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ABSTRACT: Fort Bliss, Texas, is a Training and Doctrine Command (TRADOC) installation located in the north-
ern Chihuahuan Desert of western Texas and south-central New Mexico. Encompassing approximately 445,170
hectares (1.1 million acres), it is the single largest TRADOC installation. Because Fort Bliss is located within an
arid ecosystem characterized by slow vegetative growth, its land is more susceptible to long-term disturbance. Fort
Bliss natural resource managers require a timely and cost-effective method for characterizing and monitoring land
condition at various spatial scales and levels of detail.

This report documents evaluation of linear spectral demixing and spectral brightness and greenness index correla-
tions with abundance of land-cover types as alternative methods for more detailed characterization and monitoring
of land condition using coarse resolution satellite imagery. Detailed conclusions on the acceptability of various
strategies and techniques are presented along with recommendations for related research.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be
construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.
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1

Introduction

Background

Fort Bliss, Texas, is a U.S. Army Training and Doctrine Command (TRADOC)
installation located in the northern Chihuahuan Desert of western Texas and
south-central New Mexico. Encompassing approximately 445,170 hectares (1.1
million acres), it is the single largest TRADOC installation (Figure 1). Because
Fort Bliss is located within an arid ecosystem characterized by slow vegetative
growth, its land is more susceptible to long-term disturbance. Typically, land
degradation in arid environments is associated with a decrease in vegetative
cover and abundance, and an increase in soil erosion potential. Such degrada-
tion can result from either anthropogenic (resulting from human activity) distur-
bances or allogenic (successional change caused by nonliving environmental con-
ditions) disturbances, including impacts from training, and can occur at many
different scales. The Fort Bliss Directorate of Environment (DOE) is responsible
for managing Fort Bliss training lands in a sustainable manner to support the
current and future training mission. Vegetation abundance, condition, and spe-
cies composition are important indicators of training land condition. Therefore,
Fort Bliss natural resource managers require a timely and cost-effective method
for characterizing and monitoring land condition at various spatial scales and
levels of detail. Proactive land management requires detailed, large-scale char-
acterization and monitoring tools. These tools can help resource managers moni-
tor changes in vegetative cover, which will allow them to evaluate the suscepti-
bility of the landscape to soil erosion using wind and water soil erosion models.
Resource managers also need a method to monitor percent vegetative cover of
specific plant species or plant communities that may be sensitive habitats or in-
dicative of disturbance. Detailed resource characterization and monitoring also
provides improved input into land-based carrying capacity and other ecological
models, thereby improving the ability to evaluate land management scenarios
and predict future land condition. The ability to detect subtle effects of both an-
thropogenic and allogenic disturbances across training lands may allow time for
land rehabilitation or temporary reallocation of training so the carrying capacity
of training lands is not exceeded.
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NEW MEXICO

Figure 1. Location of Fort Bliss, Texas.

In response to these requirements, many Department of Defense (DoD) training
and testing installations, including Fort Bliss, have implemented the Land Con-
dition Trend Analysis (LCTA) program, which is part of the Army’s Integrated
Training Area Management (ITAM) plan (Tazik et al. 1992). The LCTA program
provides a standard method for inventory and monitoring of vegetation and wild-
life on military lands. Under the LCTA program, permanent plots are estab-
lished and visited annually to conduct a detailed census of vegetation and wild-
life. However, field surveys are costly; therefore, a complete survey of large
installations is not possible and a detailed vegetation map is often lacking.
Long-term trends in the vegetation condition can be monitored by evaluating all
the aggregated information collected for individual LCTA field surveys, but it is
impossible to assess vegetation condition at any one time over a large area based
solely on field surveys. To assess a large area, information collected at LCTA
field survey point locations must be spatially extrapolated to those areas that are
not sampled. This is especially true of large installations like Fort Bliss.

Satellite imagery provides a good supplement to field surveys because of its large
geographic coverage and relatively high temporal frequency. However, the spa-
tial resolution (20 to 30 m) of contemporary satellite imagery is not suitable for
large-scale characterization and monitoring. Variability of land cover and dis-
turbance patterns may occur at subpixel spatial scales in arid environments. At
this spatial resolution, each pixel represents a mixture of the spectral responses
of all surface components located within that pixel. At Fort Bliss, such pixels
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represent a mixture of perennial desert shrubs; perennial and annual grasses
and forbs, both vigorous and dormant; senesced litter; soils; and shadows. In
addition, vegetation is typically sparse, and the mixed spectral signature is usu-
ally dominated by the spectral signature of background soil. It is necessary to
determine the contribution of each land-cover component to the overall spectral
response in a pixel to be able to use this scale of imagery to monitor vegetation
amount and condition.

Emerging technologies and methods generate satellite imagery and photography
with high spatial and spectral resolution. These images are much more likely to
contain pixels that represent a single homogenous land-cover type. However,
high-resolution spectral imagery is costly in terms of collection, processing, and
interpretation, and typically provides unmanageable data volumes for large in-
stallations such as Fort Bliss. Therefore, complete coverage of high spatial reso-
lution imagery is not acquired regularly for installation monitoring.

Given these limitations, training managers and natural resource managers need
an alternative method to estimate, extrapolate, and monitor more detailed per-
cent vegetative cover from coarse resolution imagery across arid landscapes.

Objective

The primary objective of this investigation was to evaluate linear spectral demix-
ing and spectral brightness and greenness index correlations with abundance of
land-cover types as alternative methods for more detailed characterization and

monitoring of land condition using coarse resolution satellite imagery.

Approach

Three study areas where chosen to represent the three primary vegetation/land
form areas of Fort Bliss. Study Site #1 was an area of mesquite-covered coppice
dunes in the Tularosa Basin, primarily located within Maneuver Areas #4 and
#5. Study Site #2 was a grassland-dominated site on Otero Mesa. Study Site #3
was a mixed desert shrub/grassland area in the foothill transition zone between
the Tularosa Basin and Otero Mesa (Figure 2). At each site, four digital 1:16,000
Color Infrared (CIR) images were acquired as samples. Classifications of the
CIR photographs provided a ground reference of abundance or percent cover of
individual land-cover types. A Landsat Thematic Mapper (TM) image of Fort
Bliss was also acquired with approximately the same acquisition date as the CIR
photographs.
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Figlgg- Studyi s lRedientons
Using spectral demixing, the percent cover of individual land-cover components
(as derived from CIR photograph classifications) and TM spectral response in six
spec-tral wavelengths were used to determine the spectral contribution of each
land-cover component to the mixed spectral response recorded in a single TM
pixel. The equations used to determine the spectral contribution of each land-
cover component were then inverted so that given the known spectral contribu-
tion of individual land-cover components and the known spectral response re-
corded in an individual TM pixel, other TM pixels were OR could be demixed to
estimate percent cover of individual land-cover components.
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A second method of characterization and monitoring land condition was also
evaluated. This method involved using correlations between percent cover of in-
dividual land-cover components and spectral brightness and greenness indices.
Again, percent cover of individual land-cover components was derived from clas-
sifications of the CIR imagery. Spectral brightness and greenness indices were
derived from spatially and temporally coincident Landsat TM imagery. Correla-
tions between greenness and brightness indices and abundance were then used
to extrapolate estimates of percent cover over a large geographic region.

Mode of Technology Transfer

This report will be made accessible through the World Wide Web (WWW) at
URL:

http://www.cecer.army.mil
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2 Background

The literature describes many applications of spectral demixing analysis and
spectral brightness correlations using spectral imagery for assessing land-cover
types and vegetation abundance. A review of literature is provided below. These
approaches have been applied successfully and validated statistically. Research-
ers have applied spectral demixing analysis and spectral brightness correlations
to resource characterization and monitoring in arid and semiarid environments

similar to Fort Bliss.

Spectral Demixing

Various studies have shown that spectral demixing of multiband satellite im-
agery can provide estimates of the aerial percentage of various land-cover types
(Marsh et al. 1980; Foody and Cox 1994; Foschi 1994; Smith et al. 1990). The
technique of linear spectral demixing, as it relates to multispectral imagery, is
an attempt to extract the amounts of various land-cover types within an area
imaged by a single pixel (Adams et al. 1985; Smith et al. 1990; Marsh et al. 1980;
Roberts et al. 1991). The key assumption of linear spectral demixing is that the
mixed spectra associated with each pixel of a multiband satellite image are as-
sumed to be linear combinations of weighted pure spectrums. Each pure spec-
trum, or spectral endmember, is assumed to be unique and representative of a
particular type of land cover. The weight associated with each pure spectrum is
assumed to be equal to the fractional area of the pixel occupied by the types as-
sociated with that pure spectrum. These weights are called “percent covers.”
Nonlinear spectral demixing is similar in principle to linear demixing, except
that nonlinear demixing accounts for multiple interactions of reflected light with
several groundcover or endmember components (Borel and Gerstl 1994; Roberts
et al. 1993; Smith et al. 1990; Ray and Murray 1996). However, nonlinear
demixing was not tested in this research. Demixing techniques offer a method of
land-cover classification that differs from statistical classification schemes in two
important ways. First, the method is deterministic. It attempts to physically
model the reflection of light from various land covers that make up the terrain.
Second, unlike statistical classifiers, it does not assume a homogenous classifica-
tion for each individual pixel in an image. Therefore, the surface area imaged by
each pixel element can have several different land-cover classes, which is more
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realistic classification output since almost all pixels in a scene will contain a
mixture of land-cover types (Foschi 1994). Therefore, the resulting output from
demixing analysis provides an individual abundance image for each endmember
or land-cover type used to develop the demixing model. This abundance image
depicts the spatial distribution and abundance of that respective land-cover type
(Bateson and Curtiss 1996). This demixing method can greatly improve the ac-
curacy of vegetative cover and abundance estimates, especially in arid and semi-
arid environments with incomplete or sparse canopy covers. In such environ-
ments, the ratio of vegetation to bare ground can change rapidly over distances
that are smaller than the spatial resolution of coarse resolution satellite imagery
(Smith et al. 1990; Huete 1986; Tueller 1987).

Spectral demixing; can be categorized into one of two methods. The first method
assumes that the percent cover of each of the land-cover types of interest within
several pixels is known. The pure spectrum of each land-cover type can then be
determined by inverting the model (Huete 1986; Puyou-Lascassies et al. 1994;
Adams et al. 1995; Marsh et al. 1980). The model is developed by correlating
known percent cover values of land-cover types with the spectral values for a
sample of pixels from the coarse resolution imagery using regression techniques.
The known percent cover estimates used to parameterize the model are typically
derived from field measurements or corresponding high spatial resolution im-
agery or photography. This is the method applied in this research. A more de-
tailed description of the method used is summarized in Chapter 4, Methodology
(page 18). Conversely, the algorithm can also be applied in reverse. If the pure
spectrum of land-cover types or spectral endmembers is known, then the percent
cover of each type within a single mixed pixel can be determined (Ray and
Murray 1996; Farrand et al. 1994; Asrar et al. 1986: Smith et al. 1990; Smith et
al. 1994). In either case, this image processing technique is referred to as spec-
tral demixing or spectral unmixing.

Spectral demixing has been evaluated as a technique for estimating vegetative
cover and abundance in arid environments using multispectral imagery with
mixed results. Typically, spectral demixing is capable of providing estimates of
green leaf vegetative matter, gray matter and litter, and bare ground with some
degree of success (Sohn and McCoy 1997; Smith et al. 1990; Marsh et al. 1980)
However, there are still recognized problems with demixing analysis in arid en-
vironments, including difficulties in identifying spectrally unique endmembers
and accounting for shadowing effects within sparse canopy desert shrubs (Ray
and Murray 1996; Pech et al. 1986; Ustin et al. 1986). Appendix A contains a
graphic depiction of the linear spectral demixing process flow.
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Spectral Brightness and Vegetation Indices

Correlations between spectral index values derived from multispectral imagery
and ground observations of vegetative cover have also been used to spatially ex-
trapolate estimates of vegetative cover and abundance. Spectral indices have
been developed to reduce multispectral scanner data observed by satellites to a
single number or index that attempts to quantify the amount of vegetative cover
or bare ground in an individual pixel. Direct empirical relationships between
these indices and ground measurements of vegetative cover are then used to spa-
tially extrapolate cover estimates. This method differs from spectral demixing,
where cover 1s estimated by determining the unique spectral contribution of each
land-cover type or spectral endmember existing within a single pixel. A review
of literature is provided below.

Vegetation or Greenness Indices

Common commercial satellite sensors record reflectance from the Earth’s surface
in several regions of the electromagnetic spectrum. Depending on the intended
application, different wavelengths are better suited for analyzing different as-
pects of the Earth-atmosphere system. For assessing vegetation, the red and
near infrared regions of the spectrum are most commonly analyzed. Within each
portion of the spectrum, different properties of vegetation control the amount of
electromagnetic energy that is absorbed, transmitted, or reflected. In general,
healthy vegetation has been characterized by low reflectance in the visible wave-
lengths (400 to 700 um) and high reflectance in the near infrared wavelengths
(Kauth et al. 1978; Tucker 1979; Curran 1980). Therefore, high reflectance in
the near infrared wavelengths is directly proportional to plant biomass. In gen-
eral, an inverse relationship exists between reflectance in the visible region, par-
ticularly in the red wavelengths, and biomass production of a plant (Jensen
1986).

Several vegetation indices have been developed to reduce multispectral scanner
data observed by satellites to a single number or index, to be used to qualita-
tively and quantitatively assess vegetation conditions (Tucker 1979; Price 1987).
Almost all vegetation indices are transformations based on the near infrared and
red portions of the electromagnetic spectrum. Most vegetation indices can be
characterized as either ratio or orthogonal. Ratio indices exploit the contrasting
low red reflectance and high near infrared reflectance of vegetation by simple
ratios of these two bands. Orthogonal indices are based on the Tasseled Cap
transformation, which is a characteristic plot of red reflectance (x-axis) vs. near
infrared reflectance (y-axis) that is useful for extracting the relative greenness of
vegetation and soil brightness (Kauth et al. 1978). Within the Tasseled Cap dis-
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tribution, Kauth determined that the distribution of the soil reflectance variation
was confined to a “line of soils” extending from the plot origin at approximately
45 degrees from the x-axis (red) with soil brightness increasing with distance
from the origin. Reflectance variation of vegetation is then measured perpen-
dicularly from this line of soils in the direction of the y-axis (near infrared). This
distribution was aptly named because if viewed in three dimensions, it resembles
a cap with a tassel extending from the top. Although the original Tasseled Cap
transformation was based on Landsat Multispectral Scanner (MSS) data, the
same transformations have been applied to Landsat TM data (Crist and Cicone
1984). Variations of the Tasseled Cap have been customized for arid environ-
ments (Graetz and Gentle 1982; Pickup et al. 1993). Regardless of the sensor,
greenness and soil brightness indices derived from this characteristic plot are
commonly referred to as Kauth-Thomas or Tasseled Cap Soil Brightness and
Greenness Indices.

Other derivations of ratio and orthogonal vegetation indices are beyond the scope
of this report. However, all indices are similar in that they provide dimen-
sionless values that represent relative ranges of vegetation amount or condition.
In general, vegetation indices have been correlated with a number of vegetative
characteristics such as biomass (Tucker 1979), percent cover (Senseman et al.
1996), and leaf area index (Richardson and Wiegand 1977).

The Normalized Difference Vegetation Index (NDVI) is probably the most com-
monly applied vegetation index for assessing vegetative amount and condition
(Rouse et al. 1974). In the first comprehensive study of correlation between
NDVI and vegetative parameters, high coefficients of determination for a simple
linear regression were found between NDVI and total wet biomass, total dry
biomass, leaf water content, dry green biomass, and total chlorophyll for clipped
blue grama prairie grass plots (Tucker 1979). Several vegetation indices have
also been correlated with measurements of shrub and grass cover in various
rangelands, including southern Australia (Graetz and Gentle 1982; Pickup et al.
1993), north-eastern Colorado (Anderson et al. 1993), central Washington (Sen-
seman et al. 1996), north-central Texas (McDaniel and Haas 1982; Boyd 1986),
and specifically in the Chihuahuan Desert (Duncan et al. 1993; Franklin et al.
1993; Peters et al. 1997; Yool et al. 1997).

However, one limitation of using the NDVI in arid environments is that the spec-
tral response of the exposed soils often dominates the spectral response of any
extant vegetation. This domination is due to the sparse vegetation cover and the
high near infrared reflectance of arid soils. Therefore, several indices have been
developed that attempt to correct for this factor, including the Weighted Differ-
ence Vegetation Index (WDVI; Richardson and Wiegand 1977), the Soil Adjusted
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Vegetation Index (SAVI; Huete 1988), and the Modified Soil Adjusted Vegetation
Index (MSAVI; Qi et al. 1994). These indices are designed to maximize the in-
fluence of vegetation and minimize the effect of background soil. The SAVI in-
dex requires a user-defined soil correction factor “L” as input into the indices.
The constant “L” represents an estimate of percent vegetative cover, and there-
fore is often unknown. Typically, different “L” factors are tested and a final
value is selected based on agreement with ground estimates, or an “L” factor is
assigned based on user knowledge of the study site. In general, the “L” factor is
difficult to objectively quantify. An MSAVI has since been developed that calcu-
lates a self-adjustable “L.” factor directly from spectral information. MSAVTI also
increases the sensitivity to vegetation and minimizes soil influences (Qi et al.
1994). The MSAVI accounts for possible variations of soil reflectance through an
inductive method based on opposite trends of NDVI and WDVI, thus eliminating
subjective assignment of the soil correction “L” factor. In the original field test in
cotton fields, density of cotton canopy was predicted more accurately by MSAVI
than other derivations of SAVI using remotely sensed imagery. Not only does
MSAVI eliminate the requirement to estimate “L,” but for arid lands, MSAVI
has been promoted as the best predictor of shrub cover measurements among the
indices that attempt to mitigate the influence of soil reflectance (Rondeux et al.
1996; Senseman et al. 1996).

Brightness Indices

Albedo (or reflectance) and soil brightness indices have also been calculated and
can be used to estimate percent vegetative cover from satellite imagery.
Whereas vegetation or greenness indices attempt to measure the reflectance of
vegetation directly while minimizing the effects of bare soil, brightness indices
measure the total brightness or reflectance of the Earth’s surface, and therefore
are more sensitive to soil background reflectance. Vegetation tends to mask the
reflectance of soils, particularly in sparsely vegetated arid environments with
highly reflective background soils. Therefore, an inverse relationship between
brightness indices and vegetative cover has been used to estimate vegetative
cover (Robinove et al. 1981; Sanden et al. 1996; Satterwhite 1984; Frank 1985;
Musick 1986).

Albedo is defined as the ratio of all shortwave radiation reflected by the Earth’s
surface to solar irradiance incident on the surface. Albedo has been correlated
with measurements of vegetative cover in several arid and semiarid environ-
ments (Price et al. 1992; Robinove et al. 1981; Frank 1984). Planetary albedo, or
planetary reflectance, is a measure of reflectance of the entire Earth-atmosphere
system, and is calculated directly from observations (data) recorded at the satel-
lite. Surface reflectance, or surface albedo, is a measure of reflectance of the
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Earth’s surface. To calculate surface albedo using remotely sensed observations,
radiometric and atmospheric corrections must be applied to correct for atmos-
phere, topography, and solar geometry variations. Many times, reflectance is
calculated across all of the visible and near infrared wavelengths available.
Other times, reflectance of a single spectral band, or in-band albedo, often corre-
lates well with vegetative cover in arid environments. In all cases, vegetative
cover is measured indirectly by the relative decrease in brightness of the back-
ground soils due to vegetative cover or shadowing.

Other soil brightness indices have also been developed to assess soil brightness,
and indirectly, vegetation cover. One common index is the Kauth-Thomas Soil
Brightness Index (SBI; Kauth et al. 1978). The SBI is also calculated based on
the Tasseled Cap transformation described earlier. Similar to the Greenness In-
dex, the SBI is derived from the characteristic plot of red vs. near infrared reflec-
tance in spectral space. Soil brightness indices have been correlated with arid
shrub cover in several studies at the Jornada Long-Term Ecological Research
(LTER) site, which is near Fort Bliss (Duncan et al. 1993; Musick 1984).

Like spectral demixing, spectral brightness and greenness indices have been
used to estimate vegetative cover with mixed results. There are unique chal-
lenges associated with applying these methods to arid environments. In the case
of vegetation or greenness indices, the challenge is to isolate the contribution of
vegetation cover to the spectral response while reducing the contribution of all
other land-cover components, including the dominant background soil. The op-
posite is true for brightness indices, where the influence of vegetation cover is
measured indirectly.



12 ERDC/CERL TR-03-26

3 Study Area and Data

Study Area

Fort Bliss is in western Texas and south-central New Mexico on the northern
edge of the Chihuahuan Desert (Figure 1). The installation is approximately
445,170 ha (1.1 million acres) and is located within Otero and Dona Ana Coun-
ties in New Mexico and El Paso and Hudspeth Counties in Texas. White Sands
Missile Range is located along the western boundary, and the Lincoln National
Forest and Bureau of Land Management (BLM) lands are located along the
northeastern and western boundaries. The installation is surrounded by four
mountain ranges: the southern Sacramento Mountains to the northeast, the
Hueco Mountains to the southeast, the Organ Mountains to the west, and the
Franklin Mountains to the southwest. Otero Mesa is a gently tilted plateau
along the eastern boundary of the installation. Two basins, the Tularosa and
Hueco, are located in the central region of the installation. Elevations range
from 1350 m in the Tularosa Basin floor to over 3100 m at the top of the Organ
Mountains (Budd et al. 1979; Mehlop et al. 1996; Boykin et al. 1997).

Average annual precipitation is between 21 and 28 cm in the Tularosa Valley to
31 to 46 cm on the Otero Mesa. The mean annual precipitation is 22.5 cm. Most
of the annual rainfall occurs between July and October. Snow may fall from No-
vember through March and ranges from 8 to 26 cm annually. The mean annual
temperature ranges between 14 and 17 ©C. Relative humidity is low, and severe
dust storms are frequent under prolonged dry conditions. Soils within the study
area range from loamy sand with many exposed rocks on the steep slopes of the
foothills to more well-drained soils on the Otero Mesa (USDA 1980; U.S. Army
1978).

Vegetation at Fort Bliss is diverse, ranging from Chihuahuan Desert grassland
and shrublands to Rocky Mountain conifer forest in the highest elevations. The
basin floors are characterized by shrublands dominated by honey mesquite (Pro-
sopis glandulosa), creosote bush (Larrea tridentata), sandsage (Artemisia filifo-
Iia), saltbush (Atriplex canescens), with isolated patches of grasslands dominated
by dropseed (Sporobolus spp.), and tobosa grass (Hilaria mutica). The alluvial
fans and piedmonts are dominated by a mixture of shrubs and grasslands, in-
cluding honey mesquite, creosote bush, tarbush (Florencia cernua) and acacia
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(Acacia spp.), along with grama grasses (Bouteloua spp.), and bush muhly
(Muhlenbergia porteri). Otero Mesa is dominated by grama grasses, burrograss
(Scleropogon brevifolius), vine mesquite (Panicum obtusum), and yucca (Yucca
spp.). Higher mountain elevations support wavy leaf oak (Quercus undulata),
mountain mahogany (Cercocarpus montanum), sotol (Dasylirion wheeleri), su-
mac (Rhus spp.), juniper (Juniperus spp.), pinyon pine (Pinus edulis), ponderosa
pine (Pinus ponderosa), and Douglas-fir (Pseudotsuga menziesii) (Mehlop et al.
1996; Boykin et al. 1997). All study sites in this research were located within the
basins, alluvial fans, and piedmonts, and on Otero Mesa.

Data

A Landsat TM satellite image and Kodak color infrared aerial photographs were
acquired to evaluate spectral demixing and spectral index correlations as alter-
native methods for estimating and extrapolating abundance of vegetative cover
at Fort Bliss.

A single Landsat-5 TM image of Fort Bliss was acquired on 9 November 1994
(Scene ID: 94313). This acquisition date was the nearest available date to the
acquisition date of existing Kodak CIR photography. TM is a space-borne scan-
ning sensor that records reflected and emitted energy in the blue, green, red,
near infrared, middle infrared, and thermal regions of the electromagnetic spec-
trum. Landsat-5, the satellite that carries the TM sensor, is in a sun-
synchronous orbit approximately 705 km above the Earth’s surface. TM has a
temporal revisit time of 16 days and a spatial resolution of approximately 30 m.
The spectral characteristics of the Landsat-5 TM are summarized in Table 1.

Table 1. Landsat-5 TM specifications.

Band Width Ground
Channel # (um) IFOV (m)
1 0.45 - 0.52 30
2 0.53 - 0.60 30
3 0.63 - 0.69 30
4 0.76 - 0.90 30
5 155-1.75 30
6 10.42 - 12.50 120
7 2.08 - 2.35 30
Adapted from Table 2-4 of Jensen (1986).
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Kodak CIR aerial photography was acquired for this project from the Fort Bliss
DOE. The DOE contracted the National Aeronautics and Space Administration
(NASA, John C. Stennis Space Center) to acquire Airborne Terrestrial Applica-
tions Sensor (ATLAS) data for Fort Bliss. The ATLAS scanner is a 15-channel
multispectral scanning system with direct digital recording capabilities. ATLAS
was developed by the Advanced Sensor Development Laboratory Sverdrup Tech-
nology Inc. at the Stennis Space Center. An ATLAS scanner records pixel infor-
mation with a nominal resolution of 5 meters. The CIR photography was col-
lected at the same time as the ATLAS data. The ATLAS mission was flown at
an elevation at 8200 ft (2732 m) above mean terrain level. With a 6-inch (3.46-
cm) focal length on the scanner lens, the resulting Kodak CIR photographs had a
nominal scale of 1:16000 (1 inch = 1333 feet; 2.54 ¢cm = 443 m). The overflights
were acquired over an 8-day period beginning October 29, 1994 and ending No-
vember 5, 1994.

Study Site Selection

Three general study areas were chosen to represent the three primary vegeta-
tion/landform areas of Fort Bliss (Figure 2). Study Site #1 represents the Honey
Mesquite/Coppice Dunes area of the Tularosa Valley, primarily located within
Maneuver Areas #4 and #5. Study Site #2 represents a grassland-dominated site
on Otero Mesa. Study Site #3 represents a mixed desert shrub/grassland area in
the foothill transition zone between the Tularosa Valley and Otero Mesa. Not
only were these sites chosen to represent the primary vegetation and landform
areas of the installation, but they also correspond to locations of other related
field studies ongoing at Fort Bliss. Study Site #2 was located near the Wheeled
Vehicle Carrying Capacity Controlled Impact Sites on Otero Mesa. Study Site
#3 was located near the Controlled Burn Study Sites directly south of Highway
506. Therefore, maps of estimated total vegetative cover resulting from this re-
search can be incorporated into those research efforts.

NASA provided the Kodak CIR photographs to Fort Bliss DOE on color-positive
transparencies on drum type reels. No photograph index was supplied. CIR
transparencies were visually inspected and several CIR photographs were identi-
fied for each general study site. Four digital 1:16,000 CIR images were ulti-
mately selected as samples for each of the three general study areas (Figures 3
through 5). These photographs were selected based on their suitability for test-
ing spectral demixing and spectral index correlations. Photographs that con-
tained some diversity in land cover and vegetation types and had minimal urban
features were optimal.
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Figure 3. CIR photographs analyzed for Study Site #1, overlaid on TM image.
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Figure 4. CIR photographs analyzed for Study Site #2, overlaid on TM image.
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Figure 5. CIR photographs analyzed for Study Site #3, overlaid on TM inage.
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4 Methodology

Image Scanning

Digital copies of the CIR photographs were required to conduct demixing and
spectral index correlation analysis. Spectral demixing also required accurate
radiometric scanning. Therefore, project researchers contracted scanning ser-
vices to Image Scans, Inc. of Denver, Colorado. Image Scans used a professional
quality Leica/Helava DSW200 scanner with a maximum scan rate of 5 microns
(w). During discussions to determine the appropriate scanning resolution, Image
Scans offered to scan one photograph at several different resolutions, at no cost,
for testing. Omne photograph was arbitrarily selected for test scanning from
Study Site #1, which contains primarily mesquite-covered coppice dunes in Ma-
neuver Areas #4 and #5. The same digital image was scanned at 12.5 p, 25 p,
and 50 p and provided as an Leica Geosystems ERDAS Imagine* .131114r files.
These scan rates corresponded to effective ground pixel sizes of 0.2 m, 0.4 m, and
0.8 m, respectively. Effective ground pixel sizes were calculated as follows. The
nominal average scale of the CIR photography was 1:16,000. The photographs
were 23 cm x 23 cm. Using the scale, 1 pu on the photograph equaled 16,000 u on
the ground.

1p=106m
or
1m=108p
16,000 p X (Im/10%p)=16x 103 m = 0.016 m.
Therefore:

1 p on the photo = 0.016 m on the ground,
12.5 p on the photo = 0.2 m on the ground,

25 pon the photo = 0.4 m on the ground,

50 p on the photo

0.8 m on the ground.

* ERDAS Imagine is a product of Leica Geosystems GIS & Mapping, LLC, 2801 Buford Highway, N.E., Atlanta, GA
30329-2137, telephone: 404-248-9000.

t
A .lan file is a multiband continuous image file; the name is derived from the Landsat satellite.



ERDC/CERL TR-03-26

19

Preliminary classifications were applied to the 12.5-p (0.2-m), 25-p (0.4-m) and
50-p (0.8-m) images to determine if the scanning rates and resulting spatial reso-
lution affected the image classification results. Before any preliminary compari-
son of the multiresolution photographs could be conducted, it was necessary to
coregister the imagery. The 50-pu and 25-u images were registered to the 12.5-u
image using a first-order linear transformation by selecting four control points at
the image tic marks (retaining the original pixel size). It was also necessary to
subset an area common to each resolution image.

Three classification methods were used to test the variable scanning rates:
(1) Iterative Self Organizing Data Analysis Technique (ISODATA) in ERDAS
Imagine, (2) maximum-likelihood discriminant analysis classifier (MAXLIK) in
ERDAS Imagine, and (3) sequential maximum a posteriori (SMAP) estimation in
the Geographical Resources Analysis Support System (GRASS). The primary
test was to determine if classification results varied significantly when derived
from either different spatial resolution imagery or from different classification
algorithms. Variations on the number of spectral classes requested and the use
of ancillary data such as texture were also tested.

Initial classifications were conducted requesting a range of three to seven cate-
gories for the test photograph. Visual comparisons between the original CIR
photograph and several classifications with a varying number of categories were
used to determine the appropriate number of categories to request for analysis.
Through visual observations and consultation with Fort Bliss DOE staff, a deci-
sion was made to request five land-cover categories for analysis. Increasing the
number of requested categories to six or seven seemed to introduce the added
complexity of land-cover categories that were not apparent in the original CIR
photographs and were not identifiable in the field. Decreasing the number of
requested categories to three or four tended to eliminate land-cover categories
that were of potential interest for characterization and monitoring.

Classification of the image into five spectral classes appeared to clearly separate
individual honey mesquite plants and bare unvegetated sandy soils. Two addi-
tional categories occurred primarily in the interdunal areas, and appeared to
correspond to interdunal grasses, small shrubs, or variations in soil material. A
fifth spectral category appeared to correspond to the edges of mesquite-covered
dunes and was generally one to three pixels wide (1 to 3 m). This spectral cate-
gory was originally thought to be due to an edge effect around the coppice dunes
that could be a combination of shadows, litter, and solar geometry due to the
sloping effect of the dunes. However, this spectral category did not seem to occur
at any particular spatial orientation to the dune, and in some isolated cases, it
occurred in interdunal areas not associated with any dune formation. Therefore,
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it was assumed to be a combination of litter; grasses; decreased mesquite foliar,
stem, and branch densities; and some shadowing, but not purely shadow.

Statistical comparison between ISODATA, MAXLIK, and SMAP results showed
no significant difference in classifications for the same spatial resolutions and for
different spatial resolutions. Therefore, ISODATA, the default unsupervised
classification tool in ERDAS Imagine, was used for all classifications in this re-
search project.

An ERDAS Imagine spatial enhancement tool that uses texture was explored in
an attempt to determine the optimal scanning resolution, and also to assist in
assigning information classes to the five spectral classes identified. Texture can
be defined as the frequency of tonal change in an image. The Texture image en-
hancement tool within the ERDAS Imagine Image Interpreter Module’s Spatial
Enhancement suite was applied to images at all three spatial resolutions. This
tool uses either Variance (2nd order) or Skewness (3rd order) filters, and was
applied using roving window sizes of 3 x 3, 5 x 5, and 7 x 7 pixels. Every filter
and window size option was tested, with each test producing three texture out-
put bands that corresponded to the original three spectral bands. The three tex-
ture output bands were “layer stacked” with the three base image bands and
classifications were generated for five classes. A comparison between the origi-
nal five-class ISODATA classification and the five-class ISODATA classification
augmented with image texture revealed no significant difference between the

images.

Evaluation of all test results for the three different scan rates, revealed that
there was no significant difference in classification of land-cover types at the dif-
ferent spatial resolutions. Therefore, the remaining photographs were scanned
at 25 microns, or 0.4-m spatial resolution, and were supplied in an ERDAS Imag-
ine .lan file format. This scan rate appeared to be a good compromise that re-
tained significant detail from the original photographs while addressing the
practical concerns of electronic file size and disk storage space. At this resolu-
tion, a single digital three-band CIR image was 255 MB; two images could be
placed on a single 6560 MB CD. However, after initial processing of several im-
ages, the images were resampled to 1-m spatial resolution before analysis. To
test the effect of resampling on classifications, additional classifications were
performed using ISODATA by requesting five classes for the 0.4-meter pixel im-
ages and for the same photographs resampled to 1 meter. The resulting classifi-
cations were compared using differencing. The results indicated that resampling
did not significantly affect the classification results.
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Image Preprocessing
CIR Photography Exposure Falloff

After the individual .lan files were imported into ERDAS Imagine, further image
processing was required to correct a geometric effect called exposure falloff,
which was evident in all of the photographs. This effect appears as maximum
exposure at the center of the film with gradual dimming at increased radial dis-
tance from the center (Lillesand and Keifer 1987). The effect was corrected with
a detrend function using TNTmips* software. Figure 6 illustrates the process.
The image on the left is an example of exposure falloff. The image on the right
illustrates the removal of exposure falloff using TNTmips software.

Thematic Mapper Systematic Noise

Variations in the response of individual detectors used for each spectral wave-
length recorded by the TM sensor sometimes causes systematic striping or band-
ing to occur. It is desirable to correct these anomalies and restore the image as
much as possible to resemble the original scene. This type of systematic noise
was evident in the TM image acquired for this research. A common technique
used to correct striping problems in satellite imagery is Fourier Transform. This
process converts a raster image from a spatial domain to a frequency domain. In
ERDAS Imagine, the Fast Fourier Transform (FFT) tool was used to convert the
TM image into a series of two-dimensional sine waves of various frequencies. An
image was created through this process and viewed in a graphical editor.
Through trial and error, the Fourier image was edited to remove periodic strip-
ing. After the Fourier image was edited, it was then transformed back into the
spatial domain by using an inverse FFT. The result is an enhanced version of
the original image with periodic noise or striping reduced or removed (ERDAS
Field Guide 1997). Figure 7 illustrates systematic noise removal. The image on
the left is an example of periodic striping that occurred in the November 1994
Landsat TM image. The image on the right illustrates the removal of systematic
banding in the TM image using Fourier Transform.

* TNTmips is a product of Microlmages, 11th Floor - Sharp Tower, 206 South 13th Street, Lincoln NE 68508-2010 ,
telephone; 402-477-9554.
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Figure 6. Example of exposure falloff corrections: (A) original image, (B) corrected image.

Figure 7. Example of TM systematic noise corrections: (A) original image, (B) corrected image.

Classification of CIR Photographs

Critical to both the spectral demixing and correlation analysis was the accurate
classification of the CIR photographs. All reference or “ground truth” informa-
tion on percent coverage of each land-cover component was extracted from these
classifications. All CIR photographs were classified before coregistration to the

TM imagery.
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The CIR photographs and TM imagery used in this study were archival; there-
fore, there was no opportunity to collect the temporally coincident field data nec-
essary to perform a supervised classification. As a result, the default unsuper-
vised classification routine (ISODATA) in ERDAS Imagine was used to classify
the CIR photographs, specifying 10 iterations and 0.95 convergence.

Determining the number of classes to request for the unsupervised classification
was also critical. The number of classes requested was equivalent to identifying
the number of unique land-cover types (e.g., plant species, litter, bare ground) to
be characterized in terms of abundance or percent cover using demixing and
spectral index correlation analysis.

Initial classifications were conducted requesting a range of three to seven cate-
gories per photograph. Visual comparisons between the original CIR photo-
graphs and several classifications with a varying number of categories were used
to determine the appropriate number of categories to request for analysis.
Through visual field observations and in consultation with Fort Bliss DOE staff,
a decision was made to request five land-cover categories for all classification of
CIR photographs. Increasing the number of requested categories to six or seven
seemed to introduce the added complexity of landscape types that were not ap-
parent in the original CIR photographs. Decreasing the number of requested
categories to three or four tended to eliminate land-cover types that were of po-
tential interest for characterization and monitoring. As an example, Figure 8
shows a subset of CIR photo 381_158 and the resulting five-category unsuper-
vised classification.

In this example, category 1 (green) is clearly mesquite and category 5 (white) is
clearly bare ground. Category 2 (yellow) appears to be an edge effect around
mesquite-covered dunes that could be a combination of shadows, litter, and solar
geometry due to sloping effect of the dunes. Categories 3 (red) and 4 (blue) ap-
pear to be a combination of different interdunal vegetation types, litter, and ex-
posed surface materials of different source material.

Similar classifications were conducted for all 12 photographs. Although analysis
was conducted approximately 2 to 3 years after the acquisition date of the CIR
imagery (October 1994), several photograph locations were visited in the field
with Fort Bliss DOE personnel to evaluate the classifications. Classification for
all photographs at Study Site #1 (Coppice Dunes Maneuver Areas) resulted in a
breakout of land-cover types similar to the example above for photo 381_158.
However, observations at photograph locations for Study Site #2 (Otero Mesa
Grasslands) and Study Site #3 (Controlled Burn/Otero Mesa Foothills) revealed
that land-cover categories were not necessarily delineating individual land-cover
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types, but rather represented a gradient of decreasing aerial cover, crown den-
sity, and canopy closure moving from land-cover categories 1 through 5. For ex-
ample, category 1 typically delineated desert shrubs with dense canopies and the
highest amount of total vegetative cover. Categories 2 thru 4 delineated a grad-
ual decrease in canopy cover or shift from a shrub to a grass or forb with less
canopy cover. Category 5 consistently delineated bare ground.

Due to the ambiguities in assigning information classes to the spectral classes
resulting from unsupervised classification of the photographs, the five-class un-
supervised results were recoded or aggregated in a number of different ways in
an attempt to simply distinguish between cover (independent of vegetation type,
and including standing dead biomass and litter) and bare ground. For each re-
code possibility, the end product was a two-category map where category 1 =
Cover and category 2 = Bare Ground. Table 2 contains a summary of the differ-
ent recodes. A simple two-class unsupervised classification using ISODATA was
also conducted for each photograph in an attempt to distinguish between cover
and bare ground. Figure 8 also shows examples of each of these recoded maps
for a subset of photo 381_158. The subset shows enough detail to identify indi-
vidual shrubs.

Table 2. Summary of recodes of original five-class unsupervised classification of CIR
photographs into two classes (Cover and Bare Ground).

Recode ID | Class Recode Combinations Recode Classes
125 class 1 = | Cover
class 2, class 3, class 4, and class 5 = | Bare Ground
12 _35 class 1, class 2 = | Cover
class 3, class 4, and class 5 = | Bare Ground
13 45 class 1, class 2, class 3 = | Cover
class 4, class 5 = | Bare Ground
14 5 class 1, class 2, class 3, and class4 | = | Cover
class 5 = | Bare Ground
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CIR Photograph

ISODATA EXAMPLES
5 Classes 3 Classes 2 classes

RECODE EXAMPLES
Class 1 =1
Classes 25 =2
(Recode 1_25)
Classes 12 =1
Class 3-5 =2

(Recode 12_35) M=

Classes 13 =1
Classes 4-5 =2
(Recode 13_45)

Classes 14 =1
Class 5 =2
(Recode 14_5)

Figure 8. Original CIR photograph, examples of five-, three-, and two-class unsupervised
classifications, and four recodes of the five-class image for a subset of photo 381_158 in
Study Site #1.
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The difficulty in identifying individual land-cover types in some photographs was
indicative of the difficulties associated with spectral inseparability or spectral
crossover of many desert vegetation types and bare ground. Spectral insepara-
bility also indicated that it would be difficult to use spectral demixing and corre-
lation analysis to quantify cover by individual land-cover type. Demixing and
correlation results later confirmed this problem and are discussed in Chapter 5,
Results, page 42. Consequently, binary maps of cover versus bare ground, as de-
rived from either the above recodes of an original five-class classification or from
a two-class unsupervised classification, were ultimately used in a majority of the
demixing and correlation analysis.

Geometric Registration
Selection of Ground Control Points

Spectral demixing requires accurate spectral information for each pixel in the
image. Therefore, to avoid resampling the Landsat TM image and effectively
changing the TM pixel values, the photographs were instead coregistered to the
TM image. The high spatial resolution (1 m) of the photographs compared to
relatively coarse spatial resolution of the TM image (30 m) made the georeferenc-
ing process difficult. To facilitate identification of common features for the place-
ment of control points, the photographs were degraded to 30 m using the ERDAS
Imagine Degrade function and were saved in separate files. Several ERDAS
Imagine tools were used during the coregistration process.

Initially, four or five ground control points were identified and evenly distributed
across both the aerial photograph and TM image using well-defined manmade
features visible in both images. A Transformation Matrix was calculated and
the points were adjusted at the subpixel level to minimize the Root Mean Square
Error (RMSE) while retaining apparent visual correctness. In many cases, how-
ever, it was difficult to locate well-defined features to select as control points.
ERDAS Imagine’s Ground Control Point (GCP) Matching Function, which is con-
tained within the Geometric Correction tool, was designed for such cases where
control points are difficult to select. The GCP Matching Function uses the spec-
tral characteristics of a single band of the raster data (in this case, Band 2 of the
aerial CIR photograph [Red] and Band 3 of the TM image [Red]), in conjunction
with a transformation matrix to automatically digitize corresponding GCPs.
Correlation threshold parameters were set and points having a correlation coef-
ficient value within the threshold were retained; other points were discarded.
Also, a maximum search radius, usually a distance of three pixels (the mini-
mum), and a search window size parameter were defined. Using this GCP
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matching utility, additional GCP points were identified throughout the image,
preferably on manmade features common to both images. Points that did not
meet the defined minimum correlation coefficient value were removed automati-
cally. The analyst also removed any points that did not appear as suitable
GCPs. This method proved very effective, yielding apparent accuracy within %
pixel (15 m). A transformation matrix file (.cff) was saved and later used to
transform unsupervised classifications of the CIR photographs rather than the
original CIR photographs.

Registration of CIR Photograph Classifications to TM Imagery

To limit undesirable pixel resampling during the transformation process, an Af-
fine Transformation (Transformation Order = 1) was used to coregister the clas-
sified and recoded CIR photographs to the TM image. For some photographs,
this still resulted in a misalignment of pixels that was identified through visual
examination. Therefore, a second order transformation was used. The second
order transformation was necessary because of terrain effects and aircraft yaw,
pitch, and roll, which affected some images more than others. Ideally, the aerial
photographs would have been photogrammetrically corrected using camera data
defining the elevation, lens focal length, nadir position, tilt, swing, and azimuth.
The transformation used the transformation matrix file (.cff) that was created as
described earlier.

Accuracy Assessment of Geometric Registration

Rectification results were checked visually with ERDAS Imagine’s Blend/Fade
utility, which is a very effective visualization tool whereby the images are over-
laid one on top of another in a single viewer. The analyst is able to fade the
newly rectified image interactively into the underlying source image to check
overlap by toggling between the two images at any desired toggle rate. The rec-
tification process involved considerable trial and error. Usually rectification was
done several times before achieving a satisfactory correction. Accurate geometric
registration between the high-resolution CIR photography and coarse-resolution
satellite imagery was critical to both spectral demixing and spectral index corre-
lation analysis.

Subset TM Scene and Air Photo to Common Area

Common areas between the TM image and the georeferenced aerial photograph
classification were defined. Because the CIR photographs were aligned along the
flight path of the aircraft and not in a truth north-south orientation, the maxi-
mum square area of TM imagery that fell within the footprint of the CIR photo-



28

ERDC/CERL TR-03-26

graph had to be identified. This was accomplished using ERDAS Imagine by
displaying the TM and the aerial photograph images in separate viewers, side by
side, linking the viewers together, then running an “inquire box” in the TM
viewer and roughly defining the common area with the box, taking care not to
expand the box beyond the photograph image area (Figure 9). File coordinates
returned from the inquire box tool were rounded by increasing smaller numbers
and decreasing larger numbers (to integers) to ensure that the TM subset was
clearly within the footprint of the CIR photograph. These file coordinates were
used to subset the six-band TM image.

Secondly, the CIR photograph was subsetted by using “imageinfo” on the subset-
ted TM scene to get map coordinates and pixel sizes. Map coordinates for the
upper left pixel and lower right pixel of the photograph were computed based on
map coordinates for the TM subset as follows.

Notation:

TM_ULX  Upper Left X Map Coordinate for the TM subset
TM_ULY  Upper Left Y Map Coordinate for the TM subset
TM_LRX  Lower Right X Map Coordinate for the TM subset
TM_LRY  Lower Right Y Map Coordinate for the TM subset
TM_XSZ X Pixel size (in Map Coordinates) the TM subset
TM_YSZ Y Pixel size (in Map Coordinates) the TM subset

and similarly for the photograph:

P_ULX Upper Left X Map Coordinate for the photo subset
P_ULY Upper Left Y Map Coordinate for the photo subset
P_LRX Lower Right Map Coordinate for the photo subset
P_LRX Lower Right Map Coordinate for the photo subset
P_XSZ X Pixel size (in Map Coordinates) the photo subset
P_YSZ Y Pixel size (in Map Coordinates) the photo subset

P_ULX = TM_ULX - TM_XSZ/2 + P_XSZ/2
P_ULY = TM_ULY + TM_YSZ/2 — P_YSZ/2
P_LRX = TM_LRX + TM_XSZ/2 — P_XSZ/2
P_LRY = TM_LRY - TM_YSZ/2 + P_YSZ/2

Common data sets were used to evaluate both demixing and spectral index corre-
lation analysis. Therefore, it was necessary to complete the above image and
photograph preprocessing and classification steps only once to compile a data set
of CIR photography and TM imagery subsets that was suitable for both demixing

and spectral index correlation analysis.
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Figure 9. Procedure for subsetting the common area between a TM image and a CIR
photograph.

Spectral Demixing

Spectral demixing used 12 1:16,000 CIR photographs resampled to 1-m spatial
resolution and a temporal coincident Landsat TM image at 30-m resolution. For
each CIR footprint, a subset of the TM scene that matched the geographic extent
of the CIR footprint was extracted from the TM scene, resulting in 12 pairs of
CIR photographs and matching TM subsets. Band 6 of TM was not used in this
analysis. Only Bands 1 through 5 and 7, or a total of 6 bands, were used. Thus,
any reference to Band 6 in this report actually refers to Band 7 of the TM sensor.
Therefore, there were six pixel values associated with spatial position of any
given pixel, the values corresponding to TM Bands 1 through 5 and 7.

Mathematics of Spectral Demixing
Within Landsat TM data, a single pixel images approximately 30 m by 30 m on

the ground, or 900 m2. Since a pixel represents a 900-m? area on the Earth’s sur-
face, there may be many different land-cover types present, yet all land-cover
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types are represented by a single spectral signature for that pixel. The contribu-
tion from any particular cover type is assumed to be proportional to the amount
of area that it takes up within the total area represented by that pixel. The as-
sumption is made that each of the various land-cover types has a unique, or
“pure,” spectral signature. Therefore, the spectral signature associated with a
pixel is a mixture of these pure spectra, or a “mixed signature” or “mixed pixel.”
A second assumption is that the mixing can be modeled by the sum of the pure
spectra, each weighted by the fractional area it covers within the total area rep-
resented by the pixel. For a single band, b, this can be summarized as shown in

Equation 1.
My = P31 Sp2 + P2 Spa + ... P Spn = 3 P Sy Equation 1
Where:

My = the mixed pixel value for that band,

P; = the fractional area (percentage) of the jth land-cover type (in this case, de-
rived from classified aerial photographs),

Svi = the pure signature value of the particular land-cover type for that band,
and
j =1 tonis the number of land-cover types.

The user must decide how many land-cover types are necessary to represent the
terrain. In this research, the number of land-cover types was five. Once air
photo classifications were recoded to binary maps of cover vs. bare ground, the
number of land-cover types was reduced to two. The values of both My and Sy;
depend on the band being analyzed. However, P; does not depend on the band
because it is a spatial quantity, not a spectral quantity. The fractional areas
(percentages) should sum to unity, or 100 percent coverage (Equation 2).

P,+P,+.+P,=3Pj=1 Equation 2

The mixed pixel value for band b, My, is always known from the TM image. The
unknowns are the percentage covers and the pure signature values for each band
and for each land-cover type. To use Equation 1, either the cover percentages
must be known or the pure spectra must be known (or combinations thereof).
Using a hypothetical example below, an assumption is made that the terrain can
be represented by three land-cover types (i.e., n = 3). First, assume that the per-
centages, Pj, of each of the three land-cover types are known for the area covered
by a single pixel. In this research, the percentages were obtained from aerial
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photography. For each band there are three unknowns in Equation 1: Spi, Spe,
and Sps (the pure signature values for band b). Thus, a unique solution is not
attainable. However, if the percentages are known for at least three pixels A, B,
and C (i.e., three different areas on the ground), a solution can be obtained. The
equations to be solved, for each spectral band are:

Mpa = P1a Sp1 + Poa Spo + P3a Sps Equation 3
Mbe = P1g Sp1 + P2 Sp2 + P3g Sps

Mpc = Pic Sp1 + Pac Spz + Pac Sps

Where:

Mya = the pixel value for band b at point A,

Pia = the fractional area (percentage) of the jth land-cover type at point A,
and

Sy = the pure signature value of the j* land-cover type for band b.

If the percentages for more than three pixels are known, the pure signature val-
ues for band b can be solved using the method of least squares. This can be per-
formed for each of the six bands in the image to calculate the pure signatures of
the three land-cover types. Alternatively, pure spectrum signature data are also
available for various materials from data reference libraries provided by the U.S.
Geological Survey (USGS) and other agencies. However, a spectral library of all
plant species and soil types at Fort Bliss was not available.

Next, by solving Equation 3 by sampling a number of TM pixels, the pure signa-
tures for the three land-cover types are known. What is unknown is the per-
centage cover, Pj, of each of the three land-cover types for every remaining pixel
in the image, or for each remaining pixel that you wish to extrapolate cover es-
timates. For each remaining pixel in the image, Equation 1 is written for each of
the six bands. This provides six equations to solve for the three unknowns; Pi,
P2 and Ps for each pixel. The equations are:

M; =P; Sy + P2 S12+ P3 Si3 Equation 4
Mz = Py Sp1 + P2 Sy + P3 Sps
M3z = P1 S3; + P, Sg + P3 S33

My = Py Say + P2 Ssp + P3 Sys
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Ms = P1 Ss1 + P2 Ss; + P3 Ss3

Mg = P1 Sg1 + P2 Sgo + P3 Ses

Where:

M; = the pixel value for the it* band,

P; = the fractional area (percentage) for the jt» land-cover type, and

Sij = the pure signature value of the jth land-cover type for the it band.

The solution can be performed by the method of least squares. These equations
can be written more compactly in matrix form as shown in Equation 5.

M=SP Equation 5
Where:
M = the vector of mixed pixels,
S = the matrix of pure spectra where the jt» column is the pure spectrum of

the jth land-cover type, and

P = the vector of unknown fractional areas (percentages).

This is the mathematical model of linear spectral demixing. Solving for the vec-
tor P is the “demixing” calculation implied by the method’s name.

Finally, note that the row dimension of S is equal to the number of bands and
the column dimension is equal to the number of land-cover types (the number of
pure spectra). Thus, the number of bands sets the upper limit on the number of
land-cover types that can be modeled with this method. Attempting to model the
terrain with more pure signatures would lead to an undetermined set of equa-
tions. Of course, this assumes that the pure spectra are unique. Nonuniqueness
of the pure spectra would also reduce the dimensionality of the system of equa-
tions, making a solution difficult to obtain.

For each pixel of the input image, Equation 5 can be solved for percent cover for
each of the three land-cover types, thereby creating an image of percent cover or
abundance. Each band of this imagery is a percent coverage classification of a
particular land-cover type. Since the percentages range from 0 to 100, an 8-bit
per pixel grayscale image can be used to store the results. As one moves the cur-
sor across the image, the pixel value at each point represents the percentage
cover or abundance of the land type associated with that image. Also, the im-
ages can be summed to see if Equation 2 holds as an indication of the accuracy of
the linear mixing of pure spectra used to model the terrain.



ERDC/CERL TR-03-26

33

The algorithm used to find a least squares solution in this research was Singular
Value Decomposition (Press et al. 1992). Singular Value Decomposition is very
stable and was appropriate for finding a least squares solution to an overdeter-
mined set of linear equations. This algorithm is not necessarily the fastest, but
it can handle both overdetermined and underdetermined systems of equations
with equal ease. The singular values calculated by the algorithm indicate
whether or not the system of equations has a full rank. In the case of linear
spectral demixing it indicates that one of the spectra in matrix S of Equation 5 is

not unique.

Example Implementation of Spectral Demixing

An example of the complete spectral demixing process was accomplished using
photo 381_158 of Study Site #1 (Coppice Dunes Maneuver Areas). In this exam-
ple, five land-cover types were classified from the CIR photograph and used to
model the landscape: honey mesquite, mesquite/dune edge/shadow/litter, two in-
terdunal vegetation cover types, and bare soil.

A 30-m by 30-m grid was superimposed on top of the five-class map derived from
the unsupervised classification of the photograph. Each grid element repre-
sented the spatial extent of a single TM pixel (30 m by 30 m = 900 m2). At 1-m
resolution in the CIR photographs, 900 CIR photo pixels cover the same area as
1 TM pixel. A simple geographic information system (GIS) program (AIR-
COVER) was written to summarize the percent cover of each land-cover compo-
nent in the CIR photo map that falls within each individual TM pixel. The re-
sulting output from this program is a five-band GIS data file, with each band
representing the fractional percentage of a single land-cover type. As one moves
the cursor across a single band of the image, the pixel value at each point repre-
sents the percentage cover or abundance of the specific land-cover type associ-
ated with that band of the image. The abundance or percent cover value of the
pixel represents the percent cover of that particular land-cover type that exists
within the footprint of a single TM pixel, which in this case is 30 m by 30 m. If
only two land-cover types were classified, as was the case for most of the demix-
ing analysis in this investigation, then a two-band output image was created.
The pixel values in the resulting output image are the fractional area or per-
centages, P in Equation 1. This output image is hereafter referred to as the
AIRCOVER image. The AIRCOVER images served as the reference or ground
truth of percent covers for both spectral demixing and spectral index correlation
analysis.

Next, both the AIRCOVER output (in this example, five bands) and the matching
TM subset (six bands) were input into a sampling program called TRAINDAT.
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Approximately 500 pixels were randomly sampled from each photograph. The
analyst can specify the number of samples. For each band of TM imagery, 500
paired observations of the mixed TM signature (M in Equation 3) were extracted
from the TM image, and the fractional percent covers for each land-cover compo-
nent (P in Equation 3) were extracted from the AIRCOVER file. This sampling
was repeated for each spectral band of TM imagery resulting in six sets of equa-
tions like Equation 3, with each equation set containing 500 equations—1 for
each pixel sampled. The TRAINDAT program outputs tabular ASCII data.
Tabular data for each of the six sets of equations was then formatted for input
into the MINITAB statistical package. Using 500 samples for each set of equa-
tions or spectral band, a singular value decomposition method of least squares
was used to solve for the pure signature values (P in Equation 3) for each land-
cover type. Each set of equations solves for the respective pure signature values
for each land-cover type in a different spectral band.

Finally, for each remaining pixel in the image, the mixed pixel response for each
of six TM bands and the pure spectrum for each land-cover type were input into
a DEMIX program. DEMIX solves Equation 4 for P, thus providing an estimate
of the fractional percent cover of each individual land-cover type within each TM
pixel. DEMIX outputs a separate band corresponding to fractional percent cov-
ers of each land-cover type. In this example, DEMIX produced five bands corre-
sponding to the five land-cover types.

The above procedure was repeated for each individual CIR photo-TM image pair.
In addition, the above procedure was repeated for each recode of the original
five-class unsupervised classification for each photograph.

Demixing Evaluation and Accuracy Assessment

An evaluation of demixing performance was conducted on a photo-by-photo basis,
including all possible recode combinations tested. Performance was evaluated
based on how closely the demixing estimates of fractional cover by land-cover
type matched the reference fractional cover estimates derived directly from the
classified aerial photography. This was accomplished by subtracting each band
of the reference AIRCOVER image from each corresponding band of the demix-
ing output on a pixel-by-pixel basis.

Descriptive statistics such as mean and standard deviation (SD) of each differ-
ence image were used to evaluate demixing performance. A mean difference of 0
between the estimated and reference cover would indicate that the demixing
procedures accurately predicted the fractional percent covers of land-cover cate-
gories. The standard deviation provided some indication of the variance in these
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estimates. However, it was recognized that these descriptive statistics may not
have provided a suitable method for evaluating accuracy, because demixing
could potentially overestimate cover in some areas, while underestimating cover
in other areas. These types of errors may have canceled each other out; there-
fore, the mean difference may still have been relatively low.

An additional descriptive statistic used to compare the estimated versus the ref-
erence fractional percent land-cover values for each photograph was the sum of
absolute difference between estimated and reference cover values on a pixel-by-
pixel basis. By computing absolute differences, the possibility of a mean differ-
ence equaling O resulting from an equal number of overestimations and underes-
timations of cover was eliminated. By tabulating the absolute difference the
amount by which estimates of cover overestimate or underestimate reference
cover values are summed, providing a more robust evaluation of demixing accu-

racy.

Inferential statistics were also calculated to compare estimated vegetative cover
amounts derived from demixing with reference vegetative cover amounts. These
statistics included a paired Students T-test (t-value), probability value (P), and a
95% confidence interval for the mean difference between the estimated and the
reference abundance amounts. The t-value and P were used to evaluate the null
hypothesis that the mean difference between the estimated percent covers from
demixing analysis and the reference percent cover values from air photo classifi-
cations was equal to 0 at alpha = .05, or 95% confidence. The 95% confidence in-
terval indicates that for any paired sample for any given pixel, the mean differ-
ence between the demixing estimates of cover and the reference cover values will
fall within this interval with 95% confidence. Again, the reference image was
always subtracted from the estimated image. Therefore, positive confidence in-
tervals indicated that demixing consistently overestimated cover, intervals
straddling zero indicated that differences were close to zero, and negative inter-
vals indicated that demixing consistently underestimated cover. The same null
hypothesis was tested to evaluate all demixing and spectral index correlation es-
timates of cover in this research.

Spatial Extrapolation of Demixing Results

A final evaluation of demixing results was to evaluate demixing capabilities for
spatially extrapolating the fractional land-cover percentage estimate to areas
beyond the photo footprint locations that were used to parameterize the demix-
ing model. Extrapolation capabilities were tested at each study site. For each
site, three of the four photographs were randomly chosen to parameterize the
demixing model. The remaining TM subset, which matched the fourth CIR foot-
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print, was then demixed from the other three photo/TM subset pairs. Demixing
procedures using three photographs were conducted in the same manner as
demixing of a single TM/photograph pair described above. The only variation
was that paired samples of mixed TM pixel values and fractional land-cover per-
cent coverages from the classified CIR photograph were taken from three photo-
graphs instead of one. Instead of random sampling 500 pixels in one photo-
graph, 1500 random samples were collected across three photographs. These
1500 samples were then used to solve for pure spectra values, P in Equation 3.
These same P values, along with TM mixed spectra values (M) for the remaining
TM subset to be demixed were input to Equation 4 to solve for the fractional per-
cent coverage of each land-cover component, whether it be two cover types or
five, within each TM pixel.

Spectral Index Correlation Analysis

Correlations between various spectral brightness and greenness indices and per-
cent cover were evaluated using exploratory regression analysis as an alterna-
tive for estimating and extrapolating groundcover estimates using coarse resolu-
tion TM imagery. The same CIR photo/TM subset pairs that were used for
demixing analysis were also used for correlation analysis. The same 5 class un-
supervised classifications of the CIR photographs were used, including the vari-
ous recodes of the classifications, resulting in a number of 2 class images depict-
ing cover versus bare ground (See Table 2, page 24).

In addition, the same fractional land-cover percent coverages from classified CIR
photographs that fall within a single TM pixel were also used as reference cover
amounts. These values were extracted from the classified CIR photographs us-
ing AIRCOVER, as described earlier. However, rather than using fractional cov-
ers and mixed TM pixel values as input into Equation 3 to conduct demixing, the
TM subsets were first processed to produce a number of spectral brightness
/greenness indices. These indices were then used as independent variables and
correlated with fractional cover percentages (the dependent variable) using least
squares linear regression.

Spectral Indices

A total of seven greenness or vegetation indices, and two brightness indices were
calculated for each of the 12 TM subsets and evaluated as dependent variables
for predicting fractional covers. In addition, each of the TM spectral bands, with
the exception of Band 6, was also evaluated as a dependent variable.
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As described earlier, greenness indices are designed to measure the amount of
photosynthetically active vegetation. They are not well suited for arid environ-
ments such as Fort Bliss where vegetation is sparse and background soil domi-
nates the spectral response. Brightness indices are better suited for arid envi-
ronments, as they are designed to measure the total reflectivity of the Earth’s
surface. Therefore, the amount of vegetation present, which acts to mask the
reflectivity of background soils, is usually inversely related to brightness index
values. Although brightness indices were expected to provide better estimations
of cover, the process of evaluating a number of different greenness and bright-
ness indices did not require substantial additional effort. Therefore, all nine in-
dices (seven greenness and two brightness) were evaluated as potential surro-
gate measures of vegetative cover. The vegetation or greenness indices
calculated were: NIR/Red, SQRT (NIR/Red), the Vegetation Index (IR-R), the
Normalized Difference Vegetation Index, the Transformed Normalized Vegeta-
tion Index (TNDVI), the Modified Soil Adjusted Vegetation Index, and the
Kauth-Thomas or Tassled Cap Greenness Index (KTG). The brightness indices
calculated were albedo or reflectance over all visible and near infrared bands, in-
band albedo or reflectance of individual TM bands, and the Kauth-Thomas or
Tassled Cap Soil Brightness Index (KTB). All processing was done using
ERDAS Imagine. A graphical model in Imagine was used to calculate the indices
as described below. A more complete explanation of these indices is included in
Chapter 2 Background, page 6.

Greenness Indices

e NIR/Red

NIR
Red
Equation 6

e SQRT (NIR/Red)

NIR
Red

Equation 7
e NIR-Red

NIR- Red
Equation 8
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e NDVI
NIR- Red
NIR+Red
Equation 9
e TNDVI
NIR—Rea’+O'O5
NIR+Red
Equation 10
e MSAVI
2NIR+1—\/(2NIR+1)2—8(NIR—RED)
2 Equation 11

Kauth-Thomas Tasseled Cap Greenness Vegetation Index

KTG = (-0.273)(TM1) - (.217)(TM2) - (.551)(TM3) + (.722)(TM4) + (.073)(TMS5) - (0.165)(TM7)

Equation 12

Brightness Indices

¢ Kauth-Thomas “Tassled Cap” Brightness Index (KTB)

KTB = (.291)(TM1) + (.249)(TM2) + (.481)(TM3) + (.557)(TM4) + (.444)(TM5) + (.171) (TM7)

Equation 13
e Albedo

Prior to calculation of albedo or reflectance, digital numbers were converted to
spectral band radiance for TM imagery using (Markham and Barker 1986):

| = L min ;+[Lmax; —Lmin ;DN
A D max

Equation 14

Where:

Lmin = spectral radiance of each band at DN = 0 in mWem2Sr1:m-?,
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Lmax = spectral radiance of each band at DN=255 in mWcm2Srt:m-1,
Dmax = range of rescaled radiance in DN, and
DN = input digital number.

Once spectral radiance was calculated according to Equation 14, albedo was cal-
culated as the ratio of reflected solar radiation to incoming solar irradiance:

rL,d? .
=" Equation 15

E, cosd

Where:

L, = spectral radiance in mWem2Sr-:m™ .(from Equation 14)

d = earth-sun distance in astronomical units,

E, = exoatmospheric spectral irradiance at the top of the atmosphere in

mWem2:m-1, and
0 = solar zenith angle.

Radiance is derived from Equation 14. Exoatmospheric spectral irradiances at
the top of the atmosphere are estimates derived from Markham and Barker
(1986). Correcting exoatmospheric solar irradiance in the denominator by cos @
normalizes the scene to an overhead or nadir sun angle and accounts for differ-
ences in solar irradiance for the time of day and day of the year (Robinove 1982;
Hughes and Henderson-Sellers 1982).

Total reflectance or planetary albedo was calculated by integrating spectral ra-
diance and irradiances across all of the visible and near and middle infrared
bands. Planetary albedo for TM imagery was integrated across Bands 1 through
5 and 7. In-band planetary albedo or reflectance for individual bands was calcu-
lated in the same manner as total reflectance or planetary albedo (Equation 15).
However, reflectances were calculated using only radiance and irradiances in
each respective wavelength of that particular TM band.

For each TM subset that matched a CIR photo footprint, a separate GIS data
layer was created for each of the nine indices calculated and each of the six indi-
vidual TM bands, for a total of 15 GIS layers. These 15 layers were stacked into
a single GIS data layer for sampling. Similar to the demixing analysis, the
TRAINDAT program was used to randomly sample paired observations of a
spectral index value from 1 band of the 15-band stack and spatially correspond-
ing fractional covers of each land-cover component as extracted from the classi-
fied CIR photographs using AIRCOVER. For each photograph in each study
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site, 500 paired observations were sampled for each of the 15 possible independ-
ent variables to be tested.

The paired observations were then input into the MINITAB statistical package.
A least squares linear regression was performed between each individual index
or TM band (independent variable) and each land-cover category, including re-
codes of the original five-class unsupervised classifications. For classifications
involving only two classes (cover and bare ground), only the cover class was
evaluated as a dependent variable because the bare ground class was equal to
[100 — cover] and would simply have an inverse correlation.

Spectral Index Correlation Evaluation and Accuracy Assessment

The linear relationship between each independent variable and each fractional
land-cover was evaluated based on adjusted R? values, or coefficients of determi-
nation. All possible correlations between indices or individual TM spectral
bands and fractional land-cover percent cover values were evaluated for each
photograph at all three study sites.

The regression formula produced by MINITAB for each correlation between the
TM/spectral indices and cover estimates was then applied to each pixel in the
respective spectral index image or individual TM band to derive a fractional per-
cent cover estimate for each pixel in the image. The process was repeated for
each land-cover component, resulting in a separate estimated cover image for
each land-cover type present.

Similar to the evaluation of demixing performance, each reference image of frac-
tional covers extracted from the classified CIR photographs was subtracted from
the corresponding estimated fractional cover derived from the regression equa-
tions. Mean and SD of the difference images, as well as statistical T-tests and
absolute differences were tabulated in the same manner as they were for evalua-
tions of demixing performance.

Spatial Extrapolation of Spectral Index Correlation Results

Similar to the demixing analysis, the final evaluation of spectral index correla-
tion analysis results was to evaluate the capability of the correlation to extrapo-
late fractional percent cover estimates to geographic areas beyond the photo foot-
prints that were sampled to develop the regression equations.

Rather than sampling paired observations of the index values and corresponding
fractional covers on a photo-by-photo basis, paired samples were taken from
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three of the four photographs for each study site. These samples were then used
to develop a regression formula for estimating fractional percent covers for the
fourth photograph using the respective index or spectral band for the TM subset
that matched the fourth photograph. Again, similar to photo-by-photo evalua-
tions, the mean, SD, T-test, and absolute differences were compiled by differenc-
ing the reference cover values derived from the classification of the fourth CIR
photograph from the extrapolated cover estimates for the area of the fourth pho-
tograph.

Summary of Methodology

Descriptive statistics such as mean difference, standard deviation of mean dif-
ference, and sum of absolute difference between estimates of abundance and ref-
erence abundance were used to evaluate the accuracy of vegetation abundance
estimates. Reference abundance amounts were derived from high-resolution CIR
photographs. Estimates of abundance were either extracted from coarse resolu-
tion TM imagery using spectral demixing or were derived from spectral index
correlation models. Inferential statistics were also used to evaluate the predic-
tive ability of these models to estimate and extrapolate cover estimates derived
from coarse resolution satellite imagery.

Inferential statistics were based on random samples of results. However, be-
cause remotely sensed imagery provides a complete census of a population, sam-
pling and inferential statistics were not necessary; automated analysis of im-
agery offers the ability to rapidly compile descriptive statistics of entire
populations of image pixels in a rapid and cost effective manner. Inferential sta-
tistics such as the Student’s T-test were useful for understanding the predictive
capabilities of demixing and spectral index correlation analysis for estimating
and extrapolating percent groundcover estimates. However, the sums of abso-
lute differences between estimated and reference cover percentages were ulti-
mately used to identify the best performing models. The same descriptive statis-
tics were also useful for identifying the reclassification or recode of spectral
categories into cover vs. bare ground, which resulted in the most accurate esti-
mates of abundance of cover and bare ground.

The same statistics were compiled for four CIR photographs and matching TM
subsets for each of the three sites, resulting in a total of 12 photograph samples.
The sum of absolute differences was evaluated for each individual photograph,
for all four photographs for an individual site, and for extrapolated estimated
derived from sampling three of four photographs for a site.
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5 Results

Spectral Demixing

Demixing analysis produced a separate GIS data layer for each land-cover com-
ponent that was demixed from TM pixels. The pixel values in each individual
data layer represented abundance or percent cover estimates for that respective
land-cover type. Therefore, demixing results were evaluated in two ways. First,
individual GIS data layers of predicted abundance were visually compared with
reference images of abundance for each land-cover type to assess similarity in
the spatial distribution of abundance. Second, because the pixel values in the
demixing and reference images were actual estimates of percent cover, inferen-
tial and descriptive statistics were also used to quantify and evaluate the accu-
racy of percent cover estimates derived from spectral demixing analysis.

Five-class Results

Using photo 381_158 from Site #1 (Coppice Dunes Maneuver Areas) as an exam-
ple, the resulting images created from demixing five separate land-cover classes
and their corresponding reference images are displayed in Figure 10.

Images in Figure 10 represent increasing vegetative cover with increasing pixel
brightness for each respective land-cover type. For example, a bright pixel in
Category #1 (Honey Mesquite) indicates a large abundance of mesquite cover,
while a dark pixel in this same category represents a low abundance of mesquite.
The column of images on the left depicts abundance estimates derived from spec-
tral demixing for five land-cover types. The column of images on the right de-
picts reference abundance values derived from unsupervised classifications of
CIR photographs for the same land-cover types. Ideally, the spatial patterns of
estimated abundance from spectral demixing should appear similar to the corre-
sponding reference images of abundance for each respective land-cover type.
However, visual inspection of the photographs indicates that spectral demixing
was not able to predict fractional land-cover percentages for five land-cover
types, as there was very little similarity between estimates of abundance and
reference images of abundance. For land-cover Category #1 (Honey Mesquite),
the only slight similarity in abundance patterns was for circular area of
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Figure 10. Demixing results for five land-cover categories for photo 381_158 (left column is the
demixing estimate of abundance for each category, right column is the reference abundance for
each category).



ERDC/CERL TR-03-26

relatively low abundance of honey mesquite in the lower southwest quadrant of
the image. The demixing image did not capture the high amount of honey mes-
quite cover in the extreme northwest corner of the image and along a linear fea-
ture extending from approximately the center of the image to the southeast. The
reference image of Category #2 (Mesquite/Dune Edge/Shadow/Litter) indicated a
relatively high amount of cover in the southwest quadrant and in an isolated
area in the extreme northwestern corner of the image. Demixing estimates for
the same land-cover class indicated only a slightly higher abundance in the
southwest quadrant and no increase in abundance in the northwest corner. In
addition, the distinct patterns of high cover in the reference image were not evi-
dent in the estimated image. Estimates of land-cover Category #3 (Interdunal
Cover) appeared to detect a higher abundance in the southwest quadrant of the
image, but again, the distinct patterns found in the reference image were not
discernable in the estimated image. Estimates of land-cover Category #4 (Inter-
dunal Cover) did appear to estimate a slightly higher abundance in the northern
half of the image, but none of the observed patterns in the reference image ap-
pear in the estimated image. Estimates of land-cover Category #5 (Bare Ground)
did not depict a road in the southwestern corner of the image, which was clearly
evident in the reference image, and did not appear to capture of the patterns
that were evident in the reference image.

In addition to visual inspection, a number of metrics, including results from sta-
tistical analysis, also were used to evaluate performance of spectral demixing.
The mean and standard deviation of abundance of land-cover types derived from
reference classifications of the CIR photographs were compared to mean and
standard deviations of estimated abundance of land-cover types resulting from
spectral demixing for each land-cover category.

Table 3 summarizes mean abundance for each land-cover category in both the
reference image and the estimate image derived from demixing analysis. Esti-
mated mean abundances derived from demixing analysis were similar to means
derived from reference images for land-cover Categories 2 and 3, but differences
were considerably higher for Categories 1, 4, and 5. The largest difference for
any land-cover type was approximately 10 percent for Honey Mesquite, Category
#1. The estimated proportional cover for each land-cover type was similar to the
proportional cover in the reference image. Demixing overestimated abundance
for Categories 4 and 5 and underestimated cover for Categories 1, 2, and 3. Ref-
erence cover amounts indicated 24.31 percent cover of Category #1 (Honey Mes-
quite) and 26.41 percent cover of Category #5 (Bare Ground), while demixing es-
timated 14.12 percent Honey Mesquite cover and 35.32 percent bare ground.
Standard deviations for demixing estimates of abundance were considerably
higher than standard deviations in the reference image.
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Table 3. Mean and standard deviation of abundance (percent
cover) for five land-cover categories for photo 381-158, Study
Site #1,; estimated (demixing) versus reference.

Photo 381_158 ESTIMATED REFERENCE
CATEGORY Mean SD Mean SD
Mesquite 14.118 11.483 | 24.307 7.530

Mesquite/

Dune Edge/ 8.832 7.806 | 11.482 4.192
Shadowi/Litter

Interdunal 9.938 10.345 | 13.393 5.488
Interdunal 30.206 33.052 | 24.403 8.255
Bare Ground 35.322 32.787 | 26.412 12.927
Totals 98.416 99.997

Statistical comparisons between the estimated vegetative cover amounts derived
from demixing and the reference vegetative cover amounts are presented in Ta-
ble 4 and include a paired Student’s T-test statistic (t-value), probability value
(P), and a 95% confidence interval (CI) for the mean difference between esti-
mated and reference abundance amounts. The t-value and P were used to
evaluate the null hypothesis that the mean difference between the estimated
percent covers from demixing analysis and the reference percent cover values
from air photo classifications were equal to zero at alpha = .05, or 95% confi-
dence. The 95% confidence interval indicates that for any paired sample for any
given pixel, the mean difference between the demixing estimates of cover and the
reference cover values will fall within this interval with 95% confidence. Again,
the reference image was always subtracted from the estimated image. There-
fore, positive confidence intervals would indicate that demixing consistently
overestimated cover, intervals straddling zero would indicate that differences
were close to zero, and negative intervals would indicate that demixing consis-
tently underestimated cover. The same null hypothesis was tested for assessing
all demixing spectral index correlation estimates of cover in this research.
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Table 4. Descriptive and inferential statistics of difference image for five land-cover categories
for photo 381_158, Study Site #1; estimated (demixing) minus reference.

Photo 381_158 t-value P Cl abs. diff. Mean SD
Mesquite (1) -88.04 0.0000 -10.416, -9.962 138156 -10.189 11.885
mesquite/ -32.60 0.0000 -2.8100, -2.4911 76106 -2.6505 8.3490
dune edge/
shadow/litter (2)
interdunal (3) -33.24 0.0000 -3.658, -3.251 100835 -3.454 | 10.673
interdunal (4) 17.81 0.0000 5.164, 6.441 321597 5.803 | 33.448
bare ground (5) 27.46 0.0000 8.274, 9.546 322962 8.910 5.803

The null hypothesis was rejected for all five cover types for photo 381_158 at a
95% level of confidence (P < .05). In addition, the mean difference and the stan-
dard deviation of the difference between paired samples of estimated percent
cover, as derived from demixing, and the reference percent cover derived from air
photo classifications were calculated for each pixel in the image and are also in-
cluded in Table 4. Mean differences between estimated (demixing) and reference
cover amounts ranged from -10.189 for Category #1 (Honey Mesquite) to 8.910
for Category #5 (Bare Ground). Similar to the calculation of confidence inter-
vals, reference cover amounts were always subtracted from predicted cover
amounts throughout this research. Therefore, positive mean differences indi-
cated that the estimated cover amounts overestimated cover, while negative
mean differences indicated that the estimated cover amounts underestimated
cover. For photo 381_158, demixing underestimated cover for Category #1
(Honey Mesquite), Category #2 (Honey Mesquite/Dune Edge/Litter/Shadow), and
Category #3 (Interdunal Cover), and overestimated cover for Category #4 (Inter-
dunal Cover) and Category #5 (Bare Ground). The variance in mean difference
was also quite high for all cover classes.

Again, although these differences provide a relative measure of demixing per-
formance, they do not account for the cancellation effect of both overestimation
and underestimation of vegetative cover. For example, demixing may have over-
estimated cover for a number of pixels, and also underestimated cover for a
number of pixels. If the amounts of overestimation and underestimation were
relatively equal for a relatively equal number of pixels, the resulting mean dif-
ference may be close to zero. Because demixing results were evaluated based on
how well they predicted reference groundcover estimates, a mean difference close
to zero for a specific land-cover category may have lead to a misleading interpre-
tation of performance. In this example, because demixing significantly under-
estimated and overestimated cover for a number of pixels, the predictive
capability of the demixing model may not have been as great as the mean dif-
ference would have indicated. Therefore, a sum of absolute differences between
the estimates of cover from demixing and the reference cover values was also
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compiled for comparison. Based on the sum of absolute differences, demixing
performed best for Category #2 and Category #3 in photo 381_158, as indicated
by their lower sums of absolute difference.

Both a visual inspection of demixing results and a quantitative analysis con-
firmed the relatively poor results when demixing five land-cover classes. The
same analysis was performed for all photographs using five land-cover classes
with similar results. Demixing appeared to estimate abundance accurately for
individual land-cover categories in different sample photographs, but was not
able to accurately estimate abundance of five land-cover types within any single
photograph.

Three-class Results

Due to the inability to accurately estimate abundance of the five separate land-
cover types, a number of different recodes of the original five classes were also
analyzed. Specific to the Coppice Dunes Maneuver Areas of Study Site #1, one of
the primary goals of this research was to quantify the abundance of interdunal
vegetation, which would be a good indicator of impacts due to military training.
Therefore, a three-class unsupervised classification was applied to identify three
land-cover types: Honey Mesquite, Interdunal Vegetation, and Bare Ground.
Spectral demixing was then used to estimate abundance of these three cover

types.

Again, using photo 381_158 as an example, Figure 11 contrasts the results of
demixing estimates of abundance with reference images of abundance for three
land-cover types. In contrast to the five-class results, visual inspection of three-
class demixing results indicated considerable improvement. For land-cover
Category #1 (Honey Mesquite), abundance patterns were similar in the esti-
mated and reference images, including a circular area of relatively high abun-
dance of honey mesquite in the upper northwest corner of the image and also ex-
tending from approximately the center of the image to the southeast. The
estimated image also captured the road in the southwest corner of the image.
The reference image of Category #2 (Interdunal) indicated a relatively high
amount of cover in the southwest quadrant and in an isolated area in the ex-
treme northwestern corner of the image. Demixing estimates for the same land-
cover class did capture a higher abundance in the southwest quadrant, although
the patterns were slightly different, and failed to delineate the area of high
abundance in the northwest corner. Estimates of land-cover Category #3 (Bare
Ground) appeared to correspond well with the reference image, as both indicate
a relatively low abundance of bare ground in the northwest corner and south-
west quadrant of the image, as well as a high abundance of bare ground along a
road in the southwest corner of the image.
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Figure 11. Demixing results for three land-cover categories for photo 381_158 (left column is the
demixing estimate of abundance for each category, right column is the reference abundance for
each category).

Table 5 lists the mean and standard deviation for both the reference images and
demixing estimates for three land-cover types. Similar to the five-class break-
out, demixing estimates of mean abundance were similar to mean reference
amounts. Demixing appeared to slightly overestimate Category #1 (Honey Mes-
quite) and slightly underestimate Category #2 (Interdunal Cover) and Category
#3 (Bare Ground). In general, the estimated abundance was much closer to the
reference abundance for the three land-cover classes as opposed to five, with the
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largest difference between estimated and reference cover being 4 percent for
Category #1 (Honey Mesquite). However, standard deviations for estimates de-
rived from demixing were still much higher than standard deviations of abun-
dance in the reference images.

Table 5. Mean and standard deviation of abundance for three land-cover
categories for photo 381_158, Study Site #1; estimated (demixing) versus
reference.

ESTIMATED REFERENCE
CATEGORY Mean SD Mean SD
mesquite (1) 34.535 20.388 30.590 8.162
interdunal (2) 24.528 20.133 26.594 9.653
bare ground (3) 39.780 29.614 42.818 12.879
Totals 98.843 100.002

Table 6 summarizes the inferential and descriptive statistics for the difference
between estimated and reference cover for three land-cover classes for photo
381_158. Although the null hypothesis that differences were equal to zero was
rejected for each land-cover type, the relatively low mean differences and smaller
confidence intervals indicated that demixing estimates improved when only
three land-cover classes were identified, as opposed to five. Visual inspections of
the spatial patterns for three-class estimates confirmed these results. However,
variance in estimated cover derived from demixing was still considerably higher
than what was found in the reference images.

After evaluating all five-class and three-class recodes for all photographs at each
of the three sites, it was determined that spectral demixing was not able to accu-
rately predict fractional land-cover percentages of specific land-cover types iden-
tified through field observations at Fort Bliss. Therefore, five-class and three-
class recodes were eliminated from further analysis. Demixing analysis was fo-
cused on estimating the abundance of cover and bare ground by analyzing only
those classifications and recodes containing two classes (Cover and Bare
Ground).

Table 6. Descriptive and inferential statistics of difference image for three land-cover categories
for photo 381_158, Study Site #1; estimated (demixing) minus reference.

Category t-value P Cl abs. diff. Mean SD
mesquite (1) 21.76 0.0000 3.588, 4.299 165442 3.943 18.610
interdunal (2) -10.84 | 0.0000 | -2.439,-1.692 | 170479 -2.066 19.570
bare ground (3) -12.29 | 0.0000 | -3.521,-2.552 | 224513 -3.036 25.371
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Two-class Results

Study Site #1 - Coppice Dunes Maneuver Areas

Four different recodes of an original five-class unsupervised classification were
evaluated for the power to distinguish between cover and bare ground using
demixing analysis. Each recode represented a slightly different grouping of
categories (see Table 2, page 24). Field verification of land-cover categories for
each spectral class was not possible because archival CIR photography from Oc-
tober and November 1994 was used. However, field reconnaissance was able to
clearly identify Category #1 as Honey Mesquite and Category #5 as Bare
Ground. Spectral categories 2 through 4 could not be associated with a specific
and unique cover type. Therefore, different recodes were tested by grouping
these uncertain categories into both Cover and Bare Ground categories. A fifth
grouping of land-cover types based on a two-class unsupervised classification
was also evaluated. A total of five slightly different binary maps depicting Cover
vs. Bare Ground were tested for each photograph in this analysis.

Table 7 lists the mean percentage or abundance of the Cover category resulting
from each of the different recodes and the two-class unsupervised classification
(ISO2). The mean percentage or abundance of Bare Ground is not included Ta-
ble 7, but is equal to 100% - Cover%. As expected, as additional land-cover cate-
gories are placed in the Cover category, the mean for both the estimated and the
reference cover also increase. In all cases, estimates of cover are very similar to
reference amounts, with the largest difference occurring for Recode 14_5, at ap-
proximately 3 percent. However, the variance in cover estimates was signifi-
cantly higher than the variance found in the reference images.

Table 8 lists the inferential and descriptive statistics for the differences between
demixing-derived estimates and reference abundance for these five recodes for
photo 381_158. The null hypothesis was rejected for all five of the recode/classi-
fications. However, all recodes appeared to estimate the abundance of vegetative
cover with some degree of accuracy, as indicated by the relatively low mean dif-
ferences. Both the ISO2 classification and the 12_35 recode underestimated bare
ground by less than 1 percent, on average. The largest mean difference resulted
from the 14_5 recode, at -2.82 percent. The two-class unsupervised classification
(ISO2) appeared to be the best performer, with absolute differences of 141003
(Cover) and 140716 (Bare Ground). On average, this classification underesti-
mated Cover by 1.5 percent and overestimated Bare Ground by 0.71 percent.
These results were considerably better than the five-class and three-class break-
outs evaluated earlier. This indicates that a simple two-class unsupervised clas-
sification would provide the most accurate estimates of Cover versus Bare
Ground for photo 381_158.



ERDC/CERL TR-03-26 51

Table 7. Mean and standard deviation of cover abundance for photo
381_158, Study Site #1, derived from ISO2 and four recodes;
estimated (demixing) versus reference.

Estimated Reference
Recode Mean SD Mean SD
1ISO2 36.974 19.347 38.480 9.751
125 25.589 22.036 24.307 7.530
12 35 34.458 21.130 35.716 9.158
13 45 47.261 21.372 49.178 11.874
14 5 70.772 20.338 73.588 12.927

Table 8. Descriptive and inferential statistics of difference image (estimated [demixing] minus
reference) for two land-cover categories for photo 381_158, Study Site #1 using 1SO2 and four recodes.

381_158 Recode t-value | P Cl abs. diff. Mean SD
Cover 1ISO2 -9.39 0.0000 -1.857, -1.215 141003 -1.536 16.97
Bare Ground 1ISO2 4.16 0.0000 0.374, 1.042 140716 0.708 17.490
Cover 125 6.27 0.0000 0.861, 1.643 175986 1.252 20.500
Bare Ground 125 -9.28 0.0000 -2.325, -1.514 177742 -1.920 21.240
Cover 12_35 -7.00 0.0000 -1.687, -0.949 164568 -1.318 19.326
Bare Ground 12_35 2.47 0.014 0.096, 0.837 164338 0.466 19.401
Cover 13_45 -10.92 0.0000 -2.263, -1.574 151545 -1.918 18.040
Bare Ground 13_45 5.97 0.0000 0.704, 1.393 150816 1.049 18.042
Cover 14 5 -15.34 0.0000 -3.175, -2.456 158866 -2.815 18.841
Bare Ground 14 5 11.22 0.0000 1.689, 2.404 157418 2.047 18.731

Table 9 summarizes the same recode/classifications for three additional photo-
graphs for Study Site #1 (Coppice Dune Maneuver Areas). The top performing
recode was not consistent for each photograph in Study Site #1. For example,
Recode 12_35 appeared to be the best performer for photo 381_144, as indicated
by the lowest absolute differences for Cover (123226) and Bare Ground (123806).
The mean difference between estimated and reference cover was also relatively
low. The ISO2 also performed well, as indicated by the relatively low mean dif-
ferences for Cover and Bare Ground, although the absolute differences were sig-
nificantly higher than Recode 12_35. The null hypothesis that the difference be-
tween estimated cover and reference cover was equal to zero was accepted at the
95% confidence level for Cover for ISO2 and Bare Ground for Recode 13_45.



52 ERDC/CERL TR-03-26

Table 9. Descriptive and inferential statistics of difference image (estimated [demixing] minus
reference) for two land-cover categories for photos 380_18, 381_144, and 381_146, Study Site #1
using 1ISO2 and four recodes.

380_18 Recode t-value P Cl abs. diff. Mean SD

Cover ISO2 -5.09 0.0000 -0.816, -0.362 123514 -0.589 12.898
Bare
Ground ISO2 -1.74 0.0819 -0.457, 0.027 123511 -0.215 13.766
Cover 125 4.03 0.0000 1.350, 1.788 120637 1.569 12.468
Bare
Ground 125 -19.68 0.0000 -2.602, -2.131 122212 -2.366 3.409
Cover 12_35 -9.07 0.0000 -1.361, -0.877 132662 -1.119 13.751
Bare
Ground 12_35 2.12 0.0340 | 0.019, 0.503 132386 0.261 13.768
Cover 13 45 -17.94 0.0000 -2.566, -2.060 140113 -2.313 14.377
Bare
Ground 13 45 11.19 0.0000 1.250, 1.781 138971 1.516 15.100
Cover 14 5 -43.10 0.0000 -7.886, -7.200 198716 -7.543 19.512
Bare
Ground 14 5 37.96 0.0000 6.452, 7.155 195455 6.803 19.986
381_144 Recode t-value P Cl abs. diff. Mean SD
Cover ISO2 1.69 0.0900 -0.071, 0.969 164843 0.449 24.271
Bare
Ground ISO2 -4.29 0.0000 -1.706, -0.635 165630 -1.170 24.988
Cover 1 25 25.27 0.0000 6.377, 7.450 163195 6.913 25.031
Bare
Ground 1 25 -26.38 0.0000 -8.004, -6.896 165674 -7.450 25.841
Cover 12 35 2.66 0.0080 0.142, 0.943 123226 0.542 18.687
Bare
Ground 12 35 -6.25 0.0000 -1.748, -0.914 123806 -1.331 19.474
Cover 13 45 -2.22 0.0260 -1.384, -0.086 209687 -0.735 30.278
Bare
Ground 13 45 0.20 0.8400 -0.591, 0.728 209982 0.069 30.790
Cover 14 5 -22.36 0.0000 -10.487,-8.796 | 269441 -9.642 39.466
Bare
Ground 14 5 21.42 0.0000 8.451, 10.154 268329 9.302 39.737
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381 146 Recode t-value P Cl abs. diff. Mean SD
Cover ISO2 -1.38 0.1700 -0.769, 0.134 100336 -0.318 18.772
Bare
Ground ISO2 -1.76 0.0780 -0.906, 0.048 100997 -0.429 19.832
Cover 125 2.20 0.0280 0.047, 0.802 83802 0.424 15.697
Bare
Ground 125 -5.53 0.0000 -1.560, -0.744 84692 -1.152 16.968
Cover 12_35 -8.72 0.0000 -2.131, -1.349 85866 -1.740 16.260
Bare
Ground 12_35 4.53 0.0000 | 0.548, 1.383 85936 0.965 17.358
Cover 13 45 -1.19 0.2300 -0.689, 0.169 720932 -0.260 17.825
Bare
Ground 13 45 -2.27 0.0230 -0.976, -0.072 774613 -0.524 18.796
Cover 14 5 -13.77 0.0000 -4.578, -3.437 123979 -4.008 23.721
Bare
Ground 14 5 11.31 0.0000 2.790, 3.960 123158 3.375 24.321

In photo 380_18, Recode 1_25 had the lowest absolute difference, although ISO2
also performed relatively well, and actually had lower mean differences for Cover
and Bare Ground. The only apparent difference was that ISO2 slightly underes-
timated Cover and Recode 1_25 slightly overestimated Cover. The null hypothe-
sis was accepted for Bare Ground using ISO2. In photo 381_146, Recode 1_25
resulted in the lowest absolute difference, although Recode 12_35 and ISO2 also
performed relatively well. The null hypothesis was accepted for both Cover and
Bare Ground for ISO2, and for Cover for Recode 13_45.

Table 10 summarizes the total sum of absolute differences for all four photo-
graphs for each recode tested for Study Site #1. Although Recode 12_35 was the
top performer for only one of the four photographs in Study Site #1, it did perform
relatively well for each photograph, and therefore was the top overall performer
for Study Site #1, based on the lowest sum of absolute differences for all four pho-
tographs. This recode grouped Honey Mesquite and Mesquite/Dune Edge/Litter/
Shadow in the Cover category and grouped all remaining classes into the Bare
Ground category. Recode 1_25 and ISO2 also performed well, with Recode 1_25
being the top performer in two of the four photographs for Study Site #1. Recode
12_35 slightly underestimated Cover in three of the four photographs.
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Table 10. Total sum of absolute differences for all four photographs for each recode tested for
Study Site #1.

Category Recode 380_18 381_144 381_146 381_158 TOTALS
Cover 1ISO2 123514 164843 100336 141003 529696
Bare Ground | 1SO2 123511 165630 100997 140716 530854
Cover 125 120637 163195 83802 175986 543620
Bare Ground | 1_25 122212 165674 84692 177742 550320
Cover 12_35 132662 123226 85866 164568 506322
Bare Ground | 12_35 132386 123806 85936 164338 506466
Cover 13 45 140113 209687 720932 151545 1222277
Bare Ground | 13 45 138971 209982 774613 150816 1274382
Cover 14 5 198716 269441 123979 158866 751002
Bare Ground | 14 5 195455 268329 123158 157418 744360
TOTALS 1428177 1863813 2284311 1582998 7159299

Study Site #2 - Otero Mesa Grasslands

The same four recodes of a five-class unsupervised classification, as well as a
two-class unsupervised classification were evaluated for Study Site #2. Field re-
connaissance was also conducted in an attempt to identify specific plant species
or plant communities associated with each of the five unsupervised spectral
classes. Study Site #2 was dominated by Bouteloua gracilis (blue grama),
Muhlenbergia arenicola (sand muhly), Panicum obtusum (vine mesquite), Scler-
opogon brevifolius (burrograss), and Sporobolus cryptandrus (sand dropseed)
grassland communities ranging between 40 and 60 percent cover. The remain-
ing vegetative cover was predominantly Gutierrezia sarothrae (snakeweed),
Yucca elata (soaptree yucca) and Croton pottsii (leatherweed), and a mixture of
annuals, including Salsola australus (Russian thistle) and Amaranthus palmeri
(sarelessweed) ranging between 20 and 30 percent cover, with approximately 25
percent bare ground, on average. However, it was determined that the five spec-
tral classes identified did not correspond to any specific plant species, but rather
depicted a gradient of aerial cover, crown density, and canopy closure in decreas-
ing order moving from Category #1 through #5. For example, Category #1 con-
sistently corresponded to dense grass or shrub cover, while Category #5 consis-
tently corresponded to bare ground. Therefore, the same five recodes of spectral
categories were evaluated for all four photographs in Study Site #2. Table 11
presents the inferential and descriptive statistics for these four photographs.
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Table 11. Descriptive and inferential statistics of difference image (estimated [demixing] minus
reference) for two land-cover categories for photos 386_122, 386_124, 386_16, and 386_18,

Study Site #2 using ISO2 and four recodes.

386 122 Recode t-value P Cl abs. diff. Mean SD
Cover 1SO2 2.65 0.0082 0.195, 1.309 139829 0.752 24.853
Bare

Ground 1ISO2 -4.43 0.0000 -1.871, -0.722 140485 -1.296 25.604
Cover 125 39.59 0.0000 6.598, 7.285 88269 6.942 15.329
Bare

Ground 125 -42.35 0.0000 -7.867,-7.171 91078 -7.519 15.524
Cover 12_35 18.58 0.0000 4,517, 5.582 136845 5.049 23.755
Bare

Ground 12_35 -20.68 0.0000 -6.178, -5.108 138441 -5.643 23.857
Cover 13_45 -16.71 0.0000 -5.802, -4.584 148745 -5.193 27.166
Bare

Ground 13 45 14.94 0.0000 4.032, 5.250 148075 4.641 27.156
Cover 14 5 -51.91 0.0000 -17.504, -16230 | 148128 -16.867 28.410
Bare

Ground 14 5 51.00 0.0000 15.793, 17.056 145325 16.425 28.155
386_124 Recode t-value P Cl abs. diff. Mean SD
Cover 1ISO2 11.65 0.0000 3.655, 5.134 180242 4.394 32.733
Bare

Ground 1SO2 -13.21 0.0000 -5.734, -4.251 180807 -4.992 32.810
Cover 125 61.74 0.0000 15.994, 17.043 | 150804 16.518 23.220
Bare -17.677, -

Ground 125 -63.40 0.0000 | 16.616 154533 -17.146 | 23.474
Cover 12 35 37.64 0.0000 12.998, 14.426 190318 13.712 31.622
Bare

Ground 12 35 -39.25 0.0000 12.998, 14.426 192460 -14.355 31.742
Cover 13 45 2.83 0.0047 0.323, 1.781 172912 1.052 32.270
Bare

Ground 13_45 -4.31 0.0000 -2.334, -0.875 172800 -1.604 32.306
Cover 14 5 -30.92 0.0000 -8.293, -7.304 109984 -7.798 21.892
Bare

Ground 14 5 28.88 0.0000 6.752, 7.736 107589 7.244 21.771
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386 16 Recode t-value Cl abs. diff. Mean

Cover 1ISO2 -0.96 0.3400 -1.571, 0.539 118109 -0.516 35.221

Bare

Ground 1ISO2 0.29 0.7700 -0.922, 1.245 118082 0.161 36.176

Cover 125 -6.40 0.0000 -2.277, -1.209 43283 -1.743 17.832

Bare

Ground 125 4.24 0.0000 0.629, 1.710 44953 1.169 18.039

Cover 12_35 1.58 0.1100 -0.189, 1.772 102510 0.792 32.722

Bare

Ground 12_35 -2.60 0.0092 -2.289, -0.323 103029 -1.306 32.819

Cover 13 45 -23.02 0.0000 -14.570, - 140913 -13.426 38.177
12.282

Bare

Ground 13 45 22.21 0.0000 11.786, 14.070 140048 12.928 38.107

Cover 14 5 -30.97 0.0000 -12.052, - 72669 -11.334 23.953
10.616

Bare

Ground 14 5 29.89 0.0000 10.114, 11.534 71019 10.824 23.705

386_18 Recode t-value abs. diff.

Cover ISO2 1.71 0.2300 -0.116, 1.727 128851 0.806 33.306
Bare

Ground 1ISO2 -2.86 0.0450 -2.268, -0.423 129090 -1.346 33.341
Cover 125 26.06 0.0000 5.179, 6.022 51296 5.60 15.234
Bare

Ground 125 -27.90 0.0000 -6.518, -5.662 52929 -6.090 15.470
Cover 12 35 11.49 0.0000 3.932, 5.551 112754 4.741 29.263
Bare

Ground 12 35 -12.90 0.0000 -6.158, -4.533 113696 -5.346 29.378
Cover 13 45 -8.07 0.0000 -4.643, -2.827 127216 -3.735 32.825
Bare

Ground 13 45 6.92 0.0000 2.290, 4.103 126797 3.197 32.764
Cover 14 5 -29.38 0.0000 -7.864, -6.880 59585 -7.372 17.787
Bare

Ground 14 5 27.9 0.0000 6.412, 7.382 57880 6.897 17.527

Unlike Study Site #1, where different recodes performed best for different photo-
graphs, Recode 1_25 had the lowest absolute difference for photos 386_122
(179347), 386_16 (88236), and 386_18 (104225), and had the second lowest abso-
lute difference for photo 386_124 (305337), where Recode 14_5 had the lowest
absolute difference. In general, mean differences and standard deviations of
mean differences were considerably higher than for Study Site #1. The null hy-
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pothesis was rejected for all recode combinations for photos 386_122 and
386_124. The null hypothesis was accepted for Cover and Bare Ground using
ISO2 and for Cover using Recode 12_35 in photo 386_16, as well as for Cover us-
ing ISO2 in photo 386_18.

Table 12 summarizes the total sum of absolute differences for all four photo-
graphs for each recode tested for Study Site #2. Recode 1_25 was identified as
the best performer for Study Site #2 based on the lowest sum of absolute differ-
ences for all photographs for Cover (543620) and Bare Ground (550320).

Table 12. Total sum of absolute differences for all four photographs for each recode
tested for Study Site #2.

Category Recode 386_122 386_124 386_16 386 _18 TOTALS
Cover 1SO2 139829 180242 118109 128851 567031
Bare Ground

1SO2 140485 180807 118082 129090 568464
Cover 125 88269 150804 43283 51296 333652
Bare Ground

125 91078 154533 44953 52929 343493
Cover 12 35 136845 190318 102510 112754 542427

Bare Ground
12 35 138441 192460 103029 113696 547626

Cover 13 45 148745 172912 140913 127216 589786
Bare Ground

13 _45 148075 172800 140048 126797 587720

Cover 14 5 148128 109984 72669 59585 390366
Bare Ground

14 5 145325 107589 71019 57880 381813
TOTALS 1325220 1612449 954615 960094 4852378

Study Site #3 - Controlled Burn Area/Otero Mesa Foothills

The same field reconnaissance and analysis were conducted for four photographs
in Study Site #3. Study Site #3 was a mixed shrubland/grassland site. Domi-
nant shrubs were Larrea tridentata (creosote bush), Florencia cernua (American
tarbush), and Prosopis glandulosa (honey mesquite), which typically accounted
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for approximately 50 percent of the total cover. Grass cover ranged from 25 to 50
percent and was dominated by Sclerapogon brevifolius (burrograss), but also in-
cluded Muhlenbergia porteri (bush muhly), Bouteloua eriopoda (black grama),
Hilaria mutica (tobosagrass), and Panicum halli (Hall’s panicgrass). Bare
ground was typically 25 to 30 percent. Similar to Study Site #2, it was deter-
mined that the spectral categories represented a gradient of decreasing vegeta-
tion density and crown cover moving from Categories 1 thru 5. For example,
Category #1 was usually associated with a dense mixture of shrubs and grasses
with complete canopy cover. Increasing category values were associated with
decreasing plant density and canopy closure. Category #5 was associated with
bare ground.

Table 13 summarizes the results from Study Site #3. Recode 14_5 was clearly
the best performer for all four photographs based on the lowest absolute differ-
ence for each photograph. The null hypothesis was rejected for all recodes for all
photographs evaluated. In general, mean differences between estimated and
reference cover were slightly higher than Study Site #1, but lower than Study
Site #2. Recode 14_5 slightly underestimated cover and slightly overestimated
bare ground for all four photographs. Table 14 summarizes the total sum of ab-
solute differences for all photographs for Study Site #3, confirming that recode
14_5 was the best performer for Study Site #3.

Table 13. Descriptive and inferential statistics of difference image (estimated [demixing] minus
reference) for two land-cover categories for photos 388_45, 388_47, 388_88, and 388_90, Study
Site #3 using ISO2 and four recodes.

388 45 Recode t-value Cl abs. diff. Mean

Cover ISO2 -7.01 0.0000 -2.302, -1.296 246550 -1.799 27.410
Bare

Ground ISO2 4.22 0.0029 | 0.581, 1.589 246306 1.085 27.432
Cover 125 27.28 0.0000 | 5.440, 6.283 209003 5.861 22.939
Bare

Ground 125 -30.26 0.0000 -6.979, -6.130 212144 -6.554 23.128
Cover 12_35 10.88 0.0000 2.374, 3.417 259318 2.895 28.40
Bare

Ground 12_35 -13.61 0.0000 -4.152, -3.106 260613 -3.629 28.482
Cover 13 45 -12.48 0.0000 -3.275, -2.386 211676 -2.830 24.204
Bare

Ground 13 45 9.26 0.0000 1.653, 2.540 210519 2.097 24.165
Cover 14 5 -25.29 0.0000 -3.437, -2.942 110184 -3.190 13.466
Bare

Ground 14 5 20.23 0.0000 2.281, 2.770 107777 2.525 13.326
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388_47 Recode t-value P Cl abs. diff. Mean SD
Cover ISO2 -14.93 0.0000 -3.895, -2.991 268068 -3.443 26.111
Bare

Ground ISO2 11.56 0.0000 2.216, 3.121 267693 2.668 26.137
Cover 1 25 25.90 0.0000 5.110, 5.946 241420 5.528 24.169
Bare

Ground 1 25 -28.70 0.0000 -6.597, -5.753 245018 -6.175 24.371
Cover 12_35 9.02 0.0000 1.658, 2.579 273912 2.119 26.601
Bare

Ground 12 35 -12.31 0.0000 -3.366, -2.441 276189 2.903 26.709
Cover 13 45 -7.56 0.0000 -2.046, -1.203 242798 -1.624 24.350
Bare

Ground 13 45 3.88 0.0046 | 0.411, 1.254 242833 0.833 24.326
Cover 14 5 -33.01 0.0000 -5.541, -4.920 168701 -5.230 17.943
Bare

Ground 14 5 29.11 0.0000 | 4.264, 4.880 165536 4.572 17.788
388 88 Recode t-value P Cl abs. diff. Mean SD
Cover ISO2 -14.93 0.0000 -3.895, -2.991 168920 -3.443 26.111
Bare

Ground ISO2 11.56 0.0000 2.216, 3.121 169166 2.668 26.137
Cover 125 20.40 0.0000 | 4.761,5.774 146619 5.268 23.442
Bare

Ground 125 -21.64 0.0000 -6.341, -5.288 148918 -5.815 24.392
Cover 12 35 14.73 0.0000 | 4.097, 5.355 195069 4.726 29.127
Bare

Ground 12_35 -16.76 0.0000 -6.028, -4.765 196749 -5.396 29.233
Cover 13 45 -13.01 0.0000 -4.208, -3.106 163202 -3.657 25,512
Bare

Ground 13 45 10.37 0.0000 2.422, 3.552 162842 2.987 26.152
Cover 14 5 -13.88 0.0000 -2.799, -2.106 90035 -2.453 16.040
Bare

Ground 14 5 10.5 0.0000 1.497, 2.185 88538 1.841 15.916
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388 90 Recode t-value P Cl abs. diff. Mean SD
Cover ISO2 -5.89 0.0001 -2.734, -1.369 127168 -2.051 26.944
Bare

Ground ISO2 3.83 0.0092 0.651, 2.018 127168 1.335 27.022
Cover 1 25 15.90 0.0000 | 3.758,4.816 94535 4.287 20.748
Bare

Ground 125 -16.86 0.0000 -5.403, -4.278 95991 -4.841 22.089
Cover 12 35 5.15 0.0005 1.098, 2.446 126412 1.722 26.448
Bare

Ground 12 35 -7.22 0.0000 -3.169, -1.815 127148 -2.492 26.553
Cover 13 45 -6.17 0.0000 -2.360, -1.222 102826 -1.791 22.332
Bare

Ground 13 45 3.73 0.0002 0.535, 1.723 102599 1.129 23.292
Cover 14 5 -18.47 0.0000 -3.725, -3.010 59396 -3.367 14.022
Bare

Ground 14 5 14.88 0.0000 2.332, 3.040 58097 2.686 13.880

Table 14. Sums of absolute differences for all four photographs for each recode

tested for Study Site #3.

Category Recode 388_45 388_47 388_88 388_90 TOTALS
Cover 1ISO2 246550 268068 168920 127168 810706
Bare

Ground 1ISO2 246306 267693 169166 127168 810333
Cover 1 25 209003 241420 146619 94535 691577
Bare

Ground 125 212144 245018 148918 95991 702071
Cover 12_35 259318 273912 195069 126412 854711
Bare

Ground 12_35 260613 276189 196749 127148 860699
Cover 13 45 211676 242798 163202 102826 720502
Bare

Ground 13 45 210519 242833 162842 102599 718793
Cover 14 5 110184 168701 90035 59396 428316
Bare

Ground 14 5 107777 165536 88538 58097 419948
TOTALS 2074090 2392168 | 1530058 | 1021340 | 7017656
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Spatial Extrapolation

In addition to photo-by-photo demixing analysis, a demixing model was also de-
veloped by sampling three of the four photographs for each site, as described in
the methodology. The three photographs for each site were randomly selected.
The demixing model was then tested by attempting to demix a subset of the TM
image that matched the footprint of the fourth photograph. Demixing results
from this subset were then compared with reference groundcover estimates for
the fourth photograph in the same manner as individual photographs were
evaluated. Based on evaluations of demixing performance for individual photo-
graphs, only the two best performing recodes for each site were tested for ex-
trapolating results from three photographs to a fourth location.

For Study Site #1, photos 380_18, 381_144, and 381_146 were sampled to de-
velop a single demixing model. A subset of a TM image matching the footprint of
a fourth photograph, 381_158, was then demixed using this model to estimate
abundance of vegetative cover and bare ground in the area of photo 381_158.
Recode 12_35 and a two-class unsupervised classification (ISO2), which were
identified as the top performing recodes for Study Site #1 based on analysis of
individual photographs, were evaluated. Results for these two recodes are sum-
marized in Table 15. Both recodes were comparable in performance, and tended
to overestimate cover by approximately 5 to 7 percent and underestimate bare
ground by approximately 6 to 8 percent. ISO2 resulted in a slightly lower sum of
absolute differences than recode 12_35. This may be due in part to the fact that
ISO2 was the top performer for photo 381_158 when analyzed as an individual
photograph. The null hypothesis was rejected for both land-cover categories for
both recodes.

Table 15. Descriptive and inferential statistics of difference image (estimated [extrapolated
demixing] minus reference) for two land-cover categories for photo 381_158 for Study Site #1
using recode 12_35 and ISO2.

Site 1 Recode t-value P Cl abs. diff. Mean SD
Cover 12 35 50.83 0.0000 6.951, 7.509 136271 7.230 14.609
Bare

Ground 12 35 54.28 0.0000 -8.441, -7.853 | 140436 -8.147 15.415
Cover ISO2 39.78 0.0000 5.251, 5.796 128530 5.524 14.260
Bare

Ground ISO2 -46.07 0.0000 -6.684, -6.138 | 131882 -6.411 14.289
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Figures 12 and 13 contrast images of the reference abundance, the estimated
abundance derived directly from samples of photo 381_158 only, and the extrapo-
lated estimates of abundance for the same area derived from sampling the other
three photographs in Study Site #1. Using recode 12_35, extrapolated estimates
of demixing actually appear more similar to reference images than demixing es-
timates derived directly from photo 381_158. Single-photo estimates appeared to
overestimate cover and bare ground in the lower left quadrant of the image,
while the extrapolated estimates appeared similar to the reference images for
this same area. Using ISOZ2, the opposite appeared to be true. Extrapolated es-
timates appeared to overestimate abundance of cover and bare ground, while
single-photo estimates appeared similar to reference images.
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Spectral Demixing
Study Site 1 Bare Ground
Photo 381_158 e i,
Recode 12_35
Extrapolation Results

Cover

A. Reference Cover

B. Estimated Cover
Single Photo

C. Estimated Cover
Extrapolation

Figure 12. Demixing results for two land-cover categories for photo 381-158 using recode 12_35.
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Spectral Demixing
Study Site 1
Photo 381_158
ISO2
Extrapolation Results

Cover Bare Ground

A. Reference Cover

B. Estimated Cover
Single Photo

C. Estimated Cover
Extrapolation

Figure 13. Demixing results for two land-cover categories for photo 381-158 using ISO2.
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For Study Site #2, photos 386_122, 386_16, and 386_18 were extrapolated to
photo 386_124. Recodes 14_5 and 1_25, identified as the best performers for
Study Site #2, were evaluated. Results for these two recodes are summarized in
Table 16. Recode 14_5 appeared to perform better than recode 1_25 based on a
much lower sum of absolute differences for both land-cover classes, even though
recode 1_25 was identified as the top performer when all four individual photo-
graphs were evaluated. Recode 14_5 was the second best performing recode for
individual photo analysis, and actually was the top performing recode for photo
386_124, which may explain why the sum of absolute differences was considera-
bly lower for recode 14_5 when the demixing model was extrapolated to this
photo location. Recode 14_5 underestimated cover and overestimated bare
ground by approximately 9 percent, while recode 1_25 overestimated cover and
underestimated bare ground by approximately 8 percent. The null hypothesis
was rejected for both land-cover categories for both recodes. The variance in

mean difference was considerably higher for Study Site #2 than Study Site #1.

Images of reference abundance, estimated abundance derived directly from sam-
ples of photo 386_124 only, and extrapolated estimates of abundance for the
same area derived from sampling the other three photographs in Study Site #2
are contrasted in Figures 14 and 15. Visual inspection of results from both re-
codes indicated that recode 14_5 appeared to perform better, both in terms of
single-photo and extrapolated estimates matching reference images more closely
and single-photo and extrapolated estimates matching each other. The sum of
absolute differences also confirmed that recode 14_5 performed best for Study
Site #2.

Table 16. Descriptive and inferential statistics of difference image (estimated [extrapolated
demixing] minus reference) for two land-cover categories for photo 386_124 for Study Site #2
using recode 14_5and 1_25.

Site 2 Recode t-value P Cl abs. diff. Mean SD
Cover 14 5 -31.69 0.0000 | -10.010, -8.843 | 116691 -9.427 25.825
Bare
Ground 14 5 29.74 0.0000 8.438, 9.629 115037 9.034 26.370
Cover 1 25 21.23 0.0000 | 7.555, 9.092 196351 8.324 34.037
Bare
Ground 125 -22.36 0.0000 -9.755, -8.182 199598 -8.969 34.816
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Spectral Demixing
Study Site 2
Photo 386_124
Recode 1_25
Cover Extrapolation Results Bare Ground

B. Estimated Cover
Single Photo

C. Estimated Cover
Extrapolation

Figure 14. Demixing results for two land-cover categories for photo 386-124 using recode 1_25.
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Spectral Demixing
Study Site 2
Photo 386_124
Recode 14_5
Extrapolation Results

Bare Ground

A. Reference Cover

B. Estimated Cover [
Single Photo

C. Estimated Cover
Extrapolation

Figure 15. Demixing results for two land-cover categories for photo 386-124 using recode 14 _5.

For Study Site #3, photos 388_45, 388_47, and 388_88 were used to extrapolate
estimates to 388_90. Recodes 14_5 and 1_25, identified as the best performers
for Study Site #3, were evaluated. These results are summarized in Table 17.
Recode 14 5 appeared to perform better than recode 1_25, based on a con-
siderably lower sum of absolute differences and mean difference. Although the
null hypothesis was rejected for both land-cover classes for both recodes, recode
14_5 overestimated cover and underestimated bare ground by only 3 percent on
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average. This mean difference was considerably lower than all other mean
differences resulting from spatial extrapolation at the other study sites.

Table 17. Descriptive and inferential statistics of difference image (estimated [extrapolated
demixing] minus reference) for two land-cover categories for photo 388_90 for Study Site #3
using recodes 14_5and 1_25.

t-value P Cl abs. diff. Mean SD

Site 3 Recode

Cover 14 5 17.61 0.0000 2.773, 3.468 57533 3.136 13.585
Bare

Ground | 14 5 -18.31 0.0000 -3.978, -3.208 57613 -3.594 13.445
Cover 125 49.79 0.0000 16.696, 18.065 149085 17.407 26.820
Bare

Ground | 1 25 -50.02 0.0000 -18.856, -17.433 152026 -18.153 | 26.994

Images of reference abundance, estimated abundance derived directly from sam-
ples of photo 388_90 only, and extrapolated estimates of abundance for the same
area derived from sampling the other three photographs in Study Site #3 are
contrasted in Figures 16 and 17. Similar to Study Site #2, visual inspection of
results for the two recodes tested indicated that recode 14_5 appeared to perform
best. There was more similarity in patterns for single-photo and extrapolated
results for recode 14_5. The sum of absolute differences also indicated that re-
code 14_5 was clearly the top performer.
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Spectral Demixing
Study Site 3
Photo 388 _90
Recode 1_25
Extrapolation Results

Bare Ground

B. Estimated Cover
Single Photo

C. Estimated Cover
Extrapolation

Figure 16. Demixing results for two land-cover categories for photo 388-90 using recode 1_25.
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Spectral Demixing
Study Site 3
Photo 388_90
Recode 14_5

Cover Extrapolation Results Bare Ground

B. Estimated Cover
Single Photo

Figure 17. Demixing results for two land-cover categories for photo 388-90 using recode 14_5.

Spectral Index Correlation Analysis

Correlations between nine spectral brightness and greenness indices, as well as
six individual TM bands, were evaluated using exploratory regression analysis.
The indices and individual TM bands were evaluated as independent variables
and correlated with reference measurements of vegetation cover or abundance.
The linear relationship between each independent variable and each reference



ERDC/CERL TR-03-26

71

abundance amount were evaluated based on R? values, or Coefficients of Deter-
mination. All possible correlations between indices/TM spectral bands and frac-
tional land-cover percent cover values were evaluated for each photograph for all
three study sites. Appendix B contains a summary of the adjusted R2 for all cor-
relations.

Greenness or Vegetation Indices exhibited very low correlations with reference
vegetation cover amounts in all photographs, as expected based on previous lit-
erature and the unique limitations of the application of vegetation indices in arid
environments. In some isolated photographs, individual TM bands, particularly
Bands 2 (green) and 3 (red), exhibited some correlation with vegetative abun-
dance. However, only the two spectral brightness indices, Albedo and Tasseled
Cap or Kauth-Thomas Brightness (KTB) consistently exhibited strong correla-
tions with reference cover amounts for most photographs in all three study sites.

Therefore, only these two brightness indices were evaluated for their utility for
estimating vegetative cover. The regression formula describing the relationship
between each of the brightness indices and reference vegetation cover amounts
was then applied to each pixel in the spectral brightness indices to derive a frac-
tional percent cover estimate for each land-cover component within that pixel.
These estimates of cover were then compared with reference fractional land-
cover values in the same manner as spectral demixing.

Five-class Results

Using photo 381_158 from Study Site #1 as an example, Figure 18 shows esti-
mates of abundance derived from correlation analysis using albedo and corre-
sponding reference images of abundance for five land-cover classes. Similar to
example output from demixing analysis, brighter pixels represent higher percent
cover or abundance for that respective land-cover type. Figure 19 shows similar
estimates derived from Kauth-Thomas or Tassled Cap Brightness.

Relative to visual examination of demixing estimates of abundance, spatial
patterns of estimated abundance derived from correlation analysis using both
Albedo and KTB appeared to correspond well with reference images. Both
indices clearly delineated a road or trail running across the lower left or south-
west corner of the image. Two areas of relatively high cover were evident in the
reference image. The first was a circular area in the upper left or northwest
corner of the image and the second was a somewhat linear feature originating in
approximately the center of the image and extending to the southeast on the
right half of the photograph. According to the reference image, the circular area
in the upper left corner of the image had a large amount of land-cover Category
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#1 (Mesquite) and Category #2 (Mesquite/Dune Edge/Shadow/Litter), with
slightly smaller amount of Category #3 (Interdunal) and almost no presence of
land-cover Categories #4 (Interdunal) and #5 (Bare Ground). Estimates of cover
derived from both Albedo and KTB correlations for this same area indicate
higher amounts of cover in land-cover Categories #1 through 3, but also show a
higher amount of cover for land-cover Category #4. The linear feature of high
cover appeared to be predominantly land-cover Category #1 (Mesquite) in the
reference images, yet this same feature appears to have relatively high abun-
dance of land-cover Categories #1 through 4 in the estimated cover images. The
estimated cover images also did not clearly depict the relatively high abundance
of land-cover Categories #2 and #3, which was evident in the reference images in
the southwest or lower left quadrant of the image.

Images of estimated abundance derived from Albedo and KTB correlations ap-
peared quite similar to each other for each of the land-cover categories. Images
also appeared similar for land-cover Categories #1 through 4 for each individual
index. However, examination of abundance values for individual pixels in each
of these four land-cover categories revealed that estimates were similar but dif-
ferent. Visual examination of gray-scale images can sometimes be misleading
because the histogram from which gray-scale color values are assigned to pixels
is based solely on the histogram for that respective land-cover category. For ex-
ample, the pixel with the highest cover amount for any single land-cover cate-
gory will be assigned the brightest pixel value for that respective land-cover
category. That same pixel may also have the highest cover amount for a differ-
ent land-cover category, and therefore would be assigned the brightest pixel
value for that land-cover category as well, yet the actual abundance amount for
that particular land-cover category may be quite different than the actual abun-
dance amount in the first land-cover category.

The same metrics used to evaluate demixing analysis, including results from sta-
tistical analysis, were also used to evaluate spectral index correlation analysis.
The mean and standard deviation of the reference abundance images were com-
pared to the mean and standard deviation of estimated abundance derived from
Albedo and KTB correlations. Table 18 contains these results for photo 381_158.
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Estimated Cover

Albedo Index
Study Site 1

Photo 381_158
5 Class Example

Land Cover Category 1
(Mesquite)

Land Cover Category 2
(Mesquite / Dune Edge
Shadow / Litter)

Land Cover Category 3
(Interdunal)

Land Cover Category 4
(Interdunal)

Land Cover Category 5
(Bare Ground)

Reference Cover

Figure 18. Albedo correlation results for five land-cover categories for photo
381_158 (left column is the albedo-derived estimate of abundance for each
category, right column is the reference abundance for each category).
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Estimated Cover Kauth-Thomas Reference Cover
E Brightness Index § e
Study Site 1

Photo 381 _158
5 Class Example

Land Cover Category 1
(Mesquite)

Land Cover Category 2
(Mesquite / Dune Edge
Shadow / Litter)

Land Cover Category 3
(Interdunal)

Land Cover Category 4
(Interdunal)

Land Cover Category 5
(Bare Ground)

Figure 19. KTB correlation results for five land-cover categories for photo 381_158
(left column is the KTB-derived estimate of abundance for each category, right
column is the reference abundance for each category).
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Table 18. Mean and standard deviation of abundance for five land-cover
categories for photo 381_158, Study Site #1; estimated (spectral index
correlations) versus reference.

KTB ESTIMATED REFERENCE
Category Mean SD Mean SD
mesquite (1) 24171 4.064 24.307 7.530
mesquite/ 11.340 2.117 11.482 4.192
dune edge/
shadow/
litter (2)
interdunal (3) 13.262 2.651 13.393 5.488
interdunal (4) 24.704 0.192 24.403 8.255
bare ground (5) [26.658 8.964 26.412 12.927
Totals 100.135 99.997

ALBEDO ESTIMATED REFERENCE
Category Mean SD Mean SD
mesquite (1) 24.156 3.712 24.307 7.530
mesquite/ 11.302 2.241 11.482 4.192
dune edge/
shadow/
litter (2)
interdunal (3) 13.279 2.977 13.393 5.488
interdunal (4) 24.669 0.006 24.403 8.255
bare ground (5) [26.245 8.881 26.412 12.927
Totals 99.651 99.997

Unlike demixing, where estimates of abundance were constrained to be less than
or equal to 100 percent, estimates derived from correlation analysis were not
subjected to the same constraints. Therefore, the sum of the estimated abun-
dance of cover for all bands did not always equal 100 percent. However, in all
cases, even without constraints, the sum of the estimated abundance for all land-
cover types did equal approximately 100 percent. Using a five-class breakout,
estimates derived from Albedo and KTB correlations were very similar to refer-
ence cover amounts. Standard deviations of the mean estimates of abundance
were also lower than standard deviations of abundance in reference images, and
were also considerably lower than standard deviations resulting from demixing
estimates of cover.
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The same statistics that were used to compare demixing estimates of abundance
with reference abundance amounts were also used to compare estimates derived
from Albedo and KTB correlations with reference abundance amounts. This in-
cluded a paired Students T-test statistic (t-value), probability value (P), and a
95% confidence interval for mean difference. These statistics were used to
evaluate the null hypothesis that the mean difference between the estimated
percent cover derived from Albedo and KTB correlations and the reference per-
cent cover values derived from air photo classifications were equal to zero at al-
pha = .05 or 95% confidence. These statistics, along with the mean difference
and the sum of absolute differences for all pixels, are summarized in Table 19 for
photo 381_158 for five land-cover classes.

Table 19. Descriptive and inferential statistics of difference image (estimated [spectral index
correlations] minus reference) for five land-cover categories for photo 381_158, Study Site #1.

__ talue B | abs.diff. | Mean

mesquite (1) -2.77 0.0058 | -1.363,-0.232 | 50487 -0.798 6.366
mesquite/ -1.01 0.32 -0.533, 0.172 27260 -0.180 3.969
dune edge/
shadow/

litter (2)

interdunal (3) 0.55 0.59 -0.332, 0.587 37638 0.128 5.173
interdunal (4) 3.03 0.0026 | 0.401, 1.883 69396 1.142 8.336
bare ground (5) -0.29 0.77 -1.009, 0.748 80807 -0.131 9.885

Albedo t-value P Cl abs. diff. Mean ‘ SD ‘
mesquite (1) -2.84 0.0047 | -1.461,-0.266 | 52080 -0.863 6.726
mesquite/ -1.14 0.26 -0.537, 0.143 26558 -0.197 3.825
dune edge/
shadow/
litter (2)
interdunal (3) 0.89 0.38 -0.241, 0.637 36131 0.198 4.939
interdunal (4) 2.88 0.0041 | 0.343, 1.815 69333 1.079 8.282
bare ground (5) -1.28 0.20 -1.369, 0.287 80221 -0.541 9.316

The null hypothesis was accepted for land-cover Category #2 (Mesquite/Dune
Edge/Shadow/Litter), Category #3 (Interdunal), and Category #5 (Bare Ground)
for estimates derived from both Albedo and KTB correlations. Mean differences
ranged from -0.798 to 1.142 for KTB-derived estimates to -0.863 to 1.079 for
Albedo-derived estimates. KTB estimates performed best for land-cover Cate-
gories #2 and #3, based on the lowest sum of absolute differences, which were
27260 and 37638, respectively. Albedo estimates also performed best for these
two land-cover categories based on the lowest sum of absolute differences.
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Albedo estimates for land-cover Category #2 were the best overall, with an abso-
lute difference of 26558. However, neither KTB nor Albedo correlations accu-
rately estimated abundance of land-cover Categories #5, as evident by the
relatively higher sum of absolute differences and the mean difference for this
category.

Three-class Results

Although estimates of abundance for five land-cover classes derived from Albedo
and KTB correlations were much better than estimates derived from demixing
for five land-cover classes, there were still some problem areas evident in the
visual examination of the five-class results. Therefore, the same 3-class break-
out used to evaluate demixing was also used to evaluate spectral index correla-
tions. Figures 20 and 21 contrast the results of Albedo and KTB estimates of
abundance with reference images of abundance for three land-cover categories:
Honey Mesquite (Category #1), Interdunal Cover (Category #2), and Bare
Ground (Category #3).

Spatial patterns of estimated abundance of land-cover Categories #1 (Honey
Mesquite) and #3 (Bare Ground) were quite similar to patterns in the corre-
sponding reference images for estimates derived from both Albedo and KTB indi-
ces. Both indices correctly estimated a high abundance of honey mesquite in the
upper left corner of the image and along a linear pattern in the center of the im-
age. Both indices also clearly delineated a road in the lower left corner of the
image for land-cover Category #3. However, both indices failed to identify a pat-
tern of higher amounts of Interdunal Cover (Category #2) in the lower left quad-
rant of the image. This pattern is clearly identifiable in land-cover Categories #2
and #3 in the referen