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Preface

The Long Term Resource Monitoring Program (LTRMP) was authorized under the Water Resources
Development Act of 1986 (Public Law 99-662) as an element of the U.S. Army Corps of Engineers’
Environmental Management Program. The LTRMP is being implemented by the Upper Midwest
Environmental Sciences Center, a U.S. Geological Survey science center, in cooperation with
the five Upper Mississippi River System (UMRS) States of Illinois, Iowa, Minnesota, Missouri,
and Wisconsin. The U.S. Army Corps of Engineers provides guidance and has overall Program
responsibility. The mode of operation and respective roles of the agencies are outlined in a 1988
Memorandum of Agreement.

The UMRS encompasses the commercially navigable reaches of the Upper Mississippi River, as
well as the Illinois River and navigable portions of the Kaskaskia, Black, St. Croix, and Minnesota
Rivers. Congress has declared the UMRS to be both a nationally significant ecosystem and a
nationally significant commercial navigation system. The mission of the LTRMP is to provide
decision makers with information for maintaining the UMRS as a sustainable large river ecosystem
given its multiple-use character. The long-term goals of the Program are to understand the system,
determine resource trends and effects, develop management alternatives, manage information, and
develop useful products.

This multiyear report supports Tasks 2.2.8 and 2.3.2 as specified in Goal 2, Monitor Resource
Change, of the LTRMP Operating Plan (U.S. Fish and Wildlife Service 1993). This report was
developed with funding provided by the LTRMP.
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Abstract: We investigated differences in adult and young-of-the-year (YOY) fishes within each of the six Long
Term Resource Monitoring Program study areas, using monitoring data from 1993 to 2001. Our objective was

to investigate the relative roles of seasonal, annual, in situ, and physical habitat factors in explaining assemblage
structure patterns within the Long Term Resource Monitoring Program study areas. Adult and YOY assemblage
structure within each reach was dominated by one to three numerically abundant species. The percent of the total
abundance for which these species accounted was 10-88% and varied among age classes and study areas. Physical
habitat classes were only weakly associated with differences in fish assemblage patterns within each study area.
The amount of variation in fish abundance explained by physical habitats varied among the reaches. Differences
among physical habitat classes accounted for 3-23% of the variation in the adult fish assemblage and for 3-20% of
the difference in the YOY fish assemblage within each reach of our study area. Factors associated with interannual
differences in environmental conditions were strongly correlated to patterns in assemblage structure within each of
the six study areas. This was particularly true for YOY assemblages. Such a result would not have been attainable
without long-term standardized data. Little is known regarding YOY assemblage patterns and dynamics in large
river systems and long-term data sets are vital for continued investigation. The influence of environmental gradients
on fish assemblage structure varied among the six study areas and explained 9-31% of the variation in assemblage
structure. In the northern four reaches, water velocity was one of the primary factors associated with differences

in fish assemblage structure. In the Unimpounded Reach (Upper Mississippi River) and Illinois River study areas,
river elevation was one of the primary factors associated with differences in assemblage structure. Depth of gear
deployment was influential in explaining differences in assemblage structure patterns in all reaches except the
Upper Mississippi River Pool 4 and the Hllinois River study areas. In all study areas, the amount of variation in fish
abundance patterns explained by sampling period was relatively low. However, assemblage structure differed among
sampling periods. In the northern reaches, sampling periods 2 and 3 were the most similar.

Key words: fishes; Illinois River, impounded, long-term, LTRMP, Mississippi River, ordination, unimpounded, YOY

Introduction include channelization, the creation of wing
dikes and levees, dredging, loss of low velocity
Large river systems worldwide have been physical habitats, exotic species introductions,
subjected to anthropogenic disturbances agricultural pollution, and the creation of locks
throughout the last century (Petts et al. 1989; and dams (Gehrke et al. 1995; Williams et al.

Dynesius and Nilsson 1994). These changes 1996). As a result, North America’s temperate




freshwater ecosystems are being depleted of
species as rapidly as tropical forests (Ricciardi
and Rasmussen 1999), and this loss has been
exacerbated by landscape-level disturbances (1.e.,
erosion, sedimentation, river regulation, degraded
water quality, etc.).

Natural floodplain rivers are among the most
biologically productive and diverse ecosystems
(Tockner and Standforth 2002). They are also
among the most disturbed ecosystems, especially
in north temperate regions (Welcomme 1979).
Large floodplain rivers are generally regarded
as having diverse physical habitat maintained
by natural flows, providing the variety of lentic
and lotic environments that support diverse fish
faunas (Poff et al. 1997). This diversity, both
biological and physical, may exist because of the
channel-floodplain complex and the annual cycle
of flooding (i.e., flood-pulse concept; Junk et al.
1989). Whereas the flood-pulse concept has yet
to be validated in large temperate rivers, studies
in Europe (Welcomme 1995) and North America
(Hesse et al. 1993) indicate similar processes
between temperate and tropical rivers. River-
floodplain connectivity and habitat heterogeneity
are maintained by natural hydrologic regimes
and environmental gradients (Sparks et al.

1990; Ward 1998). However, altered hydrologic
regimes, habitat modifications, exotic species
invasions, and pollution are resulting in
floodplain degradation and may prove to lower
species diversity (Heiler et al. 1995; Theiling
1996; Pegg and Pierce 2002).

The Upper Mississippi River System (UMRS)
is probably the most biologically productive and
economically important large floodplain river
system in the United States (Patrick 1998; U.S.
Geological Survey 1999). Fishes inhabiting the
UMRS occupy a broad range of macrohabitats,
including the navigation channel (Dettmers et
al. 2001). However, fish:habitat relations and
assemblages across environmental gradients are
just beginning to be explored (Pegg and Pierce
2001, 2002; Braaten and Guy 2002; Barko and
Herzog 2003; Barko et al. 2004b).

Whereas a wealth of biological data is available
on the Mississippi River (Patrick 1998), most
studies conducted were largely area specific and
not standardized. As navigation expanded on the

UMRS, concerns grew over the sustainability of
the ecosystem. Consequently, the Environmental
Management Program was created in 1986 in
response to these concerns (Lubinski 1999). The
Environmental Management Program includes

a biological monitoring program for the UMRS
known as the Long Term Resource Monitoring
Program (LTRMP; Jackson et al. 1981; U.S.
Fish and Wildlife Service 1993). Although the
state of Illinois has maintained a longer Illinois
River monitoring program (Bertrand 1997),

the LTRMP is the largest systemic monitoring
program in the basin. Understanding how fish
assemblages are similar or different within the
LTRMP study areas is critical for evaluating
past and present stressors on fish resources
throughout the UMRS, while understanding
how assemblages respond to ecosystem changes
over time is critically important for adaptive
management of the UMRS.

Using LTRMP data, we investigated fish
assemblages within five reaches of the UMR
and one reach of the Illinois River to better
understand patterns in assemblage structure
and identify trends. The objectives of this study
were to assess associations between fish species
abundance, sampling periods, sampling years,
environmental variables, and five physical habitat
classes using ordination techniques.

Materials and Methods

Field Methods

We used data collected from 1993 to 2001 in
five reaches of the UMR and one reach of the
Illinois River (La Grange Pool; river mile [RM]
80-158) by the LTRMP (Gutreuter et al. 1995).
Mississippi River study areas included Pool 4
(excluding Lake Pepin; RM 752-797), Pool 8
(RM 679-703), Pool 13 (RM 523-557), Pool 26
(RM 202-242), and the Unimpounded Reach
(RM 29-80; Figure 1). Fishes were sampled
annually from June 15 to October 30 in three
annual sampling periods (1: June 15-July 31;
2: August 1-September 15; 3: September 16—
October 30) using a stratified random sampling
design developed by Gutreuter et al. (1995). At
each site, measurements of water temperature,
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Figure 1. Geographic representation of the six Upper Mississippi River
System Long Term Resource Monitoring Program sites sampled from 1993

to 2001.

Secchi transparency, depth of gear deployment,
water velocity, and conductivity were made
prior to fish sampling. Water temperature was
measured to the nearest 0.1°C and conductivity
was measured in uS/cm using a Labcomp digital
conductivity meter. A Marsh-McBirney flow
meter (model 201 D; Frederick, MD) was used to
measure water velocity to the nearest 0.01 m/s.
Depth of gear deployment was measured to the
nearest 0.1 m using boat-mounted sonar. River
elevation was obtained from the U.S. Geological
Survey for each day of sampling.

Data collected from five physical habitat
classes and four sampling gears common to all
six study areas were used for analysis. Physical
habitat was classified and stratified based on
geomorphic features and included side channel
border, backwater contiguous, main channel
border, main channel border wing dike, and
impounded (Gutreuter et al. 1995). Collection
methods included active (daytime electrofishing)

and passive (mini-fyke netting, small
and large hoop netting) techniques.
See Gutreuter et al. (1997a—c) and
Burkhardt et al. (1997, 1998, 2000,
2001, 2004a,b) for annual gear
allocations within and among the six
study areas.

Statistical Methods—Ordination

We separated young-of-the-year
(YOY) fishes from adult fishes using
reported lengths for each species
(Carlander 1969, 1977; Becker
1983; Etnier and Starnes 1993;
Morrow and Kirk 1995; Pflieger
1997; Gido et al. 2000) following the
methodology of Barko et al. (2004a)
because adult and YOY fishes appear
to exhibit different responses to
physical habitats and environmental
conditions in this system (Barko and
Herzog 2003; Barko et al. 2004a,b).
Hybrid individuals, larval fishes, and
unidentified fishes were removed

from the data set prior to analysis.
We conducted separate ordination
analyses for each study area, using
all four gears combined, to enable
us to identify reach-related trends
and determine whether the fish assemblages
responded similarly to environmental and
temporal variability. Ordination methods used
in analysis included detrended correspondence
(DCA), canonical correspondence (CCA), partial
canonical correspondence (pCCA), and stepwise
pCCA, with methodology following Barko
et al. (2004b). All analyses were performed
using CANOCO v. 4.5 (ter Braak and Smilauer
2002). An estimate of the amount of variation
explained by each ordination analysis is provided
by the sum of all canonical eigenvalues (Lep$
and Smilauer 2003). Caution must be used in
interpretation, however, because the amount
of variation explained is not equivalent to an
r? value. For visual clarity, we only display
abundant taxa (e.g., species weights >1) on
ordination biplots by species codes listed in
Table 1. Discussions on biplot interpretation can
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be found in Legendre and Legendre (1998) or
Leps and Smilauer (2003).

Results and Discussion
Assemblage Structure

In all four gears combined, we collected
740,994 fishes comprising 122 species in
7,838 sampling episodes (i.e., Pool 4 =714,
Pool 8 = 1,885, Pool 13 = 1,546, Pool 26 = 1,701,
Unimpounded Reach = 1,206, and Illinois River
= 786; Table 1). Pool 8 had the most adult fish
(67% of total catch), followed by Pool 26 (49%),
Pool 4 (47%), Unimpounded Reach (44%),
Pool 13 (42%), and the Illinois River reach
(38%). The numerically abundant component
of the adult and YOY assemblage (e.g., species
accounting for >10% of total catch) differed
among the age classes and reaches. In Pool 4,
there were three numerically abundant adult
species, emerald shiner (Notropis atherinoides;
26%), gizzard shad (Dorosoma cepedianum;
13%), and bluegill (Lepomis macrochirus;
12%), which accounted for 51% of the total
adult abundance. Emerald shiner and gizzard
shad comprised 86% of the YOY abundance
(75% and 11%, respectively). In Pool 8, there
were two numerically abundant adult species,
bluegill (26%) and bullhead minnow (Pimephales
vigilax; 10%), and two numerically abundant
YOY species, emerald shiner (19%) and spotfin
shiner (Cyprinella spiloptera; 23%). In Pool 13,
there were also two numerically abundant adult
species, bluegill (32%) and emerald shiner
(16%), and two YOY species, gizzard shad
(12%) and mimic shiner (Notropis volucellus;
41%). The numerically abundant component
of the adult assemblage were gizzard shad
(25%), common carp (Cyprinus carpio; 19%),
and channel catfish (Ictalurus punctatus; 11%),
whereas the numerically abundant component of
the YOY assemblage were gizzard shad (49%)
and channel shiner (Notropis wickliffi; 12%).
Gizzard shad (25%) and channel catfish (14%)
were the numerically abundant fishes of the
Unimpounded Reach adult assemblage whereas
freshwater drum (Aplodinotus grunniens; 36%),

gizzard shad (32%), and channel shiner (12%)
were the numerically abundant fishes of the YOY
assemblage. Gizzard shad (27%), common carp
(18%), and bluegill (13%) were the numerically
abundant adult species in the Illinois River,
whereas gizzard shad alone accounted for 88%
of the YOY abundance. Of the 10 numerically
abundant species listed above, 7 (emerald shiner,
gizzard shad, bluegill, bulthead minnow, common
carp, channel catfish, and freshwater drum)

are considered fluvial generalists (Kingsolving
and Bain 1993; Galat et al. In press; Barko et

al. 2004b). Collectively, these seven fluvial
generalists accounted for 64% of the total UMR
fish abundance. The remaining three species

are considered fluvial specialists (Barko et al.
2004b).

Ordination—Environmental Gradients/fish
Assemblages

The six environmental variables measured
concurrently with fish sampling (Table 2)
had varied effects on fish assemblages. These
variables explained 23% of the variation in fish
abundance in Pool 4, 23% of the variation in fish
abundance in Pool 8, 17% of the variation in fish
abundance in Pool 13, 31% of the variation in
fish abundance in Pool 26, 30% of the variation
in fish abundance in the Unimpounded Reach,
and 9% of the variation in fish abundance in the
Illinois River reach (Table 3). Because of shared
variance among the variables, percentages listed
in Table 3 may not sum to equal the overall
percentages listed above. Water velocity was
one of the primary factors (i.e., explained the
most variation and had the longest arrow[s]
on the ordination biplots) associated with
differences in fish assemblage structure in the
northern four study areas (Figure 2). In the
Unimpounded Reach and the Illinois River reach,
river elevation was one of the primary factors
associated with differences in fish assemblage
structure (Figure 2). Depth of gear deployment
was influential in explaining differences in
assemblage structure patterns in all study areas
except Pool 4 and the Illinois River (Figure 2).
Secchi transparency was most influential in
Pool 4, whereas conductivity was most influential
in the Illinois River reach (Figure 2).




€ 0.9 649 £99 ¥4 £68 GGL Ge gLo vi'o 560 00 1473 v1ood

4 £E9 £v9 0e9 59 168 696 il Lo L10 or'L 00 688’1 g 00d
€ 889 109 £89 144 o0y 4] [A%4 0Z'0 Lo Lol 200 ae'L €1 jood
4 Gz 6EY ocy 1L {344 10t 8yl 920 €20 TR 200 0Lt gz 100d
B . . , sany 1ddississIy
9 yee 6€€ €le 69 1€ 89L 661 610 [4AY £9°1 200 9027’1 sadd papunoduwiup
g vey e12 (Y4 gel Rt} 8lolL 4} oo 600 90 <00 98L JBAIY slou
ms uesiy  xely Uiy ms uesiy xepy A ms ues|y xep U N uoyels pjaly
(19Aa[ €3S aA0qR }j)
uo1jBAa|a JaJBM (wa/sr) Alananpuoy (s/w) Ayto0)8A Juating o
80 el L9 10 6" €1 00¢ 89 X4 69 €8l oL biL ¥ (004
A gl G'el Al A L AYA yoe R4 61 09 06t S 688t 8100d
Tl ¥ L9 20 1’6 (Y44 0ee L €l e 0zl 8 9l €l 100d
A €7 L8l 1'0 96 64T 1'¥8 80l ¥l €€ 68 L 1oL’ 9z |ood
. . . . . . . . ) any (ddississiy
L'l 12 69l 10 R4 (374 6'1e 6L l 174 69 1 90Z'L seddq papunoduwiun
80 L't oLt €0 06 6°€C 0'se SL oL ¥4 08 S 98L Janty stoullil
ns uesiy  xey Uiy ns uesy Xely WIN ms uesyy Xely uipy N uone)s pjayy
(w) pdap sa3epp (9,) imesadwe) 181epy {wa) yooag

) ‘(1 a4nbi4 aas) sayoead
Buljdwes xis 18 1007 01 £661 WO} WaysAg JaAlY 1ddississi Jaddn ays ul buydiwes ysy Bunp painseaw Sa|qeLieA |RJUSWIUONAUS 10} (N) Sa|dwes Jo Jaquinu pue SonsQels Alewwng 2 ajqel




2000 95 0T 2000 6°¢ 0l 2000 002 06 glood
2000 e o> 2000 gL 01> 2000 1’82 0Ll €1 1004
€000 ¥'6 02 2000 8 ol 2000 N4 0’9 gz 100d
! . . . . . . . . JaAtY ladissIssIy
1000 oL 09 9000 07 01> 1000 18 0¢ 1addq papunoduwiun
2000 L9 0 2000 66 0¢ 2000 oy 0l Janty stoul
anjea- d ansiels-4 UGNEBLEA %, anjea-4  ansnejs-4 uoljeLIBA 9, anjea-4  onsnels-y  uoneueA 9, uoness pal4
(18A3) Bas anoge H} o 190{aA JUaLIN
Uo1EA3|a 131EM AEQ\W v >~_>_~u=—u=cu Am\—:v >ﬁ. JOA JU: M
2000 9 0e 2000 0¢ 0l 2000 A4 oLl ¥ 100d
2000 Ley 021 2000 ¥4 > 2000 89 0y 8100d
2000 9 0¢ 2000 Le ol 2000 9G 02 €1 1004
2000 8'GG 061 2000 e 0¢ 2000 gl ot gz jood
. . . . . , . . | JaAtY 1ddississiy
1000 8'9¢ 06l 1000 e o€ 1000 69 0¢ 1addp) pepunaduwiun
9100 o€ o'L> 2000 09 02 €000 €6 ol J3AlY siou
anjea- ¢ ansneis-4 usnelea 9, anjea- ¢ ansie)s-4 uoyelIRA 9, anjea-d  anspe)s-4  UOBBLEBA Y, uoyels pjatd
{w) ydap 1918 (9,) aameradwa; 1a1epp (wa) 149928

*pauiwexa Jou Sem sa|qeLiea ai) Buowe pateys asueiieA pue [(0Z 01 €661 WO Ajlenuue pa}oas)|0d aiam eieq ‘sasAjeur aauapuodsalion
|esiuoued jended uo paseq walsAg JaAly iddississiyy 1addp) ay jo sayaeas Buydwes xis sy} uiyim pauiejdxa 3|geLIBA [BIUSLIUCIAUS YIBS JO UOHRLIRA JO JUNoWY '¢ ajqe)

10



*(L10°0 = anteAauabia Z sixy ‘£40°0 = anjeAudbia | Sixy) 18A1Y sioullj] (600 = anjeauabla Z sIXy ‘461 0 = anjeauabla | Sixy) yoeay papunoduwiupn

‘(z50°0 = anjeAuabla g sixy ‘981°0 = anjeauabia | sixy) 9z 1004 ‘(820°0 = anjeauabia g sixy '£01°0 = 8njeAusbia | SIXy) €1 1004 *(9y0°0 = @njeauabia

T SIXv '6£1°0 = anjeauabis | sixy) g 1004 ‘(690°0 = enjeauabla Z sixy ‘G110 = anjeAuabia | siXy) # [004 SMO|{0} SB 8Jam sanjeauabig pouad pue ‘1eah
‘1eab uanib ‘walsAg Janly 1ddississiy Jeddn ayy 1oy saroads pue sjuaipedb [eluswuoliaua Jo (yJ9d) sishjeue asuapuodsaiiod esjucued jeiued g ainbig

ol } sy v00d g0
&
dug B
g
N
yydep A8
14o%es
oAy stoul| .
0l 1 sixy yood 90-
g
wpdap
puoo
/\ m
Lo } W
o
1yooes
€l |ood

o'l

o1 L sy yood o0 oL 1 sixy wood o
14oo9s & g
1yooes
3 2
n.VM Jua.LInd z
ey (3 z
no o puoco N
tpdep
Upcdop AZ13 dwey
yoeay pepunoduiiun 4 9z 100d 4
ot 1 sixy wOOd ot ol L sy vood o
P 2
LD 7 *
puod
1yooss W B
- > yooes >
N pucd NS
Yydep udop
Lo
8 004 g  100d g




Ordination—Temporal Shifts in Assemblages

Between 1993 and 2001, the fish assemblages
of the UMRS were subjected to floods of varying
magnitude, as well as the introduction of exotic
species, such as silver carp (Hypophthalmichthys
molitrix) and bighead carp (H. nobilis; Chick
and Pegg 2002). The effects of the 1993 flood
seem to have resonated through 1994 and 1995,
probably because it was an unusual summer
flood and among the highest recorded floods
throughout the system (Gutreuter et al. 1999;
Figures 3 and 4). In the lower reaches of the
UMRS, this was classified as a 500-year flood
with record setting duration and discharge
(Parrett et al. 1993). However, the extent of
the influence of interannual variability on
assemblage structure varied between age classes
(i.e., YOY and adult) and among the study areas
(Figures 3 and 4). For adults, sample years
explained the most variation in the Unimpounded
study area (12.2%; F = 3.7, P = 0.0005)
followed by Pools 8 (11%; F = 17.5; P = 0.002)
and 26 (11%; F = 5.6; P = 0.0005), Pools 4
(9%; F = 2.9; P =0.0005) and 13 (9%; F =3.8;
P =0.005), and the Illinois River study area (8%;
F=12.2; P=0.002). For YOY assemblages,
sample year explained the most variation in
Pool 13 (50%; F = 7.4; P = 0.0005), followed
by Pool 4 (34%; F = 2.9; P = 0.0005), Pool 8
(32%; F = 15.1; P = 0.002), the Unimpounded
study area (27%; F = 14.4; P = 0.002), Pool 26
(19%; F = 4.1; P = 0.0005), and the Illinois
River study area (13%; F = 3.7; P = 0.0005).
Interannual variability appears to influence
YOY assemblage structure in the UMR to a
greater extent than adult assemblage structure,
especially in the upper study areas. For both
adult and YOY assemblages, patterns were not
strong, but temporal variability was evident
based on the separation of the sample years in
ordination space (Figures 3 and 4). In Pool 26
and the Unimpounded reach, Axis 1 separated
the years 1994, 1995, and 1996 from the other
years indicating the adult assemblage present
in the early years of sampling differed from the
assemblage present in the later years in these
lower UMR study areas (Figure 3). Within all
study areas except the Unimpounded Reach,
the YOY assemblage structure has shifted over

time because Axis 1 separates the earlier sample
years (1993-1998) from the later sample years
(1999-2001; Figure 4). The underlying cause

of the shift in abundance is unknown. Although
some general patterns emerged, 9 years may

not be enough time to identify the response of
the fish assemblage to interannual variability
within the system. Many species are long-lived
and responses to changes in the system are not
instantaneous and may not appear for several
generations. Conversely, these findings may also
suggest that temporal variability within the UMR
may not affect assemblages as much as regional
variability (e.g., localized variability within each
reach) because assemblages and age classes did
not respond to each year similarly within and
among the study reaches.

Ordination—Assemblage/strata Relations
by Reach

The physical habitats sampled by the LTRMP
were separated in ordination space within all
study areas based on fish abundance patterns;
however, the amount of separation varied within
and among the age classes and study areas
(Figures 5 and 6). For adults, physical habitats
explained the most variation in Pool 8 (23%;

F = 61.33; P = 0.002), followed by Pool 4 (22%;
F = 19.1; P = 0.0005), Pools 26 (19%; F = 60.55;
P =0.002) and 13 (19%: F = 16.1; P = 0.0005),
Illinois River reach (12%; F = 47.2; P = 0.002),
and the Unimpounded reach (3%; F = 4.07;

P =0.002). For YOY assemblages, physical
habitats explained the most variation in Pool

8 (20%; F = 12.3; P = 0.002), Pool 26 (17%;
F=17.8; P =0.002), Pool 13 (15%; F = 4.3;

P = 0.0005), Pool 4 (10%; F =2.3; P =0.017),
Illinois River reach (3%; F = 3.4; P = 0.0005),
and the Unimpounded Reach 3%; F = 2.4;

P = 0.002). The magnitude of association
between abundance and particular physical
habitat was also low for many species, which
may indicate: (1) an unstable fauna represented
by a few dominant generalists, suggesting that
the UMRS is degraded and could be moving
toward a system dominated by tolerant species
(Kingsolving and Bain 1993), (2) physical
habitat classes defined by the LTRMP are

12
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poor predictors of assemblage patterns, or

(3) environmental conditions within these
physical habitats are similar enough over the
course of a sampling season that our approach
did not discriminate their effects well. Baker et
al. (1991) and Barko et al. (2004b) also reported
low associations between fish species and
Mississippi River physical habitats; patterns often
indicative of a tolerant fauna. We are unsure

if the low associations in the Unimpounded

and Illinois River study areas are because of
reduced habitat heterogeneity or merely reflect
the disproportionate number of habitats sampled
within the reaches (Unimpounded and Illinois
River = 3; Pools 4, 8, 13, and 26 = 5).

Ordination—Sampling Period

In all reaches, the amount of variation
explained by sampling period was relatively low.
Sampling period explained the most variation
in the Unimpounded study area (9%; F = 18.9;
P =0.002), Pool 8 (9%; F = 24.7; P = 0.002), and
Pool 13 (9%; F = 11.7; P = 0.0005), followed by
Pool 4 (7%; F = 11.9; P = 0.002), Pool 26 (6%;
F =16.4; P = 0.002) and the Illinois River study
area (6%; F = 20.6; P = 0.002). Although the
amount of variation in fish abundance explained
was low, Axis 1 separated sampling period 1
from sampling period 3 in all study areas,
indicating that the assemblages present during
these two periods were different (Figure 7). In
Pools 4, 8, and 13 and along the same axis, the
assemblage sampled in period 2 was more similar
to the assemblage sampled in period 3 (because
of their close proximity in ordination space) and
sampling period 1 was the most unique based
on assemblage structure (Figure 7). Conversely,
in Pool 26, the Unimpounded and Illinois River
study areas, the assemblage sampled in period
2 was more similar to the assemblage sampled
in period 1; hence, the assemblage sampled in
period 3 was the most unique. In all study areas,
Axis 2 separated sampling period 2 from the
other sampling periods. Therefore, although
sampling period 2 grouped with one of the other
sampling periods along Axis 1, the assemblage
sampled during period 2 provides additional
structure information that is different from that
provided by sampling periods 1 and 3.

21

Conclusions and Recommendations

Our analyses identified several factors
associated with differences in fish assemblage
patterns within each of six LTRMP study areas.
Based on our findings, we make the following
programmatic recommendations:

1. The time series of LTRMP data is still
relatively short and assessment of long-
term trends in assemblage structure will
require a longer time series. Our results
suggest that some of the largest shifts in
assemblage structure, particularly for YOY
assemblages, were associated with flood
years. However, the effects of floods on
assemblage structure varied among the six
study areas. The source of this variation is
potentially related to how different sections
of the river convey floodwaters and how
accessible off-channel areas are to fishes
during floods. Maintenance of standardized
long-term monitoring data is necessary for
arriving at a deeper understanding of how
fish assemblages respond to the present
day configuration of the UMRS, and how
floods, acting across this physical template,
affect the maintenance of diverse and per-
sistent fish faunas. Such understanding will
have direct applied and adaptive manage-
ment benefits for managing the UMRS as a
nationally significant system.

2. Whereas interannual factors, probably asso-
ciated with flood responses, were important
in explaining abundance patterns in the
UMRS fish assemblages, spatial factors
were generally found to be better predictors
of differences in fish assemblages. This
finding suggests that there is a strong spatial
component in the way that UMRS fish
assemblages are presently structured, and
how these assemblages change over time.
Additional research is needed to clarify
how spatial factors influence assemblage
structure.

3. Adult and YOY assemblage patterns
differed in their response to environmental
factors, interannual variability, and physical

habitats. This suggests that future research
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on UMRS fish assemblage dynamics should
differentiate among life stages.

4. Program partners should use the results of
this research and other recently completed
research to develop and prioritize additional
research topics. Many of the analyses
completed over the last year, whereas
quantitatively intense, are largely qualitative
assessments.

5. Continued quantitative monitoring of the
UMR fish assemblage will allow us to
identify trends not visible with the 10 years
of data presently available. Specifically,

(1) will assemblages redistribute themselves
within the river and reaches based on future
“habitat alterations and disturbances (e.g.,
increased navigation, climate change,
altered hydrology, invasive species, habitat
restoration, etc.); (2) will assemblages

in impounded sections become skewed
towards a lacusterine assemblage rather
than a riverine assemblage; (3) how will
species and assemblages respond to
invasive introductions; (4) what environ-
mental variables should the LTRMP be
measuring in addition to the present suite

to better explain fish assemblage patterns;
and (5) does the UMR fish assemblage
demonstrate persistence or stability over
longer time frames and do different areas of
the UMRS demonstrate different stability
thresholds?
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