
PENN STATE Final Report, December 2004

Applied Research Laboratory

MOBILE UBIQUITOUS SECURITY ENVIRONMENT
(MUSE)

Critical Infrastructure Protection/University Research Initiative
Office of Naval Research (ONR)

Technical Contact: Administrative Contact:
Dr. Shashi Phoha Mrs. Pamela Righter
Director, Information Science and Technology Asst. to the Director for Finance, Business, and
Division Administration
Assistant Director of Applied Research Laboratory Applied Research Laboratory
and Professor of Electrical and Computer Penn State University
Engineering P.O. Box 30
Applied Research Laboratory State College, PA 16804
Penn State University Telephone: (814)863-3991
P.O. Box 30 Fax: (814)865-2805
State College, PA 16804 Email: prk3@psu.edu
Telephone: (814)863-8005
Fax: (814)863-0679
Email: sxp26(Dsu.edu

Applied Research Laboratory Supported by the Office of Naval Research and
P.O. Box 30 Ralph Wachter, (the program manager)
State College, PA 16804-0030 under Grant No. N00014-01-1-0859

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

EXECUTIVE SUMMARY

This is the final report of the Mobile Ubiquitous Security Environment (MUSE) Critical Infrastructure Protection
University Research Initiative (CIP/ URI) project. MUSE was proposed to research "understanding mobile code" in
the context of Critical Infrastructure Protection (CIP). It made significant advances in this area. Mobile code differs
from other software systems in that it uses networks to autonomously move code from one host to another.

Many common CIP threats, such as Trojan horses and viruses, pre-date widespread use of the Internet and are
not specific to mobile code. Issues such as insuring program correctness, enforcing security policies, avoiding buffer
overflows, and detecting malicious code also exist for non-networked software. Our emphasis is on researching how
code migration affects infrastructure protection.

Viruses, worms, and Denial of Service (DoS) attacks are difficult to counteract in large part because they are
highly distributed. Fortifying the defenses of individual processors, or even sub-nets, cannot sufficiently neutralize
these threats. Our game theory analysis of DoS attacks contains examples of the limitations of firewalls for protecting
distributed systems. Fortifying individual processors is in some ways similar to building a stronger Maginot line after
World War II.

MUSE studied both the threat posed by malicious mobile code, and the promise of mobile code to adapt when
attacked and neutralize threats. Distributed adaptation can put attacked systems on an equal footing with their
attackers. The project Statement of Work (SoW) consisted of four tasks:

"* Develop a theoretical model

"* Study the interface between mobile code and the host computer.

"* Study system adaptation

"* Create an adaptive network infrastructure.

Significant results include:

"* A theoretical model for mobile code was developed by integrating mobile agent and cellular automata
concepts. Using a simulation tool (CANTOR), that we developed for this model, we found important
behavioral differences among mobile code paradigms.

"• CANTOR simulations were found to trend like other network simulators. The CANTOR models are simpler
and contain fewer factors. They also execute more quickly than traditional approaches.

"* A taxonomy of mobile code paradigms was created combining our theoretical model with an existing
taxonomy of network attack vulnerabilities.

"* Our existing mobile code daemons were integrated with peer-to-peer (P2P) indexing to create an initial
adaptive infrastructure. Cryptographic key management has been integrated into this approach.

"* We proved that cryptographic primitives can be used with a tamper-proof co-processor to verify bilateral
trust between a host and a mobile code package. An application to multi-level security was given.

2

1. BACKGROUND

Code is mobile when it can change the location where it executes [Fuggetta 1998]. This differs from mobile
computing, where hardware is displaced [Milojicic 19991. Mobile code is particularly important as an adaptive
framework for implementing network services. This requires the ability to find the global consequences of local
behaviors of interacting automata. Ideally, we will find ways to engineer local behaviors that interact to fulfill global
goal definitions. Many paradigms have been proposed as frameworks for mobile code. Most of these paradigms are
unnecessarily restrictive. MUSE developed an abstract model that unifies known paradigms. The model was used to
study mobile code at different levels of abstraction with twin goals: (1) establish the capabilities and limitations of
mobile code use, and (2) produce technologies to protect critical national infrastructure from abuse of mobile code.

Mobility is basically a medium for delivering software to computers. As such it has global and local risks, which
are not unique. Operating systems are vulnerable to viruses, Trojan horses, etc. [Tanenbaum 1997]. Computer
networks are vulnerable to intrusion, denial of service, partitioning, etc. [Stallings 1995]. These security problems can
disrupt operations, compromise sensitive information, and/or destroy data. The flexibility of mobile code combines
the vulnerabilities of both computer operating environments and networks. This produces a negative synergy [Rubin
1998] with a potentially destabilizing influence.

Within the context of the program, a number of "disruptive technologies" were analyzed. These include mobile
code, peer-to-peer networks and Field Programmable Gate Arrays (FPGA's). Each of these technologies is in the
process of radically changing the use of computer networks. Each of these disruptive technologies produces new
security threats. They also provide radically new capabilities for agile system adaptation. Our research indicates that
this agility can be exploited for both securing and attacking networks. Many security aspects, both good and bad, of
system adaptability have been ignored up to now.

2. STATEMENT OF PROGRAM RESULTS

The National Information Infrastructure (NII) has become a globally interconnected programming environment.
Industry has discovered the natural utility of code and data migration within the NIl. Transferring code and data
automatically over the network is not a priori more dangerous than transfer by other means, but the use of mobile
code amplifies security flaws in existing systems. This has resulted in well-known security breaches, such as the
Internet worm, the Melissa virus, and the Love Bug. A truly robust NII requires advances in engineering complex
adaptive systems based on mobile code. The MUSE program pursued a research agenda for in-depth modeling and
understanding of code mobility. In particular, we:

"* Created an abstract model for code mobility that established the local and global capabilities of mobile code, and
its limitations.

"* Created formal proofs of methods for establishing trust between mobile code and host computers.

"* Established ways for computer programs to adapt to diverse machines that may be encountered on the Nil.

"* Created new technology for distributed adaptive services that compensate for failures and intrusions via
mobility.

"* Developed new technologies for secure processors, including creating FGPA based cryptography co-processors
with performance superior to other documented implementations.

* Created models of network behavior used for intrusion detection.

* Performed strategic analysis of network security issues for Denial of Service (DoS) attacks and malware (virus
and worm) propagation.

In conjunction, this work extended the realm of network security research into new areas. In particular, the
"disruptive technologies" mentioned in the background section will cause increasingly large-scale changes in how
software and hardware systems are designed, implemented and maintained. The security implications of these
changes have been partially recognized [Rubin 1998, Oram 2001], but only as a threat to local processors. More
extensive research is needed in the realm of global network security strategies, and autonomous adaptation to
network attacks.

3

3. MODEL OF MOBILE CODE

This section discusses our abstract model of mobile code systems. The model has been used to analyze how local
mobile code behaviors determine some aspects of global network behavior. We compare a network simulator
created using our approach to a standard network simulation tool, and find that our results are comparable to results
obtained using the traditional approach. Our approach requires much less time to execute. The model was also used
to derive a taxonomy of mobile code systems, (which we use to illustrate that many aspects of network security
related to the use of mobile code are being ignored.)

3.1 DESCRIPTION OF MODEL

In [Brooks 2002], we construct a model that expresses code mobility in a manner that includes established paradigms
as special cases. The model uses Cellular Automata (CA) constructs. Computer nodes are elements in an extended
CA. They exchange behaviors as needed. Environmental and other external influences are expressed as Free Agents
in a Cellular Space (FACS). This allows us to model qualitative network attributes as a function of mobile code
behavior. This is especially important when considering pathological network behavior caused by worms, viruses,
etc.

The FACS approach used is inspired by literature on systems defined by interactions among multiple
components in quantum optics, biology, and sociology. In biological systems, three modeling tools have been found
useful: (i) differential equations, (ii) cellular automata, and (iii) multi-agent simulations [Camazine 2001]. Our
approach combines concepts from cellular automata and multi-agent simulations into a common framework. For
computer networks, differential equations may be problematic since data flows in discrete packets. When CA and
differential equations model equivalent systems, the results are generally consistent. Differential equations results are
of higher fidelity. On the other hand, numerical solution of differential equations using finite elements or finite
differences methods is in many ways similar to creating CA approximations of differential equations.

Studies show internet traffic exhibiting a quasi-fractal nature with self-similarity over a wide range of time scales
[Leland 1994, Grossglauer 1999]. Traditional queuing models do not adequately explain the burstiness of data flows
[Willinger 19981. The Internet is a decentralized system, whose global behavior is determined at a number of scales
by interactions between a large number of autonomous systems and individual nodes. We consider network
behavior an emergent system built of multiple interacting components. The global behavior of a network, like the
Internet, is a function of both network configuration and behavior of the individual components.

Cellular automata models are powerful tools for studying large, interacting systems. Universal cellular automata
can emulate arbitrary Turing Machines, guaranteeing that they are capable of executing any computable function. A
CA is a synchronously interacting set of abstract machines (network nodes), defined by:

* d the dimension of the automata

* r the radius of an element of the automata

S•5 the transition rule of the automata

* s the set of states of an element of the automata
An element's (node's) behavior is a function of its internal state and those of neighboring nodes as defined by 6.

Of primary interest is the design of systems that have globally desirable emergent behaviors, such as intrusion
tolerance, based on locally available information. This can be approached in two ways: (i) the forward problem takes
proposed local behaviors and determines their global consequences, (ii) the backward (or inverse) problem attempts to
derive local behaviors with globally desirable attributes. The model we propose is a straightforward tool for
evaluating the forward problem. The backward problem is still open.

The models we use build on CA based work for modeling traffic and socialsystems. This work involves CA
environments where entities move from CA element to CA element. These traffic models are referred to as particle-
hopping models. In [Portugali 2000], a similar concept is referred to as Free Agents in a Cellular Space (FACS). We use the
FACS nomenclature.

Network traffic can be modeled by allowing each element to represent a computer node in a computer network.
Packets move probabilistically from node to node. There is a maximum queue length. Our approach does this to
model the flow of code, data, and coordination information.

In the context of mobile code, the behavior of the global network cannot be defined purely as an aggregation of
individual node behaviors. The behavior of packets traversing the network is also important. In addition to this,
mobile code modifies the behavior of its host node. We call our model Interacting Automata Network (IAN). CA's in
the IAN model are non-uniform. They are defined by the tuple <dr,l[],AS[],B> where:

4

"* d - dimension of the automaton

"* r - radius of the automaton

* I[d] - vector indicating the number of elements in each dimension.

* A - set of transition functions. Each element could have a unique transition function.

• S[] - state vector for each automaton.

* B - set of behaviors. Behaviors are not tied to specific elements of the CA.
This model has the same essential form as a CA but is less simple. The goal is to use this model to study the
possibility of network self-organization using mobile code. Study of these CA models should help establish the global
behaviors implied by local mobile code activity.

Our approach to mobile code uses three abstractions: infrastructure, code, and data. There is a fixed
infrastructure, which consists of computer hosts and network pipes connecting the hosts. This infrastructure is
expressed primarily by the variables d, 1id], and r in the IAN tuple. In computer architecture the number of computer
connections incident on a node is called the node degree, which is expressed by d in our model. The maximum
distance between any two nodes is the network diameter, which is roughly equivalent to l[d] in the proposed
approach. In most models we use r equal to one, but it could be set to a larger value to model bus architectures. In
addition to d, l[d], and r, individual transition functions in A are used to complete the description of network
topology by either allowing or prohibiting communications between IAN elements.

A three-dimensional topology is appropriate for modeling wireless communications networks. It is also possible
to construct a model for an arbitrary network. If there are n nodes in the network, the dimension d can be set to n and
all elements of 1[d] set to one. This implies each node is directly connected to every other node. Judicious definition of
the elements of A prohibits communications between pairs of nodes that are not directly connected. Using this
approach, any arbitrary graph structure of n nodes can be embedded in an n dimensional grid.

Each element of the IAN has its own instance of the state vector S[]. Having the state be a vector is a departure
from the traditional CA model, where state is typically a single discrete variable. Use of a vector is needed to
concurrently capture multiple aspects of the problem space. For example, behavior of a network will generally
depend on the volume of data being handled by the network and the queue length at specific nodes. CA based
particle hopping models provide qualitative support for modeling these types of networks. In addition to this, we
wish to model the behavior of networks influenced by mobile code.

The presence (or lack) of specific mobile code modules influences the behavior of network nodes as well. Another
factor that influences node behavior is whether or not intrusions have been detected. Although it would be possible
to use coding schemes to integrate most, if not all, of these factors into a single value, that would serve to complicate
rather than simplify the approach.

We force the format of S[] to be uniform for all elements of the IAN. Constricting the elements of the system to a
common state format is standard. The main reason why all elements need a common state definition is to support
analysis of the IAN evolution. For example, visualization of queue length changes across the network illustrates
network congestion. Visualization of the diffusion of mobile code, or network viruses, across the network helps
understand the ability of the code to modify network behavior. We also want to visualize the distribution of entropy
throughout the network. All of these tasks imply a uniform basis for evaluating state for all elements in the IAN.

The behavior of a specific IAN element is defined by the interaction between the S[], B, and A local to that node.
In principle, all elements evaluate their 6 concurrently taking as inputs current values of the state vectors and
concurrently producing new state vector values for all elements of the IAN. At each time step, each element of the
IAN evaluates its own transition function 6, which is an element of A. Based on the values in the local state vector and
the state vectors of all the neighbors, 6 determines new values for the local S[]. To a large extent, 6 is defined by the
subset of B present on the local node. Since behaviors are mobile and can move from node to node, 6 can vary over
time. Elements of B are arbitrary programs that may have their own state. When executing, these programs only have
access to information and resources on the local node.

The migration of a behavior from node j+1 to node j at time step t can be illustrated representing the local
transition function as a finite state machine, which is the parse tree generated from the set of behaviors local to j. At
time step t, the behavior attached to the parse tree on node j+l at position x moves to node j. This produces a new
parse tree. The migration of this behavior has modified node j's transition function. We call each time step a
generation. During a generation, each node computes the state it will have at the next generation. This simulates the
parallelism inherent in networks. Adding probabilities to interactions between nodes, allows simulations to act as if
each node had its own clock.

5

Individual elements can also have memory storage beyond a finite number of states and model a Turing or von
Neumann machine. Our modifications to the normal CA model reflect the reality of distributed systems for viruses,
network intrusions and mobile code applications. Using it, we can model intrusion propagation through a network,
and network reconfiguration to battle intrusion. All actions are taken by individual nodes based on S[] and 6; using
locally available information.

To use this approach, we constructed a simulator based on the IAN model. The simulator consists of a front end
that emulates a network with mobile code, and a back end that can be used to visualize the evolution of the IAN. We
have named the tool CANTOR (CA ANimaTOR) in honor of the mathematician Cantor's work on self-similar sets.
We use this tool to analyze multiple instances of the forward problem for designing robust networks safeguarded by
mobile code behaviors. CANTOR users can do the following:

* Construct k-dimensional cellular grids

• Construct rule based cellular neighborhoods

* Assign evolutionary rules on a cell-by-cell, region-by-region, or grid basis

* Record evolution of cell states

* Model free agents in the cellular space

* Construct re-writable, swappable and evolving rules

* Visualize the results in 2 or 3 dimensions

* Reprogram the system using a scripting language

* Perform mathematical analysis of cellular grids.

CANTOR was designed to model network traffic in distributed systems, but has evolved to be capable of modeling
dynamic discrete event systems using cellular automata. Data analysis tools include, entropy analysis, probability
and statistical summaries of generations and runs.

3.2 SIMULATIONS
In this section we show how mobile code paradigms can be phrased as examples of our model. The model we
propose is thus more inclusive. This approach has many pragmatic aspects. Using abstract automata allows us to
quickly construct models of a specific problem for simulation and analysis. The CA shows interactions among
distributed components. The tools in section II allow a quick evaluation and comparison of different approaches to a
given problem. The tuple elements d, r, and lid] define network topologies. A network instance that a paradigm will
be used in will have a particular topology. The mobile code paradigm itself is described in terms of S[], B, and A.

3.2.1. CLIENTISERVER

In the client/server paradigm, one computer node has a program that one or more remote computers need to
execute. For example, a single database server can service the needs of multiple hosts. A common implementation of
client/server is a three-tier approach.

A number of clients (layer 1) send requests to a well-known address (layer 2) that feeds them to a central server
(layer 3). The central server is provided with a client-specific address (layer 2) for forwarding results to the client. It
would be possible to model this in a number of ways. Here we combine layers 2 and 3 in a single layer. We provide
an example. Since this approach is independent of the network topology, d, r and ld] can be arbitrary.

One IAN element is specified as the server. It handles the duties of the second and third (S) layers. It would be
possible to have a separate second layer. The rest of the elements in the IAN would be clients (C). The server cannot
be a client.

We define S[U as a vector with the following members:

"* Role - a nominal variable identifying the IAN element as C or S.

"* Packet queue length - the number of packets currently on the node awaiting transmission to a neighboring node.
(all elements)

"* Packet list - the store-and-forward packets are kept in this FIFO temporary data storage. Each packet would be a
data structure containing source, destination, and request specific information. (all elements)

* Outstanding requests - the number of requests waiting for a response from the server. (all)

* Serviced requests - the number of requests that have already been serviced by the server. (all)

6

"* Request list -list of requests that have yet to be serviced (second tier and server).

"* Internal state - each node needs a set of states (ex. waiting for request, processing request, etc.) for interaction
with its transition function 51 (all nodes).

State elements that are not relevant for a given IAN type are set to a known default value. Two different transition
functions exist in this model:
"* Client - Starts in an idle state. When a request is made, it triggers a request behavior that propagates through the

network and transitions to a waiting for response state. While in that state, it can make further requests. Each
time a request is made the number of outstanding requests is augmented. When a response to a request is
received, the number of outstanding requests is decremented and the number of serviced requests incremented.
If the number of outstanding requests reaches zero, the client returns to an idle state.

"* Server - Starts in an idle state. As requests are received, the original request behavior terminates. Outstanding
and serviced request counters are maintained. It moves to a waiting for response state when a service request is
received. When requests are serviced, it moves to a responding to service state. In this state, it terminates the
results behavior and starts a new one. In addition to this, the outstanding requests queue is maintained.

In these definitions, we specified neither how clients formulate requests nor how the server formulates responses.
Most of these transition functions are essentially First-In First-Out (FIFO) queues. They could be implemented

either as a finite state machine, or as a stack machine. For the finite state machine, queue length relates directly to the
state of the automaton. The maximum queue length is exceeded when a request is received and the machine is in
state n. For the stack machine, queue length corresponds to stack depth. The stack machine abstraction does not
provide any advantages over finite state machines for expressing limited queue lengths.

To analyze client/server performance versus other designs: (i) clients produce requests with a Poisson
probability distribution, and (ii) the server replies to requests in a FIFO manner following an exponential probability
distribution.

Another issue we consider is packet transmission over the network. There are two ways of modeling this. It can
be either expressed in the transition function, or as mobile behaviors. It is worth noting that it is trivial to insert
elements into the IAN, which are not directly involved in the client-server mechanism and only relay packets
between neighboring elements. To express packet transmission in the transition function, each element is made
responsible for exchanging packets with its neighbors. Packets have source and destination addresses. Per default,
packets originate at their source and travel to their destination following a simple greedy heuristic. They move from
their local position to the next node, which has not reached its maximum queue length, along the shortest path to the
destination. The default process is to use the particle-hopping model. At each time step, the packet at the bottom of
the FIFO packet queue is potentially transferred to its neighbor. Only one packet is transferred per time step in all
simulations presented in this paper. Transfer of packets follows the general form of the Nagel-Schreckenberg
particle-hopping model. This simple behavior is present in every node and can be expressed as a finite state machine
or stack machine. By performing a cross product operation between this finite state machine and the transition
functions described above, the two functionalities can be merged in a straightforward manner. In the simulations we
present here, packets are transmitted in this manner unless otherwise indicated.

If more complex routing behavior is desired for packets, they can also be expressed as behaviors. In this client-
server model, we have defined behaviors for request and results propagation. These behaviors originate at the
sending IAN element. They execute once on each element they visit. The execution occurs when they are at the
bottom of the FIFO queue of packages. Their logic consists of finding the appropriate next hop on their way to their
destination; creating a copy of themselves on the next hop IAN element; and removing themselves from the current
IAN element. Their tasks can include bookkeeping on current and neighboring IAN elements. In addition to source
and destination addresses, the behaviors also include data elements specific to the service requests.

For all images showing the evolution of CA models, we will use the same axes. Each pixel along the x-axis is a
client. The y-axis shows how the system evolves over time. No messages go beyond the boundaries, since messages
are exchanged only between nodes active in the simulation. Nodes are numbered left to right from 0 to n. Messages
for lower (higher) numbered nodes go left (right).

Figure la shows the graphical results of a CANTOR client/server network simulation with a long mean time
between requests by clients each following a Poisson distribution and low mean time to process the requests
following an exponential distribution at the server. For this case, the central pixel marked in green is the server. Gray
indicates an empty network queue. Red indicates an occupied network queue. Lighter shades of red show a longer
queue. Note the transient congestion forming in the network. This is an example of data bursts forming
spontaneously in the system. Except where indicated differently, the parameters for simulations are:

7

* Mean time between requests 75 generations.

* Mean processing time I generation.

* Maximum queue length 14.

* Retransmits enabled.

* Probability of transmission failure 0.05.

• No packet dropping.

* 300 generations.

• One-dimensional network of 200 nodes.

1-dimensional sequence of nodes • U- N-

So03

Figure la: Low arrival rate, high Figure 1b: Higher arrival rate, Figure 1c: Entropy plot for
processing speed lower processing speed. representative client/server

simulations.

Figure lb shows a network where the mean time between requests is much less (25 generations) and the mean
time required to process requests is longer (3 generations). The results are consistent with what one would expect
from a Queuing Theory analysis, significant congestion forms around the server.

Often entropy is used to analyze cellular automata and identify disordered regions. We find entropy charts of
networks help identify bifurcations of network behavior. If x: is the queue length of cell i at generation t, then the

maximum likelihood estimator for the probability of a cell having queue length q at generation t is:
P" A X:

where,

z(x)={ x, =q
ýOelse

and N is the number of cells in the model. The entropy for generation t can be computed as:

H(t) = - E p' logp')

Figure 1c shows the entropy for three client/server examples.
In the legend of figure 1c, P indicates the Poisson mean time between transmissions, and E indicates the mean

time to service a request by the server. In this example, we observe three qualitatively different regimes:
"* When the server is slow a long queue forms quickly around the server and congestion from this queue saturates

the network (figure 1b).

"* When the server is fast and jobs are generated quickly, the congestion shown is caused by network traffic and is
distributed throughout the system (figure la).

"* When the server is fast and jobs are generated slowly, there is little congestion. Queue formation is transient.

8

Similar effects are observed in other mobile code paradigms, which will be discussed in the following sections. For all
cases if jobs are generated more quickly than the server can process them, the final state will be a deadlocked system
with full queues.

3.2.2. REMOTE EVALUATION

The remote evaluation paradigm is similar to client/server, except the remote node may have to download code
before execution. A common implementation of this is the use of remote procedure calls (RPC) on UNIX systems. The
model given here builds upon the client/server model, with three modifications: (i) there is no second layer, (ii) the
system is not limited to a single server, and (iii) the program executed is not generally resident on the server
beforehand.

The packet transfer model can be taken from the client-server model with no modification. The client model
requires little modification. The difference is that there is more than one server. Clients can make calls to any
available server.

Similarly, servers work as with client-server with a minor modification. The modification is that if the behavior
requested is not present it must be downloaded from another node. The request for code could be handled using a
client-server approach. For the sake of simplicity, we do not designate a single server; we treat all nodes as peers. In
which case, if a client node a requests execution of a program p on server node b, server node b may have to play the
role of a client when requesting delivery of p from another node c. Upon completion of execution b returns results to
a.

In the simplest model for remote evaluation, all elements of IAN play the role of client or server as needed. The
state vector S[I is given by:

* Packet queue length - as in section 3.2.1.

* Packet list - as in section 3.2.1.

* Client outstanding requests - the number of requests waiting for a response from a server.

* Client serviced requests - the number of requests that have already been satisfied by a server.

* Server outstanding requests - the number of requests waiting to be serviced by this node.

• Server serviced requests - the number of requests that have already been serviced by this node.

* Request list - list of requests that have yet to be serviced by this node.

• Internal state - each node needs a set of states (ex. waiting for request, processing request, etc.) for interaction
with its transition function 6.

This state structure reflects the fact that each node is both client and server.
In this approach there is only one transition function. Each node starts in an idle state. When necessary it

performs client processing as described in 3.2.1 If the node receives a request, it performs the server processing as in
3.2.1. If the code requested is not present, it performs client processing to retrieve the code before servicing the
request. To allow concurrent client and server processing, a cross product is formed of the client and server finite
state automata in 3.2.1.

Simulation of this approach by a IAN implementation is straightforward. IAN elements are chosen at random to
play the role of client or server. Specific network configurations can be implemented as needed. Deterministic
schemes can then be used to test specific load models. Remote evaluation was an evolutionary extension to client
server in that the code evaluated no longer had to be present on the server beforehand.

Figure 2 shows simulations of remote evaluation. (Figure 2a - Mean time between requests 30 generations).
(Figure 2b - Mean time between requests 15 generations. Mean processing time 3 generations). Entropy plots for
remote evaluation (not shown) are very similar to client server. The difference is that there is not a central server and
processing is spread throughout the network. Instead of having a central bottleneck, a number of smaller bottlenecks
occur.

9

Figure 2a: Remote evaluation Figure 2b: Remote evaluation with
without significant congestion. significant congestion.

3.2.3. CODE-ON-DEMAND

A common implementation of code-on-demand is a web browser. It is a simplification of remote evaluation. The
server and client nodes are identical. A single user node can request code and data from any machine on the
network. In some ways, it is the inverse of the client server model.

Code-on-demand can be phrased in IAN by modifying remote evaluation. Each node potentially contains a web
browser. It can request code or data from other nodes on the network. The nodes respond by transmitting the
information to the requesting node.

States and transition functions are the same as for remote evaluation. The differences are:

"* Code always executes on the node that originates the request.

"* Since results are computed at the node requesting the data, results do not have to be transmitted after
computation has completed. Every node can potentially place a request. The number of nodes that can provide
code and/or data to satisfy the request can be limited.

Code-on-demand extended remote evaluation by allowing arbitrary nodes on the network to request and execute
code. The IAN models for code-on-demand show a marked difference in qualitative behavior with the client/server
model. Figure 3a (Mean processing time is not applicable to code-on-demand) shows results from a code-on-demand
network with a high Poisson mean time to generate requests. Figure 3b (Mean time between requests 15
generations) shows the same network with a low Poisson mean time to generate requests.

Figures 3c and 4 compare the three paradigms (30 generations mean time between request arrival for all three
and processing time of 30 generations for requests where appropriate). Differences in the entropy plots of the three
scenarios are evident. As the figure indicates, the disorder produced in the Code-on-Demand network seems to be
greater than that of the other two networks. In both client/server and remote evaluation, computation requests are
serviced remotely. The server has a queue that is serviced following an exponential distribution. In the code-on-
demand model, requests are serviced by sending the program instantaneously. The delay introduced by the wait at
the remote node appears to reduce disorder in the network. For code-on-demand, the behavior of the global system is
dependent only on the network traffic. Processing is done locally and the time required to process requests is of no
consequence to the behavior of the network as a whole.

10

Figure 3a: Code-on- Figure 3b: Code-on-demand
demand with minimal with significant congestion.

congestion.

Figure 3c: Remote evaluation, code-on-demand, and client server with moderate congestion

Disorder is a function of queue length variance in the system. In practice, queue lengths are uniform under two
conditions: (i) if the system is underutilized queue lengths are uniformly low, (ii) if the system is overloaded queue
lengths are uniformly high as the system becomes congested. This implies that high entropy is indicative of an active
system with transient congestion and no major bottlenecks. Using this argument, figure 5 implies that code-on-
demand is a more efficient approach. In this simple example all packets are of the same size. Code-on-demand
generates significantly less traffic than the other two approaches. Since all processing is done locally, no response
packets are generated. More surprising is the similarity between remote evaluation and client server. Remote
evaluation has no central server bottleneck. It has 200 nodes acting as servers. One would expect the throughput of
remote evaluation to be much higher. This does not appear to be the case. Evidently in this configuration, the
congestion bottleneck is network traffic rather than server throughput.

E-73 .,- C I,. . hA =. (.3

2.5. .

Figure 4: Entropy for remote evaluation, client server and code-on-demand.

11

3.2.4. PROCESS MIGRATION

Sections 3.2.1-3.2.3 describe widely used mobile code paradigms, which incrementally increase user independence
from physical location. In contrast to this, process migration has been implemented and used primarily by research
laboratories [141. It differs greatly from the methods in sections 3.2.1-3.2.3. Among other things, it uses strong
mobility to transfer program state along with code and data.

Processes move from node to node in an attempt to find an equitable distribution of resources. Process migration
is in many ways a precursor of the mobile agent paradigm, which will be described in section 3.2.5

Since processes are not tied to their host nodes, we model them as instances of behaviors. Process behaviors are
mobile. They include: (i) the program being executed, (ii) its state information, and (iii) associated data files. A
process looks at the load on the local computer node (element) and all nodes (elements) in the immediate
neighborhood. If the current load exceeds a threshold value and there exists a neighboring node with a lighter load, it
moves to the neighbor with the lightest load. Processes may be large; transporting a process from one node to
another may require multiple time steps.

Each node has a state vector S[] with the following members:

"* Outgoing packet list - If a process is large, it must be cut into multiple packets for transmission from a node to its
neighbor. Multiple processes may have to migrate simultaneously. All packets awaiting transmission are stored
on a common FIFO queue.

"• Outgoing packet queue length - Number of packets currently on the queue.

• Incoming packet list - This list temporarily stores packets that make up a process until it is entirely transferred.

* Incoming packet queue length - Number of packets currently on the list.

* Maximum load - an integer signifying the resources available at this node for use by processes.

* Current load - resources currently consumed by processes on the node.

* Threshold load - number of processes that can be active without processes migrating.

* Process list - a list of behaviors currently active on the node.

~fro

,.t.. ,, ,a ,,,

I

Figure 5a: Process migration, low process creation rate. Figure 5b: Process migration, high process creation rate.

Figure 5c: Entropy for process migration Figure 5d: Entropy shape as a function of life-time to
production time

12

Each node has the same transition function, which resembles the Nagel-Schreckenberg particle-hopping model.
Each process is chopped into a sequence of packets and put on a queue. Packets on the outgoing queue are
transferred to the neighboring node chosen by the process. Once all packets associated with a process have been
completely transferred to the neighboring node, the migrated process is put on the process list. One packet per time
step can be transferred. There is a small probability that a packet will need to be re-transmitted.

Process behaviors follow a simple logic. When they start on a node they add their load to the current load. When
they leave a node, they remove their load from the current load. They migrate to the neighbor with the smallest load.
Figures 5a (Mean process load of I (exponential distribution), Maximum load supported by a node 5, Mean process
duration 10 generations (exponential distribution), Mean time between process initiation 80 (Poisson)), and 6b (Mean
process load 1 (exponential distribution), Mean process duration 10 generations (exponential distribution), Mean
time between process initiation 10 (Poisson)) show scenarios with high and low process arrival rates. Re-transmission
was not included in the process migration and mobile agent scenarios.

Note that instead of showing packet queue length, figures 5a & 5b show the number of processes active on each
node. The network disorder caused by process migration differs from the other networks we have modeled as well.
Figure 5c shows the entropy plots of three process migration networks.

The blue line shows the entropy when the mean time between process arrivals following a Poisson distribution is
five time steps. The system reaches a high state of disorder and remains at a constant high entropy. The green line in
the middle shows a mean time parameter of twenty time steps. The entropy is lower, and it varies significantly over
time. The bottom line shows a system with a mean process arrival time of fifty. The entropy is lower and shows a
significant, regular oscillation.

We have analyzed the cause of this oscillation and determined that the period of oscillation is a function of the
mean time between process generation, while the amplitude is a function of the ratio of mean process life-time to
mean time between process creation. Figure 5d shows a set of entropy curves in which the mean time between
process generations is fixed at 50 generations and the mean process lifetime is varied from 5 generations to 100
generations. As the figure shows, the period of oscillation is related to our use of a mean time between process
generation of 50 generations. We see that peaks seem to be forming around the generations of multiples of 50. The
amplitude of oscillation decreases as a function of the ration of mean lifetime to mean time between generation of
new processes. In our opinion, the oscillation is a simulation artifact due to a correlation between these two factors. It
is only significant at the start of the simulation and dies out over time. As the network becomes cluttered the peaks
become less obvious.

3.2.5. MOBILE AGENTS

We define mobile agents as processes capable of moving from node to node following their own internal control
logic. As such, mobile agents are an extension of the model proposed for load balancing. The difference being that
their control logic is not limited to moving to neighboring nodes in response to load increases. In principle, this
model could encapsulate arbitrary control logic. In our model, they can move to arbitrary nodes, but must pass
through all intermediate nodes along the way.

The mobile agent approach has the constraint that data sources are generally not mobile. When agents move they
transport only the data that is part of their internal state. They are often proposed as models where they harvest data
from large distributed data resources.

The state vector S[j is the same for mobile agents as for process migration, except that the load variables are
removed. The transition functions for nodes (elements) are identical to the process migration transition functions.

Agent behaviors can potentially follow arbitrary logic. In our model, few restrictions exist on the internal
structure of the behaviors implementing the mobile agents. In our analysis, an agent is given an arbitrary itinerary.
The itinerary consists of a list of nodes to be visited and processing to be done. The processing times vary according
to a uniform distribution. Figures 6a (Mean process load 1 (exponential distribution), Mean process duration on each
node 8 generations (exponential distribution), Mean time between process initiation 50 (Poisson)) and 6b (Mean
process load 1 (exponential distribution), Mean process duration on each node 8 generations (exponential
distribution), Mean time between process initiation 10 (Poisson)) shows the results of a IAN simulation of a network
employing mobile agents. These diagrams show process queue length. Note that the generality of the mobile agent
concept means that other types of mobile agents are possible.

Figure 6c shows the entropy plots for representative mobile agent networks. The entropy plot resembles the
entropy of process migration systems in many respects. For a large number of agents, this similarity is reasonable.

13

For a medium and small number of agents, the entropy is higher for the agent system than for process migration.
This is reasonable since the system is not attempting load balancing.

We can see a similar oscillation in the mobile agents. We believe this oscillation is caused for the same reasons as
in the process migration model and is a simulation artifact.

2.0

Figure 6a: Mobile agent Figure 6b: Mobile agent Figure 6c: Entropy plots for mobile agent
network with low congestion network with high congestion networks

3.2.6. WORM

A worm is a network program that creates new copies of itself on a computer system. Worms most frequently
attempt to create multiple copies of themselves on multiple computers. We consider worms as mobile agents that not
only move from node to node, but also create new instances of themselves. Figures 7a and 7b (mean time between
process initiation 15 generations) show some sample runs of a network that has been infected with a worm. Figure 7c
shows the entropies of other representative networks that have been infected with worms. The reader will note the
increased traffic that results from a worm versus a regular mobile agent. Note that worms are not the only mobile
agent variations that can produce new copies of themselves.

(% ,. ' - - Ot w •• ..o.

Figure 7a: Slow spread worm Figure 7b: Fast spreading worm Figure 7c: Entropy plots for worm infected
infection infection networks

3.2.7. VIRUS

A virus is a program that lives within another program. When the host program runs, the virus logic is activated first.
The virus logic searches for another program to infect; and copies itself into that program. This can best be modeled
as an instance of an active network or mobile agent. The logic carried in a packet modifies the host node by inserting
into the host node logic that infects packets as they pass through the host node.

14

3.2.8. DISTRIBUTED DENIAL OF SERVICE

A denial of service attack is an instance of the client server paradigm. A client floods a server with requests until the
server can longer function. Distributed denial of service (DDOS) attacks are examples of the remote evaluation
paradigm. A single client tasks multiple nodes on the network to flood a given victim node with requests until the
victim can no longer function.

Figures 8a (10 percent of the nodes are zombies, for the other nodes: mean time between request initiation 40
(Poisson), mean time to service request 3 (exponential)) and 8b (25 percent of the nodes are zombies, for the other
nodes: mean time between request initiation 40 (Poisson), mean time to service request 3 (exponential)) show two
examples of DDOS attacks. The green node is the server in these images. Yellow nodes represent zombie processes
that attempt to cause congestion around the server. Each zombie generates a request for service from the server at
each time step. In both images, congestion forms quickly around the server. Congestion can be seen moving quickly
towards the server. This attack exploits the congestion weakness of the client server paradigm.

0.\

Figure 8a: DDoS attack, low Figure 8b: DDoS attack, high Figure 8c: DDoS entropy analysis
number of zombies number of zombies

The entropy plot shown in figure 8c illustrates that the entropy profile of a DDOS attack is qualitatively similar
to a client server entropy plot. The difference is that the DDOS system becomes disordered more quickly and that
entropy dies off more quickly as congestion isolates the server from its clients.

3.2.9. COMMENTS ON MOBILE CODE MODEL

Networks built on mobile code systems have global characteristics. These characteristics are due to interactions
among individual components. The approach provided here combines concepts from cellular automata and multi-
agent simulations into a common framework.

In many ways, our approach builds on traditional queuing theory. The asymptotic results for the client server
model are what one would generally expect from a queuing theory model. If the rate a server processes jobs is faster
than the arrival rate; congestion is not significant. If that is not the case, congestion is significant. It is currently
difficult for queuing theory to explain the behavior of the Internet. The probability distributions used for telephone
networks do not fit the data. The proper long tailed distributions have not been found. Some theorize that
appropriate distributions may have properties such as infinite mean and variance [9]. Current explanations for data
burstiness, long-range network traffic dependence and multiple time scale self-similarity are also inadequate.

In some ways, our model is closer to the reality of computer networks than queuing theory based on Markov
chains. Data traverses the system in discrete quanta. It is possible to embed complex decisions into components. We
can model the flow of information to network components for making decisions. The models are still abstractions and
not overly complicated by implementation details. With appropriate modifications this model may be able to yield
quantitative, predictive results.

The model given here provides a simple abstract description of component actions in a mobile code system.
Many complex qualitative phenomena can be observed, including data burstiness. At a qualitative level, the results
here are consistent with behaviors found in the Internet. If we succeed in producing simple models with traffic
statistics like the Internet, this will help determine the factors dominating the Internet's global behavior. Entropy
measures appear to be useful for differentiating between different behavior regimes in the global system.

15

The use of simulations and visualizations is essential to this work. It is difficult to understand behaviors due to
interactions among multiple components. Use of a CA to show system evolution over time helps students and
researchers more easily understand network congestion patterns. The influence of random factors and transients in
the network can be analyzed by viewing multiple runs using different seeds and initial conditions. In designing these
models care should be taken to include only essential factors. It may only be possible to determine these factors
through experimentation.

3.3 COMPARISON OF CANTOR TO OTHER NETWORK SIMULATIONS

To verify the utility of our CA model, we constructed CANTOR models of the TCP and UDP IP transport protocols.
These models are given as algorithms 1, 2, and 3 on the following pages. Example networks were constructed and the
dynamics of our CA based transport models compared with results from high fidelity network simulators.

Figures 9 and 10 show results from the UDP and TCP tests respectively. The CANTOR UDP results are virtually
identical with the ns-2 results, with the exception of a small offset. The CANTOR TCP results trend similarly to the
ns-2 results. That deviations exist between ns-2 and our simulation is not surprising, since we implemented a
minimal TCP model. The payoff of the minimal model is shown in figure 11, which shows that our technique scales
much better than traditional network simulations.

Figure 12 shows the new CANTOR visualization interface that allows us to display system interactions for very
complex network scenarios.

Algorithm 1 UDPUPvAE: TJDP update rule
Input: Cell State STATE, Neighbors NEIGHBORS;
Output: None;

1: {Check neighbors fby new mail packet)
2: for all NEIGHBOR r NEIGHBORS do
2: QUEUE- NEIGHBOR.L,";
4: for all PACKET : QUEUE do
5: {We will implement a drop tail system}
0: if PACKET.pd = S'IATE.A OR

PACKET.p. = STATE.A then
if S'IkTE.q = q. then

8: POP STATE.L";
if PACKET.pj * S 1ATE.A then

10: PACKEr.pN - (NEIGHBOR e NEIGHBORS
clest to PACKET.p6 .);

11: PUSH PACKET ON STATE.L.;
12: break;: If the packet was for you, do nothing; i.e you received a packet, I
13: {Generate packets if necessary
14: GENERATVPACK"T (STITE, NEIGHBORS);

Aigorithm 2 GEMNEATPACKET: Packet generation algorithm
Input: Cell State STATE, Neighbors NEIGHBORS;
Output: None;

1: if S'TATE.'v = true then
2: 4%- will implement a drop tWil system again}
3: if STATE.q = q.. then
4: POP STATE.Lm,;
5: PACKET-:- {Create a packet.)
6: PACKET.p, = k;
7. PACKET.p. = As;
8: HOP-DEBT - (NEIGHBOR o NEIGHBORS

cbsest to server.);
0: PACKET.p. = HOP-DEST;

10: PACKET.h = DATA;{UDP doa not have ACK.}
11: PUSH PACKET ON STATE.Lm;

16

Algorlthm 3 TCPtUPEAm: JUP Update Rule
Input: Cell State STATE, Neighbors NEIGHBORS-,
Output: None;

1: {Check neighbors for new mail paekets}
2: for all NEIGHBOR o NEIGHBORS do
3: QUEUE - NEIGHBOLL,,;
4: ACK.QUEUE - NEIGHBOELLCK;
5: for all PACKET E QUEUE do
0: { We will implement a drop tail system
7t If PACKET.pd = STRTE.A OR

PAC'KET.p. = STATE.A then
8: if STATE.q = q,.. then
9: POP STATEL4,,;

10: if PACKET.pd 6 STATE.A then
It: PACKET.p. - (NEIGHBOR r NEIGHBORS

cb¶set to PACKET.pd.);
12: PUSH PACKET ON STATE.L";
13: break:
14: for all PACKET e ACK.QUEUE do
1i: {We will implement a drop tail system)
t6: if PACKET.pj = STATE.A OR

PACKET.p5 = STATEA then
I In if S¶ITE.q = q.= then
IS: POP STATE, LAK;
19: if PACKET.pd # STATE.A then
90: PACKET.p. - (NEIGHBOR e NEIGHBORS

k:•est to PACKET.p&);
21: PUSH PACKET ON STATE.Lc:;
22: else
22: SMILTE.l'cK - STATE.wAcK - 1;
S t: G 0"minTPA cxxT (STATE, NEIGHBORS);
25: S'IMTE.tc-K t- STATE.wAcK + 1;
2a: if STATE.w cK < 2 then

1,• GENEmAT&PA CtT (SlATE, NEIGHBORS);
28: STATE.wAcX - STATE.wAcK + 1;
29: {Generate pacets if necesary)
30: if STME.wAc = 0 then
31: Gwm~xaam PAcxr (STATE, NEIGHBORS);
32: S1kTE.wAcK - SITE.wAcK + 1;

UDP Network Models: Average Queue Length over Time
9 1 1 1

4 4
La

0 100 200 3D0 400 500 600

Time (1/20 second -1 Generation)

17

UDP Network Models: Entropy over Time
2 CA

NS

1.6

1.4

1.2

U.1

0.8

0.6

0.4

0.2

0
0 100 200 300 400 500 600

Time (1/20 second 1 Generation)

Figure 9. UDP test results. Average queue length (top) for CANTOR and ns-2 simulations trend almost
identically. Amount of entropy in the network (bottom) is also very similar for both simulations

TCP Network Models: Average Oueue Length over Time

1.6
CA
NS

1.4

1.2 &

0.8

d 0.6

0.4

0.2 - ' /
0

-0.2
0 100 200 300 400 500 600

Time (1/20 second = 1 Generation)

18

TCP Network Models: Entropy over Time

1.4
CA
NS

1.2 / +l YVtv

0.8 1

0.6 -
UJ

0.4 -

0.2 •

0

-0.2
01 00 200 300 400 500 600

Time (v20 second 1 Generation)

Figure 10. TCP test results. Average queue length (top) for CANTOR and ns-2 simulations trend similarly.
Amount of entropy in the network (bottom) also trend similarly for both simulations

Figure 11. Run time required for ns-2 and CANTOR simulations. The top lines show the amount of time required
to run ns-2 simulations as network size increases. The bottom lines show the time required for CANTOR
simulations for networks of similar size.

19

Figure 12. Example output from the improved visualization interface for CANTOR. The system can interactively
display network interactions for very complex topologies in real-time.

3.4 MOBILE CODE TAXONOMY AND SECURITY ISSUES

In [Orr 20021 the taxonomy shown in Fig. 13 was developed to characterize mobile code paradigms. Each paradigm
places constraints on the behavior of its systems. In the taxonomy, a transmission is a set of messages sent between
threads on hosts. A system's behavior is defined as the itineraries followed by its transmissions.

Behavior

Itinerary

Tranwtonaeo

Figure 13. In the taxonomy, behavior is defined by the itineraries of transmissions. A transmission is a sequence
of messages sent between threads on machines.

Fig. 14 shows the definition of a message. Each message has an instruction that signifies some action to be taken.
It also has a payload signifying the (possibly empty) target of the action. In this model, resources, threads, and
programs can be either fixed or mobile.

We now see that the paradigms and mobile code implementations are all limited instances of this taxonomy. For
example, code on demand is limited to code requests moving from the initiating host to the target, followed by a code
migrate message in return. Another example is mobile agents, which are a series of code (and state) migration
requests where the agent determines the itinerary. We have used this taxonomy as the basis of an API for a flexible
mobile code execution environment.

20

Message

code request empty

resource request code

reference request resource

thread request reference

execution request execution state

code migrate

resource migrate

reference migrate

thread migrate

Fig. 14 Each individual message sent between threads has an instruction and a payload.

We now use the taxonomy in [Orr 2002] to group common paradigms into two families. Remember, a message
contains an instruction and payload. A single transmission may contain multiple messages. Fig. 15 shows the client-
server family of paradigms. In the client-server model (Fig. 15a), the client thread (X) transmits two concatenated
messages to the remote thread (Y). One requests the program resource, providing data if needed. The second
requests program execution. After execution, Y transmits execution results to X.

X: user thread at initiating client
Y: host thread at target server

[execution request, empty]

(a) [resource request, empty] (b) [(resource migrate, resource]

x Y
(a) Client server

X: user thread at initiating site
Y: host thread at target site

[code migrate, code]
[execution request, empty]

(a) [resource request, empty] (b) [resource migrate, resource]

X 10y Y *-x
(b) Remote evaluation

X: user thread at initiating site
Y: host thread at target site

(a) [code request, empty] (b) [code migrate, code]

x P Y Y -0 x
(c) Code on demand

Fig. 15. The natural progression from client-server through remote evaluation to the Java code-on-demand.

Remote evaluation (Fig. 15b) is used by CORBA factories and SOAP. Local thread (X) transmits three
concatenated messages to remote thread (Y). A message containing the executable code is concatenated to a client-
server style transmission. After execution, Y sends possibly NULL execution results to X.

Java Applets use the code-on-demand paradigm (Fig. 15c). Local thread X transmits a single message to Y,
requesting a code download. Thread Y transmits a message to X that contains the code. X executes the code locally.

21

In contrast to the client server family, characterized by users initiating action and a reactive infrastructure, the
agent family supports autonomy and adaptation within the infrastructure. Fig. 16 shows the agent mobile code
paradigm family.

X: user thread at initiating site
Y: host thread at target site
Z: host thread at next target site

(a) [thread migrate, code & execute state] X now at Y's location

X 0 y Execute for a while...

(b) [thread migrate, code & execute state]
X X now at Z's location

(a) Mobile agent

X: user thread at initiating site
Y: host thread at target site
Z: host thread at next target site

(a) [thread migrate, code & execute state] X now at Y's location

X Pl Execute for a while...

(b) [code request, empty] (c) [code migrate, code]

x 0 z - 0Y
(b) Active network

Fig. 16. Mobile agents, process migration, and active networks are another family of distributed systems, where
more autonomy is given to the distributed system.

The mobile agent paradigm (Fig. 16a) uses two threads for each hop. Thread X executes locally and composes a
thread migrate message containing agent code and state. This message is transmitted to thread Y on the remote host,
where execution continues. A set of n hops requires n transmissions between up to n+1 threads. The agent decides
when and where to migrate. The process migration paradigm differs from the agent paradigm in one way. The local
host decides when and where the process migrates instead of the agent.

Active networks include many paradigms. In one, packets executed while traversing the network. This is a type
of process migration. In another paradigm, packets reprogrammed network infrastructure. This (Fig. 16b) combines
mobile agent and code on demand paradigms.

The main approaches currently used to maintain mobile code security are [Rubin 19981:

* Sandbox - limit the instructions available for use.
• Code signing - ensures that code is from a trusted source.
* Firewalls - limits the machines that can access the Internet.
* Proof Camring Code (PCC) - code carries an explicit proof of its safety.

The first three approaches are in widespread use. Netscape and Sun browsers use a hybrid approach that
combines use of a sandbox and code signing. Firewalls are in widespread use, but have serious limitations on their
ability to detect malicious code. It is not clear that generic implementations of PCC will ever be possible.

The approaches listed above look solely at protecting hosts from malicious code. Little has been done to protect
code from malicious hosts. Methods recorded in the literature include:

"* Computing with encrypted functions - It has been shown that it is possible in some cases to execute encrypted
functions on encrypted data.

"• Code obfuscation - With obfuscation, the object code is deliberately scrambled in a way that keeps it functional but
hard to reverse engineer.

"* Itineraries - Itineraries can be kept of the nodes visited by a mobile code package.

"* Redundancy - Multiple code packages can work in parallel on multiple hosts and compare their results.

22

"* Audit trail - Partial results can be logged throughout a distributed computation.

"* Tamper-proof hardware - viruses or other methods can not corrupt hosts that are tamper proof.

It is worth noting that widespread network attacks tend to involve some type of mobile code. Viruses and worms
are a danger almost entirely due to their ability to migrate from host to host. The fact that we are still confronted by
viruses and worms illustrates the widespread security measures are not working. They may be inadequate, or just
poorly implemented.

Our mobile code taxonomy was based on a security incident taxonomy developed at Sandia National
Laboratories [Howard 1998]. It was developed as a language for describing security incidents. Using the terminology
of this language, security intrusion descriptions are unambiguous. The taxonomy is shown in Fig. 17

We describe the taxonomy and map it to mobile code using our taxonomy. Each security incident is a
combination of one or more attacks; perpetrated by a group to fulfill its objectives. Attacks use tools to exploit system
vulnerabilities and create an unauthorized result. Each unauthorized result is produced by an event. Events are the
actions an attacker takes to exploit the vulnerabilities of specific targets. Fig. 17 enumerates the most common
possibilities for every element of the taxonomy.

The behavior of a malicious mobile code package results in a single security incident. The itinerary of the
package behavior is a set of transmissions. Each transmission used by the malicious code is an attack, and every
message is a security event. Each instruction is an action applied to a payload, which is a potential target.
Unauthorized mobile code executions produce unauthorized results.

Where do mobile code security measures fit in? A sandbox contains code execution. It protects a target machine
from unauthorized access. A firewall's goal is to protect a target sub-network from unauthorized access. Proof
carrying code's goal is to allow target machines to reject offensive code before executing the code.

incident

attack(s)

event

..
Unauthorietzd OAttackers Tool Vulnerabilty Action Target bets

sicChallenge,

Hackers Attsackl Design Probe Account Increased AccessAttack Status, Thri11

Information Implementation Scan Disclosure of Political GainExchaneProcess Information PoliticalGaiSproiestsrUseConfiguration Flood P- Data Corruption of Financial Gain

Terrorists Command ig i Information

Corporate Script or Authenticate Component Denial of Servce Damage
Raiders Program

Professional Autonomous Bypass Computer Theft of
Criminals Agent Resources
Vandals Toolkit Spoof Network

Voyeurs Distributed Read Intemetwork

Data Tap Cop
Steal

Modi
Delete

Figure 17. Security taxonomy shows that attackers use tools to exploit vulnerabilities. Actions are then taken
against targets to produce unauthorized results fulfilling the attacker's objectives. Note how events in this
taxonomy correspond to messages in the taxonomy from [Orr 20021.

Although a case could be made that these approaches remove vulnerabilities, in essence all these
approaches protect target machines, or networks, from attacks.

Code signing works at a different level. By identifying the source of a program, code may be rejected as
being unsafe. Alternatively if code is found to be malicious, the signature can be a forensics tool for proving
culpability

23

Some approaches for protecting code from hosts in section IV similarly concentrate on fortifying
components. Computing with encrypted functions and code obfuscation protect mobile code programs from
being targets by making them difficult to decipher.

Tamper-proof hardware makes system corruption impossible, removing an entire class of vulnerabilities.
This allows both host and code to trust the tamper-proof component. In the ideal case, this protects both from
being targets of attack.

The use of itineraries, redundancy, and audit trails work at an entirely different level. Although each single
event in a mobile code intrusion is of relatively minor importance, the consequences of the aggregate behavior
can easily become catastrophic. These approaches look at aggregates of messages, and thus work closer to the
incident or behavior levels of the taxonomies.

Comparing taxonomies of mobile code and security incidents shows the relationship of security measures
and system vulnerabilities to a given mobile code approach. Most security measures fortify potential targets of
attacks. While this is important and necessary, consider the larger picture. Many e-mail viruses do not perform
actions that are forbidden by a sandbox. Worms primarily exploit software implementation errors. It is unlikely
that software design will advance in the near future, if ever, to the point where we automatically foresee the
abuses of software features or consistently produce bug-free systems.

4. DISTRIBUTED SYSTEMS DESIGN AND IMPLEMENTATION

This section discusses the work done on this project related to the design of an adaptive, survivable
infrastructure. This infrastructure is designed to use the positive aspects of mobile code and peer-to-peer (P2P)
networks. First we illustrate how to estimate the Quality of Service (QoS) of P2P systems. We then discuss how
to calculate phase transitions in systems of this type, where local behaviors aggregate to define global system
behaviors. We then delve into implementation details of our prototype dynamic battle management system.

4.1 P2P QoS
We are interested in creating a network infrastructure capable of adapting to malicious, possibly catastrophic
events. Mobile code technology enables transmission and execution of programs between networked nodes. It
supports adaptation by allowing nodes to reconfigure their software and change roles dynamically. P2P
networks distinguish themselves from traditional client/server or master/slave networks in that there is neither
a central point of control nor centralization of data. They potentially support adaptation by allowing network
structure to evolve.

As described in [Oram 20011, many technologies can be classified as P2P. The two most widely known
implementations are Napster and Gnutella. Napster is a file-sharing network with only one central index. This
index contains a database of users and their files. When a user connects to Napster, a list of files available on the
user's machine is added to a central index. When the user requests a specific file, a list of participating machines
containing the file is returned. The file can be retrieved from any machine on the list. This is an efficient
architecture. File names and machine addresses contain tens of bytes. Files being exchanged typically contain
megabytes of data. The large data transfers occur between machines chosen virtually at random. This tends to
spread data traffic evenly throughout the Internet. On the other hand, its survivability is poor as a single failure
or a court order can stop the entire network by switching off the central index. Gnutella offers a radically
different approach. It is fully distributed with no single point of failure. Each node has an index of its own files.
File discovery is performed by flooding the network with request packets. There appear to be serious scalability
issues with this approach. On the other hand, Gnutella has interesting survivability characteristics. To stop the
Gnutella service, it would be necessary to stop every node on the Internet running Gnutella.

On the same lines as Napster and Gnutella, we consider a P2P network where the nodes represent
computers, work stations, or servers storing mobile code (analogous to audio files in Napster) and the arcs
represent physical or logical connectivity between two nodes. However, one of the main differences is that we
use a protocol with a "time-out" parameter for abandoning a search. We studied the question: what is an
appropriate number of indexes for a P2P network? We analyze this problem in terms of performance,
scalability, and survivability. Recall that Napster has I index that stores the locations of all its files. It is efficient,
but has a single point of failure. Gnutella provides n indexes for n nodes. It lacks single points of failure, but

24

does not scale well. We consider Napster and Gnutella as the extreme cases of a continuum. The number of
indexes varies in the range of I to n. Another question studied in this paper is, what is the appropriate time-out
value to use?

Before designing and implementing a network, it is necessary to thoroughly analyze its performance and
dependability. These two issues are critical in P2P networks because of their complex topologies and the chaotic
environments in which they operate. In P2P networks, it is of interest to know how long it will take to locate and
retrieve a file (in our case mobile code) and what percentages of the requests are lost. These issues become more
critical with each additional hop a request needs to travel, since nodes may become unavailable due to random
failures or attacks.

Number of indexes Time-out value

Set of nodes

Performance Measures

Arc distribution (Delay, Jitter and Loss probability)

Figure 18. Problem description

Figure 18 illustrates the problem we studied. Parameters on the left side of the black box are inputs over
which we have no control. The set of nodes and arc distribution are fixed prior to determining system
parameters. Although we do not explicitly state link and computing (i.e. node) speeds as inputs, we assume
their values are known. Inputs at the top of the box are controllable variables; we choose the number of indexes
and time-out values to optimize performance. The arc exiting the box represents the objective function
(weighted sum of QoS and dependability measures) to be optimized. We assume nodes fail randomly and
independently. Nodes fail for several reasons including denial-of-service attacks.

Our results only require the node set and arc distribution as input to the models but not the type of
network. However, in order to generate examples of networks for our numerical results, we resort to three
classes of randomly generated graphs based on the literature. It is important to note that network types are
merely to classify our results, but our analysis can handle any network structure, not just the following:

" Random graphs or Erdos-Rcnyi graphs - A class of graphs with probability p an arc exists between any

two nodes. Node degree distribution follows Poisson distribution as n -- cjc. The average number of hops
between nodes grows proportionately to the logarithm of the number of nodes.

"* Small world graphs - A class of graphs with two properties: (i) average number of hops increases with the
number of nodes in the same order of magnitude as random graphs, and (ii) there is a significant clustering
of nodes (i.e. many nodes have multiple neighbors in common). For this class, we use the connected
caveman model described in [Watts 1999]. A set of fully connected components is constructed. One arc at
random is rewired in each fully connected component so that the set of components is connected in a cycle.
A small set of arcs in the resulting structure is rewired at random. The node degree distribution depends on
the number of arcs re-wired.

"* Scale-free graphs - A class of graphs where the probability p(k) that a node has degree k follows a power

law distribution p(k) cc k Y-, where Y is a constant. Empirical studies have shown that many real-world

systems including the Internet and Gnutella have this property. The average number of hops of scale-free
networks grows more slowly with respect to the number of nodes than for Erd6s-R~nyi graphs.

These three models are general and applicable to many applications. They all scale well. The number of
hops increases at most logarithmically with respect to the number of nodes. The existence of nodes with very

25

large degrees in scale-free networks makes these networks vulnerable to disruptions when those nodes fail.
Erd6s-Rsnyi and small-world graphs rarely have nodes with large degrees and may be more suitable for
survivable systems. Also, the clustered nature of small world graphs could be useful for detecting and
containing system intrusions.

Noistl

IYYes
SNo Dos lao

Figure 19. Flowchart of request-response process

We divide the network into approximately equal sized groups per index. Each index node has a database of

the files available from nodes in its group. The source node requests a particular document from its index node

and starts a timer. (An index node can also be a source node, in which case the travel time to the first index

node is zero.) If the index node knows the location of the requested document (i.e. the document and source
node are in the same group), it informs the source node of the location of the node containing the document

(destination node). Otherwise, the index node sends the location of the next nearest index node to the source
node. The source node queries index nodes for the document until all indexes have been searched. If the

destination node is identified, the source node requests the document from it. If a transfer is completed before

the timer expires then it's a success, otherwise the request is lost. A request is also lost if an index node with

document information is down or the destination node is down. In case of a loss, the source node does not retry

the same request. The request-response process is shown in Figure 19.

Before deriving performance measures it is necessary to estimate the expected number (and variance) of

hops between nodes in the network. Our approach for doing this is derived in [Kapur 20021. The expected

number of hops between any two nodes chosen at random can be estimated as:

shops = +2 (q

26

/hops kave + 2 (1 - C)M[2] I=2Pi(i - 1) - kave +

Maxhops h/ (h i,)n-1 h-I _ ((2(h-l "]n-l h-2
Y_. h (I1 C)h- iM Y2Pii(i-1) 1M YPAi-)

h=3 -2l Li= L*2 i= i= 'l~JZ.

Given the mean (JPhops) and the distribution of the hop count, the standard deviation (chops) can be

computed using the following formula:

n n 2
9 1i= " =

crhops =
_ 1 Ops

where, hi1 is the number of hops from node i to nodej and n is the number of nodes in the network.

Table 1 below compares the analytical and simulation results (in Matlab) for the mean and standard
deviation of number of hops for the 3 networks: Erd6s-Rsnyi graph, small world and scale-free. The number of
nodes and average arc degree for the 3 networks were: Erd6s-R~nyi graph, 25 nodes and 3 average arc degree,
small world, 25 nodes and 4.4 average arc degree and scale-free, 25 nodes and 5.28 average arc degree. 10
different networks were created for each of the 3 types with the same above-mentioned topology. In Matlab the
hop distribution was computed using Dijkstra's Shortest Path Algorithm [231. Table 1 shows that the analytical
and simulation results for mean and standard deviation of hops are quite close, hence validating our analytical
model.

Simulation Analytical

Mean Std. Dev. Mean Std. Dev.

Erdcs-RCnyi Graph 2.7307 1.2985 2.7478 1.3409

Small World 2.5543 1.2044 2.58 1.296

Scale-free 1.9091 0.7518 1.904 0.747
Table 1: Comparison of mean and standard deviation for the three networks

We now use the mean and the variance of the number of hops derived in Section 3 to obtain performance
measures such as delay, jitter and loss probability. We then use them to compute the optimal number of indexes
and time-out value. We consider several scenarios. In particular, we derive delay, jitter and loss probability in for
a scenario without queuing at the nodes and an infinite time-out value. We then incorporate queues at index
nodes and destination nodes with no node failures. No requests are lost. At which point, we incorporate time-
outs. We compare the analytical and simulation models for the scenario with both infinite and finite time-outs.

Since the number of indexes (1) and the time-out values are design variables, we would like to select them
optimally. To do so, we first build analytical models relating performance measures to the design parameters.
We initially assume an infinite time-out and infrequent request arrival so there is no resource contention (i.e.
queuing) among requests.

Let T be the time to receive a response to a request. The expected delay is given by:

1 1 '2*q I P *d*mo*co) Pi(i-l)
E(T pi (n, k _________ - 1

T) =*ave s

27

I I I q E(B) I
+0.5*d*mo*co(-+I)iZpi +(-+)Z ai(nk

n I1 k ave' s=1

where,

P. = P (Code location is found in index i) For i = 1, 2, .A...

(i-1)C *(I-CO)C(r-1) r*1
pr (1P)ir-r rain co

C (r-l)

(with the understanding that C = 0 if i < r) andr

I

p 0 Probabilihj that all the indexes with the code are down = 1- p =1 - (1 - p)CO
j=1

The jitter of the response time is given by

Jitter = Var(T)

To compute Var(T), we use the relation Var(T) = E(T 2) -[E(T)]2 and E(T) is from equation (19). In order to
obtain E[P], we define T, as the random variable denoting the time to retrieve the document conditioned upon
the document indexed in index i, therefore we have the following: the expressions for E(T 2), Var(Ti) and E(Ti)
are:

E(T 2) (1- P {Var(Ti)+[E(Ti)]Z}Pi"

(0-(l-p))
4*0- (k ,s)qoo* co d * m'oo* co

Var(T.) = ave + d c (i-1)*p*(1-p) + -I I, 2

22
1 2

+fli(n, kave's)* +(0.5*d*mo o C2+ {Var(B) /J2(n,k s)1 l2 n -i2 fi2('ave'S

+ Var(B)* ai 2 (n, k aves) + E(B)2 *fli2 (n, k aveS) , and

2 * q *,ui(n,kaves) d*mo*co O.5*d*mo*co ai(n~k s)*q
E(Ti)= 1+ p(i - 1) t1 + +

0.5*d*mo*co ai(nk ave's)*E(B)
+ + ae *(Bj

n 1

Since the time-out is infinite at this point of the analysis, requests will be lost only if the index node with mobile
code information or the destination node is down. The proportion of requests lost or loss probability (Ls) will be:

Ls =1-P d [I - (I - p)CO]

28

where, 1 - (1 - p)CO is the probability of the index node with code information being down, and pd is

probability of destination node being up, a function of the number of index nodes.
So far we have considered a scenario where the nodes go up and down from time to time and requests

arrive very infrequently so that there is no contention among requests for resources, this is especially the case at
the index nodes and the destination nodes that could potentially receive a large number of requests. Now we
consider the case where no nodes fail and there is resource contention so requests may have to be stored in a
queue at the indexes and destination nodes. Queues at index nodes and destination nodes are approximated as
M/G/1 queues with Poisson inter-arrivals, uniformly distributed service times and a single server. To ensure
the stability of the M/G/1 system, a lower limit on the inter-arrival times was determined given the average
service time at index nodes. The expected delay with queues at the index nodes and destination nodes is given
by:

2q q q E(B) I
E+ +- -i--)iai (n, kave, S)

where, E(W1) is the average waiting time a randomly arriving request spends in index node queue plus the
expected time to search the index node, and E(W,,) is the average waiting time a randomly arriving request
spends in destination node queue plus the expected time to search the destination node.

The jitter with queues at index nodes and destination nodes is given by: Jitter = Var(T)

where, Var(T) = E(T 2) - [E(T)]2 ,

E(T) is from equation (22), E(T 2) = Var(T.) - [E(T)]2 , with(12
4 (n,k s)*q (d*m *co *(d*mo*co 2

Var(T.) = 12 + + E(1) * Var(W

2 ~ 2 1 21q

+ 8i (nk ave's)*q2+ (0.5*d *mo*c°2

1 2 n

+ --- Var(B) /h (n, k ,s)+ Var(B)* a 2 (nk ,s)+ (n, 2 aves)), and

1 2ave ave E(ave(~ s),n

2qpii(n,k ,s) ai (n,k ,s)q ai (n, kaves) * E(B)E(Ti)= l v + E(WI) + 0"5E(WI) + kael + 0"5E(Wn)

If the time-out value was finite, then requests would also be lost if the time to get a response exceeds the
time-out value. Since the delay is a sum of a large number of independent random variables, we can
approximate using the central limit theorem that T - Normal [E(T), Var(T)]. Now the probability that time-out
occurs even when the document is available will be

P(T >0) = 1- P(T < •)
where, 0 is the finite time-out value. The above expression can be written as

[Var(T)-

where (D can be obtained from z tables for Normal Distribution. Then, the response time given that document is
retrieved before time-out (E(T 0)) will be

29

0
f xf(x)dx

E(T0)=--

where f(x) is the normal probability density function. The variance will be1(1 -6)x 2 f (x) A c- _r('E(T)] 2}
Var(ro 0-(_)

The loss probability will be L0 = I - Pd [1 -1 p)CO](l -)

Comparison of these analytical results with simulations can be found in [Kapur 2002].

4.2 ANALYSIS OF RANDOM NETWORK DESIGNS
A graph is traditionally defined as the tuple [V,E]. V is a set of vertices, and E is a set of edges. Each edge e is
defined as (ij) where i and j designate the two vertices connected by e. In this paper, we consider only
undirected graphs where (ij)=(j,). (Many systems are modeled using directed graphs (di-graphs) where (ij) *
(J,1).) An edge (ij) is incident on the vertices i and j. We do not consider multi-graphs where multiple edges can
connect the same end-points. We use the terms vertex and node interchangeably. Edge and link are also used
synonymously.

Many data structures have been used as practical representations of graphs. Common representations and
their uses can be found in [11]. For example, a graph where each node has at least one incident edge can be fully
represented by the list of edges. Another common representation of a graph, which we will explore in more
depth, is the connectivity matrix. The connectivity matrix M is a square matrix where each element m(ij) is 1 (0)
if there is (not) an edge connecting vertices i and j. For undirected graphs this matrix is symmetric. Figure 20
shows a simple graph and its connectivity matrix.

0 1 0 00 0-/•1 0 0 0 0 0

0 0 0 1 1 1

0 0 1 0 0 0
S/0 0 1 0 0 1

0 0 1 0 1 0

Figure 20. On the left is a graph of six nodes. On the right is its associated connectivity matrix. Row j of the
matrix corresponds to the jth node from the top.

As a matter of convention, the diagonal of the matrix can consist of either zero's or one's. One's are
frequently used based on the simple assertion that each vertex is connected to itself.. We use a convention
where the diagonal is filled with zeros.

A walk of length z is a set of edges, which can be expressed as an ordered list of z edges ((iojo),(01j1)1 (0iM~z),
where each vertex j,, is the same as vertex 4,+,1. A path of length z is a walk where all 4, are unique. If j, is the same
as io, the path forms a cycle.

A connected component is a set of vertices such that from any vertex in the component there is a path to all
other vertices in the component. (In the case of di-graphs, this would be a fully connected component.) A
complete graph has an edge directly connecting any two vertices in the graph. A complete subgraph is a subset
of vertices in the graph with edges directly connecting any two members of the set.

One interesting property of connectivity matrices we use is the fact that element mz(i~j) of the power z of
graph G's connectivity matrix M (i.e. Mz) is the number of walks of length z from vertex i to vertex j that exist on
G [Cvetovic 19791. This can be verified using the definition of matrix multiplication and the definition of the

30

connectivity matrix. Iterative computation of Mz until Mz=Mz-1 can be used to find the connected components in
a graph.

We now show how to construct connectivity matrices for analyzing classes of random and pseudo-random
graphs. The first model we discuss is the Erd6s-RLnyi random graph. It is provided for completeness as it is the
most widely studied class, and as a tutorial since it is the simplest class. Erd6s-RCnyi random graphs are
defined by the number of nodes n and a uniform probability p of an edge existing between any two nodes. Let's
use E for I E I (i.e. the number of edges in the graph). Since the degree of a node is essentially the result of
multiple Bernoulli trials, the degree of an Erd6s-RCnyi random graph follows a Bernoulli distribution. Therefore
as n approaches infinity, the degree distribution follows a Poisson distribution. Figure 21 shows different
embeddings of an example Erd6s-R~nyi graph.

Figure 21. Example Erd6s-Renyi graphs with n equal to 23 nodes and the probability p equal to 0.2. From left
to right: nodes in a circle, radial embedding, rooted embedding from a random node, ranked embedding
by geodesic distance from three nodes chosen at random.

It has been shown that the expected number of hops between nodes in this graph grows proportionally to
the log of the number of nodes. Note that Erd6s-R~nyi graphs do not necessarily form a single connected
component. When E - n/2 << -n2/3 the graph is in a sub-critical phase and almost certainly not connected. A
phase change occurs in the critical phase where E= n/2 +O(n2/ 3) and in the supercritical phase where E-n/2 >> -
n12/3 a single giant component becomes almost certain. When E= n log n/2+ Op(n) the graph is fully connected
[15]. (Note that the expected number of edges for an Erd6s-Rsnyi graph is n(n-1) p /2).

5 /1 0
05

N o .0
od 47011ber 15 2

Figure 22. A three-dimensional plot of the probabilistic connectivity matrix for Erd6s-Renyi graphs with
n=23 and p=0.2. The diagonal values are zero. All other edges have the same probability.

To construct a probabilistic connectivity matrix for this graph, create an n-by-n matrix with all elements on
the diagonal set to zero and all the other elements set to p. For example, if n is 3 and p is 0.25, we get:

[0 0.25 0.251
0.25 0 0.25
0.25 0.25 0

We now consider the scale-free model. It comes from empirical analysis of real-world systems, such as e-
mail traffic, the World Wide Web, and disease propagation. See [Albert 2001] for details. It is appropriate for

31

some mobile systems that evolve over time. In this model, the node degree distribution varies as an inverse
power law (i.e. P[d] oc dr). These graphs are called scale-free because the power law structure implies that
nodes exist with non-zero probability at all possible scales. The expected number of hops for scale-free networks
is smaller than the expected number of hops for Erd6s-Renyi graphs. Scale-free (SF) graphs are defined by two
parameters: number of nodes n, and scaling factor y (see Figure 23). Of the random graph classes considered
here, node degree variance in this class is the largest.

Many existing systems are SF networks. The Internet is SF. Empirical analysis done by different research
groups at different times find the Internet's y parameter value ranging from 2.1 to 2.5). Studies of SF networks
indicate their structure has unique dependability properties [4]. Epidemiological studies show parallels between
biological pathogen propagation and computer virus propagation in SF graphs like the Internet.

"Ib-

Figure 23. Example scale-free graphs with n=45 and r=3.0. From left to right: nodes in a circle, radial
embedding, rooted embedding with the root set as the second largest hub, and ranked embedding in
order of the geodesic distance from the three largest hubs.

Figure 23 illustrates how scale-free graphs differ from Erd6s-R~nyi graphs. The majority of nodes have
degree one or two, but there exists a small number of hub nodes with a very large degree. Erdds-RCnyi graphs
have an almost flat architecture with node degree clustered about the mean. The hub nodes dominate the
topology of the scale free graphs. The ranked embedding illustrates that it is extremely unlikely that a node
would be many hops away from a major hub.

An algorithm for constructing these graphs based on positive feedback that produces graphs with y•.3 , can
be found in [Barabasi 19991. Barabesi's use of positive feedback plausibly explains how SF systems emerge and
why they are widespread. We present a method for constructing SF networks that uses positive feedback to
produce graphs with arbitrary scaling factors. Utilizing the mechanism believed responsible for creating SF
networks has two advantages: (z) it may produce graphs closer to those found in reality, and (ii) it helps explain
how SF systems work.

Creating a probabilistic connectivity matrix for scale-free graphs is more challenging. Remember that scale-
free graphs are characterized by n (the number of nodes) and y (the scaling factor). The first step is to compute

a probability distribution for node degree d. Remember P[d oc d -. We compute the probability distribution, by
finding a constant factor so that all probabilities sum to 1. Set:

P[d] = bd-r

Since node degree ranges from I to n-1:
I n-I- Y

thus:
b d=V d -Y

We now have a closed form solution for the node degree probability distribution. The next step is determining
how many edges are incident on each node. First construct a vector v of n-1 elements, whose values range from
0 to 1. Each element k of the vector contains the value:

vfk] = Zk=1 bd-

Vector element v[01 has the value zero and element v[n-1] has the value one. Each element v[k] represents the
probability of there being a node of degree less than or equal to k. Each row of the probabilistic connectivity
matrix represents the expected behavior of 1/n"' of the nodes of the class under consideration. We now

32

construct a vector v' of n elements, the value of v'[k] states how many edges are incident on node k. Set v'[k] to
the index of the largest element of v whose value is less than or equal to k/n

The elements of the connectivity matrix are probabilities of connections between individual nodes. These
values are computed using the insight from [161 that scale-free networks result from positive feedback. Nodes
are more likely to connect to other nodes with many connections. The value of each matrix element (k, i) is
therefore:

14k,]= v'i[vmk]I VIM]
.. k

The likelihood of choosing another node i to receive a given edge from the current node k is the degree of i
divided by the sum of the degrees of all nodes except k. Summing these factors would give a total probability of
one for the row. Since k has degree v' [k] these probabilities are multiplied by v' [k], so that the total of the
probabilities for the row is k. This finishes the derivation.

To construct the matrix, we modify the values in two ways. Since the node degrees have an exponential
distribution, the values of the bottom rows are often much larger than the other degrees. The result for values of
k and I close to n can be greater than one. To avoid having elements of the matrix with values greater than one
(i.e. probability greater than one), we compute the matrix elements in a double loop starting with k (outer loop)
and i (inner loop) set to n-1. The values of k and i are decremented from n-1 to zero. If the value is greater than
one then the corresponding element is set to one and the value copied from v' [k] for computing row k is
decremented by one. This keeps all matrix elements in the range zero to one, so that they may represent valid
probabilities.

The other modification of element values forces the matrix to be symmetric. When computing a row k and k
< n-1, all elements for i > k are set to be the same as the values computed for element (i, k). If the value of
element (i, k) is one, the value copied from v' [k] is again decremented. In some cases this may force the sum of
row k to deviate from v' [k].)If the deviation is significant enough, the resulting connectivity matrix may only
have a degree distribution that approximates the scaling factor y.) An example connectivity matrix for n=10 and
y=2.0 is:

0 Y2 22 22 Y 22 2 o 0 9 /Y0Y2 0 Y22 Y2 2 • Y22 I o 2 o Y1 29 Y/,0
22 220 Y2 22 Y22 0 /9 Y0

Y,0 Y,0 Y,0 Y,0 Y,0 Y1 0o Y 4/9 IY0 Y0 Y0 Y0 Y0 0 Y5 0 4/Y9

_Y/ 0 /109Y, 0 Y, 0 Yo9, , Y, 0

00.03

91. 0 30

01
20

Figure 24. Three-dimensional plot of the connectivity matrix for a scale free graph with n=45 and y-3.0. Note
the zero diagonal and the high probability of connections to the hub nodes. Connections between hub
nodes are virtually assured. Connections between non-hub nodes are very improbable.

33

Scale-free networks provide a good statistical description of large, evolving, wired networks with no
centralized control. Mobile wireless networks are also of importance. In particular ad hoc wireless networks,
which have no fixed infrastructure, are suited to analysis as a type of random graph. [Krishnamachari 2001]
explains a fixed radius model for random graphs that they use to analyze phase change problems in ad hoc
network design.. The model places nodes at random in a limited two-dimensional region. Two uniform random
variables provide a node's x and y coordinates. Two nodes in proximity to each other have a very high
probability of being able to communicate. For this reason, they calculate the distance r between all pairs of
nodes. If r is less than a given threshold, then an edge exists between the two nodes. In their work, many
similarities are found between this graph class and the graphs studied by Erdos and Renyi. Their analysis looks
at finding phase transitions for constraint satisfaction problems. These graphs differ from Erdbs-Rsnyi graphs in
that they have significant clustering. We will use this model, except that they create an edge with probability
one when the distance between two nodes is less than the threshold value. We will allow the probability to be
set to any value in the range [0..1]. Figure 6 shows an example range limited random graph.

Figure 25. Different embeddings of a range limited random graph of 40 nodes positioned at random in a
unit square region. The distance threshold was set as 0.25, and within that range edges exist with a
probability of one. From left to right: geographic locations, radial embedding, rooted embedding with
node 40 as the root, and ranked embedding from nodes 38, 39, and 40.

We construct range-limited graphs from the following parameters:
n - the number of nodes
max-x (max-y) - the size of the region in the x (y) direction
r - the maximum distance between nodes where connections are possible
p - probability that an edge exists connecting two nodes within the range

Construction of range-limited random graphs proceeds in two steps: (z) sort the nodes by either their x (or
possibly y) coordinate and use order statistics to find the expected values of that coordinate, (ii) determine
probabilities for edges existing between nodes based on these expected values.

To construct the connectivity matrix for range-limited graphs, we consider the position of each node as a
point defined by two random variables: the x and y location. Without loss of generality, we use normalized
values for the x, y, and r variables limiting their range to [0,11. To calculate probabilities, we sort each point by
its x variable. For the n nodes, rank statistics provide expected value j/(n+l) for the node in position j in the
sorted list. Using Euclidean distance, an edge exists between two nodes j and k with probability p when:

(Xj -Xk)2 +(j _Yk) •r 2

By entering the expected values for nodes of rank j and k and re-ordering terms, this becomes:

i- YY r 2 _ - _ k2
_ ~ n+lI

34

Figure 26. Three-dimensional plot of the connectivity matrix for a range limited graph of 35 nodes with
range of 0.3.

If we assume that the random variables giving the x and y positions are uniformly distributed and
uncorrelated, the probability that the relation holds is the probability that the square of the difference of two
normalized uniform random variables is less than the constant value c provided by the right hand side. Two
uniform random variables describe a square region, where every point is equally likely. The equation is an
inequality, so it defines a closed linear region. Because the right hand side is squared, two symmetric regions
are excluded from the probability. The limiting points are when yj or ykare equal to the constant on the left hand
side. Algebraic manipulation provides the equation 2c-c2 for the probability. An example matrix for six nodes in
a unit square with r=-0.3 and p=1.0 is:

o 0.134 0.0167 0 0 0
0.134 0 0.134 0.0167 0 0

0.0167 0.134 0 0.134 0.0167 0

0 0.0167 0.134 0 0.134 0.0167

0 0 0.0167 0.134 0 0.134

0 0 0 0.0167 0.134 0
Figure 26 shows a three-dimensional plot of an example matrix.

We have illustrated how to construct these matrices for important graph classes. We now discuss the
structure and meaning of the matrices. By definition, connectivity matrices are square with the numbers of rows
and columns both equal to the number of vertices in the graph (n). Each element pk) is the probability of an
edge existing between nodesj and k. Since we consider only non-directed graphs, uk) should equal (kt). (Care
should be taken to guarantee that algorithms for constructing matrices provide symmetric results.)
Remark. The sum of each row (column) of the probabilistic connectivity matrix M provides the expected degree
of every node in G.

Definition. M is a probabilistic connectivity matrix of random graph class G. We define rpm-graphs (regular
probability matrix) graphs as graph classes where each node has equivalent probabilities of being connected to
other nodes.

Proposition: If a graph class defines rpm-graphs, all nodes in G are equivalent and every row (column) is a permutation
of every other row (column).

Proof. [Cvetovic 79] provides a proof that each row of the connectivity matrix of a regular graph is a
permutation of every other row; this proof suffices for rpm-graphs.

Proposition. For an rpm-graph class G, the value of the eigenvalue with the largest magnitude of its associated
connectivity matrix is the expected degree of/each node in G.

Proof. This proof follows directly from the proof of this assertion for non-random graphs given in [Cvetovic 79].

Recall that each element (jk) of the random connectivity matrix is a probability and constrained to values
between zero and one. (It represents the likelihood of an edge existing between nodes j and k.) The product of
two probabilities values gives the likelihood of their two associated events occurring together when
independence is assumed. So the likelihood of edges existing simultaneously from node]j to node k and node k

35

to node 1, is (j,k) (kl). As we have shown in constructing the matrices for scale-free and small-world graphs, we
can construct probability matrices where the values of the probabilities explicitly state the influence of statistical
dependencies.

Now consider the likelihood of a path of length two existing between nodes j and 1. This can be calculated
by summing the values of (j,k) (kl) for all possible intermediate nodes:

k=1

Note that this is the equation used in matrix multiplication to calculate element (j,I) of MIM2 by multiplying row
j of MA by column I of M 2. We discuss further applications of this in section 4.1 to 4.3. Consider computation of
this value. The values used are probabilities with an assumption of independence and results need to be
probabilities as well. Numerically the probability of either of two independent events j and k occurring is: Pj +
Pk - PjPk. The probability of three events j, k, and 1 occurring can be computed recursively as Pi + (Pj+ Pk - PjPk) -
P i(Pj + Pk - PPk). As the number of events increases the number of factors involved increases, making this
computation awkward for large matrices. An equivalent computation is:

l-nI lPjkPAI)
k=l

This is easier to compute and suggested for the matrix multiplications discussed in the application sections.
As a matter of convention, the diagonal values (Pjj) of connectivity matrices can be set either to one or zero.

Frequently they are set to one, signaling implicitly that each graph vertex is connected with itself. Which is often
reasonable. For this approach, the diagonal value of zero more appropriate. Our applications concern the
likelihood of paths existing between nodes. The value Pjj expresses the probability of a path connecting node j
with itself. The existence of a loop within the graph should not increase the probability that two nodes in the
graph are connected. Constraining the diagonal values to the value zero discounts the influence of loops in our
calculations. For some random graph classes, like Scale-Free graphs, it is advisable to add a post-processing step
to multiplication where each element (j,k) is set to the maximum of (j,k) and (kj) to guarantee that the matrix
remains symmetric.

Theorem. Element (j,k) of Mz is the probability that a walk of length z exists between nodes j and k.

Proof. The proof is by induction. By definition, each element (j,k) is the probability of an edge existing between
nodes j and k. M 2 is the result of multiplying matrix M with itself. Equation (12) is used to calculate each
element (j,k) since all values are probabilities. As explained in section 4, this calculates the probability of a path
of length two existing between nodes j and k by exhaustively enumerating the likelihood of the path passing
through each intermediate node in the graph. Using the same logic, Mz can be calculated from Mz-Iusing matrix
multiplication to consider all possible intermediate nodes between nodes j and 1. Where Mz-l has the
probabilities of a walk of length z-1 between j and k, and M has the values defined previously.

Example 1. Probabilities of walks of length three in an Erdos-Rsnyi graph of four nodes for p=0.6 and 0.65
[0 0.65 0.65 0.65 [0 0.666 0.666 0.666 0 0.679 0.679 0.679
S=0.65 0 0.65 0.65 1- 0.666 0 0.666 0.666 M3= 0.679 0 0.679 0.6791
[0.65 0.65 0 0.65 0.666 0.666 0 0.666j [0.679 0.679 0 0.679J

0.65 0.65 0.65 0 0.666 0.666 0.666 0 0.679 0.679 0.679 0[0 0.6 0.6 0.6 [0 0.59 0.59 0.591 [0 0.583 0.583 0.5831
0.6 0 0.6 0.6 0.59 0 0.59 0.59 W 0.583 0 0.583 0.583 (14)

0.6 0.6 0 0 0.590.59 0 0.59j [0.583 0.583 0 0.583
0.6 0.6 0.6 10.59 0.59 0.59 0 0.583 0.583 0.583 0

Many graph properties follow a 0-1 law. The property will either appear with probability of near 0 or
probability of near 1 in a random graph class as the graph size increases, depending on the parameters that
define the class. Frequently, an abrupt phase transition exists between these two phases [13, 2]. The parameter
value where the phase transition occurs is referred to as the critical point. The connectivity matrices defined in
this paper can be useful for identifying critical points and phase transitions.

36

Theorem. For Erdos-Rinyi graphs of n nodes and probabiliht P of an edge existing between any two nodes, the critical

point for the property of graph connectivity occurs when P = I - (I - P2 ti . Mien P > I - (I - P2 J,- , the graph will tend

to not to be connected. When P < I - (I - p 2 ,-l the graph will tend to be connected.

Proof. For Erdos-Renyi graphs, all non-diagonal elements of the matrix have the same value p. Diagonal
elements have the value zero. The formula 1-(1-P2)"-1 follows directly from these two facts and (13). When the
value of this equation is equal to p, two nodes are just as likely to have a two-hop walk between them as a single
edge. This means that connections of any number of hops are all equally likely. When the value of the equation
is less than p, a walk of two hops is less probable than a single hop connection. Since the equation is
monotonically decreasing (increasing) as p decreases (increases). This means that longer walks are increasingly
unlikely and the graph will tend not to be connected. By symmetry when the value of the equation is greater
than p, the graph will tend to be connected.

1 ._ __ _____

0.8"- -

0.6/

0.4

0.2

20 40 60 80 100

Figure 27. The figure shows empirical verification of theorem for Erdds-Renyi graph connectivity. Two
thousand instances of Erdds-RMnyi graphs of five nodes were generated as the edge connection
probability varied from 0.01 to 1.00. The x-axis times 0.01 is the edge probability. The y-axis is the
percent of graphs that were connected. The formula used in the theorem predicts the critical value
around probability 0.4. When p= 0.35 (0.40) equation (16) gives 0.357 (0.407).

4.3 TRUST PROPAGATION IN P2P NETWORKS

This section provides a set of key distribution protocols that can be used for secure mobile code package
transfer using this general structure. Both secret (symmetric) and public (asymmetric) protocols are given. These
protocols are typical of those documented in the literature and in use today.

These protocols describe all the steps that would be typically used to set up a connection and exchange
mobile code packages. Expected values for the message sizes can be found for any specific instance of a P2P
network, like the one we propose. The design parameters for packet time outs and number of indexes can then
be computed.

Out topology currently supports two separate trust models. Both models assign to the index the role of key
server and guardian of the trustworthiness of the nodes they serve. They differ in how the trustworthiness of
the index nodes is verified.

One trust model is consistent with current Public Key Infrastructure (PKI) design. Each node is considered
trustworthy based on its verification by a higher authority. In which case, trust propagation takes the form of a
directed acyclic graph (DAG). The highest level of the hierarchy is an entity, which is assumed inviolate and
always trustworthy. In our terminology, this entity is God.

The alternative topology does not assume the existence of an inviolate entity. It does assume that fewer than
1/3 of the currently active indexes can be corrupted at any point in time. In this case, indexes can be removed
from the system by the other indexes using a Byzantine Generals approach [Brooks 1998].

37

4.3.1. PUBLIC KEY INFRASTRUCTURE

R - Reauestina I - Mobile, Code C - Responding
NOde index node

1. Request package P location

2. Find node C containing P

1< 3. Send information about C -

4. Request P from C >1

1<. wVerfy R

6. Check R status
I <

7. R Verification
>

8. Check R verification

<

9. Seid P

Figure 28. Public Key Protocol

IU is public key of Index I
IR is private key of Index I
RU is public key of Node R
RR is private key of Node R
CU is public key of Node C
CR is private key of Node C
Message 1:

Node R sends a message asking Index I where mobile code package P is.
Request contains:

1. Name of P (Encrypted)
2. Nonce (Encrypted)
3. Address of R's index if I is not R's index

38

4. R's Address (Clear text)
Both 1 and 2 are encrypted with R's private key RR
The entire request is encrypted using Index I's public key IU.

The Nonce is undefined but may contain:
1. Request sequence number
2. Time stamp
3. Random number

or some combination of the above

Message 2:
I decrypts the message with its private key. Verify whether R's privileges have been
revoked. If so, then drop the request.

If R is not a node normally served by I, checking for revocation of R requires checking
that the privileges of the index given in 1 have not been revoked. And then checking with
that index that R has not been revoked. If either one fails, drop the request.

R's public key - RU - is known by I if R is normally served by I. Else RU is retrieved
from R's index while checking for revocation of R's privileges.

I decrypts the name of P using R's public key to verify that the message is from R.
Optionally check validity of the nonce and drop the request if it is invalid. Find address of
node C containing package P. If package P can not be found address of C is Null.

Message 3:
I sends to R:

1. Network address of node C containing package P
2. Public Key CU of node C
3. Nonce from message 1

This message is encrypted with Private Key of Index - IR and Public Key of R - RU.
R decrypts the message. Verifies the source of the message and that the nonce matches

the nonce in message 1. If the address of C is NULL, then the protocol recommences at the
next index. R can also time-out while waiting for this message. If it does so and not all
indexes have been checked, then the protocol recommences at the next index. If R times out
and all indexes have been checked, then the request fails. If the address of C is non-NULL
and R has not timed out, then the protocol continues.

Message 4:
Node R requests package P from node C by sending:

1. Nonce from message 1
2. Address of R
3. RU in plain text
4. Name of package P
5. Hash code of 1-4 encrypted with RR

This message encrypted is with C public Key - CU. After decrypting with CR, C does hash of
1-4 and compares with 5 decrypted with RU. This verifies that R is the message source and
that the message has not been modified.

Message 5:
Message sent to Index I containing.

1. Address of R
2. R Public Key - RU
3. Address of C
4. Nonce

All are encrypted using IU.

39

Message 6:
Decrypt using IR. Look to verify that node R's access has not been revoked. Since
verification of nodes not served by R was done by message 2, no extra processing for that
case is necessary here. (I retains the fact that R was valid for a limited time). If R has been
revoked set R verification to NULL. Else set R verification to True. If R verification is true,
check as well that RU is in fact the public key of R.

Message 7:
I sends message to C containing:

1. Nonce from 5
2. R verification
3. R Address

Both are encrypted using IR and CU

Message 8:
Decrypt using CR. Then C verifies that 7 came from I using IU. Verify which package P is
needed using Nonce. If R is still part of the system prepare to send P. Else drop the
processing.

Message 9:
C sends message to R containing:

1. Nonce from step 4
2. P
3. Hash of 1 and 2 encrypted using CR

The message is encrypted with RU. R may have timed out during the process. If all indexes
have been tried and timed out then the request fails. If R times out and an index remains,
the protocol recommences using the next index. If R receives message 9. It decrypts the
message and does the following:

1. It uses the nonce to match this with the correct request.
2. R compares the hash of I and 2 with 3 decrypted using CU. To verify the

source and integrity of 9.
3. The request terminates.

4.3.2. MODIFICATIONS OF EXISTING SYMMETRIC KEY PROTOCOLS FOR P2P EXCHANGE OF MOBILE CODE

PACKAGES

For all symmetric key protocols:
KR is a symmetric key known only to R and I
KC is a symmetric key known only to C and I

40

R - Reauestina I - Mobile Code C - Resnondina
Node Index node

1. Request session key

2. Send session key

3. Send Session Key to C >

S1< 4. Open handshake .

5. Close handshake
.... ~~ ~ ~~~~~.. >

6. Transfer file

Figure 29. Needham-Schroder Secret Key protocol

Message 1:
Node R sends to 1:

1. Address of R
2. Name of Package P
3. Nonce

(In the classical Needham-Schroeder the requester sends the address of node C instead of
Package Name).

Message 2:
I sends to R:
Encrypted with KRj

1. Nonce from message 1.
2. Address of C
3. Name of P
4. Symmetric Session Key in Clear Text
5. Encrypted with KCR

1. Session Key in clear text
2. Address of R

(In the classic Needham-Schroeder Protocol, item 3 is not needed).

Message 3:
R sends to C:

41

Encrypted with KC{
1. Session Key in clear text
2. Address of R

I

Message 4:
C sends a nonce to R encrypted with the symmetric key

Message 5:
R sends to C:
Encrypted with session keyf

1. Nonce-1
2. Program module name

I

Message 6:
C sends to R:
Encrypted with session keyf

1. Mobile code module P
2. Nonce-2

I

R - Reauestina I - Mobile Code C-Respondina
Node Index node

1. Request session key >1

i 2. Send session key

3. Send Session Key to C > ..

4. Transfer file
,<

Figure 30. Denning Sacco Secret Key protocol

Message 1:
Node R sends to I:

1. Address of R
2. Name of Package P

(In the classical Denning-Sacco the requester sends the address of node C instead of
Package Name).

Message 2:
I sends to R:

42

Encrypted with KR(
1. Time stamp
2. Address of C
3. Name of P
4. Symmetric Session Key in Clear Text
5. Encrypted with KC(

1. Session Key in clear text
2. Address of R
3. Time Stamp

I
I
(In the classic Needham-Schroeder Protocol, item 3 is not needed).

Message 3:
R sends to C:

1. Encrypted with KC{
1. Session Key in clear text
2. Address of R
3. Time stamp

2. Program module name encrypted with Session Key

Message 4:
C sends to R:
Encrypted with session keyf

1. Mobile code module P

43

R - Reauesting I - Mobile Code c-Respondin
Node Index nde

1. Iequest packageP P >

2. Send address of C

3. Request Session with C

I 4. Request Session Key

<

5. Deliver Key to R

I 6. Open Session T>

1< 7. Download propgram .

Figure 31. Yaholom Protocol

Message 1:
Node R sends to I:

1. Address of R
2. Name of Package P
3. Nonce

(Not in classic Yahalom)

Message 2:
I sends to R.
Encrypted with KRf

1. Nonce from message 1.
2. Address of C

I
(Not in classic Yahalom)

Message 3:
R sends to C:

1. Nonce R
2. Address of R

44

(Start of Yahalom)

Message 4:
C sends to I:
1. Address of R
2. Encrypted with KC{

1. Address of A
2. Nonce R
3. Nonce C

I

Message 5:
I sends to R:
1. Encrypted with KR(

1. Address of C
2. Session Key
3. Nonce R
4. Nonce C

I
2. Encrypted with KCf

1. Address of R
2. Session Key

I

Message 6:
R sends to C:
1. Encrypted with KCI

1. Address of A
2. Session Key

I
2. Encrypted with session keyf

1. Nonce C
2. Name of P

I

Message 7:
C sends to R:
Encrypted with session key{

1. Mobile code module P
1

4.4 NODE DESIGN AND IMPLEMENTATION
The mobile code daemon we present is based upon a core network protocol called the Remote Execution and
Action Protocol (REAP). This protocol is responsible for message passing between nodes within our network.
On top of this packet protocol we have developed a framework to allow objects to serialize themselves and
travel across the network. At a higher layer of abstraction we have written messages to handle remote process
creation and monitoring, simple file system operations, and resource index operations.

We have tested the daemons in two distributed applications. The first application is a battery-powered
wireless sensor network. Nodes are fielded with a minimal software suite that can be extended as required
using mobile code. In particular, we showed the utility of changing target classification modules dynamically
based on the set of targets observed in the environment. Use of the mobile code daemon in sensor network
applications is documented in [Brooks 2000].

45

The second application is a dynamic battle management scenario. A distributed process, such as target
allocation, consists of multiple tasks that may be performed at different locations. The enemy needs to disrupt
the target allocation process, and uses Denial of Service (DoS) attacks to disrupt the processing pipeline. The
system uses the mobile code daemon for introspection and re-allocates tasks to new nodes as required. Once
again, mobile code is seen to be useful in adapting to a chaotic environment.

The mobile code daemon framework is built on the mobile code taxonomy given in [Orr 2002]. This
taxonomy shows that the established mobile code paradigms of client server, code on demand, remote
evaluation, and mobile agents [Brooks 20021 can all be expressed using a single abstraction. A mobile code
system is defined by a distributed behavior. The behavior is a set of message transmissions between cooperating
nodes that follow an itinerary. Messages may consist of programs, data, execution commands, resource
allocation requests, etc. To cooperate, the nodes need to offer a local execution environment that remote nodes
can access [Orr 2002].

The daemon presented here provides a common execution environment, somewhat analogous to a Java
Virtual Machine. Unlike the Java Virtual Machine, the REAP protocol can mimic any of the established mobile
code approaches. It can also = create applications that do not fit the common paradigms.

The daemon is written in C++. The first version ran on the Windows NT and Windows CE operating
systems. It has since been ported to the Linux operating system. The daemon structure is broken down into
several core modules: foundation classes, the networking core, the random graph module, the messaging core,
the packet router, the index server, the transaction manager, the resource manager, and the process manager.
We will discuss each of these components in turn.

Task Laver

Message Object

I
Message Seriali~zation

Random Graph Controlr ii, Packet Router Network Layer Address Cache

Mult ihop Routing Cache Netýworkl'flansceiver

I
N--etwork oke

Figure 32. Daemon structure.

Before discussing the REAP daemon in detail, it is useful to discuss its underlying framework on which it is
built. The framework abstracts many of the complexities of systems programming out of the core, into a set of
libraries. Thus, we have written our own object-oriented threading and locking classes, whose current
implementation calls into the threads library of the underlying operating system. We also rely heavily on a set
of templated, multithreaded linked list, hash, and heap objects throughout the code. In addition, there are
classes to handle singleton objects, the union-find problem, and object serialization. Lastly, there is also a

46

polymorphic socket library that allows different networking architectures to emulate unicast stream sockets,
regardless of the underlying network protocol or topology. These socket libraries are explained in the
discussion of the networking core.

The daemon is capable of communicating over several networking technologies. The major ones are:
TCP/IP, Diffusion Routing, and UNIX domain sockets. The socket framework is designed so that new
protocols are easily inserted into the daemon. To achieve this, an abstract base class Socket includes all of the
familiar calls to handle network I/O. Furthermore, all nodes are assigned a protocol-independent unique
address. Opening a new socket involves looking up the network-layer address of a node in a local cache, and
then opening the lower-level socket. When a cache miss occurs, a higher-level protocol is provided to find the
network-layer address. The appropriate socket object is allocated based upon the network-layer address of the
destination.

Diffusion provided some interesting challenges because it is not a stream-oriented unicast protocol. Rather,
it provides a publish and subscribe interface, and is essentially a multicast datagram protocol. Thus, we had the
choice of rewriting the REAP socket protocol as a datagram protocol, or building a reliable stream protocol on
top of the Diffusion framework. It was deemed simpler to write a reliable stream protocol on top of Diffusion.
In essence, we wrote a simplified userspace TCP stack. The current userspace stack employs the standard
three-way handshake protocols for socket open and close, and it also employs a simple delayed-ACK algorithm.
This system is implemented as an abstract child of the Socket base class. Our Diffusion driver then provides an
implementation of our userspace TCP module. The Diffusion driver performs a role equivalent to the IP layer
processing code in most kernels. It receives datagrams from the Diffusion daemon through callback functions,
parses the headers to make sure the datagram has reached the correct destination, and then either discards the
contents, or passes it up to the TCP layer. These steps were deemed necessary because Diffusion is a multicast
protocol, and thus we could not rule out the possibility of datagrams reaching our socket object that were not
actually destined for it.

Early on in the project, it became clear that persistent connections between the various nodes was essential.
A single file transfer of a shared object could result in thousands of packets traversing the network, and session
setup time was simply too long over TCP and Diffusion. To counteract this problem we implemented a system
whereby sockets are kept open whenever possible. The first implementation of this system opened directly to a
destination, and did not support multi-hop routing very well. Under this implementation, socket timeout
counters were employed to close underutilized sockets. This method has inherent scalability problems, and we
decided a better solution was required.

Offset W\ord Contents

0 Protocol Version Command Code
4 Source Node ID
8 Source Process ID

12 Source Task ID
16 Source Ticket ID
20 Destination Node ID
24 Destination Process ID
28 Sequence Number Max Sequence
32 Packet Size Options I TTL

Extended Header (0-60 bytes)

Data (0-65495 bytes)

CRC Checksum

Figure 32. REAP packet structure.

47

This better solution involves a multi-hop packet routing network built on top of a random graph of sensor
nodes. Each node in the system has four graph parameters specified: minimum degree, maximum degree,
cliquishness, and clique radius. The cliquishness parameter defines the probability of a new edge being formed
to a node within the clique radius. The minimum degree and maximum degree parameters control how many
neighboring nodes can exist at any point in time. The clique parameters allow us to control the size and
connectedness of cliques within the graph. Cliques become more important when we investigate the index
system.

To add a new edge, a random number is generated to decide whether or not to add a clique edge. Then a
random node from the node cache is chosen based upon two filter criteria: the chosen node must have a
minimum path length of two to this node, and its minimum path length must be less than or equal to the clique
radius for a clique edge, or greater than the clique radius for a non-clique edge.

The messaging system implements the core of the REAP protocol. At its lowest levels, this consists of a
packet protocol, on top of which serialized objects are built. The Packet class is nothing more than a variable-
sized opaque data carrier that is capable of sending itself between nodes, and it also performs data and header
checksumming. The layout of a REAP packet is shown in Figure. The header defines enough information to
route packets, specify the upper-level protocol, and to handle multi-packet transmissions where the number of
packets is known a priori. The options field consists of a 4-bit options vector, and a 4-bit header extension size
parameter. The TTL field is used in the new multi-hop protocol to eventually destroy any packet routing loops
that might form.

Higher level messaging functionality is handled by a set of classes that do object serialization, and by a base
message class. The serialization class in REAP provides a fast method of changing common data types into
network byte-ordered, opaque data. The key advantage to this serialization system is that it only handles
common data types, and thus has much lower overhead than technologies such as XDR and ASN.1.

The base messaging class provides a simple interface to control destination address, source transaction
information, possible system state dependencies for message delivery, and control over sending the message. In
addition, it defines abstract serialization and reordering functions that are implemented by all message types.

The serialization class sits beneath the base message class and does the physical work of serializing data,
packetizing the serialized buffer, and then injecting those packets into the router.

On the receiving end, packets are received by an object serialization class and inserted into the proper offset
in the receive buffer. A union-find structure keeps track of packet sequence numbers, and once it detects that
all packets have been received, the message is delivered to a message queue in the destination task structure.

Another interesting feature of the messaging system is the function called run. This function takes a task
structure as an argument, and is generally intended to perform some action on the destination of the message.
We will see an example of this later on when we discuss the index server.

The daemon packet router has several key responsibilities. The primary one is to use its internal routing
tables to move packets from source to destination. The other primary function of the router is to coordinate the
dissemination of multi-hop routing data.

The current method of determining multi-hop paths is through broadcast query messages. We gradually
increase the broadcast TTL until a route is found, or a TTL upper limit is reached, at which point the node is
assumed down. This methodology helps to reduce flooding, while making optimal paths likely to be found. A
simple optimization allows a node to answer a multi-hop query if it has an answer in its routing table. Although
this system is essentially a heuristic, it tends to work well because failed intermediate nodes are easily bypassed
when their neighbors find that they cannot reach the next hop. Of course, this can lead to much longer paths
through the graph, but support is integrated to warn of intermediate node failures, and multi-hop cache expire
times help to reduce this problem by forcing refreshes occasionally. The multi-hop refreshes are carried out in
unicast fashion, and a broadcast refresh is only used if a significant hop count increase is detected.

The actual routing of packets involves looking at the two destination fields in the packet header. First, a
check is performed to determine whether the destination node identifier is equivalent to the current node's
identifier, or the local loopback address, or one of several addresses that are defined for special purposes, such
as broadcast to all members of a clique. The next check is to determine whether the destination process
identifier is equivalent to that of the current process. If it is not, then the packet will need to be forwarded
across a unix domain socket. If both of these tests pass, then the packet must be delivered to the appropriate

48

task. Because packets do not contain sufficient routing data to deliver them to a specific task, we must recreate
the high level message object in the router to determine the message's final destination.

Every task in a REAP process registers itself with the router during initialization. Once a task is registered,
it can receive messages bound for any active ticket. Several special tickets are defined for every task that handle
task status messages, and task-wide requests. Other tickets are ephemeral, and are allocated as needed.

An important component of the REAP daemon is the index system. This system implements a distributed
database of resource available on the network. Each record in this database describes an object of one of the
following types: index server, file, executable, library, pipe, memory map, host, or a task. Every record in the
database has a canonical name, and resource locator associated with it. Both of these values are stored as
human-readable strings. Besides this, metadata to allow for both data and metadata replication are present.
The goal is to have a distributed cluster of index servers that transparently replicate each other's index records,
and to have a resource control system that transparently replicates the actual data as well. At this point, the
replication technology is only partially implemented.

The index system consists of the following modules: client, server, database, and the associated messaging
protocol. The client is responsible for building a query message, sending the message, and either waiting for a
response, or returning a response handle to the client in the case of an asynchronous call. The server consists of
a pool of threads that poll for incoming messages on the server task structure. When a thread receives a
message, it runs the query embedded in the message against the local database, and then sends the results back
to the client in a query result message.

G - OPATOMIC(A.A) OP_NOP(G,G) OPEND(GG) OP_IF(B,G)
OPELSE(B, G) ACT_SET(F, X) ACT_INC(F) ACTDEC(F)
ACTREMOVE ACT_ADD(R) CAST_VOID(B)

A - OPNOP(A.A) OPEND(A, A) OPIF(BA. BA) OPELSE(BA, BA)
ACT_ sE)7I, X) ACT _INC(F) IACT'_DEC(F) ACTREMOVE
ACTADD(R) CASTVOID(B)

B - C OP_AND(B,B) OPOR(B,B) OP_XOR(B,B) OPNOT(B)IOPXOR(B.B)
CASTTRUE(G) I CAST_FALSE(G)

BA - C' OPAND(BABA) OPOR(BA,BA) OPXOR(BA,BA) OPNOT(BA) OPXOR(BA.BA)ý
CAST_ TRUE(A) I CAST_ FALSE(A)

C - OPEQ(F.X) OP_NEQ(FX) OP_LT(F.X)I OP_LE(FX) OP_GT(b;X) OP_GE(F.X)

F type' classification culam' url locked cacheable cache ex.lpiration

meta_min_replicas meta _max_replicas Inetareplicas meta__wei, !meta _next

data min replicas data _rmaxreplicas data replicas data__.ret, data _next

ahtime dime ,,mtime platform !version flays idnumn opaque data

I string uint8 uintl6 uint32 blob true false

R : record-reference

X - FI 1R

Figure 33. Query context free grammar for REAP.

49

The query system is based upon a fairly extensible parse tree. The context-free grammar for our query
language is shown in Figure 33. The query language permits complex boolean filtering on most any variable
defined in an index record. The index server is essentially a lightweight SQL server that is tailored to resource
location.

The index infrastructure is mainly built upon two message types: a query message, and a result message.
The query message consists of an operand tree, some query option flags, and possibly a list of index records.
Once the query message reaches the server, it is received by a server thread, and the run function is called. This
function performs a query against the index database object, and sends back a result message to the source
node. Once these actions are complete, the run function returns, and then the index server deallocates the query
object. The index server itself is nothing more than a pool of threads that accept a certain type of message, and
then allow the messages to perform their actions. In this sense, the REAP messaging system implements the
mobile agent paradigm.

The other major feature of the index system is a system to select code based upon destination system
architecture and operating system. To handle this, system architecture and operating system are considered
polymorphic class hierarchies. Every index record contains an enumeration defining its membership in each
hierarchy. When a system requests object code or binary data, we must ensure that it is compatible with the
destination system. Thus, every index query can filter based upon architecture, if desired. When a query
indicates that architecture and/or operating system are a concern, then C++ dynamiccast calls are made to
ensure compatibility. Because we are using the C++ dynamic casting technology, supported architectures and
operating systems are determined at compile time. It would not be a technically difficult modification to use
human-readable strings, and runtime-defined polymorphic hierarchies. However, we chose the compile-time
approach because it is faster, and the architectures and operating systems in our lab are relatively constant.

To give an example of how this technology would work, let's take an example of a sensor node having raw
time series data that needs to be run through an FFT. Suppose a distributed process scheduler determines that
it would be optimal to move the raw data to a wireless laptop that is deployed in the field. When the laptop
goes to run the FFT, it queries the index database for a given FFT algorithm, and requests architecture
polymorphic checking. Let's say this laptop has a processor with Intel's SSE and MMX extensions, but not the
SSE2 extensions. When the index server processes the query, let's say it finds FFT algorithms that are compiled
for 386, Pentium, SSE, Pentium 4, and Alpha EV5. When it filters these queries, it determines that it can cast the
laptop into 386, Pentium, and SSE, but not Pentium 4 or Alpha EV5. The laptop will then attempt to download
the optimal one, only dropping to slower implementations when it cannot download the fastest one.

All operations in REAP are addressed by their transaction address. This address consists of the 4-tuple
$(node, process, task, ticket)$. These globally unique addresses permit flexible packet routing. A major goal of
REAP is to permit network-wide interprocess communication through a simple high-level interface, without
introducing high overhead. We will see how this goal is met when we discuss the resource management module
of the REAP mobile code daemon.

In order to support the complex transaction routing system, a task control structure is required. All threads,
and other major tasks have their own task structure. This structure is registered with the local packet router,
and is where message structures get delivered. Its primary jobs are to handle message I/O, and to allocate
tickets. Every active ticket has an associated incoming message queue, and thus it is possible in our framework
to receive messages for specific tickets. As an added feature, message type filtering is supported at the task
level. Any messages which fail to pass the filter are not delivered to the task, and are instead deallocated.

Another purpose of the transaction management system is task monitoring. We employ a publish/subscribe
model for this purpose. Any task may request status information from another task by subscribing to its status
information service, and then every status message published by that task will be sent to the subscribed task.
At the moment, all status information is sent as unicast datagrams. The main purpose of this system is to notify
the requester that its request has been received, and to notify it again when the request is completed. Other
interesting applications of this technology could include distributed process schedulers that monitor the
progress and system load on a cluster of nodes, and then schedule compute jobs to distribute the load to meet
predefined criteria.

The resource management framework is tightly coupled with the index system. When a client program
wants to access a resource, a query to the index system is made. The results returned can then be passed into

50

the resource management object. The resource manager then attempts to open one of the resource from the
result set. If possible, one resource from each canonical name in the result set will be opened. Thus, the resource
manager is capable of overcoming node failures by looking for other copies of the same resource. The current
implementation attempts to open one instance of every canonical name in parallel, and continues this iterative
process as timeouts occur. Eventually, an instance of every canonical name will be opened, or the resource
manager will run out of instances of a resource in the index result set.

The resource control system is built on top of a client-server framework. This framework was chosen
because the types of resources we want to support are generally not concurrent objects. Thus, the resource
management system consists of two REAP message types: a resource operation message, and a resource
response message. Then, there are two types of resource objects: a client object, and a server object. For any
given resource, there will exist exactly one server object, and one client object per task with an open handle to
the resource. When a given client wants to perform an operation on the resource, it will send a resource
operation message to the server object's transaction address. The server will then call the run method of the
message, and through a set of polymorphic calls described below, it will perform I/O operations on the server
object. A response message will then be sent to the originating node.

The client and server resource objects are based upon an abstract interface that defines several common
methods that can be used on UNIX file descriptors. The major base operations are: open, close, read lock, write
lock, unlock, read, write, and stat. In all cases, blocking and non-blocking versions of these functions are
provided, and the blocking functions are simply built on top of the non-blocking code.

As a simple performance improvement, client and server caching objects were constructed that perform
both data and metadata caching. Since our distributed resource interface is essentially identical to the virtual
file system interface that unix-like kernels give to applications, standard locking semantics can apply. Thus, our
caching module simply looks at the numbers open read mode and write mode file descriptors to determine the
acceptable caching strategy. For the multiple readers, and single writer cases, we allow client-side caching. For
all other cases we must disable client-side caching. Thus, our caching semantics are identical to those used in the
Sprite Network Filesystem[6]. The REAP framework makes our implementation very simple because our
mobile-agent based messages can easily turn on and off client caches with minimal overhead.

To demonstrate the power of this resource control model, we have built client and server objects to support
a distributed shared memory architecture. Once again, we employ the abstract client-server caching model to
increase performance.

The last major component of the REAP framework is process creation and management. This portion of the
architecture consist almost entirely of message types. The primary message type is a process creation message.
This message contains an index record pointing to the binary to execute. It also contains the argument and
environment vectors to include, as well. A second message is process creation response message. This message
simply contains the transaction address of the newly created process. Finally, task monitoring messages may be
used to monitor the progress of a task using the publish/subscribe model discussed in the section on transaction
management.

The REAP mobile code daemon permits us to experiment with many different mobile code paradigms over
a fault-tolerant multi-platform framework. Because it provides a simple cross-platform, distributed
interprocess communication framework, it is very useful for developing system of collaborating distributed
processes. This approach is capable of mimicking all the major mobile code paradigms, as shown in [3].
Furthermore, its polymorphic code selection system permits us to use the optimal algorithm on a given system
without significant user interaction. Finally, the distributed resource management system allows us to reduce
bandwidth and permit concurrent use of resources without breaking normal concurrency rules.

5. SECURING INDIVIDUAL HOSTS

This section describes work done on the project related to protecting individual hosts. We explored the use of
re-programmable hardware in security systems. A major byproduct of that research was the implementation of
an FPGA based encryption engine with performance superior to all the other published implementations. We
also showed how to combine compilers and hardware instruction sets to protect against covert channel attacks,

51

like differential power analysis. Finally, we experimented with modifying intermediate representations of
mobile code executables to prevent unauthorized execution and reverse engineering of software.

5.1 FPGA ENCRYPTION ENGINE

The recent evolution of powerful FPGA hardware has made their suitability for cryptoprocessor systems more
evident. Additionally, most cryptographic algorithms have ease of hardware design as a main design goal,
which makes them particularly well suited to implementation in Verilog HDL. The high cost of cell-based and
full custom cryptography chips makes them prohibitive. Also, the inefficiency and low throughput of software
implementations prevents their widespread use. FPGAs present an ideal compromise in that they retain the
reconfigurability and control of software approaches while also achieving high throughputs near those of
custom-designed ASICs.

All high-throughput cryptographic block cipher implementations have utilized a pipelined approach,
where inner-round functions (such as those in AES or DES) are duplicated. This allows for both high
throughput and efficient use of hardware. However, key control logic becomes complex should one desire to
change keys during encryption, as either the pipeline must be emptied and the key changed or additional logic
is required to detect and adapt to the change. We propose a high-throughput parallel processing an alternative
to pipelined cryptoprocessor architectures. In addition to the pipelining benefits of hardware efficiency and
high throughput, it allows for scalability and controllability of the resulting architecture. Pipelined FPGA cores
do not utilize the entire chip; our parallel architecture allows for maximum utilization given sufficient I/O
resources.

Conventional pipelined implementations of the AES standard can achieve data rates up to about 17.5 Gbps
[arvinen 2003]. Pipelined implementations of DES can achieve data rates of up to about 10 Gbps, depending on
both the target architecture and the design entry method [Jarvinen 20031. By comparison, a high-speed software
implementation of DES would likely achieve a throughput of about 250 Mbps. Our parallel architectures have
indicated memoryless throughputs of 18.8 Gbps for AES, 9.00 Gbps for DES and 8.631 Gbps for 3DES. Using the
Virtex-II Pro's Block RAM resources for the AES substitution boxes, we achieve a throughput of 17.7 Gbps. This
paper aims to evaluate the performance and implementation details of parallel processing architectures based
on the AES and DES symmetric key block ciphers. Verilog HDL modules are synthesized on the Virtex-Il Pro
FPGA platform to evaluate performance and security of parallel cryptoprocessing applications.

We propose the parallel architecture as a method of achieving maximum utilization of the FPGA's logic
cells and I/O resources. Symmetric key block ciphers consume a very large amount of silicon area with respect
to their I/O usage; for example, a memoryless 128-bit AES encryptor proposed in [Jarvinen 2003] uses roughly
12 times more area than an arbitrary 64-bit multiplier despite having the same amount of I/O usage. Typically,
larger FPGAs are required for implementation of these block ciphers, and larger FPGAs have by definition
higher numbers of I/O pins.

Table 1: Summary of Related FPGA Encryption Implementations

Design Origin Implementation Target Architecture Throughput
Belfast, DSiP Labs Pipelined DES Virtex 3.87 Gbps

Xilinx Pipelined DES Virtex 10.7 Gbps
Sandia National Labs Pipelined DES ASIC 9.28 Gbps

Tampere University, DCS Lab Pipelined 3DES Virtex 364 Mbps

Rodriguez, Saqib, Diaz Pipelined AES Virtex-E 4.12 Gbps

GMU Pipelined AES Virtex 12.2 Gbps

Helsinki UT Pipelined AES Virtex-II 17.8 Gbps

University of Calgary Multithreaded AES Virtex-II 7.60 Gbps

As we will show, pipelined architectures require considerably more area than a single parallel encryption
block; however, a fully parallel encryption architecture requires more area than a pipelined architecture.
Parallel blocks allow a far greater degree of flexibility when designing an encryption system as we will detail
based on its area flexibilities and security advantages. If two pipelined architectures cannot fit within a given
device, an arbitrary amount of FPGA resources, both logic and I/O, will remain unused as the pipelined block

52

cannot be split. However, individual parallel blocks are considerably smaller and can be used to reduce
fragmentation and increase utilization of the FPGA's logic and I/O resources.

We will also show that parallel architectures provide both performance and utilization benefits in area-
constrained devices. If the available area is an integer multiple of the area required for a pipelined architecture,
pipelined systems have a performance advantage. However, for spaces larger or smaller than this, pipelined
systems become inefficient. Note we make the assumption that additional I/O resources are always available.
However, in a black-and-white area comparison, pipelined architectures are considerably smaller than fully
parallel architectures. This is unavoidable, as the key hardware must be duplicated for each block. In the case of
AES, the key scheduling module is rather large; this represents a direct tradeoff between area and security of
the system.

It is important to both the security and functionality of the system that the keys are kept separate. This
requires that each individual parallel block have its own key hardware, which enforces spatial isolation of the
keys. This allows multiple independent encryptions to process simultaneously. As a consequence, the parallel
encryption blocks suffer an area penalty with respect to the pipelined architecture. It should be noted that is
infeasible to use shared key hardware among the parallel encryption blocks since each block is limited by
design to only one output per cycle. Key sharing is impossible because even if two encryption blocks share a
common key, no two parallel blocks are the same point in the encryption and hence would require separate key
values.

Figure 34 below details the differences between our proposed parallel architecture and conventional
pipelined architectures. Each block in the parallel architecture is a completely self-contained encryption unit.
The dotted lines indicate the smallest possible unit that can encrypt a block of data. A fully parallel encryption
architecture utilizes n blocks, where n is the number of rounds of the specified block cipher. Note that a
pipelined implementation requires all n functional blocks whereas a parallel block requires only one. Thus we
define a parallel encryption block as a single round function block and a key control module. Furthermore, we
define a pipelined encryption as having one key control module and n round function blocks. In the parallel
case, more than n blocks requires an additional I/O allocation. The parallel encryption blocks each have their
own independent key hardware. This illustrates the property of n independent encryption sessions utilizing n
independent keys. Also, it follows logically that only one independent encryption block must be present for
encryption to proceed. We can see then that the use of n independent keys requires a minimum of n parallel
blocks.

Figure 35 below illustrates the performance comparison of the fastest and most efficient published
implementation of AES-128 with our fully parallel architecture. Note that this fully parallel architecture uses
Block RAMs to implement the byte substitution boxes. We see that as expected, the pipelined implementation
has better best-case performance but is limited greatly in terms of usability. It is clear that when area is
constrained, parallel architectures provide improved performance and provide more efficient utilization of the
FPGA's resources. The scalability of the parallel architecture makes it suitable for smaller spaces. The pipelined
architecture requires approximately 11000 SLICEs and the parallel blocks each require approximately 1300
SLICEs. In this case, where the available area is a multiple of approximately 11000, the pipelined architecture
has an advantage. However, for ranges larger and smaller than integer multiples of 11000, the parallel
architecture provides greater logic utilization as well as increased overall system performance.

Parallel Avrchitctre
... Pipelined Architecture

Ke HaHadware
Function Block Ke+.

Figure 34. Overview of Parallel and Pipelined Architectures

53

Throughput vs. Area

S 30

20-
i10,i -

0 4000 8000 12000 16000 20000 24000
Area (Virtex-Il SLICEs)

- Parallel -- U- Ppelined

Figure 35. Area/ Throughput Comparison of Parallel and Pipelined Architectures

The Advanced Encryption Standard (AES) was officially adopted in May of 2002 as the new encryption
standard. It is designed to operate on all combinations of data input and keys with lengths of 128, 192, and 256
bits. This design uses a data input length of 128 bits with a key length of 128 bits. A block of data is placed into a
16-byte array, and proceeds through 10 rounds of encryption. Basic operations include byte substitutions,
independent row byte shifts, column Galois field multiplications, and key additions. Row shifting and column
multiplication use 32-bit operands (one 4 byte row or one 4 byte column). Similar to DES, this design is not
pipelined; it is able to achieve reasonable throughput without doing so. Also, space limitations within the
context of a mid-size FPGA make pipelining prohibitive. It should be noted that AES is not symmetric for
encryption and decryption. The mathematical operations are different and require different hardware.

The design uses reusable function hardware, with minimal unnecessary hardware duplication. As was the
case with DES, the structure of AES lends itself logically to reusable function block. The four row shifting
operations are separate modules, since each operation is a separate shift. All row shifting is done through
routing channels; no logic resources are used. They are similar to DES permutations, though entire bytes are
shifted rather than individual bits. The column multiplication operations use four separate modules, allowing
each column multiplication to proceed in parallel. The byte substitution is a 256x8 ROM lookup, and it is
duplicated 16 times to also allow maximum parallelism. Also, we can use Virtex Block RAMs to implement the
byte substitution tables. This saves a considerable amount of space, since a fully combinatorial implementation
of a single encryption block requires 1,280 Virtex-II SLICEs for substitution tables alone. A dual-ported Block
RAM is used to implement two substitution boxes. This requires 8 Block RAMs per block; a fully parallel block
would use 80 Block RAMs. The substitution boxes associated with the key scheduler are implemented
combinatorially for performance reasons. All other internal functions are combinatorial. This allows for a
parallel architecture, which to some degree sacrifices hardware efficiency for throughput.

The security of AES has been well researched and is widely considered to be more secure than Triple DES.
Its longer key length adds to its security capabilities; additionally, key lengths of up to 256 bits allow an even
higher level of security. In this design, the 10-round structure and 128-bit block size allow the AES algorithm to
encrypt data much faster than a similar Triple DES implementation. Also, AES provides more efficient use of
hardware; its performance and security capabilities far offset its somewhat larger area.

The AES implementation is ultimately not as compact as possible, but duplicates some hardware to achieve
higher performance. The byte substitution ROM is implemented 16 times; these modules are re-used each
round during encryption and decryption. An extremely area-constrained design could theoretically use only
one byte substitution ROM with a huge penalty to throughput. Also, the column multiplication function is
repeated four times. This is not as much of an issue, since a single multiplication operation requires roughly half
the area of a single byte substitution ROM. The largest component is the key scheduler, which is not duplicated.
The bulk of the key scheduler is comprised of four byte substitution ROMs and four 32-bit XORs.

54

The encryption module is able to attain gigabit throughput, but as a comprehensive module the system
must operate at or around the decryption frequency (depending on synthesis results). The overall throughput is
reasonable at about 1.6 Gbps. Note that the decryption operation initially incurs a 10 cycle key setup penalty
once per key lifetime. The keys are generated sequentially but must be used in reverse order. It should also be
noted that encryption and decryption could occur in parallel with a comprehensive module provided the inputs
arrive on subsequent cycles. Also, it is assumed that decryption key setup occurs prior to the bulk of the
encryption or decryption operations. For this paper, we consider only encryption performance.

Since the design does not waste hardware, we can also construct a dedicated high-throughput AES
encryption processor based on duplicated single AES encryption modules. Unconventional approaches have
been proposed before, including multithreaded and pipelined approaches. This architecture is similar to a
multithreaded approach in that synchronization between "threads" need only occur to prevent data collision at
the output. Assuming all modules are identical, collisions are impossible, as a collision would require data
arriving simultaneously to two separate units. This is prevented because the input bus is shared.

For a fully parallel encryption architecture, we do not include any decryption modules. Additionally, the
inclusion of decryption would reduce the maximum hardware utilization to 50%. At best, it would interleave
encryption and decryption operations, likely increasing the overall latency for both operations.

Note that we include synthesis results for both a single AES block and an AES encryption processor with a
hard-coded key. This is similar to the JBits implementation of DES mentioned above, and the speed gains are
noticeable. Also, a significant area reduction is achieved. However, this approach is impractical for two reasons.
The key security is weakened greatly, as all round keys (including the key in its pure form) are stored in either
on-chip RAM or ROM. Thus direct memory attacks could intercept the key itself. Also, changing the key
requires a partial reconfiguration of the device. This expends a considerable amount of power.

Table 2: Performance of AES Encryption and Decryp tion on Virtex-II Pro FPGAs
Aloih Number of Parallel Blocks SysemFrqunc Area (Slices) Key Units Block RAMs Truhu

AES-128 10 146.798 MHz 23979 10 0 18.80 Gbps

AES-128 10 138.122 MHz 14013 10 160 17.77 Gbps

AES-128 (1 Encryptor / 1 124.906 MHz 6184 1.599 Gbps
Decryptor) r____ ________

AES-128 1 147.973 MHz 2921 1 0 1.894 Gbps
AES-128 1 145.052 MHz 1319 1 16 1.857 Gbps
AES-128 10 150.621 MHz 20249 _ 0 19.28 Gbps
AES-128 161.577 MHz 370 1 0 2.068 Gbps

We have shown that a parallel architecture for symmetric cipher encryption allows a higher degree of
control over conventional pipelined architectures. Also, the parallel encryption architectures allow for multi-
gigabit throughput for all symmetric ciphers. Single-chip performance of this parallel approach exceeds most
commercially available pipelined cores. The proposed architecture uses parallel encryption blocks to achieve a
high throughput zero latency design.

The implementation of the algorithms and encryption processors in Verilog HDL allow for efficient
implementation in both FPGA and ASIC mediums. Also, unlike full-custom designs, optimizations and
changes can be made quickly and easily. This allows for a high degree of scalability and controllability of the
parallel architecture. Additionally, through slight design modifications we can show that the use of Block
RAM for substitution boxes improves relative performance.

We have shown also that a parallel architecture provides a greater degree of security than conventional
pipelined architectures. We can use controlled physical random functions to generate a device-independent
hardware signature. With some slight algorithmic modifications, we can limit the existence of the key to partial
transient values, and hence we protect the symmetric key from analysis and interception.

55

5.2 SECURE INSTRUCTION SET AND DIFFERENTIAL POWER ANALYSIS
Our energy masking approach is based on eliminating the input dependencies of an operation. Our approach
is focused on four types of operations that are critical in the DES encryption: assignment operation, bit-by-bit
addition modulo two (XOR) operation, shift operation and indexing operation. In our approach, we do not
mask all the operations, but only the operations that use the secret key and those operations that use the data
generated from prior secure operations. The compiler analyzes the code and identifies how these variables are
used within the code. Then, for the operators that work on these variables, the compiler employs secure
versions of the corresponding instructions. It should be emphasized that it is not sufficient to protect only the
sensitive variables annotated by the programmer. This is because the variables whose values are determined
based on the values of the protected variables can also be exploited to leak information. Consequently, such
variables also need to be protected. We achieve this using a technique called forward slicing [Howitz 1990]. In
forward slicing, given a set of variables and/or instructions (called seeds), the compiler determines all the
variables/instructions whose values depend on the seeds. The complexity of this process is bounded by the
number of edges of the control flow graph of the code being analyzed. After all the variables whose values are
affected by the seeds are determined, the compiler uses secure instructions to protect them.

Data Initial Permutation Data Initial Permutation
(LORO) = PermutelP(Data) (LO,RO) = PermutelP(Data)

Key Permutation Key Permutation
(COXi1) PermutcKI(Kiex) (C0.D0) (r- PermutcKI(Key)

= denotes insecure assignmeni f- denotes secure assignment

Ma Rounds M'b Rounds
Left Side Operation Left Side Operation
Lin Rin- I Lin (-- Rm- I
M* Key Generation Mb Key Generation
Cm - Rotate(Cm-l,n) Cm (- Rotate(Cm-I. n)
Din Rotaite Din- I ,n) Din <- Rotate(Din- I .n1)

Km -PermutcK2(Cm.Dm) Km <- PemnutcK2(CmDm)
Right Side Operation Right Side Operation
ElR) PcrinutE(RRm-I) ER)R-- P'crnuteE(Rm-I I
l(Rm-1,K) = S(E(R)(+) Kin) f(Rm-I ,K) (- S(E(R) <+> Kin)
Ri = Li-I Mi) fRin-I.K) Rm <- L[n-I <+> itRmn- .Ki

Output Inverse Permutation Output Inverse Permutation
Output=PermutelPi(RI 6,LI 6) Output=PermutelP(RI6,LI 6)

(a) Original DES operations (b) Modified DES operations
Figure 36. Modified DES Algorithm.

Figure 36 shows how we modified the DES operations. Figure 36(a) shows the original DES operations. The first step
is initial permutation of the plaintext. This operation does not use any secret key and hence does not require being secure.

The next operation is the key permutation. This operation obviously needs to be secure. Figure 36(b) shows how we
modify this operation. In this figure, the symbol "=" corresponds to the original assignment (i.e., insecure assignment),
and the symbol "<-" indicates that the assignment is secure.

The next step contains the operations within each round. Since some of these operations require the secret key, and
the operations are repeated in every round using the data generated from the previous round, we need to secure all
operations inside this block. Note that the modified left side operation uses a secure assignment operation, although it does
not operate on the secret key directly. This is because it uses the data generated from the previous round (for >2nd round)
that uses the secret key. In the right side operation, all the instructions need to be secure. Each round uses four types of
secure operations: they are secure assignment, secure shift, secure bit-by-bit addition modulo two and secure indexing.
Note that the S symbol in the figure represents the S-Box operation.

The last operation is the output inverse permutation. This operation does not need any secure instruction although it
uses data generated from secure instructions as it reveals only the information already available from the output cipher.
The following section explains how our secure instructions are implemented.

Our target 32-bit embedded processor has five-pipeline stages (fetch, decode, execute, memory access and write
back) and implements the integer instructions from the Simplescalar instruction set architecture. Its ISA is representative
of current embedded 32-bit RISC cores used in smart cards such as the ARM7-TDMI RISC core. We augment our target
instruction set architecture with secure versions of select instructions. To support these secure operations, the hardware
should be modified as explained below.

56

IF ID EXE MEM WB

Re m • ndt.-il into Reg

Imtrmdata Dummy
Offset Address Memory Capacitance
Fetch Calculation Fetch Load

Figure 37. Secure Load Architecture (dotted portion is the augmented part)

First, we provide an overview of the underlying reasons for the differences in the power consumption because of data
dependencies when executing these instructions. An assignment operation typically involves loading a variable and storing
it into another variable. We will consider the parts of the load operation that are of interest. All stages of our pipeline (see
Figure 37) till the memory access stage are independent of the loaded data (note that revealing the address of data is not
considered as a problem). The memory access itself is not sensitive to the data being read due to the differential nature of
the memory reads. However, the output data bus switching depends on the data being transmitted. For example, let us
consider the different scenarios for the I' bit (dO) of the 32-bit data read from the cache. If the values of dO in two
successive cycles are 0 and 1, it consumes more power than the case when the values are 0 and 0 in these two cycles.
Specifically, for an internal wire of lpF and a supply voltage of 2.5V, the first case consumes 6.25pJ more energy than the
second case. The output from the memory access stage is fed to the pipeline register before being forwarded for storing
the data in the register file. Thus, based on whether a bit value of one or zero is stored in the pipeline register bits, a
different amount of energy is consumed. Finally, the energy consumed in writing to a register is independent of the data as
the register file can be considered as another memory array.

The secure version of the load operation will need to mask all these energy differences due to bit dependences. This is
achieved by the following modifications to the architecture. The buses carrying the data from a secure load are provided in
both their normal and complementary forms. Thus, instead of a 32-bit bus, we use a 64-bit bus. Thus, the number of Is
and Os transmitted in the bus will both be 32. However, this is not sufficient for masking the energy differences that
depend on the number of transitions across the bus. But this modification along with a pre-charged bus can mask this
difference. All the 64 bus lines are pre-charged to a value of one in the first phase of the clock. In the next evaluating
phase, the bus settles to its actual value. Exactly, 32 of the bus lines will discharge to a value of zero. In subsequent cycles,
energy is consumed only in pre-charging 32 lines independent of the input activity. The next modification involves
propagating the normal and complementary values until the write back stage. The complementary values are terminated
using a dummy capacitive load. The required enhancements to the underlying processor architecture are illustrated in
Figure 3. Similarly, a secure version of the store operation involves passing along both the normal and complementary
forms of the data read from the register file in the decode stage to the memory access stage.

A secure assignment uses a combination of both the secure load and the secure store to mask the energy behavior of
the sensitive data. Figure 38 shows a specific elaboration of the use of the secure assignment in assembly code for the
assignment performed during the "left side operation". The high-level assignment statement leads to a sequence of
assembly instructions. The critical operations (the load and store instructions highlighted) whose energy behavior needs to
be made data independent are then converted to secure versions in our implementation by the optimizing compiler.

57

// Left Side Operation
for (i=O; i<32; i++)

newL[i] = oldR[i]

$L12: $L12:

$L15: $L15:
lw $2,i 1w $2,i

la $4,newL la $4,newL
addu $3,$2,$4 addu $3,$2,$4
move $2,$3 move $2,$3
1w $3,i 1w $3,i
move $4,$3 move $4,$3
s11 $3,$4,2 sll $3,$4,2
la $4,oldR la $4,oldR
addu $3, $3,$4 E addu $3,$3,$4
move $4,$3 move $4,$3
1w $3,0($4) 8iw $3,0($4)
Sw $3,0($2) sow $3,0($2)

$L14: $L14:
1w $3,i 1w $3,i
addu $2,$3,1 addu $2,$3,1
move $3,$2 move $3,$2
sw $3,i sw $3,i
j $L12 j $L12

$L13: $L13:

(a) Original Assembly Code (b) Modified Assembly Code

Figure 38. Code level representation of the left side operation

The secure 32-bit XOR instruction is implemented using complementary pre-charged circuit (see Figure 5)
that will ensure that for every XOR bit that discharges in the required circuit, the complementary circuit will
not discharge and vice-versa. In the first clock phase (when v =0), all (64 = 32 original + 32 complementary) the
output nodes of the XOR circuit are pre-charged to one. In the next phase (when v=1), half of them will
discharge and the other half of them will remain at one. In subsequent cycles that use the XOR, the energy is
consumed only for charging 32 output nodes immaterial of the data activity.

During the S-Box operation, a 6-bit value is used to index a table. This operation is performed by a load
operation with the 6-bit value serving as the offset in our underlying architecture. Note that our current secure
load operation does not mask the energy difference due to differences in the offset. As these 6-bits are derived
from the key, it is also important to hide the value of this offset. When the 6-bit value is added as an offset to
the base address of the table, the addition operation will consume an energy based on the 6-bit value. In order
to avoid this, we align the base address of the table such that the 6-bit value serves as the least significant bits
of the lookup and the most significant bits are determined at compile time. Further, the inverted value of this
6-bit index is propagated to mask the energy consumption. Thus, the load operations used for indexing are
replaced by the secure indexing that generates the memory address using our secure version.

In order to utilize these augmented architectural features, the compiler tags selected operations as secure. Secure
instructions can be implemented using either the unassigned opcodes (bits in the instruction identifying the operation) in
the processor architecture or by augmenting the original opcodes with an additional secure bit per operand. In our
implementation, we resort to the second option to minimize the impact on the decoding logic. Whenever a secure version
of the instruction is identified both the normal and complementary versions of the appropriate segments of the processor
become active. For example, for the secure XOR operations, the data values (both source data and result data) are present
in normal and complementary forms in the internal data buses. Further, the required and complementary versions of the
circuit operate together. Since the additional parts consume extra power, the clock to the complementary versions is gated
to reduce energy consumption. The details of the gating (note that the complementary version of the circuit is provided
with a clock v gated with secure signal - secure v - for the evaluation phase) for the XOR unit implementation are shown
in Figure 5. Thus, as opposed to energy consumption of 0.06pJ in the secure mode, the XOR unit consumes only 0.03pJ in

58

the normal mode. Additional savings in energy also accrue during the execution of normal versions due to gating of the
additional buses and the pipeline registers.

V 2 V 0-4

Figure 39. XOR circuit and its complement. v is the clock. A and B are the inputs to the XOR function

To evaluate the effectiveness of our approach, we have implemented the DES algorithm in software and captured the
energy consumption in each cycle using a customized version of the publicly available SimplePower, a cycle-accurate
energy simulator. We focus only on the processor and buses in this work, as memory power consumption is largely data-
independent. The simulator uses validated transition-sensitive energy models for both the buses and functional units
obtained through detailed circuit simulation, and is within 9% of actual values. It is able to accurately capture the
differences in energy consumption due to data transitions. The flexibility of working with the simulator provides us the
ability to monitor the energy consumed in every cycle (along with details of actual instructions executed) and also helps us
in quickly identifying the benefits or (otherwise) in modifying the underlying processor architecture. Current measurement
based approaches would be limited by the sampling speed of the measuring devices and would also be more difficult to
correlate the operations and sources of energy consumption. The processor modeled for our simulation results is based on
0.25micron technology using 2.5V supply voltage.

Gcm T

o 250
-~200

ISOIon0

1 287? 6573 8359 111 45 13931 16717 1 9f503 22289 2510r5 215061
T1l m , ,dC;= (

Figure 40. Energy consumption trace of encryption (every 10 cycles)

First, we show the energy behavior of the original DES algorithm to demonstrate the type of information that it leaks.
Figure 40 shows the energy profile of the original encryption process revealing clearly the 16 rounds of operation. This
result reiterates that the energy profile can show what operations are being performed. Next, we present a (differential)
energy consumption trace for two different secret keys to demonstrate that the energy consumption profiles can reveal
more specific information.

Figure 41 illustrates the difference in energy consumption profiles generated for two different secret keys using the
same plaintext. This example illustrates that it is possible to identify differences in even a single bit of the secret key.
Similar observations on energy differences can also be made using differences in one of key-related variables generated
internally.

Figures 42 and 43 show the difference between the two energy consumption traces generated using two different
secret keys and the same plaintext before and after the energy masking. These traces are shown only for the first round of
DES algorithm for clarity. The graphs clearly demonstrate that using secure instructions can mask the energy behavior of
the key related operations. While the effectiveness of the algorithm is shown using differences between profiles generated
from two different keys, the results hold good for other key choices as well. Specifically, the mean of the energy
consumption traces which generate different internal (key related) bits will not exhibit any differences that can be
exploited by DPA attacks.

Figures 44 and 45 depict the difference between the energy consumption traces generated using two different plain
texts but the same secret keys.

59

to
o 6

-2

Time/Cycle (Origina II, ,

Figure 41. Difference between energy consumption profiles generated using two different secret keys (vary
in bit 10), 1st round

30

220-

S~-ID -1

-2D

Time/Cycle M gi no 1)

Figure 42. Difference between energy consumption profiles generated using two different keys before
masking process

0ý9
o0.8
0,7

096

0.5
0.4

0.3

0.2

0

1 1940 3879 5818 7757 9696 11635 13574 1551317452 19391

Time/Cycle (Masking)

Figure 43. Difference between energy consumption profiles generated using two different keys after
masking process

30

0

10

-20

-30
Time/Cycle (Original)

Figure 44. Difference between energy consumption profiles generated using two different plaintexts
before masking process

60

3

2.5

S2

1.5

105

0

0 2177 4353 6528 8705 10081 13057 15233 17409 1953
-0.5

Time/Cycle (Masking)

Figure 45. Difference between energy consumption generated using two different plaintexts after masking
process

The first operation in the DES is plaintext permutation. Since this process is not operated in a secure mode, the
differences in the input values result in the difference in both the energy masked and original versions. The other
operations in the first round are secure; as a result, there are energy consumption power differences.

However, the proposed solution is not without its drawbacks. The energy masking requires that the same amount of
energy be consumed independent of the data. Thus, additional energy is consumed in the circuits added for the
complementary portion of the circuit as shown in Figure 46 However, this additional energy is 45 pJ per cycle (as
compared to an average energy consumption of 165 pJ per cycle in the original application). Note that we add excessive
energy even in places where the differential profile in Figure 8 shows no difference.

45

40

25

30

5

1 149 297 445 593 741 889 1037 1185 1333 1481 1629 1777

Time/Cycle (The 1st Key Permutation)

Figure 46. Additional energy consumed due to the energy masking operation during the 1st key
permutation

This is because the same secure instruction is used for parts of the input that are the same for both the
runs. Of course, in portions where the data was identical we have nothing to mask but we need to be
conservative to account for all possible inputs in a statistical test using large samples. It must also be observed
that our approach of using selective secure instructions helps to reduce the energy cost as compared to a naive
implementation that balances energy consumption of all operations. For example, looking at code segment
shown earlier in Figure 4, we increase the energy cost of only one of the four load operations executed in the
segment. On the other hand, the naive approach would convert all the four load operations into secure loads
thereby consuming significantly more energy than our strategy.

The total energy consumed without any masking operation is 46.4 uJoule. Our algorithm consumes 52.6
ujoule while the naive approach consumes 63.6 uJoule (all loads and stores are secure instructions). When all
instructions are secure instructions, it will consume almost as twice as much as the original, 83.5 uJoule. This
scheme is the one used in current dual-rail solutions.

Smart cards, unlike magnetic stripe cards, can carry all necessary functions and information on the card.
Therefore, recent years have witnessed a significant increase in smart card use throughout the world. In fact,
Data Monitor predicts that over 3 billion smart cards are in circulation worldwide. As a result, ensuring secure
use of smart cards is receiving a lot of attention.

The uniqueness of our solution comes from the fact that, unlike many previous techniques, we approach the problem
from an architectural perspective and consider adding secure instructions to a given architecture. The purpose of these
secure instructions is to hide the energy behavior of sensitive variables in the application (e.g., key values). Our
experiments with the DES application demonstrate that the proposed solution is very effective in preventing the
information leakage due to power analysis.

61

5.3 SECURE CODE DELIVERY
The proliferation of constrained embedded devices [requires a complete rethinking in the design of software.
In contrast to desktop and server environments, embedded applications need to consider the stringent
limitations imposed on several resources such as memory size and energy budget. The focus of this work is on
providing a resource-conscious solution for supporting secure programming of remote devices.

In many embedded devices, the functionality needs to be reprogrammed periodically to support software
upgrades or reprogramming may be required to adapt the functionality to changing operational needs. For
example, the functionality of sensor nodes may need to be changed based on newly sensed events and the
constraints imposed by limited memory space will necessitate remotely reprogramming the device as opposed
to storing all envisioned codes locally. However, the flexibility of field upgrades provided by such remote
reprogramming also makes the code vulnerable to eavesdropping and execution in an unauthorized device. In
embedded environments such as sensor networks deployed in military applications or for natural disaster
management, ensuring code protection becomes vital. There are two aspects of security that need to be
addressed: authentication and privacy. Authentication is the verification of the source of information (in our
context both programs and data are information). Privacy is restricting access to information to authorized
entities.

Cryptography is the accepted tool for achieving these goals. A cryptosystem has a plain text space, a
cipher text space, and a key space. Functions map data between the plain and cipher text spaces using the key.
If both mappings use the same key, the process is symmetric cryptography. If the keys differ, the process is
public key cryptography. Cryptosystems use mapping functions, whose solution without the key is of
provably high computational complexity. Unfortunately, for many constrained embedded systems,
cryptography is expensive in terms of time, power, and computational resources.

To overcome the resource needs of cryptosystems, a multi-tiered approach is sometimes used.
Computationally expensive public key methods are used to exchange symmetric key at infrequent intervals.
The less expensive symmetric key cryptography is used to frequently exchange symmetric hash functions.
Data is exchanged after one execution of the hash function. On reception, the hashed data is sent through the
hash function again; restoring the data to its original state. In this case, hashing is a form of obfuscation.
Obfuscation serves a role similar to cryptography, but is less computationally intensive and has no
computational complexity guarantees.

In this work, we propose an obfuscation-based approach for providing security of programming a remote
embedded Java device. Our choice of Java is motivated by the following reasons. First, in the embedded
domain, a variety of system and operating configurations are prevalent making it an attractive option to use
architecturally neutral Java bytecodes. Second, Java technology is being increasingly supported in many
embedded devices ranging from smart cards to cell phones. In our design, the goal is to permit mobile devices
to be reprogrammed by transmitting the bytecodes associated with the new functionality while preventing
unauthorized mobile devices from correctly executing these bytecodes.

In our approach, the programming system and the authorized embedded node exchange a Java bytecode
substitution table using standard encryption techniques. Two protocols are given for bytecode table exchange:
one uses symmetric and the other public keys. The substitution table is used by the user to encode the
bytecodes to be transmitted and by the authorized mobile node to interpret the received bytecodes.
Unauthorized bytecode installations will either cause an error during the verification process since lack of
substitutions will most probably lead to stack overflows/ underflows or prevent the intended operation from
executing correctly. However, similar to all substitution ciphers, our scheme is vulnerable to frequency attacks
by an eavesdropper. Hence, we design our substitution table such that the frequency information is
minimized.

We validated our approach using a set of Java applications and show that the proposed technique is a
performance effective solution as compared to a standard encryption technique based on Rinjdaels algorithm.
Furthermore, our experiments show the robustness of the substitution-based approach to frequency attacks
using the entropy metric.

Our approach complements prior solutions that attempt to protect mobile codes. Among approaches used
for providing security for Java bytecodes include proof-carrying codes, modified class names, the use of
encryption and filters. Shin et al. [Chander 2001] modify the bytecodes such that some classes and methods of

62

interest are changed to more restrictive classes and methods. For instance, to prevent a window consuming
attack, they modify the frame class to safe$frame class that can prevent and control every window generation.
Necula et al [Necula 1996] introduce proof-carrying code that is based on the idea of transmitting the safety
proof along with the application code. One of the problems with this approach is the large increase in code size
due to the proofs.

There are also several suggested methods for protecting Java class files from illegal reverse engineering
using de-compilation. One such method is to encrypt and decrypt the code at the server and client end
respectively to limit access to authorized devices. However, encryption/decryption is expensive, especially in
resource-constrained environments. Another method is to require end-users make code requests to download
a class file to also provide the distributing server information on the platform the program will be executed on.
The server would then compile and send the native code to the client instead of the bytecode form. This
scheme may deter the reverse engineer by making the de-compilation process more involved. However, there
are de-compilers for native code as well such as Valkyrie for Clipper, ReFox for FoxPro and dcc for C.
Furthermore, the transmission of code in native form is unattractive when a larger variety of platforms need to
be supported. Code obfuscation is an attractive alternative to make reverse engineering using decompilation
difficult. In this technique, the class files are transformed to an obfuscated class file that produces the same
output but is more to de-compile. In contrast to data-flow or control-flow obfuscations that make it more
resilient to decompilers, our approach to obfuscation changes the opcode assignments associated with the
bytecodes.

In our method, we use a bytecode conversion table (BCT) based approach instead of encrypting the
original file that contains the application. The BCT contains a list of bytecode pairs <Opl, Op2>, where Opl is
the original bytecode and Op2 is the corresponding substitution. This conversion table is used at the
authorized sender side to transform the original code into an encrypted code that is subsequently sent to the
mobile devices.

While using substitution to obfuscate information may seem an easy solution, the main challenge is in
thwarting attacks based on frequency analysis. Frequency attacks are common to all substitution ciphers. By
counting the frequency of symbols in the cipher text and exploiting homeomorphisms in the plain text,
substitution ciphers can be broken. Symbol frequency and homeomorphisms describe structure in the plain
text domain that substitution ciphers carry over into the cipher text domain. In our case, it is possible for an
eavesdropper to utilize the frequency of bytecode usage in applications as a means to deciphering the
substitution text. For example, the usage of stack manipulating bytecodes tends to exhibit a higher frequency
across different applications. We show how to use the metric of entropy in evaluating the resilience of the
chosen substitution to frequency attacks and investigate different alternatives for substitution using this
metric.

The confidentiality of a class file is achieved by using the BCT, assuming that the attacker does not have
access to the BCT. This table acts as an encryption algorithm. Thus, a critical aspect of our system is to
securely transmit this table between the programming system and the authorized device. In order to do that,
we use a cryptography algorithm. Although cryptography itself is a costly process, we only need it when we
change the contents of the BCT. This is less computationally intensive as compared to using encryption for the
entire application code. Next, we show two different approaches in establishing this BCT securely.

A simple public key protocol for BCT exchanges is given in Figure 47. In the following discussion, we
describe the protocol using the following terminology: WR- User Workstation private key; WU- User
Workstation public key; IR- Mobile device private key and IU-Mobile device public key. The new BCT is
established on the user workstation W.

To put the table into use, W sends the authorized device I a packet containing the following data structure:
Encrypted with IU{

1.1 New byte table
1.2 time stamp
1.3 sequence #
1.4 Encrypted with WRIHash of 1.1-1.3)

63

w-Usorsw3orksttion II-IDAuthoze viDeoi

I.Communicate BCT

T 2. Confirmation

Figure 47. Public key protocol for installing the BCT on the mobile device

This packet contains a time stamp, a sequence number and a hash value encrypted using the private key of
the user workstation. The role of the time stamp and sequence number is to prevent replay attacks by other
devices. While the encrypted hash value helps the mobile device authenticate that this packet originates from
the user workstation. When I receives the packet, it decrypts the contents using its private key IR. A hash value
of the decrypted contents is computed and compared with the value in 1.4 decrypted using the workstation
public key WU. If they are equal, this verifies that the message originated from W and has not been tampered
with. In response, I sends the following message to W:
Encrypted with WU{
1. Sequence # +1
2. Encrypted with IR{ Hash of message 11

W uses this message to verify that I received the message in an unaltered form and installs the BCT. A
symmetric key variant of the can be found in [Saputra 2004]. Both protocols have the BCT update process
initiated by the workstation. If it should be desirable for the mobile device to formulate the BCT, the roles of
the two entities could be reversed. The sequence number could also be replaced with a random nonce. This
would not significantly affect the protocol's security.

One-to-one byte code mapping is a mapping that substitutes one bytecode with another. An example of
one-to-one mapping is a mapping from Ox4b (astore_0) to 0x2a (aload_0). This one-to-one mapping does not
change the size of the original class file nor does it hide the instruction frequency profile. However, these
substitutions can cause verification problems. One such example is the mapping of bytecodes that load
operands onto the stack to unused bytecodes in the virtual machine. Hence, a code reaching an unauthorized
mobile device will encounter a stack underflow during verification when instructions that consume the stack
data are encountered.

Instruction Profile (Scanner.class) Instruction Profile (Scanner.class)

500 -

00 -. .~Ji .L I L LII
1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 25(1 18 35 52 68 86 103 120 137 154 171 188 205 222 239 25(

Bytecode Bytecode

Figure 48 Original Bytecode Frequency Figure 49. Bytecode Frequency Profile after
Profile - Scanner.class (1-1) mapping - Scanner.class

64

Instruction Profile (Scanner.class) Instruction Profile (Scanner.class)

500 35

30

20025

300 1

1 18 35 52 69 86 10312013715417118 205222 239 21 1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241

Bytecode Bytecode

Fig. 50. Bytecode Frequency Profile after Fig. 51. Bytecode Frequency Profile after
(M-1) mapping - Scanner.class (1-M) mapping - Scanner.class

Figure 49 shows the impact of (1-1) mapping on the original frequency profile shown in Figure 48 for one
of the representative classes (Scanner). It can be observed that the frequency profile is changed to a
permutation of the original profile. This provides some additional protection if bytecodes of similar
frequencies are interchanged. However, it is still quite vulnerable to frequency-based attacks.

Next, we consider a many-to-one byte code mapping approach. This mapping tries to combine bytecodes
that occur infrequently into one single bytecode. To support the many-to-one mapping, we introduce the
concept of extended bytecode. The extended bytecode uses two bytes to represent the opcode. The first byte is
the opcode of the new extended instruction, and the following byte is identifies the original bytecode. The
purpose of this many-to-one mapping is to combine the low frequency bytecodes into a single bytecode with a
higher frequency. While this transformation skews the frequency profile as observed in Figure 50, it still does
not hide the information on the frequently occurring bytecodes. However, as will be shown later, this
technique is a useful pre-mapping step when combined with other approaches. In addition, the size of the
resulting substituted class file will be larger due to the additional byte in each extended bytecode.
Consequently, the field associated with the code-size in the Java class file is also updated when employing this
substitution.

The next option is one-to-many mappings. Since the frequency profile of different Java bytecodes is not
uniform; there are some bytecodes that occur more frequently than the others. This property can be exploited
by frequency-based attacks. In order to make such an attack difficult, different occurrences of a frequently
used bytecode can be assigned to different unused bytecodes. For instance, the frequently occurring ajloadO
bytecode can have three different opcodes associated with it. The ability to reduce the frequency of these
frequently occurring bytecodes is limited by the availability of unused (within the JVM) bytecodes. It must be
observed that the use of M-1 mapping can increase the availability of unused bytecodes and increases the
effectiveness for the 1-M mapping.

Figure 51 shows the impact of (1-M) mapping on the original frequency profile shown in Figure 4. It can be
observed that the frequency profile becomes more uniform, thereby decreasing the information content that
can be used by eavesdroppers.

While the mapping schemes have been discussed above individually, the resilience to frequency-based
attacks can be further increased by using these mappings in a combined fashion. The combinations considered
in this work are:

"* One-to-many, Many-to-one, and One-to-one Combination - OM: This scheme first employs (1-M)
mapping followed by (M-1) mapping and then by (1-1) mapping. It should be noted that this whole
mapping can be done during a single pass to encode the transmitted bytecode seqeuence. (1-M) and
(M-1) mappings are used to flatten the instruction profile while the (1-1) mapping is used to shuffle
the profile.

"* Many-to-one, One-to-many, and One-to-one Combination - MO: This scheme first employs (M-1)
mapping followed by (1-M) mapping and finally by (1-1) mapping.

Note that OM and MO differ in that each applies the mappings in a different order.
In order to compare the quality of the obfuscation provided by mappings described above, we borrow

concepts from information theory. To measure the quality of data coding, Shannon employed the concept of

65

entropy to measure the presence of structure in data streams [1]. Structure in data streams implies
predictability. Predictable events provide less information than unexpected events. This logic supports using
the frequency of symbols in a text as a measure of their information content. For example, a symbol (in our
case bytecode) that occurs 50% of the time provides less information than one occurring 10% of the time. Using
pa to represent the frequency of symbol a (where a IS, and S is the alphabet used) as a fraction of the data

-Y-Pa log P"
stream, the entropy of the data stream is defined as a , where log is the base two logarithm. Since pa
is constrained to values between zero and one, the logarithm is always non-positive and all elements of the
summation are non-negative. It is easily verified that this function has a maximum when all symbols are

equally likely, i.e. occur with frequency A . This occurs when a histogram of the occurrences of symbols in a
representative set of strings is flat. The entropy (information content) is maximized at that point and the
amount of structure is minimized. These insights are well established and the basis of data compression
techniques. In this work, we use entropy as a measure of resilience to frequency-based attacks. Lack of
structure in the data streams makes it more difficult to decipher the information content of the data streams.

To evaluate the effectiveness of our mapping schemes, we used 52 different classes from various Java
application suites: SPEC JVM98, Volano mark, UCSD, and DigSim. Our methodology for choosing the
appropriate substitutions focused on trying to flatten the histogram associated with the frequency of bytecode
usage. We utilized two parameters: the mean of the frequencies of all bytecodes and a user-specified
threshold, T, that indicates the amount of tolerance to variations below and above the mean in the flattened
profile. Thus, bytecodes that have their frequencies in the range of Mean - T and Mean + T are considered to
be already balanced (see Figure 52). The bytecodes that have frequencies greater than Mean + T are considered
for (1,M) transformations and M is set to the frequency of that bytecode divided by the mean. This process is
repeated for all bytecodes with frequencies greater than Mean + T as long as there are available unused
bytecodes. A similar process is used to merge bytecodes with frequencies less than Mean - T using the (M,1)
mapping. When selecting (1-1) mappings, the bytecodes that have the minimum difference in their
frequencies are selected for swapping. The results from these steps are then used in creating the BCT entries
that capture the corresponding substitutions.

Frequency

Mean + T

Mean

Mean - T

Bytecode

Figure 52. Flattening the profile

It must be observed that this process of creating the BCT can be performed either using the profile of an
individual Java class or using the profile of a set of Java classes. While the use of a custom BCT for a class will
help flatten the profile better, it is more practical to create the BCT using the entire class of applications. The
latter approach helps to limit the BCT setup cost that can be amortized across several class file transmissions.
In all our experiments, we use the profile obtained across all class files (from different applications) in creating
our BCT.

In order to assess the resilience of our different mapping schemes to frequency attacks, we evaluated the
entropy values of the resulting substituted Java class files. While we performed our evaluation for 52 different
class files, we only show results of representative class files picked from the different benchmark suites in the
Table. The last row in this table corresponds to the results averaged across all the 52 class files (not just those
shown in Table 1). We do not include a separate column for the (1-1) mapping as it has the same entropy as
that of the original one. As mentioned earlier, a higher entropy value indicates more resilience to frequency

66

based attacks. It can be observed that all combinations except the (M-1,1-1) combination increase the entropy,
thereby reducing the information content available for attackers using frequency-based profiles. An interesting
observation is that using M-1 before applying the 1-M transformation results in the highest entropy values.
Consequently, the MO scheme produces the most robust substitutions among the different schemes explored.
This is because the M-1 mapping frees additional slots of bytecodes that can subsequently be exploited by the
1-M mapping.

Table 3. Entropy values resulting from different mapping schemes

Entropy
Class file Original I-M, I-1 OM M-I,1-1 MO
ParameterFrame 4.17 6.08 6.02 4.14 6.55
Parser 4.49 6.41 6.22 4.35 6.76
Plasma 4.75 6.37 6.16 4.65 6.86
Probe 4.62 6.37 6.32 4.62 6.99
QubbleSort 3.86 4.79 4.73 3.79 5.21
RuntimeConstants 3.01 5.5 5.5 3.01 5.95
Scanner 4.29 6.22 5.96 4.16 6.63
SchematicPanel 3.71 6.11 6.03 3.67 6.71
SelectionSort 4.18 4.72 4.63 4.05 5
ShakerSort 3.97 4.64 4.54 3.88 5.17

ShellSort 4.36 4.9 4.74 4.24 5.29
P 3.42 6.41 6.4 3.42 6.92
Q 4.65 6.37 6.28 4.63 6.75
Vmark2 1 2 0 4.95 6.49 6.27 4.82 6.84
Averages 4.12 5.64 5.55 4.06 6.07

In addition to preventing frequency attacks, we observed that the substituted class files failed the
verification process in all the 52 classes tested using all the mapping schemes. The verification failed for a
variety of reasons such as illegal target of jump or branch, illegal location variable number, illegal instruction
found at offset and unable to pop operand off an empty stack location.

Table 4. Entropies of different mappinI schemes measured by tracking all the classfiles
Entropy of l-M, M-1, and 1-1 Entropy of M-l, I-M, and 1-1

Original 1-1 I-M, 1-I OM Original I1-1] M-1, 1-1I MO
5.19 5.19 7.38 7.17 5.19 5.19 5.08 7.95

Overall Instruction Frequency Profile

400
350
30025

20OO

50
0

1 17 33 49 65 81 97 113129145161 177193209225241

Bytecodo

Figure 53. Overall Bytecode Frequency Profile Using OM

Since the attacker could also use cumulative information across all transmissions, we now show entropy
values using the resulting frequency profile from all applications (See Table). Given that our methodology is
based on the global mean using all profiles, it is evident that these entropy values are higher than those of
individual applications that may have a profile behavior different from the general trend. We also include the

67

histograms of the profiles resulting from using OM and MO in Figures 53 and 54. It is evident looking at these
figures that the higher entropy metric of 7.95 for MO translates to a better flattening of the histogram as
compared to the 7.17 entropy value for OM.

Overall Instruction Frequency Profile

250

20..

50

0

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241

Bytecode

Figure 54. Overall Bytecode Frequency Profile Using MO

Shifting focus from evaluating the proposed mappings based on security metrics, we now evaluate their
impact on performance. Specifically, we measure the time required for performing the substitutions at the
sender and the reverse substitutions at the receiver and contrast it with a commonly used encryption
technique, Rijndael[13]. When using the encryption algorithm, we perform encryption at the sender and
decryption at the receiver. The table shows the results obtained using the MO mapping that measured best on
the entropy metric and compares it with results from Rinjdaels algorithm. Due to the less computationally
intensive nature of the proposed mapping, MO is about five times faster than the encryption approach on the
average when executed on the same SPARC workstation. It must be observed that there would also be
corresponding savings in energy consumption due to reduction in computational complexity. These savings
are particularly important for resource-constrained environments. It must be noted that we do not include the
time for the BCT setup in the MO mapping as it is negligible when amortized over sending different codes.

Table 5. Performance Comparations between the MO mapping and Rijndael
T-substitution Tdesubstitution T_encrypt Tdecrypt

Class File (uSecond) (uSecond) (uSecond) (uSecond)
ParameterFrame 306 264 1079 1060

Parser 2309 1946 6425 6348
Plasma 417 324 1267 1284
Probe 262 219 973 986
Qsort 157 133 494 509
RuntimeConstants 1026 874 4704 4645
Scanner 1620 1361 3302 3232
SchematicPanel 1250 1053 3547 3513
SelectionSort 124 108 436 426
ShakerSort 155 130 482 475
ShellSort 140 119 466 459
P 7146 5185 6449 6644

Q 1 2626 1925 3096 3071

Table 6. Size Comparisons between original class files and substituted class files
Size-original Sizesubstituted Differences

Class File (bytes) (bytes) (+bytes)

ParameterFrame 2983 3057 74

Parser 24146 24938 792
Plasma 3737 3868 131

68

Probe 2605 2649 44

QSort 724 755 31
RuntimeConstants 17852 17858 6
Scanner 11730 12168 438
SchematicPanel 12814 13117 303

SelectionSort 547 567 20
ShakerSort 684 723 39
ShellSort 583 613 30
P 24689 24931 242

Q 11397 12691 1294

We also analyzed the impact of the MO mapping on the resulting size of the substituted class files and present
these results in Table 4. We observe that on an average the size increase is less than 1.7%.

In addition to using the frequency of individual bytecodes, a frequency-based attack could also exploit the
high occurrences of particular sequences of bytecode instructions. For example, a sequence such as (iload_0,
iload-l) is commonly used due to the stack based nature of the Java virtual machine. To illustrate the impact
of our optimizations on sequences, we find the frequency of two sequence instructions before and after
applying the MO mapping strategy. Figure 11 shows the original frequency profile and the X axis represents
the sequences starting from [0x0] [OxO - OxFF] followed by [Oxl][OxO - OxFF] until [OxFF] [OxO - OxFF]. Here, for
example, the sequence [0xib] [0xb5] represents the putfield bytecode (opcode = 1b) followed by the iloadI
bytecode (opcode=b5).

140

120

60

20

0

Bytecode Sequences

Figure 55. Original Frequency Profile of Bytecode Sequences for Scanner.class

Figure 56 shows how the frequency profile changes from Figure 11 when we apply the MO mapping. We
observe that the profile is obfuscated due to the mapping. As a specific example, the highest frequency in the
new profile is obtained for the bytecode sequence (putfield, iload-l) as opposed to (aload-0, aloadil)
sequence in the original profile. However, as the profile still reveals frequency variations, we also explored an
approach based on instruction folding.

2-Instruction Sequence Profile (Scanner.class)

14
12

01
8
6-

4

2 .1

1 3068 6135 9202 12269 15336 1840321470 24537 27604 30671

Instruction Sequences

Figure 56. Frequency Profile of Bytecode Sequences for Scanner.class using MO

69

Instruction folding is a method that is used by bytecode processors to combine commonly occurring
sequences into one single operation. Sequence mapping takes advantage of this approach in conjunction with
other techniques discussed earlier to reduce the frequency information of bytecode sequences. Figure 57 shows
the influence of applying sequence mapping for the pair (putfield, iload-1) on the profile given in Figure 56.
While not shown here due to lack of space, sequence mapping also helps to reduce the size of the class file and
also affects the frequency profile of individual bytecodes. In general, sequence mapping is an effective
mechanism to hide the frequency information associated with larger sequences of instructions.

8

7

6

3

2

Byteoode Sequences

Figure 57. Impact of sequence mapping on profile shown in Figure 56

Cryptanalysis is used to determine the security of encryption techniques. Attacks are divided into classes
based on the types of information available to the attacker, they are:

"* Chosen Plaintext based attack. In this attack, the attacker knows some set of plaintext - ciphertext pairs
for plaintexts of the attacker's choice. An example of a chosen plaintext based attack is differential
cryptanalysis. Our approach can be vulnerable to this kind of attack where an opponent can choose a
set of plaintexts that have specific differences and the associated encoding. Inferring the mapping in
this case would be trivial. However, to obtain the associated encoding, the attacker needs access to
either our translation table or know the plain text being transmitted. Due to the use of standard
encryption for transmitting the translation table, the access to translation table is restricted. The second
vulnerability is mainly an issue only when the codes being transmitted are limited to a known few
codes.

"* Known Plaintext based attack. The attacker knows some plaintext-ciphertext pairs. The difference
between known plaintext and chosen plaintext based attacks is the set of the plaintext-ciphertext pairs
that the former has, is out of the attacker's control. On the other hand, in the chosen plaintext based
attack, the pairs are based on the plaintext that the attacker chooses. One example of known plaintext
based attack is linear cryptanalysis . The vulnerabilities to this attack are similar to those discussed for
the chosen plain text approach in the worst case.

The more appropriate attacks of concern for our application are ones where the attacker has access to a set of
encrypted files, such as Algorithm-and-Cipher based attack and Ciphertext-only based attack.

"* Algorithm-and-Ciphertext based attack. Attackers have the algorithm and a set of ciphertext they do
not have access to the plaintext. In this situation, they try to use a large amount of plaintext until the
output matches the ciphertexts he has.

"* Ciphertext-only based attack. This means the attacker only has a set of ciphertext.
In the case where an opponent knows in advance the set of programs that could be used, many approaches

could be used to determine which program has been transmitted. For example, the length of the encoded
program provides information that may be sufficient for this type of attack. Hence our approach would not be
suitable for distributing only a small set of known programs.

Another attack that could be considered is using statistical information about where specific bytecodes
tend to occur in programs. Should the distribution not be uniform, this would provide information that could
be used to infer parts of the mapping. We plan on extending our approach to consider these issues as well.

A useful extension of this work would involve using multiple bytecode translation tables. Translation
could switch between tables following an agreed upon pattern. The effective key for this encoding would be
the set of bytecode mappings and the pattern used to choose the table in effect at any given moment. This

70

would effectively transform the approach into a type of block cipher. This should be feasible when enough
storage is available and use approximately the same amount of resources as the approach described here.

Note that our approach is presented as a form of data obfuscation. We feel that this is an appropriate label
since it provides some protection against the information being accessed by unauthorized parties, but is less
secure than standard encryption techniques. It is appropriate for use in resource-constrained environments,
where encryption would be impractical. When the information is valuable enough and resources are available,
encryption methods such as RSA or AES would be a more appropriate choice.

On the other hand this approach is probably more secure than techniques in widespread use, like the use
of hash functions. The approach proposed is more secure than many obfuscation approaches, because it is not
sufficient to know the algorithm being used. The unauthorized user must still find a way of determining the
bytecode mapping. In this way, the bytecode mapping itself could be considered a cryptographic key. The
approach proposed can also easily be integrated with other Java obfuscation techniques, such as control flow
obfuscation.

The simplest substitution method is called mono-alphabetic substitution cipher. This method substitutes a
letter into a fix symbol or letter. This kind of method is vulnerable to every cryptanalysis attack described in
the last section. To reduce the vulnerability, we can use more than one permutation table called poly-
alphabetic substitution cipher. The permutation table that is used to map a letter depends on the position of
that letter. This helps to balance the frequencies of alphabets and makes frequency attacks more difficult than
using just mono-alphabetic substitution ciphers. However, when using poly-alphabetic substitution ciphers, an
attacker with the knowledge of the number of permutation tables and the usage order of these tables will be
able to break these codes. In these cases, frequencies of pairs or triplets of alphabets are used to determine the
number of permutation tables and usage order.

Our approach to bytecode substitutions is based on applying the ideas of alphabetic substitution for secure
code and transmission. In our bytecode substitution approach, multiple substitutions are applied one after
another in order to make frequency attacks difficult. Further, the use of instruction folding helps in balancing
the frequency of sequences of bytecodes (note that frequency attacks on sequences are a major concern in the
case of poly-alphabetic substitution).

With the continued proliferation of mobile devices, it is becoming important to address many of the issues
associated with programming these devices. In particular, there has been a rapid growth in embedded Java
devices that have become attractive due a variety of reasons such as platform independence, on-demand
loading and compilation and remote update/execution. Main concerns in remotely programming mobile
devices are in ensuring that only authorized users can execute the code and that the device cannot be harmed
by malicious codes. In this work, we focus on the first aspect and use various substitution based mapping
schemes to provide a computationally less intensive alternative to using standard encryption. Our experiments
with 52 Java class files reveal that our approach is very effective in protecting the code being transmitted. All
the substituted codes failed in the verification phase of the unauthorized devices that did not have access to
the substitution table. Further, our analysis reveals that careful creation of the substitution table will also make
it very expensive for frequency based attacks to be successful.

6. MODES OF NETWORK BEHAVIOR

In the previous sections we have discussed:
"• Models of networked systems as a set of interacting semi-autonomous systems.
"* How to design and implement loosely coupled systems with desirable global properties.
"* How to secure individual components in the global system.

This section now considers large-scale epidemic attacks. First, we present techniques for detecting attacks that
build on insights from our modeling work. We then discuss an initial game theoretic analysis of where the
vulnerabilities exist in large-scale distributed systems. We end this section by showing how the current
network topologies are particularly friendly to worm and virus attacks. The work in this area just scratched the
surface of what needs to be done to make networks resilient to attack.

71

6.1 DETECTION OF DISTRIBUTED DENIAL OF SERVICE (DDoS) ATTACKS
The majority of network-based DoS attacks involve an excessive number of packets directed at the victim
machine. So-called "flood" attacks exist for TCP, UDP, and ICMP protocols to name a few. The most common
DoS attack is the TCP SYN flood, and we use this attack to test the DoS detection method. The SYN flood
exploits the three-way handshake TCP uses to establish a connection. The attacker sends connection requests
with forged source addresses to a server. The server stores these false connection requests while it tries to
complete the connection. Each request is stored until either it is completed or it times out. Since these
connections can never be completed, the server's queue fills waiting for responses. Legitimate users are then
unable to initiate connections.

Other flood attacks tend to have properties similar to the SYN attack. While the rest do not have the
advantage of the TCP connection handshake, the underlying concept is the same: keep the server's queue (and
routers' queues as well) full enough that non-malicious users cannot connect.

In the past, many of these attacks could be performed through small bursts of packets because queue
implementations were not robust and timeouts were needlessly long. Today, networking implementations are
more robust so that these flood attacks must generate an inordinate amount of packets to have the same effect.
Because of this, most attackers have moved to a Distributed Denial of Service (DDoS) attack where many slave
"zombie" computers are used to attack a victim. Zombie processes can be planted far in advance of the
planned attack. This results in a broader, less localizable attack that is inherently more difficult to detect and
defend.

A packet flooding based DoS attack typically results in a sudden, serious change in one or many of the
victim's system or network resources. These changes may not be easily discernable, but would include things
like the length of the server's backlog and connection queue, the total number of incoming packets as well as
the number of specific types of packets, and the disparity between the numbers of different components of the
TCP connection handshake.

Internet traffic is highly dynamic. Both the mean and variance of incoming packets are time-dependent
and are expected to have a large variability. After an attack begins, the traffic mean and variance will suddenly
increase as the traffic due to the attack is superimposed on the original traffic. Measuring changes in such a
highly dynamic process is a complex undertaking.

The DoS detection approach we are testing monitors the number and type of incoming IP packets over
time. To verify the robusness of this approach, we apply it to the following:
"* Network simulators (which frequently do not have the ability to break apart the TCP handshake)
"* Recorded real-world data
"* On-line testing in our laboratory
Other system and network resources have properties similar to the number of incoming packets. Applying concepts similar
to the our DoS detection approach to monitor other network protocols, or quantify, measure, and analyze internal systems
resource availability should be straightforward.

Time semt

10_ ...------- -------------------------------

---------------------------- -------- -------

-02
0 ý MW1 I30M A"31 MW0 MW90

Figure 58 (Top) - The CUSUM statistics of the model of an arriving packet stream with a DoS attack starting at
3000 seconds; (Bottom) - The Wavelet Coefficients at the 6th level of decomposition.

72

To detect when the DoS occurs, let N(k) denote the number of packets received during the kth time interval. To reduce
the noise of N, we perform a moving average on N giving g(k). The following modified cumulative sum (CUSUM)

function is applied to this averaged data:
9(k) = (9(k- 1) + N(k)- m -c), §(0) = 0, c > 0,

The modified CUSUM statistic features a nonlinear operation + that returns the greater of (x,O). This combined with the
subtraction of the expected value m and a small constant c, reduces the variance of the statistic before the change. It has
little effect on the variance after the change. The top image in figure 58 shows the modified CUSUM statistic for an
idealized DoS attack. The idealized attack is a step function corrupted with Gaussian noise.

xto4

40 0------- ---------- --------...... ..-- --_ 0!//

_K ----------------- ------ ---

0.5 ------- -------------- ~A ----- ------ --- 6 --- --- I------- ----

430--------------------------

Attack Zeck:Demected I ---- ...

0 0 M 200 25 3M to 400 0 0 100 15• 30 2 30 3M 4AIM
Skimulation tim (s)

Figure 59 - Attempting to detect the attack using a CUSUM-only method on NS-2 data (left) Detecting the attack
using the wavelet decomposition of the CUSUM method (right). Notice that the delay is much small than figure
58.

To further highlight the change point of this CUSUM statistic, we perform wavelet analysis using the discrete wavelet
coefficients of this statistic at the 6th level of decomposition. Wavelet decomposition at this level is essentially a high-pass
filter, since change points are high frequency items. For this application, we use the Haar wavelet. The bottom image in
figure 58 is the Haar wavelet coefficients at the sixth level of decomposition of the top image.

A DoS attack on a computer results in an increased mean and variance of the arriving number of packets. Given this
increase, the CUSUM algorithm should also show a substantial and sudden increase. At the 6th level of wavelet
decomposition, this change is made apparent via coefficients on the order of 4 times larger than under normal traffic
conditions. Using this method to detect DoS attacks results in detection at an average of 1.13s after attack (versus 7.6s for
the CUSUM-only method). Figure 59 illustrates this, using data from an NS-2 simulation.

Wavelet analysis of the CUSUM has better detection efficiency of DoS attacks than the CUSUM approach
alone. The increase in detection ratio is 56%. Even higher detection ratios are possible with higher levels of
wavelet processing. The first stage of CUSUM processing lowers the amount of noise of the arrival process,
while the subsequent wavelet analysis finds the change-point of the time-series. The change-point is a DoS
attack.

The Haar wavelet was selected for its simplicity and previous application for change-point detection.
Other mother wavelets functions should be evaluated. Better detection efficiency, delay, or other performance
gains may be achieved. Application of wavelet analysis directly to the network time-series should also be
researched for completeness.

Different sources of test data were used. Various synthetic data sources were investigated, but reliance
was placed on captured live data. Realistic data provides better confidence in test results. Lacking availability
of a captured DoS attack, a simple attack model was superimposed on live traffic of high variance and rate.
Live traffic dynamics will present more difficulties to the anomaly detection systems, irrespective of the DoS

73

model. Therefore we suggest our DoS modeling is reasonable when superimposed on Internet 'noise', but not
absolute. More accurate approaches to DoS attack modeling should be explored.

It appears that our detection approach could be placed anywhere in the network. Placement at natural
chokepoints, like firewalls, is likely to be a good strategy.

Detection results from the NS2 and live data sets were noticeably different. NS2 was ideal over a large
range of parameter settings. This is due to the synthetic nature of the NS2 test data, which does not contain
enough background traffic variability. Live data does not obtain ideal detection efficiency over any set of
parameters settings. The background traffic of the live data set challenges the detection system, thus reducing
its true detection rate and providing a non-zero false positives rate. Tradeoffs in detection efficiency is possible
through parameter 'tuning' as indicated in the ROC graphs of section VIII. Each has an effect of removing
various amounts of arrival process noise or burstiness from the network time-series. This increases the signal-
to-noise ratio, allowing wavelet analysis to detect the abrupt change due to the DoS attack. Detection delay is
dependent on amount of wavelet processing. Low wavelet decomposition levels (WDL) provide better
detection delay than a purely CUSUM approach, but at higher levels of wavelet analysis, the delay may
increase. A tradeoff exists between increasing the WDL for detection efficiency gains and possible detection
delays losses. Further iterative testing on independently created datasets should be performed to ensure
accuracy and consistency of tuning parameters.

DoS flooding attacks cause significant changes in the amount of network traffic. Similarly, regular network
activity can have large variations. Traffic fluctuations can occur from topology changes, user activity, or
network management. Examples include flash crowds, data backups, network maintenance, and
administrative changes. A regular network event was declared as a false positive in several live traffic time-
series. This recurring false positive event is shown in Figure 60 at interval k = 1.3xR10 and Z3x104. This
regularly timed event, possibly a data backup, mimic a DoS attack through a large packet count increase. Such
events should be analyzed more closely for better understanding and modeling. The wavelet-based DoS
detection method in its current form cannot distinguish these events as normal activity. New detection rules or
algorithms are needed to avoid these false positives.

For a live dataset, 78% true detections, 37% false positives, for a detection ratio of 2.1 was determined.
Over the 239 time-series, each of which on average is 8 hours in duration, the false positive rate equates to 1.11
per day. Although high, approximately five false positives per week are due to our network's 'regular' events
described above. For a deployable solution, future improvements are needed, but they should be flexible, as
detection of these normal events may be of some interest.

Other malicious network events need to be modeled (or captured) for detection evaluation. Viruses,
worms, and slow-start DoS attacks are examples. Once detected, attack response countermeasures may be
effective or could cause further problems. For example, packet blocking from a subnet is a common response
to a DoS attack. Blocking removes both attack and legitimate traffic. If the detection's threshold is set too low,
the packet filter can be engaged prematurely and obstruct legitimate traffic. Adequate response to attack
detection is an open issue.

j10000k

j5o:L It~
*10 Ca) 10

o 2 4.1i £

Mb '~'~ 10

... . . -0
0 2 0O• a o

74

74

Figure 60 - Live Traffic False positive. (Top) Live Packet Time Series; (Middle) CUSUM Statistic; (Bottom)
Wavelet Decomposition Coefficient (d1 oo).

Reasonable computational complexity of the wavelet-based algorithm allows for on-line implementation.
The CUSUM algorithm of (8) requires little memory and involves simple arithmetic operations. Depending on
the operating environment, alterative implementations for the windowing (7) and estimation functions (6), less
floating point multiplication, can be sought. Wavelet analysis by the discrete wavelet transform has a memory
requirement of 2j. For wavelet decomposition levels of j = 6 or 10, this is a low 26 = 64 or 210 = 1024 units of
memory. Computation of the wavelet coefficients through Mallat's pyramid algorithm requires only
elementary operations of addition, subtraction, and shifting. All algorithmic computation can be easily
implemented in either software or hardware.

DoS attack detection is possible through analysis of network time-series. The use of both statistical and
wavelet analyses provides better performance than a purely statistical approach. Higher true detection and
lower false positives rates are seen. Detection delay can be reduced or adjusted at the expense of detection
efficiency. Use of realistic network traffic ensures confident in the test results.

6.2 DDoS PREVENTION

We model a network as a graph G = (V, E), where V is a set of vertices (or nodes) and E C V x V is a set of
edges (or links). The structure of the edge set E describes the connections that exist between nodes in the
network. A distributed program P, consisting of programs {P1- Pk I running in the network described by
G, can be represented by assigning each program of P to a vertex of G via an assignment function c: P -- V.
Each distributed application has a certain set of connectivity requirements that the network must satisfy in
order for the distributed program P to execute successfully. For example, suppose that P is a distributed
client/server system. Then each client must be able to connect to the server, however it may not be necessary
for the clients to be able to connect to each other. We formalize this notion by saying that a program Pi is
connected to a program P7 if there is a path connecting the vertex containing Pi with the vertex containing P3 .
This sentiment may be formalized by a sentence 1rij, written in the first order graph predicate language. We
shall denote by H the set of all communications requirements for the distributed application P. When a
network G and an assignment c satisfy all the requirements of a distributed application P, we shall write
(G, c) = H, where it is understood that H is the set of requirements of P.

Let G = (V, E) be a graph describing a network, P be a distributed application, c : P -- V be an assignment of
programs to vertices and H be a set of requirements such that (G, c) H. A successful distributed denial of
service attack (DDoS) transforms the graph G into a new graph G' such that (G', c) Vr H. DDoS attacks work by
introducing zombie programs into the nodes of G. These programs produce spurious packets, which either
cause traffic congestion within the network itself or render a node in the network unavailable to receive
legitimate traffic by bombarding it with illegitimate connection requests. To model the susceptibility of
vertices and edges to zombie traffic, we defined a function Tv : V - N (TE : E -- N) giving the number of
simultaneous zombie attacks a given vertex (edge) could sustain before being rendered operationally
ineffective by the attacker. In this model, we assumed that all zombies produce malevolent traffic at an equal
rate and strength 1.

Brooks and Griffin have studied the following problems related to this idealized view of DDoS attacks:
1. What is the minimum number and configuration of zombies necessary for red to disrupt a
requirement -r E H?
2. What is the maximum number of requirements that can be disrupted by the attacker?
3. What is the minimum number and configuration of zombies necessary for red to disrupt the greatest
number of requirements in H?

'This is not necessarily true, since a zombie's ability to produce traffic is related to the properties of the

computer it is using. However, for our purposes, it is safe to assume that all nodes are created equally in terms
of their ability to produce malevolent traffic when housing a zombie.

75

The main result of our investigation was the following theorem, which completely determines the security of a
distributed application running in an idealized computer network.

Let G be a network and and P be a distributed application and let c : P - V(G) be the position of the programs in the
network. Furthermore, let -r be a requirement in Tl saying that V1 must be connected to "2. Then there is an algorithm
with low order polynomial running time that determines whether 7r can be perpetually disabled; i.e., whether there is an
attack such that for all counter-strategies the resulting graph GI' K 7r

To prove this result, we defined the minimum security edge cut and minimum security vertex cut of the graph
G. Removing the edges and vertices in these sets will disconnect a graph. However, unlike the minimum edge
(vertex) cut, which has the least number of edges (vertices), the minimum security edge (vertex) cut requires
the smallest number of zombies of any other edge (vertex) cut to disable the edges (vertices) in the cut. Using
this formalism, we were able to reduce the problem of determining the minimum security edge (vertex) cut to
a max flow min cut problem. Having shown this, we derived an algorithm to disable a single edge or vertex in
the network using the smallest number of zombies. We proved this algorithm was minimal in its zombie use
by applying a second min-cut arguement. Taken together, these two results yield theorem. The running time
of the algorithm is at worst square in the edges and vertices of the graph, since this is an upper bound on the
running time of the pre-flow push algorithm used to determine min-cuts in networks.

We can immediately use this result to help us determine optimal node placement in ad hoc mobile networks
and optimal software placement in mobile code networks. Consider the later problem, when we are given
mobile programs P = {Pi,... PO I and must determine an optimal placement for these programs under
changing network conditions. In particular, suppose we are given a set of new criteria (P, consisting of
sentences 01 ,0k each stating that some program Pi must be placed in some subgraph H of G. The next
result follows immediately from above.

Let G be a network and P be a distributed mobile application. Let H be a set of connectivity requirements for the
programs of P and let 4D be a set of positioning requirements. Then there is a function c : P - V(G) that will minimize
the maximum number of requirements of T that can be perpetually disabled by DDoS attack. Furthermore, this function
can be computed in o(iPIc) steps.

This optimal placement function can be computed by using the results from the proof of theorem , were we
compute minimum security edge and vertex cuts for the entire graph. Since this placement is an absolute
minimum, it is clear that it will not vary in the presence of optimal attacks; i.e., there will be no reason to
recompute c, assuming that an attacker is playing optimally.

It is not clear whether it is possible to recover c using a polynomial algorithm. However, it may be possible to
use a genetic algorithm with the fitness function being the security of the network and the population being
placement functions of the nodes. More research must be done on this question to determine the best way to
find the placement function c in the presence of a dynamically changing network.

Our results can be extended to mobile ad hoc network security questions as well. Brooks et al. have derived a
formulation for the expected structure of a random graph, given the probability distribution governing its
structure. Their algorithm runs in polynomial time. Hence, we may apply our theorems in the case of the
expected value to find the expected vulnerability of a given graph to attack. The following theorem follows
immediately:

Let G be a random graph family with a fixed number of nodes and let P be a distributed mobile application. Let HI be a set
of connectivity requirements for the programs of P and let 'F be a set of positioning requirements. Then there is an
expected function c : P - V(G) that will minimize the maximum number of requirements of n that can be perpetually
disabled by DDoS attack. Furthermore c can be computed in at worst o(I PI).

76

We studied DdoS attacks using the ns network simulator. An ns-2 simulation script was written to generate
pseudo-random traffic between connected nodes. Link speeds and delays were determined by finding the
degrees of the connected nodes. The bandwidth of nodes of each degree are shown in table I. Both the speeds
and propagation delays of the links were scaled down to unrealistic speeds of arbitrary determination due to
the infeasibility of simulating the thousands of nodes needed to generate realistic network traffic along links at
actual Internet speeds. The link speeds and propagation delays ranged from 10 Mbps to 233 Mbps and 10 ms
to 40 ms, respectively. The reasoning for choosing increasing speeds and delay times with increasing degree
was based on the assumption that the number of connections from a node is proportional to the importance
and rarity of the device.

The topology that was chosen for the simulations emulated a medium-scale network. Forty-one nodes were
available to host zombies and fifteen nodes to be victims. In testing, only nodes with a single link could host
zombies, while victims were restricted to core nodes not directly connected to a zombie node. The maximum
hop distance, assuming that no cycles occurred, was nine hops. All connections were established as point-to-
point to simplify the analysis of the packet flows. Any leaf node was assumed to be a point at the edge of an
internal LAN and thus was modeled appropriately with our link speed and propagation delay definitions. The
multipath option for ns was enabled for the topologies to allow packets to take multiple routes through the
core nodes to reach the destination.

All background traffic used TCP since it is the de facto standard of the transport layer on the Internet. For
burstier, non-uniform traffic, a Pareto random variable was used to approximate background Internet traffic
because of their heavy tail and infinite variance. Conversely, for a more consistent pattern of traffic, the
constant bit rate (CBR) generator was used. For both patterns, the TCP Reno agent was selected for the sender.
The selective ACK sink was used to decrease the number of ACK packets the receiver must generate to alert
the sender of a successful transmission.

To choose the sender and receiver pairs for the background traffic, a time-seeded uniform random variable
was created to generate the integers representing the nodes. For our topology, the senders were restricted to
the nodes between 0 and 40, while the receiver could be any node in the network. One hundred random pairs
were generated with the guarantee that at least four connections would be created between four random
senders and the victim. Except for tests involving background traffic structure, the one hundred sender and
receiver pairs were kept the same for all simulations.

The DDoS attack was a link flooding attack generated by zombies placed at specific nodes in the network. A
UDP agent was attached to a zombie with a CBR traffic generator. UDP was chosen for the zombie packets
because of its connectionless characteristics. The CBR generator was configured to send a 404 byte packet
every 0.5 ms. Note that the zombie packets are significantly smaller and sent more frequently than legitimate
packets, as expected with a DoS attack.

To generate the order in which to add zombies, another time-seeded uniform random variable was created.
This list was generated before the simulations and held constant through all simulations except for the zombie
placement tests.

To track the success or failure of the DDoS attack, multiple methods were used dependent on the scope of the
analysis. When considering the entire network, queue traces were placed on links connected to "sending"
nodes. This allowed us to calculate the total number of legitimate packets sent for all leaf nodes. Queue traces
were also placed on all of the receiver's links, allowing for a count of the number of received legitimate
packets. The traces were configured to record all link activities. After completing each simulation, the traces
were parsed to calculate the number of legitimate packets sent and received as the DDoS attack increased in
strength.

77

To analyze the success of the DDoS attack on a specific node, traces were placed on links connected to nodes
with a session to the victim. Additionally, all links connected to the victim were monitored. The packet ID
fields in the ns-2 traces were parsed and compared to determine if the packet arrived at the victim
successfully. Note that this does not take into account any packets that are routed through the victim, which
would be contained within the first method of analysis.

A subset of all possible tests was simulated with varying parameters. To test the effect of traffic style on a
network, the placement of zombies and the sender/receiver pairs were held constant. Simulations were then
performed on three different zombies with both types of traffic, CBR and Pareto. The number of zombies was
then varied from 1 to 41. The same experiments could then be varied by changing the zombie locations and
background traffic pairs. It should be noted that the numerical values of the packets and network were not our
focus in this research, only the general patterns associated with performing a denial of service attack upon a
test topology that would resemble an actual network.

In the first simulations, we analyzed the combination of the traffic flows in the network. The data indicates that
when not under a DDoS attack, the flows behave consistently and do not suffer much, if any, loss. This loss can
be reasoned with TCP window size and congestion control effects. We assume that the ns-2 implementation of
TCP follows the behavior of the "real world." As more individual sessions generate traffic, TCP window size
will increase until the network is congested. This will cause a small packet loss if the simulated routers' queues
are full. At this time, our data indicates that the congestion control algorithms of TCP are used to decrease the
window sizes. On average, our simulation setup experienced a 0.04% loss rate due to only background traffic.

When a DDoS attack was overlaid on the background traffic, similar packet loss occurred but at a much larger
scale. A total of twenty-two tests were performed per victim with different patterns of background traffic and
zombie addition. For each case, the number of zombies was increased by one and the loss recorded from the
addition of the extra zombie. Zombie positions were chosen from a uniform distribution ranging from [0,40].
Simply placing zombies into the network did not always increase the loss experienced by the flows. In some
cases, the resulting loss would either be zero or negative, i.e. the network loss rate decreased. This indicates
that the addition of that particular zombie created a less optimal network state, with respect to the zombies.
The traffic generated by the added zombie interfered slightly with the preexisting background and zombie
traffic.

In Figure 62, the addition of zombies 30 through 32 caused the loss rate to decrease. When these particular
zombies were moved to the end of the addition list (they were the last to activate), the loss rate did not
experience the drop it had when the moved zombies were activated earlier in the sequence. If the zombies
were moved to the beginning of the addition list (they were the first to activate), the network did not
experience the maximum loss percentage that the original sequence underwent.

78

100

OD

70

80

40 I

30 '

20

10

0 5 10 15 20 25 30 35 40 45
Numter of Zombles

Figure 61: Legitimate Packet Loss % vs. Zombie Count (Node 44 Pareto)

6

1 29. 33 End

'3

0 .-

Number of Zombies

Figure 62: Legitimate Packet Loss % vs. Zombie Count (Node 44 Movement)

Suppose that when operating at maximum network efficiency, the victim can receive r(t) packets when no
zombies are present. We will attempt to construct an expression for the measure of the DDoS attack from r(t).
Let Y(t) be the number of legitimate packets generated by time t and suppose that n is the number of zombies
placed in the network. If each zombie generated ((t) packets by time t, then we can estimate the number of
legitimate y(t) packets received at the victim by time t as:

79

Y(t) = , (h(t)-ý(t) + n((t)"

Computing the ratio of legitimate packets received to legitimate packets generated, we have:

r(t)
-y(t) + n((t)"

where SD(n) is the success-rate of the DDoS attack, when we assume that Y(t), r(t) and W(t) are linear in t.
Figure 63 shows the mean SD value over 23 runs using node 44 as the victim, our estimator of
SD = 65.182/(65.182 + 1.004n) and also a linear regression on the data set SD = 0.010n + 0.020 used to produce
the mean. While the linear regression was more accurate, with a SSR (sum of squares of residuals) value of
5.41, our predicted regression has a SSR value of 5.61 and more is more reasonable as a model. Furthermore,
the variance of the data was high as is shown by the standard error computed around the mean.

Number of Zombies vs. Percent of Good Packets Dropped

50

45

40

30

25

•, 20

10

0 5 10 15 20 25 30 35 40
Number of Zombies

Average Estimator (y•-O 10065.18/(65.18+1.04*N)) - Line Estimator (y1. 021N +2.02)

Figure 63: A linear regression, non-linear regression and the average of a data set of attacks on node 44 with
error bars

6.3 WORM AND VIRUS PROPAGATION

We have studied the propagation of worms and viruses in Internet like networks, building on the work of
Aiello et al. We begin assume that the Internet is a scale-free graph G with some scaling parameter y>2 . In this
case, Aiello et al. showed that almost surely the internet has a connected component with size 0(1 G I) just in
case y<yo,-3.48 7 5... The value of yo arises from the solution to an equation involving -() -the Riemann-Zeta
function. If we assume that each worm or virus only requires a connected graph to propagate, then we arrive
at the following conclusion:

80

If G is a scale-free graph with scaling parameter 2<y<yo,-3.4875, then every virus will become epidemic within the
network; i.e., eventually every node in the network will become infected.

This of course does not take into consideration the possibility that only a proportion p of the population is
susceptible to the pathogen. Unfortunately, the scale-free graph model we used leads to the following
conclusion:

If G is a scale-free graph with scaling parameter 2 <y< v-3.4 875, then any pathogen that infects a proportion O<p-Il of the
population will become epidemic within the susceptible population; i.e., every susceptible node in the network will become
infected.

Furthermore, the propagation time required for complete infection can be shown to be very low, in fact Aiello
et al. showed that the diameter of G is O(log I G 1), thus allowing us to conclude that a very small number of
hops must be taken by each virus or worm before complete infection is guaranteed. Specifically, suppose that a
virus spreads with speed v nodes per second. If this speed is constant (and does not diminish as more nodes
are infected), then the number of infected nodes will grow exponentially quickly. This result was confirmed
anecdotally by the nature of the Slammer worm spread in MS SQL Servers. However, it is worth noting since
worms seek out uninfected hosts, their propagation often resembles a logistic curve, instead of a pure
exponential curve.

We also found that for scale-free networks with y>yo-3.48 75, there are never epidemics. In particular, Aiello et
al. proved that in the case when y>yo, then the largest component in G was of size O(log G I). Thence, viruses
cannot spread because the network substrate is not sufficiently connected to support viral propagation beyond
a small region near the initial infection point.

Using these facts, we derived a number of non-traditional counter-worm measures that we believe could be
quite successful. Since worm epidemics are assured in existing network structures, where y much less than 3,
there is little hope of ever patching a network quickly enough in response to a virus attack. A patch solution
requires each susceptible node to be updated. The limitations of bandwidth and mirror sites for obtaining this
patch lead us to conclude that patch solutions run in 0(1 G I), much slower than the speed of propagation of a
virus. Conversely, if we introduced a white-worm (an engineered worm designed to seek out infected and
susceptible systems for the purpose of repair), then repair and patching actions could be accomplished in
O(log I G I +C), where C is a constant of proportionality that depends on the amount of time that has past since
the pathogen has been released into the wild till a white-worm was released. Our theoretical result has been
validated experimentally by Chen and Carley [CCO4]. They showed that the most efficient system patching
technique was counter-worm patch propagation.

We also observed that changing the value of y will also stop worm propagation in networks. Such changes do
not have to be made at the hardware level. New protocols can be introduced into the Internet that will
effectively raise the value of 7. For example, suppose that we require a trusted third party certification to allow
network traffic to leave local area networks. This third party would be required to validate out going traffic.
Clearly, such a solution might be cost prohibitive to construct, but it would achieve the desired effect. Worm
traffic would have to be certified by a third party. This means that worms would face a higher cost to spread
than they presently do. Since this affects all network traffic, the result is the effective fracturing of the Internet
into local sub-networks with a higher cost (in terms of time, trust and possibly cash), for accessing global
services.

81

7. DISCUSSION

The MUSE project performed basic research on the topic of understanding mobile code. It made significant
advances in this area. Mobile code differs from other software systems in that it uses networks to
autonomously move code from one host to another.

Many common CIP threats, such as Trojan horses and viruses, pre-date widespread use of the Internet
and are not specific to mobile code. Issues such as insuring program correctness, enforcing security policies,
avoiding buffer overflows, and detecting malicious code also exist for non-networked software. Our
emphasis is on researching how code migration affects infrastructure protection.

Viruses, worms, and Denial of Service (DoS) attacks are difficult to counteract in large part because they
are highly distributed. Fortifying the defenses of individual processors, or even sub-nets, cannot sufficiently
neutralize these threats. Our game theory analysis of DoS attacks contains examples of the limitations of
firewalls for protecting distributed systems. Fortifying individual processors is in some ways similar to
building a stronger Maginot line after World War II.

MUSE studied both the threat posed by malicious mobile code, and the promise of mobile code to adapt
when attacked and neutralize threats. Distributed adaptation can put attacked systems on an equal footing
with their attackers.

The project Statement of Work (SoW) consisted of four tasks:

"* Develop a theoretical model

"* Study the interface between mobile code and the host computer.

"* Study system adaptation

"• Create an adaptive network infrastructure.

Significant results include:

"* A theoretical model for mobile code was developed by integrating mobile agent and cellular automata
concepts. Using a simulation tool (CANTOR), that we developed for this model, we found important
behavioral differences among mobile code paradigms.

"* CANTOR simulations were found to trend like other network simulators. The CANTOR models are
simpler and contain fewer factors. They also execute more quickly than traditional approaches.

"* A taxonomy of mobile code paradigms was created combining our theoretical model with an existing
taxonomy of network attack vulnerabilities.

"* Our existing mobile code daemons were integrated with peer-to-peer (P2P) indexing to create an initial
adaptive infrastructure. Cryptographic key management has been integrated into this approach.

"* We proved that cryptographic primitives can be used with a tamper-proof co-processor to verify bilateral
trust between a host and a mobile code package. An application to multi-level security was given.

"* Quality of Service (QoS) analysis of peer-to-peer (P2P) networks has been performed to derive the proper
numbers of indexes and packet time-out values to balance system performance and robustness.

"* Our mobile code and P2P infrastructure was used to create a proof of concept distributed system that
adapts around DoS attacks.

"* A random graph model has been developed for P2P systems. This model predicts the expected robustness
and performance of P2P networks created by nodes connecting with given statistical patterns.

"• We defined DoS a game theoretic problem. We then analyzed player strategies to measure network
vulnerability. Among other things, results of this work show both the utility and limits of firewalls for DoS
protection.

"* We created a method for early detection of DoS attacks in conjunction with Dr. Rai of LSU. This method
has been validated using simulations, DoS attacks in the laboratory, and live network data collected at
PSU.

82

"* Implementation of a secure instruction set that can foil power analysis attacks. We have shown how this
approach can protect DES keys stored in smart cards from being deciphered by using differential power
analysis attacks.

"* Found the relationship between network topology and virus propagation. This leads to clear suggestions
as to how to best avoid and respond to worm and virus attacks.

8. CUMULATIVE LIST OF PUBLICATIONS SUPPORTED BY THIS GRANT

The following publications attributed to RSN have been published, are under review, or are in press:

Research Monographs:
Disruptive Security Technologies with Mobile Code and Peer-to-peer Networks by R. R. Brooks, to
be published by CRC Press in 2004. Contract signed. Book in preparation.

Peer-reviewed journal publications:
1. J. M. Zachary and R. R. Brooks, "Bidirectional Mobile Code Trust Management Using Tamper

Resistant Hardware," Mobile Networks and Applications, 8, pp. 137-143, 2003.
2. R. R. Brooks, and N. Orr, "A Model for Mobile Code using Interacting Automata," IEEE

Transactions on Mobile Computing, Vol. 1, No. 4, pp. 1-14, October-December, 2002.
3. H. Saputra, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, R. R. Brooks, S. Kim, and W. Zhang,

"Masking the Energy Behavior of DES Encryption," Proceedings of IEE, Accepted for publication,
June 2003.

4. R. R. Brooks, N. Gautam and C. Griffin, "Games on Graphs for Modeling Distributed Denial of Service
Attacks," ACM Transactions on System and Information Security, submitted for review, July 2003.

5. T. Keiser, and R. R. Brooks, "Implementation of Mobile Code Daemons for a Wired and Wireless
Network of Embedded Systems," Internet Computing, in press, May 2004.

6. M. Young, J. Schwier, R. R. Brooks, and S. Rai, "Testing Denial of Service (DoS) Detetection
Methods," Internet Computing, revised, September 2003.

7. R. R. Brooks, S. A. Racunas, and S. Rai, "Mobile Network Analysis using Probabilistic Connectivity
Matrices," IEEE Transactions on Mobile Computing, under revision, June 2004.

8. R. R. Brooks, C. Griffin, and A. Payne, "A Cellular Automata Model can Quickly Approximate UDP
and TCP Network Traffic," Complexity, in press, May 2004.

9. R. R. Brooks, "Mobile code paradigms and security issues," Internet Computing, In Press, April 2004.
10. R. R. Brooks, C. Griffin, and J. Schwier, "What makes a distributed denial of service attack work well?" IEEE

Transactions on Dependable and Secure Computing, submitted for review, May 2004.
11. G. Carl, R. R. Brooks, and S. Rai, "Wavelet-based Denial of Service Detection," IEEE Transactions on

Computers, submitted for review, May 2004.
12. R. R. Brooks and C. Griffin, "A note on the spread of worms in Intemet-like networks," ACM Transactions on

and Information Security, submitted for review, May 2004.

Conference publications:
13. H. Saputra, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, R. Brooks, S. Kim, and W. Zhang. Masking the

energy behavior of DES encryption, Proc. the 6th Design Automation and Test in Europe Conference
(DATE'03), Munich, Germany, March 2003. (Nominated for Best Paper)

14. A. Kapur, N. Gautam, R. R. Brooks, and S. Rai, "Design, Performance and Dependability of a Peer-
to-Peer Network Supporting QoS for Mobile Code Applications," Proceedings of the Tenth
International Conference on telecommunications systems, pp. 395-419, Sept. 2002.

15. R. R. Brooks, C. Griffin, J. Zachary, and N. Orr, "An Interacting Automata Model for Network
Protection," Invited Paper, Fusion 2002, July 2002.

16. R. R. Brooks and C. Griffin, "Fugitive Search Strategy and Network Survivability," 2003 Industrial
Engineering Research Conference, invited Paper, January 2003.

83

17. E. Swankoski, R.R. Brooks, V. Narayanan, M. Kandemir, and M. J. Irwin, "A Parallel Architecture
for Secure FPGA Symmetric Encryption ," Reconfigurable Architecture Workshop, Santa Fe, New
Mexico, April 2004.

18. H. Saputra, N. Vijaykrishnan, M. Kandemir, R. Brooks, and M. J. Irwin. Exploiting value locality for
secure energy aware communication. In Proc. the 2003 IEEE Workshop on Signal Processing Systems
(SIPS'03), August 2003.

19. G. Chen, B. Kang, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and R.Chandramouli. Energy-aware
compilation and execution in Java-enabled mobile devices, In Proc. 17th International Parallel and
Distributed Processing Symposium (IPDPS'03), April 2003.

20. H. Saputra, R. R. Brooks, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, "Code protection for resource-
constrained embedded devices," LCTES '04 Conference on Languages, Compilers, and Tools Jbr Embedded
Systems, June 2004, Accepted for publication, March 2004.

21. M. Pirretti, G. M. Link, R. R. Brooks, V. Narayanan, M. Kandemir, M. J. Irwin, "Fault tolerant algorithms for
network-on-chip interconnect," ISVLSI 2004, Accepted for publication.

22. H. Saputra, R. R. Brooks, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, "Exploiting Value Locality for
secure Energy Aware Communication," IEEE Workshop on Signal Processing, Seoul, Korea, August 2003.

National technology standards:
23. J.M. Zachary, R. R. Brooks, and D. Thompson, "Secure Integration of Building Networks into the Global

Internet," NIST GCR 02-837, National Institute of Standards and Technology, US Dept. of
Commerce, Gaithersburg, MD, Oct. 2002.

Technical Reports:
24. R. R. Brooks, CA Model of Mobile Code, ARL Technical Memorandum, MUSE-TR-01.
25. J. Zachary, and R. R. Brooks, Bi-directional Mobile Code Trust Management Using Tamper Resistant

Hardware, MUSE-TR-02.
26. R. R. Brooks and N. Gautam, Analysis of Key Management using Peer-to-Peer Infrastructure, MUSE-TR-

03.
27. N. Vijaykrishnan, M. Kandemir, and R. R. Brooks, Controlflow Obfuscation of Java Codes, PSU CSE

technical report.
28. A. Kapur, N. Gautam, R. R. Brooks, and S. Rai, "On Strategic-Level Design Optimization Problems in

P2P Networks for Mobile Code Applications," MUSE-TR-04.
29. R. R. Brooks, S. A. Racunas, S. Rai, and N. Gautam, "On Path Dependability in Random Graph Models,"

MUSE-TR-05.

Student theses:
"* N. Orr, A Message Based Taxonomy of Mobile Code for Quantifying Network Communication

PSU CSE, Master's Thesis, Summer 2002.
"* A. Kapur, Optimal Design of P2P Networks Supporting QoS Issues for Efficient File Sharing, PSU

IE, Master's Thesis, Fall 2002.
"* Eric Swankoski, Encryption and Security in Field-Programmable Gate Arrays, PSU CSE, Master's Thesis,

Spring 2004.

9. LIST OF PERSONNEL ASSOCIATED

Dr. Richard R. Brooks - PI - Head, Distributed Systems Dept. Applied Research Laboratory of The
Pennsylvania State University.

Dr. Shashi Phoha - Associate Director, Information Sciences and Technology Division, Applied Research
Laboratory of The Pennsylvania State University.

Dr. Vijaykrishnan Narayanan- Associate Professor, Computer Science and Engineering, The Pennsylvania
State University.

84

Dr. Mahmut Kandemir - Assistant Professor, Computer Science and Engineering, The Pennsylvania State
University.

Dr. Natarajan Gautam - Associate Professor, Industrial and Manufacturing Engineering, The Pennsylvania
State University.

Dr. John M. Zachary - Research Associate, Distributed Systems Dept. Applied Research Laboratory of The
Pennsylvania State University. (Currently, Assistant Professor, Computer Science, University of South
Carolina at Columbia.)

Mr. Eric Grele - Research Engineer. Applied Research Laboratory of The Pennsylvania State University.

Mr. Christopher Griffin - Research Engineer. Applied Research Laboratory of The Pennsylvania State
University. Currently pursuing a masters degree in mathematics.

Mr. Art Jones - Research Engineer. Applied Research Laboratory of The Pennsylvania State University.
Currently pursuing a Ph.D. in Information Science and Technology.

Mr. John Koch - Research Engineer. Applied Research Laboratory of The Pennsylvania State University.

Mr. Glenn Carl - Graduate Student. The Pennsylvania State University. Pursuing a Ph. D. in Electrical
Engineering.

Mr. Nathan Orr - Graduate Student. Received an M. S. in Computer Science and Engineering from The
Pennsylvania State University while working on the project.

Mr. Eric Swankoski - Graduate Student. Received an M. S. in Computer Science and Engineering from The
Pennsylvania State University while working on the project.

Ms. Margaret Aichele - Undergraduate. The Pennsylvania State University. Computer Science and
Engineering.

Mr. Thomas Keiser - Undergraduate. The Pennsylvania State University. Computer Science and Engineering.

Mr. Jason Schwier - Undergraduate. The Pennsylvania State University. Received a B. S. in Computer Science
and Engineering from The Pennsylvania State University while working on the project.

Ms. Devaki Shah - Undergraduate. The Pennsylvania State University. Computer Science and Engineering.

Mr. Michael Young - Undergraduate. The Pennsylvania State University. Computer Science and Engineering.

10. PRESENTATIONS

The following papers were presented:
"* H. Saputra, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, R. Brooks, S. Kim, and W. Zhang. Masking the

energy behavior of DES encryption, The 6th Design Automation and Test in Europe Conference (DATE'03),
Munich, Germany, March 2003. (Nominated for Best Paper)

"* A. Kapur, N. Gautam, R. R. Brooks, and S. Rai, "Design, Performance and Dependability of a Peer-
to-Peer Network Supporting QoS for Mobile Code Applications," Tenth International Conference on
telecommunications systems, Sept. 2002.

"* R. R. Brooks, C. Griffin, J. Zachary, and N. Orr, "An Interacting Automata Model for Network
Protection," Invited Paper, Fusion 2002, July 2002.

"* R. R. Brooks and C. Griffin, "Fugitive Search Strategy and Network Survivability," 2003 Industrial
Engineering Research Conference, invited Paper, January 2003.

"* E. Swankoski, R.R. Brooks, V. Narayanan, M. Kandemir, and M. J. Irwin, "A Parallel Architecture
for Secure FPGA Symmetric Encryption ," Reconfigurable Architecture Workshop, Santa Fe, New
Mexico, April 2004.

85

"* H. Saputra, N. Vijaykrishnan, M. Kandemir, R. Brooks, and M. J. Irwin. Exploiting value locality for
secure energy aware communication. 2003 IEEE Workshop on Signal Processing Systems (SIPS'03),
August 2003.

"* G. Chen, B. Kang, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and R.Chandramouli. Energy-aware
compilation and execution in Java-enabled mobile devices, 17th International Parallel and Distributed
Processing Symposium (IPDPS'03), April 2003.

"* H. Saputra, R. R. Brooks, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, "Code protection for resource-
constrained embedded devices," LCTES '04 Conference on Languages, Compilers, and Tools for Embedded
Systems, June 2004.

"* M. Pirretti, G. M. Link, R. R. Brooks, V. Narayanan, M. Kandemir, M. J. Irwin, "Fault tolerant algorithms for
network-on-chip interconnect," ISVLSI 2004..

"* H. Saputra, R. R. Brooks, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, "Exploiting Value Locality for
secure Energy Aware Communication," IEEE Workshop on Signal Processing, Seoul, Korea, August 2003.

11. INVENTIONS

No new inventions have been declared. The CIP/URI efforts concentrated on performing basic research and
creating proof-of-concept prototypes.

12. PROGRAM FINANCIAL SUMMARY

Total Project

Actual Budget
Salary
Fringe Benefits
Travel
Equipment
Tuition
Overhead

Col. Total $0.00 $

13. REFERENCES

[Albert 20011 R. Albert and A.-L. Barabisi, "Statistical Mechanics of Complex Networks," arXiv:cond-
mat/ 0106096v0, June 2001.

[Barabzsi 1999]A-.L. Barabdsi and R. Albert, "Emergence of scaling in random networks," Science, vol. 286, pp.
509-512, 15 October 1999.

[Brooks 1998] R. R. Brooks and S. S. Iyengar, Multi-sensor Fusion: Fundamentals and Applications with Software,
Prentice Hall PTR, Upper Saddle River, NJ, 1998.

[Brooks 2000] R. R. Brooks, E. Grele, W. Kliemkiwicz, J. Moore, C. Griffin, B. Kovak, and J. Koch "Reactive
Sensor Networks: Mobile Code Support for Autonomous Sensor Networks," Distributed Autonomous
Robotic Systems DARS 2000, Pp. 471-472. Springer Verlag, Tokyo, October 2000.

[Brooks 2002] R. R. Brooks, and N. Orr, "A Model for Mobile Code using Interacting Automata," IEEE
Transactions on Mobile Computing, vol. 1, no. 4, pp. 313-326, October-December 2002.

[Camazine 20011 S. Camazine, et al, Self-Organization in Biological Systems, Princeton University Press,
Princeton, N.J., 2001.

[CCO4] Li-Chiou Chen and Kathleen M. Carley. The impact of countermeasure propagation on the prevalence
of computer viruses. IEEE Transactions on Systems, Man and Cybernetics-Part B, 34(2):823- 833, April
2004.

86

[Chander 20011 A. Chander, J. Mitchell, I. Shin: Mobile code security by Java bytecode
instrumentation. DISCEX II, 2001

[Cvetovic 1979] D. M. Cvetkovic, M. Doob, and H. Sachs, Spectra of Graphs, Academic Press, NY, 1979.
[Fuggetta 1998]A. Fuggetta, G. P. Picco, and G. Vigna, "Understanding Code Mobility," IEEE Transactions on

Software Engineering, vol. 24, no. 5, pp. 342-361, May 1998.
[Grossglauer 1999]M. Grossglauer and J.-C. Blot, "On the Relevance of Long-Range Dependence in Network

Traffic," IEEE/ACM Transactions on Networking, vol. 7, no. 5, pp. 629-640, October 1999.
[Howard 1998] J. D. Howard, T. A. Longstaff, A Common Language for Computer Security Incidents, Sandia

Report, SAND98-8867.
[Howitz 1990] S. Horwitz, T. Reps, and D. Binkley. Interprocedural Slicing Using Dependence Graphs. ACM

Transactions on Programming Languages and Systems 12, 1 (January 1990), 26-60.
[Jarvinen 2003] K. Jarvinen, M. Tommiska, and J. Skytta, "A Fully Pipelined Mernoryless 17.8 Gbps AES-128 Encryptor,"

Proceedings of the 2003 ACM/SIGDA Eleventh International Symposium on Field Programmable Gate Arrays, Pages 207-215.
[Kapur 2002] A. Kapur, N. Gautam, R. R. Brooks, and S. Rai, "Design, Performance and Dependability of a

Peer-to-Peer Network Supporting QoS for Mobile Code Applications," Tenth International Conference on
telecommunications systems, Sept. 2002.

[Krishnamachari 2001] Bhaskar Krishnamachari, Stephen B. Wicker, and Ramon Bejar, "Phase Transition
Phenomena in Wireless Ad-Hoc Networks," Symposium on Ad-Hoc Wireless Networks, GlobeCom2001,
San Antonio, Texas, November 2001.
http://w-ww.krishnamachari.net/papers/phaseTransitionWirelessNetworks.pdf

[Leland 1994] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, "On the Self-Similar Nature of
Ethernet Traffic (Extended Version)" IEEE/ACM Transactions on Networking, vol. 2, no. 1, pp. 1-15,
February 1994..

[Milojicic 1999] D. Milojicic, F. Douglis, and R. Wheeler, ed.s, Mobility: Processes Computers, and Agents,
Addison-Wesley, Reading, MA, 1999.

[Necula 1996] G.C. Necula, P. Lee: Safe kernel extensions without run-time checking. In Proceedings of
the 2nd Symposium on Operating Systems Design and Implementation, October 1996.

[Oram 2001] A. Oram, ed. "Peer-to-Peer Harnessing the Pow'er of Disruptive Technologies", O'Reilly,
Beijing, 2001.

[Orr 20021 N. Orr, A Message-Based Taxonomy of Mobile Code for Quantifying Network Communication, M.
S. Thesis, Computer Science and Engineering, The Pennsylvania State University, Summer 2002.

[Portugali 2000] J. Portugali, Self-Organization and the City, Springer Series in Synergetics, Springer Verlag,
Berlin, 2000.

[Rubin 1998] A. D. Rubin, and D. E. Geer, "Mobile Code Security," IEEE Internet Computing, pp. 30-34, Nov-
Dec 1998.

[Saputra 2004] H. Saputra, R. R. Brooks, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, "Code protection for
resource-constrained embedded devices," LCTES '04 Conference on Languages, Compilers, and Tools for Embedded
Systems, June 2004, Accepted for publication, March 2004.

[Stallings 1995] W. Stallings, Network and Internetwork Security, Prentice Hall, Upper Saddle River, NJ, 1995.
[Tanenbaum 1997] A. S. Tananbaum and A. S. Woodhull, Operating Systems: Design and Implementation,

Prentice Hall, Upper Saddle River, NJ, 1997.
[Watts 1999] D. J. Watts, "Small Worlds", Princeton University Press, Princeton, NJ, 1999.
[Willinger 1998] W. Willinger and V. Paxson, "Where Mathematics Meets the Internet," Notices of the AMS, pp.

961-971, September 1998.

87

