/16/03 -0.09 0.11 0.16 2 pray chamber
11/03planktontowproc. std. 10 1/22/04 0.12 0.12 0.17 2 (nodes)

Mell/03planktontowproc. std. 10 4/24/04 0.13 0.05 0.02 2 EX with des.
.0.6U,8/02 river proc. std. 10 5/28/03 -0.68 0.11' 0.22' 1 duns
-0.6%., 8/03 aerosol proc. std. 15 8/16/03 -0.45 0.15 0.21 2 pray chamber
4.6%a, 8/03 mixing expt proc. std. 15 4/24/04 -0.55 0.11' 0.22' 1 EX with des.
4.6%., 7/03 river proc. std. 15 8/7/03 -0.47 0.05 0.07 2 chamber
-. 6%a, 7/03 river proc. std. 15 8/16/03 -0.56 0.11' 0.22' 1 chamber
1.8%- , 5/03 suspended sed proc. std. 55 8/16/03 -1.82 0.1,f 0.22' , y chamber
l.8%-,5/03 suspended sedproc. std. 55 4/24/04 -1.72 0.,1f 0.22' , 1 with des.

a) 8"Fe values of samples in this table are referenced to working standard.
b) SD is the standard deviation of the individual measurements.
c) 2a uncertainty is the uncertainty in the mean of replicate sample measurements (2 standard error).
d) Several inlet systems were used including a cyclonic spray chamber (spray chamber), the Aridus desolvating system (Aridus), and
the APEX system with (APEX with des.) and without a desolvator (APEX (no des)). See text for more details.
e) Cu internal standardization along with SSB was used to correct for instrument mass bias for one session.
f) If only one measurement was made for a sample, a 2a uncertainty of ±t 0.22%. (2SD) was applied to the sample. The 2a uncertainty
was estimated using the long-term external precision of a granite sample (± 0.22%o., 2 SD, n=22, Table 4.6. granite D).

147



(-0.55 t 0.03%o, -1.24 ± 0.05%9, -1.71 ± 0.06%o, 2a) with overall precisions similar to the

Oo bracketing standard.

In each sample set, standards were processed through the same chemistry at Fe

concentrations similar to samples in order to assess whether there were any artifacts

associated with the chemistry. Iron concentrations were monitored throughout the

chemistry and Fe was quantitatively recovered from the column separation, the muffle

furnace step, and the evaporation steps. Processing both non-shifted and isotopically

shifted standards through the chemistry at various concentrations is important when

evaluating blank contribution and potential fractionation induced by the chemical

separation and purification methods. From the non-shifted process standards, it can be

evaluated whether the chemical processing is fractionating the Fe or if an isotopically

shifted blank or interference is being introduced. However, the measured isotopic value

of a non-shifted Fe process standard would not be affected significantly if the blank was

isotopically zero or close to zero. By analyzing isotopically shifted process standards as

well, the effect of Fe blanks that are isotopically close to zero can also be assessed. A

summary of measured 8Fe,, ,d for process standards is shown along with the

corresponding gravimetric standards in Figure 4.3 (data in Table 4.4). Most of the

measured 8 •Fe,,rd for process standards agree with their nominal values. The one

exception was the 11/03 10 jtg 0%o Fe process standard, which was slightly isotopically

heavy for the two analytical sessions (0.12 ± 0.07%o, 2a, n=4). However, the other 10 to

15 jtg process standards are not isotopically different from their nominal values.

Process blanks were also measured with each sample set and were found to

usually have 0.05 to 0.07 Vig of Fe. This amount of Fe contributes less than 0.1% to

samples with 100 jtg or more of Fe, approximately 0.6% to a 10 jig sample, and 6% to a

1 jig Fe. Even at 6%, a blank would only shift a sample with a -6Fe of -0.5%o sample by

0.03%0 if the blank had an isotopic composition close to 0%0. For the one process

standard that is isotopically heavy from its nominal value by 0. 12%o, the blank would

need to be +20%9 to cause the observed value if the blank were 6% of the sample.

Because the other 10 and 15 jLg Fe process standards do not support such a large blank
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correction, it is likely that there is some other cause for the observed value (e.g.,

measurement error, matrix induced instrument mass bias variability, or interference). It

appears from the process standards and blanks, that the chemistry method generally does

not introduce blanks or interferences to an appreciable amount for samples with more

than 10 jtg of Fe.

Early in the method development for Fe isotopic analysis, an experiment of Fe

fractionation by anion exchange chromatography published by Anbar et al. (2000) was

reproduced on our instrument as another test of the method. The experiment was done

using the same anion exchange resin used by Anbar et al. (2000) and the same resin used

for Fe purification in this study. As Fe elutes from the column, the heavier isotope

preferentially elutes earlier than the lighter isotope. The elution of Fe and the Fe isotopic

composition as Fe elutes is shown Figure 4.4 (data in Table 4.5). For this experiment, a

longer column of resin (7 cm long x 1 cm, wide, 5.5 ml resin) was used than is used for

samples in order to spread out the elution of Fe and isotopic fractionation. The elution

curve from this study agrees with the experiment by Anbar et al. (2000) and demonstrates

the large fractionation of Fe isotopes on the resin used for purification (+5.3 to -5.4%o).

Anbar et al. (2000) suggested that the fractionation was due to equilibrium fractionation

between the Fe chloride species. Within the uncertainty of the Fe isotopic analysis and

Fe concentration measurement, all of the Fe was eluted with 15 ml and the cumulative

isotopic value approached 0%o (Table 4.4). This experiment highlights the importance of

quantitative recovery of Fe from the anion exchange resin. If some of the Fe tail is not

collected, the Fe isotopic value of a sample might appear isotopically heavy. For

example, a sample would be isotopically shifted 0.396 if-- 5% of the Fe tail was not

collected on the 7 cm column. In this study, a shorter column was used (faster Fe elution,

3.5 cm long x 0.8 cm wide, 1.8 ml resin) and 18 ml of eluent was used to ensure that no

isotopic bias was introduced from this step. Also, the process standards support the

conclusion that Fe is not being fractionated during the column separation.

Replicate splits of several samples were also processed through the Fe separation

chemistry in order to evaluate the reproducibility of the chemistry method for natural
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Figure 4.4: Column elution and Fe isotopic fractionation of Fe on the anion exchange resin used
in this study (reproduction of an experiment published by Anbar et al. (2000)). The eluent
containing the Fe was collected in aliquots as it eluted off the column, and each aliquot was
measured for Fe concentration and Fe isotopic composition. In order to spread out the Fe elution,
a longer column of resin (7 cm x 1 cm) was used for this experiment than is used for samples (3.5
cm x 0.8 cm). A summary of the data is given in Table 4.5. Error bars are 20 standard error of
multiple measurements. Error bars are 2a standard errors of replicate measurements. If multiple
measurements were not made within an analytical session, then a 20 uncertainty of ± 0.229/o is
used based on the long term external precision of a granite sample (± 0.22%o, 2 SD, n=22, Table
4.6, granite D).
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Table 4.5: Fe Isotopic Data for an Anion Exchange Column
total Fe loaded on column: 200 Rtg; column length extended to 7 crm')

2T T cumulative

fraction analysis (2 std 86 Fe
ple i ml ppm Fe Fe date (%) 1 SDc1 error) n (%)

•lumn s lits 
[

1 2.5to44 0.0 _ _ _

_ 4to4.5 14 0.04 9/25/01 5.27 0.031 0.04 2[ 0.19
4.5 to 5 103 0.26 9/21/01 3.01 0.051 0.08 21 0.96

_ 5to5.5 100 0.25 9/25/01 1.03 0 .11' 0 .22e 1 1.22
5.5to6 68 0.17 9/25/01 -0.30 0.11i0.22e 1T 1.17

10 6to6.5 40 0.10 9/21/01 -1.41 0.091 0.10 3 _1 1.03
11 I 6.5to7 26 0.07 9/25/01 -2.11 0.11¶ 0.22e 1j 0.89
12 7 to 7.5 18 0.04 9/25/01 -2.87 0.11e 0.22e 1 0.76
13 7.5 to 8 12 0.03 9/21/01 -3.20 0.02 0.03 2 0.66
14 8 to 8.5 8.6 0.02 9/25/01 -3.97 0.11C 0.22c 1 0.58
15 8.5 to 9 6.5 0.02 9/25/01 -3.97 0.11cI 0.22e 1 0.51
16 9 to 9.5 4.6 0.01 9/25/01 -4.13 0.11 P 0.22e 1 0.47
17 9.5 to 10 3.2 0.01 9/25/01 -4.22 0.1 lI 0.22e 1 0.43
18 l1to 11 2.4 0.01 9/25/01 -4.59 110.21c0. ] 0.38
19 11 to 12 1.5 0.01 9/25/01 -5.36 0.11: 0.22r 1 0.34
20 12 to 13 1.1 0.01 9/25/01 -5.37 _0.11_ _ 0.22e 1 0.31

Fe accounted for: 103% cumulative Fe isotopes: 0.31%o
cumulative unc. (1 SD): 5.8% cumulative unc. (2o): 0.55 %o

tandards run on same days as column spl 0 12
dard: 0 perml 1_9/25/01 0.00 0*06 009 2l

tandard:-1.2permil 9/25/01 -1.16 0.11r! 0.22* I
tandard: -1.2 permil 9/21/01 -1.32 0.09; 0.16

standard: -5.6 permil 9/25/01 -5.67 0.11e 0.22 1I
a) In order to spread out the Fe elution, the resin column was extended to 7 cm long (x 1 cm wide) for
this experiment. Normal column length for samples is 3.5 cm (x 0.8 cm wide, internal diameter).
b) 65Fe values of samples in this table are referenced to working standard and samples were run using
the cyclonic spray chamber inlet system on the MC-ICPMS.
c) SD is the standard deviation (SD) of the individual measurements.
d) 2o uncertainty is the uncertainty in the mean of replicate sample measurements (2 standard error).
e) If only one measurement was made for a sample, a 2a uncertainty of ± 0.22%o (2SD) was applied to
the sample. The 2a uncertainty was estimated using the long-term external precision of a granite
sample (± 0.22%o, 2 SD, n-=22, Table 4.6, granite D).
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samples and methods used for sample digestion. In particular, two samples will be

focused on in this discussion: 1) the USGS G-2 granite standard (data in Table 4.6), and

2) a plankton tow sample collected from Amazon plume water in the Atlantic Ocean

(10.5°N. 56.60W; data in Table 4.7). Four splits of the granite were processed through

the Fe purification and separation method (100 to 260 Rig Fe), and each split measured for

its Fe isotopic composition. The average 8SFe,,,k W of all the individual measurements of

this granite is -0.23 ± 0.049%oo (2a, n=27). The 2y standard deviation (± 0.229"oo) of the

granite D split measured over multiple sessions using various input techniques to the

MC-ICPMS is taken as a reasonable estimate of the overall external reproducibility of the

Fe isotopic measurement technique, and is applied to samples only measured once in an

analytical session. No systematic differences are seen between the different granite splits

or the different inlet systems. The mean igneous rock value used to reference samples to

in this study is the mean of the individual measurements of all igneous rock samples

(8b'Fe,,,,d = -0.23 ± 0.049o, 2a, n=30).

Besides igneous rocks, the IRMM-014 standard has been measured and used as a

reference standard for 6'Fe measurements by several laboratories. It was measured

during several analytical sessions in this study (Table 4.6). The difference between the

mean 8b5 Fe, ,. of igneous rock and the IRMM-014 standard (-0.13 ± 0.07%o,, 20, n=12)

agrees well with the difference reported by Beard et al. (2003) of -0.09 ± 0.0 19o (20,

n=52). This is the only test of accuracy (besides the gravimetric standards) available to

compare data from this study with results from other laboratories.

In order to evaluate the potential effects of organic matter on Fe isotopic

measurement method, a plankton tow sample was processed several ways to remove the

organic matter. Different size fractions of the plankton tow (>10 Rm and 1 to 10 jim) and

replicate tows were also measured to ensure that filtering at sea did not affect the Fe

isotopic composition of the sample. It took several hours to completely filter one

plankton tow at sea through the 10 jtm filter, and then finally through the 1 jtm filter

before another plankton tow sample could be filtered. If bacterial degradation or organic

matter or cell lysis in the plankton tow were affecting the Fe isotopic composition, then
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Table 4.6: Summary of Fe Isotopic Data for Igneous Rock Standards
ad the IRMM-014 Standard S 20i Urc

analysis 8me•1(2std
pie date (M) I 1SD' 1error) n inlet

asalt, BVHO-1 (USGS standard), Hawaii, 12.2 % (Wt) Fe203-T
plit B, 1180 g Fed 11/6/01 -0.13 O.Ile 0 .22c 1 spray chamber
pitC, 419 tgFe 11/6/01 -0.24 0.le 0.22c 1 Js j rachamber
plitD, 248 tgFe 4/24/04 -0.32 0.11 i 0.22j 1 APEXdes.

average all basalt measurements: -0.23 0.10 i 0.11 3;
ranite, G-2 (USGS standard), Rhode Island, 2.66 % (Wt) Fe2O,-T

plitA, 113 1tgFe 11/6/01 -0.23 0.05 0.08 T2 pTraychamber
plit B, 140 jg Fe 11/6/01 -0.26 0.03 0.05 2 _ray chamber
split C, 230 ig Fe 11/6/01 -0.16 0.Ili 0.22e - 1 jpraychamber
split D, 263 ttg Fe 4/24/04 -0.20 0.10 _ 0.11 3 [APEX des.

8/16/03 -0.14 0.06 i 0.09 2 spray chamber
8/7/03 -0.20 0.15 10.21 2 ray chamber
7/10/03 -0.32 0.00 0.00 2 A-idus
8/16/03 -0.03 0.1 V 1 0.22" 11 spray chamber
5/28/03 -0.38 0.11* 1 0.22' 1 Aridus
4/24/04 -0.34 0.05j 0.01 2 APEX des.
3/31/04 -0.26 0.11' i 0.22' 1 1APEX (no des)
1/22/04 -0.23 0.14 0.13 5 tAPEX (no des)
/16/03 -0.15 0.11' 0.22C T a chamber

8/1/03 -0.32 0.05 0.06 2 6pray chamber
average of granite split D: -0.23 0.11f' 0.05 221

average all ganite measurements: -0.23 0.10 i 0.04 271

average of igneous rock spits: -0.23 0.10 j 0.04 30 _

MM -014 Sandlard- ___ _____

_RMM-014_Standar 4/24/04 -0.35 0.05 0.06 3 APEX des.
1/22/04 -0.24 0.14 0.20 2 APEX (no des)
8/16/03 -0.44 0.09 1 0.13 2 •praychamber
8/7/03 -0.35 0.11' 0.22" 1 spray chamber
8/1/03 -0.41 0.09 0.11 3 sprychamber

7/10/03 -0.29 0.11 I 0.22" 1 •Aidus
average all RMM-014 std: -0.36 0.10 1 0.06 12 ,

difference between igneous rocN -0.13 0.14 0.07 12
mean and IRMM standardt: I _ _

a) 6'Fe values of samples in this table are referenced to working standard.
b) SD is the standard deviation of the individual measurements.
c) 2a uncertainty is the uncertainty in the mean of replicate sample measurements (2 standard error).
d) Every sample or sub-sample was processed through the Fe separation and purification chemistry separately. The
amount of Fe in the rock sample processed through the chemistry is also given.
e) If only one measurement was made for a sample, a 2y uncertainty of ± 0.22%o (2SD) was applied to the sample.
The 2a uncertainty was estimated using the long-term external precision of a granite sample (± 0.22%o, 2 SD, n=22,
Table 4.6, granite D).
f) The estimate of external precision of ± 0.22%o (2 SD, n=22) based on this sample set.
g) The difference between the mean of igneous rock samples and IRMM-014 was reported by Beard et at. (2003) to
be -0.09 ± 0.01%o (2o, n=52).
f) Several inlet systems were used including a cyclonic spray chamber (spray chamber), the Aridus desolvating
system (Aridus), and the APEX system with (APEX with des.) and without a desolvator (APEX (no des)). See text
for more details.
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Table 4.7: Summary of Amazon Plume Plankton Tow Fe Isoto Data
S2oF

t unc
Fea 8S6Fe.,t b (2 std

ligestion method (ttg) date (%M) 1 SD' error) n kWef
Tow 1 (<10 ume),MINO 3 digested, ? 10/24/03 -0.56 0.1 1h 0.22" 1 spray
split A ost-col. combustedg

omw 1 (<10um)mbusted ? 10/24/03 -0.63 0.10 0.14 2 pray
split B pr-clua omuse
Tow 2 (<10 ume) Lre-column combusted 26 10/24/03 -0.70 0.06 0.08 2 ýpM
Tow 1 (>10 um) pre-column combusted 68 5/15/03 -0.41 0.11h 0 .2 2 h 1 ýfidus

5/28/03 -0.55 0.11h 0.22"h 1 J dus

7/10/03 -0.67 0.12 0.17 2 lAridus
8/7/03 -0.40 0.03 0.04 2 pray

t 1/22/04 -0.59 0.11b 0.22h 1 ýPEX (no des)

average all tow I (>10 um): -0.53 0.13 0.10 7

average all individual analysis: -0.57 0.12 0.07 12 _

difference between mean igneous rock S-0.34 0.13 0.07 12
and AM-plume plankton tow: I I I

a) Amount of Fe extracted from split of plankton tow. Every sample or sub-sample was processed
through the Fe separation and purification chemistry separately.
b) 86Fe values of samples in this table are referenced to working standard.
c) SD is the Standard deviation of the individual measurements.
d) 2a uncertainty is the uncertainty in the mean of replicate sample measurements (2 standard error).
e) Plankton tow material that passed through the 10 tun filter and was collected on a 1 pm filter.
f) Plankton tow material that was collected on a 10 txm filter.
g) Samples combusted in a muffle furnace at 5500C for 8 hours.
h) If only one measurement was made for a sample, a 2a uncertainty of ± 0.22%o (2SD) was applied to
the sample. The 2o uncertainty was estimated using the long-term external precision of a granite sample
(± 0.22%o, 2 SD, n=22, Table 4.6, granite D).
i) Several inlet systems were used including a cyclonic spray chamber (spray chamber), the Aridus
desolvating system (Aridus), and the APEX system with (APEX with des.) and without a desolvator (APEX
(no des)). See text for more details.
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potentially the >10 jtm and the 1 to 10 gtm samples would have different isotopic

compositions. The b'6Fe, ,e data for the Amazon plume plankton tow is given in

Table 4.7. The different size fractions and splits of the plankton tow show little isotopic

variability (856Fek dta = -0.57 ± 0.0776, 2o, n= 12) suggesting that the filtering technique

and time did not affect the isotopic composition of the Fe. This sample referenced to

igneous rocks gives a 8bFe of -0.34 ± 0.07%o (2o, n=12).

Organic matter was removed either by nitric acid digestion prior to the column or

muffle furnace combustion (550"C). It was found that non-combusted samples caused

the stability in the instrument mass bias to degrade. This is illustrated in an example of a

SSB analysis session where splits of the Amazon plankton tow sample were measured

(Figure 4.4). Although the Fe in the nitric acid digested samples was purified by column

separation, residual sample matrix was still present. As can be seen in Figure 4.5, a nitric

acid digested sample that was combusted after the column separation did not cause

instabilities. However, the nitric acid digested plankton tow that was not combusted

post-column caused the isotopic composition of the bracketing standard to shift and

become unstable. This behavior was observed in several analytical sessions where

organic rich samples were run without combustion. Based on these observations, all

samples were combusted prior to the column and combustion was chosen as the preferred

method of organic matter digestion. Some samples were combusted both before and after

the column separation, but these samples did not behave differently from splits of the

same samples that were only combusted prior to column separation.

From the process standards and replicates of a few samples, a reasonable external

precision can be estimated of ± 0.2296 (2 SD) for 68'Fe, d and of ± 0.2496 (2 SD) for

6•Fe of natural samples referenced to igneous rocks. Samples are usually measured

multiple times, which leads to a 2a uncertainty of better than ± 0.17176o in the averaged

8bFe measurement. This is based on analysis of samples and standards over several days

with several inlet systems and also several replicates run through the Fe separation and

purification method. The gravimetric standards have external precisions only slightly

better than the process standards and samples suggesting that much of the uncertainty in
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Figure 4.5: An example of a Fe isotopic analysis session by MC-ICPMS (cyclonic spray
chamber) demonstrating the importance of removing organic material from the sample matrix.
The figure also demonstrates sample-standard bracketing with the plankton tow samples (U, 0)
and shifted standards (A) analyzed between the bracketing standards (*). Every data point
represents 2.5 minutes of data acquisition with approximately 15 minutes in between, which
includes blank acquisition (1 min), sample uptake (2 min), and sample washout (12 mrin). The
combusted (550'C) plankton tow samples did not cause problems and the bracketing standard
was relatively stable in its Fe isotopic composition. After running two plankton tow samples that
were not combusted, the bracketing standard Fe isotopic composition shifted and became
unstable. This was observed during several analytical sessions where non-combusted organic-
rich samples were analyzed. The recovery to stable conditions took several hours and sometimes
cleaning of the glassware.
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the isotopic measurement is due to the stability of the instrument mass bias correction by

SSB. It can also be concluded that no appreciable blank, interference, or fractionation is

being introduced during the Fe separation and purification chemistry for samples with

>10 ttg of Fe. The accuracy of the method appears to be good based on gravimetric

standards and the measured difference between igneous rocks and the IRMM-014

standard. However these conclusions are based on standards and igneous rock samples

with high Fe concentrations. Whether or not samples with complex sample matrices

(such as the plankton tows) are accurate is more difficult to prove. These samples could

be suffering from interferences or variable instrument mass bias associated with their

matrices. The next two sections will try to assess the accuracy of the Fe isotopic

measurements in natural samples with low concentrations of Fe.

4.3.2. Interference Correction (5 Fe/Fe versus 'Fe/4Fe)

Mass fractionation of isotopes is predicted to follow a generalized power law

function stemming from differences in the vibrational energies of molecules (BIGELEISEN

and MAYER, 1947). Two commonly used mathematical descriptions, which are both

forms of the generalized power law, are the exponential law and the power law (reviews:

MARRCHAL et al., 1999; ALBAREDE AND BEARD, 2004). Either law predicts that a log-log

plot of two isotopic ratios should fall along a linear array. For Fe, a slope of 0.666 for the

power law and 0.672 for the exponential is predicted for plots of ln(57/54) versus

ln(56/54). When two isotopic ratios of a given element can be measured, plotting the two

ratios on a log-log plot and observing a linear trend lends confidence that neither ratio

measurement is suffering from incorrect blank or interference corrections. Figure 4.6 is a

plot of data for an analytical session on the IsoProbe with the APEX inlet system with

desolvation. The best-fit slope for the bracketing standards is 0.683 ± 0.005, which is

slightly higher than the slope predicted by the exponential or power law. However, the

instrumental mass bias law in ICPMS is not well characterized and deviations from these

slopes are observed on other instruments (ALBAREDE and BEARD, 2004; ARNOLD et al.,

2004).

157



A deviation from the predicted slopes could also indicate that there is some

unresolvable interference in the standards that is not being corrected. Mass 57 is a

difficult measurement on the MIT IsoProbe. Under the best circumstances (desolvation,

1 V signal on mass 57), the ArOH÷ interference is 0.4% of the 57 signal and can vary by

- 0.1% over the course of an analytical session. A 25% uncertainty in this correction

leads to a minimum uncertainty of ± 0. Moo in the 857Fe measurement. This is compared

blank corrections on masses 56 and 54 that are typically less than a 0.01%. Also, the

"Fe/IFe ratio of the bracketing standard is less stable than the bracketing standard

'Fe/'Fe ratio. Under the most stable conditions, variations in the bracketing standard

857Fe,k d are ± 0.40%o (2 SD) with APEX desolvation system and ± 0.5290' (2 SD) with

the Aridus desolvation system. Typical 2a uncertainty for the V57Fe measurement is

± 0.35 to 0.40%7. Most analytical sessions in this study were done under wet plasma

conditions (no desolvation), because this optimized for the stability of the 'Fe/•Fe

measurement (but made the 17FeP4Fe less stable). Therefore, typically the 7Fe/IFe ratio

is not reported.

A few analytical sessions where desolvation was used were sufficiently stable

enough for both the 8•Fe and 857Fe values to be measured with confidence (± 0.22%OC for

8Fe; t± 0.40%ro for 6 "Fe, 2 SD). Measurements made using the APEX inlet system with

desolvation are plotted in Figures 4.6 and 4.7a. Bracketing standards are plotted in

Figure 4.6a, and samples plotted in Figures 4.6b and 4.7a. Most sample types follow the

mass fractionation trend defined by the standards including igneous rock samples, the

IRMM-014 standard, Amazon porewater, suspended sediments, the Amazon plume

plankton tow, river water-seawater mixing experiments, and the bracketing standard at

varying concentrations. The only samples to deviate from significantly from the mass

fractionation trend are the 10 gtg Fe process standard and the dissolved Fe from river

water samples, with the Macapi station showing the largest deviation. The same river

water samples were also measured with the Aridus inlet system and follow the mass

fractionation trend (Figure 4.7b). The 8-Fe measurements using the Aridus and APEX

agree for the Solim6es and Negro River samples, and the measurements also agree with
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SIRMM-014 standard =
o rw-sw mixing expts .
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Figure 4.6: Fe isotope data collected with the APEX (with desolvator) inlet system (April 2004).
4.6a) Plot of ln(57/54) versus ln(56/54) for the bracketing standard. 4.6b) Plot of ln(57/54) versus
ln(56/54) for the samples measured during the same analytical session as the bracketing standard
(Figure 4.6a). The only samples that plot off the mass fractionation trend are the river samples
(U) and the 11/03 10 gtg Fe process standard measurements (A). See text for discussion.
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Figure 4.7: Fe isotope data collected with the APEX (with desolvator) inlet system (April 2004)
compared with data collected with the Aridus inlet system (summer 2003). 4.7a) APEX data
(same data from Figure 4b) plotted as 6"Fe.k ,w versus 6'Fe,& w. The samples that deviate from
the mass-depended fractionation trend are the river samples (U) and the 0%Wo 11/03 10 •g Fe
process standard (A). The Fe for the 0%o process standard during the April 2004 run was slightly
isotopically heavy, +0.12 ± 0.079o (2o). Whereas, the 6"Fe. d measured during the run is very
different from predicted values based on mass-dependent fractionation. 4.7b) Aridus data for the
same river samples (U) is plotted along with the granite and Amazon plume plankton tow. The
river samples follow the mass-dependent fractionation trend and the isotopic compositions from
the two data sets are similar for 856Fe,, ,. See text for discussion. 2o error bars are shown for
one sample on each plot (±t 0.22-Yoo for 56Fe, ± 0.400o for 6 "7Fe, 2 SD).
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b5Fe data generated with the spray chamber. For the Macapi station river sample, the

APEX (with desolvation) 8bFe data is isotopically heavy by 0.496 compared with the

data generated with the Aridus inlet system, the spray chamber, and the APEX (no

desolvation) data using Cu internal standardization. The 68Fe of the process standard is

also shifted by +0.12%o. This suggests that there is some interference associated with the

Macapi sample on mass 57 that is present when the sample is analyzed using the APEX

(with desolvation) inlet system, and that the -•Fe/-Fe measurement is affected as well.

Therefore, sample data was discarded with measured 857Fe values on the APEX that

deviated by more than 1%o from the predicted 8`Fe based on stable mass fractionation.

There are two likely interferences on mass 57, CaOH÷ and ArOH÷, and both could

be associated with their non-protonated oxides on mass 56 (CaO* and ArO÷). If either

interference were present on mass 57, it would still not be obvious that mass 56 should be

affected as well. Both CaO÷ and ArO÷ are effectively minimized in the hexapole

collision cell, and the 6Fe signal is much larger than the "7Fe signal and thus less

sensitive to small interferences. A "high resolution" scan of mass 56 peak in a Fe

solution with and without H 2 reaction gas in the hexapole collision cell is shown in Figure

4.2b. A similar scan at mass 56 of a 2.5 ppm Ca solution is shown in Figure 4.8. The

CaO÷ interference is effectively destroyed with H2 gas in the collision cell. For

comparison, "high resolution" scans of three samples (including the Macapa station river

sample) at masses 54 and 56 are shown in Figure 4.9. The sample peaks are clean

without resolvable interferences (CaO÷ and ArO+ should be resolvable from 'Fe). It is

not clear what controls the formation of CaOHW and ArOH÷ in the IsoProbe interface and

hexapole regions. The formation could be related to matrix variations, plasma

conditions, or reaction conditions in the hexapole. If either CaO* or ArO* were present in

the samples, then the Fe in the measured sample would appear isotopically heavier than

its true isotopic value. By screening samples when possible using the 57Fe/PFe ratio and

reproducing isotopic measurements under several analytical conditions (e.g., inlet

systems, concentrations, wet and dry plasma), it is believed that the reported isotopic
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Figure 4.8: "High resolution" scans are shown at mass 56 and mass 57 of a 2.5 ppm Ca solution
spiked with Fe. Scans are shown with and without H2 reaction gas in the hexapole collision cell
(2 ml/min). The Ar collision gas was set at 1.8 ml/min. 4.8a) Scans of a Ca solution with 10 ppb
of -"Fe are shown with and without H2 reaction gas in the hexapole collision cell. In order to
create a significant amount of CaO÷, no H2 gas was used and the Ar collision gas was reduced to
0.5 ml/min. The CaO÷ was significantly reduced by using 1.8 ml/min of Ar in the collision
chamber and eliminated with the addition of the H2 reaction gas. 4.8b) Scans of a Ca solution
with 5 ppb of ' 7Fe are shown with and without H2 reaction gas in the hexapole collision cell. The
CaOH÷ increased with addition of H2 reaction gas in the hexapole collision cell. The "high
resolution" scan was done by narrowing the source slit and setting the detector slit to the "high
resolution" slit, which has a resolving power of - 5000 (mr/Am).
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Figure 4.9: "High resolution" scans of mass 54 and 56 of Fe solutions of natural samples with Ar
and H 2 gas in the collision cell (2 ml/min for each). Measurements were made with the APEX
inlet system without the desolvator. 60 ppb (ng/g) Fe solutions were used for the mass 54 scans
and 6 ppb solutions were used for the mass 56 scans. Scans 4.9a and 4.9b are of a Amazon river
sample (Macapi station, sample B). 4.9c and 4.9d are scans of the Amazon plume plankton tow
sample (tow 1, >10 pm). 4.9e and 4.9f are scans of a Pacific plankton tow (ALOHA, tow 3,
>10 p•m). All the scans are clean peaks without resolvable interferences (e.g., ArN' and C1OH÷
on 54; ArO÷ or CaO÷ on 56). The "high resolution" scans were done by narrowing the source slit
and setting the detector slit to the "high resolution" slit, which has a resolving power of - 5000

(rn/Am).
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values are accurate to within the reported uncertainties (_L 0.2496, 2 SD, for the 556Fe

value referenced to igneous rocks).

4.3.3. Instrument Mass Bias: Isotope Standard Addition

Besides interferences and blank correction issues, variability in instrument mass

bias also needs to be assessed. The common technique used to assess this is Cu internal

standardization for Fe isotopic analysis. However due to the potential pitfalls with this

technique discussed in the introduction of this chapter and possible Cu co-elution with Fe

in our separation chemistry, another approach was used to assess potential changes in

instrument mass bias for samples. The technique used in this study is referred to as
"standard isotope dilution". A small amount of isotopically shifted Fe was added (0.1 to

0.6 ng of Fe; in a small volume, 25 p.l) to a split of a sample (usually I to 2 jig of Fe).

This changed the Fe isotopic composition of the sample without altering the Fe

concentration or matrix of the sample. The `1Fe standard used was calibrated by

additions to the working standard and was the same standard used to make the

gravimetrically shifted standards. The sample and the sample-standard addition mixture

were then both measured for their isotopic composition. If the instrument mass bias is

corrected for accurately, then the measured isotopic composition of the sample-standard

addition mixture should easily be predicted by simple isotopic mass balance. This

technique was applied to a variety of sample types, and the data is given in Table 4.8. In

every case, the predicted and measured b56Fe values for the sample-standard addition

mixtures agree to within the predicted uncertainty and most agree to within the

representative 2a uncertainty (± 0.2 2%0o) in the measurement technique. The good

agreement of the predicted and measured 6Fe values suggests that the mass bias of the

instrument is being characterized correctly by SSB within the uncertainty of the

measurement.
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Table 4.8: "Standard Isotope Addition" Fe Isotope Data
all 8S"'Fe referenced to worldndard)

Ipredicted 68 Fe
Fe Fe I 8"Feof of

from bmFe from 85"5 Fe sample- pred. sample- diff
sample of spike of spike unc.d spike from

Sample Type sample 1 SD (ig) spikeb mixture (1 SD) mixture pred
WWt1leachate- 1 M HCI - 7I

Adl 1WN 450W) 2.12 1 -0.22 0.04 0.0006 -11567 -3.49 1 0.32 -3.40 0.09
iver (AM-Seomoes, split2) 2.12 -0.63 0.13 0.006 -11567 -35.00 1 0.34 I -35.25 -0.25

ndedsediment(AM-Sohmoes) 0.68 -0.68 0.10 0.0001 -11567 -1.75 0.29 -1.68 0.07
ndedsediment(AM-Negro) 068 -1.25 0.03 0.0001 -11567 -2.32 0.20 -2.26 0.06
nded sedimet (AM-Macape) 068 -0.43 0.17 0.0001 -11567 -1.50 1 0.52 1 -1.52 -0.02

t(AM-Solimoes#' 0.68 -0.48 0.10 0.0001 -11567 -1.55 0.34 -1.56 -0.01
rewater, split I(AM shelt) 0.12 0.0001 -11567 -2.63 -0.23 -2.74 -0.11

pumne, Awl IO.5N, 56.rW T
2.12 -0.53 0.13 0.0006 -11567 -3.81 0.37 -3.73 0.08twkn tow I, >10 PM,

"kt 10-N, 45-W•

ton tow 2, split C 1 054 -0.54 0.11 i0.0001 -11567 -1.88 0.34 -1.92 -0.04

1 1.06 -0.78 0.07 10.0002 -11567 -3.40 0.24 -3.49 -0.09t-mkton tow 2, split B
ac. ALOHA 23N, 1SW i0.64 -2.76 0.23 10.0001 -11567 -3.89 0.23 -4.07 -0.18
___Ikton tow 3 I _S26-N, 175-W

ttow3 0.54 -2.35 0.05 0.0001 -11567 -3.65 0.20 -3.48 0.17
a) Measured 656Fe, d of sample without isotope standard addition referenced to the working standard.
b) Calculated 856'Fe,& m of Fe-54 spike referenced to the working standards (confirmed from measurements of
spike addition to working standard).
c) Predicted 856Fe, • of mixture of sample and spike (standard addition) referenced to the working standard.
d) Propagated error using the Io standard deviation of the isotopic measurements and reasonable estimates of
the uncertainty of volumes and concentrations.
e) Measured 8mFe.., d of mixture of sample and isotope standard addition referenced to the working standard.
f) AM stands for Amazon.
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4.4. CONCLUSION

In this chapter, a technique was presented for Fe isotopic measurements using the

GV Instruments IsoProbe MC-ICPMS, which includes a hexapole collision cell. Using

SSB and - 300 ng of Fe, this measurement technique yields a representative external

precision of - 0.2296 (2 SD) in the b6Fek d and ± 0.24%'7 (2 SD) in the 6"6 Fe of

samples referenced to igneous rocks. Because the sample types that will be addressed in

the following chapters are natural samples with lower Fe concentrations than previously

studied, the potential for elevated levels of residual matrix and interferences in the

samples is higher. Precision and accuracy were assessed through the measurement of

standards including isotopically shifted standards. Process standards were processed at

various concentrations and with different isotopic compositions to test for fractionation in

the separation chemistry and significant blank or interference contributions. From the

standards, it is concluded that the Fe purification and separation chemistry does not

introduce significant fractionation, blanks, or interferences for samples with >10 Rtg Fe.

Also, the gravimetric standards agree with their nominal values and the difference

between the IRMM-014 standard and mean igneous rock agreed with published values.

Proper interference correction for natural samples was evaluated by measuring both the

"56Fe/PFe and 57Fe/'Fe ratios when possible. For most sample types, the 'Fe/•Fe and

57Fe/'Fe followed mass-dependent fractionation trends. There is evidence that variable

interferences on 57 (and also potentially 56) need to be addressed (most notably in the

river samples). The interferences are not always present and depend on the inlet method

suggesting that the interference formation is related to conditions in the plasma.

However, the controls over these interferences is not yet understood. By screening

samples when possible using the 57Fe/PFe ratio and reproducing isotopic measurements

under several analytical conditions (e.g., inlet systems, concentrations, wet and dry

plasma), it is believed that the reported isotopic values are accurate to within the reported

uncertainties (. 0.2496, 2 SD, for the 556Fe relative to igneous rocks). Finally, an

"isotope standard addition" method was developed to investigate matrix-induced
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variability in the instrument mass bias. Based on the good agreement of the predicted

and measured 8'Fe values of sample-standard addition mixtures, we suggest that the

mass bias of the instrument is being characterized correctly by SSB within the external

reproducibility of the method.
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Chapter 5

Iron Isotopes in the Marine System:

Preliminary Results

5.1. INTRODUCTION

Iron is an essential micronutrient in the ocean and a limiting nutrient in high

nitrate, low chlorophyll (HNLC) regions of the ocean (MARTIN and FrTzWATER, 1988;

MARTIN et al., 1994; COALE et al., 1996; BOYD et al., 2000). It is also hypothesized to

possibly limit nitrogen fixing organisms in the oligotrophic subtropical gyres (KARL et

al., 1997; FALKOWSKI, 1998). These observations have led to suggestions that changes in

iron input to the upper ocean can lead to climate changes by affecting biological

productivity (and thus the carbon cycle) (MARTIN, 1990). In order to incorporate Fe into

models of climate change, it is necessary to understand and quantify the processes that

control iron distributions in the ocean. However, our understanding of the Fe cycle is

hindered by a paucity of data and every new study significantly improves our

understanding of the Fe distribution in the ocean.

Stable isotope studies of light elements (e.g., H, C, 0, N, S) are ubiquitous and

yield invaluable insights into processes in the environment. For example, carbon isotopes

are used to track past changes in ocean circulation (DUPLESSY et al., 1988) and to study

carbon metabolic pathways (HAYES, 1993); nitrogen isotopes can be used to quantify past

changes in nitrate utilization (FRANCOIS et al., 1997; SIGMAN et al., 1999). Similarly,

fractionation of Fe isotopes could potentially be a useful tool to investigate processes

affecting Fe in the marine system. The available Fe isotopic data for both natural

samples and laboratory studies was in Chapter 1, and two hypothetical scenarios for the

use of Fe isotopic fractionation in the marine system were also discussed. Unfortunately,

not enough information about marine Fe isotopes is available to rigorously evaluate

potential applications of Fe isotopes to the marine system.
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Initial studies of Fe isotopes show promise that useful fractionations exist in

nature, and, in particular, in the marine system. A range of 4%0 (656Fe, definition in

section 5.2.4) is observed for natural samples that formed at the earth's surface (reviews:

BEARD et al., 2003a; BEARD and JOHNSON, 2004). This is in contrast to the ultimate

source of iron, igneous rock, which shows very little isotopic variability, ±0.10%o

(2a standard deviation) (BEARD et al., 2003a). Some of the largest variations observed in

Fe isotopes are from samples deposited or altered in the marine environment (Figure 1.3).

A 6 Myr paleorecord of iron isotopes was reconstructed from a Fe-Mn crust in the North

Atlantic at 1800 m depth (ZHU et al., 2000). V•Fe increased towards the present from

values of -0.7%o at 6 Ma to +0. 1%o at the present. If the Fe in the Fe-Mn crust

precipitated from seawater and has not been diagenetically altered, the record might serve

as a proxy for Fe isotopes in the deep ocean. 856Fe variations through time were also

observed in another Fe-Mn crust proximal to hydrothermal inputs in the Pacific, which

may be indicative of changing relative fluxes of seawater and hydrothermal dissolved Fe

to that site (CHu et al., 2003). Also, deep-sea cherts and chalks also have variable 68Fe

values from +0.23 to -0.66%9 (RouxEL et al., 2003). These records suggest that useful

variations in the Fe isotopic composition of seawater may exist. However, an

understanding of the mechanisms that control both the iron concentration and iron

isotopic distribution is necessary to interpret the Fe isotope records.

The main sources of Fe to the ocean are rivers, atmospheric deposition, re-

suspension of sediments, and hydrothermal vents. Iron concentrations are highest near its

sources and decrease rapidly with distance from sources due to the reactivity and

insolubility of Fe in seawater (Wu and LUTHER, 1996; JOHNSON et al., 1997). Therefore

river input and re-suspension of shelf deposits are only considered important sources of

Fe to coastal regions. Hydrothermal input is believed to be important only near its

sources (mostly in the deep ocean) for the reason that most of the Fe precipitates near the

vents and ridge axes. Therefore, a majority of Fe in the open ocean is thought to be from

atmospheric deposition. A fraction of this Fe is dissolved in the upper ocean, taken up by

organisms, and then exported to the deep ocean by sinking organic material and
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scavenging of Fe onto sinking particles. The amount of dissolved Fe in the deep ocean

will depend on a balance between the decomposition of sinking organic matter, lateral

transport, organic complexation, and removal by scavenging with a residence of - 200 to

300 years (JOHNSON et al., 1997; PAREKH et al., 2004; Chapter 2). Besides atmospheric

deposition, upwelling and vertical mixing of nutrient-rich deep-water into the euphotic

zone is also an important source of Fe to the biological pump. Therefore understanding

atmospheric delivery, dissolution of aerosols, biological cycling in the euphotic zone, and

the controls over deep-water Fe concentrations are all vital to understanding biological

utilization and cycling of Fe.

Of the four main sources of dissolved Fe to the ocean, only the isotopic

composition of dissolved Fe from hydrothermal vents has been measured directly.

Dissolved Fe from mid-ocean ridge hydrothermal vents (SHARMA, 2001; BEARD et al.,

2003b; SEVERMAN et al., in press) is isotopically light relative to igneous sources (-0.2

to -0.7%o). Heavier isotopic compositions in hydrothermally altered oceanic basalts

(where up to 80% of the Fe has been removed by leaching) suggest that isotopically light

vent fluid results from preferentially leaching of light isotopes from oceanic basalts

(RouxEL et al., 2003). Precipitation of isotopically heavy minerals (e.g., sulfides) from

hydrothermal fluids may also drive hydrothermal Fe input to lighter values (SHARMA,

2001; BEARD et al., 2003b; ROUXEL et al., 2004). When the hydrothermal vent fluid

mixes with seawater, a significant fraction of the Fe precipitates from solution forming

plume particles. The overall effect of this loss of Fe on the residual dissolved Fe isotopic

composition in deep water is still being studied, but an initial study suggests that it may

be negligible (SEVERMANN et al., in press).

Although the input of dissolved Fe from rivers, dissolution of atmospheric

particles, and re-suspension of shelf sediment have not been measured directly, there are

a few studies that hint at the possible Fe isotopic composition of these sources. Shelf

sediments along with their porewaters from the California margin show isotopic

variability with porewater 68Fe reaching low values of -1.3%o relative to igneous rocks

(SEvERmANN et al., 2003). Also, organic-rich black shales show a large range in 6•Fe
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values from -2.3%o to +0.6%9 (YAMAGUCHI et al., 2003). These observations suggest that

diagenetic processes in marine sediments lead to variations in Fe isotopes, and re-

suspension of shelf deposits may lead to input of isotopically light dissolved Fe to coastal

and near-shelf areas. There has been some speculation that dissolved Fe inputs to the

ocean via rivers or dissolution of lithogenic aerosols might be similar to igneous rocks

based on the isotopic homogeneity of continental rocks, river suspended material, soils,

loess, and aerosols (BEARD et al., 2003b; BEARD and JOHNSON, 2004). Considering that

only a few percent of Fe is mobilized into the dissolved phase in many environments, it

would be extremely difficult to detect variations in dissolved Fe inputs from their source

rocks and sediments.

Because Fe isotopes might further the understanding of the Fe cycle in the ocean,

it is important to continue investigating Fe isotopes in the marine system. Six plankton

tow samples from the tropical and subtropical Atlantic and Pacific Oceans were analyzed

for their Fe isotopic compositions. An aerosol sample was collected for iron isotopic

analysis at a site in the North Atlantic, where atmospheric deposition is the main source

of dissolved Fe to the euphotic zone. Biological cycling of Fe in the surface ocean is a

significant part of the marine Fe cycle. It is linked to the dissolution of atmospheric

particles, biological uptake and recycling, and export to the deep ocean where Fe in

sinking organic matter can be re-mineralized. Whether or not planktonic Fe is

fractionated from its sources and how it is fractionated are important processes that need

to be assessed in order to apply Fe isotopes to the marine system.

5.2. SITES, SAMPLE COLLECTION, AND METHODS

5.2.1. Plankton Tows

Between January 2001 and July 2002, trace metal clean plankton tow samples

were collected at 5 m depth on three cruises in the sub-tropical and tropical Atlantic

and Pacific oceans (Figure 5.1): 1) June/July 2001, R/V Knorr, Kn162 cruise (two

plankton tows: 10°N, 45°W and 10.5°N, 56.6°W), 2) March 2002, R/V Endeavor, En367

cruise (two plankton tows: 7.4°S, 31.4°W and 24.5°S, 370 W), and 3) July 2002,
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RNV Ka'imikai-o-Kanaloa, KOK0210 cruise (two plankton tows: 23°N, 158"W and

26 0N, 1750W). The plankton tow sites cover a wide range of oceanic regimes with

different organisms represented in the tows. The identification of organisms and their

approximate abundance was mainly done by Dr. R. Foster (Dr. E. Carpenter's group at

San Francisco State University). The surface dissolved (<0.4 tum Fe) and soluble Fe

(<0.02 pm Fe) concentrations along the transects where the plankton tows were collected

are plotted for the Atlantic in Figure 2.3 and the Pacific in Figure 3.4.

In the Atlantic, plankton tows were collected at four sites. The open ocean

northern site (10*N, 45°W) is on the edge of the subtropical gyre and equatorial system

with high surface dissolved Fe (>0.5 nmol/kg) due to higher dust deposition mainly from

Saharan sources (DUCE and T)N'DALE, 1991; MAHOWALD et al., 1999; FuNG et al., 2000;

GAO et al., 2001; VINK and MEASURES, 2001). At the time of collection, July 2001, the

mixed layer was very shallow (11 m) and surface waters were warm and calm. The

dominant plankton collected was the nitrogen fixing cyanobacterium Trichodesmium spp.

Similarly, Trichodesmium spp. was the most abundant species collected at the 24.5°S site

in the subtropical gyre of the South Atlantic in March 2002. This site was also

characterized by a shallow mixed layer (32 m) and warm, calm conditions. However,

dissolved Fe levels were much lower at this site (<0.4 nmol/kg) due to the low dust input

to the surface ocean in the South Atlantic. The occurrence of Trichodesmium spp. at

these sites is likely due to the oligotrophic, warm, shallow mixed layer conditions at the

time of collection, which are conditions favorable for Trichodesmium spp. (KARL et al.,

2001). The 7.4°S site is located in a oceanographically complicated region of the ocean

on the edge of the South Atlantic subtropical gyre and equatorial system where the

surface water from the east diverges and either moves southward with the Brazil Current

or moves north with the North Brazil Current (BROWN et al., 1989). A CTD cast was not

done at this site and dissolved Fe concentrations were not measured. The plankton tow

was dominated by both dinoflagellates and diatoms (with intracellular nitrogen fixers).

In contrast to the open ocean site described above, the plankton tow from the western

tropical Atlantic at 10.5ON, 56.6°W was collected in a 25 m deep low salinity cap
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Figure 5.1: Sample location map. Samples were collected on three different cruises from July

2001 to July 2002. The North Atlantic samples were collected in July, 2001. the South Atlantic
samples in March 2002, and the North Pacific samples in July 2002. An aerosol sample and
plankton tow were collected at the 10*N, 450W site.
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(32 PSU) overlying 36 PSU seawater (Figure 6.1). The plume of fresher water also had

high concentrations of total Fe (7 nmol/kg); it is inferred that the source of the freshwater

and high Fe levels was the Amazon River System (see Chapter 6 for discussion). The

general characterization of this plume water was similar to coastal water with light

penetration of only a few meters due to a large bloom of larvaceans ("salps") and diatoms

with symbiotic nitrogen fixers.

Both sites in the Pacific were collected in the North Pacific subtropical gyre in

July 2002. The 23*N,158*W site is Station ALOHA, which is the part of the Hawaiian

Ocean Time-series (HOT) program established in 1988 (see special issues: KARL AND

MIcHAELs, 1996; SI.GEL et al., 2001). The main source of dissolved Fe to the

subtropical gyre is atmospheric input from aeolian transport off the Asian continent

(DucE and TINDALE, 1991; MAHOWALD et al., 1999; FUNG et al., 2000; GAO et al.,

2001), which is highest in the late winter/early spring (PARPiGTON et al., 1983;

PROSPERO, 1996). Dissolved Fe concentrations were 0.46 nmol/kg at the time of

collection, but concentrations vary from 0.2 to 0.7 nmol/kg at Station ALOHA seasonally

(BoYL et al., submitted). At the time of collection, the mixed layer was deep (- 80 m)

and the plankton tow sample was dominated by diatoms (with symbiotic nitrogen fixing

bacteria) with a small amount (10%) Trichodesmium spp. also present. Dissolved Fe

concentrations decreased toward the east along with the depth of the mixed layer. At the

26*N,175*W site, dissolved Fe concentrations were less than 0.3 nM (Figure 3.4) and the

mixed layer was - 30 m. Similar organisms were found at this site to those at Station

ALOHA, but Trichodesmium spp. abundance increased to - 50%.

A 64 tLm nylon mesh plankton tow was used to collect organisms at all sites,

therefore picoplankton are not represented in our samples. Some organisms smaller than

64 jim are retained by the net due to mesh clogging and turbulent flow in the net, but the

abundance of smaller organisms is not known (and organisms smaller than 10 to 20 ttm

are probably not retained). Picoplankton, such as the cyanobacterium Prochlorococcus

(less than I ttm), make up a significant fraction of the biomass (- 50 %) in the open

ocean (CHISHOLM et al., 1988; PARTENSKY et al., 1999). For example, it is estimated that
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Prochlorococcus dominates the biomass at Station ALOHA (KARL et al., 2001). This is

likely the case at the other oligotrophic sites sampled in this study.

Trace metal clean horizontal plankton tows were performed employing techniques

similar to those described in Collier and Edmond (1984). A 64 gnm nylon mesh plankton

tow with a plastic ring and fittings (Sea-Gear Corporation) was deployed from a nylon

rope with plastic coated lead weights from the side of the ship. Care was taken to ensure

that the plankton net did not contact the side of the ship and was only handled by gloved

hands. The lead weights were deployed first and were separated from the plankton tow

by 6 m of nylon rope. Plankton tows were performed 3 to 5 m from the side of the ship

with the ship steaming at 1 to 2 knots. Therefore, the plankton tow sampled water

moving parallel to the ship and not water that had contact with the ship. This technique is

commonly used in trace metal surface water sampling (e.g., "towed fish" device [Vink et

a., 2000]). In between deployments, the plankton tow was stored in an EDTA solution

and deployed without a collection bottle (cod end) for at least 5 minutes to flush the

plankton net thoroughly with seawater prior to sampling.

Three half hour tows were carried out at each sampling site to accumulate enough

biomass for Fe isotope analysis, except at the Amazon plume site where only 10 minute

tows were needed for collection due to high biomass concentration. Two of the plankton

tows were immediately vacuum filtered sequentially through acid cleaned and seawater

rinsed 10 jtm and 1 ptm Nuclepore polycarbonate filters in a class 100 clean laminar flow

bench. Complete filtration took several hours, and samples were refrigerated until

filtered. Plankton material plus filters were frozen and the final filtrate (< 1 pnm) acidified

and archived. The third plankton tow was split into two 250 ml acid cleaned

polycarbonate bottles, frozen, and archived. For Fe isotope analysis, the frozen plankton

tow filters were thawed and a split transferred from the filter to a quartz beaker with an

acid cleaned plastic scoop or pipette tip. Samples were dried on a hot plate overnight (60

to 80'C) prior to combustion at 550°C in a muffle furnace for 8 hours. Organic carbon

estimates (for Fe:C ratios) were made by measuring phosphate and Fe concentrations in

the sample prior to column separation. Phosphate was converted to organic carbon using
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the Redfield C:P molar ratio for marine organisms of 106:1 (REDFIELD et al., 1963).

Organic carbon estimates for a few of the earlier plankton sample replicates from the

10*N, 45*W and 10.5*N, 56.6*W were made by weighing the sample before and after the

muffle furnace and assuming complete combustion of organic carbon to CO2 . This

method underestimates the amount of organic carbon by approximately 40% (based on a

comparison to estimates made from phosphate measurements made on later plankton tow

samples), and organic carbon numbers were adjusted for these samples.

5.2.2. Aerosol

An aerosol sample from the North Atlantic (10N, 45*W) was analyzed for 865Fe

in this study. The sample was collected at sea by Y. Chen and Dr. R.Siefert (University

of Maryland) on acid cleaned cellulose filters using a high-volume dichotomous virtual

impactor. Collection techniques and trace metal contamination considerations are

discussed in Chen and Siefert (submitted). Splits of the filter with aerosol particles and

filter blanks were leached with 5 ml of 1 M HCl (triply distilled Vycor) and 0.5 M HNO3

(Optima grade); the goal was to preferentially dissolved only the exchangeable Fe (Fe

oxides and crusts). The acidic solution was warmed for one hour (60*C) and allowed to

sit overnight. The leachate was then transferred to a quartz beaker and taken to dryness

in a class 100 clean flow environment prior to combustion. The filter blanks for these

samples were higher than typical process blanks (0.16 rtg) due to the filter. The blank

accounted for 0.4% of the Fe extracted from the aerosol samples.

5.2.3. Fe Concentration Measurements

Sample Fe concentrations and post-column recoveries were measured by UV-VIS

spectroscopy using the Ferrozine method (STOOKEY, 1970) separating the Ferrozine and

hydroxylamine hydrochloride reagents (to avoid precipitation of the Ferrozine with HCI).

Using a 1 cm pathlength cell and lab-grade reagents, this method has a detection limit of

0.2 IiM. Process blanks were always below the detection limit by the Ferrozine method,

therefore blanks were measured on the IsoProbe using a simple two-point linear
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calibration curve. Seawater concentrations were analyzed by isotope dilution MC-

ICPMS (Mg(OH)2 co-precipitation) by a modified version of a method developed by Wu

et al., (2001) (BERGQtUST AND BoYLE, in prep). See chapter 2 for more details.

5.2.4. Fe Purification and Isotopic analysis

Methods for Fe purification, separation, and Fe isotopic analysis are described in

Chapter 4. Briefly, all samples are combusted at 550 0C for 8 hours, re-dissolved in 7 M

HCI (Optima grade), and purified by anion exchange chromatography. Approximately

300 ng of Fe was used for measurement of Fe isotopic composition on the MIT

GV Instruments IsoProbe MC-ICPMS. Instrumental mass bias was corrected for using

standard-sample bracketing (SSB), and matrix effects on the instrument mass bias were

evaluated using "standard isotope dilution" (also discussed in detail in Chapter 4). All

sample Fe isotope data is reported in delta notation:

856Fe (%o) = L Fe/4 Fe•sa le - I x 1000

Samples are referenced to the mean of all the individual analysis of seven splits of Rhode

Island Granite (USGS, G-2) and Hawaiian Basalt (USGS, BVHO-1), which had a an

average 6SFewk,, of -0.23 _- 0.04%o (2o, n=30) (see Table 4.6) or a 5"Fe of 0.00

_ 0.046o (2o, n=30) when referenced to themselves. Some laboratories use the IRMM-

014 standard as a reference material instead of igneous rocks. The measured difference

between igneous rock and the IRMM-014 standard was -0.13 t 0.07%o (2o, n=12), which

agrees well with estimates of -0.09 ± 0.01%o (2o, n=52) by Beard et al. (2003a).

The uncertainties in the average 856Fe measurements quoted in this thesis are the

2o standard error (2 standard deviation (SD) divided by the square root of the number of

analysis). If multiple measurements were not performed for a sample, an uncertainty of
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_ 0.22%9 (2j) is applied to samples referenced to the working standard and ± 0.24'0%o (2a)

to samples referenced to mean of the igneous rock. There is a slight increase in the

uncertainty due to error propagation when the sample 6•Few, e(sample referenced to the

working standard) is converted to 66Fe referenced to igneous rocks. The estimates of

uncertainty are based on the long-term external precision of a single granite sample split

(_ 0.22%o, 2 SD, n=22, Table 4.6, granite D). The standard deviation (1 SD), standard

error (2o), and number of measurements within an analytical session are reported for all

samples in the data tables. Individual samples listed and plotted in the tables and figures

represent samples or sub-samples that were processed through the entire Fe separation

and purification chemistry separately.

5.3. RESULTS AND DIscusSIoN

The 65Fe of plankton tow samples vary by over 4%o from -3.87%0 to +0.36%0,

and the aerosol leachate is indistinguishable from igneous rocks (Figure 5.2, Table 5.1).

The 86Fe of the plankton tow samples span much of the observed range in natural

samples (-2.5%7o to +1%o (BEARD et al., 2003a; BEARD and JOHNSON, 2004)) with very

isotopically light Fe from the Station ALOHA plankton tow samples (-2.5%0 to -3.9%o)

collected in the North Pacific subtropical gyre.

Different size fractions of the plankton tow from the Amazon plume water

(>10 Rm and 1 to 10 p•m) and replicate tows were measured to ensure that the filtering at

sea did not affect the Fe isotopic composition of the sample. It took several hours to

completely filter one plankton tow at sea through the 10 gtm filter, and then finally

through the 1 gxm filter before starting the filtration of the second tow. The plankton tow

samples (collected with a 64 pam mesh) in this study should contain few organisms that

are less than 10 gxm, therefore the I to 10 ptm sample should consist of products of

degradation or cell lysis. If bacterial degradation or cell lysis in the plankton tow were

affecting the isotopic composition, then potentially the different size fractions or replicate

tows would be different. The Fe isotopic data for the different size fractions and replicate

181



.................. ......... oe o1 IRMM-014 .(2oF error bars)
standard 7.4-S, 31.41W

0/ AA:

gp. ba. aerosol
tm eachatt 0410Amazon piýumei eou -0N 40N, Amazn

-1 -n_ - --o - -,... ---v _:#_ _ . . _o.n_. pl ,_me
rock -plankton tow

:[ . :samples
S-2 ----------- ------------ ------- -------

24.5*S,370 WS.....................................• -"

00 Atlantic open ocean 1"50W
-3 ---------- ------------- ap--s--- "- --23*N, 158*W -:- -

-_ALOHA

_ *0igneou roac

*nRMM-014std ......................
Pacific open ocean- c&arosol leachate (Alt-1l0degN) plankton tow samples

"0 plk tow-Aft: 7.4degS

"* plk tow-Adt: 10degN

" plk tow-Adt: 24.SdegS

E plk tow-Pac: ALOHA, 158degW

8plk tow-Pac: 175degW

o pik tow-Amazon plume

Figure 5.2: Summary of marine 68Fe data for marine samples measured in this study. The
means of the igneous rock samples (granite (gr.) and basalt (ba.) and the IRMM-014 are shown
for reference. The Atlantic plankton tow samples are plotted with circles and the Pacific samples
with squares. The replicate points for samples represent the 86"Fe for a sample or a sub-sample
that was processed through the entire Fe separation and purification chemistry. Error bars are 2a
standard errors of replicate measurements. If multiple measurements were not made within an
analytical session, then a 2a uncertainty of ± 0.2496 is used based on the long term external
precision of a granite sample (± 0.22%o, 2 SD, n=22, Table 4.6, granite D). There is a slight
increase in the uncertainty due to error propagation when the sample 658Fe•, d (sample
referenced to the bracketing sample) is converted to b86Fe referenced to igneous rocks.
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rable 5.1: Summary of 6"Fe data for Marine Samples

proc. Fe:C'I we
SFe" (pmol/ analysis 8mFe€ (2 std

mple ID (W mIol)I date (%0) 1 SDdj, o n n eO

"aerosol Sample, I M HCI leach (10N, 45W; July 15, 2001)

ample1' 51 8/16/03 0.04 0.04 0.06 2•pra,

ample 2 50 8/16/03 -0.03 0.04 0.06 2  pa
average of samples: 0.01 0.06 0.06 4 _

t. Amazon Plume Plankton Tow (10.5N, 56S.W; July 20,2001)
diatoms and larvaceans "salps") I
ow 1 (<10 urn) split A ? ? 10/24/03 -0.33 0.12k 0 .240 1___ray
ow 1 (40 um) splitB ? ? 10/24/03 -0.40 0.11 0.15 2 •pray
Low 2 (<10 urn) split 1 25 540' 10/24/03 -0.47 0.07 0.10 2 spray
tow l (>10 urn, muffle) 67 620' 5/15/03 -0.18 0.124 0 .2 4 " 1 A-idus

5/28/03 -0.32 0.12h 0.24e I k rdus
7/10/03 -0.4 0.13 0.18 2 Aridus

8/7/03 -0.17 0.05 0.07 2 spray
1/22/04 -0.36 0.12h 0.24h 1 APEX (no des)

average of tow I (>10 urn, muffle): -0.30' 0.14 0.10 7 "
average all measurements. -0.34 0.13 0.08 1121

rit. Plankton Tow (10*N, 45*W; July 15, 2001) 1
7rchodesmium) III

ow 2 (>10 urn) split A 12 1679 8/16/03 -1.14 0.09 0.13 2 ipray
ow 2 (>10 urn) split B 7 118' 8/16/03 -0.55' 0.08 0.11 2 spray
ow 2 (>10 un) split C 21 431 1/22/04 -0.3V 0.12k 0.24k 1 APEX (no des)
ow3(>10um)splitD 9 295 1/22/04 -0.98 0.12k 0.24k 1 IAPEX (no des)

.tL Plankton Tow (7.4°S, 31A*W; March 12, 2002) I
dinoflagellates and diatoms) I
owl (>10 urn) 115 ] 1700 I 1/22/04 0.34 0.12k 0.24k 1 iAPEX (no des)
:ow2(>10um) 141 1 2325 1 1/22/04 0.38 0.12' 0.24e 1 APEX (no des)

average: 0.36 0.03 0.04 2
ktL Plankton Tow (24.5S, 37°W; March 17, 2002)

richodesmium) 0
owl (>10 urn) 1 34.7 1/22/04 -1.69 0.1r 0.24' 1 kAPEX(nodes)
ow 2 (>10 urn) 3 57.2 1/22/04 -1.76 0 . 12k 0.24h I APEX (no des)

average -1.73 0.04 0.06 2 2

ac. Plankton Tow (ALOHA, 23'N, 158"W; July 1, 2002)
mostly diatoms with small amounts (10%)Trichodesmium) _
o2 (>l0 am) 37 166 I1/22/04 [-3.87 1 .1ý2k 0.2,e I !APEX (no des)

ow3 (>10 urn) 37 261 1/22/04 -2.53' 0.24 0.33 i 2 APEX (no des)
Lac. Plankton Tow (26*N, 175"W; July 11, 2002) 1
diatoms and Trichodesmium)07P
kow3(>10um) _ 12 65.9 i 1/22/04 -2.12I 0.07 10.09 2 APEX (no des)

a) Amount of Fe processed through the Fe separation and purification chemistry.
b) Fe:C ratio of plankton tow samples calculated by estimating organic carbon either by phosphate measurement assuming a "Redfield"
C:P ratio of 106:1 (REDFIELD et al., 1963).
c) Sample 6Fe values are referenced to the mean of igneous rocks (0.00 ± 0.04%o, 20, n=30).
d) SD is the standard deviation of the individual measurements.
e) 2a uncertainty is the uncertainty in the mean of replicate sample measurements (2 standard error).
f) Every sample or sub-sample was processed through the Fe separation and purification chemistry separately. Sample number denotes
sequence of filtration in the field.
g) Organic carbon estimated made by weighing the sample before and after the muffle furnace, and assuming complete combustion to
CO2. This method was found to underestimate the organic carbon by - 40% compared with the phosphate method (b), and the Fe:C
were adjusted.
h) If only one measurement was made for a sample, a 2y uncertainty of = 0.24%o (2 SD) was applied to the sample. The 2a uncertainty
was estimated is based on the long term external precision of a granite sample.
i) Sample b-6Fe measurements tested for potential instrument mass bias shifts by "standard isotope dilution" technique described in
Chapter 4.
j) Several inlet systems were used including a cyclonic spray chamber (spray chamber), the Aridus desolvating system (Aridus), and the
APEX system with (APEX with des.) and without a desolvator (APEX (no des)). See Chapter 4 for more details.
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tows is shown in Table 5.1. The different size fractions and replicates of the Amazon

plume plankton tow show little isotopic variability (0.34 _ 0.0890', 20, n=12) suggesting

that the filtering technique and time did not affect the isotopic composition of the Fe. At

other sites, plankton tow replicates have variable isotopic compositions along with

variable and high Fe:C ratios. For example, three splits of the same plankton tow

replicate from 10'N, 45*W had Fe:C ratios that varied by a factor of three. This will be

discussed in the next section. There are no systematic trends in Fe isotopes or Fe:C ratios

based on filtering order. At the South Atlantic site (24.5"S, 37"W) the plankton tow

replicates have low Fe:C ratios more indicative of intracellular levels (SUNDA and

HUNTSMAN, 1995; Ho et al., 2003) and the is -6 Fe of the two are identical.

Fe isolated from the plankton tow samples includes both intracellular Fe and Fe

adsorbed (both particulate and dissolved) to the surface of organisms. The measured

Fe:C ratios ranged from 35 to 2300 gtmol/mol with very high ratios at the -7.4°S, 31.4 0 W

site and at the Amazon plume station. The Fe:C ratio needed for optimal growth

determined in laboratory cultures for a variety of marine organisms is typically less 70

.tmol/mol and varies by a factor of 8 from species to species and under differing

conditions (SUNDA and HuNTSMAN, 1995; Ho et al., 2003), which agrees well with field

observations (MARTIN and KNAUER, 1973; BRULAND et al., 1991; ScHMrr and

HuTrcHss, 1999; KUSTKA et al., 2003; TovAR-SANCHEZ et al., 2003). Organisms will

also take up Fe in excess of what they need if more Fe is available (luxury uptake). In a

laboratory cultures of a coastal diatom, Fe:C ratios greater than 100 •Imol/mol were

observed when available Fe exceeded 1 nM (SUNDA and HUNTSMAN, 1995; Ho et al.,

2003). The Fe:C continued to rise with increasing Fe, but intracellular Fe:C plateaued at

120 ttmol/mol. The increase in Fe:C above 120 pimol/mol was due to extracellular Fe

adsorption (Ho et al., 2003). The ratio of intracellular Fe to extracellular Fe is difficult to

quantify in natural samples because of the variable Fe:C ratios and because plankton

wash methods for removing extracellular Fe at sea were not available until recently

(TOvAR-SANcmFZ et al., 2003). Tovar-Sanchez et al. (2003) found that 16 to 86% of the

Fe measured in plankton tows in the Southern Ocean was extracellular, and intracellular
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Fe:C ratios were typically less than 50 gmol/mol. The plankton tow samples in this study

were not washed and were collected in surface seawater with range of dissolved Fe

concentrations. It is likely that plankton tow samples that have Fe in excess of the Fe

predicted from a Fe:C ratio of 70 gmol/mol is extracellular Fe. The 656Fe of the plankton

tow samples will therefore reflect a mixture of Fe adsorbed to the surface of the plankton

and intracellular Fe.

The Fe:C ratios versus 8'Fe values of the open ocean plankton tow samples are

plotted in Figure 5.3a. The Amazon plume plankton tow samples had high Fe:C ratios

(- 600 ýtmol/mol), and it is likely that >80% of the Fe is extracellular. Because of the

unique source of Fe for this plankton tow (Amazon River and shelf region), the light

56'Fe composition will be discussed in Chapter 6 along with samples from the Amazon

system. The open ocean plankton tow collected at -7.4"S, 31.4oW also had extremely

high Fe:C ratios (>1500 gmol/mol) and an isotopically heavy 6eFe (+0.36%0) compared

to igneous rocks and the aerosol leachate. Iron concentrations at this station were not

measured, but the dissolved Fe concentrations along the transect where the plankton tow

samples were collected do not indicate that Fe concentrations at this station would be

much higher than 0.6 nmol/kg (Figure 2.3). Also, dissolved Fe concentrations were less

than 0.8 nmol/kg between 50 S to 10*S along a similar transect in June 1996 and

estimated atmospheric input to this region is moderate (I tol0 g m2 yr"1) based on

dissolved Al (VINK and MEASURES, 2001). The station is - 400 km from the shelf of

Brazil and south of the outflow from the Amazon River. It is not likely that high

concentrations of Fe from the coastal region would persist this far into the open ocean

(Wu and LUTHER, 1996; JOHNSON et al., 1997). Johnson et al. (1997) observed Fe in the

open ocean decreases to levels of less than 2% of the high coastal concentrations within

100 km from the continental margin. Also, the surface water in this region is generally

coming from the east (BROWN et al., 1989). It is possible that the high Fe:C ratios could

be due to contamination (e.g., rust chips from ship). However, it seems unlikely that both

tows would be contaminated and another set of plankton tows collected three days later

(not measured for Fe isotopes) had measured Fe:C ratios of less than 40 t±mol/mol. It is
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Figure 5.3: The 8'Fe measurements of plankton tow samples is plotted against their measured
Fe:C ratios (pmol/mol) in Figure 5.3a and against C:Fe (mol/Wnol) in Figure 5.3b. Hypothetical
mixing lines are plotted for the Atlantic Ocean samples between an assumed planktonic
intracellular endmember and an extracellular endmember (e.g., Fe/particles/colloids adsorbed to
cell surfaces). It was assumed that all Fe in excess of a certain Fe:C ratio was extracellular The
best fit mixing line yielded an intracellular 86Fe of -l.5%0o, an extracellular endmember 86Fe of -

0.14%o., and a Fe:C threshold of 50 p$mol/mol. A defined mixing line is also shown where the
intracellular 6uFe was set at -1.7%o (based on measurements of 856Fe in plankton samples at
24.5*S) and the extracellular 8-"Fe at 0%W (based on aerosol leachate measured in this study at
100N, 450 W). For the defined mixing line, it was assumed that all Fe in excess of a Fe:C ratio of
60 mnol/mol was extracellular. Error bars are 2o standard errors of replicate measurements. If
multiple measurements were not made within an analytical session, then a 2a uncertainty of ±
0.24%'0o is used based on the long-term external precision of a granite sample.
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probable that at least 95% of the Fe from this tow is extracellular, and the heavy 85'Fe

might reflect the source of the Fe. One possible way to check for ship contamination

would be to measure rust chips from the R/V Endeavor to see if they are isotopically

heavy as well. With the current data, the source of the isotopically heavy Fe is also

unknown.

The rest of the open ocean plankton tow samples have Fe:C ratios of less than

500 iimol/mol, and probably reflect more reasonable mixtures of extracellular and

intracellular Fe. Both sites (the Atlantic 10*N, 45°W site and Station ALOHA) collected

in surface water with higher levels of dissolved Fe (>0.4 nmol/kg) and colloidal Fe

(>0.15 nmol/kg), have higher and more variable Fe:C ratios greater than 100 pmol/mol.

The -5bFe of the replicate tows and splits are different and appear to be isotopically

heavier with increasing Fe:C ratios suggesting that the extracellular Fe is isotopically

heavy compared with intracellular Fe. At the other two sites (Atlantic 24.5°S, 37 0W and

Pacific 26°N, 175 0W), dissolved and colloidal concentrations of Fe were lower (<0.4 and

<0.1 nmol/kg respectively). Fe:C ratios are less than 70 jtmol/mol and the 8'Fe of the

replicate plankton tows at the South Atlantic site are similar despite a factor of two

difference in the Fe:C ratios (35 and 57 ttmol/mol). The Fe in these plankton tow

samples may represent mostly intracellular Fe.

If it is assumed that all the Fe in excess of Fe predicted by some threshold Fe:C

ratio is extracellular, hypothetical mixing lines can be estimated between a planktonic

intracellular endmember and an extracellular component for the Atlantic samples. Two

mixing lines are plotted in Figure 5.3b where the 5`Fe is plotted against the inverted

Fe:C ratios in order for the mixing lines to plot linearly. The best-fit mixing line yielded

an intracellular endmember 8'Fe of -1.5%9, an extracellular endmember 8mFe of -0. 1496,

and a threshold Fe:C ratio of 50 gimol/mol. These values are in general agreement with

reasonable estimates that can be made based on available data. The intracellular

endmember estimate is similar to the South Atlantic (24.5°S) plankton sample 6'Fe value

of -1.7%9. This plankton tow had low Fe:C ratios of <60 g.Lmol/mol and the Fe from the

sample is likely representative of intracellular Fe. The extracellular endmember 656Fe
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estimate of -0. 1496 is similar to the 856Fe measured in the aerosol leachate from the

Atlantic (+0.017co). Finally, the estimated threshold Fe:C ratio from the best-fit mixing

line (50 gimol/mol) matches well with estimates (<70 •Imol/mol) of the intracellular Fe:C

ratio of oceanic organisms (SUNDA and HUNTSMAN, 1995; Ho et al., 2003; TovAR-

SANCHEZ et al., 2003). Also plotted in Figure 5.3b is a mixing line where the endmember

isotopic compositions and the threshold Fe:C ratio were defined based on the available

data described above (intracellular 86Fe of - 1.796, an extracellular endmember 86Fe of

0.0%o, and a threshold Fe:C ratio of 60 gmol/mol). If the plankton tow sample data from

the 7.4OS station is removed from the best-fit mixing line due to its extremely high (and

potentially unrepresentative) Fe:C ratio, then the estimated extracellular endmember

86Fe becomes more negative (-0.5'Yo) with the other variables similar to the estimates

above.

The data from the Atlantic tows scatter around the mixing line, but do not follow

it perfectly. The intracellular Fe:C ratio is not a constant and can vary by a factor of 8

from species to species and in the same species grown under different conditions (SUNDA

and HUNTSMAN, 1995; Ho et al., 2003). Although Trichodesmium spp. is the dominant

organism at two of stations (10°N and 24.5°S), it is likely that the planktonic community

at each site is different. Also, different plankton tows at the same site and splits of the

same plankton tow are also not likely to be homogenous as reflected in the varying Fe:C

ratios measured in the different tow samples and tow sub-samples from 10*N. The Fe:C

and isotopic composition differences may be due varying abundances of other plankton

and higher trophic level organisms.

The Pacific plankton tow samples are isotopically lighter than those sampled in

the Atlantic and do not follow a simple two endmember mixing curve. Although both

sites are in the North Pacific subtropical gyre, the two sites had different abundances of

plankton along with different Fe concentrations and mixed layer depths. Station ALOHA

samples had the isotopically lightest Fe with W Fe values of -2.5 and -3.996

(corresponding to Fe:C ratios of 261 and 166 imol/mol respectively). The plankton tow

sample with the higher Fe:C had the heavier isotopic composition suggesting that the
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extracellular Fe is heavier than the intracellular Fe at Station ALOHA, similar to the

Atlantic samples. However, the 175°W site had a lower Fe:C ratio of 66 tlmol/mol and a

b56Fe value of -2.196•. The difference in the observed 8'Fe values of plankton between

the two sites is not known, but may be related to the different abundances of organisms

represented in the tows at each site (e.g., diatoms at ALOHA and 50:50 mixture of

diatoms and Trichodesmium spp. at the 175 0W site). It is interesting that 6eFe for

plankton samples from the Pacific are isotopically lighter than plankton samples from the

Atlantic. The cause of this difference is unknown, but could be indicative of differences

between the two ocean basins such as the ultimate source of Fe (Asian versus Saharan

dust), differing amounts of atmospheric processing and dissolution of aerosols, different

inputs of deep water Fe to the euphotic zone, or could be a function of the biological

cycling and residence time of Fe.

The mechanism responsible for the isotopically light Fe observed in the marine

plankton tows is not known. However, one might imagine several possible mechanisms

including:

1) fractionation of Fe during uptake and cycling by organisms

2) preferential release of isotopically light Fe during aerosol dissolution

3) preferential loss of heavy isotopes during scavenging and biological export of

dissolved Fe from of the euphotic zone

4) input of another source of isotopically light Fe (lateral advection, vertical

mixing, or upwelling)

It is not possible to evaluate the various proposed mechanisms with the data in this study.

However, all the proposed mechanisms are plausible based on what is known about Fe

cycling in the euphotic zone (Figure 1.3) and laboratory experiments of iron isotopic

fractionation (Table 1.1). Several of pathways of Fe uptake, utilization, and chemical

transformations could lead to isotopic fractionation. Fe is subject to biological uptake,

biological recycling, photochemical reduction, ligand exchange chemistry, dissolution

from particulate and colloidal phases, and scavenging in the surface ocean (reviews:

SUNDA, 2001; MoFFETr, 2001). In culture experiments, organisms have been shown to
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preferentially utilize isotopically light Fe with fractionation factors of 1 to 2%o (BULLEN

and MCMAHoN, 1998; ANBAR et al., 1999; BEARD et al., 1999; BRANTLEY et al., 2001;

BEARD et al., 2003a; IcoPmn et al., 2004; CROAL et al., in press). Although no

experiments have been done with marine organisms, it is likely that they will fractionate

Fe isotopes as well. Photoreduction and bioreduction pathways might also lead to

isotopic fractionation. There is a large equilibrium fractionation between Fe(III) and

Fe(II) aquo-complexes of 2.9%o with the lighter isotope preferentially associated with the

Fe(ll) complexes (JOHNSON et al., 2002; WELcH et al., 2003).

Because the aerosol leachate measured in this study was isotopically identical to

igneous rocks, it might be concluded that the second mechanism from above (Fe isotopic

fractionation during aerosol dissolution) is not responsible for the observed light isotopic

composition in the plankton samples. However, the aerosol leachate in this study may

not be representative of dissolved Fe inputs to the ocean from atmospheric particles in

nature. The aerosol leachate measured in this study was a 1 M HCl inorganic leach of an

aerosol sample. Significantly more Fe was released by this harsh leach than would be

released by seawater, and the mechanism by which the Fe was released does not mimic

natural dissolution. Atmospheric particles undergo active redox and pH cycling in the

atmosphere, which alters the chemical species and solubility of Fe, before they are

deposited by either wet or dry deposition (SPOKEs et al., 1994; SPOKES and JICKELLS,

1996; JICKELiS and SPOKES, 2001). Once in seawater, the soluble Fe precipitates quickly

as hydrated Fe oxides or is complexed by organic ligands both in the soluble and

colloidal size fractions (RUE and BRULAND, 1995; SPoKEs and JICKELLS, 1996; Wu et al.,

2001). Fe in organic complexes or hydrated Fe oxides can be photochemically reduced

to soluble Fe(II) and/or utilized by organisms (reviews: SUNDA, 2001; MoFFETT, 2001).

Atmospheric Fe delivered in the solid phase is also subject to dissolution by organic

ligands, photochemistry, and organisms (i.e. digestion, colonies forming around particles

and creating more soluble micro-environments) (reviews: SUNDA, 2001; MOFFETT,

2001). Brantley et al. (2001) demonstrated that organic leaching and biotically enhanced

dissolution of hornblende released isotopically light Fe (-0.6 to -0.896). There are many
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steps in the dissolution of atmospherically derived Fe that may lead to fractionation. It is

likely that Fe dissolution from atmospheric particles does not exceed 10% (JICKELLS,

1999). Therefore, it will be difficult to evaluate whether isotopically light Fe is

preferentially released by studying the aerosol particles. Studies of dissolved Fe from

rainwater may help resolve whether atmospheric cycling leads to fractionation.

Dissolution of atmospheric Fe in seawater will be more difficult to assess as it is still an

active area of research and the pathways by which dissolution occurs in nature are not

well constrained (JICKELLS and SPOKES, 2001; SUNDA, 2001). More realistic leaching

conditions (e.g., higher pH, model organic ligands) should be attempted.

The plankton tow 86Fe observations suggest that dissolved Fe delivered to the

deep ocean via biological export might be isotopically light relative to igneous rocks.

However most of the Fe in plankton is recycled in the euphotic zone by grazing, cell

lysis, bacterial degradation, and excretion (HuTcHiNs et al., 1993) prior to eventually

being exported. Therefore, it is not necessarily the case that planktonic 86Fe will be the

same as sinking organic matter. Sediment trap material needs to be measured in order to

evaluate possible offsets, but preservation of Fe in sediment trap material will first need

to be evaluated. Studies of dissolved seawater 8'Fe will be more challenging because of

the low concentrations, but they will be necessary in order to assess the mechanisms of

fractionation in the marine system. It will be important to evaluate the upwelling/vertical

mixing component of dissolved Fe input to the euphotic zone.

5.4. CONCLUSIONS

The 86Fe of plankton tow samples vary by over 496 from -3.879oo to +0.36'Vo,

and the aerosol leachate is indistinguishable from igneous rocks (Figure 5.2, Table 5.1).

The range in the 8-6Fe of the plankton tow samples demonstrates that significant and

potentially informative fractionation is associated with cycling of Fe in the upper ocean.

The Fe in the plankton tow samples in this study is a mixture of intracellular and

extracellular Fe adsorbed to the plankton. For plankton samples with Fe:C ratios greater

than 70 jtmol/mol, the 8Fe values are more variable and appear to be isotopically
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heavier with increasing Fe:C ratios suggesting that extracellular Fe is isotopically heavier

than the intracellular Fe. Plankton samples from the Atlantic scatter around a

hypothetical mixing line between a planktonic intracellular 8'6Fe of - -1.5,70 and an

extracellular component of Fe that is isotopically similar to igneous rocks. The open

ocean Pacific plankton samples (-2.19o' to -3.996) are isotopically lighter than the

Atlantic samples (+0.496 to -1.7'Yo), which may be due differences in the ultimate source

of Fe or differences in the cycling and residence times of Fe. In order to find the cause of

the observed fractionation in the plankton samples, the 85Fe of sinking organic matter,

surface seawater, upwelled seawater, and more realistic atmospheric dissolution studies

are needed. If the 8bFe of planktonic material is representative of sinking organic matter,

then biological export and re-mineralization would be a significant source of isotopically

light Fe to the deep ocean.
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Chapter 6

Iron Isotopes in the Amazon River System

6.1. INTRODUCTION

Current studies of iron isotopes have demonstrated that Fe isotopes can vary up to
4%o (8'Fe, section 6.2.6) in natural samples (reviews: BEARD et al., 2003a; BEARD and

JOHNSON, 2004). Most of the natural samples that show significant Fe isotopic variability

are samples that formed at the earth surface where Fe has been in the dissolved phase and

likely participated in redox transitions and chemical and/or biological cycling. The

variability observed in low temperature samples contrasts the homogeneity observed in

igneous rocks, the ultimate source of iron, which show very little isotopic variability,

± 0. 10%o (2o standard deviation) (BEARD et al., 2003a). Much of the variability that has

been documented in nature is from samples where Fe is in the solid phase, e.g., banded

iron formations, Fe-Mn crusts and nodules, paleosols, black shales, hydrothermal

deposits (BEARD and JOHNSON, 1999; ZHu et al., 2000; BEARD et al., 2003a; BEARD et

al., 2003b; JOHNSON et al., 2003; RouxEL et al., 2003; ARNOLD et al., 2004; ROUXEL et

al., 2004). In order to use Fe isotopic signatures to unravel the geochemistry of Fe, we

must study and understand how Fe isotopes are mobilized, transported, and fractionated

in the dissolved and biological phases. Then it might be possible to interpret past and

present iron isotope variations in nature.

Most studies of Fe isotope fractionation in aqueous and biological systems have

been controlled laboratory studies (BuLLEN and McMAHoN, 1998; BEARD et al., 1999;

BRANTLEY et al., 1999; ANBAR et al., 2000; BRANTLEY et al., 2001; BULLEN et al., 2001;

MATTHEWS et al., 2001; JOHNSON et al., 2002; LEVASSEUR et al., 2002; ROE et al., 2003;

WELCH et al., 2003; CROAL et al., in press; BRANTLEY et al., submitted), which are

extremely useful in trying to isolate and understand the mechanisms of isotope

fractionation. For example, Fe reducing bacteria produce Fe(II) that is isotopically

lighter (-4.396) than the source Fe(lII) (BEARD et al., 1999; BEARD et al., 2003a;
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BRANTLEY et al., submitted). In contrast, there have only been a few studies of aqueous

iron isotopes in natural systems and non-laboratory biological samples (where

presumably Fe fractionation in the environment occurs). Iron from mid-ocean ridge

hydrothermal vents (SHARMA, 2001; BEARD et al., 2003b; SEVERMANN et al., in press) is

isotopically light relative to igneous sources (-0.2 to -0.790,C). Porewater Fe from the

California margin shows isotopic variability with 6'Fe values as negative as -1.396

relative to igneous rocks (SEVERMANN et al., 2003). A terrestrial hot spring Fe(III)

deposit was isotopically heavy by +0.8%7o relative to the dissolved Fe(II) from which it

precipitated (BULLEN et al., 2001). Human blood and haemoglobin from animals are also

isotopically light compared with dietary sources (WALYCZYK and VON BLANCKENBURG,

2002; ZHu et al., 2002; OHNo et al., 2004).

There has been some speculation that dissolved Fe inputs to the ocean via rivers

or dissolution of lithogenic aerosols might be isotopically similar to igneous rocks, based

on the observed isotopic homogeneity of continental rocks, river suspended material,

soils, aerosols, and loess (BEARD et al., 2003b; BEARD and JOHNSON, 2004). Considering

that only a few percent of Fe is mobilized into the dissolved phase in many environments,

it would be extremely difficult to detect variations in dissolved Fe inputs from their

source rocks and sediments. Even if 10% of the Fe was mobilized from a rock source

(0%9) and the mobilized Fe was isotopically light by 196, the rock phase would be

istopically heavier by only 0.17co (close to the analytical limits of detection). Brantley et

al. (2001) demonstrated that organic leaching of homblende produced Fe in solution that

was up to -0.696 lighter than the hornblende Fe and that biotically enhanced dissolution

by siderophore producing bacteria resulted in even lighter dissolved Fe (-0.8%/00). In

highly altered marine oceanic basalts where 80% of the Fe has been leached by mid-

ocean ridge hydrothermal fluids, the resulting altered basalts are isotopically heavy

compared with unaltered crust (RouXEL et al., 2003).

Systematic Fe isotope investigations of aqueous systems could potentially provide

fundamental constraints and insights into the physical, chemical, and biological cycling

of Fe. A potentially interesting region to study for Fe isotopic variations is the Amazon
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system, one of the most intense weathering systems in the world (STALLARD, 1980;

STALLARD and EDMOND, 1983; GAILLARDET et al., 1997). It is also relatively free of

human impact and is ideal for investigating natural processes. The Amazon river

supplies approximately 20% of the freshwater flux to the ocean (6 x 1015L/yr), and

Amazon fine-grained material is dispersed along the shelf of South America from the

equator to the Orinoco river (- 1600 kin) (MEADE et al., 1985). Low salinity plumes

from the Amazon outflow can be detected as far away as Barbados, Puerto Rico, and

- 200N in the western Atlantic Ocean (STEVEN and BROOKS, 1972; DESslER and

DONGUY, 1993; HELLWEGER and GORDON, 2002). The Amazon plume water can also be

identified from ocean color satellite images due to the high productivity resulting from

the high nutrient concentrations in this water (MuLLER-KARGER et al., 1988; SIGNORIN

et al., 1999; FROIDEFOND et al., 2002). Tracer studies and models have established that

the major source of the freshwater in the low salinity plumes in the western equatorial

Atlantic is the Amazon River (STEVEN and BROOKS, 1972; BORSTAD, 1982; KELLY et al.,

2000; HELLWEGER and GORDON, 2002). The Orinoco River does not have the required

freshwater flow or the right pattern of outflow to explain salinity variations at Barbados

(HELLWEGER and GORDON, 2002). The depth penetration of the Amazon plume water in

the open ocean is dependent on vertical mixing (e.g., wind), but is usually constrained to

the upper 30 m (HELLWEGER and GORDON, 2002). Salinity and fluorescence (measure of

chlorophyll) depth profiles from the upper 100 m at the open ocean site sampled in this

study (10.5°N, 56.6°W) are shown in Figure 6.1. The low salinity and high chlorophyll

plume is evident in the upper 25 m.

Although it is likely that much of the Fe in the Amazon plume water in the open

ocean is from Amazon sources, the Fe has undergone a chemically complicated path from

dissolution from rock and soil sources to the open ocean. The Amazon drains a variety of

geological and weathering regions. A significant fraction (40 to 60%) of the major

dissolved load (STALLARD, 1980) and roughly 60% of the suspended sediment load

(CALLEDE et al., 1997) of the Amazon River is estimated to be from the Solim6es River.

The Solim6es River is the section of the Amazon River up-stream from Manaus draining
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Figure 6.1: Salinity (la) and fluorescence (lb) depth profile from a sample site (plankton tow) in
the eastern tropical Atlantic Ocean at 10.5 0N, 56.00W. The low salinity plume in the upper 25 m
is interpreted to be from freshwater input from the Amazon River (- 1000 km from the mouth of
the Amazon).

Table 6.1: Summary of Properties at River Sampling Sites

Fe - i
concentration

water suspended in suspended dissolved Fe
discharge sediment sediment I TOC !concentration

tation (m3xlO3 s-) (mg/L) (ppm) PH T (QC) !( )in river (PM)
acapAf a 174b 50-235c 60000d 6.8c 270 e 529 e 2.5'

olim6es 85-115h 53-226b'd 55000d 6.7-7.2 e 27-28 e 530 e 0.6-2."1

et 20-4 5-12 41400d 4.8_5.4e 290 763 e 4.6'
a) Estimates of water flow, suspended sediment, and pH estimated for this site based on data from an upriver
site at 6bidos.
b) Meade et al. (1985); c) Meade et al. (1979); d) Gaillardet et al. (1997); e) Stallard (1980)
f) This study. Concentration data from the filtered samples (<0.4 pm) measured for Fe isotopic composition.
Concentrations agree with previously reported values for the Solim6es and Negro rivers from Stallard (1980).
g) HIBAM; h) Brinkmann (1987)
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the Andean Cordillera and accounts for roughly half of the Amazon River water budget

(HIBAM, 1999). The trace element budget (including Fe) of the Amazon River is not as

well constrained, and many trace elements are decoupled from major dissolved ion

chemistry. For example, Fe is enriched in rivers that have high levels of organic material

and lower pH (e.g., Negro River, 4.5 pM Fe, pH 4.8) compared with higher pH rivers like

the Solim6es (1 pM Fe, pH > 6.8) (STALLARD, 1980; SEYLER and BOAVENTuRA, 2001).

Stallard (1980) found a strong correlation between dissolved organic matter (and pH) and

Fe over much of the Amazon drainage basin suggesting that tributaries rich in organic

matter play an important role in the budget of Fe in the Amazon system. The Negro

River tributary, which joins the Solim6es River at Manaus, is a significant tributary in

that it has relatively high concentrations of trace elements (Cr, Mn, Co, Ni, Al, Fe) and

accounts for approximately 15% of the Amazon water budget (STALLARD, 1980; MEADE

et al., 1985; SEYLER and BOAVENTURA, 2001). The Negro River drains the highly

weathered Precambrian Shield and the fluvio-lacustrine sediments of the lowlands in the

Amazon Basin (STALLARD, 1980). It has a low suspended load and - 50% of the total Fe

in the river is carried in the dissolved load, as opposed to the Solim6es River where

- 0.5% of the Fe is in the dissolved pool (calculations made using data from: STALLARD,

1980; MEADE et al., 1985; BRIKMANN, 1987; GAniLARDET et al., 1997). A summary of

the some of the properties of the Negro River, Solim6es River, and Amazon River near

Macapti is given in Table 6.1.

Another complication for establishing the riverine dissolved Fe input to the ocean

is that the flux is largely modified by mixing with ocean water in estuaries. A large

fraction of the dissolved Fe flocculates (>90%) from solution in association with high

molecular weight organic matter (0.1 to 0.45 itm) upon mixing with high salinity ocean

water (SHOLKOVIrz, 1976; BOYLE et al., 1977; SHoLKovrrz et al., 1978). "Dissolved"

Fe (Fe that passes through a 0.2 or 0.4 jtm filter) is largely bound to organic colloids or

present as Fe oxide or clay colloids, which are stabilized in solution by a slightly negative

surface charge. Upon mixing with seawater (high ionic strength), cations neutralize the

colloids and they coagulate into large particles that can settle out of solution
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(flocculation). The extent to which flocculation reduces the Fe flux from rivers to the

coastal ocean varies and depends on river type and composition, but more than 95% of Fe

is removed by flocculation in the Amazon River system (SHOLKOVrrZ et al., 1978).

Another potential source of Fe to the Amazon plume water and coastal water is

from re-suspension of sediments along the dynamic shelf region of South American north

of the Amazon mouth (JOHNSoN et al., 1999). The Amazon shelf region is characterized

by large mudwaves, which advance at 1-3 km/year, made up of Amazon fine-grained

material. The mudwaves are 5 to 10 m thick and 10 to 60 km in length (FROiDEFOND et

al., 1988). The large organic input to these shelf deposits would lead to anoxic, sulfidic

conditions in less dynamic environments, but frequent reworking and re-suspension of

the sediments maintains suboxic conditions in the upper meter where microbial Fe and

Mn reduction pathways dominate organic matter decomposition (ALLER et al., 1986;

ALLER et al., 1996; ALLER, 1998; ALLER et al., in press). Oxygen and nitrate are

consumed at shallow depths in the sediments (within 2-6 mm for 02 and 3 cm for NO3 ),

and dissolved Fe(II) and Mn(II) build up to high concentrations within centimeters of the

surface (>0.5 mM for Fe, and 0.1-0.3 mM for Mn). Sediments reach anoxic, sulfate

reducing conditions at depths greater than one meter. From the porewater profiles and
"M data, it is estimated that the upper meter of the shelf deposits are reworked on a

monthly timescale (ALLER et al., in press). When the sediments are re-suspended, the

mobile Fe(II) is mixed into oxic bottom water and re-oxidized, thereby replenishing the

reactive Fe oxide supply to the sediments. Authigenic Fe(II) mineral formation is also

common along the shelf. Aller et al. (2004) estimated that 10 to 50% of the reactive Fe in

the sediments (Fe mobilized by a 15 min dissolution with 6 N HC1) was in the form of

Fe(II) minerals, most likely siderite and authigenic K-Fe-Mg aluminosilicate minerals

(MICHALOPOULAS and ALLER, 1995; IcHALOPOULAS et al., 2000). The high levels of

dissolved Fe and reactive Fe solids in the porewaters and frequent re-suspension of the

Amazon shelf deposits could result in a significant source of Fe to the shelf water column

and Amazon plume water.
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This study was motivated by one of the first samples measured for Fe isotopic

composition by our lab, a plankton tow collected in the western tropical Atlantic at

10.5°N, 56.6°W in the upper 5 m of a low salinity (32 PSU) plume (Figure 6.1a). It was

interpreted from the low salinity (32 PSU) and high total Fe of the plume water (- 7 nM)

that the freshwater source and elevated Fe concentrations for this water were likely from

the Amazon River and shelf region. Initial isotopic results indicated that the Fe from this

plankton tow had a 8-Fe of -0.3496 relative to igneous rocks (BERQUIST and BOYLE,

2001). The Fe isolated from this plankton tow is dominantly a mixture of intracellular Fe

and Fe attached to the surface of the biomass (both adsorbed and particulate). In order to

interpret the 8EFe of this plankton tow, the isotopic composition of the source of Fe for

the Amazon plume plankton tow was needed. Filtered river water (0.4 pm) and

suspended material were collected at three sites in the Amazon River system: 1) the

Amazon River near the mouth at Macapi, 2) the Solim6es River near Manaus, and 3) the

Negro River near Manaus. River water-seawater mixing experiments were performed

both with Amazon River water at Macapi and the Solim6es River water near Manaus.

An Amazon shelf porewater sample from the upper 10 cm of sediment (courtesy of Dr.

R. Aller) was also analyzed to assess the potential source of Fe from re-suspension of

shelf sediments. Sample collection locations are shown in Figure 6.2.

6.2. SITEs, SAMPLE COLLECTION, AND METHODS

6.2.1. River Dissolved Fe and Suspended Sediment

Filtered river samples and suspended sediment samples were collected at three

sites in the Amazon region in April, 2002. Two main channel sites were chosen, both at

the mouth of the Amazon River at Macapi and upstream of Manaus in what is considered

the main tributary of the Amazon River, the Solim6es River. A third site, the Negro

River, was also sampled in order to characterize an organic rich tributary. The Macapd

site was chosen in order to sample a site of the Amazon River near the mouth that is

relatively free from industrial development. The Manaus site was chosen because it is

near the confluence of the two very different tributaries, the Solim6es River and the
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Negro River. These two rivers represent two extreme river types in the Amazon system.

As stated before, the Solim6es River carries half of the major-ion dissolved load and the

water budget of the Amazon River. This river is draining the Peruvian Andes, it is

relatively cool, has a high suspended sediment load, and a high pH (>6.8). In contrast,

the Negro River drains the lowlands that includes the most weathered terrain in the

Amazon (STALLARD, 1980). It is warmer than the Solim6es River by 1-2°C, has a high

concentration of organic matter, a low suspended sediment load, and a significantly lower

pH of 4.8. A summary of the different properties of the river sites and their references

are given in Table 6.1. Because of the different densities of these two rivers, they do not

mix for tens of kilometers after they merge near Manaus (Figure 6.2b).

At each of the three sites, filtered river water samples and suspended sediment

samples were collected in the river channel at least 1 km from the river bank. Water

samples were collected, using a plastic pole sampler with an acid cleaned polyethylene

(HDPE) bottle attached to the end, upstream and to the side of a small boat while the boat

moved forward. Multiple samples were collected in one liter acid cleaned polyethylene

bottles, and each sample was vacuum-filtered twice through 0.4 tm acid cleaned and

trace metal clean water rinsed Nuclepore filters within 12 to 24 hours of collection.

Rivers with high suspended loads are notorious for particles leaking through the filter

during filtration, therefore each sample collected for dissolved Fe was filtered twice.

Filtered samples were acidified two weeks after collection at MIT in a class 100 clean

laminar flow environment with trace metal clean 6 M HC1, which was purified by triple

distillation in a Vycor still, in a ratio of 1 ml acid to 1 L of sample. The suspended

sediment samples and filters were placed in acid cleaned plastic filter holders and stored

with the sediment side of the filter up.

Approximately 200 ml of an acidified river sample was evaporated inside a class

100 clean laminar flow environment by multiple additions to a 100 ml Teflon beaker with

a small amount of HNO3 (Optima grade) and a drop of diluted H202 (EM Science, reagent

grade) to create an oxidative environment. When the volume was small enough, the

sample was transferred to a quartz beaker and taken to dryness prior to combustion.
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Figure 6.2: Locations (*) where samples were collected in the Amazon River region including
an open ocean site where a plankton tow was collected in Amazon River plume water. 6.2a)
Sample locations for the Amazon plume plankton tow, the porewater sample (courtesy of Dr. R.
Aller), and Amazon river samples. River water-seawater mixing experiments were performed at
both the Macapi and Manaus (Solim6es river) station. 6.2b) Satellite image of two of the main
tributaries of the Amazon river converging near Manaus (Global Resource Information Data
Base, http://www.grid.inpe.br/). The Negro River is an organic rich, low pH (4.8), warm river
draining the Amazon lowlands. The Solim6es River, which is also considered the Amazon River
upstream of the convergence, is a sediment rich, higher pH (>6.8), colder river draining the
Andean Cordillera. The water of the two rivers does not mix for tens of kilometers due to the
density difference. The stars indicate where river samples were taken up-river of the confluence
of the rivers near Manaus.
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Suspended sediment samples were dissolved in a 4:1 HF:HNO 3 solution (Seastar or

Optima grade) at 80°C for 4-5 days. Samples were then evaporated to dryness several

times with HCI and HNO 3 to evaporate excess HF, transferred to quartz beakers, and

evaporated to dryness in a class 100 laminar flow clean environment prior to combustion.

6.2.2. River Water-Seawater Mixing Experiments

River water-seawater experiments were performed based on the experimental

methods outlined in Sholkovitz (1976). Trace metal clean surface seawater (4 L) was

collected one week prior to Amazon field trip during the March 2002 RNV Endeavor 367

cruise (24.5°S, 37°W). Surface seawater was collected with a "towed fish" sampling

device (VINK et al., 2000), filtered through acid cleaned 0.4 gm Nuclepore filters rinsed

with seawater, and refrigerated. River water-seawater mixing experiments were

performed at both the Macapi and the Solim6es River sampling sites. River water (1 to

2 L) was collected, filtered twice through acid cleaned and trace metal clean water rinsed

0.4 Rm Nuclepore filters, and then homogenized prior to the experiments. In order to

have enough iron for iron isotope analysis, - 200 ml of river water was used in each river

water-seawater mixing experiment and the amount of seawater varied to achieve different

final salinities in the mixtures. The different ratios of the filtered river water and

seawater were mixed together in acid cleaned 500 ml polyethylene (HPDE) bottles and

allowed to mix for a few hours to allow the organic matter to coagulate and flocculate.

Sholkovitz (1976) found no difference between experiments performed for one half hour

and for 24 hours. After letting the mixture stand, the mixtures were filtered and the

flocculent collected on 0.4 gm Nuclepore filters. Filtrates were acidified with triply

distilled Vycor 6 M HC1 (1 ml acid to 1 L solution). The filters were folded with Teflon

tweezers to trap the flocculent, placed in acid cleaned polyethylene bottles, and frozen.

Filtrates were analyzed for their Fe concentration (not for Fe isotopes), and the

flocculents analyzed for their Fe isotopic composition. The flocculants were thawed, and

the Fe dissolved with 5 ml of I M HC1 (triply distilled Vycor) and 0.5 M HNO3 (Optima

grade). Sholkovitz (1976) demonstrated that Fe attached to the flocculated organic
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material could be released into solution by decreasing the pH to less than 2. The acidic

solution was warmed for one hour (60°C) and allowed to sit overnight for complete

leaching. The leachate was transferred to a quartz beaker and taken to dryness in a class

100 clean laminar flow environment prior to combustion.

6.2.3. Amazon Shelf Porewater

The Amazon-Guianas shelf porewater was collected by Dr. R. Aller and

colleagues in June 2003, 6-7 km off shore, and 3 km west of the Sinnamary River mouth

(5.5"N, 53.0"W) just behind the leading edge of a coastal mudwave. A description of the

sample collection and methods for storage can be found in Aller et al. (in press).

Sediment was sampled by diving and inserting plastic tubes into the seabed. Cores were

capped, and stored in an insulated box (care was taken not to disturb the sediment-water

interface) before samples were returned to the lab (within 3-4 hours of collection). The

sample measured for Fe isotopic composition was a 0-10 cmn sample, in which the bottom

water was removed and the mud stored in a polyethylene bottle inside an oxygen

impermeable bag until the sample was sent to MIT. For porewater separation, the sample

was centrifuged in the oxygen impermeable bag, and then transferred to a N2 filled glove

box for handling and filtration. Acid cleaned and trace metal clean water rinsed 0.2 PtM

cellulose acetate syringe filters plus plastic syringes (without o-ring) were placed in the

N2 filled glove box and degassed three times. The sample was opened in the glove box

and poured into the syringe for filtration. Several milliliters of the porewater were used

to rinse the filter and acid cleaned polyethylene collection bottles before two sequential

20 ml splits of the porewater were collected (A and B). Porewater samples were acidified

with 100 Wil additions of Vycor triply distilled 6 M HC1 and stored until analysis. Splits

of the acidified porewaters were transferred to a quartz beaker and taken to dryness in a

class 100 clean laminar flow environment prior to combustion.
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6.2.4. Amazon Plume Plankton Tow

The plankton tow sample was collected on July 20, 2001 (RN Knorr, Kn 162

cruise) in the western tropical Atlantic (10.5 'N, 56.6 °W) at 5 m depth in a 25 m deep

low salinity cap (32 PSU) overlying 36 PSU seawater (Figure 6.1a). Light penetration

was only a few meters due to a large bloom of larvaceans ("salps") and diatoms with

symbiotic nitrogen fixers. The trace metal clean horizontal plankton tow was performed

employing techniques similar to those described in Collier and Edmond (1984). A 64 Rm

nylon mesh plankton tow with a plastic ring and fittings (Sea-Gear Corporation) was

deployed from a nylon rope with plastic coated lead weights from the side of the ship.

Some organisms smaller than 64 pjn are retained by the net due to mesh clogging and

turbulent flow in the net, but the abundance of smaller organisms is not known (and

organisms smaller than 10 to 20 gm are probably not retained). Care was taken to ensure

that the plankton net never touched the side of the ship and was only handled by gloved

hands. The lead weights were deployed first and were separated from the plankton tow

by 6 m of nylon rope. Plankton tows were performed 3 to 5 m from the side of the ship

with the ship steaming at 1-2 knots. Therefore, the plankton tow sampled water moving

parallel to the ship and not water that had contact with the ship. This technique is

commonly used in trace metal surface water sampling (e.g., "towed fish" device (ViNK et

al., 2000)). Between deployments, the plankton tow was stored in an EDTA solution and

then deployed without a collection bottle (cod end) for at least 5 minutes to flush the

plankton net thoroughly with seawater prior to sample collection.

At the sampling site, three 10 minute tows were performed to accumulate enough

biomass for Fe isotope analysis. Two of the plankton tows were immediately vacuum

filtered sequentially through acid cleaned and seawater rinsed 10 Rim and 1 Rm

Nuclepore polycarbonate filters in class 100 clean laminar flow benches. Complete

filtration took several hours, and samples were refrigerated until filtered. Plankton

material plus filters were frozen and the final filtrate (< I [tm) acidified and archived.

The third plankton tow was split into two 250 ml acid cleaned polycarbonate bottles,

frozen, and archived. For Fe isotope analysis, the frozen plankton tow filters were
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thawed and a split transferred to a quartz beaker with an acid-cleaned plastic scoop or

pipette tip. Samples were dried on a hot plate overnight (60 to 80°C) prior to

combustion. Organic carbon estimates (for Fe:C ratios) were estimated by weighing the

sample before and after the muffle furnace combustion and assuming complete

combustion of organic carbon to CO 2. This method underestimates the amount of

organic carbon by approximately 40% (based on a comparison to estimates made from

phosphate measurements made on later plankton tow samples), and Fe:C estimates were

adjusted for the Amazon plume plankton tow assuming this value.

At the plankton tow site, trace metal clean surface seawater was collected over a

period of 4 days by a drifting buoy array with the automated MITESS water sampler

(BELL et al., 2002) attached at approximately 10 m depth. Six samples were collected

over 4 days and acidified upon retrieval of the drifting array with Vycor triply distilled 6

M HC1 (ratio 1 ml acid to 500 ml seawater). Iron concentrations measured from these

samples represent total Fe measurements.

6.2.5. Fe Concentration Measurements

For samples with higher Fe concentrations and for determining sample post-

column recoveries, Fe concentrations were measured by UV-VIS spectroscopy using the

Ferrozine method (STOOKEY, 1970) separating the Ferrozine and hydroxylamine

hydrochloride reagents (to avoid precipitation of the Ferrozine with HC1). This method

has a detection limit of 0.2 pM using a 1 cm pathlength cell and lab-grade reagents.

Process blanks were always below the detection limit by the Ferrozine UV-VIS method,

therefore blanks were measured on the IsoProbe using a simple two-point linear

calibration curve. Seawater Fe concentrations were analyzed by isotope dilution MC-

ICPMS (Mg(OH)2 co-precipitation) by a modified version of a method developed by Wu

et al. (2001) (BERGQUIST AND BOYLE, in prep). See Chapter 2 for more details.
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6.2.6. Fe Purification and Isotopic Analysis

Methods for Fe purification, separation, and Fe isotopic analysis are described in

Chapter 4. Briefly, all samples are combusted at 550°C for 8 hours, re-dissolved in 7 M

HCI (Optima grade), and purified by anion exchange chromatography. Approximately

300 ng of Fe was used for measurement of Fe isotopic composition on the MIT

GV Instruments IsoProbe MC-ICPMS. Instrumental mass bias was corrected for using

standard-sample bracketing (SSB), and matrix effects on the instrument mass bias were

evaluated using "standard isotope dilution" (also discussed in detail in Chapter 4). All

sample Fe isotope data is reported in delta notation:

816Fe (%o) = 56FeI4Fesmal - 1 x IWO
5 6 Fe/54Femdd

Samples are referenced to the mean of all the individual analysis of seven splits of Rhode

Island Granite (USGS, G-2) and Hawaiian Basalt (USGS, BVHO-1), which had a an

average 8b'Fe,, w of -0.23 ± 0.04%o (2a, n=30) (see Table 4.6) or a 6`4Fe of 0.00

__0.040o (2y, n=30) when referenced to themselves. Some laboratories use the IRMM-

014 standard as a reference material instead of igneous rocks. The measured difference

between igneous rock and the IRMM-014 standard was -0.13 -t 0.07%o (2y, n=12), which

agrees well with estimates of -0.09 ± 0.01%o (2a, n=52) by Beard et al. (2003a).

The uncertainties in the average &'Fe measurements quoted in this chapter are the

20 standard error (2 standard deviation (SD) divided by the square root of the number of

analysis). If multiple measurements were not performed for a sample, an uncertainty of

± 0.22%0 (2o) is applied to samples referenced to the working standard and ± 0.24%o (20)

to samples referenced to mean of the igneous rock. There is a slight increase in the

uncertainty due to error propagation when the sample &ýFe,, ,d (sample referenced to the

working standard) is converted to &'Fe referenced to igneous rocks. The estimates of

uncertainty are based on the long-term external precision of a single granite sample split
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(± 0.22%o, 2 SD, n=22, Table 4.6, granite D). The standard deviation (1 SD), standard

error (2o), and number of measurements within an analytical session are reported for all

samples in the data tables. Individual samples listed and plotted in the tables and figures

represent samples or sub-samples that were processed through the entire Fe separation

and purification chemistry separately.

6.3. RESULTS AND DIScussION

The Fe isotopic composition of samples in the Amazon region and plume show a

range in 6- Fe of - 1.5%o (Figure 6.3, Tables 6.2 and 6.3). The isotopically lightest

sample is the Amazon shelf porewater sample (-1.49',) and the heaviest sample is the

Negro River dissolved Fe (+0.14%o). The following sections will discuss each sample

type along with the river water-seawater mixing experiments in more detail.

6.3.1. River Dissolved Fe and Suspended Sediment

Dissolved Fe and the suspended sediment from the Amazon River samples are

isotopically light relative to igneous rocks, with the exception of the dissolved Fe from

the Negro River. Multiple river samples were collected and filtered at each station.

Filtration took several hours per sample, and there was concern that flocculation or

adsorption of dissolved Fe onto particles or the bottle walls might affect the Fe isotopic

composition of samples. In order to evaluate this possibility, the order in which samples

were filtered (1,2,3...) was noted. No systematic trends in measured Fe concentration or

isotopic composition is observed in the riverine dissolved Fe data. The measured Fe

concentrations are similar to concentrations measured at stations near the sites in this

study by Stallard (1980). The Solimfes River samples have a range of measured Fe

concentrations (0.6 to 2.1 p.M), which is likely due to particle leak through during

filtration, filter clogging, or the variability in Fe that passes through a 0.4 gtm filter in a

river with high suspended load (226 mg/L). Despite the differences in concentration, the
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Figure 6.3: Summary of Fe isotopic data for samples from the Amazon region. The granite (USGS,
G-2) and basalt (BVHO-1) splits along with the IRMM-014 standard are shown for reference. The
dissolved Fe (N, <0.4 pm filtered) and suspended sediment (0) are plotted for the three river
sample sites. Also shown are the Amazon plume plankton tow and shelf porewater sample. The
replicate points for samples represent the 56-Fe for a sample or a sub-sample that was processed
through the entire Fe separation and purification chemistry. Error bars are 2a standard errors of
replicate measurements. If multiple measurements were not made within an analytical session, then
a 2a uncertainty of ± 0.24%o is used based on the long term external precision of a granite sample
(± 0.22%o, 2 SD, n=22, Table 4.6, granite D). There is a slight increase in the uncertainty due to
error propagation when the sample 86Fe,, d (sample referenced to the bracketing sample) is
converted to 86Fe referenced to igneous rocks. Data can be found in Tables 6.2 and 6.3.
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Table 6.2: Fe Isotope Composition of Amazon River Samples
river i

proc. water
Fe' j Fe analysis 8S"Feb 1 2std

Sample ID (Lsg date 1() SSly!-)I n 1Inet"
Amazon River - Macapti Station (0.0°, 51 'W), Mar. 25, 2002
disolved Fe (<0.4 pm) ____I___I_________

AM-Macapi station sample 1' 13 2.6 8/n103 i -0.20 0.22 0.25 3P y
8/1/03 -0.46 0.12' 10.24'31

5/2W3 -0.21 _ _ _ 0.12' I0.249 dus
AM-Macapd river sample 2 29 2.4 8/8/03 -0.2 0.12' 0.24 1 dspray

_ 11/5/03 -0.47 0.12' 10.24' 1 APEX (no des), Cu spikeh
average AM-Macapi river sample 1: -0.25 0.20 10.18 5
average AM-Macapl river sample 2: -0.39 0.11 0.16 2

average Macapi station dissolved Fe measurements: -0.29 0.13 0.10 7
l sediment Fe ___ ____X

AM-Macapa suspended sed 1 230 4/24/04 i -0.20 0.17 0.16 5 AP des.
egro River Station (35 km priver from Manaus (3.1'S, 60'W)), Mar. 28, 2002

asolvd Fe (<0.4 I=)
-Negro River sample 1 45 4.6 5/28/03 0.08 0.129 10.249 1 Aridus

S87/03I 0.15 0.12s 10.24' 1 ipray
AM-NegroRiversample2 59 4.6 817/03 0.32 0.129 10.24' 1 jpray

4/24/04 0.14 0.05 10.05 3 APEX des.
average AM-Negro River sample 1 .1 0.06 0.092
average AM-Negro River sample 2$ 0.19 0.10 10.10 4

average Negro River dissolved Fe measurementsý 0.16 0.09 1 0.07 6
nded sediment Fe I LP d

-Nero sus edsed j 4/24/04 i -1.02 0.054 -0.06 3APEX des.
* "es River Station (5-10 km up river from Manaus (3.1°S, 60*W)), Mar. 27, 2002
sovIed Fe(4.4pm) .<4 p_) _

-Solim6esRiversamplel 6 0.6 8/1/03 -0.55 0.12' 0.249 1 ra
AM-Solim6esRiversample2 20 2.1 4/24/04 -0.37 0.12t 10.24' !AMEXdes.

8/7/03 _ _-0.33 0.08 10.12 2 ýpa
o 8/1/03 L -0.58 0.12'] 0.249 1

AM-Solim6esRiver sample 3 9 0.8 5/28/03 -0.50 0.12' 40.24' 1 Aridus
S7/10/03 -0.53 0.12' 10.24' 1 •'idus

AM-Solim6esRiversample4 9 1.0 4/24104 -0.44 0.129 10.248 1 APEXdes.
average all AM-Solim6es river sample Z• -0.40 0.13 !0.13 41
average all AM-Solim6es river sample j -0.48 0.07 0.10 2 1

average Solimtes River dissolved Fe measurementsj -0.45 0.11 10.08 8J
pended sediment Fe ] _ _ e

AM-Solim6es suspended sed 150 4/24/04 -0.40 0.17 1 0.20 3 IAPEX s.
AM-Solim-6es suspended sed) 1 150 4/2404 -0.52 0.11 A0.152IPEXdes.

average Solim~es suspended sed. Fe measurementsl -0.45 0.15 10.13 51
a) Amount of Fe processed through the Fe separation and purification chemistry.
b) Sample 6-Fe values are referenced to the mean of igneous rocks (0.00 ± 0.04%o, 2o, n=30).
c) SD is the standard deviation of the individual measurements.
d) 2o uncertainty is the uncertainty in the mean of replicate sample measurements (2 standard error).
e) Several inlet systems were used including a cyclonic spray chamber (spray chamber), the Aridus desolvating system (Aridus), and the
APEX system with (APEX with des.) and without a desolvator (APEX (no des)). See Chapter 4 for more details.
f) Every sample or sub-sample was processed through the Fe separation and purification chemistry separately. Sample number denotes
sequence of filtration in the field.
g) If only one measurement was made for a sample, a 2a uncertainty of ± 0.24%o (2 SD) was applied to the sample. The 2a
uncertainty was estimated is based on the long term external precision of a granite sample.
h) Cu internal standardization along with SSB was used to correct for instrument mass bias for one session.
i) Sample was combusted prior to column separation chemistry only.
j) Sample was combusted both before and after column separation chemistry.
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Table 6.3: Fe Isotopic Composition of Misc. Samples from Amazon System

proc" j Sample i1nc
Fe9  Fe analysis I bsFe (2 std

Sample ID (g) (pM) date 1 (%0) 1 SDc error) nl inlet!
MP3-S23 Plankton Tow (10.5 0N, 56.6*W), July 20,2001
tow I1 (<10 pun), split Af ? 10/24/03 -0.33 0.12' 0.24' 1 pry
-ow 1 (<10 itm), split B ? 10/24/03 -0.40 0.11 0.15 2 spry
tow 2 (<10 itm) 26 10/24/03 -0.47 0.07 0.10 2 pray
tow l (>10 gtm) 68 5/15/03 -0.18 0.12' 0.24' 1 dus

5/28/03 -0.32 0.12' 0.24' 1 *dus
7/10/03 -0.44 0.13 0.18 2 •-idus
8/7/03 -0.17 0.05 0.07 2 spray
1/22/04 -0.36 0.12' 0.249 1 APEX(nodes)

average all tow I (>10 tn): -0.30 0.14 0.10 7
average all individual measurements: -0.34 0.13 0.07 12

mnzon-Guianas shelf porewater (5.5°N, 53*W), June 2003
AM shelf porewater split 1-A 54 242 4/24/04 -1.33 0.12 0.14 3 APEX des.
AM shelf porewater split 1-B 7 242 4/24/04 -1.22 0.12' 0.24' 1 APEX des.

shelf porewater split 2 54 244 4/24/04 -1.55 0.04 0.06 2 APEX des.
average of split 1: -1.30 0.12 0.12 4

average of all measurements: -1.39 0.16 0.13 6
Amazon River-Seawater Mixing Experiments

salinity
Macapa St. (Mar. 25, 2002) (PSU)
AM-Macap, mixing expt 1 160 9 4/24/04 -0.19 0.06 0.08 2 APEX des.
AM-Macapi mixing expt 2 152 15 4/24/04 I -0.01 0.09 0.12 2 APEX des.

_olimoes St. (Mar. 27, 2002)
AM-Solim6es mixing expt 4 24 14 4/24/04 -0.26 0.04 0.06 2 APEX des.
AM-Solim6es mixing expt 5 25 6 4/24/04 -0.25 0.04 0.06 2 APEX des.
a) Amount of Fe processed through the Fe separation and purification chemistry.
b) Sample 856Fe values are referenced to the mean of igneous rocks (0.00 -t 0.04%o, 2a, n=30).
c) SD is the standard deviation of the individual measurements.
d) 2a uncertainty is the uncertainty in the mean of replicate sample measurements (2 standard error).
e) Several inlet systems were used including a cyclonic spray chamber (spray chamber), the Aridus
desolvating system (Aridus), and the APEX system with (APEX with des.) and without a desolvator
(APEX (no des)). See Chapter 4 for more details.
f) Every sample or sub-sample was processed through the Fe separation and purification chemistry
separately. Sample number denotes sequence of filtration in the field.
g) If only one measurement was made for a sample, a 2o uncertainty of ± 0.24%o (2 SD) was applied to
the sample. The 20 uncertainty was estimated is based on the long term external precision of a granite
sample.
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isotopic composition of the replicate Solimoes River samples were very similar with an

average 6'Fe -0.45 _ 0.08%o (2o,n=8) (Table 2).

The 86Fe of all the samples (both dissolved and suspended load) from the main

channel sites, the Macap6 and Solim6es stations, are very similar. The Solim6es

Riverdissolved Fe and suspended sediment Fe are isotopically identical (-0.45%o), and

slightly isotopically lighter than samples from the MacapA station (dissolved: -0.29%O;

suspended sed: -0.20%9). The samples from the Macapi station were quite variable in

their 856 e composition from session to session (Table 6.2), and this is reflected in the

reported precision for these samples. The variability in the measured isotopic

composition of the Macapi samples may be due to some interference or matrix induced

instrument mass bias variability (see Chapter 4 for discussion). The similarity of the

dissolved and suspended sediment Fe isotopic compositions at these two stations and

overwhelming majority of the Fe in the suspended fraction suggests that perhaps the

dissolved 8'eFe is somehow controlled by the suspended fraction. A majority of the

"dissolved" Fe at these stations is colloidal including Fe-oxides, clays, and high

molecular weight organic compounds. It may be that the colloidal Fe in these rives is

dominated by the Fe-oxide and clay particles that are derived from the same source

material as the suspended sediment and are just a different size fraction of the same

material (soils and weathering of products from the Andes). Also, it might be that Fe

bound to high molecular weight organic matter in these rivers is not isotopically different

from the inorganic particles and colloids.

The source of the isotopically light Fe (-0.2 to -0.45%o) in the river samples from

the MacapA and Solim6es river stations is not known. However, exchangeable Fe from a

soil was found to have a 86Fe of -0.6%o (BRANTLEY et al., 2001). The 8S6Fe of our river

samples is in the same range as the soil leachate. It is possible that these weathering

products may be enriched in Fe that has been mobilized from rock sources. As stated in

the introduction, organic leaching and microbial enhanced dissolution preferentially

releases Fe that is isotopically light, -0.6 to -0.8%o (BRANTLEY et al., 2001). Also, Fe

reducing bacteria produce Fe(II) from solid Fe(III) sources that is isotopically light by -
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1.396. The isotopically light Fe can then be re-oxidized and precipitated as Fe-oxide

coatings and other reactive Fe minerals. These are all processes that are likely to occur to

material as it is weathered and transported in the environment. Paleosol samples (ancient

soil samples) measured by Arnold et al. (2004) are enriched +0.896 suggesting that

perhaps isotopically light Fe is removed during weathering processes. It also may be that

the observed isotopically light Fe in the suspended sediment and dissolved Fe reflects the

isotopic composition of the source rocks in the Andes (e.g., isotopically variable shales or

Banded Iron Formations (BEARD et al., 2003a; YAMAGUCHI et al., 2003)).

In contrast to the Macapi and Solim6es river stations, the dissolved and

suspended sediment Fe of the Negro river have distinct isotopic compositions. The

dissolved fraction of the Fe is slightly isotopically heavy relative to igneous rocks

(+0.14clo); whereas the suspended sediment Fe is light (-l196). The observations are

opposite of what might be predicted based on the laboratory leaching experiments and

soil leachate measured by Brantley et al. (2001). Unlike the main channel river samples,

approximately half of the Fe carried in the dissolved load in the Negro River. This leads

to an overall 6'Fe of the river (suspended plus dissolved) of -0.49'o. The combined

dissolved and suspended sediment Fe being carried by the river is isotopically light,

which is consistent with weathering processes removing light Fe preferentially. The

organic rich waters of the Negro also probably lead to most of the dissolved, colloidal,

and particulate Fe being bound to organic matter with Fe oxide and clay colloids being a

minor component. The Negro River drains the intensely weathered Precambrian Shield

of the Central Amazon lowlands. The suspended load is dominated by quartz, kaolinite

(cation depleted clay), and particulate organic matter. The total dissolved load (which is

an order of magnitude lower than the main channel) reflects the dissolution of the shield

with elevated levels of dissolved Fe and Al (STALLARD, 1980; STALLARD, 1988;

MARQUES et al., 2003). It can be estimated that as much as 50-60% of the Fe has been

leached from the soils (compared with average continental rock) in the Negro drainage

basin (KONHAUSER et al., 1994). The mechanism responsible for the large difference
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(1. 1%o) in the Fe isotopic composition of the dissolved and suspended sediment Fe in the

Negro River is not known, but might be indicative of intense humid chemical weathering.

The isotopic contrast between the Fe in the dissolved and suspended loads in the

Negro may be due to differences in the species of Fe present in the dissolved and

particulate phases or perhaps equilibrium fractionation between the different phases

(organic ligands?). It is likely that much of the suspended load Fe is bound with

particulate organic matter, and some pseudo-equilibrium could be occurring between the

organic phases of the dissolved and suspended load. Also, the low pH and high organic

concentrations in the Negro river suggest that photochemical reduction of Fe(III) species

might also be happening in the river. Many organic bound Fe complexes are photolabile

and the reaction rates are enhanced under lower pH conditions (review: MOFFET, 2001).

Photochemical reduction might lead to large Fe isotopic fractionations based on the

observed difference between Fe(ll) and Fe(III) aquo-complexes (JOHNSON et al., 2002;

WELCH et al., 2003). One might predict that the Fe(II) species would be isotopically light

based on the observations for Fe aquo-complexes or based on kinetic reaction arguments.

In either case the more solube Fe(II) species (and predicited isotopically lighter Fe)

would be in the dissolved phase. The Negro River observations are opposite from this

prediction, but the Fe species involved in the chemical reactions in the Negro are not

known. Similar processes could be occurring in the sediment-rich rivers like the

Solim6es River, but the signal is overwhelmed by the large amount of freshly weathered

suspended sediment and inorganic colloids associated with that material.

The isotopic similarity of dissolved and suspended Fe at the Amazon main

channel sites suggest that the organic rich tributaries with high dissolved Fe

concentrations and low suspended sediment loads do not control the 8'Fe of the

dissolved load of the Amazon River. This conclusion is based on only three sites

sampled in the Amazon. Numerous other tributaries join the Amazon River between the

Solim6es site and Macapi. Also, Fe likely undergoes chemical processes in the river

itself (e.g., exchange with particles, biological uptake, coagulation). The unique isotopic

composition associated with the intense weathering regime of the Negro River may be
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overwhelmed by large amounts of freshly weathered suspended sediment and the high

discharge of in the Solim6es River. The combined flow of the Solim6es and Negro River

account for approximately 65% of the Amazon River water budget. If the suspended

load and dissolved load were mixed conservatively (without exchange between the

dissolved and particulate Fe), then the resulting b6Fe would be -0.119o for the dissolved

load and -0.47%'o in the suspended sediment. Although the Macapi station dissolved Fe

is isotopically heavier than the Solim6es River station, the suspended sediment Fe is as

well (opposite of what would be predicted from conservative mixing of the two

tributaries). Other Fe sources and Fe chemistry must play an important role in

determining the isotopic composition of the Amazon River at Macapi. One possibility is

that organic matter from the organic rich tributaries may coagulate (along with Fe) with

larger particles upon mixing with the main channel, which has higher concentrations of

total dissolved solids.

6.3.2. River Water-Seawater Mixing Experiments

Riverine input to ocean is modified in estuaries during the mixing of high ionic

strength seawater with river water. This process was simulated in field experiments by

mixing filtered seawater and filtered river water together in different ratios, and then

collecting the flocculent by filtration (SHOLKOvrrz, 1976). The results of this experiment

are plotted in Figure 6.4 (isotope data in Table 6.3). The filtrate of the mixing

experiments was measured for Fe concentration and the flocculent was measured for Fe

isotopic composition.

In the mixing experiments performed at the Solim6es River station, 88% of the Fe

from the river water had flocculated at 18 PSU salinity. This agrees well with other

mixing experiments and field data of Fe behavior in estuaries (SHOLKOV=r, 1976;

SHOLKOVrTZ et al., 1978; BOYLE, 1997). The measured 8S"Fe for the river water

endmember was -0.45 ± 0.10% o (2o,n=8), and both flocculent samples measured in the

6 PSU and 14 PSU experiment were isotopically heavier (6 PSU experiment: -0.26 ±

0.0696 (2o,n=2); 14 PSU experiment: -0.27 ± 0.06%'oo (2o,n=2)). The differences
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Figure 6.4: River water-seawater mixing experiment. The Fe (*) concentration of the river
water-seawater solutions after the flocculant was removed by filtration are shown with the solid
line. The dashed line is the Fe concentration predicted if the river water and seawater were to
mix conservatively. The Fe loss due to colloidal coagulation and flocculation is represented by
the difference between the two lines. The river water S'Fe (0) is shown for reference, -0.45
± 0.08%7o (2c, n=8). Specifically the sample of river water used for this experiment was Solimoes
River sample 3, which had slightly higher dissolved Fe (2.1 M) compared with the other
samples (<1 pAM). This could be due to particle leak through during filtration or the variability of
Fe that passes through a 0.4 gm filter in a river with high suspended load (226 mg/L). Despite
the difference in concentration, the isotopic composition of the different Solimoes River samples
were the similar. The flocculant (U) in this experiment was isotopically heavier than the river
water Fe from which it was derived (6 PSU expt: -0.26 ± 0.06%o (2a, n=2); 14 PSU expt: -0.27
± 0.06%o (2a, n=2)). This implies that the remaining dissolved Fe must be isotopically light (-0.9
to -1.1%o) compared to the river water endmember. The Fe contribution from seawater is likely
negligible in this experiment. The dissolved Fe in seawater endmember was 0.37 nM (< 0.03%
contribution to the total Fe in the experiment), and would have to be > +70 %9 to be responsible
for the observed isotopic shift. Error bars are 2a standard errors of replicate measurements.

221



between dissolved river 86Fe and the flocculent 856Fe are significant at the 95%

confidence level using the t-test and a distribution-free test, the Kolmogorov-Smirnov test

(HOLLANDER and WoLFE, 1973). In a second mixing experiment performed at the

MacapSi River station, the filtered river water was not homogenized prior to the mixing

experiments and a few of the experiments were contaminated by particle leak through

during filtration. However in the 15 PSU experiment, where a majority of the dissolved

Fe had flocculated, the collected flocculent was also isotopically heavier (-0.019o) than

the starting dissolved Fe in the river water endmember (-0.29oo). The Fe contribution

from seawater is likely negligible in these experiments. The dissolved Fe in the seawater

endmember was 0.37 nM (<0.03% contribution to the total Fe in the experiments), and

would have to have a 86Fe of +709o to be responsible for the observed isotopic shift.

Although the isotopic shifts in the flocculent (+0.2 to 0.3oo) are small, the

isotopically heavy flocculent implies that the remaining Fe in solution will be isotopically

lighter than the Fe in the river water endmember. Based on the Solim6es River station

data and isotopic mass balance calculations, the remaining Fe in solution would be -0.9 to

-1.1%o (-- -0.59o lighter than the river water endmember). The mechanism for this

observed fractionation is not known, and it might be suspected that Fe should not

fractionate due to flocculation. The species of Fe that are flocculating in estuaries are

colloids (Fe-oxides, clays, and high molecular weight organic matter). The mass

differential caused by the different isotopes of Fe in these high mass colloids would not

affect the overall mass of the colloid, and therefore one might not expect Fe fractionation

during flocculation. However if the Fe in the colloids is in some sort of chemical

equilibrium with a truly soluble phase and there were an isotopic fractionation between

the colloidal Fe and the soluble phase, then it might appear that "dissolved" Fe was

fractionated when the colloidal fraction was removed from solution. Equilibrium

fractionation between dissolved species of Fe is predicted (ScHAuBLE et al., 2001;

ANBAR et al., submitted) and there could be significantly different bonding environments

for Fe in the colloidal and soluble species. The dissolved load of the Negro suggests that

isotopically heavy species of Fe exist. Kinetic fractionation mechanism may also be
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responsible for the observed fractionation. For example, there could be fractionation

between different Fe complexes if Fe is actively being exchanged between different

species (MAITEWs et al., 2001) or there could be competition between adsorption and

complexation reactions.

6.3.3. Amazon Shelf Porewater

The porewater sample from the Amazon shelf region is the isotopically lightest

sample measured in this study (-1.39 ± 0.16%o, 2o,n=6). The source of the porewater

Fe(lI) in the Amazon shelf muds is from microbial reduction of solid phase Fe(II)

minerals (ALLER et al., 1986). The fine-grained mud in the shelf region is dominantly of

Amazon origin (MEADE et al., 1985; FROIDEFOND et al., 1988), and therefore should have

an isotopic value similar to the observed isotopic value of suspended sediment at Macapi

River station (-0.21%o). Therefore the fractionation observed in the porewater relative to

igneous rock sources could be slightly smaller when compared to its source material (-1.1

to -1.2%o). Our observation of isotopically light porewaters are in good agreement with

the observed 8'6Fe in porewaters from non-sulfidic sediments on the California margin

(SEvERMAN et al., 2003). The Fe(II) in the Amazon shelf sediments is frequently re-

suspended and re-oxidized to reactive Fe(III) minerals that can be used again for Fe-

reduction. Aller et al. (in press) also estimated that 10 to 50% of the microbially

produced Fe(lI) is lost to authigenic mineral formation (e.g., siderite, K-Fe-Mg

aluminosilicate minerals). In such a dynamic system, determining the mechanisms of Fe

fractionation based solely on the porewater sample is impossible.

We suggest two ways to account for the observed fractionation: 1) fractionation

during microbial Fe reduction and 2) progressive removal of isotopically heavy Fe by

authigenic Fe mineral formation. The depleted 6•Fe value of the soluble Fe(ll) is in

good agreement with observations of Fe fractionation (- 1.3%o) by Fe reducing bacteria in

laboratory experiments (BEARD et al., 1999; BEARD et al., 2003a; BRANTnEY et aL,

submitted). Although it is likely that the depleted 8"'Fe is related to microbial reduction

of Fe, there are other potential pathways for Fe fractionation especially if microbial
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reduction of the reactive Fe(III) phases is nearly quantitative. The loss of the Fe(II)

through authigenic mineral formation could change the bulk isotopic composition of the

reactive Fe pool (reactive Fe(III) phases and the dissolve Fe(II) pool). Formation of

siderite from aqueous Fe(II) has been observed to produce siderite that is 0.5%o heavier

than the aqueous Fe(II) (WIESLI et al., 2003). In our system, heavy isotopes of Fe may

preferentially be removed from the reactive pool of Fe by formation of authigenic

minerals. If the authigenic Fe(II) minerals do not get recycled back into the reactive

pool, an overall negative shift in the Fe isotopic composition of the reactive Fe pool

would occur. It is also possible that the reactive pool of Fe(III) in the sediments will have

zoned isotopic compositions. Rapid oxidation of Fe(JI) in laboratory experiments

produces Fe oxides that are isotopically heavy (+0.8%o) (BULLEN et al., 2001). The

Amazon-Guianas shelf sediments are frequently re-suspended and the Fe(II) precipitated

as Fe oxides. It is likely that re-oxidation is nearly quantitative and therefore the bulk

composition of the combined reactive oxide pool plus dissolved Fe(II) might not change

(but might be isotopically zoned).

In order to evaluate these possible mechanisms, the different fractions of Fe need

to be separated and measured in the Amazon shelf system. The 656Fe in the marine

sediments and porewaters may be useful in quantifying authigenic mineral formation or

the extent of microbial Fe reduction. If Fe from re-suspension of shelf sediments is a

significant source of Fe to the water column in the shelf region, it is likely that it will

have a depleted 8'Fe signal (based on the dissolved porewater).

6.3.4. Amazon Plume Plankton Tow

The plankton tow collected in Amazon plume water in the open ocean had a 856Fe

value of -0.34 t 0.07%o (2o,n=12). Different size fractions of the plankton tow (>10 ptm

and 1 to 10 lRm) and different tows were measured to ensure that the filtering at sea did

not affect the Fe isotopic composition of the sample. It took several hours to completely

filter one plankton tow at sea through the 10 gm filter, and then through the 1 ptm filter

before filtering the second tow. If bacterial degradation or cell lysis in the plankton tow
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were affecting the isotopic composition, then potentially the >10 gim and 1 to 10 gm

splits would be different. The Fe isotopic data for the Amazon plume plankton tow is

given in Table 6.3. The different size fractions and splits of the plankton tow show little

isotopic variability suggesting that the filtering technique and time did not affect the

isotopic composition of the Fe.

Fe isolated from the plankton tow includes both intracellular Fe and Fe attached

to the surface of organisms (both particulate and adsorbed). The measured Fe:C ratio

was - 600 itmol/mol, which is 10 times higher than the required Fe:C ratio for maximum

growth. The Fe:C ratio needed for optimal growth determined in laboratory cultures for a

variety of marine organisms is less 70 tLmol/mol (SUNDA and HUNTSMAN, 1995; Ho et

al., 2003), which agrees well with field observations for coastal organisms (MARTIN and

KNAUER, 1973; BRULAND et al., 1991; ScHMrr and HUtcHINS, 1999). However,

organisms will often take up Fe in excess of what they need if more Fe is available

(luxury uptake). In laboratory cultures of a coastal diatom, Fe:C ratios greater than 100

jtmol/mol were observed when available Fe exceeded 1 nM (SUNDA and HUNTSMAN,

1995; Ho et al., 2003). The Fe:C continued to rise with increasing Fe, but the

intracellular Fe:C plateaued at 120 punol/mol with the increase in Fe above that due to

extracellular Fe adsorption (Ho et al., 2003). The ratio of intracellular Fe to external Fe is

difficult to quantify in natural samples because of the variable Fe:C ratios and because

plankton wash methods for removing extracellular Fe at sea were not available until

recently (TovAR-SANCHEZ et al., 2003). Tovar-Sanchez et al. (2003) found that 16 to

86% of the Fe measured in plankton tows from the Southern Ocean was extracellular.

The plankton tow samples in this study were not washed and were collected in water with

high total Fe (- 7 nM). It is likely that a large fraction of the Fe (>80%) in the Amazon

plankton tow collected in this study is extracellular Fe, and therefore the 8'Fe of the

plankton tow will be more reflective of Fe attached to the surface of the plankton rather

than intracellular Fe.

The isotopically heavier Fe from the Amazon plume plankton tow compared with

the isotopically lighter open ocean plankton with low Fe:C ratios of less than 100
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gtmol/mol (-2 to -4%o, Chapter 5) suggests that the 8&61Fe in the plankton tow is dominated

by extracellular Fe. However, this is the only plankton tow collected with a coastal-type

organism assemblage (diatoms and larvaceans). Therefore, the comparison should not be

overstated. The 68Fe (-0.349o) of the Amazon plume plankton tow is also similar to the

856Fe of the Amazon River dissolved Fe collected near the mouth (-0.29%9). Based on

the river water-seawater mixing experiments though, this riverine 86 Fe may have been

modified in the estuary as isotopically heavy Fe was removed during flocculation.

Between the estuary and plankton tow site, Fe in the upper water column is cycled

through the biological loop several times and a fraction lost through biological export and

scavenging. Also, injection of new Fe from deeper water through mixing events

potentially could add Fe to the system with different isotopic compositions (e.g.,

porewater and reactive Fe from sediment re-suspension events). If the main source of the

Fe to the plankton tow were from the Amazon River and the 85Fe was modified to

lighter values in the estuary (-I %o), it would suggest that isotopically light Fe is removed

from the Amazon plume water through biological export and scavenging.

6.4. CoNcLusIONs

Iron isotopes in the dissolved, biological, and mobile particulate phases in the

Amazon region and outflow have a 1.5%oo range in 68Fe. The most depleted sample is

the porewater (-1.4%o) collected in the upper 10 cm of the Amazon shelf region where

microbial reduction of Fe dominates organic matter decomposition. The heaviest sample

collected was dissolved Fe from an organic rich tributary, the Negro River, in the

Amazon River system. Although the Negro River dissolved phase was isotopically

heavy relative to igneous rock, its suspended sediment Fe was isotopically light (-l4o).

The reason for the difference between the two pools of Fe is not known, but may be due

to differences in speciation of Fe (e.g., isotopic fractionation between dissolved organic

species and surface bound Fe). Because Fe in this river is evenly distributed between the

dissolved and suspended loads, the overall 86Fe of the Negro tributary is - -0.4%9. The

main channel Amazon River samples (Solim6es River and Macapi stations) have similar
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56Fe compositions with the Solim6es River having slightly isotopically lighter Fe (-

0.4596) than the Macapd station (-0.2 to -0.3'7). The similarity of the dissolved and

suspended sediment Fe at both main channel stations suggests that the dissolved fraction

is dominated by colloids with similar composition as the suspended load (e.g., Fe oxides,

clays).

Based on river water-seawater mixing experiments, the 8'Fe of the dissolved Fe

of the Amazon River may be modified in the estuary when >90% of the Fe flocculates

upon mixing with ocean water. This flocculent is isotopically heavy compared with the

riverine dissolved Fe, which would lead to the dissolved Fe that is transported to the

ocean being isotopically lighter than the river endmember (- -l196 or lighter). However,

neither the proposed isotopically light Fe from the modified riverine input nor from shelf

porewater matches the Amazon plume plankton tow b6Fe (-0.3496). From the high Fe:C

ratios measured in the Amazon plume plankton tow (- 600 pamol/mol), it is likely that

most of the Fe collected in the plankton tow is extracellular Fe and the 85Fe reflects the

composition of particles and Fe attached to the surface of the plankton. If the plankton

tow &8'Fe is similar to the plume water '6•Fe, then processes in the euphotic zone

(biological cycling/export, scavenging) may modify the proposed light 856Fe (-I%o) of the

Amazon River input by preferentially removing isotopically light Fe. A more detailed

study of the Amazon system is needed to elucidate the mechanisms of 68Fe fractionation

and follow Fe cycling.

This study demonstrates that aqueous and biological samples in the environment

have a measurable range in 65Fe values, and that these signal might be useful in tracking

Fe pathways. Riverine 85Fe may reflect the degree or type chemical weathering in a

basin and overall balance of the Fe in a drainage basin. More detailed studies of marine

sediments and porewater •6Fe could possibly be used to quantify authigenic Fe mineral

formation or other processes such as the extent of microbial Fe reduction. Following Fe

and 856Fe from its source (e.g., riverine in this case) into the open ocean may be useful in

estimating Fe loss in the estuary and also the degree recycling versus Fe export in the

euphotic zone. Separation of intracellular Fe from extracellular Fe and measurement of
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the 6'Fe in seawater are necessary to evaluate the potential applications of Fe isotopes to

tracing Fe in the marine environment.
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