
AFRL-IF-WP-TR-2004-1568

COMPONENT COMPOSITION FOR
EMBEDDED SYSTEMS USING
SEMANTIC ASPECT-ORIENTED
PROGRAMMING

Dr. Martin Rinard

Massachusetts Institute of Technology
Laboratory for Computer and Science
77 Massachusetts Avenue
Cambridge MA 02139-4307

OCTOBER 2004

Final Report for 12 June 2000 – 12 August 2004

Approved for public release; distribution is unlimited.

STINFO FINAL REPORT

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

/A L\

t^«^.»V*
^A^

NOTICE

Using government drawings, specifications, or other data included in this document for any
purpose other than government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or permission
to manufacture, use, or sell any patented invention that may relate to them.

This report has been reviewed by the Air Force Research Laboratory Wright Site Office of Public
Affairs (AFRL/WS/PA) and is releasable to the National Technical Information Service (NTIS).
At NTIS, it will be available to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication.

/s/ /s/
__ ___
MARVIN M. SORAYA STEPHEN L. BENNING
Project Engineer Team Lead
Advanced Architecture & Advanced Architecture &
Integration Branch Integration Branch

/s/
__
DAVID A. ZANN, Chief
Advanced Architecture &
Integration Branch
Materials & Manufacturing Directorate

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

October 2004 Final 06/12/2000 – 08/12/2004
5a. CONTRACT NUMBER

F33615-00-C-1692
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

COMPONENT COMPOSITION FOR EMBEDDED SYSTEMS USING
SEMANTIC ASPECT-ORIENTED PROGRAMMING

5c. PROGRAM ELEMENT NUMBER
69199F

5d. PROJECT NUMBER

ARPI
5e. TASK NUMBER

FS

6. AUTHOR(S)

Dr. Martin Rinard

5f. WORK UNIT NUMBER

 0K
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER

Massachusetts Institute of Technology
Laboratory for Computer and Science
77 Massachusetts Avenue
Cambridge, MA 02139-4307

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
ACRONYM(S)

AFRL/IFSC Information Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson AFB, OH 45433-7334

11. SPONSORING/MONITORING AGENCY
REPORT NUMBER(S)

 AFRL-IF-WP-TR-2004-1568
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

The goal of our research was to develop technologies and techniques in support of real-time systems for the defense
community. Our research focused on Real-Time Java implementation and analysis techniques. Real-Time Java is
important for the defense community because it holds out the promise of enabling developers to apply COTS Java
technology to specialized military embedded systems. It also promises to allow the defense community to utilize a large
Java-literate workforce for building defense systems.

Our research has delivered several techniques that may make Real-Time Java a better platform for developing embedded
systems. These techniques include ways to implement scoped memories (a key Real-Time Java construct) without the
possibility of introducing unexpected and potentially catastrophic delays in the execution of real-time threads, analyses
that ensure the correct use of Real-Time Java scoped memories, analyses that compute how much memory is required to
execute a given Real-Time Java program (potentially helping developers calculate how much memory must be including
in a given system to ensure that the system will execute without running out of memory), and optimizations that reduce
the amount of memory required to execute a Real-Time Java program.

15. SUBJECT TERMS
Real-Time Systems, Embedded Systems, Real-Time Java, Scoped Memory, Object-Oriented Programming, Instrumented
Semantics

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

 270
 Marvin Soraya
19b. TELEPHONE NUMBER (Include Area Code)

(937) 255-4709 x3177
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

Contents

1 Executive Overview 1
1.1 Introduction . 1
1.2 Real-Time Java Scoped Memories . 2

1.2.1 Scoped Memory Implementation 3
1.2.2 Scoped Memory Analysis . 4

1.3 Real-Time Scheduling . 5
1.4 Data Size Prediction and Optimizations 5

1.4.1 Unitary Allocation Sites . 6
1.4.2 Data Size Reductions . 7

1.5 Role Analysis . 7
1.6 OEP Interaction Activities . 7
1.7 Applicability to PCES . 8
1.8 Flex and Components . 9
1.9 Acknowledgements . 9

2 Interprocedural Compatibility Analysis for Static Object Prealloca-
tion 11
2.1 Introduction . 11
2.2 Analysis Presentation . 13

2.2.1 Example . 15
2.2.2 Program Representation . 16
2.2.3 Object Liveness Analysis . 19
2.2.4 Computing the Incompatibility Pairs 21
2.2.5 Multithreaded Applications 23
2.2.6 Optimization for Single-Thread Programs 24

2.3 Experimental Results . 25
2.4 Related Work . 29
2.5 Conclusions . 30

3 Data Size Optimizations for Java Programs 31
3.1 Introduction . 31

3.1.1 Contributions . 32
3.2 Examples . 32

3.2.1 Field Reduction and Constant Field
Elimination . 33

iii

3.2.2 Static Specialization . 34
3.2.3 Field Externalization . 35
3.2.4 Hash/Lock Externalization . 36

3.3 Analysis Algorithms . 37
3.3.1 Rapid Type Analysis . 37
3.3.2 Bitwidth Analysis . 37
3.3.3 Definite Initialization Analysis 39
3.3.4 Profiling Mostly-Constant Fields 40
3.3.5 Finding Subclass-Final Fields 41
3.3.6 Constructor Classification . 42

3.4 Implementation Issues . 42
3.4.1 Byte Packing . 42
3.4.2 External Hashtable Implementation 43
3.4.3 Class Loading and Reflection 44

3.5 Experimental Results . 44
3.5.1 Memory Savings . 44
3.5.2 Objects Versus Arrays . 46
3.5.3 Execution Times . 46

3.6 Related Work . 47
3.7 Conclusions . 48

4 Pointer and Escape Analysis for Multithreaded Programs 49
4.1 Introduction . 49

4.1.1 Analysis Algorithm . 49
4.1.2 Application to Region-Based Allocation 50
4.1.3 Contributions . 50

4.2 Example . 51
4.2.1 Structure of the Parallel Computation 51
4.2.2 Regions and Memory Management 51
4.2.3 Regions and Dangling Reference Checks 53
4.2.4 Analysis in the Example . 54
4.2.5 Interthread Analysis . 55

4.3 Analysis Abstraction . 59
4.3.1 Object Representation . 59
4.3.2 Points-To Escape Graphs . 59
4.3.3 Parallel Interaction Graphs 60

4.4 Analysis Algorithm . 61
4.4.1 Program Representation . 61
4.4.2 Intraprocedural Analysis . 61
4.4.3 Mappings . 63
4.4.4 Interprocedural Analysis . 63
4.4.5 Thread Interaction . 65
4.4.6 Interthread Analysis . 67
4.4.7 Resolving Outside Nodes . 67

4.5 Analysis Uses . 68

iv

4.5.1 Region Reference Check Elimination 68

4.5.2 Synchronization Elimination 68

4.6 Experimental Results . 68

4.6.1 Methodology . 69

4.6.2 Results . 69

4.6.3 Discussion . 71

4.7 Related Work . 71

4.7.1 Analysis of Multithreaded Programs 71

4.7.2 Escape Analysis for Multithreaded Programs 72

4.7.3 Region-Based Allocation . 72

4.8 Conclusion . 73

5 Role-Based Exploration of Object-Oriented Programs 75

5.1 Introduction . 75

5.1.1 Role Separation Criteria . 75

5.1.2 Role Subspaces . 77

5.1.3 Contributions . 77

5.2 Example . 78

5.2.1 Starting Out . 78

5.2.2 Role Transition Diagrams . 79

5.2.3 Role Definitions . 79

5.2.4 Role Relationship Diagrams 81

5.2.5 Enhanced Method Interfaces 82

5.2.6 Role Information . 82

5.3 Dynamic Analysis . 84

5.3.1 Predicate Evaluation . 84

5.3.2 Multiple Object Data Structures 86

5.3.3 Method Effect Inference . 86

5.3.4 Role Subspaces . 88

5.4 User Interface . 88

5.5 Exploration Strategy . 89

5.6 Experience . 90

5.6.1 Jess . 90

5.6.2 Direct-To . 91

5.6.3 Tagger . 92

5.6.4 Treeadd . 92

5.6.5 Em3d . 94

5.6.6 Utility of Roles . 94

5.7 Related Work . 96

5.7.1 Design Formalisms . 96

5.7.2 Program Understanding Tools 96

5.7.3 Verifying Data Structure Properties 97

5.8 Conclusion . 97

v

6 Role Analysis 99

6.1 Overview of Roles . 100

6.1.1 Role Definitions . 101

6.1.2 Roles and Procedure Interfaces 101

6.2 Contributions . 101

6.3 Outline of the Chapter . 103

6.4 Roles as a Constraint Specification Language 105

6.4.1 Abstract Syntax and Semantics of Roles 105

6.4.2 Using Roles . 106

6.4.3 Some Simple Properties of Roles 110

6.5 A Programming Model . 112

6.5.1 A Simple Imperative Language 113

6.5.2 Operational Semantics . 114

6.5.3 Onstage and Offstage Objects 115

6.5.4 Role Consistency . 117

6.5.5 Instrumented Semantics . 118

6.6 Intraprocedural Role Analysis . 120

6.6.1 Abstraction Relation . 120

6.6.2 Transfer Functions . 123

6.7 Interprocedural Role Analysis . 133

6.7.1 Procedure Transfer Relations 133

6.7.2 Verifying Procedure Transfer Relations 139

6.7.3 Analyzing Call Sites . 141

6.8 Extensions . 146

6.8.1 Multislots . 146

6.8.2 Root Variables . 147

6.8.3 Singleton Roles . 148

6.8.4 Cascading Role Changes . 149

6.8.5 Partial Roles . 151

6.8.6 Semantics of Partial Roles . 153

6.8.7 Role Subtyping . 155

6.9 Decidability Properties of Roles . 159

6.9.1 Roles with Field and Slot Constraints 159

6.9.2 Undecidability of Model Inclusion 162

6.10 Related Work . 166

6.10.1 Typestate Systems . 166

6.10.2 Roles in Object-Oriented Programming 167

6.10.3 Shape Analysis . 169

6.10.4 Interprocedural Analyses . 171

6.10.5 Program Verification . 171

6.11 Conclusion . 172

vi

7 An Implementation of Scoped Memory for Real-Time Java 173
7.1 Introduction . 173

7.1.1 Threads and Garbage Collection 174
7.1.2 Implementation . 174
7.1.3 Debugging . 174

7.2 Programming Model . 175
7.2.1 Entering and Exiting Memory Areas 175
7.2.2 Scoped Memories . 175
7.2.3 No-Heap Real-Time Threads 176

7.3 Example . 177
7.4 Implementation . 179

7.4.1 Heap Check Implementation 179
7.4.2 Access Check Implementation 180
7.4.3 Operations on Memory Areas 180
7.4.4 Memory Area Reference Counts 183
7.4.5 Memory Allocation Algorithms 183
7.4.6 Garbage Collector Interactions 184

7.5 Debugging Real-Time Java Programs 185
7.5.1 Incremental Debugging . 185
7.5.2 Additional Runtime Debugging Information 185

7.6 Results . 186
7.7 Related Work . 188
7.8 Conclusion . 189

8 Ownership Types for Safe Region-Based Memory Management in
Real-Time Java 191
8.1 Introduction . 191
8.2 Type System . 194

8.2.1 Regions for Object-Oriented Programs 194
8.2.2 Regions for Multithreaded Programs 199
8.2.3 Regions for Real-Time Programs 202
8.2.4 Rules for Typechecking . 205
8.2.5 Type Inference . 207
8.2.6 Translation to Real-Time Java 208

8.3 Experience . 209
8.4 Related Work . 210
8.5 Conclusions . 211

9 Incrementalized Pointer and Escape Analysis 213
9.1 Introduction . 213

9.1.1 Analysis Overview . 213
9.1.2 Analysis Policy . 214
9.1.3 Analysis Uses . 214
9.1.4 Context . 215
9.1.5 Contributions . 215

vii

9.2 Examples . 216

9.2.1 The compute Method . 216

9.2.2 The multiply Method . 218

9.2.3 Object Field Accesses . 220

9.3 The Base Analysis . 222

9.3.1 Object Representation . 222

9.3.2 Points-To Escape Graphs . 223

9.3.3 Program Representation . 224

9.3.4 Intraprocedural Analysis . 224

9.3.5 Interprocedural Analysis . 224

9.3.6 Merge Optimization . 227

9.4 The Incrementalized Analysis . 227

9.4.1 Matched Edges . 228

9.4.2 Propagated Edges . 229

9.4.3 Skipped Call Sites from the Caller 229

9.4.4 Skipped Call Sites from the Callee 229

9.4.5 New Orders . 230

9.4.6 Cleanup . 230

9.4.7 Updated Intraprocedural Analysis 230

9.4.8 Extensions . 231

9.4.9 Recursion . 231

9.4.10 Incomplete Call Graphs . 231

9.5 Analysis Policy . 231

9.5.1 Stack Allocation . 232

9.5.2 Analysis Opportunities . 233

9.5.3 Estimated Marginal Returns 234

9.5.4 Termination . 235

9.6 Experimental Results . 235

9.6.1 Benchmark Programs . 235

9.6.2 Marginal Returns and Profiling Information 236

9.6.3 Analysis Payoffs and Statistics 236

9.6.4 Application Execution Statistics 237

9.7 Related Work . 237

9.7.1 Escape Analysis . 238

9.7.2 Demand-Driven Analysis . 239

9.7.3 Fragment and Incremental Analysis 240

9.8 Conclusion . 240

10 Acronyms 257

viii

Chapter 1

Executive Overview

1.1 Introduction

The focus of our research during this project was the analysis and implementation
technologies for the Real-Time Specification for Java (RTSJ), a standard extension
to Java for real-time systems [38]. The motivation for this focus was the difficulty
of developing critical real-time systems for the defense community using standard
existing development methodologies and the need for the defense community to track
modern software development technologies more closely (both to take advantage of
improvements and to help ensure the availability of a suitably trained workforce).
At the same time, the Department of Defense has special needs that the broader
COTS community will not serve on its own. Real-Time Java holds out the promise
of providing a solution that is largely based on and tracks COTS technology but is
enhanced with features that make it suitable for building large and complex defense
systems. Our research goal was to develop key technology that would promote the
ability of the defense community to use Real-Time Java more effectively.

Our research produced results in several broad areas: analyses and implementa-
tion techniques for scoped memories in Real-Time Java, analyses and optimizations
for reducing the amount of memory required to run Real-Time Java programs, and
analyses for tracking the conceptual roles that objects play in Real-Time Java pro-
grams. All of this research has been published over the course of the project. We
have also developed prototype implementations of many of our algorithms in the MIT
FLEX compiler infrastructure, which is freely available over the Internet.

Highlights of our specific activities and accomplishments included:

• An analysis for ensuring the safety of Real-Time Java programs that use scoped
memories. Scoped memories are a key element of Real-Time Java, but must be
used correctly to avoid the possibility of dynamic exceptions which can cause
the program to fail or behave unpredictably. Our analysis checks the program
to verify that it is free of any such errors.

• An example scenario for how it would be useful is a UAV (Unmanned Airborne
Vehicle) with a feed coming in to an automatic target recognition component.

1

Without our analysis, the component might have a software error that would
cause the system to fail, losing video or target recognition capability. Our
software would find such an error and enable the developer to eliminate it,
enabling the system to operate without the possibility of such errors.

• A real-time scheduling interface for Real-Time Java programs. This interface
lets developers easily implement their own real-time scheduling algorithms, in
particular scheduling algorithms that are best suited for their particular appli-
cation. Without this capability a developer would have to rely on the standard
scheduling algorithms provided by the system.

• An example scenario for how this would be useful is a UAV feed with automatic
target recognition software and special scheduling needs. Without this interface,
the developer would be forced to rely on the standard scheduling algorithm,
which could suffer from suboptimal performance such a jitter problems which
might make it difficult to correctly view and interpret the UAV feed. With
our technology, the developer could implement their own scheduling algorithm,
eliminate the suboptimal performance, and get better comprehensibility of the
UAV feed.

• An analysis that automatically reduces the amount of space required to execute
Real-Time Java programs. This analysis determines when it is possible to reduce
the amount of bits required to represent Java objects, enabling a reduction in
the amount of memory deployed in the embedded system.

An example scenario for how this would be useful is a space reduction that
would make it more practical to place ATR components on the UAV instead of
on the ground, reducing required bandwidth by enabling ATR software to filter
uninteresting data without transmitting it.

1.2 Real-Time Java Scoped Memories

Memory management is an important issue in Real-Time Java. Safe memory man-
agement has usually been implemented by garbage collection. But garbage collection
is widely viewed as unsuitable for real-time systems because the pauses characteristic
of garbage collection may perturb the execution of the system to the point that it
fails to satisfy its real-time scheduling requirements.

Real-Time Java avoids this problem by using scoped memories. The basic idea is
that a part of the execution allocates all of its objects in a specific scoped memory.
That scoped memory is deallocated as a unit when the part finishes, without the
potentially unbounded pause times characteristic of general garbage collection. The
scoped memories are arranged into a hierarchy, with the lifetimes of scoped memories
higher in the hierarchy containing the lifetimes of the scoped memories lower in the
hierarchy.

For this approach to work, it must be the case that there are no references pointing
into the scope memory when the scoped memory is deallocated. This is accomplished

2

in the Real-Time Java spec by inserting dynamic checks into the program at every
point where the program might generate a pointer from a higher scoped memory to
a lower scoped memory. If the program attempts to create such a pointer, the JVM
throws an exception.

1.2.1 Scoped Memory Implementation

As part of our research activities we developed an implementation of scoped mem-
ories for RTSJ. To our knowledge, this implementation was the first RTSJ scoped
memory implementation ever developed. As part of this activity, we pioneered key
implementation techniques and uncovered some quite subtle implementation issues.
A key issue is ensuring that the scoped memory implementation does not interact at
all with the garbage collector. Such an interaction could lead to unexpected pauses of
unbounded duration, which would, in turn, cause the system to miss crucial real-time
deadlines.

The Real-Time Specification for Java was designed to allow the scoped memory
implementation to not have to interact at all with the garbage collector. We found
that while it is possible to build such a scoped memory implementation, it is not
completely straightforward to do so — there are several subtle points that need to
be addressed to ensure the complete lack of interaction between the two memory
managers.

Most of these subtle interactions take place in the context of the implementation
of no-heap real-time threads. No-heap real-time threads, as the name suggests, are
threads that have real-time requirements and must never interact with the garbage
collector.

One potential interaction occurs when the garbage collector scans a scoped mem-
ory area looking for references at the same time as the no-heap real-time thread
allocates an object in that memory area. The actions of the garbage collector must
not delay the object allocation, eliminating the possibility of using locks to manage
the interactions between the collector and the no-heap real-time thread. Another
potential interaction occurs when a no-heap real-time thread and a normal thread
share a memory area. There is a need for a lock-free synchronization mechanism that
the two threads can use when they allocate memory concurrently in that region.

Our solutions to these problems rely largely on lock-free synchronization mech-
anisms such as compare and swap to avoid the need for blocking synchronization
between no-heap real-time threads, other threads, and the garbage collector. Our
algorithms are described further in reference [30].

Eliminating implementation interactions between the garbage collector and the
scoped memory implementation is crucial for ensuring that the real-time threads
continue to make their deadlines. Failures to meet deadlines can cause catastrophic,
unpredictable failures.

3

1.2.2 Scoped Memory Analysis

The RTSJ specifies that the implementation must check for the absence of references
from one scoped memory to a scoped memory whose lifetime is included in the lifetime
of the first scoped memory. These checks are designed to ensure the absence of
references into each scoped memory when the scoped memory is deallocated. If the
implementation allowed such references, the system could access memory that has
been deallocated, then reallocated to hold different objects. These kinds of errors are
notorious for causing subtle, non-deterministic and catastrophic errors.

While the dynamic checks are a huge improvement over the alternative (dangling
references with the possiblity of catastrophic errors), they still can cause the program
to fail. If the program fails a dynamic check, it must throw an exception. Developers
typically write code that responds to exceptions by terminating the execution or
taking some other general action that is not what the system would optimally do.
Of course, such a failure can potentially be very dangerous to a person using the
program. If, for example, the program is part of an image pipeline feeding images to
an operator for decisions (potentially as part of a UAV scenario), such a failure could
cause the flow of images to stop completely, leaving the operator with no information
whatsoever. If the program is controlling entities in the physical world (such as a
part of a vehicle control program), the failure could leave the entities running out of
control and unable to respond or correctly process inputs or commands.

Our research addressed this question by developing analysis algorithms and type
systems that ensure the correct use of scoped memory areas in Real-Time Java pro-
grams. Our automatic analysis uses escape analysis to verify the correct use of scoped
memories. If the analysis succeeds, it has guaranteed that the program uses scoped
memories correctly. We have also developed a type system that allows the program-
mer to add additional region type information to a Real-Time Java program, and a
type checker could check to ensure correctness statically. The program can then be
translated to a Real-Time Java program that uses memory areas without generating
any runtime exceptions.

Since the Real-Time Java program has been proven to use memory correctly, all
checks can be removed in the Real-Time Java runtime. This not only improves the
runtime performance of Real-Time Java programs, it improves safety. Specifically,
there is a guarantee that the program will never fail because of a violated safety
check — in other words, there is an entire class of errors that the analysis has verified
will never occur in any circumstances whatsoever. This kind of verification can, in
turn, eliminate potentially serious errors that can cause safety violations of the kind
described above.

Using a type-safe front end also relieves the Real-Time Java runtime of the burden
of the correctness of safety checks. Without the burden of implementing correct
runtime safety checks, the development time of a working Real-Time Java VM can
be shortened substantially.

Verification and validation is another important potential application of this anal-
ysis. Any realistic validation and verification effort would need to address the po-
tential issue of scoped memory reference errors. Our static analysis could help direct

4

the attention of the validation and verification effort to any potential problems and,
in some cases, eliminate the need to consider this issue at all during verification and
validation.

One important aspect of our project is that the analysis works for multithreaded
programs. Many real-time programs contain multiple threads and any analysis for
these programs must take threads into account otherwise they may produce results
that are simply incorrect for multithreaded programs. The potential effect is quite
negative — an incorrect analysis result can lead to an incorrect understanding or
transformation of the program, with catastrophic results when the program is actu-
ally deployed. The fact that our analysis is sound for multithreaded programs is a
necessary prerequisite for using it in the context of Real-Time Java, which anticipates
the widespread use of threads.

More information on this research is available in the following publications: [47,
198, 191].

1.3 Real-Time Scheduling

Our Real-Time Scheduling work focused on primitives for supporting the development
of real-time schedulers. The issue is that most systems provide a standard set of
real-time scheduling algorithms and it can be very difficult to implement another
algorithm. This is a problem since there are a large range of scheduling algorithms
that would be useful if it were possible to deploy them with a reasonable effort. Our
research in this area provided a new set of primitives that developers can use to easily
develop their real-time scheduling algorithms.

The basic problem with previous implementation support for real-time schedulers
was that the developer was essentially forced to work within the operating system
kernel to develop a new scheduling algorithm. This is a very daunting task since it
requires the developer to have detailed knowledge of the operating system, an area
of expertise well outside that of most developers of real-time scheduling algorithms.
Our interface provides developers of real-time schedulers with the functionality they
need without any requirement that they write low-level operating system code. This
functionality makes it possible to develop “pluggable schedulers” that can be deployed
as necessary into the system for specific needs. In effect, one can view each scheduler
as an aspect that our system enables to be woven easily into the system. The scheduler
itself can affect the timing of the entire system and determine whether or not the
system as a whole meets its goals. Integrating a new scheduler into the system
however, does not require the rest of the system to be changed, a key hallmark of
aspect-oriented design. See [92] for more information.

1.4 Data Size Prediction and Optimizations

Memory usage is a critical concern for embedded systems. In general, Real-Time Java
programs have many sources of potential space savings. Our memory usage research

5

focuses on two aspects: predicting the amount of memory required to execute a given
program, and reducing the amount of memory required to store the program data,
specifically the Java objects used to represent the data.

1.4.1 Unitary Allocation Sites

One of our mechanisms focuses on finding unitary allocation sites, or allocation sites
for which at most one object is live at any point during the execution of the program.
We have developed a static program analysis designed to find pairs of compatible
allocation sites; two sites are compatible if no object allocated at one site may be
live at the same time as any object allocated at the other site. If an allocation site is
compatible with itself (these are the unitary allocation sites), then at any time during
the execution of the program, there is at most one live object that was allocated at
that site. It is therefore possible to statically preallocate a fixed amount of space for
that allocation site, then use that space to hold all objects allocated at that site. Any
further space usage analyses can then focus only on the non-unitary allocation sites.

We have also used techniques inspired from register allocation to reduce the
amount of memory required to hold objects allocated at unitary allocation sites. The
basic approach is to build and color an incompatibility graph. The nodes in this graph
are the unitary allocation sites. There is an undirected edge between two nodes if the
nodes are not compatible. The analysis applies a coloring algorithm that assigns a
minimal number of colors to the graph nodes subject to the constraint that incompat-
ible nodes have different colors. This information enables the compiler to statically
preallocate a fixed amount of memory for each color. At each unitary allocation site,
the generated code bypasses the standard dynamic allocation mechanism and instead
simply returns a pointer to the start of the statically preallocated memory for that
allocation site’s color.

Results from our implemented analysis show that, for our set of Java benchmark
programs, our analysis is able to identify 60% of all allocation sites in the program as
unitary allocation sites. Furthermore, our incompatibility graph coloring algorithm
delivers a 95% reduction in the amount of memory required to store objects allocated
at these unitary allocation sites. We attribute the high percentage of unitary allo-
cation sites to specific object usage patterns characteristic of Java programs: many
unitary allocation sites allocate exception, string buffer, or iterator objects. See [104]
for more information.

This is important for real-time systems since many real-time systems control
safety-critical aspects of systems and failure can cause significant damage and threaten
human lives. By helping to rule out some sources of failure and making it simpler to
calculate the amount of memory required to execute the program, this analysis can
help make real-time programs more reliable and make it easier to validate and verify
that the program performs as expected.

6

1.4.2 Data Size Reductions

We have developed a set of techniques for reducing the amount of space required
to hold objects in Java programs. We attack two basic sources of waste: waste in
the fields (such as the class pointer and lock header) inserted automatically by the
implementation, and waste in the fields inserted to represent user data. For the user
data fields, we have implemented a value-flow analysis that determines the largest
and smallest possible values and allocates only enough bits to hold those values. We
have also implemented a variety of other analyses and transformations to reduce the
total amount of memory required to execute the program. This is of importance for
embedded real-time systems because it can reduce the amount of memory required to
execute the program and therefore reduce the cost of the embedded real-time system.
See [19] for more information.

1.5 Role Analysis

Role analysis is designed to help identify the conceptual roles that different objects
play in the computation. It is useful for ensuring that the program respects many
different safety properties. We have developed role analysis, which allows the pro-
grammer to state expectations about the conceptual roles that objects play in the
computation. This role includes the referencing relationships of the object with other
objects in the system, which allows the role system to capture important pointer
information. We have developed a system for automatically extracting roles from
program executions and for role checking a program that contains role annotations.
For more information see [75, 140].

This information can potentially be of considerable use during validation and
verification because it can make the operation of the program much more transparent
to anyone attempting to reason about the program. The role extraction research is
designed, in part, to help developers understand the operation of the program better
and in this capacity can also support validation and verification efforts.

1.6 OEP Interaction Activities

We also worked on a variety of activities that were designed to support the program.
These activities included development of the JavaCar (a first live source of video
data) and the Automatic Target Recognition software component. These compo-
nents helped test, evaluate, and demonstrate the technology developed in the PCES
program.

The PCES program wound up centered around two Open Experimental Platforms
(OEPs) — software systems that allowed groups to demonstrate their technology in
various ways. PCES had a platform provided by Bolt, Beranek, and Newman (BBN)
and a platform provided by Boeing. The JavaCar provided the first live video input
for the BBN OEP and was instrumental in helping drive the development of the

7

system to support external video sources. It also was important in illustrating the
early viability of the platform in processing live data as opposed to recorded feeds.

The Automatic Target Recognition software was a key component of the BBN
OEP for much of the project. It enabled the OEP team to demonstrate that Real-
Time Java components could be successfully integrated into the OEP. It also served
as an important benchmark during the project to help evaluate a variety of Real-
Time Java issues including performance and demonstrated the addition of automatic
image recognition capabilities into the OEP. All of these activities helped develop or
demonstrate the BBN as a viable collaboration platform.

We worked extensively with the other OEP participants to coordinate the inte-
gration of these components into the OEP.

1.7 Applicability to PCES

All of this research is applicable to the basic PCES mission of better real-time software
for defense applications. Our Real-Time Java scoped memory analysis and implemen-
tation research produced technology that should help Real-Time Java developers and
language implementors deal more effectively with the potential issues that scoped
memories raise (efficiency, unexpected exceptions). Our real-time scheduling research
produced technology that may make it much easier to implement pluggable sched-
ulers for Real-Time Java programs, which would allow developers to deploy their own
custom schedulers that work well for their own applications. Our data size prediction
and reduction techniques should reduce the amount of memory required to execute
Real-Time Java programs and increase the reliability with which the developer can
predict the amount of memory that the Real-Time Java program will need. Finally,
the concept of roles and role analysis can help developers better conceptualize their
proposed software structures and verify that the program does, in fact, correctly
preserve those structures.

The remainder of this report integrates papers that summarize various aspects of
the research. Specifically, Chapters 2 and 3 summarize our research into optimizing
and analyzing memory usage. This research holds out the promise of reducing the cost
of embedded systems in two ways: by making it easier to estimate the total memory
requirements of the system and by reducing the amount of memory required to store
the data. It can also improve the safety of the system by reducing the likelihood
that the system will fail because of lack of memory - in one case because the analysis
rules out many possible sources of memory usage, in others because the analysis and
transformation can eliminate excess memory usage. This is important because lack
of memory or an incorrect calculation of the amount of memory required to execute
the program can cause the program to fail unpredictably, denying the functionality to
the user of the program. For example, a video processing program could immediately
terminate if it unexpectedly ran out of memory.

Chapter 4 summarizes our pointer and escape analysis for multithreaded pro-
grams. This analysis can be useful for Real-Time Java programs with threads. Its
benefits (ensuring safety, eliminating check overhead) have been discussed above.

8

Chapters 5 and 6 discuss some of our experience with roles, a concept for helping
to ensure the consistency of data structures in programs. The goal is once again to
eliminate undesirable errors and unpredictable failures.

Chapter 7 discusses a type system for multithreaded Real-Time Java programs.
The idea is to allow the developer more control over how the memory is managed. The
goal is to allow maximum control over the allocation in Real-Time Java scoped mem-
ories while preserving safety. Chapter 8 details an algorithm for maintaining much of
the advantages of a full analysis while performing only a fraction of the analysis. All
of these papers are available on the Internet at www.cag.csail.mit.edu/r̃inard/paper.

1.8 Flex and Components

Flex enables the compilation, analysis, and optimization of Real-Time Java compo-
nents. In its primary usage mode it is therefore basically neutral with respect to
components. Various parts of the analyses in Flex could, however, substantially im-
prove the ability of the developer to reason about the behavior of the components
they compile with Flex. Moreover, Flex has been shown to be useful for process-
ing and analyzing components in the context of the BBN OEP. Flex also served as
the platform for much of the research performed as part of this contract, see, for
example [31, 20].

We are delivering the Flex compiler infrastructure software on a CD.

1.9 Acknowledgements

The research for this contract was performed, in part, by a variety of MIT researchers
and visitors including: Brian Demsky, Darko Marinov, Karen Zee, William S. Beebee,
Jr., Cristian Cadar, Daniel Dumitran, Daniel Roy, Tudor Leu, Alexandru Salcianu, C.
Scott Ananian, Suhabe Bugrara, Patrick Lam, Viktor Kuncak, Maria-Cristina Mari-
nescu, Chandrasekhar Boyapati, Jianjun Zhao, Frederic Vivien, Robert Lee, Daniel
Jackson, and Ovidiu Gheorghioiu. Collaborators outside MIT included Wei-Ngan
Chin, Florin Craciun, Shengchao Qin, Sharooz Feizabadi, Binoy Ravindran, and Peng
Li.

9

10

RoushRV
Text Box
THIS PAGE WAS INTENTIONALLY LEFT BLANK

Chapter 2

Interprocedural Compatibility
Analysis for Static Object
Preallocation

2.1 Introduction

Modern object-oriented languages such as Java present a clean and simple memory
model: conceptually, all objects are allocated in a garbage-collected heap. While this
abstraction simplifies many aspects of the program development, it can complicate
the calculation of an accurate upper bound on the amount of memory required to
execute the program. Scenarios in which this upper bound is especially important
include the development of programs for embedded systems with hard limits on the
amount of available memory and the estimation of scoped memory sizes for real-time
threads that allocate objects in sized scoped memories [38].

This chapter presents a static program analysis designed to find pairs of compatible
allocation sites; two sites are compatible if no object allocated at one site may be live
at the same time as any object allocated at the other site. If an allocation site is
compatible with itself (we call such allocation sites unitary allocation sites), then at
any time during the execution of the program, there is at most one live object that was
allocated at that site. It is therefore possible to statically preallocate a fixed amount
of space for that allocation site, then use that space to hold all objects allocated at
that site. Any further space usage analyses can then focus only on the non-unitary
allocation sites.

Our analysis uses techniques inspired from register allocation [7, 22] to reduce the
amount of memory required to hold objects allocated at unitary allocation sites. The
basic approach is to build and color an incompatibility graph. The nodes in this graph
are the unitary allocation sites. There is an undirected edge between two nodes if the
nodes are not compatible. The analysis applies a coloring algorithm that assigns a
minimal number of colors to the graph nodes subject to the constraint that incompat-
ible nodes have different colors. This information enables the compiler to statically
preallocate a fixed amount of memory for each color. At each unitary allocation site,

11

the generated code bypasses the standard dynamic allocation mechanism and instead
simply returns a pointer to the start of the statically preallocated memory for that
allocation site’s color. The object is stored in this memory for the duration of its
lifetime in the computation. Our algorithm therefore enables objects allocated at
compatible allocation sites to share the same memory.

Results from our implemented analysis show that, for our set of Java benchmark
programs, our analysis is able to identify 60% of all allocation sites in the program as
unitary allocation sites. Furthermore, our incompatibility graph coloring algorithm
delivers a 95% reduction in the amount of memory required to store objects allocated
at these unitary allocation sites. We attribute the high percentage of unitary allo-
cation sites to specific object usage patterns characteristic of Java programs: many
unitary allocation sites allocate exception, string buffer, or iterator objects.

We identify two potential benefits of our analysis. First, it can be used to simplify
a computation of the amount of memory required to execute a given program. We
have implemented a memory requirements analysis that, when possible, computes
a symbolic mathematical expression for this amount of memory [103]. Our results
from [103] show that preceding the memory requirements analysis with the analysis
presented in this chapter, then using the results to compute the memory require-
ments of unitary sites separately, can significantly improve both the precision and
the efficiency of the subsequent memory requirements analysis. The second potential
benefit is a reduction in the memory management overhead. By enabling the compiler
to convert heap allocation to static allocation, our analysis can reduce the amount of
time required to allocate and reclaim memory.

This chapter makes the following contributions:

• Object Liveness Analysis: It presents a compositional and interprocedural
object liveness analysis that conservatively estimates the set of objects that are
live at each program point.

• Compatibility Analysis: It presents a compositional and interprocedural
analysis that finds sets of compatible allocation sites. All objects allocated at
sites in each such set can share the same statically preallocated memory. This
analysis uses the results of the object liveness analysis.

• Implementation: We implemented our analyses in the MIT Flex [16] compiler
and used them to analyze a set of Java benchmark programs. Our results show
that our analyses are able to classify the majority of the allocation sites as
unitary allocation sites, and that many such sites can share the same memory.
We also implemented and evaluated a compiler optimization that transforms
each unitary allocation site to use preallocated memory space instead of invoking
the standard memory allocator.

The rest of this chapter is organized as follows. Section 2.2 presents the analysis
algorithm. Section 2.3 describes the implementation and presents our experimental
results. We discuss related work in Section 2.4 and conclude in Section 2.5.

12

2.2 Analysis Presentation

Given a program P , the goal of the analysis is to detect pairs of compatible allocation
sites from P , i.e., sites that have the property that no object allocated at one site
is live at the same time as any object allocated at the other site. Equivalently, the
analysis identifies all pairs of incompatible allocation sites, i.e., pairs of sites such that
an object allocated at the first site and an object allocated at the second site may
both be live at the same time in some possible execution of P . An object is live if any
of its fields or methods is used in the future. It is easy to prove the following fact:

Fact 1 Two allocation sites are incompatible if an object allocated at one site is live
at the program point that corresponds to the other site.

To identify the objects that are live at a program point, the analysis needs to
track the use of objects throughout the program. There are two complications. First,
we have an abstraction problem: the analysis must use a finite abstraction to reason
about the potentially unbounded number of objects that the program may create.
Second, some parts of the program may read heap references created by other parts of
the program. Using a full-fledged, flow-sensitive pointer analysis would substantially
increase the time and space requirements of our analysis; a flow-insensitive pointer
analysis [185, 21] would not provide sufficient precision since liveness is essentially a
flow-sensitive property. We address these complications as follows:

• We use the object allocation site model [56]: all objects allocated by a given
statement are modelled by an inside node1 associated with that statement’s
program label.

• The analysis tracks only the objects pointed to by local variables. Nodes whose
address may be stored into the heap are said to escape into the heap. The
analysis conservatively assumes that such a node is not unitary (to ensure this,
it sets the node to be incompatible with itself). Notice that, in a usual Java
program, there are many objects that are typically manipulated only through
local variables: exceptions, iterators, string buffers, etc.2

Under these assumptions, a node that does not escape into the heap is live at a
given program point if and only if a variable that is live at that program point refers
to that node. Variable liveness is a well-studied dataflow analysis [7, 22] and we do
not present it here. As a quick reminder, a variable v is live at a program point if
and only if there is a path through the control flow graph that starts at that program
point, does not contain any definition of v and ends at an instruction that uses v.

The analysis has to process the call instructions accurately. For example, it needs
to know the nodes returned from a call and the nodes that escape into the heap

1We use the adjective “inside” to make the distinction from the “parameter” nodes that we
introduce later in this chapter.

2It is possible to increase the precision of this analyis by tracking one or more levels of heap
references (similar to [37]).

13

nI
lb ∈ INode inside nodes

nP
k ∈ PNode parameter nodes
n ∈ Node = INode ∪ PNode general nodes

Figure 2-1: Node Abstraction

during the execution of an invoked method. Reanalyzing each method for each call
instruction (which corresponds conceptually to inlining that method) would be inef-
ficient. Instead, we use parameter nodes to obtain a single context-sensitive analysis
result for each method. The parameter nodes are placeholders for the nodes passed
as actual arguments. When the analysis processes a call instruction, it replaces the
parameter nodes with the nodes sent as arguments. Hence, the analysis is composi-
tional : in the absence of recursion, it analyzes each method exactly once to extract
a single analysis result.3 At each call site, it instantiates the result for the calling
context of that particular call site.

Figure 2-1 presents a summary of our node abstraction. We use the following
notation: INode denotes the set of all inside nodes, PNode denotes the set of param-
eter nodes, and Node denotes the set of all nodes. When analyzing a method M ,
the analysis scope is the method M and all the methods that it transitively invokes.
The inside nodes model the objects allocated in this scope. nI

lb denotes the inside
node associated with the allocation site from label lb (the superscript I stands for
“inside”; it is not a free variable). nI

lb represents all objects allocated at label lb in the
currently analyzed scope. The parameter nodes model the objects that M receives
as arguments. The parameter node nP

i models the object that the currently analyzed
method receives as its ith argument of object type.4

The analysis has two steps, each one an analysis in itself. The first analysis
computes the objects live at each allocation site or call instruction.5 The second
analysis uses the liveness information to compute the incompatibility pairs.

We formulate our analyses as systems of set inclusion constraints and use a
bottom-up, iterative fixed-point algorithm to compute the least (under set inclusion)
solution of the constraints. For a given program, the number of nodes is bounded by
the number of object allocation sites and the number of parameters. Hence, as our
constraints are monotonic, all fixed point computations are guaranteed to terminate.

The rest of this section is organized as follows. Section 2.2.1 describes the exe-
cution of the analysis on a small example. Section 2.2.2 presents the program rep-
resentation that the analysis operates on. Section 2.2.3 describes the object liveness
analysis. In Section 2.2.4, we describe how to use the object liveness information to
compute the incompatibility pairs. Section 2.2.5 discusses how to apply our tech-
niques to multithreaded programs.

3The analysis may analyze recursive methods multiple times before it reaches a fixed point.
4I.e., not primitive types such as int, char etc.
5The object liveness analysis is able to find the live nodes at any program point; however, for

efficiency reasons, we produce an analysis result only for the relevant statements.

14

static void main(String args[]) {

List l = createList(10);

filterList(l);

System.out.println(listToString(l));

}

static List createList(int size) {

1: List list = new LinkedList();

for(int i = 0; i < size; i++) {

2: Integer v = new Integer(i);

list.add(v);

}

return list;

}

static void filterList(List l) {

3a: for(Iterator it = l.iterator(); it.hasNext();) {

Integer v = (Integer) it.next();

if(v.intValue() % 2 == 0)

it.remove();

}

}

static String listToString(List l) {

4: StringBuffer buffer = new StringBuffer();

3b: for(Iterator it = l.iterator(); it.hasNext();) {

Integer v = (Integer) it.next();

buffer.append(v).append(" ");

}

5: return new String(buffer);

}

Figure 2-2: Example Code

2.2.1 Example

Consider the Java code from Figure 2-2. The program creates a linked list that
contains the integers from 0 to 9, removes from the list all elements that satisfy a
specific condition (the even numbers in our case), then prints a string representation
of the remaining list. The program contains six lines that allocate objects. The two
Iterators from lines 3a and 3b are allocated in library code, at the same allocation
site. The other four lines allocate objects directly by executing new instructions. For
the sake of simplicity, we ignore the other objects allocated in the library. In our
example, we have five inside nodes. Node nI

1 represents the linked list allocated at
line 1, node nI

2 represents the Integers allocated at line 2, etc. The iterators from
lines 3a and 3b are both represented by the same node nI

3 (they are allocated at the
same site). Figure 2-3 presents the incompatibility graph for this example.

The analysis processes the methods in a bottom-up fashion, starting from the
leaves of the call graph. The library method LinkedList.add (not shown in Figure 2-
2) causes its parameter node nP

2 (nP
1 is the this parameter) to escape into the heap (its

address is stored in a list cell). createList calls add with nI
2 as argument; therefore,

the analysis instantiates nP
2 with nI

2 and detects that nI
2 escapes. In filterList, the

parameter node nP
1 (the list) escapes into the heap because list.iterator() stores

a reference to the underlying list in the iterator that it creates.

15

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

Figure 2-3: Incompatibility graph for the code from Figure 2-2. Circles represent
inside nodes; a double circle indicates that the node escapes into the heap. nI

3 and
nI

5 are compatible unitary nodes.

In the listToString method, nI
4 is live “over the call” to list.iterator() that

allocates nI
3: it is pointed to by the local variable buffer, which is live both before

and after the call. Therefore, nI
4 is incompatible with nI

3. Because nI
4 is live at line

5, nI
4 is also incompatible with nI

5. nI
3 is not live at line 5, so nI

3 and nI
5 are still

compatible. The parameter node nP
1 (the list) is live at lines 4 and 3b (but not at 5).

Therefore, nP
1 is incompatible with nI

4 and nI
3.

The analysis of main detects that l points to nI
1 (because createList returns

nI
1). As the parameter of filterList escapes into the heap, the analysis detects that

nI
1 escapes. When processing the call to listToString, the analysis instantiates nP

1

with nI
1 and discovers the incompatibility pairs 〈nI

1, n
I
3〉 and 〈nI

1, n
I
4〉. The analysis

has already determined that nI
1 escapes into the heap and is not an unitary node; we

generate the last two incompatibility pairs for purely expository purposes.
The graph coloring algorithm colors nI

3 and nI
5 with the same color. This means

that the two iterators and the String allocated by the program have the property that
no two of them are live at the same time. Hence, the compiler can statically allocate
all of these objects into the same memory space.

2.2.2 Program Representation

We work in the context of a static compiler that compiles the entire code of the
application before the application is deployed and executes. Our compiler provides full
reflective access to classes and emulates the dynamic loading of classes precompiled
into the executable. It does not support the dynamic loading of classes unknown
to the compiler at compile time. This approach is acceptable for our class of target
applications, real time software for embedded devices, for which memory consumption
analysis is particularly important.

The analyzed program consists of a set of methods m1,m2, . . . ∈ Method , with a
distinguished main method. Each method m is represented by its control flow graph
CFGm . The vertices of CFGm are the labels of the instructions composing m’s body,
while the edges represent the flow of control inside m. Each method has local variables
v1, v2, . . . vl ∈ Var , and parameters p1, . . . , pk ∈ Var , where Var is the set of local

16

Name Format Informal semantics
COPY v1 = v2 copy one local variable into another
NEW v = new C create one object of class C

STORE v1.f = v2 create a heap reference
RETURN return v normal return from a method
THROW throw v exceptional return from a method
CALL 〈vN , vE〉 = v1.mn (v2, . . . , vk) method invocation
PHI v = φ(v1, . . . , vk) SSA φ nodes in join points
TYPESWITCH 〈v1, v2〉 = typeswitch v : C “instanceof” tests

Figure 2-4: Instructions relevant for the analysis.

variables and method parameters.

Figure 2-4 contains the instructions that are relevant for the analysis. We assume
that the analyzed program has already been converted into the Single Static Infor-
mation (SSI) form [17], an extension of the Static Single Assignment (SSA) form [72]
(we explain the differences later in this section).

Our intermediate representation models the creation and the propagation of ex-
ceptions explicitly. Each instruction that might generate an exception is preceded by
a test. If an exceptional situation is detected (e.g., a null pointer dereferencing), our
intermediate representation follows the Java convention of allocating and initializing
an exception object, (e.g., a NullPointerException), then propagating the exception
to the appropriate catch block or throwing the exception out of the method if no such
block exists. Notice that due to the semantics of the Java programming language,
each instruction that can throw an exception is also a potential object allocation site.
Moreover, the exception objects are first class objects: once an exception is caught,
references to it can be stored into the heap or passed as arguments of invoked meth-
ods. In practice, we apply an optimization so that each method contains a single
allocation site for each automatically inserted exception (for example, NullPointerEx-
ception and ArrayIndexOutOfBoundsException) that the method may generate but not
catch. When the method detects such an exception, it jumps to that allocation site,
which allocates the exception object and then executes an exceptional return out of
the method.

To allow the inter-procedural propagation of exceptions, a CALL instruction from
label lb has two successors: succN(lb) for the normal termination of the method and
succE(lb) for the case when an exception is thrown out of the invoked method.

In both cases — locally generated exceptions or exceptions thrown from an
invoked method — the control is passed to the appropriate catch block, if any.
This block is determined by a succession of “instanceof” tests. If no applicable
block exists, the exception is propagated into the caller of the current method by a
THROW instruction “throw v”. Unlike a throw instruction from the Java language,
a THROW instruction from our intermediate representation always terminates the

17

execution of the current method.

Note: we do not check for exceptions that are subclasses of java.lang.Error.6

This is not a significant restriction: as we work in the context of a static compiler,
where we know the entire code and class hierarchy, most of these errors cannot be
raised by a program that compiled successfully in our system, e.g. VirtualMachineError,
NoSuchFieldError etc. If the program raises any one of the rest of the errors, e.g.,
OutOfMemoryError, it aborts. In most of the cases, this is the intended behavior. In
particular, none of our benchmarks catches this kind of exception.

We next present the informal semantics of the instructions from Figure 2-4. A
COPY instruction “v1 = v2” copies the value of local variable v1 into local variable
v2. A PHI instruction “v = φ(v1, . . . , vk)” is an SSA φ node that appears in the
join points of the control flow graph; it ensures that each use of a local variable has
exactly one reaching definition. If the control arrived in the PHI instruction on the
ith incoming edge, vi is copied into v. A NEW instruction “v = new C” allocates a
new object of class C and stores a reference to it in the local variable v.

A CALL instruction “〈vN , vE〉 = v1.mn (v2, . . . , vk)” calls the method named mn
of the object pointed to by v1, with the arguments v1, . . . , vk.

7 If the execution of the
invoked method terminates with a RETURN instruction “return v”, the address of
the returned object is stored into vN and the control flow goes to succN(lb), where
lb is the label of the call instruction. Otherwise, i.e., if an exception was thrown out
of the invoked method, the address of the exception object is stored into vE and the
control flow goes to succE(lb).

A TYPESWITCH instruction “〈v1, v2〉 = typeswitch v : C” corresponds to a
Java “instanceof” test. It checks whether the class of the object pointed to by v is a
subclass of C. v is split into two variables: v1 is v’s restriction on the true branch,
while v2 is v’s restriction on the false branch. Therefore, the object pointed to by
v1 is an instance of C, while the object pointed to by v2 is not. A TYPESWITCH
instruction is a simple example of an SSI “sigma” node, “〈v1, v2〉 = σ(v)”, that the
SSI form introduces to preserve the flow sensitive information acquired in the test
instructions. SSI thus allows the elegant construction of predicated dataflow analyses.
Apart from this “variable splitting”, SSI is similar to the SSA form. In particular,
the SSI conversion seems to require linear time in practice [17].

Finally, a STORE instruction “v1.f = v2” sets the field f of the object referenced
by v1 to point to the object referenced by v2. The other instructions are irrelevant for
our analysis. In particular, as we do not track heap references, the analysis cannot
gain any additional information by analyzing the instructions that read references
from memory. However, we do analyze the STORE instructions because we need to

6In the Java language, these exceptions correspond to severe errors in the virtual machine that
the program is not expected to handle.

7For the sake of simplicity, in the presentation of the analysis we consider only instance methods
(in Java terms, non-static methods), i.e., with v1 as the this argument. The implementation handles
both instance methods and static methods.

18

identify the objects that escape into the heap.
We assume that we have a precomputed call graph: for each label lb that cor-

responds to a CALL instruction, callees(lb) is the set of methods that that call in-
struction may invoke. The analysis works with any conservative approximation of the
runtime call graph. Our implementation uses a simplified version of the Cartesian
Product Algorithm [1].

2.2.3 Object Liveness Analysis

Consider a method M , a label/program point lb inside M , and let live(lb) denote
the set of inside and parameter nodes that are live at lb . We conservatively consider
that a node is live at lb iff it is pointed to by one of the variables that are live at that
point:

live(lb) =
⋃

v live in lb P (v)

where P (v) is the set of nodes to which v may point. To interpret the results, we
need to compute the set EG of inside nodes that escape into the heap during the
execution of the program. To be able to process the calls to M , we also compute the
set of nodes that can be normally returned from M , RN(M), the set of exceptions
thrown from M , RE(M), and the set of parameter nodes that may escape into the
heap during the execution of M , E(M). More formally, the analysis computes the
following mathematical objects:

P : Var → P(Node)

EG ⊆ INode

RN , RE : Method → P(Node)

E : Method → P(PNode)

We formulate the analysis as a set inclusion constraint problem. Figure 2-5
presents the constraints generated for a method M ∈ Method with k parameters
p1, p2, . . . , pk. At the beginning of the method, pi points to the parameter node nP

i .
A COPY instruction “v1 = v2” sets v1 to point to all nodes that v2 points to; ac-
cordingly, the analysis generates the constraint P (v1) = P (v2).

8 The case of a PHI
instruction is similar. A NEW instruction from label lb , “v = new C”, makes v point
to the inside node nI

lb attached to that allocation site. The constraints generated
for RETURN and THROW add more nodes to RN(M) and RE(M), respectively. A
STORE instruction “v1.f = v2”, causes all the nodes pointed to by v2 to escape into
the heap. Accordingly, the nodes from P (v2) are distributed between EG (the inside
nodes) and E(M) (the parameter nodes).

A TYPESWITCH instruction “〈v1, v2〉 = typeswitch v : C” works as a type
filter: v1 points to those nodes from P (v) that may represent objects of a type that is
a subtype of C, while v2 points to those nodes from P (v) that may represent objects

8As we use the SSI form, this is the only definition of v1; therefore, we do not lose any precision
by using “=” instead of “⊇”.

19

Instruction at label lb in method M Generated constraints

method entry P (pi) = {nP
i }, ∀1 ≤ i ≤ k ,

where p1, . . . , pk are M ’s parameters.

COPY: v1 = v2 P (v1) = P (v2)

NEW: v = new C P (v) = {nI
lb }

STORE: v1.f = v2 E(M) ⊇ P (v2) ∩ PNode, EG ⊇ P (v2) ∩ INode

RETURN: return v RN (M) ⊇ P (v)

THROW: throw v RE(M) ⊇ P (v)

CALL: 〈vN , vE〉 = v1.mn (v2, . . . , vk) P (vN) =
[

m∈callees(lb)

RN (m)〈P (v1), . . . , P (vk)〉

P (vE) =
[

m∈callees(lb)

RE(m)〈P (v1), . . . , P (vk)〉

let A =
[

m∈callees(lb)

E(m)〈P (v1), . . . , P (vk)〉 in

E(M) ⊇ A ∩ PNode, EG ⊇ A ∩ INode

PHI: v = φ(v1, . . . , vk) P (v) =
Sk

i=1 P (vi)

TYPESWITCH:
〈v1, v2〉 = typeswitch v : C P (v1) = {nI

lb′ ∈ P (v) | type(nI
lb′) ∈ SubTypes(C)} ∪

{nP ∈ P (v)}
P (v2) = {nI

lb′ ∈ P (v) | type(nI
lb′) 6∈ SubTypes(C)} ∪

{nP ∈ P (v)}
SubTypes(C) denotes the set of subclasses of class C.

Figure 2-5: Constraints for the object liveness analysis. For each method M , we
compute RN(M), RE(M), E(M) and P (v) for each variable v live in at a relevant
label. We also compute the set EG of inside nodes that escape into the heap.

20

of a type that is not a subtype of C. In Figure 2-5, SubTypes(C) denotes the set of all
subtypes (i.e., Java subclasses) of C (including C). We can precisely determine the
type type(nI

lb′) of an inside node nI
lb′ by examining the NEW instruction from label

lb ′. Therefore, we can precisely distribute the inside nodes between P (v1) and P (v2).
As we do not know the exact types of the objects represented by the parameter nodes,
we conservatively put these nodes in both sets.9

A CALL instruction “〈vN , vE〉 = v1.mn (v2, . . . , vk)” sets vN to point to the
nodes that may be returned from the invoked method(s). For each possible callee
m ∈ callees(lb), we include the nodes from RN(m) into P (vN). Note that RN(m) is
a parameterized result. We therefore instantiate RN(m) before use by replacing each
parameter node nP

i with the nodes that the corresponding argument vi points to, i.e.,
the nodes from P (vi). The case of vE is analogous. The execution of the invoked
method m may also cause some of the nodes passed as arguments to escape into the
heap. Accordingly, the analysis generates a constraint that instantiates the set E(m)
and the uses the nodes from the resulting set E(m)〈P (v1), . . . , P (vk)〉 to update EG

and E(M).

Here is a more formal and general definition of the previously mentioned instan-
tiation operation: if S ⊆ Node is a set that contains some of the parameter nodes
nP

1 , . . . , nP
k (not necessarily all), and S1, . . . , Sk ⊆ Node, then

S〈S1, . . . Sk〉 = {nI ∈ S} ∪ ⋃
nP

i ∈S Si

2.2.4 Computing the Incompatibility Pairs

Once the computation of the object liveness information completes, the analysis com-
putes the (global) set of pairs of incompatible allocation sites IncG ⊆ INode×INode.10

The analysis uses this set of incompatible allocation sites to detect the unitary allo-
cation sites and to construct the compatibility classes.

Figure 2-6 presents the constraints used to compute IncG. An allocation site from
label lb is incompatible with all the allocation sites whose corresponding nodes are
live at lb .

However, as some of the nodes from live(lb) may be parameter nodes, we cannot
generate all incompatibility pairs directly. Instead, for each method M , the analysis
collects the incompatibility pairs involving one parameter node into a set of parametric
incompatibilities ParInc(M). It instantiates this set at each call to M , similar to the
way it instantiates RN(M), RE(M) and E(M):

ParInc(M)〈S1, . . . , Sk〉 =
⋃
〈nP

i ,n〉∈ParInc(M) Si × {n}

(Si is the set of nodes that the ith argument sent to M might point to). Notice that
some Si may contain a parameter node from M ’s caller. However, at some point in

9A better solution would be to consider the declared type Cp of the corresponding parameter and
check that Cp and C have at least one common subtype.

10Recall that there is a bijection between the inside nodes and the allocation sites.

21

Instruction at label
lb in method M

Generated constraints

v = new C live(lb)× {nI
lb } ⊆ AllInc(M)

〈vN , vE〉 = v1.mn (v2, . . . , vk)
↙ ↘

succN (lb) succE(lb)

∀m ∈ callees(lb),

ParInc(m)〈P (v1), . . . , P (vk)〉 ⊆ AllInc(M)
(live(lb) ∩ live(succN (lb)))×AN (m) ⊆ AllInc(M)
(live(lb) ∩ live(succE(lb)))×AE(m) ⊆ AllInc(M)

∀M ∈ Method ,

AllInc(M) ∩ (INode × INode) ⊆ IncG

AllInc(M) \ (INode × INode) ⊆ ParInc(M)

Figure 2-6: Constraints for computing the set of incompatibility pairs.

Instruction at label lb
in method M

Condition Generated constraints

v = new C lb ; return nI
lb ∈ AN (M)

lb ; throw nI
lb ∈ AE(M)

〈vN , vE〉 = v1.mn (v2, . . . , vk) succN (lb) ; return AN (m) ⊆ AN (M),∀m ∈ callees(lb)
succN (lb) ; throw AN (m) ⊆ AE(M),∀m ∈ callees(lb)
succE(lb) ; return AE(m) ⊆ AN (M),∀m ∈ callees(lb)
succE(lb) ; throw AE(m) ⊆ AE(M),∀m ∈ callees(lb)

Figure 2-7: Constraints for computing AN , AE. For each relevant instruction, if the
condition from the second column is satisfied, the corresponding constraint from the
third column is generated.

the call graph, each incompatibility pair will involve only inside nodes and will be
passed to IncG.

To simplify the equations from Figure 2-6, for each method M , we compute the
entire set of incompatibility pairs AllInc(M). After AllInc(M) is computed, the pairs
that contain only inside nodes are put in the global set of incompatibilities IncG; the
pair that contains a parameter node are put in ParInc(M). Our implementation of
this algorithm performs this separation “on the fly”, as soon as an incompatibility
pair is generated, without the need for AllInc(M).

In the case of a CALL instruction, we have two kinds of incompatibility pairs. We
have already mentioned the first kind: the pairs obtained by instantiating ParInc(m), ∀m ∈
callees(lb). In addition, each node that is live “over the call” (i.e., before and after the
call) is incompatible with all the nodes corresponding to the allocation sites from the
invoked methods. To increase the precision, we treat the normal and the exceptional
exit from an invoked method separately. Let AN(m) ⊆ INode be the set of inside
nodes that represent the objects that may be allocated during a method execution
that returns normally. Similarly, let AE(m) ⊆ INode be the set of inside nodes that
represent the objects that may be allocated during an invocation of m that returns
with an exception. We describe later how to compute these sets; for the moment we
suppose the analysis computes them just before it starts to generate the incompati-

22

bility pairs. Let succN(lb) be the successor corresponding to the normal return from
the CALL instruction from label lb . The nodes from live(lb) ∩ live(succN(lb)) are
incompatible with all nodes from AN(m). A similar relation holds for AE(m).

Computation of AN(M), AE(M)

Given a label lb from the code of some method M , we define the predicate “lb ;

return” to be true iff there is a path in CFGM from lb to a RETURN instruction
(i.e., the instruction from label lb may be executed in an invocation of M that returns
normally). Analogously, we define “lb ; throw” to be true iff there is a path from lb
to a THROW instruction. Computing these predicates is an easy graph reachability
problem. For a method M , AN(M) contains each inside node nI

lb that corresponds
to a NEW instruction at label lb such that lb ; return. In addition, for a CALL
instruction from label lb in M ’s code, if succN(lb) ; return, then we add all nodes
from AN(m) into AN(M), for each possible callee m. Analogously, if succE(lb) ;

return, AE(m) ⊆ AN(M). The computation of AE(m) is similar. Figure 2-7 formally
presents the constraints for computing the sets AN(M) and AE(M).

2.2.5 Multithreaded Applications

So far, we have presented the analysis in the context of a single-threaded application.
For a multithreaded application, the analysis needs to examine all methods that are
transitively called from the main method and from the run() methods of the threads
that may be started. In addition, all nodes that correspond to started threads need
to be marked as escaped nodes. The rest of the analysis is unchanged.

In Java, each thread is represented by a thread object allocated in the heap. For
an object to escape one thread to be accessed by another, it must be reachable from
either the thread object or a static class variable (global variables are called static
class variables in Java). In both cases, the analysis determines that the corresponding
allocation site is not unitary. Therefore, all objects allocated at unitary allocation
sites are local to the thread that created them and do not escape to other threads.
Although we know that no two objects allocated by the same thread at the same
unitary site are live at any given moment, we can have multiple live objects allocated
at this site by different threads. Hence, for each group of compatible unitary sites,
we need to allocate one memory slot per thread, instead of one per program.

The compiler generates code such that each time the program starts a new thread,
it preallocates memory space for all unitary allocation sites that may be executed by
that thread. For each unitary allocation site, the compiler generates code that re-
trieves the current thread and uses the preallocated memory space for the unitary
site in the current thread. When a thread terminates its execution, it deallocates
its preallocated memory space. As only thread-local objects used that space, this
deallocation does not create dangling references. To bound the memory space occu-
pied by the unitary allocation sites, we need to bound the number of threads that
simultaneously execute in the program at any given time.

23

2.2.6 Optimization for Single-Thread Programs

In the previous sections, we consider a node that escapes into the heap to be in-
compatible with all other nodes, including itself. This is equivalent to considering
the node to be live during the entire program. We can gain additional precision
by considering that once a node escapes, it is live only for the rest of the program.
This enhancement allows us to preallocate even objects that escape into the heap, if
their allocation site executes at most once. This section presents the changes to our
analysis that apply this idea.

We no longer use the global set EG. Instead, for each label lb , E(lb) ⊆ Node
denotes the set of nodes that the instruction at label lb may store a reference to into
the heap. This set is relevant only for labels that correspond to STOREs and CALLs;
for a CALL, it represents the nodes that escape during the execution of the invoked
method.

We extend the set of objects live at label lb (from method M) to include all objects
that are escaped by instructions at labels lb ’ from M that can reach lb in CFGM :

live(lb) =
⋃

v live in lb P (v) ∪ ⋃
lb ′ in M
lb ′ ; lb

E(lb ′)

We change the constraints from Figure 2-5 as follows: for a STORE instruction
“v1.f = v2”, we generate only the constraint E(lb) = P (v2). For a CALL instruction
“〈vN , vE〉 = v1.mn (v2, . . . , vk)”, we generate the same constraints as before for P (vN)
and P (vE), and the additional constraint

E(lb) =
⋃

m∈callees(lb)

E(m)〈P (v1), . . . , P (vk)〉

The rules for STORE and CALL no longer generate any constraints for EG (unused
now) and E(M). Instead, we define E(M) as

E(M) =
⋃

lb in M

E(lb)

Now, E(M) ⊆ P(Node) denotes the set of all nodes — not only parameter nodes as
before, but also inside nodes — that escape into the heap during M ’s execution.

The rest of the analysis is unchanged. The new definition of live(lb) ensures that
if a node escapes into the heap at some program point, it is incompatible with all
nodes that are live at any future program point. Notice that objects allocated at
unitary sites are no longer guaranteed to be thread local, and we cannot apply the
preallocation optimization described at the end of Section 2.2.5. Therefore, we use
this version of the analysis only for single thread programs.

24

Application Description

SPECjvm98 benchmark set
200 check Simple program; tests JVM features
201 compress File compression tool
202 jess Expert system shell
209 db Database application
213 javac JDK 1.0.2 Java compiler
222 mpegaudio Audio file decompression tool
228 jack Java parser generator

Java Olden benchmark set
BH Barnes-Hut N-body solver
BiSort Bitonic Sort
Em3d Models the propagation of electromagnetic waves through 3D objects
Health Simulates a health-care system
MST Computes the minimum spanning tree in a graph using Bentley’s algorithm
Perimeter Computes the perimeter of a region in a binary image represented by a quadtree
Power Maximizes the economic efficiency of a community of power consumers
TSP Solves the traveling salesman problem using a randomized algorithm
TreeAdd Recursive depth-first traversal of a tree to sum the node values
Voronoi Computes a Voronoi diagram for a random set of points

Miscellaneous
205 raytrace Single thread raytracer (not an official part of SPECjvm98)

JLex Java lexer generator
JavaCUP Java parser generator

Table 2.1: Analyzed Applications

2.3 Experimental Results

We have implemented our analysis, including the optimization from Section 2.2.6,
in the MIT Flex compiler system [16]. We have also implemented the compiler
transformation for memory preallocation: our compiler generates executables with
the property that unitary sites use preallocated memory space instead of calling the
memory allocation primitive. The memory for these sites is preallocated at the begin-
ning of the program. Our implementation does not currently support multithreaded
programs as described in Section 2.2.5.

We measure the effectiveness of our analysis by using it to find unitary allocation
sites in a set of Java programs. We obtained our results on a Pentium 4 2.8Ghz
system with 2GB of memory running RedHat Linux 7.3. We ran our compiler and
analysis using Sun JDK 1.4.1 (hotspot, mixed mode); the compiler generates native
executables that we ran on the same machine. Table 2.1 presents a description of
the programs in our benchmark suite. We analyze programs from the SPECjvm98
benchmark suite11 and from the Java version of the Olden benchmark suite [52, 51].
In addition, we analyze JLex, JavaCUP, and 205 raytrace.

Table 2.2 presents several statistics that indicate the size of each benchmark and
the analysis time. The statistics refer to the user code plus all library methods called
from the user code. As the data in Table 2.2 indicate, in general, the time required to
perform our analysis is of the same order of magnitude as the time required to build

11With the exception of 227 mtrt, which is multithreaded.

25

Application
Analyzed
methods

Bytecode
instrs

SSI IR
size

(instr.)

SSI
conversion
time (s)

Analysis
time (s)

200 check 208 7962 10353 1.1 4.1
201 compress 314 8343 11869 1.2 7.4
202 jess 1048 31061 44746 5.3 101.2
209 db 394 12878 18162 2.7 12.3
213 javac 1681 52941 71050 8.2 1126.2
222 mpegaudio 511 18041 30884 5.2 15.9
228 jack 618 23864 37253 11.6 55.6

BH 169 6476 8690 1.4 3.6
BiSort 123 5157 6615 1.2 2.9
Em3d 142 5519 7497 0.9 3.1
Health 141 5803 7561 0.9 3.2
MST 139 5228 6874 1.2 3.0
Perimeter 144 5401 6904 1.2 2.7
Power 135 6039 7928 1.0 3.2
TSP 127 5601 6904 0.9 3.1
TreeAdd 112 4814 6240 0.8 2.8
Voronoi 274 8072 10969 1.8 4.3

205 raytrace 498 14116 20875 4.2 23.0
JLex 482 22306 31354 4.0 12.3
JavaCUP 769 27977 41308 5.8 32.0

Table 2.2: Analyzed Code Size and Analysis Time

the intermediate representation of the program. The only exceptions are 202 jess
and 213 javac.

Table 2.3 presents the number of total allocation sites and unitary allocation sites
in each program. These results show that our analysis is usually able to identify the
majority of these sites as unitary sites: of the 14065 allocation sites in our benchmarks,
our analysis is able to classify 8396 (60%) as unitary sites. For twelve of our twenty
benchmarks, the analysis is able to recognize over 80% of the allocation sites as
unitary.

Table 2.3 also presents results for the allocation sites that allocate exceptions
(i.e., any subclass of java.lang.Throwable), non-exceptions (the rest of the objects),
and java.lang.StringBuffers (a special case of non-exceptions). For each category, we
present the total number of allocation sites of that kind and the proportion of these
sites that are unitary. The majority of the unitary allocation sites in our benchmarks
allocate exception or string buffer objects. Of the 9660 total exception allocation sites
in our benchmarks, our analysis is able to recognize 6602 (68%) as unitary sites. For
thirteen of our twenty benchmarks, the analysis is able to recognize over 90% of the
exception allocation sites as unitary sites. Of the 1293 string buffer allocation sites,
our analysis is able to recognize 1190 (92%) as unitary sites. For eight benchmarks,
the analysis is able to recognize over 95% of the string buffer allocation sites as unitary
sites.

Table 2.4 presents the size of the statically preallocated memory area that is used
to store the objects created at unitary allocation sites. The second column of the table
presents results for the case where each unitary allocation site has its own preallo-
cated memory chunk. As described in the chapter introduction, we can decrease the

26

Application Allocation Unitary sites Exceptions Non-exceptions StringBuffers

sites count % total
unitary

%
total

unitary
%

total
unitary

%

200 check 407 326 80% 273 92% 134 57% 44 97%
201 compress 489 155 32% 390 28% 99 44% 38 97%
202 jess 1823 919 50% 1130 58% 693 38% 233 84%
209 db 736 354 48% 565 48% 171 49% 65 98%
213 javac 2827 1086 38% 1863 47% 964 23% 195 89%
222 mpegaudio 825 390 47% 625 55% 200 24% 43 97%
228 jack 910 479 53% 612 54% 298 50% 135 99%

BH 329 281 85% 243 98% 86 51% 18 94%
BiSort 234 198 85% 177 97% 57 47% 17 94%
Em3d 276 235 85% 206 98% 70 50% 20 95%
Health 276 227 82% 202 97% 74 42% 17 94%
MST 257 216 85% 194 97% 63 44% 16 93%
Perimeter 239 200 84% 180 97% 59 45% 16 93%
Power 262 213 81% 192 97% 70 39% 15 93%
TSP 235 199 85% 176 97% 59 49% 17 94%
TreeAdd 227 190 84% 170 96% 57 46% 15 93%
Voronoi 448 387 86% 349 98% 99 44% 28 96%

205 raytrace 753 318 42% 525 44% 228 39% 43 95%
JLex 971 812 84% 645 99% 326 54% 72 86%
JavaCUP 1541 1211 79% 943 93% 598 56% 246 92%

Total 14065 8396 60% 9660 68% 4405 41% 1293 92%

Table 2.3: Unitary Site Analysis Results

Preallocated memory Size
Application size (bytes) reduction

normal sharing %

200 check 5516 196 96%
201 compress 2676 144 95%
202 jess 17000 840 96%
209 db 6028 252 96%
213 javac 18316 332 98%
222 mpegaudio 6452 104 98%
228 jack 8344 224 97%

BH 4604 224 95%
BiSort 3252 96 98%
Em3d 3860 200 95%
Health 3716 96 97%
MST 3532 96 97%
Perimeter 3280 96 98%
Power 3540 196 94%
TSP 3292 104 97%
TreeAdd 3120 92 98%
Voronoi 6368 192 97%

205 raytrace 5656 644 89%
JLex 13996 1676 88%
JavaCUP 20540 1180 94%

Total 143088 6984 95%

Table 2.4: Preallocated Memory Size

27

Application Total Preallocated objects
objects count %

200 check 725 238 33%
201 compress 941 108 11%
202 jess 7917932 3275 0%
209 db 3203535 142 0%
213 javac 5763881 335775 6%
222 mpegaudio 1189 7 1%
228 jack 6857090 409939 6%

BH 15115028 7257600 48%
BiSort 131128 15 0%
Em3d 16061 23 0%
Health 1196846 681872 57%
MST 2099256 1038 0%
Perimeter 452953 10 0%
Power 783439 12 0%
TSP 49193 32778 67%
TreeAdd 1048620 13 0%
Voronoi 1431967 16399 1%

205 raytrace 6350085 4080258 64%
JLex 1419852 12926 1%
JavaCUP 100026 16517 17%

Table 2.5: Preallocated Objects

preallocated memory size significantly if we use a graph coloring algorithm to allow
compatible unitary allocation sites to share the same preallocated memory area. The
third column of Table 2.4 presents results for this case. Our compiler optimization al-
ways uses the graph coloring algorithm; we provide the second column for comparison
purposes only. The graph coloring algorithm finds an approximation of the smallest
number of colors such that no two incompatible allocation sites have the same color.
For each color, we preallocate a memory area whose size is the maximum size of the
classes allocated at allocation sites with that color. Our implementation uses the
DSATUR graph coloring heuristic [49]. It is important to notice that the DSATUR
heuristic minimizes the numbers of colors, not the final total size of the preallocated
memory. However, this does not appear to have a significant negative effect on our
results: as the numbers from Table 2.4 show, we are able to reduce the preallocated
memory size by at least 88% in all cases; the average reduction is 95%.

Theoretically, the preallocation optimization may allocate more memory than the
original program: preallocating a memory area for a set of compatible allocation sites
reserves that area for the entire lifetime of the program, even when no object allocated
at the attached set of compatible sites is reachable. An extreme case is represented
by the memory areas that we preallocate for allocation sites that the program never
executes. However, as the data from Table 2.4 indicate, in practice, the amount of
preallocated memory for each analyzed application is quite small.

We compiled each benchmark with the memory preallocation optimization en-
abled. Each optimized executable finished normally and produced the same result as
the unoptimized version. We executed the SPECjvm98 and the Olden applications

28

with their default workload. We ran JLex and JavaCUP on the lexer and parser files
from our compiler infrastructure. We instrumented the allocation sites to measure
how many objects were allocated by the program and how many of these objects used
the preallocated memory. Table 2.5 presents the results of our measurements. For
five of our benchmarks, at least one third of the objects resided in the preallocated
memory. There is no correlation between the static number of unitary sites and the
dynamic number of objects allocated at those sites. This is explained by the large
difference in the number of times different allocation sites are executed. In general,
application-specific details tend to be the only factor in determining these dynamic
numbers. For example, in JLex, 95% of the objects are iterators allocated at the same
(non-unitary) allocation site; 213 javac and JavaCUP use many StringBuffers that we
can preallocate; both 205 raytrace and BH use many temporary objects to represent
mathematical vectors, etc.

2.4 Related Work

To the best of our knowledge, we present the first use of a pointer analysis to enable
static object preallocation. Other researchers have used pointer and/or escape anal-
yses to improve the memory management of Java programs [58, 202, 35], but these
algorithms focus on allocating objects on the call stack. Researchers have also devel-
oped algorithms that correlate the lifetimes of objects with the lifetimes of invoked
methods, then use this information to allocate objects in different regions [194]. The
goal is to eliminate garbage collection overhead by atomically deallocating all of the
objects allocated in a given region when the corresponding function returns. Other
researchers [111] require the programmer to provide annotations (via a rich type sys-
tems) that specify the region that each object is allocated into.

Bogda and Hoelzle [37] use pointer analysis to eliminate unnecessary synchro-
nizations in Java programs. In spite of the different goals, their pointer analysis has
many technical similarities with our analysis. Both analyses avoid maintaining pre-
cise information about objects that are placed “too deep” into the heap. Bogda and
Hoelzle’s analysis is more precise in that it can stack allocate objects reachable from a
single level of heap references, while our analysis does not attempt to maintain precise
points-to information for objects reachable from the heap. On the other hand, our
analysis is more precise in that it computes live ranges of objects and treats excep-
tions with more precision. In particular, we found that our predicated analysis of type
switches (which takes the type of the referenced object into account) was necessary
to give our analysis enough precision to statically preallocate exception objects.

Our analysis has more aggressive aims than escape analysis. Escape analysis is
typically used to infer that the lifetimes of all objects allocated at a specific allocation
site are contained within the lifetime of either the method that allocates them or one
of the methods that (transitively) invokes the allocating method. The compiler can
transform such an allocation site to allocate the object from the method stack frame
instead of the heap. Notice that the analysis does not provide any bound on the
number of objects allocated at that allocation site: in the presence of recursion or

29

loops, there may be an arbitrary number of live objects from a single allocation site
(and an arbitrary number of these objects allocated on the call stack). In contrast,
our analysis identify allocation sites that have the property that at most one object
is live at any given time.

In addition, the stack allocation transformation may require the compiler to lift
the corresponding object allocation site out of the method that originally contained
it to one of the (transitive) callers of this original allocating method [202]. The object
would then be passed by reference down the call stack, incurring runtime overhead.12

The static preallocation optimization enabled by our analysis does not suffer from
this drawback. The compiler transforms the original allocation site to simply acquire
a pointer to the statically allocated memory; there is no need to move the allocation
site into the callers of the original allocating method.

Our combined liveness and incompatibility analysis and use of graph coloring to
minimize the amount of memory required to store objects allocated at unitary al-
location sites is similar in spirit to register allocation algorithms [22, Chapter 11].
However, register allocation algorithms are concerned only with the liveness of the lo-
cal variables, which can be computed by a simple intraprocedural analysis. We found
that obtaining useful liveness results for dynamically allocated objects is significantly
more difficult. In particular, we found that we had to use a predicated analysis and
track the flow of objects across procedure boundaries to identify significant amounts
of unitary sites.

2.5 Conclusions

We have presented an analysis designed to simplify the computation of an accurate
upper bound on the amount of memory required to execute a program. This anal-
ysis statically preallocates memory to store objects allocated at unitary allocation
sites and enables objects allocated at compatible unitary allocation sites to share the
same preallocated memory. Our experimental results show that, for our set of Java
benchmark programs, 60% of the allocation sites are unitary and can be statically pre-
allocated. Moreover, allowing compatible unitary allocation sites to share the same
preallocated memory leads to a 95% reduction in the amount of memory required for
these sites. Based on this set of results, we believe our analysis can automatically
and effectively eliminate the need to consider many object allocation sites when com-
puting an accurate upper bound on the amount of memory required to execute the
program. We have also used the analysis to optimize the memory managment.

12A semantically equivalent alternative is to perform method inlining. However, inlining introduces
its own set of overheads.

30

Chapter 3

Data Size Optimizations for Java
Programs

3.1 Introduction

We present a set of techniques for reducing the amount of data space required to
represent objects in object-oriented programs. Our techniques optimize the repre-
sentation of both the programmer-defined fields within each object and the header
information used by the run-time system:

• Field Reduction: Our flow-sensitive, interprocedural bitwidth analysis com-
putes the range of values that the program may assign to each field. The com-
piler then transforms the program to reduce the size of the field to the smallest
type capable of storing that range of values.

• Unread and Constant Field Elimination: If the bitwidth analysis finds
that a field always holds the same constant value, the compiler eliminates the
field. It removes each write to the field, and replaces each read with the constant
value. Fields without executable reads are also removed.

• Static Specialization: Our analysis finds classes with fields whose values do
not change after initialization, even though different instances of the object may
have different values for these fields. It then generates specialized versions of
each class which omit these fields, substituting accessor methods which return
constant values.

• Field Externalization: Our analysis uses profiling to find fields that almost
always have the same default value. It then removes these fields from their
enclosing class, using a hash table to store only values of the field that differ
from the default value. It replaces writes to the field with an insertion into the
hash table (if the written value is not the default value) or a removal from the
hash table (if the written value is the default value). It replaces reads with hash
table lookups; if the object is not present in the hash table, the lookup simply
returns the default value.

31

• Class Pointer Compression: We use rapid type analysis to compute an upper
bound on the number of classes that the program may instantiate. Objects
in standard Java implementations have a header field, commonly called claz,
which contains a pointer to the class data for that object, such as inheritance
information and method dispatch tables. Our compiler uses the results of the
analysis to replace the reference with a smaller offset into a table of pointers to
the class data.

• Byte Packing: All of the above transformations may reduce or eliminate the
amount of space required to store each field in the object or object header. Our
byte packing algorithm arranges the fields in the object to minimize the object
size.

All of these transformations reduce the space required to store objects, but some
potentially increase the running time of the program. Our experimental results show
that, for our set of benchmark programs, all of our techniques combined can reduce
the peak amount of memory required to run the program by as much as 40%, although
the running time may increase. In a memory-limited embedded system where per-
formance is not critical, cost savings may directly result from the reduced minimum
heap size.

3.1.1 Contributions

This paper makes the following contributions:

• Space Reduction Transformations: It presents a set of novel transforma-
tions for reducing the memory required to represent objects in object-oriented
programs.

• Analysis Algorithms: It presents a set of analysis algorithms that automati-
cally extract the information required to apply the space reduction transforma-
tions.

• Implementation: We have fully implemented all of the analyses and tech-
niques presented in the paper. Our experience with this implementation enables
us to discuss the pragmatic details necessary for an effective implementation of
our techniques.

• Experimental Results: This paper presents a set of experimental results
that characterize the impact of our transformations, revealing the extent of the
savings available and the performance cost of attaining them.

3.2 Examples

We next present a pair of examples that illustrate the kinds of analyses and transfor-
mations that our compiler performs.

32

public class JValue {
int integerType = 0;
int floatType = 1;
int type, positive;
Object value;
void setInteger(Integer i) {

type = integerType; value = i;
positive = (i.intValue() > 0) ? 1 : 0;

}
void setFloat(Float f) {

type = floatType; value = f;
positive = (f.floatValue() > 0) ? 1 : 0;

}
}

Figure 3-1: The JValue class.

3.2.1 Field Reduction and Constant Field
Elimination

Figure 3-1 presents the JValue class, which is a wrapper around either an Integer

object or a Float object. The type field indicates which kind of object is stored in
the value field of the class, essentially implementing a tagged union.1 The class also
maintains the positive field, which is 1 if the wrapped number is positive and 0

otherwise.

Our bitwidth analysis uses an interprocedural value-flow algorithm to compute
upper and lower bounds for the values that can appear in each variable. This anal-
ysis tracks the flow of values across procedure boundaries via parameters, into and
out of the heap via instance variables of classes, and through intermediate tempo-
raries and local variables in the program. It also reasons about the semantics of
arithmetic operators such as + and * to obtain bounds for the values computed by
arithmetic expressions. Assume that the analysis examines the rest of the program
(not shown) and discovers the following facts about how the program uses this class:
a) the integerType field always has the value 0, b) the floatType field always has
the value 1, c) the type field always has a value between 0 and 1 (inclusive), and d)
the positive field always has a value between 0 and 1 (also inclusive).

Our compiler uses this information to remove all occurrences of the integerType

and floatType fields from the program. It replaces each read of the integerType

field with the constant 0, and each read of the floatType field with the constant 1.
It also uses the bounds on the values of the type and positive variables to reduce
the size of the corresponding fields. Our currently implemented compiler rounds field
sizes to the nearest byte required to hold the range of values that can occur. Our
byte packing algorithm then generates a dense packing of the values, attempting to
preserve the alignment of the variables if possible. In this case, the algorithm can
reduce the field sizes by six bytes and the overall size of the object by one four-byte
word. If the runtime can support unaligned objects without external fragmentation,

1This class is a simplified version of similar classes that appear in some of our benchmarks. See
for example the jess.Value class in SPECjvm98 benchmark jess.

33

public final class String {
private final char value[];
private final int offset;
private final int count;
...
public char charAt(int i) {

return value[offset+i];
}
public String substring(int start)
{

int noff = offset + start;
int ncnt = count - start;
return new String(noff, ncnt, value);

}
}

Figure 3-2: Portions of the java.lang.String class.

we can reduce the size of all allocated JValue objects by the full six bytes.

3.2.2 Static Specialization

Figure 3-2 presents portions of the implementation of the java.lang.String class
from the Java standard class library. The value field in this class refers to a character
array that holds the characters in the string; the count field holds the length of the
string. In some cases, instances of the String class are derived substrings of other
instances (see the substring method in Figure 3-2), in which case the offset field
provides the offset of the starting point of the string within a shared value character
array. Note that the value, offset, and count fields are all initialized when the
string is constructed and do not change during the lifetime of the string.

In practice, most strings are not created as explicit substrings of other strings, so
the offset field in most strings is zero. In fact, all of the public String constructors
create strings with offset zero; only the substring method creates strings with a
nonzero offset. And even at calls to the private String(int, int, char[]) con-
structor inside the substring method, it is possible to dynamically test the values
of the parameters at the allocation site to determine if the newly constructed string
will have a zero or nonzero offset.

Our analysis exploits this fact by splitting the String class into two classes: a
superclass SmallString that omits the offset field, and a subclass BigString that
extends SmallString and includes the offset field. Each of these two new classes
implements a getOffset() method to replace the field: the getOffset() method
in the SmallString class simply returns zero; but the getOffset() method in the
BigString class returns the value of the offset field in BigString. Figure 3-3
illustrates this transformation.

At every allocation site except the one inside the substring method, the trans-
formed program allocates a SmallString object. Inside the substring method, the
program generates code that dynamically tests if the offset in the substring will be
zero. If so, it allocates a SmallString object; if not, it allocates a BigString object.
(See Figure 3-4.) This transformation therefore eliminates the offset field in the

34

public final class SmallString {
private final char value[];
private final int count;
int getOffset() { return 0; }
...
public char charAt(int i) {

return value[getOffset()+i];
}

}
public final class BigString extends SmallString {

private final int offset;
int getOffset() { return offset; }

}
Figure 3-3: Static specialization of java.lang.String.

majority of strings.

The analysis required to support this transformation takes place in two phases.
The first phase scans the program to identify fields that are amenable to transforma-
tion.2 In our example, the analysis determines that the offset field is never written
after it is initialized. In the next phase, we determine if the initialized value of the
field can be determined before the object is created, by examining the specific con-
structor invoked and its parameters. In our example, the analysis determines that
the offset field is zero for all constructors except the private constructor invoked
within the substring method. It also determines that, for objects created within
substring, the value of the offset field is simply the value of the noff parameter to
this constructor.

This analysis identifies a set of candidate fields. The analysis chooses one of
the candidate fields, then splits the class along the possible values that can appear
in the field. Our current implementation uses profiling to select the field that will
provide the largest space savings; our policy takes both the size of the field and the
percentage of objects that have the same value for that field. In our example, the
analysis identifies the offset field as the best candidate and splits the class on that
field. We can apply this idea recursively to the new program to obtain the benefits
of splitting on multiple fields.

In this example all of the relevant fields are private, which would, in principle,
enable an implementation to apply the optimization with an analysis of only the
String class. Our analysis, however, is powerful enough to examine the rest of the
program and discover the facts required to apply the optimization in the absence of
private or final declarations and even for fields accessed outside their declaring
class.

3.2.3 Field Externalization

In the string example discussed above, it was possible to determine which version
of the specialized class to use at object allocation time. In some cases, however, a

2See Section 3.3.5 for a precise definition.

35

public SmallString substring(int start)
{

int noff = offset + start;
int ncnt = count - start;
if (noff==0)

return new SmallString(value, noff, ncnt);
else

return new BigString(value, noff, ncnt);
}

Figure 3-4: Dynamic selection among specialized classes in a method from
java.lang.String.

given field may almost always have a given value, even though it is not possible to
statically determine when the value might be changed or which objects will contain
fields of that value. In such cases we apply another optimization, field externalization.
This optimization removes the field from the class, replacing fields whose values differ
from the default value with hash table entries that map objects to values. If an
object/value mapping is present in the hash table, that entry provides the value of
the removed field. If there is no mapping for a given object, the field is assumed to
have the default value. In our current implementation, we use profiling to identify
the default value.

In this scheme, writes to the field are converted into a check to see if the new
value of the field is the default value. If so, the generated code simply removes any
old mappings for that object from the hash table. If not, the generated code replaces
any old mapping with a new mapping recording the new value.

3.2.4 Hash/Lock Externalization

Our currently implemented system applies field externalization in a general way to any
field in the object. We would, however, like to highlight an especially useful extension
of the basic technique. Java implementations typically store an object hash code and
lock information in the object header. For many objects, however, the program never
actually uses the hash code or lock information. Our implemented system therefore
uses a variant of field externalization called hash/lock externalization. This variant
allocates all objects without the hash code and lock information fields in the header,
then lazily creates the fields when necessary. Specifically, if the program ever uses
the hash code or lock information, the generated code creates the hash code or lock
information for the object, then stores this information in a table mapping objects to
their hash code or lock information.3

Note that, in general, this transformation (as well as field externalization) may ac-
tually increase space usage. But in practice, we have found that our set of benchmark
programs rarely uses these fields. The overall result is a substantial space savings.
The combination of class pointer compression and hash/lock elimination can produce
a common-case object header size of one byte—one byte for a class index and no

3The object’s address is used as its key when field externalization is done. The garbage collector
is responsible for updating the field entries if it moves objects, by rehashing on the new address.

36

space at all for hash code or lock.

3.3 Analysis Algorithms

In this section we will present details of the analyses that enable our transformations.

3.3.1 Rapid Type Analysis

We start with a rapid type analysis [26] to collect the set of instantiated classes and
callable methods. This analysis allows us to generate a conservative call graph for
the program, using the known receiver type at the call-site and its set of instantiated
subclasses in the hierarchy. Based on the class hierarchy, we can also tag all leaf classes
as final, regardless of whether the source code contained this modifier. Methods
which are not overridden, based on the hierarchy, are also marked final, and calls
with a single receiver method are devirtualized. We also remove uncallable methods
and assign non-conflicting slots to interface methods using a graph-coloring algorithm.
The results of some class casts and instanceof operations can also be determined
statically using these results.

Our analysis keeps separate the set of mentioned and instantiated classes. Al-
though the program can contain type-checks on and method-invocations of abstract,
interface, or otherwise uninstantiated classes, every object in the heap must belong to
one of the instantiated class types. The size of the set of instantiated classes is quite
small for a typical Java program, and over half of the benchmarks in SPECjvm98
have less than 256 instantiated class types.4 We use this information to replace the
class pointer in the object header, which identifies the type of the object, with a
one-byte index into a small lookup table. The jess, javac, and jack benchmarks
require more than one byte of index, but a two byte index amply suffices in these
three cases.

3.3.2 Bitwidth Analysis

We use a flow-sensitive interprocedural combined value-propagation and bitwidth
analysis to find constant values, unread and constant fields, and to reduce field sizes
where possible. Since almost all types in Java are signed (with the exception of the
16-bit char), we must be able to describe bitwidths of both negative and positive
numbers, which we do by splitting the set of values into negative, zero, and positive
parts, and describing the bitwidth of each individually.

We abstract non-singleton sets of integer values into a tuple 〈m, p〉 where m ≥
1 + blog2 Nc for all negative N in the set, and p ≥ 1 + blog2 Nc for positive N . We
use m = p = 0 to represent the constant zero. Some combination rules for arithmetic
operations are shown in Figure 3-5. The rules for simple arithmetic operators should

4Note that all have more than 256 total class types.

37

−〈m, p〉 = 〈p,m〉
〈ml, pl〉+ 〈mr, pr〉 = 〈1 + max(ml,mr), 1 + max(pl, pr)〉
〈ml, pl〉 × 〈mr, pr〉 =

〈
max(ml + pr, pl + mr),
max(ml + mr, pl + pr)

〉

〈0, pl〉 ∧ 〈0, pr〉 = 〈0, min(pl, pr)〉
〈ml, pl〉 ∧ 〈mr, pr〉 = 〈max(ml,mr), max(pl, pr)〉

Figure 3-5: Some combination rules for bitwidth analysis of arithmetic and bitwise-
logical operators. Note that the penultimate entry is a special-case rule that only
applies if the neither of the arguments can be negative.

be self-evident upon examination (adding two N bit integers yields at most an N +1-
bit integer, for example) although care must be taken to ensure that combinations
of negative and positive integers are handled correctly. Our implementation contains
additional rules giving it greater precision for common special cases, such as multipli-
cation by a one-bit quantity, division by a constant, and (as the figure shows) bitwise
operations on positive numbers.

Treatment of Fields

Dataflow on this bitwidth lattice is performed on the entire Java program interproce-
durally. The analysis is field-based [119]: for each field f in class X, the analysis uses
the abstract analysis value X.f to represent all of the values in the f field of instances
of X. The analysis therefore models an assignment to f in any instance of X as an
assignment to the corresponding analysis value X.f .5 The result of the analysis is
a bitwidth specification for each variable and field in the program. We also identify
constant variables and fields; we replace reads of constant fields with their constant
value and eliminate the field. Fields for which no reads are found (even if writes are
present) are also eliminated.6

Other Details

Our analysis handles method calls by merging the lattice values of the method param-
eters at the call site with the formal parameters of the method. Similarly, the return
value of the method is propagated back to all call-sites. Our compiler’s intermediate
representation handles thrown exceptions by treating the method return value as a
tuple, and the call site as a conditional branch. The “normal return value” is assigned
and the first branch taken on a normal method return, and the “exceptional return

5An obvious extension is to use pointer analysis to discriminate between fields allocated at dif-
ferent program points.

6Note that checks which may throw exceptions on reads and writes are preserved.

38

total % alloc’ed
Benchmark fields unread constant space saved
compress 298 75 31 2.5%
jess 485 91 43 9.9%
raytrace 341 75 30 0.0%
db 286 75 35 0.0%
javac 531 85 34 0.6%
mpegaudio 286 75 35 1.4%
mtrt 341 75 30 0.0%
jack 378 77 31 10.2%

Table 3.1: Number of unused and constant fields in SPEC benchmarks, and the
savings realized (in % of total dynamic allocated bytes) by removing them.

value” is assigned and the second branch taken when an exception is thrown from the
method.

Our implementation of this analysis is actually context-sensitive, with a user-
defined context length. All results presented here were obtained with the context set
to zero; we saw no clear benefit from 1- or 2-deep calling contexts, and the increase
in analysis time was considerable.

Space does not permit us to describe the remaining details of the full analysis,
including the extension of the value lattice to handle the full range of Java types, the
class hierarchy, null and String constants, and fixed-length arrays. We refer the
interested reader to [18] for an exhaustive description of the intraprocedural analysis.

In Table 3.1 we show the number of unread and constant fields found by this
analysis in our benchmark set. Table 3.2 shows the space reductions due to bitwidth
analysis and field reduction using our byte packing strategy.

3.3.3 Definite Initialization Analysis

Java field semantics dictate that uninitialized fields must have the value zero (or null,
for pointer fields). It may seem, then, that the starting lattice value for every integer
field should be 0. This starting value, however, prevents us from finding nonzero field
constants in the program: a simple initialization statement like x=5 will assign x the
value 0 u 5, which is not equal to 5!7

We perform a definite initialization analysis to remedy this problem and restore
precision to our analysis. For example, with only constructor A1 in the following code,
field f will get the lattice value 5:

public class A {
int f;
A1(...) { f = 5; }
A2(...) { /* no assignment to f */ }

}

7On the SCC lattice of [201], 0 u 5 = > (but see footnote 8).

39

static field bits % alloc’ed
Benchmark before after space saved
compress 7591 5430 3.0%
jess 13349 10634 30.1%
raytrace 7467 5296 0.9%
db 6777 4983 0.3%
javac 11560 8161 5.4%
mpegaudio 6777 4983 1.5%
mtrt 7467 5296 0.9%
jack 8356 6037 17.2%

Table 3.2: Number of field bits in SPEC benchmarks statically removed due to
bitwidth analysis, and the dynamic savings (in % of total allocated bytes) of field
bitwidth reduction using byte packing.

Without constructor A2 in the class, we say that field f is definitely initialized
because every constructor of A assigns a value to f before returning or calling an
unsafe method. Adding constructor A2 allows the default 0 value of f to be seen; f is
then no longer definitely initialized.

We actually allow the constructor great flexibility with regard to definite initial-
ization; it is free to call any method which does not read A.f before finally executing
a definite initializer. We construct a mapping from methods to all fields which they
may read, in a flow-insensitive manner, and compute a transitive closure of this map
over the call graph to determine a “safe set” of methods which the constructor may
call before a definite initialization of f. As long as control flow may not pass to a
method not in the safe set before f is written, then f is definitely initialized.

When performing bitwidth analysis, definitely-initialized fields are allowed to start
at ⊥ in the dataflow lattice.8 All other fields must start at value 0, which will make
it impossible for the field to represent a nonzero constant value. The results of the
definite initialization analysis are also used when profiling mostly-constant fields, as
described in the next section.

3.3.4 Profiling Mostly-Constant Fields

To inform the static specialization and field externalization transformations, we in-
strument a profiling build of the code to determine which fields are mostly-constant.
Our implementation builds one binary per examined constant, that is, one binary to
look for “mostly-zero” fields, a separate binary to look for fields which are usually
“one”, a third binary to look for fields commonly “two”, and so forth. We built eleven
binaries for each benchmark, looking for field default values in the interval [−5, 5].
For pointer fields, we only look for null as a default value. It should be stressed that
our use of multiple separate binaries was solely for ease of implementation, and is not

8We use ⊥ for “nothing known” and > for “under-constrained”; another segment of the compiler
community commonly reverses these definitions.

40

always-zero field bytes zero benchmark
Benchmark Field bytes dyn. alloc’d % total dyn. alloc’n
compress Hashtable$Entry.next 3,552 / 7,148 49.7% 105MB

String.offset 3,180 / 3,500 90.9%
jess jess.Token.negcnt 7,573,616 / 7,573,616 100.0% 252MB

jess.Value.floatval 5,688,080 / 10,170,640 55.9%
raytrace Point.z 4,101,328 / 17,464,188 23.5% 126MB

Point.x 3,291,076 / 17,464,188 18.8%
db String.offset 508,204 / 508,524 99.9% 73MB

Vector.capacityIncrement 62,548 / 62,548 100.0%
javac String.offset 3,735,388 / 3,847,816 97.1% 161MB

Statement.labels 578,608 / 578,688 100.0%
mpegaudio Hashtable$Entry.next 3,616 / 7,336 49.3% 666kB

String.offset 2,352 / 2,672 88.0%
jack String.offset 7,442,956 / 7,443,276 100.0% 178MB

Hashtable$Enumerator.type 5,288,364 / 5,288,364 100.0%

Table 3.3: Representative “mostly-zero” fields found in SPEC benchmarks.

an inherent limitation of the technique.

Our instrumentation pass starts by adding a counter per class to record the number
of times each exact class type is instantiated. We also add per-field counters which are
incremented the first time a non-N value is stored into a certain field.9 By comparing
the number of times the class (thus field) is instantiated and the number of times the
field is set to a non-N value, we can determine the amount of memory recoverable
by applying a “mostly-N” transformation to the field, whether static specialization
or field externalization. We use this potential savings to guide our selection of fields
for static specialization, using the field and default value which the profile indicates
will yield the largest gain. If static specialization isn’t an option, the proportion of
non-N fields helps indicate whether externalization is likely to result in a net savings;
see Section 3.4.2 for further discussion.

There is one last detail to attend to: when looking for nonzero N values, the
default zero value of uninitialized fields becomes a problem. For these cases, we use
the definite-initialization analysis described in the previous section to increment the
“non-N” counter on any path where the field in question is not definitely initialized.

Table 3.3 presents some representative “mostly-zero” fields which our profiling
technique identifies in the SPEC benchmarks.

3.3.5 Finding Subclass-Final Fields

Our static specialization transformation can only be applied to what we call subclass-
final fields. Subclass-finality is a less strict but similar constraint to Java’s final

modifier. We do a single-pass analysis to determine subclass-finality, using the results
from the bitwidth analysis to improve our precision.10

A subclass-final field f of a class A can be written to from any method of a
subclass of A, as well as in any constructor of A. In each write, the receiver’s type
must be a subtype of A, except inside A’s constructors, where the receiver may also
be the method’s this parameter. Other writes are disallowed. Unlike fields marked

9Note that implementing this counter requires storing an additional bit per field during profiling
to record whether a non-N value has been seen previously.

10By using analysis rather than relying on programmer specification, the author need not restrict
all users of their code in order to obtain maximum efficiency for some constrained uses of it.

41

with Java’s final modifier, multiple writes to f are permitted, as long as each write
satisfies the above constraints.

Subclass-finality matches the requirements of the static specialization transforma-
tion. Since we always insert a “big” version of the class between the specialized class
and its children, subclasses can write to the field present in objects of the “big” type
without restriction. We need only restrict writes which occur in the class proper.

Our analysis constructs the set of subclass-final fields by finding its dual, the set
of non-subclass-final fields. We scan every method and collect all fields with illegal
writes; all fields found are added to the set of non-subclass-final fields.

3.3.6 Constructor Classification

The final requirement to enable static specialization is to identify constructors which
always initialize certain fields in a given way. In particular, we wish to find construc-
tors which always give fields statically–known-constant values, as well as constructors
which initialize fields with simple functions of their input parameters. The first case
enables us to unconditionally replace an instantiated class with a smaller split version;
the second case allows us to wrap the constructor in an appropriate conditional to
enable the creation of the small version when dynamically possible.

This analysis builds upon our previous results. In a single pass over the construc-
tor, we merge the values written to a selected subclass-final field, treating ParamN as
an abstract value for the Nth constructor parameter. We treat any call to a this()

constructor as if it were inlined. By the properties of subclass-final fields, we know
that all writes to the field are to the this object and that there are no bad writes
to the field outside of the constructor. If the merged value at the end of the pass is
a Param value or a constant equal to the desired “default” value of the selected field,
then we can statically specialize on the field for calls to this particular constructor.
Further, we rule out specialization on any otherwise-suitable fields for which there is
not at least one callable constructor amenable to static specialization.

3.4 Implementation Issues

In this section we will talk briefly about some of the practical issues arising in an
implementation of our space-saving techniques.

3.4.1 Byte Packing

A typical Java implementation may waste large amounts of space by aligning fields for
the most efficient memory access. Fields are often aligned to their widths (a 4-byte
field will be placed at an address which is an even multiple of 4, for example), and the
object as a whole is often placed on a double-word boundary. Our implementation
places object fields at the nearest byte boundary, although the information provided
by our bitwidth analysis is sufficient to bit-pack the fields in the object when space is
truly at a premium. Preliminary investigation indicated that the amount of additional

42

space gained by bit-packing is typically only a few percent, because there aren’t
enough sub-byte fields to fill the space “wasted” by byte alignment.11

Some architectures penalize unaligned accesses to fields. It is worthwhile to at-
tempt to align fields to their preferred alignment while not allowing this alignment to
cause the object size to grow. Further, there are often forced alignment constraints
on (for example) pointers. Our Java runtime uses a conservative garbage collector;
its efficiency decreases markedly if pointers are not word-aligned.12

Our “byte-packing” heuristic achieves tight packing of fields while respecting
forced alignments. Packing proceeds recursively through superclasses, and returns
a list of free-space intervals available between the fields of the superclass. The algo-
rithm first places all forced-alignment fields in the class, from largest to smallest. The
aim is for the alignment-induced spaces left by the large fields to be fillable by the
following smaller fields.

When there are no more forced-alignment fields, we attempt to allocate fields
on their “preferred” alignment boundaries, largest first. At this stage fields are not
allowed to introduce an alignment gap at the end of the object. If their preferred
alignment does not allow them to be placed flush against the last field of the object,
they are skipped.

Finally, when there are no more fields satisfying preferred-alignments, we allocate
the smallest available field at the lowest possible byte boundary. The aim is that the
small fields will fill space and nudge the end of the object out so that a larger field
may be allocated on its preferred alignment. After each field is placed, we begin again
by attempting to place fields on preferred boundaries.

We have observed that this heuristic strategy works well in practice, and the
penalties for occasionally placing an unaligned non-pointer field were not seen to
have a material adverse effect on performance (see Section 3.5.3).

3.4.2 External Hashtable Implementation

The implementation of the hashtable used for field and hash/lock externalization can
dramatically affect the space savings possible with these transformations. The over-
head of dynamically-allocated buckets and the required next pointers makes separate
chaining impractical as a hashtable implementation technique. Open-addressing im-
plementations are preferable: in addition to the stored data, all that is necessary is
a key value and the empty space required to limit the load factor. A load factor
of two-thirds and one-word keys and values yield an average space consumption of
three words per field. This implementation breaks even when the mostly-zero fields
identified are zero over 66% of the time. This break-even point is compared to the
profiling data to allow our field externalization transformation to intelligently choose

11Note also that “bit-packing” may lead to the loss of atomicity on concurrent writes to adjacent
fields packed within a byte, typically the processor’s smallest atomic write size. An escape analysis
would be sufficient to ensure that fields accessed from differing threads are not packed within the
same atomic unit.

12This pointer alignment restriction means that objects have to be word-aligned as well.

43

targeted fields.
Key-size reduction is an important component of the implementation: a näıve

approach would combine a one-word reference to the virtual-container object and a
one-word field identifier for a two-word key. The large key will shift the break-even
point up so that only fields which are 82% zero will profit. Instead, we can offset
the object reference (up to the limit of its size) by small integers to discriminate the
externalized fields of the object, yielding a single-word key.

Our implementation puts a weak reference to the object in the hashtable, enabling
the garbage collector to remove unneeded entries.

3.4.3 Class Loading and Reflection

We conducted this research using the MIT FLEX compiler infrastructure,13 which
is a whole-program static compiler. Although the analyses as described reflect this
compilation model, it would be straightforward to use extant analysis [184] to apply
transformations to only the closed-world portions of a program which used dynamic
class loading. The space allocated to the class index could be updated during garbage
collection as new classes are discovered. Concurrent profiling could actually expose
more opportunities for space compression in a JIT environment. Finally, our various
transformations need not be exposed to the program if the reflection implementation
is carefully written.

3.5 Experimental Results

We have implemented all of the analyses and transformations described in this pa-
per in FLEX. We measure the effectiveness of our optimizations by using FLEX to
analyze the SPECjvm98 benchmarks and apply our transformations, then measuring
the resulting space savings and performance. All benchmarks were run with the full
input size on a dual-processor 900 MHz Pentium III running Debian Linux.

3.5.1 Memory Savings

To evaluate the effectiveness of our technique at reducing the amount of memory
required to execute the program, we first ran an instrumented version of each appli-
cation with no space optimizations. We used this instrumented version to compute
the maximum amount of live data on the heap at any point during the execution. We
then ran an instrumented version of our program after each stage of optimization.
These versions enabled us to calculate the amount by which each technique reduced
the size of the live heap data.14

Figure 3-6a presents the total space savings. This figure contains a bar for each
application, with the bar broken down into categories that indicate the percentage

13Available from http://flexc.lcs.mit.edu/.
14The instrumented versions collect all non-live data before each allocation, so that our computed

maximum heap sizes are accurate.

44

compress jess raytrace db javac mpegaudio mtrt jack

SPECjvm98 Benchmarks

0

20

40

60

80

100

Pe
rc

en
t R

ed
uc

tio
n

in
 M

ax
im

um
 L

iv
e

H
ea

p
Si

ze

Class Pointer Compression
Field Reduction
Static Specialization
Field Externalization
Hash/Lock Externalization
Other

(a) Reduction in the maximum live heap
achieved with our transformations.

compress jess raytrace db javac mpegaudio mtrt jack

SPECjvm98 Benchmarks

0

20

40

60

80

100

Pe
rc

en
t o

f
T

ot
al

 (
O

bj
ec

t a
nd

 A
rr

ay
)

B
yt

es
 A

llo
ca

te
d

Class Pointer Compression
Field Reduction
Static Specialization
Field Externalization
Hash/Lock Externalization
Other

(b) Cumulative reduction in dynamic
allocation achieved with our

transformations.

compress jess raytrace db javac mpegaudio mtrt jack

SPECjvm98 Benchmarks

0

20

40

60

80

100

Pe
rc

en
t o

f
O

bj
ec

t B
yt

es
 A

llo
ca

te
d

Class Pointer Compression
Field Reduction
Static Specialization
Field Externalization
Hash/Lock Externalization
Other

(c) Reduction in non-array dynamic
allocation achieved with our

transformations.

compress jess raytrace db javac mpegaudio mtrt jack

SPECjvm98 Benchmarks

0

20

40

60

80

100

%
 T

ot
al

 D
yn

am
ic

 A
llo

ca
tio

n
Other object fields
Pointer fields
Array allocations

(d) Pre-transformation allocation
breakdown between arrays and objects,
with allocations attributable to fields of

pointer type split out.

compress jess raytrace db javac mpegaudio mtrt jack

SPECjvm98 Benchmarks

0

1

E
xe

cu
tio

n
tim

e,
 n

or
m

al
iz

ed
 to

 n
o-

op
tim

iz
at

io
n

ca
se

Claz Compression
add Field Reduction to previous
add Byte Packing to previous
add Static Specialization to previous
add Field Externalization to previous
add Hash/Lock Externalization to previous

(e) Runtime performance of space
optimizations.

Figure 3-6: Experimental results of space optimization transformations.

45

of live data from the original unoptimized execution that we were able to eliminate
with each optimization. The black section of each bar indicates the amount of live
heap data remaining after all optimizations. We obtain as much as 40% reduction in
live data on the javac benchmark, with almost all of this reduction coming from our
bitwidth-driven field reductions and static specialization. In fact we obtain more than
15% reduction on all of the “object-oriented” benchmarks. The compress benchmark
allocates a small number of very large arrays, limiting the optimization opportunities
discoverable by our analysis. Likewise, the raytrace and mtrt benchmarks make
heavy use of floating-point numbers, limiting the applicability of our integer bitwidth
analysis. However, these raytracing benchmarks allocate a large number of small
arrays to represent vectors and matrices, and so our header optimizations still allow
us to reduce the maximum live data size by over 20%.

We also used an instrumented executable to determine the total amount of memory
allocated during the entire execution of the program, in both the optimized and
unoptimized versions. Reducing this total allocation decreases the load on the garbage
collector. Figure 3-6b presents the space savings according to this metric. Comparison
to the previous figure reveals that long-lived objects provide proportionally more
opportunities for optimization.

3.5.2 Objects Versus Arrays

The majority of our optimizations are designed to optimize object fields rather than
arrays. For context, we present numbers that characterize the reductions in total allo-
cation for objects only, rather than for both objects and arrays. Figure 3-6c presents
space savings numbers for objects alone, omitting any storage required for arrays.
Figure 3-6d explains the difference by showing how the total program allocation for
each benchmark is broken down into array and object allocations. The reason for our
poor performance on compress is now obvious—a few large uncompressible integer
arrays account for over 99% of the total space allocated.

3.5.3 Execution Times

We next evaluate the execution time impact of applying our space optimizations.
Figure 3-6e presents the normalized execution times of each benchmark after the ap-
plication of our sequence of optimizations. These numbers show that the first several
optimizations (class pointer compression, field reduction, and byte packing) typically
reduce the execution times, while the remainder (static specialization, field external-
ization, and hash/lock externalization) generate modest increases in the execution
times. The speedup is due to reduced GC times, despite the indirection and mis-
alignment costs. Static specialization’s virtualization of fields is responsible for its
slowdown; it is likely that an optimized speculatively-inlined implementation of the
field accessors which it adds to the program would improve its performance. Field
externalization (including hash/lock externalization) causes the expected penalty for
hashtable lookup; note that synchronization elimination would greatly reduce the cost
of hash/lock externalization in the four cases where the overhead is unreasonable.

46

3.6 Related Work

Many researchers have focused on the problem of reducing the amount of header
space required to represent Java locks [25, 156, 2]. The vast majority of programs do
not use the lock associated with every object in its full generality, so it is possible to
develop improved algorithms optimized for the common case. The idea is to represent
the lock with the minimum amount of state (typically a bit) required to support the
common usage pattern of an acquire followed by a release, and to back off to a
more elaborate scheme only when the thread exhibits a more complex pattern such
as nested locking. The primary focus has been on improving performance rather
than on reducing space; however, many of the algorithms also eliminate the need to
store the complicated locking objects required to support the most general lock usage
pattern possible in a Java program. These techniques typically reduce the lock space
overhead to 24 header bits [25]; Bacon et al. in [24] show speed improvements from
header-size reduction, in agreement with the results presented here.

Research on escape analysis and related analyses can enable the compiler to find
objects whose locks are never acquired [12, 37, 202, 58, 172, 191]. This information
can enable the compiler to remove the space reserved for synchronization support
in these objects. Our hash/lock removal algorithm uses a totally dynamic approach
based on our field externalization mechanism.

Several researchers have used bitwidth analysis to reduce the size of the generated
circuits for compilers that generate hardware implementations of programs written
in C or similar programming languages [15, 18, 174, 186, 50].

Dieckmann and Hölzle have performed an in-depth analysis of the memory allo-
cation behavior of Java programs [81]. Although space is not their primary focus,
their study does quantify the space overhead associated with the use of a two-word
header and of 8-byte alignment. In general, our measurements of the memory system
behavior of Java programs broadly agree with their measurements.

Sweeney and Tip [192] did a study of dead members of C++ programs, which is
similar to the unread field elimination done by our bitwidth analysis. However, they
fail to identify constant members, as our analysis algorithm can. Further, our results
show that unread and constant field elimination is very dependent on the coding style
of a particular application. The collection of techniques we have presented here gives
much more consistent savings over a wide range of benchmarks.

Aggarwal and Randall [5] described an array bounds check removal method using
related fields. This work attempted to discover fields, such as Vector.size, which
are guaranteed to be less than or equal to the length of some array, for example,
the backing array stored in Vector.data. Tests against the related field could then
provide information about bounds checks on accesses to the array. This technique
could be used to infer additional bitwidth information on related fields from our
analysis.

Marinov and O’Callahan have presented Object Equality Profiling [151], a tech-
nique which identifies when several instances of an object may be safely merged to
a single representative instance. The merging which is suggested is an orthogonal
memory-saving measure which could be used in addition to the ones described here.

47

Zhang and Gupta describe a runtime technique that recognizes two special cases
when an integer or a pointer field in a designated C data structure may be compressed
[210]. For all but two of their benchmarks, their heap savings (on these benchmarks,
an average of 27%) are entirely due to a pointer compression techique which is or-
thogonal to the transformations described in this paper. The techniques could be
combined for greater savings.

3.7 Conclusions

We have presented a set of techniques for reducing the memory consumption of object-
oriented programs. Our techniques include program analyses to detect unused, con-
stant, or overly-wide fields, and transformations to eliminate fields with common
default values or usage patterns. These techniques apply equally well to both user-
defined fields and fields implicit in the runtime’s object header, and can reduce the
maximum heap required for a program by as much as 40%. Our experimental re-
sults from our fully-implemented system validate the opportunity for space savings
on typical object oriented programs.

48

Chapter 4

Pointer and Escape Analysis for
Multithreaded Programs

4.1 Introduction

Multithreading is a key structuring technique for modern software. Programmers
use multiple threads of control for many reasons: to build responsive servers that
communicate with multiple parallel clients [157], to exploit the parallelism in shared-
memory multiprocessors [55], to produce sophisticated user interfaces [163], and to
enable a variety of other program structuring approaches [118].

Research in program analysis has traditionally focused on sequential programs [154];
extensions for multithreaded programs have usually assumed a block structured, par-
begin/parend form of multithreading in which a parent thread starts several parallel
threads, then immediately blocks waiting for them to finish [135, 173]. But the
standard form of multithreading supported by languages such as Java and threads
packages such as POSIX threads is unstructured — child threads execute indepen-
dently of their parent threads. The software structuring techniques described above
are designed to work with this form of multithreading, as are many recommended de-
sign patterns [142]. But because the lifetimes of child threads potentially exceed the
lifetime of their starting procedure, unstructured multithreading significantly compli-
cates the interprocedural analysis of multithreaded programs.

4.1.1 Analysis Algorithm

This chapter presents a new combined pointer and escape analysis for multithreaded
programs, including programs with unstructured forms of multithreading. The al-
gorithm is based on a new abstraction, parallel interaction graphs, which maintain
precise points-to, escape, and action ordering information for objects accessed by
multiple threads. Unlike previous escape analysis abstractions, parallel interaction
graphs enable the algorithm to analyze the interactions between parallel threads.
The analysis can therefore capture objects that are accessed by multiple threads but
do not escape a given multithreaded computation. It can also fully characterize the
points-to relationships for objects accessed by multiple parallel threads.

49

Because parallel interaction graphs characterize all of the potential interactions
of the analyzed method or thread with its callers and other parallel threads, the
resulting analysis is compositional at both the method and thread levels — it analyzes
each method or thread once to produce a single general analysis result that can be
specialized for use in any context.1 Finally, the combination of points-to and escape
information in the same abstraction enables the algorithm to analyze only part of the
program, with the analysis result becoming more precise as more of the program is
analyzed.

4.1.2 Application to Region-Based Allocation

We have implemented our analysis in the MIT Flex compiler for Java. The infor-
mation that it produces has many potential applications in compiler optimizations,
software engineering, and as a foundation for further program analysis. This chapter
presents our experience using the analysis to optimize and check safety conditions for
programs that use region-based allocation constructs instead of relying on garbage
collection. Region-based allocation allows the program to run (a potentially mul-
tithreaded) computation in the context of a specific allocation region. All objects
created by the computation are allocated in the region and deallocated when the
computation finishes. To avoid dangling references, the implementation must ensure
that the objects in the region do not outlive the associated computation. One stan-
dard way to achieve this goal is to dynamically check that the program never attempts
to create a reference from one object to another object allocated in a region with a
shorter lifetime [38]. If the program does attempt to create such a reference, the im-
plementation refuses to create the reference and throws an exception. Unfortunately,
this approach imposes dynamic checking overhead and introduces a new failure mode
for programs that use region-based allocation.

We have used our analysis to statically verify that our multithreaded benchmark
programs use region-based allocation correctly. It therefore provides a safety guar-
antee to the programmer and enables the compiler to eliminate the dynamic region
reference checks. We also found that intrathread analysis alone is not powerful enough
— the algorithm must analyze the interactions between parallel threads to verify the
correct use of region-based allocation.

We also used our analysis for the more traditional purpose of synchronization
elimination. While our algorithm is quite effective at enabling this optimization,
for our multithreaded benchmarks, the interthread analysis provides little additional
benefit over the standard intrathread analysis.

4.1.3 Contributions

This chapter makes the following contributions:

1Recursive methods or recursively generated threads may require an iterative algorithm that may
analyze methods or threads in the same strongly connected component multiple times to reach a
fixed point.

50

• Abstraction: It presents a new abstraction, parallel interaction graphs, for
the combined pointer and escape analysis of programs with unstructured mul-
tithreading.

• Analysis: It presents a new algorithm for analyzing multithreaded programs.
The algorithm is compositional and analyzes interactions between parallel threads.

• Region-Based Allocation: It presents our experience using the analysis to
statically verify that programs correctly use region-based allocation constructs.
The benefits include providing a safety guarantee for the program and elimi-
nating the overhead of dynamic region reference checks.

The remainder of the chapter is structured as follows. Section 4.2 presents an ex-
ample that illustrates how the algorithm works. Section 4.3 presents the abstractions
that the analysis uses, while Section 4.4 presents the analysis algorithm and Sec-
tion 4.5 discusses the analysis uses. We discuss experimental results in Section 4.6,
related work in Section 4.7, and conclude in Section 4.8.

4.2 Example

We next present a simple example that illustrates how the analysis works.

4.2.1 Structure of the Parallel Computation

Figure 4-1 presents a multithreaded Java program that computes the Fibonacci num-
ber of its input. The Task class implements a parallel divide and conquer algorithm
for this computation. Each Task stores an Integer object in its source field as input
and produces a new Integer object in its target field as output.2

This program illustrates several common patterns for multithreaded programs.
First, it uses threads to implement parallel computations. Second, when a thread
starts its execution, it points to objects that hold the input data for its computation.
Finally, when the computation finishes, it writes references to its result objects into
its thread object for the parent computation to read.

4.2.2 Regions and Memory Management

As the computation runs, it continually allocates new Task objects for the parallel
subcomputations and new Integer objects to hold their inputs and outputs. The
lifetimes of these objects are contained in the lifetime of the Fibonacci computation,
and die when this computation finishes. A standard memory management system
would not exploit this property. The Task and Integer objects would be allocated out

2This program uses the standard Java thread creation mechanism. The statement t1.start()
creates a new parallel thread of control. This new thread of control then invokes the run method of
the Task class on the t1 object. This start/run linkage is the standard way to execute new threads
in Java.

51

class main {
public static void main(String args[]) {

int i = Integer.parseInt(args[0]);
Fib f = new Fib(i);
Region r = new Region();
r.enter(f);

}
}
class Fib implements Runnable {

int source;

Fib(int i) { source = i; }

public void run() {
Task t = new Task(new Integer(source));
t.start();
try {
t.join();

} catch (Exception e) { System.out.println(e); }
System.out.println(t.target.toString());

}
}
class Task extends Thread {

public Integer source;
public Integer target;

Task(Integer s) { source = s; }

public void run() {
int v = source.intValue();
if (v <= 1) {
target = source;

} else {
Task t1 = new Task(new Integer(v-1));
Task t2 = new Task(new Integer(v-2));
t1.start();
t2.start();
try {

t1.join();
t2.join();

} catch (Exception e) { System.out.println(e); }
int x = t1.target.intValue();
int y = t2.target.intValue();
target = new Integer(x + y);

}
}

}

Figure 4-1: Multithreaded Fibonacci Example

52

of the garbage-collected heap, increasing the memory consumption rate, the garbage
collection frequency, and therefore the garbage collection overhead.

Region-based allocation provides an attractive alternative. Instead of allocating
all objects out of a single garbage-collected heap, region-based approaches allow the
program to create multiple memory regions, then allocate each object in a specific
region. When the program no longer needs any of the objects in the region, it deal-
locates all of the objects in that region without garbage collection.

Researchers have proposed many different region-based allocation systems. Our
example (and our implemented system) uses the approach standardized in the Real-
Time Java specification [38]. Before the main program invokes the Fibonacci com-
putation, it creates a new memory region r. The statement r.enter(f) executes
the run method of the f object (and all of the methods or threads that it executes)
in the context of the new region r. When one of the threads in this computation
creates a new object, the object is allocated in the region r. When the entire mul-
tithreaded computation terminates, all of the objects in the region are deallocated
without garbage collection. The Task and Integer objects are therefore managed in-
dependently of the garbage collected heap and do not increase the garbage collection
frequency or overhead. Region-based allocation is an attractive alternative to garbage
collection because it exploits the correspondence between the lifetimes of objects and
the lifetimes of computations to deliver a more efficient memory management mech-
anism.

4.2.3 Regions and Dangling Reference Checks

One potential problem with region-based allocation is the possibility of dangling ref-
erences. If an object whose lifetime exceeds the region’s lifetime refers to an object
allocated inside the region, any use of the reference after the region is deallocated
will access potentially recycled garbage, violating the memory safety of the program.
The Real-Time Java specification eliminates this possibility as follows. It allows the
computation to create a hierarchy of nested regions and ensures that no parent re-
gion is deallocated before one of its child regions. Each region is associated with a
(potentially multithreaded) computation; the objects in the region are deallocated
when its computation terminates and the objects in all of its child regions have been
deallocated. The implementation dynamically checks all assignments to object fields
to ensure that the program never attempts to create a reference that goes down the
hierarchy from an object in an ancestor region to an object in a child region. If the
program does attempt to create such a reference, the check fails. The implementation
prevents the assignment from taking place and throws an exception.

While these checks ensure the memory safety of the execution, they impose ad-
ditional execution time overhead and introduce a new failure mode for the software.
Our goal is to analyze the program and statically verify that the checks never fail.
Such an analysis would enable the compiler to eliminate all of the dynamic region
checks. It would also provide the programmer with a guarantee that the program
would never throw an exception because a check failed.

53

4.2.4 Analysis in the Example

We use a generalized escape analysis to determine whether any object allocated in
a given region escapes the computation associated with the region. If none of the
objects escape, the program will never attempt to create a dangling reference and the
compiler can eliminate all of the checks. The algorithm first performs an intrathread,
interprocedural analysis to derive a parallel interaction graph at the end of each
method. Figures 4-2 and 4-3 present the analysis results for the run methods in the
Fib and Task classes, respectively.

Points-to Graphs

The first component of the parallel interaction graph is the points-to graph. The
nodes in this graph represent objects; the edges represent references between objects.
There are two kinds of edges: inside edges, which represent references created within
the analyzed part of the program (for Figure 4-2, the sequential computation of the
Fib.run method), and outside edges, which represent references read from objects
potentially accessed outside the analyzed part of the program. In our figures, solid
lines denote inside edges and dashed lines denote outside edges.

There are also several kinds of nodes. Inside nodes represent objects created within
the analyzed part of the program. There is one inside node for each object creation site
in the program; that node represents all objects created at that site. Parameter nodes
represent objects passed as parameters to the currently analyzed method; load nodes
represent objects accessed by reading a reference in an object potentially accessed
outside the analyzed part of the program. Together, the parameter and load nodes
make up the set of outside nodes. In our figures, solid circles denote inside nodes and
dashed circles denote outside nodes.

In Figure 4-2, nodes 1 and 4 are outside nodes. Node 1 represents the this

parameter of the method, while node 4 represents the object whose reference is loaded
by the expression t.target at line 2 of the example at the end of the Fib.run method.
Nodes 2 and 3 are inside nodes, and denote the Task and Integer objects created in
the statement Task t = new Task(new Integer(source)) at line 1 of the example.

Started Thread Information

The parallel interaction graph contains information about which threads were started
by the analyzed part of the program. In Figure 4-2, node 2 represents the started Task

thread that implements the entire Fibonacci computation. In Figure 4-3, nodes 8 and
11 represent the two threads that implement the parallel subtasks in the computation.
The interthread analysis uses the started thread information when it computes the
interactions between the current thread and threads that execute in parallel with the
current thread.

54

source

1this

2t

target

3

4

is an unanalyzed

started thread node

is reachable from3

1 is a parameter node

2

2

is reachable from 24

Points-to Information Escape Information

inside edge

outside edge

inside node

outside node

Figure 4-2: Analysis Result for Fib.run

Escape Information

The parallel interaction graph contains information about how objects escape the
analyzed part of the program to be accessed by the unanalyzed part. A node escapes if
it is a parameter node or represents an unanalyzed thread started within the analyzed
part of the program. It also escapes if it is reachable from an escaped node. In
Figure 4-2, node 1 escapes because it is passed as a parameter, while nodes 3 and 4

escape because they are reachable from the unanalyzed thread node 2.

4.2.5 Interthread Analysis

Previously proposed escape analyses treat threads very conservatively — if an object
is reachable from a thread object, the analyses assume that it has permanently es-
caped [35, 37, 58, 202]. Our algorithm, however, analyzes the interactions between
threads to recapture objects accessed by multiple threads. The foundation of the
interthread analysis is the construction of two mappings µ1 and µ2 between the nodes
of the parallel interaction graphs of the parent and child threads. Each outside node
is mapped to another node if the two nodes represent the same object during the
analysis. The mappings are used to combine the parallel interaction graph from the
child thread into the parallel interaction graph from the parent thread. The result
is a new parallel interaction graph that summarizes the parallel execution of the two
threads.

Figure 4-4 presents the mappings from the interthread analysis of Fib.run and
the Task.run method for the thread that Fib.run starts. The algorithm computes
these mappings as follows:

• Initialization: Inside the Fib.run method, node 2 represents the started Task

thread. Inside the Task.run method, node 5 represents the same started thread.
The algorithm therefore initializes µ2 to map node 5 to node 2.

• Matching target edges: The analysis of the Task.run method creates inside

55

source

8t1

target

9

10

is an unanalyzed

started thread node

is reachable from9

5 is a parameter node

8

8

is reachable from 810

Points-to Information Escape Information

source

11t2

target

12

13

source

5this
target

6

7

is reachable from 56

is reachable from 57

is an unanalyzed

started thread node

is reachable from12

11

11

is reachable from 1113

Figure 4-3: Analysis Result for Task.run

Points-to Information

from Fib.Run

source

5
target

6

7

source

1this

2t

target

3

4

Points-to Information

from Task.Run

Mappings

Figure 4-4: Mappings for Interthread Analysis of Fib.run and Task.run

56

source

8

target

9

10

is an unanalyzed

started thread node

is reachable from9

8

8

is reachable from 810

Points-to Information Escape Information

source

11

target

12

13

source

2t
target

3

7

is an unanalyzed

started thread node

is reachable from12

11

11

is reachable from 1113

1this

1 is a parameter node

Figure 4-5: Analysis Result After First Interthread Analysis

Points-to Information Escape Information

source

2t
target

3

7

1this 1 is a parameter node

source

8

target

9

source

11

target

12

Figure 4-6: Final Analysis Result for Fib.run

57

edges from node 5 to nodes 6 and 7. These edges have the label target,
and represent references between the corresponding Task and Integer objects
during the execution of the Task.run method.

The Fib.run method reads these references to obtain the result of the Task.run
method. The outside edge from node 2 to node 4 represents these references
during the analysis of the Fib.run method. The analysis therefore matches the
outside edge from the Fib.run method (from node 2 to node 4) against the
inside edges from the Task.run method to compute that node 4 represents the
same objects as nodes 6 and 7. The result is that µ1 maps node 4 to nodes 6

and 7.

• Matching source edges: The analysis of the Fib.run method creates an
inside edge from node 2 to node 3. This edge has the label source, and repre-
sents a reference between the corresponding Task and Integer objects during
the execution of the Fib.run method.

The Task.run method reads this reference to obtain its input. The outside
edge from node 5 to node 6 represents this reference during the analysis of the
Task.run method. The interthread analysis therefore matches the outside edge
from the Task.run method (from node 5 to node 6) against the inside edge
from the Fib.run method (from node 2 to node 3) to compute that node 6

represents the same objects as node 3. The result is that µ2 maps node 6 to
node 3.

• Transitive Mapping: Because µ1 maps node 4 to node 6 and µ2 maps node
6 to node 3, the analysis computes that node 4 represents the same object as
node 3. The result is that µ1 maps node 4 to node 3.

Note that the matching process models interactions in which one thread reads ref-
erences created by the other thread. Because the threads execute in parallel, the
matching is symmetric.

The analysis uses µ1 and µ2 to combine the two parallel interaction graphs and
obtain a new graph that represents the combined effect of the two threads. Figure 4-5
presents this graph, which the analysis computes as follows:

• Edge Projections: The analysis projects the edges through the mappings to
augment nodes from one parallel interaction graph with edges from the other
graph. In our example, the analysis projects the inside edge from node 5 to
node 6 through µ2 to generate new inside edges from node 2 to nodes 3 and 7.
It also generates other edges involving outside nodes, but removes these edges
during the simplification step.

• Graph Combination: The analysis combines the two graphs, omitting the
outside node that represents the this parameter of the started thread (node 5

in our example).

• Simplification: The analysis removes all outside edges from captured nodes,
all outside nodes that are not reachable from a parameter node or unanalyzed

58

started thread node, and all inside nodes that are not reachable from a live
variable, parameter node, or unanalyzed started thread node.

In our example, the analysis recaptures the (now analyzed) thread node 2. Nodes
3 and 7 are also captured even though they are reachable from a thread node. The
analysis removes nodes 4 and 6 in the new graph because they are not reachable from
a parameter node or unanalyzed thread node. Note that because the interactions
with the thread nodes 8 and 11 have not yet been analyzed, those nodes and all
nodes reachable from them escape.

Because our example program uses recursively generated parallelism, the analysis
must perform a fixed point computation during the interthread analysis. Figure 4-6
presents the final parallel interaction graph from the end of the Fib.run method,
which is the result of this fixed point analysis. The analysis has recaptured all of the
inside nodes, including the task nodes. Because none of the objects represented by
these nodes escapes the computation of the Fib.run method, its execution in a new
region will not violate the region referencing constraints.

4.3 Analysis Abstraction

We next formally present the abstraction (parallel interaction graphs) that the analy-
sis uses. In addition to the points-to and escape information discussed in Section 4.2,
parallel interaction graphs can also represent ordering information between actions
(such as synchronization actions) from parent and child threads. This ordering in-
formation enables the analysis to determine when thread start events temporally
separate actions of parent and child threads. This information may, for example,
enable the analysis to determine that a parent thread performs all of its synchroniza-
tions on a given object before a child thread starts its execution and synchronizes on
the object. To simplify the presentation, we assume that the program does not use
static class variables, all the methods are analyzable and none of the methods returns
a result. Our implemented analysis correctly handles all of these aspects [189].

4.3.1 Object Representation

The analysis represents the objects that the program manipulates using a set n ∈ N
of nodes, which is the disjoint union of the set NI of inside nodes and the set NO of
outside nodes. The set of thread nodes NT ⊆ NI represents thread objects. The set
of outside nodes is the disjoint union of the set NL of load nodes and the set NP of
parameter nodes. There is also a set f ∈ F of fields in objects, a set v ∈ V of local
and parameter variables, and a set l ∈ L ⊆ V of local variables.

4.3.2 Points-To Escape Graphs

A points-to escape graph is a triple 〈O, I, e〉, where

• O ⊆ N × F × NL is a set of outside edges. We use the notation O(n1, f) =
{n2|〈n1, f, n2〉 ∈ O}.

59

• I ⊆ (N × F × N) ∪ (V × N) is a set of inside edges. We use the notation
I(v) = {n|〈v, n〉 ∈ I}, I(n1, f) = {n2|〈n1, f, n2〉 ∈ I}.

• e : N → P(N) is an escape function that records the escape information for
each node.3 A node escapes if it is reachable from a parameter node or from a
node that represents an unanalyzed parallel thread.

The escape function must satisfy the invariant that if n1 points to n2, then n2

escapes in at least all of the ways that n1 escapes. When the analysis adds an edge
to the points-to escape graph, it updates the escape function so that it satisfies this
invariant. We define the concepts of escaped and captured nodes as follows:

• escaped(〈O, I, e〉, n) if e(n) 6= ∅
• captured(〈O, I, e〉, n) if e(n) = ∅

4.3.3 Parallel Interaction Graphs

A parallel interaction graph is a tuple 〈〈O, I, e〉, τ, α, π〉:
• The thread set τ ⊆ N represents the set of unanalyzed thread objects started

by the analyzed computation.

• The action set α records the set of actions executed by the analyzed compu-
tation. Each synchronization action 〈sync, n1, n2〉 ∈ α has a node n1 that
represents the object on which the action was performed and a node n2 that
represents the thread that performed the action. If the action was performed by
the current thread, n2 is the dummy current thread node nCT ∈ NT . Our imple-
mentation can also record actions such as reading an object, writing an object,
or invoking a given method on an object. It is straightforward to generalize the
concept of actions to include actions performed on multiple objects.

• The action order π records ordering information between the actions of the
current thread and threads that execute in parallel with the current thread.

– 〈〈sync, n1, n2〉, n〉 ∈ π if the synchronization action 〈sync, n1, n2〉may have
happened after one of the threads represented by n started executing. In
this case, the actions of a thread represented by n may conflict with the
action.

– 〈〈n1, f, n2〉, n〉 ∈ π if a reference represented by the outside edge 〈n1, f, n2〉
may have been read after one of the threads represented by n started
executing. In this case, the outside edge may represent a reference written
by a thread represented by n.

We use the notation π@n = {a|〈a, n〉 ∈ π} to denote the set of actions and outside
edges in π that may occur in parallel with a thread represented by n.

3Here P(N) is the set of all subsets of N , so that e(n) is the set of nodes through which n escapes.

60

4.4 Analysis Algorithm

For each program point, the algorithm computes a parallel interaction graph for the
current analysis scope at that point. For the intraprocedural analysis, the analysis
scope is the currently analyzed method up to that point. The interprocedural analysis
extends the scope to include the (transitively) called methods; the interthread analysis
further extends the scope to include the started threads.

We next present the analysis, identifying the program representation, the different
phases, and the key algorithms in the interprocedural and interthread phases.

4.4.1 Program Representation

The algorithm represents the computation of each method using a control flow graph.
We assume the program has been preprocessed so that all statements relevant to the
analysis are either a copy statement l = v, a load statement l1 = l2.f, a store state-
ment l1.f = l2, a synchronization statement l.acquire() or l.release(), an object
creation statement l = new cl, a method invocation statement l0.op(l1, . . . , lk), or
a thread start statement l.start().

The control flow graph for each method op starts with an enter statement enterop
and ends with an exit statement exitop.

4.4.2 Intraprocedural Analysis

The intraprocedural analysis is a forward dataflow analysis that propagates paral-
lel interaction graphs through the statements of the method’s control flow graph.
Each method is analyzed under the assumption that the parameters are maximally
unaliased, i.e., point to different objects. For a method with formal parameters
v0, . . . , vn, the initial parallel interaction graph at the entry point of the method
is 〈〈∅, {〈vi, nvi

〉}, λn.if n = nvi
then {n} else ∅〉, ∅, ∅, ∅〉, where nvi

is the parameter
node for parameter vi. If the method is invoked in a context where some of the pa-
rameters may point to the same object, the interprocedural analysis described below
in Section 4.4.4 merges parameter nodes to conservatively model the effect of the
aliasing.

The transfer function 〈G′, τ ′, α′, π′〉 = [[st]] (〈G, τ, α, π〉) models the effect of each
statement st on the current parallel interaction graph. Figure 4-7 graphically presents
the rules that determine the new points-to graphs for the different basic statements.
Each row in this figure contains four items: a statement, a graphical representation
of existing edges, a graphical representation of the existing edges plus the new edges
that the statement generates, and a set of side conditions. The interpretation of each
row is that whenever the points-to escape graph contains the existing edges and the
side conditions are satisfied, the transfer function for the statement generates the new
edges. Assignments to a variable kill existing edges from that variable; assignments
to fields of objects leave existing edges in place.

In addition to updating the outside and inside edge sets, the transfer function also
updates the the escape function e to ensure that if n1 points to n2, then n2 escapes

61

where

where

Figure 4-7: Generated Edges for Basic Statements

τ ′=τ ∪ I(l)

e′(n)=

e(n) ∪ {n′} if n′ ∈ I(l) and
n is reachable in O ∪ I from n′

e(n) otherwise

Figure 4-8: Transfer Function for l.start()

62

α′=α ∪ {sync} × I(l)× {nCT}
π′=π ∪ ({sync} × I(l)× {nCT})× τ

Figure 4-9: Transfer Function for l.acquire() and l.release()

in at least all of the ways that n1 escapes. Except for load statements, the transfer
functions leave τ , α, and π unchanged. For a load statement l1 = l2.f the transfer
function updates the action order π to record that any new outside edges may be
created in parallel with the threads modeled by the nodes in τ (here nL is the load
node for l1 = l2.f):

π′ = π ∪ {〈n1, f, nL〉|n1 ∈ I(l2) ∧ escaped(〈O, I, e〉, n1)} × τ

Figure 4-8 presents the transfer function for an l.start() statement, which adds
the started thread nodes to τ and updates the escape function. Figure 4-9 presents
the transfer function for synchronization statements, which add the corresponding
synchronization actions into α and record the actions as executing in parallel with all
of the nodes in τ . At control-flow merges, the confluence operation takes the union
of the inside and outside edges, thread sets, actions, and action orders.

4.4.3 Mappings

Mappings µ : N → P(N) implement the substitutions that take place when combin-
ing parallel interaction graphs. During the interprocedural analysis, for example, a
parameter node from a callee is mapped to all of the nodes at the call site that may
represent the corresponding actual parameter. Given an analysis component ξ, ξ[µ]
denotes the component after replacing each node n in ξ with µ(n):4

τ [µ]=
⋃

n∈τ µ(n)
O[µ]=

⋃
〈n,f,nL〉∈O

µ(n)× {f} × {nL}
I[µ]=

⋃
〈n1,f,n2〉∈I

µ(n1)× {f} × µ(n2) ∪
⋃
〈v,n〉∈I

{v} × µ(n)

α[µ]=
⋃
〈sync,n1,n2〉∈α

{sync} × µ(n1)× µ(n2)

π[µ]=
⋃
〈〈sync,n1,n2〉,n〉∈π

({sync} × µ(n1)× µ(n2))× µ(n)∪⋃
〈〈n1,f,n2〉,n〉∈π

(µ(n1)× {f} × µ(n2))× µ(n)

4.4.4 Interprocedural Analysis

The interprocedural analysis computes a transfer function for each method invocation
statement. We assume a method invocation site of the form l0.op(l1, . . . , lk), a po-
tentially invoked method op with formal parameters v0, . . . , vk with corresponding pa-

4The only exception is in the definition of O[µ] where we do not substitute the load node nL that
constitutes the end point of an outside edge 〈n, f, nL〉.

63

rameter nodes nv0 , nv1 , . . . , nvk
, a parallel interaction graph 〈〈O1, I1, e1〉, τ1, α1, π1〉 at

the program point before the method invocation site, and a graph
〈〈O2, I2, e2〉, τ2, α2, π2〉 from the exit statement of op. The interprocedural analy-
sis has two steps. It first computes a mapping µ for the outside nodes from the callee.
It then uses µ to combine the two parallel interaction graphs to obtain the parallel
interaction graph at the program point immediately after the method invocation. The
analysis computes µ as the least fixed point of the following constraints:

I1(li) ⊆ µ(nvi
), ∀i ∈ {0, 1, . . . k} (4.1)

〈n1, f, n2〉 ∈ O2, 〈n3, f, n4〉 ∈ I1, n3 ∈ µ(n1)
n4 ∈ µ(n2)

(4.2)

〈n1, f, n2〉 ∈ O2, 〈n3, f, n4〉 ∈ I2,
µ(n1) ∩ µ(n3) 6= ∅, n1 6= n3

µ(n4) ∪ {n4} ⊆ µ(n2)
(4.3)

The first constraint initializes µ; the next two constraints extend µ. Constraint 4.1
maps each parameter node from the callee to the nodes from the caller that represent
the actual parameters at the call site. Constraint 4.2 matches outside edges read by
the callee against corresponding inside edges from the caller. Constraint 4.3 matches
outside edges from the callee against inside edges from the callee to model aliasing
between callee nodes.

The algorithm next extends µ to µ′ to ensure that all nodes from the callee (except
the parameter nodes) appear in the new parallel interaction graph:

µ′(n) =

{
µ(n) if n ∈ NP

µ(n) ∪ {n} otherwise

The algorithm computes the new parallel interaction graph 〈〈O′, I ′, e′〉, τ ′, α′, π′〉 at
the program point after the method invocation as follows:

O′ = O1 ∪O2[µ
′] I ′ = I1 ∪ (I2 − V ×N)[µ′]

τ ′ = τ1 ∪ τ2[µ
′] α′ = α1 ∪ α2[µ

′]
π′ = π1 ∪ π2[µ

′] ∪ (O2[µ
′] ∪ α2[µ

′])× τ1

It computes the new escape function e′ as the union of the escape function e1 before
the method invocation and the expansion of the escape function e2 from the callee
through µ′. More formally, the following constraints define the new escape function
e′ as

e1(n) ⊆ e′(n)
n2 ∈ µ′(n1)

(e2(n1)−NP)[µ′] ⊆ e′(n2)

propagated over the edges from O′∪I ′. After the interprocedural analysis, reachability
from the parameter nodes of the callee is no longer relevant for the escape function,
hence the set difference in the second initialization constraint. We have a proof that
this interprocedural analysis produces to a parallel interaction graph that is at least as
conservative as the one that would be obtained by inlining the callee and performing

64

the intraprocedural analysis as in section 4.4.2 [189].
Finally, we simplify the resulting parallel interaction graph by removing superflu-

ous nodes and edges. We remove all load nodes nL such that e′(nL) = ∅ from the
graph; such load nodes do not represent any concrete object. We also remove all all
outside edges 〈n1, f, n2〉 that start from a captured node n1 (where e′(n1) = ∅); such
outside edges do not represent any concrete reference. Finally, we remove all nodes
that are not reachable from a live variable, parameter node, or unanalyzed started
thread node from τ ′.

Because of dynamic dispatch, a single method invocation site may invoke several
different methods. The transfer function therefore merges the parallel interaction
graphs from all potentially invoked methods to derive the parallel interaction graph
at the point after the method invocation site. The current implementation obtains
this call graph information using a variant of a cartesian product type analysis [4],
but it can use any conservative approximation to the dynamic call graph.

The analysis uses a worklist algorithm to solve the combined intraprocedural and
interprocedural dataflow equations. A bottom-up analysis of the program yields the
full result with one analysis per strongly connected component of the call graph.
Within strongly connected components, the algorithm iterates to a fixed point.

4.4.5 Thread Interaction

Interactions between threads take place between a starter thread (a thread that starts
a parallel thread) and a startee thread (the thread that is started). The interaction
algorithm is given the parallel interaction graph 〈〈O, I, e〉, τ, α, π〉 from a program
point in the starter thread, a node nT that represents the startee thread, and a
run method that runs when the thread object represented by nT starts. The par-
allel interaction graph associated with the exit statement of the run method is
〈〈O2, I2, e2〉, τ2, α2, π2〉. The result of the thread interaction algorithm is a parallel
interaction graph 〈〈O′, I ′, e′〉, τ ′, α′, π′〉 that models all the interactions between the
execution of the starter thread (up to its corresponding program point) and the entire
startee thread. This result conservatively models all possible interleavings of the two
threads.

The algorithm has two steps. It first computes two mappings µ1, µ2, where µ1

maps outside nodes from the starter and µ2 maps outside nodes from the startee. It
then uses µ1 and µ2 to combine the two parallel interaction into a single parallel in-
teraction graph that reflects the interactions between the two threads. The algorithm
computes µ1 and µ2 as the least fixed point of the following constraints:

nT ∈ µ2(nv0), nT ∈ µ2(nCT) (4.4)

〈n1, f, n2〉 ∈ Oi, 〈n3, f, n4〉 ∈ Ij, n3 ∈ µi(n1)
n4 ∈ µi(n2)

(4.5)

〈n1, f, n2〉 ∈ Oi, 〈n3, f, n4〉 ∈ Ii,
µi(n1) ∩ µi(n3) 6= ∅, n1 6= n3

µi(n4) ∪ {n4} ⊆ µi(n2)
(4.6)

65

〈n1, f, n2〉 ∈ Ii, 〈n3, f, n4〉 ∈ Oj, n3 ∈ µi(n1)
n2 ∈ µj(n4)

(4.7)

n2 ∈ µi(n1), n3 ∈ µj(n2)
n3 ∈ µi(n1)

(4.8)

Here nv0 is the parameter node associated with the single parameter of the run method
– the this pointer – and nCT is the dummy current thread node. Also, I1 = I and
O1 = O ∩ (π@nT). Note that the algorithm computes interactions only for outside
edges from the starter thread that represent references read after the startee thread
starts.

Unlike the caller/callee interaction, where the execution of the caller is suspended
during the execution of the callee, in the starter/startee interaction, both threads
execute in parallel, producing a more complicated set of statement interleavings. The
interthread analysis must therefore model a richer set of potential interactions in
which each thread can read edges created by the other thread. The interthread anal-
ysis therefore uses two mappings (one for each thread) instead of just one mapping.
It also augments the constraints to reflect the potential interactions.

In the same style as in the interprocedural analysis, the algorithm first initializes
the mappings µ′1, µ

′
2 to extend µ1 and µ2, respectively. Each node from the two initial

parallel interaction graphs (except nv0) will appear in the new parallel interaction
graph:

µ′1(n) = µ1(n) ∪ {n}
µ′2(n) =

{
µ2(n) if n = nv0

µ2(n) ∪ {n} otherwise

The algorithm uses µ′1 and µ′2 to compute the resulting parallel interaction graph as
follows:

O′ = O[µ′1] ∪O2[µ
′
2] I ′ = I[µ′1] ∪ (I2 − V ×N)[µ′2]

τ ′ = τ [µ′1] ∪ τ2[µ
′
2] α′ = α[µ′1] ∪ α2[µ

′
2]

π′ = π[µ′1] ∪ π2[µ
′
2] ∪

(O2[µ
′
2] ∪ α2[µ

′
2])× τ [µ′1] ∪ π@nT [µ′1]× τ2[µ

′
2]

In addition to combining the action orderings from the starter and startee, the
algorithm also updates the new action order π′ to reflect the following ordering rela-
tionships:

• All actions and outside edges from the startee occur in parallel with all of the
starter’s threads, and

• All actions and outside edges from the starter thread that occur in parallel with
the startee thread also occur in parallel with all of the threads that the startee
starts.

The new escape function e′ is the union of the escape function e from the starter and
the escape function e2 from the startee, expanded through µ1 and µ2, respectively.

66

More formally, the escape function e′ is initialized by the following two constraints

n2 ∈ µ1(n1)

e(n1)[µ1] ⊆ e′(n2)

n2 ∈ µ2(n1)

(e2(n1)−NP)[µ2] ⊆ e′(n2)

and propagated over the edges from O′ ∪ I ′.

4.4.6 Interthread Analysis

The interthread analysis uses a fixed-point algorithm to obtain a single parallel in-
teraction graph that reflects the interactions between all of the parallel threads. The
algorithm repeatedly chooses a node nT ∈ τ , retrieves the analysis result from the
exit node of the corresponding run method,5 then uses the thread interaction al-
gorithm presented above in Section 4.4.5 to compute the interactions between the
analyzed threads and the thread represented by nT and combine the two parallel
interaction graphs into a new graph. Once the algorithm reaches a fixed point, it
removes all nodes in NT from the escape function — the final graph already models
all of the possible interactions that may affect nodes that escape only via unanalyzed
thread nodes. The analysis may therefore recapture thread nodes that escaped be-
fore the interthread analysis. For example, if a thread node does not escape via a
parameter node, it is captured after the interthread analysis. Finally the algorithm
enhances the efficiency and precision of the analysis by removing superfluous nodes
and edges using the same simplification method as in the interprocedural analysis.

As presented, the algorithm assumes that each node n ∈ τ represents multiple
instances of the corresponding thread. Our implementation improves the precision
of the analysis by tracking whether each node represents a single thread or multi-
ple threads. For nodes that represent a single thread, the algorithm computes the
interactions just once, adjusting the new action order π′ to record that the outside
edges and actions from the startee thread do not occur in parallel with the node n
that represents the startee thread. For nodes that represent multiple threads, the
algorithm repeatedly computes the interactions until it reaches a fixed point.

4.4.7 Resolving Outside Nodes

It is possible to augment the algorithm so that it records, for each outside node, all
of the inside nodes that it represents during the analysis of the entire program. This
information allows the algorithm to go back to the analysis results generated at the
various program points and resolve each outside node to the set of inside nodes that
it represents during the analysis. In the absence of nodes that escape via unanalyzed

5The algorithm uses the type information to determine which class contains this run method. For
inside nodes, this approach is exact. For outside nodes, the algorithm uses class hierarchy analysis
to find a set of classes that may contain the run method. The algorithm computes the interactions
with each of the possible run methods, then merges the results. In practice, τ almost always contains
inside nodes only — the common coding practice is to create and start threads in the same method.

67

threads or methods, this enables the algorithm to obtain complete, precise points-to
information even for analysis results that contain outside nodes.

4.5 Analysis Uses

We next discuss how we use the analysis results to perform two optimizations: region
reference check elimination and synchronization elimination.

4.5.1 Region Reference Check Elimination

The analysis eliminates region reference checks by verifying that no object allocated
in a given region escapes the computation that executes in the context of that region.
In our system, all such computations are invoked via the execution of a statement of
the form r.enter(t). This statement causes the the run method of the thread t to
execute in the context of the memory region r. The analysis first locates all of these
run methods. It then analyzes each run method, performing both the intrathread and
interthread analysis, and checks that none of the inside nodes in the analysis result
escape. If none of these inside nodes escape, all of the objects allocated inside the
region are inaccessible when the computation terminates. All of the region reference
checks will therefore succeed and can be removed.

4.5.2 Synchronization Elimination

The synchronization elimination algorithm uses the results of the interthread analy-
sis to find captured objects whose synchronization operations can be removed. Like
previous synchronization elimination algorithms, our algorithm uses the intrathread
analysis results to remove synchronizations on objects that do not escape the thread
that created them. Unlike previous synchronization elimination algorithms, our algo-
rithm also analyzes the interactions between parallel threads. It then uses the action
set α and the action ordering relation π to eliminate synchronizations on objects with
synchronizations from multiple threads.

The analysis proceeds as follows. For each node n that is captured after the
interthread analysis, it examines π to find all threads t that execute in parallel with
a synchronization on n. It then examines the action set α to determine if t also
synchronizes on n. If none of the parallel threads t synchronize on n, the compiler can
remove all synchronizations on the objects that n represents. Even if multiple threads
synchronize on these objects, the analysis has determined that the synchronizations
are temporally separated by thread start events and therefore redundant.

4.6 Experimental Results

We have implemented our combined pointer and escape analysis algorithm in the MIT
Flex compiler system, a static compiler for Java. We used the analysis information
for synchronization elimination and elimination of dynamic region reference checks.

68

We present experimental results for a set of multithreaded benchmark programs. In
general, these programs fall into two categories: web servers and scientific computa-
tions. The web servers include Http, an http server, and Quote, a stock quote server.
Both of these applications were written by others and posted on the Internet. Our sci-
entific programs include Barnes and Water, two complete scientific applications that
have appeared in other benchmark sets, including the SPLASH-2 parallel computing
benchmark set [205]. We also present results for two synthetic benchmarks, Tree and
Array, that use object field assignment heavily. These benchmarks are designed to
obtain the maximum possible benefit from region reference check elimination.

4.6.1 Methodology

We first modified the benchmark programs to use region-based allocation. The web
servers create a new thread to service each new connection. The modified versions use
a separate region for each connection. The scientific programs execute a sequence of
interleaved serial and parallel phases. The modified versions use a separate region for
each parallel phase. The result is that all of the modified benchmarks allocate long-
lived shared objects in the garbage-collected heap and short-lived objects in regions.
The modifications were relatively straightforward to perform, but it was difficult to
evaluate the correctness of the modifications without the static analysis. The web
servers were particularly problematic since they heavily use the Java libraries. With-
out the static analysis it was not clear to us that the libraries would work correctly
with region-based allocation. For Http, Quote, Tree, and Array, the interprocedu-
ral analysis alone was able to verify the correct use of region-based allocation and
enable the elimination of all dynamic region checks. Barnes and Water required the
interthread analysis to eliminate the checks — interprocedural analysis alone was
unable to verify the correct use of region-based allocation.

We used the MIT Flex compiler to generate a C implementation of each bench-
mark, then used gcc to compile the program to an x86 executable. We ran the Http
and Quote servers on a 400 MHz Pentium II running Linux, with the clients running
on an 866 MHz Pentium III running Linux. The two machines were connected with
their own private 100 Mbit/sec Ethernet. We ran Water, Barnes, Tree, and Array on
an 866 MHz Pentium III running Linux.

4.6.2 Results

Figure 4-10 presents the program sizes and analysis times. The synchronization elim-
ination algorithm analyzes the entire program, while the region check algorithm an-
alyzes only the run methods and the methods that they (transitively) invoke. The
synchronization elimination analysis therefore takes significantly more time than the
region analysis. The backend time is the time required to produce an executable
once the analysis has finished. All times are in seconds. Figure 4-11 presents the
number of synchronizations for the Original version with no analysis, the Interpro-
cedural version with interprocedural analysis only, and the Interthread version with
both interprocedural and interthread analysis. For this optimization, the interthread

69

Analysis time [s]
Bytecode for removing Backend

Program instructions checks syncs time [s]

Tree 10,970 0.5 15.9 41.1
Array 10,896 0.6 16.9 42.2
Water 17,675 11.3 56.1 66.0
Barnes 15,945 6.9 94.2 54.8
Http 14,313 17.1 38.3 73.8
Quote 14,039 16.9 41.4 61.4

Figure 4-10: Program Sizes and Analysis Times

Original Optimized version
Program version Interprocedural Interthread

Tree 59 43 43
Array 59 43 43
Water 2,367,193 919,575 919,575
Barnes 2,838,720 678,355 678,355
Http 67,268 8,460 7,406
Quote 268,913 200,650 198,610

Figure 4-11: Number of Synchronization Operations

Program Standard Checks No Checks

Tree 6.5 16.8 7.0
Array 8.2 43.4 8.3
Water 9.6 9.7 8.1
Barnes 8.4 7.6 6.7
Http 4.5 5.3 5.2
Quote 11.7 11.3 11.3

Figure 4-12: Execution Times for Benchmarks

Number of Number of
Program Objects in Heap Objects in Regions

Tree 184 65,534
Array 183 8
Water 20,755 3,110,675
Barnes 17,622 2,121,167
Http 12,228 62,062
Quote 21,785 121,350

Figure 4-13: Allocation Statistics for Benchmarks

70

analysis produces almost no additional benefit over the interprocedural analysis. Fig-
ure 4-12 presents the execution times of the benchmarks. The Standard version
allocates all objects in the garbage-collected heap and does not use region-based al-
location. The Checks version uses region-based allocation with all of the dynamic
checks. The No Checks version uses region-based allocation with the analysis elimi-
nating all dynamic checks. None of the versions uses the synchronization elimination
optimization. Check elimination produces substantial performance improvements for
Tree and Array and modest performance improvements for Water and Barnes. The
running times of Http and Quote are dominated by thread creation and operating
system overheads, so check elimination provides basically no performance increase.
Figure 4-13 presents the number of objects allocated in the garbage-collected heap
and the number allocated in regions. The vast majority of the objects are allocated
in regions.

4.6.3 Discussion

Our applications use regions in one of two ways. The servers allocate a new region for
each connection. The region holds the new objects required to service the connection.
Examples of such objects include String objects that hold responses sent to clients
and iterator objects used to find requested data. The scientific programs use regions
for auxiliary objects that structure the parallel computation. These objects include
the Thread objects required to generate the parallel computation and objects that
hold values produced by intermediate calculations.

In general, eliminating region checks provides modest performance improvements.
We therefore view the primary value of the analysis in this context as helping the
programmer to use regions correctly. We expect the analysis to be especially useful
in situations (such as our web servers) when the programmer may not have complete
confidence in his or her detailed knowledge of the program’s object usage patterns.

4.7 Related Work

We discuss several areas of related work: analysis of multithreaded programs, escape
analysis for multithreaded programs, and region-based allocation.

4.7.1 Analysis of Multithreaded Programs

The analysis of multithreaded programs is a relatively unexplored field [167]. There
is an awareness that multithreading significantly complicates program analysis but
a full range of standard techniques have yet to emerge. Grunwald and Srinivasan
present a dataflow analysis framework for reaching definitions for explicitly parallel
programs [112], and Knoop, Steffen and Vollmer present an efficient dataflow anal-
ysis framework for bit-vector problems such as liveness, reachability and available
expressions [135]. Both frameworks are designed for programs with structured, par-
begin/parend concurrency and are intraprocedural. We view the main contributions

71

of the reserach presented in this chapter as largely orthogonal to this previous re-
search. In particular, our main contribution center on abstractions and algorithms
for the interprocedural and compositional analysis of programs with unstructured
multithreading. We also focus on problems, pointer and escape analysis, that do not
fit within either framework.

We are aware of two pointer analysis algorithms for multithreaded programs: an
algorithm by Rugina and Rinard for multithreaded programs with structured par-
begin/parend concurrency [173], and an intraprocedural algorithm by Corbett [66].
The algorithms are not compositional (they discover the interactions between threads
by repeatedly reanalyzing each thread in each new analysis context to reach a fixed
point), do not maintain escape information, and do not support the analysis of in-
complete programs.

4.7.2 Escape Analysis for Multithreaded Programs

Published escape analysis algorithms for Java programs do not analyze interactions
between threads [37, 58, 202, 35]. If an object escapes via a thread object, it is
never recaptured. These algorithms are therefore best viewed as sequential program
analyses that have been extended to execute correctly but very conservatively in the
presence of multithreading. Our analysis takes the next step of analyzing interactions
between threads to recapture objects accessed by multiple threads.

Ruf’s analysis occupies a point between traditional escape analyses and our mul-
tithreaded analysis [172]. His analysis tracks the synchronizations that each thread
performs on each object, enabling the compiler to remove synchronizations for ob-
jects accessed by multiple threads if only one thread synchronizes on the object. Our
analysis goes a step further to remove synchronizations even if multiple threads syn-
chronize on the object. The requirement is that thread start events must temporally
separate synchronizations from different threads.

4.7.3 Region-Based Allocation

Region-based allocation has been used in systems for many years. Our compari-
son focuses on safe versions, which ensure that there are no dangling references to
deleted regions. Several researchers have developed type-based systems that support
safe region-based allocation [194, 71]. These systems use a flow-insensitive, context-
sensitive analysis to correlate the lifetimes of objects with the lifetimes of computa-
tions. Although these analyses were designed for sequential programs, it should be
straightforward to generalize them to handle multithreaded programs.

Gay and Aiken’s system provides an interesting contrast to ours in its overall
approach [100]. They provide a safe, flat region-based system that allows arbitrary
references between regions. The implementation instruments each store instruction
to count references that go between regions. A region can be deleted only when
there are no references to its objects from objects in other regions. This dynamic,
reference counted approach works equally well for both sequential and multithreaded
programs. The system also supports the explicit assignment of objects to regions and

72

allows the programmer to use type annotations to specify that a given reference must
stay within the same region. Violations of this constraint generate a run-time error;
a static analysis reduces but is not designed to eliminate the possibility of such an
error occurring.

Following the Real-Time Java specification, our implementation provides a less
flexible system of hierarchically organized regions with an implicit assignment of ob-
jects to regions. Because region lifetimes are hierarchically nested, the implementa-
tion dynamically counts, for each region, the number of child regions rather than the
number of external pointers into each region. Instead of performing counter manipu-
lations at each store, the unoptimized version of our system checks each assignment
to ensure that the program never generates a reference that goes down the hierarchy
from an ancestor region to a descendant region. Our static analysis eliminates these
checks, with the interthread analysis required to successfully optimize multithreaded
programs.

4.8 Conclusion

Multithreading is a key program structuring technique, language and system design-
ers have made threads a central part of widely used languages and systems, and
multithreaded software is becoming pervasive. This chapter presents an abstraction
(parallel interaction graphs) and an algorithm that uses this abstraction to extract
precise points-to, escape, and action ordering information for programs that use the
standard unstructured form of multithreading provided by modern languages and
systems. We have implemented the analysis in the MIT Flex compiler for Java, and
used the extracted information to verify that programs correctly use region-based
allocation constructs, eliminate dynamic checks associated with the use of regions,
and eliminate unnecessary synchronization. Our experimental results show that an-
alyzing the interactions between threads significantly increases the effectiveness of
the optimizations for region-based programs, but has little effect for synchronization
elimination.

73

74

RoushRV
Text Box
THIS PAGE WAS INTENTIONALLY LEFT BLANK

Chapter 5

Role-Based Exploration of
Object-Oriented Programs

5.1 Introduction

This chapter presents a new technique to help developers understand heap referencing
properties of object-oriented programs and how the actions of the program affect
those properties. Our thesis is that each object’s referencing relationships with other
objects determine important aspects of its purpose in the computation, and that we
can use these referencing relationships to synthesize a set of conceptual object states
(we call each state a role) that captures these aspects. As the program manipulates
objects and changes their referencing relationships, each object transitions through
a sequence of roles, with each role capturing the functionality inherent in its current
referencing relationships.

We have built two tools that enable a developer to use roles to explore the behav-
ior of object-oriented programs: 1) a dynamic role analysis tool that automatically
extracts the different roles that objects play in a given computation and characterizes
the effect of program actions on these roles, and 2) a graphical, interactive explo-
ration tool that presents this information in an intuitive form to the developer. By
allowing the developer to customize the presentation of this information to show the
amount of detail appropriate for the task at hand, these tools support the exploration
of both detailed properties within a single data structure and larger properties that
span multiple data structures. Our experience using these tools indicates that they
can provide substantial insight into the structure, behavior, and key properties of the
program and the objects that it manipulates.

5.1.1 Role Separation Criteria

The foundation of our role analysis system is a set of criteria (the role separation
criteria) that the system uses to separate instances of the same class into different
roles. Conceptually, we frame the role separation criteria as a set of predicates that
classify objects into roles. Each predicate captures some aspect of the object’s refer-
encing relationships. Two objects play the same role if they have the same values for

75

these predicates. Our system supports predicates that capture the following kinds of
relationships:

• Heap Alias Relationships: The functionality of an object often depends on
the objects that refer to it. For example, instances of the PlainSocketImpl class
acquire input and output capabilities when referred to by a SocketInputStream

or SocketOutputStream object. The role separation criteria capture these dis-
tinctions by placing objects with different kinds of heap aliases in different roles.
Formally, there is a role separation predicate for each field of each class. An
object satisfies the predicate if one such field refers to it.

• Reference-To Relationships: The functionality of an object often depends
on the objects to which it refers. A Java Socket object, for example, does
not support communication until its file descriptor field refers to an actual file
descriptor object. To capture these distinctions, our role separation criteria
place objects in different roles if they differ in which fields contain null values.
Formally, there is a predicate for each field of every class. An instance of that
class satisfies the predicate if its field is not null.

• Reachability: The functionality of an object often depends on the specific
data structures in which it participates. For example, a program may maintain
two sets of objects: one set that it has completed processing, and another that
it has yet to process. To capture such distinctions, our role separation criteria
identify the roots of different data structures and place objects with different
reachability properties from these roots in different roles. Formally, there is a
predicate for each variable that may be a root of a data structure. An object
satisfies the predicate if it is reachable from the variable. Additionally, we define
a unique garbage role for unreachable objects.

• Identity: To facilitate navigation, data structures often contain reverse point-
ers. For example, the objects in a circular doubly-linked list satisfy identity
predicates corresponding to the paths next.prev and prev.next. Formally,
there is a role separation predicate for each pair of fields. The predicate is true
if the path specified by the two fields exists and leads back to the original object.

• History: In some cases, objects may change their conceptual state when a
method is invoked on them, but the state change may not be visible in the ref-
erencing relationships. For example, the native method bind assigns a name to
instances of the Java PlainSocketImpl class, enabling them to accept connec-
tions. But the data structure changes associated with this change are hidden
behind the operating system abstraction. To support this kind of conceptual
state change, the role separation criteria include part of the method invocation
history of each object. Formally, there is a predicate for each parameter of each
method. An object satisfies one of these predicates if it was passed as that
parameter in some invocation of that method.

76

5.1.2 Role Subspaces

To allow the developer to customize the role separation criteria, our system supports
role subspaces. Each role subspace contains a subset of the possible role separation
criteria. When operating within a given subspace, the tools coarsen the separation
of objects into roles by eliminating any distinctions made only by criteria not in that
subspace. Developers may use subspaces in a variety of ways:

• Focused Subspaces: As developers explore the behavior of the program, they
typically focus on different and changing aspects of the object properties and
referencing relationships. By choosing a subspace that excludes irrelevant cri-
teria, the developer can explore relevant properties at an appropriate level of
detail while ignoring distracting distinctions that are currently irrelevant.

• Orthogonal Subspaces: Developers can factor the role separation criteria into
orthogonal subspaces. Each subspace identifies a current role for each object;
when combined, the subspaces provide a classification structure in which each
object can simultaneously play multiple roles, with each role chosen from a
different subspace.

• Hierarchical Subspaces: Developers can construct a hierarchy of role sub-
spaces, with child subspaces augmenting parent subspaces with additional role
separation criteria. In effect, this approach allows developers to identify an
increasingly precise and detailed dynamic classification hierarchy for the roles
that objects play during their lifetimes in the computation.

Role subspaces give the developer great flexibility in exploring different perspec-
tives on the behavior of the program. Developers can use subspaces to view changing
object states as combinations of roles from different orthogonal role subspaces, as
paths through an increasingly detailed classification hierarchy, or as individual points
in a constellation of relevant states. Unlike traditional structuring mechanisms such
as classes, roles and role subspaces support the evolution of multiple complementary
views of the program’s behavior, enabling the developer to seamlessly flow through
different perspectives as he or she explores different aspects of the program at hand.

5.1.3 Contributions

This chapter makes the following contributions:

• Role Concept: It introduces the concept that object referencing relationships
and method invocation histories capture important aspects of an object’s state,
and that these relationships and histories can be used to synthesize a cognitively
tractable abstraction for understanding the changing roles that objects play in
the computation.

• Role Separation Criteria: It presents a set of criteria for classifying instances
of the same class into different roles. It also presents an implemented tool that

77

uses these criteria to automatically extract information about the roles that
objects play.

• Role Subspaces: It shows how developers can use role subspaces to structure
their understanding and presentation of the different aspects of the program
state. Specifically, the developer can customize the role subspaces to focus the
role separation criteria to hide (currently) irrelevant distinctions, to factor the
object state into orthogonal components, and to develop object classification
hierarchies.

• Graphical Role Exploration: It presents a tool that graphically and inter-
actively presents role information. Specifically, this tool presents role transition
diagrams, which display the trajectories that objects follow through the space
of roles, and role relationship diagrams, which display referencing relationships
between objects that play different roles. These diagrams are hyperlinked for
easy navigation.

• Role Exploration Strategy: It presents a general strategy that we developed
to use the tools to explore the behavior of object-oriented programs.

• Experience: It presents our experience using our tools on several Java pro-
grams. We found that the tools enabled us to quickly discover and understand
important properties of these programs.

5.2 Example

We next present a simple example that illustrates how a developer can use our tools
to explore the behavior of a web server. We use a version of JhttpServer, a web server
written in Java. This program accepts incoming requests for files from web browsers
and serves the files back to the web browsers.

The code in the JhttpServer class first opens a port and waits for incoming
connections. When it receives a connection, it creates a JhttpWorker object, passes
the Socket controlling the communication to the JhttpWorker initializer, and turns
control over to the JhttpWorker object.

The code in the JhttpWorker class first builds input and output streams cor-
responding to the Socket. It then parses the web browser’s request to obtain the
requested filename and the http version from the web browser. Next, it processes
the request. Finally, it closes the streams and the socket and returns to code in the
JhttpServer class.

5.2.1 Starting Out

To use our system, the developer first compiles the program using our compiler,
then runs the program. The compiler inserts instrumentation code that generates an
execution trace. The analysis tool then reads the trace to extract the information and

78

convert it into a form suitable for interactive graphical display. The graphical user
interface runs in a web browser with related information linked for easy navigation.

The analysis evaluates the roles of the objects at method boundaries. Our system
uses four abstractions to present the observed role information to the developer: 1)
role transition diagrams, which present the observed role transitions for instances of a
given class, 2) role relationship diagrams, which present referencing relationships be-
tween objects from different classes, 3) role definitions, which present the referencing
relationships that define each role, and 4) enhanced method interfaces, which show
the object referencing properties at invocation and the effect of the method on the
roles of the objects that it accesses.

5.2.2 Role Transition Diagrams

Developers typically start exploring the behavior of a program by examining role
transition diagrams to get a feel for the different roles that instances of each class
play in the computation. In this example, we assume the developer first examines
the role transition diagram for the JhttpWorker class, which handles client requests.
Figure 5-1 presents this diagram.1 The ellipses represent roles and the arrows repre-
sent transitions between roles. Each arrow is labeled with the method that caused the
object to take the transition. Solid edges denote the execution of methods that take
the JhttpWorker as a parameter; dotted edges denote portions of a method or meth-
ods that change the roles of JhttpWorker objects, but do not take the JhttpWorker

object as a parameter. The diagram always presents the most deeply nested (in the
call graph) method responsible for the role change.

5.2.3 Role Definitions

Role transition diagrams show how objects transition between roles, but provide little
information about the roles themselves. Our graphical interface therefore links each
role node with its role definition, which specifies the properties that all objects playing
that role must have. Figure 5-2 presents the role definition for the JhttpWorker with
filename role, which is easily accessible by using the mouse to select the role’s node in
the role transition diagram. This definition specifies that instances of the JhttpWorker
with filename role have the class JhttpWorker, no heap aliases, no identity relations,
and references to heap objects in the fields httpVersion, fileName, methodType,
and client.

1In addition to graphically presenting these diagrams in a web browser, our tool is capable
of generating PostScript images of each diagram using the dot tool [86]. Our tool automatically
generates initial names for roles and allows the developer to rename the roles. All of the diagrams
presented in this chapter were generated automatically from our tool with renaming in some cases
for clarification.

79

Initialized
 JhttpWorker

JhttpWorker
 with methodType

StringTokenizer.hasMoreTokens

JhttpWorker
 with filename

this arg of JhttpWorker.method

String.equals

InitialJhttpWorker

this arg of JhttpWorker.<init>

this arg of Object.<init>

Garbage

JhttpServer.startWorker

Figure 5-1: Role transition diagram for JhttpWorker class

Role: JhttpWorker with filename

Class: JhttpWorker

Heap aliases: none

non-null fields: httpVersion, fileName,

methodType, client

identity relations: none

Figure 5-2: Sample role definition for JhttpWorker class

80

JhttpWorker
 w/filename

Socket

client

String

methodType fileName httpVersion

PlainSocket
 w/o output

impl

PlainSocket
 w/o fd

impl

PlainSocket
 w/output

impl

PlainSocket
 w/input

impl

PlainSocket
 w/fd

impl

PlainSocket
 w/address

impl

HashStrings

Array of Pairs

p

Pair

[]

key value

Figure 5-3: Portion of role relationship diagram for JhttpServer

5.2.4 Role Relationship Diagrams

After obtaining an understanding of the roles of important classes, the developer typ-
ically moves on to consider relationships between objects of different classes. These
relationships are often crucial for understanding the larger data structures that the
program manipulates. Role relationship diagrams are the primary tool that develop-
ers use to help them understand these relationships. Figure 5-3 presents a portion of
the role relationship diagram surrounding one of the roles of the JhttpWorker class.
The ellipses in this diagram represent roles, and the arrows represent referencing
relationships between objects playing those roles.

Note that some of the groups of roles presented in Figure 5-3 correspond to
combinations of objects that conceptually act as a single entity. For example, the
HashStrings object and the underlying array of Pairs that it points to implement
a map from String to String. Developers often wish to view a less detailed role
relationship diagram that merges the roles for these kinds of combinations.

In many cases, the analysis can automatically recognize these combinations and
represent them with a single role node. Figure 5-4 presents the role relationship
diagram that the tool produces when the developer turns this option on. Notice
that the analysis recognizes the Socket object and the httpVersion string as being
part of the JhttpWorker object. Also notice that it recognizes the Pair arrays, Pair
objects, and key strings as being part of the corresponding HashStrings object, with
the key strings disappearing in the abstracted diagram because they are encapsulated
within the HashStrings data structure. The analysis allows the developer to choose,
for each class, a policy that determines how (and if) the analysis merges roles of that
class into larger data structures.

81

An examination of Figures 5-3 and 5-4 shows that instances of the PlainSocketImpl
class play many different roles. To explore these roles, the developer examines the
role transition diagram for the PlainSocketImpl class. Figure 5-5 presents this di-
agram. The diagram contains two disjoint sets of roles, each branching off of the
Initial PlainSocket role. This structure indicates that instances of the class have two
distinct purposes in the computation. Some instances manage communication over a
TCP/IP connection, while others accept incoming connections.

5.2.5 Enhanced Method Interfaces

Finally, our tool can present information about the roles of parameters and the effect
of each method on the roles that different objects play. Given a method, our tool
presents this information in the form of an enhanced method interface. This interface
provides the roles of the parameters at method entry and exit and any read, write,
or role transition effects the method may have. Figure 5-6 presents an enhanced
method interface for the SocketInputStream initializer. This interface indicates that
the SocketInputStream initializer operates on objects that play the roles Initial
InputStream and PlainSocket w/fd. When it executes, it changes the roles of these
objects to InputStream w/impl and PlainSocket w/input, respectively.

Enhanced method interfaces provide the developer with additional information
about the (otherwise implicit) assumptions that the method may make about its
parameters and the roles of the objects that it manipulates. This information may
help the developer better understand the purpose of the method in the computation
and provide guidelines for its successful use in other contexts.

5.2.6 Role Information

In general, roles capture important properties of the objects and provide useful infor-
mation about how the actions of the program affect those properties.

• Consistency Properties: Our analysis can discover program-level data struc-
ture consistency properties.

• Enhanced Method Interfaces: In many cases, the interface of a method
makes assumptions about the referencing relations of its parameters. Our anal-
ysis can discover constraints on the roles of parameters of a method and deter-
mine the effect of the method on the heap.

• Multiple Uses: Code factoring minimizes code duplication by producing
general-purpose classes (such as the Java Vector and Hashtable classes) that
can be used in a variety of contexts. But this practice obscures the different
purposes that different instances of these classes serve in the computation. Our
analysis can rediscover these distinctions.

• Correlated Relationships: In many cases, groups of objects cooperate to
implement a piece of functionality, with the roles of the objects in the group

82

JhttpWorker
 with filename

String

methodTypefileName

PlainSocket
 w/o fd

impl

PlainSocket
 w/o output

impl

PlainSocket
 w/ input

impl

PlainSocket
 w/ output

impl

PlainSocket
 w/ address

impl

PlainSocket
 w/ fd

impl

HashStrings

value

Figure 5-4: Portion of role relationship diagram for JhttpServer after part object
abstraction

PlainSocket

PlainSocket w/address

ServerSocket.implAccept

this arg of
 PlainSocketImpl.close

PlainSocket w/fd

ServerSocket.implAccept

Garbage

JhttpServer.run

PlainSocket w/o fd

PlainSocket w/o output

JhttpWorker.run

JhttpWorker.run

this arg of
 PlainSocketImpl.close

PlainSocket w/input this arg of
 getFileDescriptor

PlainSocket w/output

1st arg of
 SocketOutputStream.<init>

this arg of
 PlainSocketImpl.close

this arg of
 PlainSocketImpl.available

ServerPlainSocket w/fd

bound ServerPlainSocket

this arg of
 PlainSocketImpl.bind

listening ServerPlainSocket

this arg of
 PlainSocketImpl.listen

1st arg of
 SocketInputStream.<init>

this arg of SocketImpl.getFileDescriptor,
 1st arg of PlainSocketImpl.accept

InitialPlainSocket

Socket.<init>

this arg of
 Object.<init>

ServerPlainSocket

ServerSocket.<init>

this arg of
 PlainSocketImpl.create

this arg of
 PlainSocketImpl.accept

Figure 5-5: Role transition diagram for the PlainSocketImpl class

83

Method: SocketInputStream.<init>(this,plainsocket)

Call Context: {

this: Initial InputStream -> InputStream w/impl,

plainsocket: PlainSocket w/fd ->

PlainSocket w/input }

Write Effects:

this.impl=plainsocket

this.temp=NEW

this.fd=plainsocket.fd

Read Effects:

plainsocket

NEW

plainsocket.fd

Role Transition Effects:

plainsocket: PlainSocket w/fd -> PlainSocket

w/input

this: Initial InputStream -> InputStream w/fd

this: InputStream w/fd -> InputStream w/impl

Figure 5-6: Enhanced Method Interface for SocketInputStream initializer

changing together over the course of the computation. Our analysis can discover
these correlated state changes.

5.3 Dynamic Analysis

We implemented the dynamic analysis as several components. The first component
uses the MIT FLEX compiler 2 to instrument Java programs to generate execution
traces. Because this component operates on Java bytecodes, our system does not
require source code. The instrumented program assigns unique identifiers to every
object and reports relevant heap and pointer operations in the execution trace. The
second component uses the trace to reconstruct the heap. As part of this computation,
it also calculates reachability information and records the effect of each method’s
execution on the roles of the objects that it manipulates.

5.3.1 Predicate Evaluation

The dynamic analysis uses the information it extracts from the trace to apply the
role separation criteria as follows:

• Heap Aliases: In addition to reconstructing the heap, the analysis also main-
tains a set of inverse references. There is one inverse reference for each reference

2Available at www.flexc.lcs.mit.edu.

84

in the original heap. For each reference to a target object, the inverse reference
enables the dynamic analysis to quickly find the source of the reference and the
field containing the reference. To compute the heap alias predicates for a given
object, the analysis examines the inverse references for that object.

• Reference-To: The reconstructed heap contains all of the references from the
original program, enabling the analysis to quickly compute all of the reference-to
predicates for a given object by examining its list of references.

• Identity: To compute the identity predicates for a given object, the analysis
traces all paths of length two from the object to find paths that lead back to
the object.

• Reachability: There are two key issues in computing the reachability infor-
mation: using an efficient incremental reachability algorithm and choosing the
correct set of variables to include in the role separation criteria. Whenever the
program changes a reference, the incremental reachability algorithm finds the
object whose reachability properties may have changed, and then incrementally
propagates the reachability changes through the reconstructed heap.

To avoid undesirable separation caused by an inappropriate inclusion of tempo-
rary variables into the role separation criteria, our implemented system uses two
rules to identify variables that are the roots of data structures. If an object o
is reachable from variables x and y that point to objects ox and oy respectively,
and ox is reachable from y but oy is not reachable from x, then we exclude x
from the role separation criteria. Alternatively, if ox is reachable from y, oy is
reachable from x, and the reference y was created before the reference x, we
exclude x from the criteria.

These rules keep temporary references used for traversing heap structures from
becoming part of the role definitions, but allow long term references to the roots
of data structures to be incorporated into role definitions. These rules also have
the property that if an object is included in two disjoint data structures with
different roots, then the object’s role will reflect this double inclusion.

• Method Invocation History: Whenever an object is passed as a parameter
to a method, the analysis records the invocation as part of the object’s method
invocation history. This record is then used to evaluate method invocation
history predicates when assigning future roles to the object.

• Array Roles: We treat arrays as objects with a special [] field, which points to
the elements of the array. Additionally, we generalize the treatment of reference-
to relations to allow roles to specify the classes and the corresponding number
(up to some bound) of the array’s elements.

By default, the analyzer evaluates these predicates at every method entry and
exit point. We allow the developer to coarsen this granularity by declaring methods
atomic, in which case the analysis attributes all role transitions that occur inside the

85

method to the method itself. This is implemented by not checking for role transitions
until the atomic method returns. This mechanism hides temporary or irrelevant role
transitions that occur inside the method. This feature is most useful for simplifying
role transition diagrams. In particular, many programs have a complicated process for
initializing objects. Once we use the role transition diagram to understand this pro-
cess, we often find it useful to abstract the entire initialization process as atomically
generating a fully initialized object.

5.3.2 Multiple Object Data Structures

A single data structure often contains many component objects. Java HashMap ob-
jects, for example, use an array of linked lists to implement a single map. To enable
the developer to view such composite data structures as a single entity, our dynamic
analysis supports operations that merge multiple objects into a single entity. Specif-
ically, the dynamic analysis can optionally recognize any object playing a given role
(such roles are called part roles) as conceptually part of the object that refers to it.
The user interface will then merge all of the role information from the part role into
the role of the object that refers to it.

Depending on the task at hand, different levels of abstraction may be useful to
the developer. On a per class basis, the developer can specify whether to merge one
object’s role into another object’s role. The analysis provides four different policies:
never merge, always merge, merge only if one heap reference to the object ever exists,
and merge only if one heap reference at a time exists to the object. The analysis
implements these policies using a two pass strategy: one pass identifies concrete
objects that meet the merging criterion, and another assigns the selected objects part
roles. The analysis requires that any cycles in the heap include at least one object
that does not have a part role.

5.3.3 Method Effect Inference

For each method execution, the dynamic analysis records the reads, writes, and role
transitions that the execution performs. Each method effect summary uses regular
expressions to identify paths to the accessed or affected objects. These paths are
identified relative to the method parameters or global variables and specify edges in
the heap that existed when the method was invoked. Method effect inference there-
fore has two steps: detecting concrete paths with respect to the heap at procedure
invocation and summarizing these paths into regular expressions.

To detect concrete paths, we keep a path table for each method invocation. This
table contains the concrete path, in terms of the heap that existed when the method
was invoked, to all objects that the execution of the method may affect. At method
invocation, our analysis records the objects to which the parameters and the global
variables point. Whenever the execution retrieves a reference to an object or changes
an object’s reachability information, the analysis records a path to that object in the
path table. If the execution creates a new object, we add a special NEW token to
the path table; this token represents the path to that object.

86

We obtain the regular expressions in the method effect summary by applying a
set of rewrite rules to the extracted concrete paths. Figure 5-7 presents the current
set of rewrite rules. Given a concrete path f1.f2...fn, we apply the rewrite rules to the
tuple 〈ε, f1.f2...fn〉 to obtain a final tuple 〈Q, ε〉, where Q is the regular expression
that represents the path. We present the rewrite rules in the order in which they
are applied. We use the notation that κ(f) denotes the class in which the field f is
declared as an instance variable, and τ(f) is the declared type of the field f .

Rules 1 and 2 simplify intermediate expressions generated during the rewrite pro-
cess. Rules 3 and 4 generalize concrete paths involving similar fields such as paths
through a binary tree. Rules 5 and 6 generalize repeated sequences in concrete paths.
The goal is to capture paths generated in loops or recursive methods and ensure that
path expressions are not overly specialized to any particular execution.

1. 〈Q.(q1...(e1 | f | e2 | f | e3)...qn)∗, Q′〉 ⇒
〈Q.(q1...(e1 | f | e2 | e3)...qn)∗, Q′〉

2. 〈Q.(q1...(e1 | f | e2 | f | e3)
∗...qn)∗, Q′〉 ⇒

〈Q.(q1...(e1 | f | e2 | e3)
∗...qn)∗, Q′〉

3. 〈Q.(f1), f2.Q
′〉 ⇒ 〈Q.(f1 | f2)

∗, Q′〉
if κ(f1) = κ(f2) and τ(f1) = τ(f2)

4. 〈Q.(f0 | ... | fn)∗, f ′.Q′〉 ⇒ 〈Q.(f0 | ... | fn | f ′)∗, Q′〉
if κ(fn) = κ(f ′) and τ(fn) = τ(f ′)

5. 〈Q.q1...qn.q
′
1...q

′
n, Q′〉 ⇒ 〈Q.(q1 ⊕ q′1...qn ⊕ q′n)∗, Q′〉

if ∀i, 1 ≤ i ≤ n, qi ≡ q′i, where q ≡ q′ if
(a) q = (f1 | ... | fj), q

′ = (f ′1 | ... | f ′k),
κ(f1) = κ(f ′1) and τ(f1) = τ(f ′1), or

(b) q = (f1 | ... | fj)
∗, q′ = (f ′1 | ... | f ′k)∗,

κ(f1) = κ(f ′1) and τ(f1) = τ(f ′1).
(f1 | ... | fj)⊕ (f ′1 | ... | f ′k) = (f1 | ... | fj | f ′1 | ... | f ′k)
(f1 | ... | fj)

∗ ⊕ (f ′1 | ... | f ′k)∗ =
(f1 | ... | fj | f ′1 | ... | f ′k)∗

6. 〈Q.(q1...qn)∗.q′1...q
′
n, Q

′〉 ⇒ 〈Q.(q1 ⊕ q′1...qn ⊕ q′n)∗, Q′〉
if ∀i, 1 ≤ i ≤ n, (qi ≡ q′i).

7. 〈Q, f.Q′〉 ⇒ 〈Q.(f), Q′〉

Figure 5-7: Rewrite rules for paths

For read or role transition effects, we record the starting point and regular expres-
sion for the path to the object. For write effects, we give the starting points for both

87

objects and the regular expressions for the paths. Valid starting points are method
parameters and global variables. We denote effects for objects created in a procedure
using the NEW token. We denote writing a null pointer to an object’s field using the
NULL token.

5.3.4 Role Subspaces

Our tool allows the developer to define multiple role subspaces and modify the role
separation criteria for each subspace as follows:

• Fields: The developer can specify fields to ignore for the purpose of assigning
roles. The analysis will show these fields in the role relationship diagram, but
the references in these fields will not affect the roles assigned to the objects.

• Methods: The developer can specify which methods and which parameters to
include in the role separation criteria.

• Reachability: The developer can specify variables to include or to exclude
from the reachability-based role separation criteria.

• Classes: The developer can collapse all objects of a given class into a single
role.

In practice, we have found role subspaces both useful and usable — useful because
they enabled us to isolate the important aspects of relevant parts of the system while
eliminating irrelevant and distracting detail in other parts, and usable because we
were usually able to obtain a satisfactory role subspace with just a small number of
changes to the default criteria.

5.4 User Interface

The user interface presents four kinds of web pages: class pages, role pages, method
pages, and the role relationship page. Each class page presents the role transition
diagram for the class. From the class page, the developer can click on the nodes and
edges in the role transition diagram to see the corresponding role and method pages
for the selected node or edge. Each role page presents a role definition, displaying
related roles and classes and enabling the developer to select these related roles and
classes to bring up the appropriate role or class page. Each method page shows
the developer which methods called the given method and allows the developer to
configure method-specific abstraction policies. The role relationship page presents
the role relationship diagram. From this diagram, the developer can select a role
node to see the appropriate role definition page.

The user interface allows the developer to create and manipulate multiple role
subspaces. The developer can create a new role subspace by selecting a set of pred-
icates to determine the role separation criteria, then combine subspaces to define

88

views. Views with a single subspace use the role separation criteria from that sub-
space. Views with multiple subspaces use a cross product operator to combine the
roles from the different subspaces, with the final set of roles isomorphic to those ob-
tained by taking the union of the role separation criteria from all of the subspaces.
Within a view, the developer can identify additional role subspaces to be used for
labeling purposes. These role subspaces do not affect the separation of objects into
roles, but rather label each role in the view with the roles that objects playing those
roles have in these additional labeling subspaces.

5.5 Exploration Strategy

As we used the tool, we developed the following strategy for exploring the behavior
of a new program. We believe this strategy is useful for structuring the process of
using the tool, and that most developers will use some variant of this strategy.

When we started using the tool on a new program, we first recompiled the program
with our instrumentation package, and then ran the program to obtain an execution
trace. We then used our graphical tool to browse the role transition diagrams for
each of the classes, looking for interesting initialization sequences, splits in the role
transition diagram indicating different uses for objects of the class, and transition
sequences indicating potential changes in the purpose of instances of the class in the
computation.

During this activity, we were interested in obtaining a broad overview of the
actions of the program. We therefore often found opportunities to appropriately
simplify the role transition diagrams, typically by creating a role subspace to hide
irrelevant detail, by declaring initializing methods atomic, or by utilizing the multiple
object abstraction feature. Occasionally, we found opportunities to include aspects
of the method invocation history into the role separation criteria. We found that our
default policy for merging multiple object data structures into a single data structure
for role presentation purposes worked well during this phase of the exploration process.

Once we had created role subspaces revealing roles at an appropriate granularity,
we then browsed the enhanced method interfaces to discover important constraints
on the roles of the objects passed as parameters to the method. This information
enabled us to better understand the correlation between the actions of the method and
the role transitions, helping us to isolate the regions of the program that performed
important modifications, such as insertions or removals from collections. It also helped
us understand the (otherwise implicit) assumptions that each method made about
the states of its parameters. We found this information useful in understanding the
program; we expect maintainers to find it invaluable.

We next observed the role relationship diagram. This diagram helped us to better
understand the relationships between classes that work together to implement a given
piece of functionality. In general, we found that the complete role relationship diagram
presented too much information for us to use it effectively. We therefore adopted a
strategy in which we identified a starting class of interest, then viewed the region
surrounding the roles of that class. We found that this strategy enabled us to quickly

89

and effectively find the information we needed in the role relationship diagram.
Finally, we sometimes decided to explore several roles in more detail. We often

returned to the role transition diagram and created a customized role subspace to ex-
pose more detail for the current class but less detail for less relevant classes. In effect,
this activity enabled us to easily adapt the system to view the program from a more
specialized perspective. Given our experience using this feature of our role analysis
tool, we believe that this ability will prove valuable for any program understanding
tool.

5.6 Experience

We next discuss our experience using our role analysis tool to explore the behavior of
several Java programs. We report our experience for several programs: Jess, an expert
system shell in the SpecJVM benchmark suite; Direct-To, a Java version of an air-
traffic control tool; Tagger, a text formatting program; Treeadd, a tree manipulation
benchmark in the J. Olden benchmark suite 3; and Em3d, a scientific computation in
the J. Olden benchmark suite.

5.6.1 Jess

Jess first builds a network of nodes, then performs a computation over this net-
work. While the network contains many different kinds of nodes, all of the nodes
exhibit a similar construction and use pattern. Consider, for example, instances of
the Node1TELN class. Figure 5-8 presents the role transition diagram for objects of
this class. An examination of this diagram and the linked role definitions shows that
during the construction of the network, the program represents the edges between
nodes using a resizable vector of references to Successor objects, each of which is
a wrapper around a node object. The succ field refers to this vector. When the
network is complete, the program constructs a less flexible but more efficient repre-
sentation in which each node contains a fixed-size array of references to other nodes;
the succ field refers to this array. This change occurs when the program invokes the
freeze method on the node. All of the nodes in the program exhibit this construction
pattern.

The generated method annotations provide information about the assumptions
that several key methods make about the roles of their parameters. Specifically,
these annotations show that the program invokes the CallNode method (this method
implements the primary computation on the network) on a node only after the freeze
method has converted the representation of the edges associated with the node to the
more efficient form.

The role definitions also provide information about network’s structure, specif-
ically that all of the nodes in the network have either one or two incoming edges.
Each fully constructed instance of the Node1TELN, Node1TECT, Node1TEQ, NodeTerm,

3Available at www-ali.cs.umass.edu/˜cahoon.

90

Node w/ _succ this arg of Node1TELN.CallNode

Garbage

Jess.run_jess

InitialNode this arg of Object.<init>

Node w/succ & engine

this arg of Node.<init>

Node pointed to by Succesor.node

1st arg of Successor.<init>

this arg of Node.freeze

Figure 5-8: Role transition diagram for the Node1TELN class

or Node1TMF class has exactly one Successor object that refers to it, indicating that
these kinds of nodes all have exactly one incoming edge. Each fully constructed
instance of the Node2 class, on the other hand, has exactly two references from
Successor objects, indicating that Node2 nodes have exactly two incoming edges.

5.6.2 Direct-To

Direct-To is a prototype Java implementation of a component of the Center-Tracon
Automation System (CTAS) [128]. The tool helps air-traffic controllers streamline
flight paths by eliminating intermediate points; the key constraint is that these
changes should not cause new conflicts, which occur when aircraft pass too close
to each other.

We first discuss our experience with the Flight class, which represents flights in
progress. Each Flight object contains references to other objects, such as FlightPlan
objects and Route objects, that are part of its state. Our analysis recognized these
other objects as part of the corresponding Flight object’s state, and merged all of
these objects into a single multiple object data structure.

Roles helped us understand the initialization sequence and subsequent usage pat-
tern of Flight objects. An initialized Flight object has been inserted into the flight
list; various fields of the object refer to the objects that implement the flight’s iden-
tifier, type, aircraft type, and flight plan. Once initialized, the flight is ready to
participate in the main computation of the program, which repeatedly acquires a
radar track for the flight and uses the track and the flight plan to compute a pro-
jected trajectory. The initialization sequence is clearly visible in the role transition
diagram, which shows a linear sequence of role transitions as the flight object acquires
references to its part objects and is inserted into the list of flights. The acquisition
and computation of the tracks and trajectories also show up as transitions in this

91

diagram.
Roles also enabled us to untangle the different ways in which the program uses

instances of the Point4d class. Specifically, the program uses instances of this class
to represent aircraft tracks, trajectories, and velocities. The role transition diagram
makes these different uses obvious: each use corresponds to a different region of roles
in the diagram. No transitions exist between these different regions, indicating that
the program uses the corresponding objects for disjoint purposes.

5.6.3 Tagger

Tagger is a document layout tool written by Daniel Jackson. It processes a stream
of text interspersed with tokens that identify when conceptual components such as
paragraphs begin and end. Tagger works by first attaching action objects to each
token, and then processing the text and tokens in order. Whenever it encounters a
token, it executes the attached action.

It turns out that there are dependences between the operations of the program and
the roles of the actions and tokens. For example, one of the tokens causes the output
of the following paragraph to be suppressed. Tagger implements this suppression
action with pairs of matched suppress/unsuppress actions. When the suppress action
executes, it places an unsuppress action at the end of the paragraph, ensuring that
only one paragraph will be suppressed. These actions are reflected in role transitions
as follows. When the program binds the suppress action to a token, the action takes
a transition because of the reference from the token. When the suppress action
executes, it binds the corresponding unsuppress action to the token at the end of the
paragraph, causing the unsuppress action to take a transition to a new state. Roles
therefore enabled us to discover an interesting correlation between the execution of
the suppress action and data structure modifications required to undo the action
later. We were also able to observe a role-dependent interface — the method that
executes actions always executes actions that are bound to tokens.

5.6.4 Treeadd

Treeadd builds a tree of TreeNode objects; each such object has an integer value field.
It then calculates the sum of the values of the nodes. The role analysis tool extracted
some interesting properties of the data structure and gave us insight into the behavior
of the parts of the program that construct and use the tree.

Figure 5-9 presents the region of the role relationship diagram that contains the
roles of TreeNode objects. By examining this diagram and the linked role definitions,
we were able to determine that the TreeNode objects did in fact comprise a tree
— the roles corresponding to the root of the tree have no references from left or
right fields of other TreeNode objects, and all other TreeNode roles have exactly one
reference from the left or right field of another TreeNode.

Figure 5-10 presents the role transition diagram for TreeNode objects. This di-
agram, in combination with the linked role definitions, clearly shows a bottom-up

92

TreeNode
 w/ right & left

left TreeNode
 w/ right & left

left

right TreeNode
 w/ right & left

right

left TreeNode

left

right TreeNode

right

left

right

leftright

left

right

leftright

TreeNode
 w/left

left

left

Figure 5-9: Role relationship diagram for the TreeNode class

Initial
 TreeNode

this arg of Object.<init>,
 this arg of TreeNode.<init>

TreeNode
 w/ right & left

this arg of
 TreeNode.<init>

left
 TreeNode

TreeNode.<init>

right
 TreeNode

TreeNode.<init>
TreeNode

 w/ left

TreeNode.<init>

this arg of
 TreeNode.addTree

right
 TreeNode

w/ right & left

TreeNode.<init>

left
 TreeNode

w/ right & left

TreeNode.<init>

Garbage

TreeAdd.main
this arg of

 TreeNode.addTree

TreeAdd.main

this arg of
 TreeNode.addTree

TreeAdd.main
this arg of

 TreeNode.addTree

TreeAdd.main

TreeNode.<init>

this arg of
 TreeNode.addTree

TreeAdd.main

Figure 5-10: Role transition diagram for the TreeNode class

93

initialization sequence in which each TreeNode acquires a left child and a right child,
then a reference from the right or left field of its parent. Alternative initialization
sequences produce TreeNode objects with no children. Note that the automatically
generated role names in this figure are intended to help the developer understand
the referencing relationships that define each role. The role name Right TreeNode
w/right & left, for example, indicates that objects playing the role have 1) a reference
from the right field of an object, and 2) non-null right and left fields. The role
name TreeNode w/left indicates that an object playing this role has a non-null left
field.

5.6.5 Em3d

Em3d simulates the propagation of electromagnetic waves through objects in three
dimensions. It uses enumerators extensively in two phases of the computation. The
first phase builds a graph that models the electric and magnetic fields; the second
phase traverses the graph to simulate the propagation of these fields. The role transi-
tion diagram for the enumerator objects contains roles corresponding to an initialized
enumerator, an enumerator with remaining elements, and an enumerator with no re-
maining elements. As expected, the program never invokes the next method on an
enumerator object that has no remaining elements, enabling the developer to verify
that the program uses enumerator objects in a standard way.

5.6.6 Utility of Roles

In general, roles helped us to discover key data structure properties and understand
how the program initialized and manipulated objects and data structures. The com-
bination of the role relationship diagram and linked role definitions typically provided
the most useful information about data structure properties. Examples of these prop-
erties include the referencing properties of TreeNode objects in the Treeadd bench-
mark and the correspondence between Successor nodes and network nodes in Jess.

The role transition diagram typically provided the most useful information about
object initialization sequences and usage patterns. Examples of object initialization
sequences include the initialization of Flight objects in the Direct-to benchmark and
of TreeNode objects in the Treeadd benchmark. Jess provides an interesting example
of a conceptual phase transition in a data structure — the program uses a more
flexible but less efficient data structure during a construction phase, then replaces
this data structure with a more efficient frozen version for a subsequent computation
phase. The Point4d class in Direct-to provides a good example of how a program can
use instances of a single class for several different purposes in the computation. In
all of these cases, the role analysis enabled us to quickly understand the underlying
initialization sequences or usage patterns.

Finally, we found that the information about the roles of method parameters
helped us to understand the otherwise implicit expectations that methods have about
the states of their parameters and the effects of methods on these states. Examples

94

of methods with important expectations or effects include the freeze and CallNode

methods in Jess and the next method in Em3d. In general, we expect the role analysis
tool to be useful in the software development process in the following ways:

• Program Understanding: Developers have to understand programs to mod-
ify or reuse them. In object-oriented languages, understanding heap allocated
data structures is key to understanding the program. Roles help developers
discover key data structure invariants and understand how programs initialize
and manipulate these data structures, thus aiding program comprehension.

• Maintenance: To safely modify programs, developers need to understand the
data structures these programs build, the referencing relations methods assume,
and the effects of methods on these data structures. We expect that the dia-
grams and enhanced method interfaces that our tool generates will prove useful
for this purpose.

• Verifying Expected Behavior: Developers can use our tool as a debugging
aid. Developers write programs with certain invariants about heap structures
in mind. If the role relationships our tool discovers are inconsistent with these
invariants, the developer knows that a bug exists. Finally, the enhanced method
interfaces and role transition diagrams can help the developer quickly isolate
the bug.

• Documentation: Developers often need to document high-level properties
of the program. Roles may provide an effective documentation mechanism,
because they come with a set of appealing interactive graphical representations,
because they can often capture key properties of the program in a concise,
cognitively tractable representation, and because (at least for the roles that our
analysis tool discovers) they are guaranteed to faithfully reflect some of the
behaviors of the program. Role subspaces may prove to be especially useful in
presenting focused, orthogonal, or hierarchical perspectives on the purposes of
the objects in the program.

• Design: High-level design formalisms often focus on the conceptual states of
objects and the relationships between objects in these states. Our role analysis
can extract information that is often similar to this design information, helping
the developer to establish the connection between the design and the behavior
of the program. Furthermore, the role abstraction suggests several concrete
ways of realizing high-level design patterns in the code. As developers become
used to working with roles, they may very well adopt role-inspired coding styles
that facilitate the verification of a guaranteed connection between the high-level
design and its realization in the program.

95

5.7 Related Work

We survey related work in three fields: design formalisms that involve the concept of
abstract object states, program understanding tools that focus on properties of the
objects that programs manipulate, and static analyses for automatically discovering
or verifying properties of linked data structures.

5.7.1 Design Formalisms

Early design formalisms identified changes in abstract object or component states
as an important aspect of the design of the program [166]. Our tool also focuses
on abstract state changes as a key aspect, but uses the role separation criteria to
automatically synthesize a set of abstract object states rather than relying on the
developer to specify the abstract state space explicitly.

Object models enable a developer to describe relationships between objects, both
at a conceptual level and as realized in programs. Object modeling languages such as
UML [161] and Alloy [127] can describe the different states that objects can be in, the
constraints that these states satisfy, and the transitions between these states. One
can view our role analysis tool as a way of automatically extracting an object model
that captures the important aspects of the objects that the program manipulates.
In this sense our tool establishes a connection between the abstract concepts in the
object model and the concrete realization of those concepts in the objects that the
program manipulates.

The concept of objects playing different roles in the computation while maintaining
their identity often arises in the conceptual design of systems [94], and researchers have
proposed several methodologies for realizing these roles in the program [94, 91, 130].
Our role analysis tool can recognize many of the design patterns used to implement
these roles, and may therefore help developers establish a connection between an
existing conceptual system design and its realization in the program. Conversely,
our role separation criteria may also suggest alternate ways to implement conceptual
roles. In particular, previously proposed methodologies tend to focus on ways to tag
objects with (potentially redundant) information indicating their roles, while the role
separation criteria identify data structure membership (which may not be directly
observable in the state of the object itself) as an important property that helps to
determine the roles that the object plays.

5.7.2 Program Understanding Tools

Daikon [88] extracts likely algebraic invariants from information gathered during the
program’s execution. For example, Daikon can infer invariants such as “y = 2x”.
Daikon handles heap structures in a limited fashion by linearizing them into arrays
under some specific conditions [89]. Our work differs in that we handle heap structures
in a much more general fashion and focus on referencing relationships as opposed to
algebraic invariants.

96

Womble [129] and Chava [137] both use a static analysis to automatically extract
object models for Java programs. Both tools use information from the class and field
declarations; Womble also uses a set of heuristics to generate conjectures regarding
associations between classes, field multiplicities, and mutability.

Unlike our role analysis tool, Womble and Chava do not support the concept of
an object that changes state during the execution of the program. They instead
statically group all instances of the same class into the same category of objects in
the object model, ignoring any conceptual state changes that may occur because of
method invocations, changes to the object referencing relationships, or reachability
changes.

5.7.3 Verifying Data Structure Properties

The analysis presented in this chapter extracts role information for a single execution
of the program. While it would be straightforward to combine information from
multiple executions, the tool is not designed to extract or verify role information that
is guaranteed to fully characterize all executions.

Statically extracting or verifying the detailed object referencing properties that
roles characterize is clearly beyond the capabilities of standard pointer analysis algo-
rithms. Researchers in our group have, however, been able to leverage techniques from
precise shape analysis algorithms to develop an augmented type system and analysis
algorithm that is capable of verifying that all executions of a program respect a given
set of role declarations [140]. In this context, our dynamic tool could generate can-
didate role declarations for existing programs. Such a candidate generation system
would have to be designed carefully — we expect the dynamic role analysis to be
capable of extracting properties that are beyond the verification capabilities of the
static role analysis.

5.8 Conclusion

We believe that roles are a valuable abstraction for helping developers to understand
the objects and data structures that programs manipulate. We have implemented a
dynamic role analysis tool and a flexible interactive graphical user interface that helps
developers navigate the information that the analysis produces. Our experience with
several Java applications indicates that our tools can help developers discover impor-
tant object initialization sequences, object usage patterns, data structure invariants,
and constraints on the states and referencing relationships of method parameters.
Other potential applications include documenting high-level properties of the pro-
gram (and especially properties that involve orthogonal or hierarchical object and
data structure classification structures), discovering correlated state changes between
objects that participate in the same data structure, providing specifications for a static
role analysis algorithm, verifying or refuting a debugger’s hypotheses about important
data structure invariants, and providing a foundation for establishing a guaranteed
connection between the high-level design and its realization in the program.

97

98

Chapter 6

Role Analysis

Types capture important properties of the objects that programs manipulate, increas-
ing both the safety and readability of the program. Traditional type systems capture
properties (such as the format of data items stored in the fields of the object) that are
invariant over the lifetime of the object. But in many cases, properties that do change
are as important as properties that do not. Recognizing the benefit of capturing these
changes, researchers have developed systems in which the type of the object changes
as the values stored in its fields change or as the program invokes operations on the
object [188, 187, 74, 206, 207, 54, 109, 84]. These systems integrate the concept of
changing object states into the type system.

The fundamental idea in this work is that the state of each object also depends
on the data structures in which it participates. Our type system therefore captures
the referencing relationships that determine this data structure participation. As
objects move between data structures, their types change to reflect their changing
relationships with other objects. Our system uses roles to formalize the concept of
a type that depends on the referencing relationships. Each role declaration provides
complete aliasing information for each object that plays that role—in addition to
specifying roles for the fields of the object, the role declaration also identifies the
complete set of references in the heap that refer to the object. In this way roles gen-
eralize linear type systems [199, 29, 136] by allowing multiple aliases to be statically
tracked, and extend alias types [183, 200] with the ability to specify roles of objects
that are the source of aliases.

This approach attacks a key difficulty associated with state-based type systems:
the need to ensure that any state change performed using one alias is correctly re-
flected in the declared types of the other aliases. Because each object’s role identifies
all of its heap aliases, the analysis can verify the correctness of the role informa-
tion at all remaining or new heap aliases after an operation changes the referencing
relationships.

Roles capture important object and data structure properties, improving both the
safety and transparency of the program. For example, roles allow the programmer to
express data structure consistency properties (with the properties verified by the role
analysis), to improve the precision of procedure interface specifications (by allowing
the programmer to specify the role of each parameter), to express precise referenc-

99

LiveHeader

LiveList

next next

SleepingProc

proc proc

left right

SleepingTree

root

null

next

next

left
right

DeadProc

RunningProc

next

RunningHeader

next
prev

prev
next

next prev

prev

Figure 6-1: Role Reference Diagram for a Scheduler

ing and interaction behaviors between objects (by specifying verified roles for object
fields and aliases), and to express constraints on the coordinated movements of ob-
jects between data structures (by using the aliasing information in role definitions to
identify legal data structure membership combinations). Roles may also aid program
optimization by providing precise aliasing information.

6.1 Overview of Roles

Figure 6-1 presents a role reference diagram for a process scheduler. Each box in the
diagram denotes a disjoint set of objects of a given role. The labelled arrows between
boxes indicate possible references between the objects in each set. As the diagram
indicates, the scheduler maintains a list of live processes. A live process can be either
running or sleeping. The running processes form a doubly-linked list, while sleeping
processes form a binary tree. Both kinds of processes have proc references from the
live list nodes LiveList. Header objects RunningHeader and SleepingTree simplify
operations on the data structures that store the process objects.

As Figure 6-1 shows, data structure participation determines the conceptual state
of each object. In our example, processes that participate in the sleeping process tree
data structure are classified as sleeping processes, while processes that participate in
the running process list data structure are classified as running processes. Moreover,
movements between data structures correspond to conceptual state changes—when a
process stops sleeping and starts running, it moves from the sleeping process tree to
the running process list.

100

6.1.1 Role Definitions

Figure 6-2 presents the role definitions for the objects in our example.1 Each role
definition specifies the constraints that an object must satisfy to play the role. Field
constraints specify the roles of the objects to which the fields refer, while slot con-
straints identify the number and kind of aliases of the object.

Role definitions may also contain two additional kinds of constraints: identity
constraints, which specify paths that lead back to the object, and acyclicity con-
straints, which specify paths with no cycles. In our example, the identity constraint
next.prev in the RunningProc role specifies the cyclic doubly-linked list constraint
that following the next, then prev fields always leads back to the initial object. The
acyclic constraint left, right in the SleepingProc role specifies that there are no
cycles in the heap involving only left and right edges. On the other hand, the list
of running processes must be cyclic because its nodes can never point to null.

The slot constraints specify the complete set of heap aliases for the object. In our
example, this implies that no process can be simultaneously running and sleeping.

In general, roles can capture data structure consistency properties such as dis-
jointness and can prevent representation exposure [63, 78]. As a data structure de-
scription language, roles can naturally specify trees with additional pointers. Roles
can also approximate non-tree data structures like sparse matrices. Because most
role constraints are local, it is possible to inductively infer them from data structure
instances.

6.1.2 Roles and Procedure Interfaces

Procedures specify the initial and final roles of their parameters. The suspend

procedure in Figure 6-3, for example, takes two parameters: an object with role
RunningProc p, and the SleepingTree s. The procedure changes the role of the ob-
ject referenced by p to SleepingProc whereas the object referenced by s retains
its original role. To perform the role change, the procedure removes p from its
RunningList data structure and inserts it into the SleepingTree data structure
s. If the procedure fails to perform the insertions or deletions correctly, for instance
by leaving an object in both structures, the role analysis will report an error.

6.2 Contributions

This chapter makes the following contributions:

• Role Concept: The concept that the state of an object depends on its refer-
encing relationships; specifically, that objects with different heap aliases should
be regarded as having different states.

1In general, each role definition would specify the static class of objects that can play that role.
To simplify the presentation, we assume that all objects are instances of a single class with a set of
fields F .

101

role LiveHeader {

fields next : LiveList | null;

}

role LiveList {

fields next : LiveList | null,

proc : RunningProc | SleepingProc;

slots LiveList.next | LiveHeader.next;

acyclic next;

}

role RunningHeader {

fields next : RunningProc | RunningHeader,

prev : RunningProc | RunningHeader;

slots RunningHeader.next | RunningProc.next,

RunningHeader.prev | RunningProc.prev;

identities next.prev, prev.next;

}

role RunningProc {

fields next : RunningProc | RunningHeader,

prev : RunningProc | RunningHeader;

slots RunningHeader.next | RunningProc.next,

RunningHeader.prev | RunningProc.prev,

LiveList.proc;

identities next.prev, prev.next;

}

role SleepingTree {

fields root : SleepingProc | null,

acyclic left, right;

}

role SleepingProc {

fields left : SleepingProc | null,

right : SleepingProc | null;

slots SleepingProc.left | SleepingProc.right |

SleepingTree.root;

LiveList.proc;

acyclic left, right;

}

role DeadProc { }

Figure 6-2: Role Definitions for a Scheduler

102

procedure suspend(p : RunningProc ->> SleepingProc,

s : SleepingTree)

local pp, pn, r;

{

pp = p.prev; pn = p.next;

r = s.root;

p.prev = null; p.next = null;

pp.next = pn; pn.prev = pp;

s.root = p; p.left = r;

setRole(p : SleepingProc);

}

Figure 6-3: Suspend Procedure

• Role Semantics and its Consequences: It presents a semantics of a lan-
guage for defining roles. The programmer can use this language to express
data structure invariants and properties such as participation of objects in data
structures. We show how roles can be used to control the aliasing of objects, and
express reachability properties. We show certain decidability and undecidability
results for roles.

• Programming Model: It presents a set of role consistency rules. These
rules give a programming model for changing the role of an object and the
circumstances under which roles can be temporarily violated.

• Procedure Interface Specification Language: It presents a language for
specifying the initial context and effects of each procedure. The effects summa-
rize the actions of the procedure in terms of the references it changes and the
regions of the heap that it affects.

• Role Analysis Algorithm: It presents an algorithm for verifying that the
program respects the constraints given by a set of role definitions and procedure
specifications. The algorithm uses a data-flow analysis to infer intermediate
referencing relationships between objects, allowing the programmer to focus
on role changes and procedure interfaces. The analysis can verify acyclicity
constraints even if they are temporarily violated. The interprocedural analysis
verifies read effects as well as “may” and “must” write effects by maintaining
a fine grained mapping between the current heap and the initial context of the
procedure.

6.3 Outline of the Chapter

The rest of the chapter is organized as follows.
In Section 6.4 we introduce the representation of program heap (6.4.1) and the

representation of role constraints introduced by the role definitions (6.4.1). We for-

103

mally define the semantics of roles by giving a criterion for a heap to satisfy the role
constraints (6.4.1). We then highlight some application level properties that can be
specified using roles (6.4.2) and give examples of using roles to describe data struc-
tures. We give a list of properties (6.4.3) that show how roles help control aliasing
while giving more flexibility than linear type systems. We show how to deduce reach-
ability properties from role constraints and give a criterion for a set of roles to define
a tree. A more detailed study of the constraints expressible using roles is delegated to
Appendix 6.9, where we prove decidability of the satisfiability problem for a class of
role constraints (6.9.1), and undecidability of the model inclusion for role definitions
(6.9.2).

In Section 6.5 we introduce a programming model that enables role definitions to
be integrated with the program. We introduce a core programming language with
procedures (6.5.1) and give its operational semantics (6.5.2). Next we introduce the
notion of onstage and offstage nodes (6.5.3) which defines the criterion for temporary
violations of role constraints by generalizing heap consistency from (6.4.1). As part
of the programming model we introduce restrictions on programs that simplify later
analysis and ensure role consistency across procedure calls (6.5.4). We give the pre-
conditions for transitions of the operational semantics that formalize role consistency.
We then introduce an instrumented semantics that gives the programmer complete
control over the assignment of roles to objects (6.5.5). This completes the description
of the programming model, which is verified by the role analysis.

We present the intraprocedural role analysis in Section 6.6. We define the abstract
representation of concrete heaps called role graphs and specify the abstraction relation
(6.6.1). We then define transfer functions for the role analysis (6.6.2). This includes
the expansion relation (6.6.2) used to instantiate nodes from offstage to onstage using
instantiation (6.6.2) and split (6.6.2). We model the movement of nodes offstage using
the contraction relation (6.6.2). We also describe the checks that the role analysis
performs on role graphs to ensure that the program respects the programming model
(6.6.2, 6.6.2).

In Section 6.7 we generalize the role analysis to the interprocedural case. We
first introduce procedure interface specification language (6.7.1) that describes initial
context (6.7.1) and effects (6.7.1) of each procedure. We give examples of proce-
dure interfaces and define the semantics of initial contexts (6.7.1) and effects (6.7.1).
The interprocedural analysis extends the intraprocedural analysis from Section 6.6
by verifying that each procedure respects its specification (6.7.2) and by instantiating
procedure specifications to analyze call sites (6.7.3). The verification of transfer rela-
tions uses a fine grained mapping between nodes of the role graph at each program
point and nodes of the initial context. The analysis of call sites needs to establish the
mapping between the current role graphs and callee’s initial context (6.7.3), instan-
tiate callee’s effects (6.7.3) and then reconstruct the roles of modified non-parameter
nodes (6.7.3).

In Section 6.8 we present the extensions of the basic role framework described in
previous chapters. These extensions allow a statically unbounded number of heap
references to objects (6.8.1), roles defined by references from local variables, non-
incremental changes to the role assignment (6.8.4), and roles for specifying partial

104

information about object’s fields and aliases (6.8.5). The last section also outlines a
subtyping criterion for partial roles.

In Section 6.10 we compare our work to the previous typestate systems, the pro-
posals to control the aliasing in object oriented programming and the term roles
as used in object modeling and database community. We compare our role analy-
sis with program verification and analysis techniques for dynamically allocated data
structures. Section 6.11 concludes the chapter.

6.4 Roles as a Constraint Specification Language

In this chapter we introduce the formal semantics of roles. We then show how to use
roles to specify properties of objects and data structures.

6.4.1 Abstract Syntax and Semantics of Roles

In this section, we precisely define what it means for a given heap to satisfy a set of
role definitions. In subsequent sections we will use this definition as a starting point
for a programming model and role analysis.

Heap Representation

We represent a concrete program heap as a finite directed graph Hc with nodes(Hc)
representing objects of the heap and labelled edges representing heap references. A
graph edge 〈o1, f, o2〉 ∈ Hc denotes a reference with field name f from object o1 to
object o2. To simplify the presentation, we fix a global set of fields F and assume
that all objects have the set of fields F .

Role Representation

Let R denote the set of roles used in role definitions, nullR be a special symbol always
denoting a null object nullc, and let R0 = R ∪ {nullR}. We represent each role as the
conjunction of the following four kinds of constraints:

• Fields: For every field name f ∈ F we introduce a function fieldf : R → 2R0

denoting the set of roles that objects of role r ∈ R can reference through field
f . A field f of role r can be null if and only if nullR ∈ fieldf (r). The explicit
use of nullR and the possibility to specify a set of alternative roles for every field
allows roles to express both may and must referencing relationships.

• Slots: Every role r has slotno(r) slots. A slot slotk(r) of role r ∈ R is a subset
of R × F . Let o be an object of role r and o′ an object of role r′. A reference
〈o′, f, o〉 ∈ Hc can fill a slot k of object o if and only if 〈r′, f〉 ∈ slotk(r). An
object with role r must have each of its slots filled by exactly one reference.

105

• Identities: Every role r ∈ R has a set of identities(r) ⊆ F × F . Identities
are pairs of fields 〈f, g〉 such that following reference f on object o and then
returning on reference g leads back to o.

• Acyclicities: Every role r ∈ R has a set acyclic(r) ⊆ F of fields along which
cycles are forbidden.

Role Semantics

We define the semantics of roles as a conjunction of invariants associated with role
definitions. A concrete role assignment is a map ρc : nodes(Hc) → R0 such that
ρc(nullc) = nullR.

Definition 1 Given a set of role definitions, we say that heap Hc is role consistent iff
there exists a role assignment ρc : nodes(Hc) → R0 such that for every o ∈ nodes(Hc)
the predicate locallyConsistent(o,Hc, ρc) is satisfied. We call any such role assignment
ρc a valid role assignment.

The predicate locallyConsistent(o,Hc, ρc) formalizes the constraints associated with
role definitions.

Definition 2 locallyConsistent(o,Hc, ρc) iff all of the following conditions are met.
Let r = ρc(o).

1) For every field f ∈ F and 〈o, f, o′〉 ∈ Hc, ρc(o
′) ∈ fieldf (r).

2) Let {〈o1, f1〉, . . . , 〈ok, fk〉} = {〈o′, f〉 | 〈o′, f, o〉 ∈ Hc} be the set of all aliases
of node o. Then k = slotno(r) and there exists some permutation p of the set
{1, . . . , k} such that 〈ρc(oi), fi〉 ∈ slotpi

(r) for all i.

3) If 〈o, f, o′〉 ∈ Hc, 〈o′, g, o′′〉 ∈ Hc, and
〈f, g〉 ∈ identities(r), then o = o′′.

4) It is not the case that graph Hc contains a cycle
o1, f1, . . . , os, fs, o1 where o1 = o and
f1, . . . , fs ∈ acyclic(r)

Note that a role consistent heap may have multiple valid role assignments ρc. However,
in each of these role assignments, every object o is assigned exactly one role ρc(o).
The existence of a role assignment ρc with the property ρc(o1) 6= ρc(o2) thus implies
o1 6= o2. This is just one of the ways in which roles make aliasing more predictable.

6.4.2 Using Roles

Roles capture important properties of the objects and provide useful information
about how the actions of the program affect those properties.

• Consistency Properties: Roles can ensure that the program respects appli-
cation - level data structure consistency properties. The roles in our process
scheduler, for example, ensure that a process cannot be simultaneously sleeping
and running.

106

• Interface Changes: In many cases, the interface of an object changes as its
referencing relationships change. In our process scheduler, for example, only
running processes can be suspended. Because procedures declare the roles of
their parameters, the role system can ensure that the program uses objects
correctly even as the object’s interface changes.

• Multiple Uses: Code factoring minimizes code duplication by producing
general-purpose classes (such as the Java Vector and Hashtable classes) that
can be used in a variety of contexts. But this practice obscures the different
purposes that different instances of these classes serve in the computation. Be-
cause each instance’s purpose is usually reflected in its relationships with other
objects, roles can often recapture these distinctions.

• Correlated Relationships: In many cases, groups of objects cooperate to
implement a piece of functionality. Standard type declarations provide some
information about these collaborations by identifying the points-to relationships
between related objects at the granularity of classes. But roles can capture a
much more precise notion of cooperation, because they track correlated state
changes of related objects.

Programmers can use roles for specifying the membership of objects in data struc-
tures and the structural invariants of data structures. In both cases, the slot con-
straints are essential.

When used to describe membership of an object in a data structure, slots specify
the source of the alias from a data structure node that stores the object. By assigning
different sets of roles to data structures used at different program points, it is possible
to distinguish nodes stored in different data structure instances. As an object moves
between data structures, the role of the object changes appropriately to reflect the
new source of the alias.

When describing nodes of data structures, slot constraints specify the aliasing
constraints of nodes; this is enough to precisely describe a variety of data structures
and approximate many others. Property 16 below shows how to identify trees in role
definitions even if tree nodes have additional aliases from other sets of nodes. It is
also possible to define nodes which make up a compound data structure linked via
disjoint sets of fields, such as threaded trees, sparse matrices and skip lists.

Example 3 The following role definitions specify a sparse matrix of width and height
at least 3. These definitions can be easily constructed from a sketch of a sparse matrix
in Figure 6-4.

role A1 {

fields x : A2, y : A4;

acyclic x, y;

}

role A2 {

fields x : A2 | A3, y : A5;

107

1 2 2 3

4

4

7

5 5

5 5

6

6

8 8 9

x x x

x x x

x x x

x x x

y

y

y y y

y y

y

y

y y y

Figure 6-4: Roles of Nodes of a Sparse Matrix

slots A1.x | A2.x;

acyclic x, y;

}

role A3 {

fields y : A6;

slots A2.x;

acyclic x, y;

}

role A4 {

fields x : A5, y : A4 | A7;

slots A1.y | A4.y;

acyclic x, y;

}

role A5 {

fields x : A5 | A6, y : A5 | A8;

slots A4.x | A5.x, A2.y | A5.y;

acyclic x, y;

}

role A6 {

fields y : A6 | A9;

slots A5.x, A3.y | A6.y;

acyclic x, y;

}

role A7 {

fields x : A8;

slots A4.y;

108

SL
1 1

2
2

2 null

one one one one one one

two
two

two

Figure 6-5: Sketch of a Two-Level Skip List

acyclic x, y;

}

role A8 {

fields x : A8 | A9;

slots A7.x | A8.x, A5.y;

acyclic x, y;

}

role A9 {

slots A8.x, A6.y;

acyclic x, y;

}

4

Example 4 We next give role definitions for a two-level skip list [160] sketched in
Figure 6-5.

role SkipList {

fields one : OneNode | TwoNode | null;

two : TwoNode | null;

}

role OneNode {

fields one : OneNode | TwoNode | null;

two : null;

slots OneNode.one | TwoNode.one | SkipList.one;

acyclic one, two;

}

role TwoNode {

fields one : OneNode | TwoNode | null;

two : TwoNode | null;

slots OneNode.one | TwoNode.one | SkipList.one,

TwoNode.two | SkipList.two;

acyclic one, two;

}

4

109

6.4.3 Some Simple Properties of Roles

In this section we identify some of the invariants expressible using sets of mutually
recursive role definitions. Some further properties of roles are given in Appendix 6.9.

The following properties show some of the ways role specifications make object
aliasing more predictable. They are an immediate consequence of the semantics of
roles.

Property 5 (Role Disjointness)
If there exists a valid role assignment ρc for Hc such that ρ(o1) 6= ρ(o2), then o1 6= o2.

The previous property gives a simple criterion for showing that objects o1 and o2 are
unaliased: find a valid role assignment which assigns different roles to o1 and o2. This
use of roles generalizes the use of static types for pointer analysis [82]. Since roles
create a finer partition of objects than a typical static type system, their potential
for proving absence of aliasing is even larger.

Property 6 (Disjointness Propagation)
If 〈o1, f, o2〉, 〈o3, g, o4〉 ∈ Hc, o1 6= o3, and there exists a valid role assignment ρc for
Hc such that ρc(o2) = ρc(o4) = r but fieldf (r) ∩ fieldg(r) = ∅, then o2 6= o4.

Property 7 (Generalized Uniqueness)
If 〈o1, f, o2〉, 〈o3, g, o4〉 ∈ Hc, o1 6= o3, and there exists a role assignment ρc such that
ρc(o2) = ρc(o4) = r, but there are no indices i 6= j such that 〈ρc(o1), f〉 ∈ sloti(r) and
〈ρc(o2), g〉 ∈ slotj(r) then o2 6= o4.

A special case of Property 7 occurs when slotno(r) = 1; this constrains all references
to objects of role r to be unique.

Role definitions induce a role reference diagram RRD which captures some, but
not all, role constraints.

Definition 8 (Role Reference Diagram)
Given a set of definitions of roles R, a role reference diagram RRD is is a directed
graph with nodes R0 and labelled edges defined by

RRD = {〈r, f, r′〉 | r′ ∈ fieldf (r) and ∃i 〈r, f〉 ∈ sloti(r
′)}

∪ {〈r, f, nullR〉 | nullR ∈ fieldf (r)}

Each role reference diagram is a refinement of the corresponding class diagram in a
statically typed language, because it partitions classes into multiple roles according
to their referencing relationships. The sets ρ−1

c (r) of objects with role r change during
program execution, reflecting the changing referencing relationships of objects.

Role definitions give more information than a role reference diagram. Slot con-
straints specify not only that objects of role r1 can reference objects of role r2 along
field f , but also give cardinalities on the number of references from other objects.
In addition, role definitions include identity and acyclicity constraints, which are not
present in role reference diagrams.

110

Property 9 Let ρc be any valid role assignment. Define

G = {〈ρc(o1), f, ρc(o2)〉 | 〈o1, f, o2〉 ∈ Hc}

Then G is a subgraph of RRD.

It follows from Property 9 that roles give an approximation of may-reachability among
heap objects.

Property 10 (May Reachability)
If there is a valid role assignment ρc : nodes(Hc) → R0 such that ρc(o1) 6= ρc(o2) where
o1, o2 ∈ nodes(Hc) and there is no path from ρc(o1) to ρc(o2) in the role reference
diagram RRD, then there is no path from o1 to o2 in Hc.

The next property shows the advantage of explicitly specifying null references in
role definitions. While the ability to specify acyclicity is provided by the acyclic

constraint, it is also possible to indirectly specify must-cyclicity.

Property 11 (Must Cyclicity)
Let F0 ⊆ F and RCYC ⊆ R be a set of nodes in the role reference diagram RRD such
that for every node r ∈ RCYC, if 〈r, f, r′〉 ∈ RRD then r′ ∈ RCYC. If ρc is a valid role
assignment for Hc, then every object o1 ∈ Hc with ρc(o1) ∈ RCYC is a member of a
cycle in Hc with edges from F0.

The following property shows that roles can specify a form of must-reachability among
the sets of objects with the same role.

Property 12 (Downstream Path Termination)
Assume that for some set of fields F0 ⊆ F there are sets of nodes RINTER ⊆ R,

RFINAL ⊆ R0 of the role reference diagram RRD such that for every node r ∈ RINTER:

1. F0 ⊆ acyclic(r)

2. if 〈r, f, r′〉 ∈ RRD for f ∈ F0, then r′ ∈ RINTER ∪RFINAL

Let ρc be a valid role assignment for Hc. Then every path in Hc starting from an
object o1 with role ρc(o1) ∈ RINTER and containing only edges labelled with F0 is a
prefix of a path that terminates at some object o2 with ρc(o2) ∈ RFINAL.

Property 13 (Upstream Path Termination)
Assume that for some set of fields F0 ⊆ F there are sets of nodes RINTER ⊆ R,

RINIT ⊆ R0 of the role reference diagram RRD such that for every node r ∈ RINTER:

1. F0 ⊆ acyclic(r)

2. if 〈r′, f, r〉 ∈ RRD for f ∈ F0, then r′ ∈ RINTER ∪RINIT

Let ρc be a valid role assignment for Hc. Then every path in Hc terminating at an
object o2 with ρc(o2) ∈ RINTER and containing only edges labelled with F0 is a suffix of
a path which started at some object o1, where ρc(o1) ∈ RINIT.

111

We next describe the conditions that guarantee the existence at least one path in the
heap, rather than stating the properties of all paths as in Properties 12 and 13.

Property 14 (Downstream Must Reachability)
Assume that for some set of fields F0 ⊆ F there are sets of roles RINTER ⊆ R,

RFINAL ⊂ R0 of the role reference diagram RRD such that for every node r ∈ RINTER:

1. F0 ⊆ acyclic(r)

2. there exists f ∈ F0 such that fieldf (r) ⊆ RINTER ∪RFINAL

Let ρc be a valid role assignment for Hc. Then for every object o1 with ρc(o1) ∈ RINTER

there is a path in Hc with edges from F0 from o1 to some object o2 where ρc(o2) ∈ RFINAL.

Property 15 (Upstream Must Reachability)
Assume that for some set of fields F0 ⊆ F there are sets of nodes RINTER ⊆ R,

RINIT ⊆ R of the role reference diagram RRD such that for every node r ∈ RINTER:

1. F0 ⊆ acyclic(r)

2. there exists k such that slotk(r) ⊆ (RINTER ∪RINIT)× F

Let ρc be a valid role assignment for Hc. Then for every object o2 with ρc(o2) ∈ RINTER

there is a path in Hc from some object o1 with ρc(o1) ∈ RINIT to the object o2.

Trees are a class of data structures especially suited for static analysis. Roles can
express graphs that are not trees, but it is useful to identify trees as certain sets of
mutually recursive role definitions.

Property 16 (Treeness)
Let RTREE ⊆ R be a set of roles and F0 ⊆ F set of fields such that for every r ∈ RTREE

1. F0 ⊆ acyclic(r)

2. |{i | sloti(r) ∩ (RTREE × F0) 6= ∅}| ≤ 1

Let ρc be a valid role assignment for Hc and

S ⊆ {〈n1, f, n2〉 | 〈n1, f, n2〉 ∈ Hc, ρ(n1), ρ(n2) ∈ RTREE, f ∈ F0}

Then S is a set of trees.

6.5 A Programming Model

In this section we define what it means for an execution of a program to respect the
role constraints. This definition is complicated by the need to allow the program to
temporarily violate the role constraints during data structure manipulations. Our
approach is to let the program violate the constraints for objects referenced by local
variables or parameters, but require all other objects to satisfy the constraints.

We first present a simple imperative language with dynamic object allocation and
give its operational semantics. We then specify additional statement preconditions
that enforce the role consistency requirements.

112

if t stat1 stat2 ≡ (test(t); stat1)|(test(!t); stat2)
while t stat ≡ (test(t); stat)*; test(!t)

Figure 6-6: Syntactic Sugar for if and while

6.5.1 A Simple Imperative Language

Our core language contains, as basic statements, Load (x=y.f), Store (x.f=y), Copy
(x=y), and New (x=new). All variables are references to objects in the global heap
and all assignments are reference assignments. We use an elementary test state-
ment combined with nondeterministic choice and iteration to express if and while

statement, using the usual translation [117, 28] given in Figure 6-6. We represent the
control flow of programs using control-flow graphs.

A program is a collection of procedures proc ∈ Proc. Procedures change the
global heap but do not return values. Every procedure proc has a list of parame-
ters param(proc) = {parami(proc)}i and a list of local variables local(proc). We use
var(proc) to denote param(proc)∪ local(proc). A procedure definition specifies the ini-
tial role preRk(proc) and the final role postRk(proc) for every parameter paramk(proc).
We use procj for indices j ∈ N to denote activation records of procedure proc. We fur-
ther assume that there are no modifications of parameter variables so every parameter
references the same object throughout the lifetime of procedure activation.

Example 17 The following kill procedure removes a process from both the doubly
linked list of running processes and the list of all active processes. This is indicated
by the transition from RunningProc to DeadProc.

procedure kill(p : RunningProc ->> DeadProc,

l : LiveHeader)

local prev, current, cp, nxt, lp, ln;

{

// find ’p’ in ’l’

prev = l; current = l.next;

cp = current.proc;

while (cp != p) {

prev = current;

current = current.next;

cp = current.proc;

}

// remove ’current’ and ’p’ from active list

nxt = current.next;

prev.next = nxt; current.

current.proc = null;

setRole(current : IsolatedCell);

// remove ’p’ from running list

lp = p.prev; ln = p.next;

113

Statement Transition Constraints Role Consistency

p : x=y.f
〈p@proci; s,Hc] {〈proci, x, ox〉}〉→
〈p′@proci; s,H

′
c〉

x, y ∈ local(proc),
〈proci, y, oy〉, 〈oy, f, of〉 ∈ Hc,

〈p, p′〉 ∈ ECFG(proc),
H ′

c = Hc] {proci, x, of}

accessible(of , proci, Hc),
con(H ′

c, offstage(H ′
c))

p : x.f=y
〈p@proci; s,Hc] {〈ox, f, of〉}〉→
〈p′@proci; s,H

′
c〉

x, y ∈ local(proc),
〈proci, x, ox〉, 〈proci, y, oy〉 ∈ Hc,

〈p, p′〉 ∈ ECFG(proc),
H ′

c = Hc] {〈ox, f, oy〉}

of ∈ onstage(Hc, proci)
con(H ′

c, offstage(H ′
c))

p : x=y
〈p@proci; s,Hc] {〈proci, x, ox〉}〉→
〈p′@proci; s,H

′
c〉

x ∈ local(proc),
y ∈ var(proc),

〈proci, y, oy〉 ∈ Hc,
〈p, p′〉 ∈ ECFG(proc),

H ′
c = Hc] {〈proci, x, oy〉}

con(H ′
c, offstage(H ′

c))

p : x=new
〈p@proci; s,Hc] {〈proci, x, ox〉}〉→
〈p′@proci; s,H

′
c〉

x ∈ local(proc),
on fresh,

〈p, p′〉 ∈ ECFG(proc),
H ′

c = Hc] {〈proci, x, on〉}] nulls,
nulls = {on} × F × {null}

con(H ′
c, offstage(H ′

c))

p : test(c)
〈p@proci; s,Hc〉→
〈p′@proci; s,Hc〉

satisfiedc(c, proci, Hc),
〈p, p′〉 ∈ ECFG(proc)

con(Hc, offstage(Hc))

satisfiedc(x==y, proci, Hc) iff {o | 〈proci, x, o〉 ∈ Hc} = {o | 〈proci, y, o〉 ∈ Hc}
satisfiedc(!(x==y), proci, Hc) iff not satisfiedc(x==y, proci, Hc)

accessible(o, proci, Hc) := (∃p ∈ param(proc) : 〈proci, p, o〉 ∈ Hc)
or not (∃proc′j ∃v ∈ var(proc′) : 〈proc′j, v, o〉 ∈ Hc)

Figure 6-7: Semantics of Basic Statements

p.prev = null; p.next = null;

lp.next = ln; ln.prev = lp;

setRole(p : DeadProc);

}

4

6.5.2 Operational Semantics

In this section we give the operational semantics for our language. We focus on the
first three columns in Figures 6-7 and 6-8; the safety conditions in the fourth column
are detailed in Section 6.5.4.

Figure 6-7 gives the small-step operational semantics for the basic statements.
We use A] B to denote the union A ∪ B where the sets A and B are disjoint.
The program state consists of the stack s and the concrete heap Hc. The stack s
is a sequence of pairs p@proci ∈ ×(Proc × N), where p ∈ NCFG(proc) is a program
point, and proci ∈ Proc × N is an activation record of procedure proc. Program
points p ∈ NCFG(proc) are nodes of the control-flow graphs. There is one control-flow
graph for every procedure proc. An edge of the control-flow graph 〈p, p′〉 ∈ ECFG(proc)
indicates that control may transfer from point p to point p′. We write p : stat to
state that program point p contains a statement stat. The control flow graph of each

114

Statement Transition Constraints Role Consistency

entry :
〈p@proci; s,Hc〉→
〈p′@proci; s,Hc] nulls〉

nulls = {〈proci, v, nullc〉 |
v ∈ local(proc),

〈p, p′〉 ∈ ECFG(proc)
con(Hc, offstage(Hc))

p : proc′(xk)k
〈p@proci; s,Hc〉→
〈entry@proc′j; p

′@proci; s,H
′
c〉

j fresh in p@proci; s,
〈p, p′〉 ∈ ECFG(proc),

ok : 〈proci, xk, ok〉 ∈ Hc,
H ′

c = Hc] {〈proc′j, pk, ok〉}k,
∀k pk = paramk(proc′)

conW(ra, Hc, S),
ra = {〈ok, preRk(proc′)〉}k,
S = offstage(Hc) ∪ {ok}k

exit :
〈p@proci; s,Hc〉→
〈s, Hc \ AF〉

AF = {〈proci, v, n〉 |
〈proci, v, n〉 ∈ Hc}

conW(ra, Hc, S),
ra = {〈parndk(proci), postRk(proc)〉}k,

S = offstage(Hc) ∪
{o | 〈proci, v, o〉 ∈ Hc}

parndk(proci) = o where 〈proci, paramk(proc), o〉 ∈ Hc

Figure 6-8: Semantics of Procedure Call

procedure contains special program points entry and exit indicating procedure entry
and exit, with no statements associated with them. We assume that each condition
of a test statement is of the form x==y or !(x==y) where x and y are either variables
or a special constant null which always points to the nullc object.

The concrete heap is either an error heap errorc or a non-error heap. A non-error
heap Hc ⊆ N × F × N ∪ ((Proc × N) × V × N) is a directed graph with labelled
edges, where nodes represent objects and procedure activation records, whereas edges
represent heap references and local variables. An edge 〈o1, f, o2〉 ∈ N×F×N denotes
a reference from object o1 to object o2 via field f ∈ F . An edge 〈proci, x, o〉 ∈ Hc

means that local variable x in activation record proci points to object o.

A load statement x=y.f makes the variable x point to node of , which is referenced
by the f field of object oy, which is in turn referenced by variable y. A store statement
x.f=y replaces the reference along field f in object ox by a reference to object oy that
is referenced by y. The copy statement x=y copies a reference to object oy into variable
x. The statement x=new creates a new object on with all fields initially referencing
nullc, and makes x point to on. The statement test(c) allows execution to proceed
only if condition c is satisfied.

Figure 6-8 shows the semantics of procedure calls. Procedure call pushes new
activation record onto stack, inserts it into the heap, and initializes the parameters.
Procedure entry initializes local variables. Procedure exit removes the activation
record from the heap and the stack.

6.5.3 Onstage and Offstage Objects

At every program point the set nodes(Hc) of all objects of heap Hc can be partitioned
into:

115

1. onstage objects (onstage(Hc)) referenced by a local variable or parameter of
some activation frame

onstage(Hc, proci):={o | ∃x ∈ var(proc)
〈proci, x, o〉 ∈ Hc}

onstage(Hc):=
⋃

proci

onstage(Hc, proci)

2. offstage objects (offstage(Hc)) unreferenced by local or parameter variables

offstage(Hc) := nodes(Hc) \ onstage(Hc)

Onstage objects need not have correct roles. Offstage objects must have correct roles
assuming some role assignment for onstage objects.

Definition 18 Given a set of role definitions and a set of objects Sc ⊆ nodes(Sc), we
say that heap Hc is role consistent for Sc, and we write con(Hc, Sc), iff there exists
a role assignment ρc : nodes(Hc) → R0 such that the locallyConsistent(o,Hc, ρc, Sc)
predicate is satisfied for every object o ∈ Sc.

We define locallyConsistent(o,Hc, ρc, Sc) to generalize the locallyConsistent(o,Hc, ρc)
predicate, weakening the acyclicity condition.

Definition 19 locallyConsistent(o,Hc, ρc, Sc) holds iff conditions 1), 2), and 3) of
Definition 2 are satisfied and the following condition holds:

4’) It is not the case that graph Hc contains a cycle o1, f1, . . . , os, fs, o1 such that
o1 = o, f1, . . . , fs ∈ acyclic(r), and additionally o1, . . . , os ∈ Sc.

Here Sc is the set of onstage objects that are not allowed to create a cycle whereas
objects in nodes(Hc) \ Sc are exempt from the acyclicity condition. The predicates
locallyConsistent(o,Hc, ρc, Sc) and con(Hc, Sc) are monotonic in Sc, so a larger Sc

implies a stronger invariant. For Sc = nodes(Hc), consistency for Sc is equivalent
with heap consistency from Definition 1. Note that the role assignment ρc specifies
roles even for objects o ∈ nodes(Hc) \ Sc. This is because the role of o may influence
the role consistency of objects in Sc which are adjacent to o.

At procedure calls, the role declarations for parameters restrict the set of poten-
tial role assignments. We therefore generalize con(Hc, Sc) to conW(ra, Hc, Sc), which
restricts the set of role assignments ρc considered for heap consistency.

Definition 20 Given a set of role definitions, a heap Hc, a set Sc ⊆ nodes(Hc),
and a partial role assignment ra ⊆ Sc → R, we say that the heap Hc is consistent
with ra for Sc, and write conW(ra, Hc, Sc), iff there exists a (total) role assignment
ρc : nodes(Hc) → R0 such that ra ⊆ ρc and for every object o ∈ Sc the predicate
locallyConsistent(o,Hc, ρc, Sc) is satisfied.

116

6.5.4 Role Consistency

We are now able to precisely state the role consistency requirements that must be
satisfied for program execution. The role consistency requirements are in the fourth
row of Figures 6-7 and 6-8. We assume the operational semantics is extended with
transitions leading to a program state with heap errorc whenever role consistency is
violated.

Offstage Consistency

At every program point, we require con(Hc, offstage(Hc)) to be satisfied. This means
that offstage objects have correct roles, but onstage objects may have their role tem-
porarily violated.

Reference Removal Consistency

The Store statement x.f=y has the following safety precondition. When a reference
〈ox, f, of〉 ∈ Hc for 〈procj, x, ox〉 ∈ Hc, and 〈ox, f, of〉 ∈ Hc is removed from the heap,
both ox and of must be referenced from the current procedure activation record. It
is sufficient to verify this condition for of , as ox is already onstage by definition. The
reference removal consistency condition enables the completion of the role change
for of after the reference 〈ox, f, of〉 is removed and ensures that heap references are
introduced and removed only between onstage objects.

Procedure Call Consistency

Our programming model ensures role consistency across procedure calls using the
following protocol.

A procedure call proc′(x1, ..., xp) in Figure 6-8 requires the role consistency pre-
condition conW(ra, Hc, Sc), where the partial role assignment ra requires objects ok,
corresponding to parameters xk, to have roles preRk(proc′) expected by the callee, and
Sc = offstage(Hc) ∪ {ok}k for 〈procj, xk, ok〉 ∈ Hc.

To ensure that the callee proc′j never observes incorrect roles, we impose an accessi-
bility condition for the callee’s Load statements (see the fourth column of Figure 6-7).
The accessibility condition prohibits access to any object o referenced by some local
variable of a stack frame other than proc′j, unless o is referenced by some parameter
of proc′j. Provided that this condition is not violated, the callee proc′j only accesses
objects with correct roles, even though objects that it does not access may have in-
correct roles. In Section 6.7 we show how the role analysis statically ensures that the
accessibility condition is never violated.

At the procedure exit point (Figure 6-8), we require correct roles for all objects
referenced by the current activation frame proc′j. This implies that heap operations
performed by proc′j preserve heap consistency for all objects accessed by proc′j.

117

Statement Transition Constraints Role Consistency

p : roleCheck(x1, . . . , xn, ra)
〈p@proci; s,Hc〉→
〈p′@proci; s,Hc〉 〈p, p′〉 ∈ ECFG

conW(ra, Hc, S),
S = offstage(Hc) ∪

{o | 〈proci, xk, o〉 ∈ Hc}

Figure 6-9: Operational Semantics of Explicit Role Check

Statement Transition Constraints Role Consistency

p : x=new
〈p@proci; s,Hc] {〈proci, x, ox〉}, ρc〉→
〈p′@proci; s,H

′
c, ρ

′
c〉

x ∈ local(proc),
on fresh,

〈p, p′〉 ∈ ECFG(proc),
H ′

c = Hc

]{〈proci, x, on〉}
]{on} × F × {null},

ρ′c = ρc[on 7→ unknown]

conW(ρ′c, H
′
c, offstage(H ′

c))

p :
setRole(x:r)

〈p@proci; s,Hc, ρc〉→
〈p′@proci; s,Hc, ρ

′
c〉

x ∈ local(proci),
〈proci, x, ox〉 ∈ Hc,
ρ′c = ρc[ox 7→ r],
〈p, p′〉 ∈ ECFG

conW(ρ′c, Hc, offstage(Hc))

p : stat
〈s,Hc, ρc〉→
〈s′, H ′

c, ρc〉 〈s,Hc〉→〈s′, H ′
c〉

P ∧ conW(ρc ∪ ra, H ′′
c , S)

for every original condition
P ∧ conW(ra, H ′′

c , S)

Figure 6-10: Instrumented Semantics

Explicit Role Check

The programmer can specify a stronger invariant at any program point using state-
ment roleCheck(x1, . . . , xp, ra). As Figure 6-9 indicates, roleCheck requires the
conW(ra, Hc, Sc) predicate to be satisfied for the supplied partial role assignment
ra where Sc = offstage(Hc) ∪ {ok}k for objects ok referenced by given local variables
xk.

6.5.5 Instrumented Semantics

We expect the programmer to have a specific role assignment in mind when writing
the program, with this role assignment changing as the statements of the program
change the referencing relationships. So when the programmer wishes to change the
role of an object, he or she writes a program that brings the object onstage, changes
its referencing relationships so that it plays a new role, then puts it offstage in its
new role. The roles of other objects do not change.2

To support these programmer expectations, we introduce an augmented program-
ming model in which the role assignment ρc is conceptually part of the program’s
state. The role assignment changes only if the programmer changes it explicitly us-
ing the setRole statement. The augmented programming model has an underlying
instrumented semantics as opposed to the original semantics.

2An extension to the programming model supports cascading role changes in which a single role
change propagates through the heap changing the roles of offstage objects, see Section 6.8.4.

118

Example 21 The original semantics allows asserting different roles at different pro-
gram points even if the structure of the heap was not changed, as in the following
procedure foo.

role A1 { fields f : B1; }

role B1 { slots A1.f; }

role A2 { fields f : B2; }

role B2 { slots A2.f; }

procedure foo()

var x, y;

{

x = new; y = new;

x.f = y;

roleCheck(x,y, x:A1,y:B1);

roleCheck(x,y, x:A2,y:B2);

}

Both role checks would succeed since each of the specified partial role assignments can
be extended to a valid role assignment. On the other hand, the role check statement
roleCheck(x,y, x:A1,y:B2) would fail.

The procedure foo in the instrumented semantics can be written as follows.

procedure foo()

var x, y;

{

x = new; y = new;

x.f = y;

setRole(x:A1); setRole(y:B1);

roleCheck(x,y, x:A1,y:B1);

setRole(x:A2); setRole(y:B2);

roleCheck(x,y, x:A2,y:B2);

}

The setRole statement makes the role change of object explicit. 4

The instrumented semantics extends the concrete heap Hc with a role assign-
ment ρc. Figure 6-10 outlines the changes in instrumented semantics with respect to
the original semantics. We introduce a new statement setRole(x:r), which mod-
ifies a role assignment ρc, giving ρc[ox 7→ r], where ox is the object referenced by
x. All statements other than setRole preserve the current role assignment. For
every consistency condition conW(ra, Hc, Sc) in the original semantics, the instru-
mented semantics uses the corresponding condition conW(ρc ∪ ra, Hc, Sc) and fails
if ρc is not an extension of ra. Here we consider con(Hc, S) to be a shorthand
for conW(∅, Hc, S). For example, the new role consistency condition for the Copy
statement x=y is conW(ρc, Hc, offstage(Hc)). The New statement assigns an identifier
unknown to the newly created object on. By definition, a node with unknown does

119

not satisfy the locallyConsistent predicate. This means that setRole must be used to
set a a valid role of on before on moves offstage.

By introducing an instrumented semantics we are not suggesting an implemen-
tation that explicitly stores roles of objects at run-time. We instead use the instru-
mented semantics as the basis of our role analysis and ensure that all role checks can
be statically removed. Because the instrumented semantics is more restrictive than
the original semantics, our role analysis is a conservative approximation of both the
instrumented semantics and the original semantics.

6.6 Intraprocedural Role Analysis

This section presents an intraprocedural role analysis algorithm. The goal of the
role analysis is to statically verify the role consistency requirements described in the
previous section.

The key observation behind our analysis algorithm is that we can incrementally
verify role consistency of the entire concrete heap Hc by ensuring role consistency for
every node when it goes offstage. This allows us to represent the statically unbounded
offstage portion of the heap using summary nodes with “may” references. In contrast,
we use a “must” interpretation for references from and to onstage nodes. The exact
representation of onstage nodes allows the analysis to verify role consistency in the
presence of temporary violations of role constraints.

Our analysis representation is a graph in which nodes represent objects and edges
represent references between objects. There are two kinds of nodes: onstage nodes
represent onstage objects, with each onstage node representing one onstage object;
and offstage nodes, with each offstage node corresponding to a set of objects that
play that role. To increase the precision of the analysis, the algorithm occasionally
generates multiple offstage nodes that represent disjoint sets of objects playing the
same role. Distinct offstage objects with the same role r represent disjoint sets of
objects of role r with different reachability properties from onstage nodes.

We frame role analysis as a data-flow analysis operating on a distributive lattice
P(RoleGraphs) of sets of role graphs with set union ∪ as the join operator. This
section focuses on the intraprocedural analysis. We use procc to denote the topmost
activation record in a concrete heap Hc. In Section 6.7 we generalize the algorithm
to the compositional interprocedural analysis.

6.6.1 Abstraction Relation

Every data-flow fact G ⊆ RoleGraphs is a set of role graphs G ∈ G. Every role graph
G ∈ RoleGraphs is either a bottom role graph ⊥G representing the set of all concrete
heaps (including errorc), or a tuple G = 〈H, ρ, K〉 representing non-error concrete
heaps, where

• H ⊆ N×F×N is the abstract heap with nodes N representing objects and fields
F . The abstract heap H represents heap references 〈n1, f, n2〉 and variables
of the currently analyzed procedure 〈proc, x, n〉 where x ∈ local(proc). Null

120

references are represented as references to abstract node null. We define abstract
onstage nodes onstage(H) = {n | 〈proc, x, n〉 ∈ H, x ∈ local(proc)∪param(proc)}
and abstract offstage nodes offstage(H) = nodes(H) \ onstage(H) \ {proc, null}.

• ρ : nodes(H) → R0 is an abstract role assignment, ρ(null) = nullR;

• K : nodes(H) → {i, s} indicates the kind of each node; when K(n) = i, then
n is an individual node representing at most one object, and when K(n) = s,
n is a summary node representing zero or more objects. We require K(proc) =
K(null) = i, and require all onstage nodes to be individual, K[onstage(H)] =
{i}.

The abstraction relation α relates a pair 〈Hc, ρc〉 of concrete heap and concrete role
assignment with an abstract role graph G.

Definition 22 We say that an abstract role graph G represents concrete heap Hc with
role assignment ρc, and write 〈Hc, ρc〉α G, iff G = ⊥G or: Hc 6= errorc, G = 〈H, ρ,K〉,
and there exists a function h : nodes(Hc) → nodes(H) such that

1) Hc is role consistent: conW(ρc, Hc, offstage(Hc)),

2) identity relations of onstage nodes with offstage nodes hold: if 〈o1, f, o2〉 ∈ Hc

and 〈o2, g, o3〉 ∈ Hc for o1 ∈ onstage(Hc), o2 ∈ offstage(Hc), and
〈f, g〉 ∈ identities(ρc(o1)), then o3 = o1;

3) h is a graph homomorphism: if 〈o1, f, o2〉 ∈ Hc then 〈h(o1), f, h(o2)〉 ∈ H;

4) an individual node represents at most one concrete object: K(n) = i implies
|h−1(n)| ≤ 1;

5) h is bijection on edges which originate or terminate at onstage nodes:
if 〈n1, f, n2〉 ∈ H and n1 ∈ onstage(H) or n2 ∈ onstage(H), then there exists
exactly one 〈o1, f, o2〉 ∈ Hc such that h(o1) = n1 and h(o2) = n2;

6) h(nullc) = null and h(procc) = proc;

7) the abstract role assignment ρ corresponds to the concrete role assignment:
ρc(o) = ρ(h(o)) for every object o ∈ nodes(Hc).

Note that the error heap errorc can be represented only by the bottom role graph ⊥G.
The analysis uses ⊥G to indicate a potential role error.

Condition 3) implies that role graph edges are a conservative approximation of
concrete heap references. These edges are in general “may” edges. Hence it is possible
for an offstage node n that 〈n, f, n1〉, 〈n, f, n2〉 ∈ H for n1 6= n2. This cannot happen
when n ∈ onstage(H) because of 5). Another consequence of 5) is that an edge in H
from an onstage node n0 to a summary node ns implies that ns represents at least
one object. Condition 2) strengthens 1) by requiring certain identity constraints for
onstage nodes to hold, as explained in Section 6.6.2.

Example 23 Consider the following role declaration for an acyclic list.

121

LN

L

LN

LN

LN

proc

prev
current

next
next

next

next

next

next

next

h

LN

LN

proc

prev

current

next

next

next

next

next

next

next

null

L

LN

LN

h

h

h

h

h

h

LN

LN

null

Figure 6-11: Abstraction Relation

122

role L { // List header

fields first : LN | null;

}

role LN { // List node

fields next : LN | null;

slots LN.next | L.first;

acyclic next;

}

Figure 6-11 shows a role graph and one of the concrete heaps represented by the
role graph via homomorphism h. There are two local variables, prev and current,
referencing distinct onstage objects. Onstage objects are isomorphic to onstage nodes
in the role graph. In contrast, there are two objects mapped to each of the summary
nodes with role LN (shown as LN-labelled rectangles in Figure 6-11). Note that the
sets of objects mapped to these two summary nodes are disjoint. The first summary
LN-node represents objects stored in the list before the object referenced by prev.
The second summary LN-node represents objects stored in the list after the object
referenced by current. 4

6.6.2 Transfer Functions

The key complication in developing the transfer functions for the role analysis is
to accurately model the movement of objects onstage and offstage. For example, a
load statement x=y.f may cause the object referred to by y.f to move onstage. In
addition, if x was the only reference to an onstage object o before the statement
executed, object o moves offstage after the execution of the load statement, and thus
must satisfy the locallyConsistent predicate.

The analysis uses an expansion relation ¹ to model the movement of objects
onstage and a contraction relation º to model the movement of objects offstage. The
expansion relation uses the invariant that offstage nodes have correct roles to generate
possible aliasing relationships for the node being pulled onstage. The contraction
relation establishes the role invariants for the node going offstage, allowing the node
to be merged into the other offstage nodes and represented more compactly.

We present our role analysis as an abstract execution relation
st
;. The abstract

execution ensures that the abstraction relation α is a forward simulation relation [150]
from the space of concrete heaps with role assignments to the set RoleGraphs. The
simulation relation implies that the traces of ; include the traces of the instrumented
semantics→. To ensure that the program does not violate constraints associated with
roles, it is thus sufficient to guarantee that ⊥G is not reachable via ;.

To prove that ⊥G is not reachable in the abstract execution, the analysis computes
for every program point p a set of role graphs G that conservatively approximates the
possible program states at point p. The transfer function for a statement st is an

image [[st]](G) = {G′ | G ∈ G, G
st
; G′}. The analysis computes the relation

st
; in

three steps:

123

〈Hc, ρc〉 - 〈H ′
c, ρ

′
c〉

¡
¡¡

ª
α α

?

@
@@R

α

G1 ¹ G2
st

=⇒ G3 º G4

Figure 6-12: Simulation Relation Between Abstract and Concrete Execution

Transition Definition Conditions

〈H, ρ, K〉 x=y.f; G′ 〈H, ρ, K〉
ny ,f

¹ G1
x=y.f
=⇒ G2

nxºG′ 〈proc, x, nx〉, 〈proc, y, ny〉 ∈ H

〈H, ρ,K〉 x=y; G′ 〈H, ρ, K〉 x=y=⇒G1

n1ºG′ 〈proc, x, n1〉 ∈ H

〈H, ρ, K〉 x=new; G′ 〈H, ρ, K〉 x=new=⇒ G1

n1ºG′ 〈proc, x, n1〉 ∈ H

〈H, ρ,K〉 st; G′ 〈H, ρ, K〉 st
=⇒G′

st ∈ {x.f=y,
test(c),

setRole(x:r),
roleCheck(x1..p, ra)}

Figure 6-13: Abstract Execution ;

1. ensure that the relevant nodes are instantiated using expansion relation ¹ (Sec-
tion 6.6.2);

2. perform symbolic execution
st
=⇒ of the statement st (Section 6.6.2);

3. merge nodes if needed using contraction relation º to keep the role graph
bounded (Section 6.6.2).

Figure 6-12 shows how the abstraction relation α relates ¹,
st
=⇒, and º with the con-

crete execution → in instrumented semantics. Assume that a concrete heap 〈Hc, ρc〉
is represented by the role graph G1. Then one of the role graphs G2 obtained after

expansion remains an abstraction of 〈Hc, ρc〉. The symbolic execution
st
=⇒ followed

by the contraction relation º corresponds to the instrumented operational semantics
→.

Figure 6-13 shows rules for the abstract execution relation
st
;. Only Load state-

ment uses the expansion relation, because the other statements operate on objects
that are already onstage. Load, Copy, and New statements may remove a local vari-
able reference from an object, so they use contraction relation to move the object
offstage if needed. For the rest of the statements, the abstract execution reduces to
symbolic execution =⇒ described in Section 6.6.2.

Nondeterminism and Failure The
st
; relation is not a function because the ex-

pansion relation ¹ can generate a set of role graphs from a single role graph. Also,

124

Transition Definition Condition

〈H, ρ, K〉
n,f

¹〈H, ρ, K〉 〈n, f, n′〉 ∈ H, n′ ∈ onstage(H)

〈H, ρ, K〉
n,f

¹ G′ 〈H, ρ, K〉
n0⇑
n′
〈H1, ρ1, K1〉

n0

‖ G′ 〈n, f, n′〉 ∈ H, n′ ∈ offstage(H)
〈n, f, n0〉 ∈ H1

Figure 6-14: Expansion Relation

〈H, ρ, K〉
n0⇑
n′
〈H ′, ρ′, K ′〉

H ′ = H \H0 ∪H ′
0 ∪H ′

1

ρ′ = ρ[n0 7→ ρ(n′)]
K ′ = K[n0 7→ i]
localCheck(n0, 〈H ′, ρ′, K ′〉)
H0 ⊆ H ∩ (

onstage(H)× F × {n′} ∪ {n′} × F × onstage(H)
)

H1 ⊆ H ∩ (
offstage(H)× F × {n′} ∪ {n′} × F × offstage(H)

)
H ′

0 = swing(n′, n0, H0)
H ′

1 ⊆ swing(n′, n0, H1)

swing(nold, nnew, H) = {〈nnew, f, n〉 | 〈nold, f, n〉 ∈ H} ∪
{〈n, f, nnew〉 | 〈n, f, nold〉 ∈ H} ∪
{〈nnew, f, nnew〉 | 〈nold, f, nold〉 ∈ H}

Figure 6-15: Instantiation Relation

there might be no
st
; transitions originating from a given state G if the symbolic

execution =⇒ produces no results. This corresponds to a trace which cannot be ex-
tended further due to a test statement which fails in state G. This is in contrast to
a transition from G to ⊥G which indicates a potential role consistency violation or a
null pointer dereference. We assume that =⇒ and º relations contain the transition
〈⊥G,⊥G〉 to propagate the error role graph. In most cases we do not show the explicit
transitions to error states.

Expansion

Figure 6-14 shows the expansion relation
n,f

¹ . Given a role graph 〈H, ρ, K〉, expansion
attempts to produce a set of role graphs 〈H ′, ρ′, K ′〉 in each of which 〈n, f, n0〉 ∈ H ′

and K(n0) = i. Expansion is used in abstract execution of the Load statement. It
first checks for null pointer dereference and reports an error if the check fails. If
〈n, f, n′〉 ∈ H and K(n′) = i already hold, the expansion returns the original state.
Otherwise, 〈n, f, n′〉 ∈ H with K(n′) = s. In that case, the summary node n′ is first

instantiated using instantiation relation
n0⇑
n′

. Next, the split relation
n0

‖ is applied. Let

ρ(n0) = r. The split relation ensures that n0 is not a member of any cycle of offstage
nodes which contains only edges in acyclic(r). We explain instantiation and split in
more detail below.

125

Instantiation Figure 6-15 presents the instantiation relation. Given a role graph

G = 〈H, ρ, K〉, instantiation
n0⇑
n′

generates the set of role graphs 〈H ′, ρ′, K ′〉 such

that each concrete heap represented by 〈H, ρ, K〉 is represented by one of the graphs
〈H ′, ρ′, K ′〉. Each of the new role graphs contains a fresh individual node n0 that
satisfies localCheck. The edges of n0 are a subset of edges from and to n′.

Let H0 be a subset of the references between n′ and onstage nodes, and let H1 be
a subset of the references between n′ and offstage nodes. References in H0 are moved
from n′ to the new node n0, because they represent at most one reference, while
references in H1 are copied to n0 because they may represent multiple concrete heap
references. Moving a reference is formalized via the swing operation in Figure 6-15.

The instantiation of a single graph can generate multiple role graphs depending on
the choice of H ′

0 and H ′
1. The number of graphs generated is limited by the existing

references of node n′ and by the localCheck requirement for n0. This is where our role
analysis takes advantage of the constraints associated with role definitions to reduce
the number of aliasing possibilities that need to be considered.

Split The split relation is important for verifying operations on data structures such
as skip lists and sparse matrices. It is also useful for improving the precision of the
initial set of role graphs on procedure entry (Section 6.7.2).

The goal of the split relation is to exploit the acyclicity constraints associated with
role definitions. After a node n0 is brought onstage, split represents the acyclicity
condition of ρ(n0) explicitly by eliminating impossible paths in the role graph. It
uses additional offstage nodes to encode the reachability information implied by the
acyclicity conditions. This information can then be used even after the role of node
n0 changes. In particular, it allows the acyclicity condition of n0 to be verified when
n0 moves offstage.

Example 24 Consider a role graph for an acyclic list with nodes LN and a header
node L. The instantiated node n0 is in the middle of the list. Figure 6-16 a) shows a
role graph with a single summary node representing all offstage LN-nodes. Figure 6-16
b) shows the role graph after applying the split relation. The resulting role graph
contains two LN summary nodes. The first LN summary node represents objects
definitely reachable from n0 along next edges; the second summary NL node represents
objects definitely not reachable from n0. 4

Figure 6-17 shows the definition of the split operation on node n0, denoted by
n0

‖ .
Let G = 〈H, ρ, K〉 be the initial role graph and ρ(n0) = r. If acyclic(r) = ∅, then the
split operation returns the original graph G; otherwise it proceeds as follows. Call a
path in graph H cycle-inducing if all of its nodes are offstage and all of its edges are
in acyclic(r). Let Scyc be the set of nodes n such that there is a cycle-inducing path
from n0 to n and a cycle-inducing path from n to n0.

The goal of the split operation is to split the set Scyc into a fresh set of nodes SNR

representing objects definitely not reachable from n0 along edges in acyclic(r) and a
fresh set of nodes SR representing objects definitely reachable from n0. Each of the
newly generated graphs H ′ has the following properties:

126

LNLN

L

null

n
0

a) Before Split

null

LNLN

L

LN

n
0

b) After Split

Figure 6-16: A Role Graph for an Acyclic List

127

〈H, ρ, K〉
n0

‖ 〈H, ρ, K〉, acycCheck(n0, 〈H, ρ,K〉, offstage(H))

〈H, ρ, K〉
n0

‖ 〈H ′, ρ′, K ′〉, ¬acycCheck(n0, 〈H, ρ, K〉, offstage(H))

where
H ′ = (H \Hcyc) ∪Hoff ∪BfNR ∪BfR ∪BtNR ∪BtR ∪Nf ∪Nt

Hcyc = {〈n1, f, n2〉 | n1 or n2 ∈ Scyc}
Hoff =

{ 〈n′1, f, n′2〉 | n1 = c(n′1), n2 = c(n′2),
n1, n2 ∈ offstage1(H), n1 or n2 ∈ Scyc,
〈n1, f, n2〉 ∈ H

}
\(SR × acyclic(r)× SNR)

H ∩ (onstage(H)× F ∪ {n0} × acyclic(r))× Scyc = AfNR] AfR

H ∩ Scyc × (acyclic(r)× {n0} ∪ F × onstage(H)) = AtNR] AtR

BfNR = {〈n1, f, hNR(n2)〉 | 〈n1, f, n2〉 ∈ AfNR}
BfR = {〈n1, f, hR(n2)〉 | 〈n1, f, n2〉 ∈ AfR}
BtNR = {〈hNR(n1), f, n2〉 | 〈n1, f, n2〉 ∈ AtNR}
BtR = {〈hR(n1), f, n2〉 | 〈n1, f, n2〉 ∈ AtR}
Nf = {〈n0, f, n′〉 | n′ ∈ SR, 〈n0, f, c(n′)〉 ∈ H, f ∈ acyclic(r)}
Nt = {〈n′, f, n0〉 | n′ ∈ SNR, 〈c(n′), f, n0〉 ∈ H, f ∈ acyclic(r)}
Scyc = {n | ∃n1, . . . , np−1 ∈ offstage(H) :

〈n0, f0, n1〉, . . . , 〈nk, fk, n〉, 〈n, fk+1, nk+2〉, 〈np−1, fp−1, n0〉 ∈ H,
f0, . . . , fp−1 ∈ acyclic(r)}

offstage1(H) = offstage(H) \ {n0}
r = ρ(n0)

ρ′(c(n)) = ρ(n)
K ′(c(n)) = K(n)

Figure 6-17: Split Relation

128

1) merging the corresponding nodes from SNR and SR in H ′ yields the original
graph H;

2) n0 is not a member of any cycle in H ′ consisting of offstage nodes and edges in
acyclic(r);

3) onstage nodes in H ′ have the same number of fields and aliases as in H.

Let S0 = nodes(H) \ Scyc and let hNR : Scyc → SNR and hR : Scyc → SR be bijections.
Define a function c : nodes(H ′) → nodes(H) as follows:

c(n) =

n, n ∈ S0

h−1
R (n), n ∈ SR

h−1
NR(n), n ∈ SNR

Then H ′ ⊆ {〈n′1, f, n′2〉 | 〈c(n′1), f, c(n′2)〉 ∈ H}.
Because there are two copies of S0 in H ′, there might be multiple edges 〈n′1, f, n′2〉

in H ′ corresponding to an edge 〈c(n1), f, c(n2)〉 ∈ H.

If both n′1 and n′2 are offstage nodes other than n0, we always include 〈n′1, f, n′2〉
in H ′ unless 〈n′1, f, n′2〉 ∈ SR × acyclic(r) × SNR. The last restriction prevents cycles
in H ′.

For an edge 〈n1, f, n2〉 ∈ H where n1 ∈ onstage(H) and n2 ∈ Scyc we include in
H ′ either the edge 〈n1, f, hNR(n2)〉 or 〈n1, f, hR(n2)〉 but not both. Split generates
multiple graphs H ′ to cover both cases. We proceed analogously if n2 ∈ onstage(H)
and n1 ∈ Scyc. The node n0 itself is treated in the same way as onstage nodes for
f /∈ acyclic(r). If f ∈ acyclic(r) then we choose references to n0 to have a source in
SNR, whereas the reference from n0 have the target in SR.

Details of the split construction are given in Figure 6-17. The intuitive meaning
of the sets of edges is the following:

Hoff : edges between offstage nodes
BfNR : edges from onstage nodes to SNR

BfR : edges from onstage nodes to SR

BtNR : edges from SNR to onstage nodes
BtR : edges from SR to onstage nodes
Nf : acyclic(r)-edges from n0 to SR

Nt : acyclic(r)-edges from SNR to n0

The sets BfNR and BfR are created as images of the sets AfNR and AfR which partition
edges from onstage nodes to nodes in Scyc. Similarly, the sets BtNR and BtR are
created as images of the sets AtNR and AtR which partition edges from nodes in Scyc

to onstage nodes.

We note that if in the split operation Scyc = ∅ then split has no effect and need
not be performed. In Figure 6-16, after performing a single split, there is no need to
split for subsequent elements of the list. Examples like this indicate that split will
not be invoked frequently during the analysis.

129

〈H, ρ, K〉 nº〈H, ρ, K〉 ∃x ∈ var(proc) :
〈proc, x, n〉 ∈ H

〈H, ρ, K〉 nº normalize(〈H, ρ, K〉) nodeCheck(n, 〈H, ρ, K〉, offstage(H))

Figure 6-18: Contraction Relation

normalize(〈H, ρ,K〉) = 〈H ′, ρ′, K ′〉
where H ′ = {〈n1/∼, f, n2/∼〉 | 〈n1, f, n2〉 ∈ H}

ρ′(n/∼) = ρ(n)

K ′(n/∼) =

{
i, n/∼ = {n}, K(n) = i
s, otherwise

n1 ∼ n2 iff n1 = n2 or
(n1, n2 ∈ offstage(H), ρ(n1) = ρ(n2),
∀n0 ∈ onstage(H) : (reach(n0, n1) iff reach(n0, n2))

reach(n0, n) iff ∃n1, . . . , np−1 ∈ offstage(n),∃f1, . . . , fp ∈ acyclic(ρ(n0)) :
〈n0, f1, n1〉, . . . , 〈np−1, fp, n〉 ∈ H

Figure 6-19: Normalization

Contraction

Figure 6-18 shows the non-error transitions of the contraction relation
nº. The analysis

uses contraction when a reference to node n is removed. If there are other references
to n, the result is the original graph. Otherwise n has just gone offstage, so the
analysis invokes nodeCheck. If the check fails, the result is ⊥G. If the role check
succeeds, the contraction invokes normalization operation to ensure that the role
graph remains bounded. For simplicity, we use normalization whenever nodeCheck
succeeds, although it is sufficient to perform normalization only at program points
adjacent to back edges of the control-flow graph.

Normalization Figure 6-19 shows the normalization relation. Normalization ac-
cepts a role graph 〈H, ρ, K〉 and produces a normalized role graph 〈H ′, ρ′, K ′〉 which is
a factor graph of 〈H, ρ, K〉 under the equivalence relation ∼. Two offstage nodes are
equivalent under ∼ if they have the same role and the same reachability from onstage
nodes. Here we consider node n to be reachable from an onstage node n0 iff there
is some path from n0 to n whose edges belong to acyclic(ρ(n0)) and whose nodes are
all in offstage(H). Note that, by construction, normalization avoids merging nodes

which were previously generated in the split operation ‖, while still ensuring a bound
on the size of the role graph. For a procedure with l local variables, f fields and r
roles the number of nodes in a role graph is on the order of r2l so the maximum size
of a chain in the lattice is of the order of 2r2l

. To ensure termination we consider
role graphs equal up to isomorphism. Isomorphism checking can be done efficiently
if normalization assigns canonical names to the equivalence classes it creates.

130

Statement s Transition Conditions

x = y.f 〈H] {proc, x, nx}, ρ,K〉 st
=⇒〈H] {proc, x, nf}, ρ, K〉 〈proc, y, ny〉, 〈ny, f, nf〉 ∈ H

x.f = y 〈H] {nx, f, nf}, ρ, K〉 st
=⇒〈H] {nx, f, ny}, ρ,K〉 〈proc, x, nx〉, 〈proc, y, ny〉 ∈ H

nf ∈ onstage(H)

x = y 〈H] {proc, x, nx}, ρ, K〉 st
=⇒〈H] {proc, x, ny}, ρ,K〉 〈proc, y, ny〉 ∈ H

x = new 〈H] {proc, x, nx}, ρ, K〉 st
=⇒〈H] {proc, x, nn}, ρ′, K〉 nn fresh

ρ′ = ρ[nn 7→ unknown]

test(c) 〈H, ρ, K〉 st
=⇒〈H, ρ, K〉 satisfied(c, H)

setRole(x:r) 〈H, ρ, K〉 st
=⇒〈H, ρ[nx 7→ r], K〉 〈proc, x, nx〉 ∈ H

roleChOk(nx, r, 〈H, ρ,K〉)

roleCheck(x1..p, ra) 〈H, ρ, K〉 st
=⇒〈H, ρ, K〉

∀i 〈proc, xi, ni〉 ∈ H
nodeCheck(ni, 〈H, ρ,K〉, S)

S = offstage(H) ∪ {ni}i

ρ(ni) = ra(ni)

satisfied(x==y, Hc) iff {o | 〈proc, x, o〉 ∈ Hc} = {o | 〈proc, y, o〉 ∈ Hc}
satisfied(!(x==y), Hc) iff not satisfied(x==y, Hc)

Figure 6-20: Symbolic Execution of Basic Statements

Symbolic Execution

Figure 6-20 shows the symbolic execution relation
st
=⇒. In most cases, the symbolic

execution of a statement acts on the abstract heap in the same way that the statement
would act on the concrete heap. In particular, the Store statement always performs
strong updates. The simplicity of symbolic execution is due to conditions 3) and 5)
in the abstraction relation α. These conditions are ensured by the ¹ relation which
instantiates nodes, allowing strong updates. The symbolic execution also verifies the
consistency conditions that are not verified by ¹ or º.

Verifying Reference Removal Consistency The abstract execution
st
; for the

Store statement can easily verify the Store safety condition from section 6.5.4, because
the set of onstage and offstage nodes is known precisely for every role graph. It returns
⊥G if the safety condition fails.

Symbolic Execution of setRole The setRole(x:r) statement sets the role of
node nx referenced by variable x to r. Let G = 〈H, ρ, K〉 be the current role graph
and let 〈proc, x, nx〉 ∈ H. If nx has no adjacent offstage nodes, the role change
always succeeds. In general, there are restrictions on when the change can be done.
Let 〈Hc, ρc〉 be a concrete heap with role assignment represented by G and h be a
homomorphism from Hc to H. Let h(ox) = nx. Let r0 = ρc(ox). The symbolic
execution must make sure that the condition conW(ρc, Hc, offstage(Hc)) continues to
hold after the role change. Because the set of onstage nodes does not change, it
suffices to ensure that the original roles for offstage nodes are consistent with the new
role r. The acyclicity constraint involves only offstage nodes, so it remains satisfied.
The other role constraints are local, so they can only be violated for offstage neighbors
of nx. To make sure that no violations occur, we require:

1. r ∈ fieldf (ρ(n)) for all 〈n, f, nx〉 ∈ H, and

131

2. 〈r, f〉 ∈ sloti(ρ(n)) for all 〈nx, f, n〉 ∈ H and every slot i such that 〈r0, f〉 ∈
sloti(ρ(n))

This is sufficient to guarantee conW(ρc, Hc, offstage(Hc)). To ensure condition 2) in
Definition 22 of the abstraction relation, we require that for every 〈f, g〉 ∈ identities(r),

1. 〈f, g〉 ∈ identities(r0) or

2. for all 〈nx, f, n〉 ∈ H: K(n) = i and (〈n, g, n′〉 ∈ H implies n′ = nx).

Symbolic Execution of roleCheck The symbolic execution of the statement
roleCheck(x1, . . . , xp, ra) ensures that the conW predicate of the concrete seman-
tics is satisfied for the concrete heaps which correspond to the current abstract role
graph. The symbolic execution returns the error graph ⊥G if ρ is inconsistent with
ra or if any of the nodes ni referenced by xi fail to satisfy nodeCheck.

Accessibility Condition The analysis ensures that the accessibility condition for
the Load statement will be satisfied in procedure proc before procedure proc is called.
This technique makes use of procedure effects and is described in Section 6.7.

Node Check

The analysis uses the nodeCheck predicate to incrementally maintain the abstraction
relation. We first define the predicate localCheck, which roughly corresponds to the
predicate locallyConsistent (Definition 2), but ignores the nonlocal acyclicity condition
and additionally ensures condition 2) from Definition 22.

Definition 25 For a role graph G = 〈H, ρ, K〉, an individual node n and a set S, the
predicate localCheck(n,G) holds iff the following conditions are met. Let r = ρ(n).

1A. (Outgoing fields check) For fields f ∈ F , if 〈n, f, n′〉 ∈ H then ρ(n′) ∈ fieldf (r).

2A. (Incoming slots check) Let {〈n1, f1〉, . . . , 〈nk, fk〉} = {〈n′, f〉 | 〈n′, f, n〉 ∈ H} be
the set of all aliases of node n in abstract heap H. Then k = slotno(r) and there
exists a permutation p of the set {1, . . . , k} such that 〈ρ(ni), fi〉 ∈ slotpi

(r) for
all i.

3A. (Identity Check) If 〈n, f, n′〉 ∈ H, 〈n′, g, n′′〉 ∈ H, 〈f, g〉 ∈ identities(r), and
K(n′) = i, then n = n′′.

4A. (Neighbor Identity Check) For every edge 〈n′, f, n〉 ∈ H, if K(n′) = i, ρ(n′) = r′

and 〈f, g〉 ∈ identities(r′) then 〈n, g, n′〉 ∈ H.

5A. (Field Sanity Check) For every f ∈ F there is exactly one edge 〈n, f, n′〉 ∈ H.

Conditions 1A and 2A correspond to conditions 1) and 2) in Definition 2. Condition
3) in Definition 19 is not necessarily implied by condition 3A) if some of the neighbors
of n are summary nodes. Condition 3) cannot be established based only on summary
nodes, because verifying an identity constraint for field f of node n where 〈n, f, n′〉 ∈

132

H requires knowing the identity of n′, not only its existence and role. We therefore
rely on Condition 2) of the Definition 22 to ensure that identity relations of neighbors
of node n are satisfied before n moves offstage.

The predicate acycCheck(n,G, S) verifies the acyclicity condition from Defini-
tion 19.

Definition 26 We say that node n ∈ nodes(H) satisfies an acyclicity check in graph
G = 〈H, ρ, K〉 with respect to set S, and we write acycCheck(n,G, S), iff it is not
the case that H contains a cycle n1, f1, . . . , ns, fs, n1 where n1 = n, f1, . . . , fs ∈
acyclic(ρ(n)) and n1, . . . , ns ∈ S.

This enables us to define the nodeCheck predicate.

Definition 27 nodeCheck(n,G, S) holds iff both the predicate localCheck(n,G) and
the predicate acycCheck(n,G, S) hold.

6.7 Interprocedural Role Analysis

This section describes the interprocedural aspects of our role analysis. Interprocedural
role analysis can be viewed as an instance of the functional approach to interprocedu-
ral data-flow analysis [181]. For each program point p, the role analysis approximates
program traces from procedure entry to point p. The solution in [181] proposes tag-
ging the entire data-flow fact G at point p with the data flow fact G0 at procedure
entry. In contrast, our analysis computes the correspondence between the heaps at
procedure entry and the heaps at point p at the granularity of sets of objects that con-
stitute the role graphs. This allows our analysis to detect which regions of the heap
have been modified. We approximate the concrete executions of a procedure with
procedure transfer relations consisting of 1) an initial context and 2) a set of effects.
Effects are fine-grained transfer relations which summarize load and store statements
and can naturally describe local heap modifications. In this work we assume that
procedure transfer relations are supplied and we are concerned with a) verifying that
transfer relations are a conservative approximation of procedure implementation b)
instantiating transfer relations at call sites.

6.7.1 Procedure Transfer Relations

A transfer relation for a procedure proc extends the procedure signature with an
initial context denoted context(proc), and procedure effects denoted effect(proc).

Initial Context

Figures 6-21 and 6-22 contain examples of initial context specification. An initial
context is a description of the initial role graph 〈HIC, ρIC, KIC〉 where ρIC and KIC are
determined by a nodes declaration and HIC is determined by a edges declaration.
The initial role graph specifies a set of concrete heaps at procedure entry and assigns
names for sets of nodes in these heaps. The next definition is similar to Definition 22.

133

Definition 28 We say that a concrete heap 〈Hc, ρc〉 is represented by the initial role
graph 〈HIC, ρIC, KIC〉 and write 〈Hc, ρc〉α0〈HIC, ρIC, KIC〉, iff there exists a function h0 :
nodes(Hc) → nodes(HIC) such that

1. conW(ρc, Hc, h
−1
0 (read(proc));

2. h0 is a graph homomorphism;

3. KIC(n) = i implies |h−1
0 (n)| ≤ 1;

4. h0(nullc) = null and h0(procc) = proc;

5. ρc(o) = ρIC(h0(o)) for every object o ∈ nodes(Hc).

Here read(proc) is the set of initial-context nodes read by the procedure (see below).
For simplicity, we assume one context per procedure; it is straightforward to generalize
the treatment to multiple contexts.

A context is specified by declaring a list of nodes and a list of edges.
A list of nodes is given with nodes declaration. It specifies a role for every node

at procedure entry. Individual nodes are denoted with lowercase identifiers, summary
nodes with uppercase identifiers. By using summary nodes it is possible to indicate
disjointness of entire heap regions and reachability between nodes in the heap.

There are two kinds of edges in the initial role graph: parameter edges and heap
edges. A parameter edge p->pn is interpreted as 〈proc, p, pn〉 ∈ HIC. We require every
parameter edge to have an individual node as a target, we call such node a parameter
node. The role of a parameter node referenced by parami(proc) is always preRi(proc).
Since different nodes in the initial role graph denote disjoint sets of concrete objects,
parameter edges

p1 -> n1

p2 -> n1

imply that parameters p1 and p2 must be aliased,

p1 -> n1

p2 -> n2

force p1 and p2 to be unaliased, whereas

p1 -> n1|n2

p2 -> n1|n2

allow for both possibilities. A heap edge n -f-> m denotes 〈n, f, m〉 ∈ HIC. The
shorthand notation

n1 -f-> n2

-g-> n3

denotes two heap edges 〈n1, f, n2〉, 〈n1, g, n3〉 ∈ HIC. An expression n1 -f-> n2|n3

denotes two edges n1 -f-> n2 and n1 -f-> n3. We use similar shorthands for pa-
rameter edges.

134

LL1

SleepingProc

proc

null

lx

l

l2

LL2

ph

P1

P2

px

p

proc

proc

proc

proc

proc
proc

proc

nodes ph : RunningHeader,

P1, px, P2 : RunningProc,

lx : LiveHeader,

LL1, l2, LL2 : LiveList;

edges p-> px, l-> px,

ph -next-> P1|px

-prev-> px|P2,

P1 -next-> P1|px

-prev-> ph|P1,

px -next-> P2|ph

-prev-> P1|ph,

P2 -next-> P2|ph

-prev-> P2|px,

lx -next-> LL1|l2,

LL1 -next-> LL1|l2

-proc-> P1|P2|SleepingProc

l2 -next-> LL2|null

-proc-> px,

LL2 -next-> LL2|null

-proc-> P1|P2|SleepingProc

Figure 6-21: Initial Context for kill Procedure

135

Example 29 Figure 6-21 shows an initial context graph for the kill procedure from
Example 17. It is a refinement of the role reference diagram of Figure 6-1 as it gives
description of the heap specific to the entry of kill procedure. The initial context
makes explicit the fact that there is only one header node for the list of running
processes (ph) and one header node for the list of all active processes (lx). More
importantly, it shows that traversing the list of active processes reaches a node l2

whose proc field references the parameter node px. This is sufficient for the analysis
to conclude that there will be no null pointer dereferences in the while loop of kill
procedure since l2 is reached before null. 4

We assume that the initial context always contains the role reference diagram RRD
(Definition 8). Nodes from RRD are called anonymous nodes and are referred to via
role name. This further reduces the size of initial context specifications by leveraging
global role definitions. In Figure 6-21 there is no need to specify edges originating
from SleepingProc or even mention the node SleepingTree, since role definitions
alone contain enough information on this part of the heap to enable the analysis of
the procedure.

Procedure Effects

Procedure effects conservatively approximate the region of the heap that the pro-
cedure accesses and indicate changes to the referencing relationships in that region.
There are two kinds of effects: read effects and write effects.

A read effect specifies a set read(proc) of initial graph nodes accessed by the proce-
dure. It is used to ensure that the accessibility condition in Section 6.5.4 is satisfied.
If the set of nodes denoted by read(proc) is mapped to a node n which is onstage in
the caller but is not an argument of the procedure call, a role check error is reported
at the call site.

Write effects are used to modify caller’s role graph to conservatively model the
procedure call. A write effect e1.f = e2 approximates Store operations within a
procedure. The expression e1 denotes objects being written to, f denotes the field
written, and e2 denotes the set of objects which could be assigned to the field. Write
effects are may effects by default, which means that the procedure is free not to
perform them. It is possible to specify that a write effect must be performed by
prefixing it with a “!” sign.

Example 30 In Figure 6-22, the insert procedure inserts an isolated cell into the
end of an acyclic singly linked list. As a result, the role of the cell changes to LN. The
initial context declares parameter nodes ln and xn (whose initial roles are deduced
from roles of parameters), and mentions anonymous LN node from a default copy of
the role reference diagram RRD. The code of the procedure is summarized with two
write effects. The first write effect indicates that the procedure may perform zero or
more Store operations to field next of nodes mapped to ln or LN in context(proc).
The second write effect indicates that the execution of the procedure must perform a
Store to the field next of xn node where the reference stored is either a node mapped
onto anonymous LN node or null. 4

136

procedure insert(l : L,

x : IsolatedN ->> LN)

nodes ln, xn;

edges l-> ln, x-> xn,

ln -next-> LN|null;

effects ln|LN . next = xn,

! xn.next = LN|null;

local c, p;

{

p = l;

c = l.next;

while (c!=null) {

p = c;

c = p.next;

}

p.next = x;

x.next = c;

setRole(x:LN);

}

Figure 6-22: Insert Procedure for Acyclic List

Effects also describe assignments that procedures perform on the newly created
nodes. Here we adopt a simple solution of using a single summary node denoted NEW
to represent all nodes created inside the procedure. We write nodes0(HIC) for the set
nodes(HIC) ∪ {NEW}.
Example 31 Procedure insertSome in Figure 6-23 is similar to procedure insert

in Figure 6-22, except that the node inserted is created inside the procedure. It is
therefore referred to in effects via generic summary node NEW. 4

We represent all may write effects as a set mayWr(proc) of triples 〈nj, f, n′j〉
where n, n′j ∈ nodes0(HIC) and f ∈ F . We represent must write effects as a se-
quence mustWrj(proc) of subsets of the set K−1

IC (i)× F × nodes0(HIC). Here 1 ≤ j ≤
mustWrNo(proc).

To simplify the interpretation of the declared procedure effects in terms of con-
crete reads and writes, we require the union ∪imustWri(proc) to be disjoint from
the set mayWr(proc). We also require the nodes n1, . . . , nk in a must write effect
n1| · · · |nk.f = e2 to be individual nodes. This allows strong updates when instanti-
ating effects (Section 6.7.3).

Semantics of Procedure Effects

We now give precise meaning to procedure effects. Our definition is slightly compli-
cated by the desire to capture the set of nodes that are actually read in an execution
while still allowing a certain amount of observational equivalence for write effects.

137

procedure insertSome(l : L)

nodes ln;

edges l-> ln,

ln -next-> LN|null;

effects ln|LN . next = NEW,

NEW.next = LN|null;

aux c, p, x;

{

p = l;

c = l.next;

while (c!=null) {

p = c;

c = p.next;

}

x = new;

p.next = x;

x.next = c;

setRole(x:LN);

}

Figure 6-23: Insert Procedure with Object Allocation

The effects of procedure proc define a subset of permissible program traces in
the following way. Consider a concrete heap Hc with role assignment ρc such that
〈Hc, ρc〉α0〈HIC, ρIC, KIC〉 with graph homomorphism h0 from Definition 28. Consider
a trace T starting from a state with heap Hc and role assignment ρc. Extract the
subsequence of all loads and stores in trace T . Replace Load x=y.f by concrete read
read ox where ox is the concrete object referenced by x at the point of Load, and
replace Store x.f=y by a concrete write ox.f = oy where ox is the object referenced
by x and oy object referenced by y at the point of Store. Let p1, . . . , pk be the
sequence of all concrete read statements and q1, . . . , qk the sequence of all concrete
write statements. We say that trace T starting at Hc conforms to the effects iff for
all choices of h0 the following conditions hold:

1. h0(o) ∈ read(proc) for every pi of the form read o

2. there exists a subsequence qi1 , . . . , qit of q1, . . . , qk such that

(a) executing qi1 , . . . , qit on Hc yields the same result as executing the entire
sequence q1, . . . , qk

(b) the sequence qi1 , . . . , qit implements write effects of procedure proc

A typical way to obtain a sequence qi1 , . . . , qit from the sequence q1, . . . , qk is to
consider only the last write for each pair 〈oi, f〉 of object and field.

138

We say that a sequence qi1 , . . . , qit implements write effects mayWr(proc) and
mustWri(proc) for 1 ≤ i ≤ i0, i0 = mustWrNo if and only if there exists an injec-
tion s : {1, . . . , i0} → {i1, . . . , it} such that

1. 〈h′(o), f, h′(o′)〉 ∈ mustWri(proc) for every concrete write qs(i) of the form o.f =
o′, and

2. 〈h′(o), f, h′(o′)〉 ∈ mayWr(proc) for all concrete writes qi of the form o.f = o′ for
i ∈ {i1, . . . , it} \ {s(1), . . . , s(i0)}.

Here h′(n) = h0(n) for n ∈ nodes(Hc) where Hc is the initial concrete heap and
h′(n) = NEW otherwise.

It is possible (although not very common) for a single concrete heap Hc to have
multiple homomorphisms h0 to the initial context HIC. Note that in this case we
require the trace T to conform to effects for all possible valid choices of h0. This
places the burden of multiple choices of h0 on procedure transfer relation verification
(Section 6.7.2) but in turn allows the context matching algorithm in Section 6.7.3 to
select an arbitrary homomorphism between a caller’s role graph and an initial context.

6.7.2 Verifying Procedure Transfer Relations

In this section we show how the analysis makes sure that a procedure conforms to its
specification, expressed as an initial context with a list of effects. To verify procedure
effects, we extend the analysis representation from Section 6.6.1. A non-error role
graph is now a tuple 〈H, ρ, K, τ, E〉 where:

1. τ : nodes(H) → nodes0(HIC) is initial context transformation that assigns an
initial context node τ(n) ∈ nodes(HIC) to every node n representing objects that
existed prior to the procedure call, and assigns NEW to every node representing
objects created during procedure activation;

2. E ⊆ ∪imustWri(proc) is a list of must write effects that procedure has performed
so far.

The initial context transformation τ tracks how objects have moved since the begin-
ning of procedure activation and is essential for verifying procedure effects which refer
to initial context nodes.

We represent the list E of performed must effects as a partial map from the set
K−1

IC (i) × F to nodes0(HIC). This allows the analysis to perform must effect folding
by recording only the last must effect for every pair 〈n, f〉 of individual node n and
field f .

Role Graphs at Procedure Entry

Our role analysis creates the set of role graphs at procedure entry point from the
initial context context(proc). This is simple because role graphs and the initial context
have similar abstraction relations (Sections 6.6.1 and 6.7.1). The difference is that

139

[[entry•]] =
{
〈H, ρ, K, τ, E〉

∣∣∣
P : {proc} × {parami(proc)}i → N, P ⊆ HIC

H0 = (HIC \ {proc} × param(proc)×N) ∪ P
ni = P (proc, parami(proc))
H1 ⊆ H0

H1 \H0 ⊆ {〈n′, f, n′′〉 | {n1, n2} ∩ {ni}i 6= ∅}
∀j : localCheck(nj, 〈H, ρ, K〉, nodes(H1))

H1

n1

‖ H2

n2

‖ · · ·
np

‖ H
ρ = ρIC

K = KIC

τ = ρIC

E = ∅
}

Figure 6-24: The Set of Role Graphs at Procedure Entry

parameters in role graphs point to exactly one node, and parameter nodes are onstage
nodes in role graphs which means that all their edges are “must” edges.

Figure 6-24 shows the construction of the initial set of role graphs. First the
graph H0 is created such that every parameter parami(proc) references exactly one
parameter node ni. Next graph H1 is created by using localCheck to ensure that
parameter nodes have the appropriate number of edges. Finally, the instantiation is
performed on parameter nodes to ensure acyclicity constraints if the initial context
does not make them explicit already.

Statement s Transition Constraints

x = y.f 〈H] {proc, x, nx}, ρ, K, τ, E〉 st
=⇒〈H] {proc, x, nf}, ρ,K, τ, E〉 〈proc, y, ny〉, 〈ny, f, nf〉 ∈ H

τ(nf) ∈ read(proc)

x = y.f 〈H] {proc, x, nx}, ρ, K, τ, E〉 st
=⇒⊥G

〈proc, y, ny〉, 〈ny, f, nf〉 ∈ H
τ(nf) /∈ read(proc)

x.f = y 〈H] {nx, f, nf}, ρ, K, τ, E〉 st
=⇒〈H] {nx, f, ny}, ρ, K, τ, E〉 〈proc, x, nx〉, 〈proc, y, ny〉 ∈ H

〈τ(nx), f, τ(ny)〉 ∈ mayWr(proc)

x.f = y 〈H] {nx, f, nf}, ρ, K, τ, E〉 st
=⇒〈H] {nx, f, ny}, ρ, K, τ, E ′〉

〈proc, x, nx〉, 〈proc, y, ny〉 ∈ H
〈τ(nx), f, τ(ny)〉 ∈ ∪imustWri(proc)
E ′ = updateWr(E, 〈τ(nx), f, τ(ny)〉)

x.f = y 〈H] {nx, f, nf}, ρ, K, τ, E〉 st
=⇒⊥G

〈proc, x, nx〉, 〈proc, y, ny〉 ∈ H
〈τ(nx), f, τ(ny)〉 /∈ mayWr(proc)∪

∪imustWri(proc)

x = new 〈H] {proc, x, nx}, ρ, K, τ, E〉 st
=⇒〈H] {proc, x, nn}, ρ, K, τ ′, E〉 nn fresh

τ ′ = τ [nn 7→ NEW]

updateWr(E, 〈n1, f, n2〉) = E[〈n1, f〉 7→ n2]

Figure 6-25: Verifying Load, Store, and New Statements

140

Verifying Basic Statements

To ensure that a procedure conforms to its transfer relation the analysis uses the
initial context transformation τ to assign every Load and Store statement to a declared
effect. Figure 6-25 shows new symbolic execution of Load, Store and New statements.

The symbolic execution of Load statement x=y.f makes sure that the node being
loaded is recorded in some read effect. If this is not the case, an error is reported.

The symbolic execution of the Store statement x.f=y first retrieves nodes τ(nx)
and τ(ny) in the initial role graph context that correspond to nodes nx and ny in the
current role graph. If the effect 〈τ(nx), f, τ(ny)〉 is declared as a may write effect the
execution proceeds as usual. Otherwise, the effect is used to update the list E of
must-write effects. The list E is checked at the end of procedure execution.

The symbolic execution of the New statement updates the initial context trans-
formation τ assigning τ(nn) = NEW for the new node nn.

The τ transformation is similarly updated during other abstract heap operations.
Instantiation of node n′ into node n0 assigns τ(n0) = τ(n′), split copies values of τ
into the new set of isomorphic nodes, and normalization does not merge nodes n1 and
n2 if τ(n1) 6= τ(n2).

Verifying Procedure Postconditions

At the end of the procedure, the analysis verifies that ρ(ni) = postRi(proc) where
〈proc, parami(proc), ni〉 ∈ H, and then performs node check on all onstage nodes
using predicate nodeCheck(n, 〈H, ρ, K〉, nodes(H)) for all n ∈ onstage(H).

At the end of the procedure, the analysis also verifies that every performed effect
in E = {e1, . . . , ek} can be attributed to exactly one declared must effect. This means
that k = mustWrNo(proc) and there exists a permutation s of set {1, . . . , k} such that
es(i) ∈ mustWri(proc) for all i.

6.7.3 Analyzing Call Sites

The set of role graphs at the procedure call site is updated based on the procedure
transfer relation as follows. Consider procedure proc containing call site p ∈ NCFG(proc)
with procedure call proc′(x1, . . . , xp). Let 〈HIC, ρIC, KIC〉 = context(proc′) be the initial
context of the callee.

Figure 6-26 shows the transfer function for procedure call sites. It has the following
phases:

1. Parameter Check ensures that roles of parameters conform to the roles ex-
pected by the callee proc′.

2. Context Matching (matchContext) ensures that the caller’s role graphs rep-
resent a subset of concrete heaps represented by context(proc′). This is done by
deriving a mapping µ from the caller’s role graph to nodes(HIC).

3. Effect Instantiation (
FX−→) uses effects mayWr(proc′) and mustWri(proc′) in

order to approximate all structural changes to the role graph that proc′ may

141

[[proc′(x1, . . . , xp)]](G) =
if ∃G ∈ G : ¬paramCheck(G) then {⊥G}
else try G1 = matchContext(G)

if failed then {⊥G}
else {G′′ | 〈G,µ〉 ∈ G1

〈addNEW(G), µ〉 FX−→〈G′, µ〉 RR−→G′′}

paramCheck(〈H, ρ, K, τ, E〉) iff
∀ni : nodeCheck(ni, G, offstage(H) ∪ {ni}i)
ni are such that 〈proc, xi, ni〉 ∈ H

addNEW(〈H, ρ,K, τ, E〉) =
〈H ∪ {n0} × F × {null},
ρ[n0 7→ unknown],
K[n0 7→ s],
τ [n0 7→ NEW],
E〉

where n0 is fresh in H

Figure 6-26: Procedure Call

perform.

4. Role Reconstruction (
RR−→) uses final roles for parameter nodes and global

role declarations postRi(proc′) to reconstruct roles of all nodes in the part of the
role graph representing modified region of the heap.

The parameter check requires nodeCheck(ni, G, offstage(H)∪{ni}i) for the parameter
nodes ni. The other three phases are explained in more detail below.

Context Matching

Figure 6-27 shows our context matching function. The matchContext function takes a
set G of role graphs and produces a set of pairs 〈G,µ〉 where G = 〈H, ρ, K, τ, E〉 is a
role graph and µ is a homomorphism from H to HIC. The homomorphism µ guarantees
that α−1(G) ⊆ α−1

0 (context(proc′)) since the homomorphism h0 from Definition 28 can
be constructed from homomorphism h in Definition 22 by putting h0 = µ ◦ h. This
implies that it is legal to call proc′ with any concrete graph represented by G.

The algorithm in Figure 6-27 starts with empty maps µ = nodes(G) × {⊥} and
extends µ until it is defined on all nodes(G) or there is no way to extend it further. It
proceeds by choosing a role graph 〈H, ρ, K, τ, E〉 and node n0 for which the mapping µ
is not defined yet. It then finds candidates in the initial context that n0 can be mapped
to. The candidates are chosen to make sure that µ remains a homomorphism. The
accessibility requirement—that a procedure may see no nodes with incorrect role—
is enforced by making sure that nodes in inaccessible are never mapped into nodes

142

matchContext(G) = match({〈G, nodes(G)× {⊥}〉 | G ∈ G})
match : P(RoleGraphs× (N ∪ {⊥})N) ⇀ P(RoleGraphs×NN)

match(Γ) =
Γ0 := {〈G,µ〉 ∈ Γ | µ−1(⊥) 6= ∅};
if Γ0 = ∅ then return Γ;
〈〈H, ρ, K, τ, E〉, µ〉 := choose Γ0;
Γ′ = Γ \ 〈〈H, ρ, K, τ, E〉, µ〉;
paramnodes := {n | ∃i : 〈proc, xi, n〉 ∈ H};
inaccessible := onstage(H) \ paramnodes;
n0 := choose µ−1(⊥);
candidates := {n′ ∈ nodes(HIC) |

(n0 /∈ inaccessible and ρIC(n
′) = ρ(n0)) or

(n0 ∈ inaccessible and n′ /∈ read(proc′))}⋂
〈n0,f,n〉∈H

µ(n)6=⊥

{
n′

∣∣∣ 〈n′, f, µ(n)〉 ∈ HIC

}

⋂
〈n,f,n0〉∈H

µ(n)6=⊥

{
n′

∣∣∣ 〈µ(n), f, n′〉 ∈ HIC

}
;

if candidates = ∅ then fail ;
if candidates = {n′0}, K(n0) = s,KIC(n

′
0) = i, µ−1(n′0) = ∅

then match(Γ′ ∪ {〈G′, µ[n1 7→ n′0]〉 | 〈H, ρ,K, τ, E〉
n1⇑
n0

G′})
else n′0 := choose {n′ ∈ candidates | K(n′) = s or

(K(n0) = i, µ−1(n′) = ∅)}
match(Γ′ ∪ 〈〈H, ρ, K, τ, E〉, µ[n0 7→ n′0]〉);

Figure 6-27: The Context Matching Algorithm

143

in read for the callee. As long as this requirement holds, nodes in inaccessible can
be mapped onto nodes of any role since their role need not be correct anyway. We
generally require that the set µ−1(n′0) for individual node n′0 in the initial context
contain at most one node, and this node must be individual. In contrast, there might
be many individual and summary nodes mapped onto a summary node. We relax
this requirement by performing instantiation of a summary node of the caller if, at
some point, that is the only way to extend the mapping µ (this corresponds to the
first recursive call in the definition of match in Figure 6-27).

The algorithm is nondeterministic in the order in which nodes to be matched
are selected. One possible ordering of nodes is depth-first order in the role graph
starting from parameter nodes. If some nondeterministic branch does not succeed, the
algorithm backtracks. The function fails if all branches fail. In that case the procedure
call is considered illegal and ⊥G is returned. The algorithm terminates since every
procedure call lexicographically increases the sorted list of numbers |µ[nodes(H)]| for
〈〈H, ρ, K, τ, E〉, µ〉 ∈ Γ.

Effect Instantiation

The result of the matching algorithm is a set of pairs 〈G,µ〉 of role graphs and
mappings. These pairs are used to instantiate procedure effects in each of the role
graphs of the caller. Figure 6-28 gives rules for effect instantiation. The analysis first
verifies that the region read by the callee is included in the region read by the caller.
Then it uses map µ to find the inverse image S of the performed effects. The effects
in S are grouped by the source n and field f . Each field n.f is applied in sequence.
There are three cases when applying an effect to n.f :

1. There is only one node target of the write in nodes(H) and the effect is a must
write effect. In this case we do a strong update.

2. The condition in 1) is not satisfied, and the node n is offstage. In this case we
conservatively add all relevant edges from S to H.

3. The condition in 1) is not satisfied, but the node n is onstage i.e. it is a
parameter node3. In this case there is no unique target for n.f , and we cannot
add multiple edges either as this would violate the invariant for onstage nodes.
We therefore do case analysis choosing which effect was performed last. If there
are no must effects that affect n, then we also consider the case where the
original graph is unchanged.

Role Reconstruction

Procedure effects approximate structural changes to the heap, but do not provide
information about role changes for non-parameter nodes. We use the role reconstruc-

tion algorithm
RR−→ in Figure 6-29 to conservatively infer possible roles of nodes after

the procedure call based on role changes for parameters and global role definitions.

3Non-parameter onstage nodes are never affected by effects, as guaranteed by the matching
algorithm.

144

〈〈H, ρ, K, τ, E〉, µ〉 FX−→〈⊥G, µ〉 where τ [µ−1[read(proc′)]] 6⊆ read(proc)

〈〈H, ρ, K, τ, E〉, µ〉 FX−→Gt where τ [µ−1[read(proc′)]] ⊆ read(proc)

〈H, ρ, K, τ, E〉
n1,f1` G1 ` · · ·

nt,ft

` Gt

S = {〈n, f, n′〉 ∈ H | 〈µ(n), f, µ(n′)〉 ∈ mayWr(proc′) ∪ ∪imustWri(proc′)}
{〈n1, f1〉, . . . , 〈nt, ft〉} = {〈n, f〉 | 〈n, f, n′〉 ∈ S}

Single Write Effect Instantiation:

〈H1, ρ1, K1, τ1, E1〉
n,f

` G′

iff

case condition result

deterministic effect
{n1 | 〈n, f, n1〉 ∈ S} = {n0} and

∃i : 〈µ(n), f, µ(n0)〉 ∈ mustWri(proc′)

G′ = 〈H2, ρ1, K1, τ1, E2〉
H2 = H1 \ {〈n, f, n1〉 | 〈n, f, n1〉 ∈ H1}

∪{〈n, f, n0〉}
E2 = updateWr(E1, 〈τ(n), f, τ(n0)〉)

nondeterministic effect
for non-parameters

|{n1 | 〈n, f, n1〉 ∈ S}| > 1 or
∃n1 : 〈µ(n), f, µ(n1)〉 ∈ mayWr(proc′)

n ∈ offstage(H)
{〈τ(n), f, τ(n1)〉 | 〈n, f, n1〉 ∈ S} ⊆ mayWr(proc)

G′ = 〈H2, ρ1, K1, τ1, E2〉
H2 = orem(H1)∪
{〈n, f, n1〉 | 〈n, f, n1〉 ∈ S}

|{n1 | 〈n, f, n1〉 ∈ S}| > 1 or
∃n1 : 〈µ(n), f, µ(n1)〉 ∈ mayWr(proc′)

n ∈ offstage(H)
{〈τ(n), f, τ(n1)〉 | 〈n, f, n1〉 ∈ S} 6⊆ mayWr(proc)

G′ = ⊥G

nondeterministic effect
for parameters

|{n1 | 〈n, f, n1〉 ∈ S}| > 1 or
∃n1 : 〈µ(n), f, µ(n1)〉 ∈ mayWr(proc′)

n /∈ offstage(H)
{〈τ(n), f, τ(n1)〉 | 〈n, f, n1〉 ∈ S} ⊆ mayWr(proc)

G′ = 〈H2, ρ1, K1, τ1, E2〉
H0 = H1 \ {〈n, f, n1〉 | 〈n, f, n1〉 ∈ H1}

H2 = H1 or H2 = H0 ∪ {〈n, f, n1〉}
〈n, f, n1〉 ∈ S

¬({n1 | 〈n, f, n1〉 ∈ S} = {n1} and
∃i : 〈µ(n), f, µ(n0)〉 ∈ mustWri(proc′))

n /∈ offstage(H)
{〈τ(n), f, τ(n1)〉 | 〈n, f, n1〉 ∈ S} 6⊆ mayWr(proc)

G′ = ⊥G

orem(H1) =

{
H1 \ {〈n, f, n′〉 | 〈n, f, n′〉 ∈ H1}, if ∃i ∃n′ : 〈µ(n), f, µ(n′)〉 ∈ mustWri(proc′)

H1, otherwise

Figure 6-28: Effect Instantiation

145

〈〈H, ρ, K, τ, E〉, µ〉 RR−→〈H ′, ρ′, K ′, τ ′, E ′〉
〈proc, xi, ni〉 ∈ H
N0 = µ−1[read(proc′)]
s : N0 ×R → N where s(n, r) are all different nodes fresh in H
ρ′ = ρ \ (N0 ×R) ∪ {〈s(n, r), r〉 | n ∈ N0, r ∈ R}

\({ni}i ×R) ∪ {〈ni, postRi(proc)〉}
K ′(s(n, r)) = K(n)
τ ′(s(n, r)) = τ(n)
E ′ = E
H0 = H \ {〈n1, f, n2〉 | n1 ∈ N0 or n2 ∈ N0}

∪ {〈s(n1, r1), f, s(n2, r2)〉 | 〈n1, f, n2〉 ∈ H, 〈r1, f, r2〉 ∈ RRD}
∪ {〈n1, f, s(n2, r2)〉 | 〈n1, f, n2〉 ∈ H, 〈ρIC(µ(n1)), f, r2〉 ∈ RRD}
∪ {〈s(n1, r1), f, n2〉 | 〈n1, f, n2〉 ∈ H, 〈r1, f, ρIC(µ(n2))〉 ∈ RRD}

H ′ = GC(H0)

Figure 6-29: Call Site Role Reconstruction

Role reconstruction first finds the set N0 of all nodes that might be accessed by
the callee since these nodes might have their roles changed. Then it splits each node
n ∈ N0 into |R| different nodes ρ(n, r), one for each role r ∈ R. The node ρ(n, r)
represents the subset of objects that were initially represented by n and have role
r after procedure executes. The edges between nodes in the new graph are derived
by simultaneously satisfying 1) structural constraints between nodes of the original
graph; and 2) global role constraints from the role reference diagram. The nodes
ρ(n, r) not connected to the parameter nodes are garbage collected in the role graph.
In practice, we generate nodes ρ(n, r) and edges on demand starting from parameters
making sure that they are reachable and satisfy both kinds of constraints.

6.8 Extensions

This section presents extensions of the basic role system. The multislot extension
allows statically unbounded number of aliases for objects. Root variables allow stack
frames to be treated as the source of aliases in role definitions. Singleton roles al-
low role declarations to specify that there is only one object of a given role. The
extension for cascading role changes allows the analysis to verify more complex role
changes. The extension to partial roles allows mutually independent role properties
to be specified separately and then combined.

6.8.1 Multislots

A multislot 〈r′, f〉 ∈ multislots(r) in the definition of role r allows any number of
aliases 〈o′, f, o〉 ∈ Hc for ρc(o

′) = r′ and ρc(o) = r. We require multislots multislots(r)
to be disjoint from all sloti(r). To handle multislots in role analysis we relax the

146

condition 5) in Definition 22 of the abstraction relation by allowing h to map more
than one concrete edge 〈o′, f, o〉 onto abstract edge 〈n′, f, n〉 ∈ H terminating at
an onstage node n provided that 〈ρ(n′), f〉 ∈ multislots(ρ(n)). The nodeCheck and
expansion relation ¹ are then extended appropriately. Note that a role graph does
not represent the exact number of references that fill each multislot. The analysis
therefore does not attempt to recognize actions that remove the last reference from
the multislot. Once an object plays a role with a multislot, all subsequent roles that
it plays must also have the multislot.

6.8.2 Root Variables

Root variables allow roles to be defined not only by heap references from other nodes
but also by references from procedure variables. The root variables are treated like
heap references for the purpose of role consistency; they are references from stack
frame objects. A procedure with root variables induces a role with fields correspond-
ing to root variables and no slots.

Example 32 Let us reconsider the scheduler example in Figure 6-2. We can require
the LiveHeader node to be referenced by the root variable processes in the proce-
dure main, and RunningHeader to be referenced by the root variable running in the
following way.

role LiveHeader {

fields first : LiveList | null;

slots main.processes;

}

role RunningHeader {

fields next : RunningProc | RunningHeader,

prev : RunningProc | RunningHeader;

slots main.running,

RunningHeader.next | RunningProc.next,

RunningHeader.prev | RunningProc.prev;

identities next.prev, prev.next;

}

procedure main()

rootvar processes : LiveHeader | null,

running : RunningHeader | null;

{ ... }

This implicitly generates a role definition for the main procedure.

role main {

fields processes : LiveHeader,

running : RunningHeader;

}

4

147

role H { // header node

fields next : H | N;

slots H.next | N.next;

}

role N { // internal node

fields next : H | N;

slots H.next | N.next;

}

Figure 6-30: Roles for Circular List

6.8.3 Singleton Roles

Singleton roles are a simple way to improve the precision of role specifications and
role analysis by indicating roles for which there is only a single heap object of that
role. Singleton roles are often referred to from root variables.

We say that the predicate singleton(r) holds for role r ∈ R if |ρ−1
c (r)| ≤ 1 for every

valid concrete role assignment ρc of a heap created by the program. In essence, this
predicate allows distinguishing between individual objects and sets of objects in role
definitions.

Example 33 The intention of the definition in Figure 6-30 is to specify a circular
singly linked list with a header node. However, the specification in Figure 6-30 is
too general. For example, the graph in Figure 6-31 satisfies this specification. If we
require singleton(H), then the graph in Figure 6-31 does not satisfy role declarations
any more. 4

H

N

H

N

N

H

Figure 6-31: An Instance of Role Declarations

The developer can specify values of singleton predicate explicitly. In some cases
the analysis alone can infer this information using the following rules:

148

• procedure activation records are singleton if they are not members of a cycle
the call graph;

• if the roles Rs ∈ R are singleton and r′ ∈ R is such that one of the following
criteria holds:

– there exists f ∈ F such that fieldf (r) ⊆ Rs, or

– there exists i such that sloti(r
′) ⊆ Rs,

then r′ is a singleton role as well.

When analyzing programs with singleton roles, the role analysis maintains the
invariant that there is at most one node for each singleton role r by preventing
multiple nodes with role r to go offstage. When traversing data structures, the
singleton constraint eliminates cases in where two nodes with a singleton role are
brought onstage.

A natural generalization of singleton roles arises in the context of parametrized
roles [138]. The extension to parametrized roles is orthogonal to the other aspects of
roles and we do not consider it in this chapter.

6.8.4 Cascading Role Changes

In some cases it is desirable to change roles of an entire set of offstage objects without
bringing them onstage. We use the statement setRoleCascade(x1 : r1, . . . , xn : rn)
to perform such cascading role change of a set of nodes. The need for cascading role
changes arises when roles encode reachability properties.

Example 34 Procedure main in Figure 6-32 has two root variables, buffer and
work, each being a root for a singly linked acyclic list. Elements of the first list have
BufferNode role and elements of the second list have WorkNode role. At some point
procedure swaps the root variables buffer and work, which requires all nodes in both
lists to change the roles. These role changes are triggered by the setRoleCascade

statement. The statement indicates new roles for onstage nodes, and the analysis
cascades role changes to offstage nodes. 4

Given a role graph 〈H, ρ, K, E〉 cascading role change finds a new valid role assign-
ment ρ′ where the onstage nodes have desired roles and the roles of offstage nodes are
adjusted appropriately. Figure 6-33 shows abstract execution of the setRoleCascade
statement. Here neighbors(n,H) denotes nodes in H adjacent to n. The condition
cascadingOk(n,H, ρ,K, ρ′) makes sure it is legal to change the role of node n from
ρ(n) to ρ′(n) given that the neighbors of n also change role according to ρ′. This
check resembles the check for setRole statement in Section 6.6.2. Let r = rho(n)
and r′ = ρ′(n). Then cascadingOk(n,H, ρ,K, ρ′) requires the following conditions:

1. 〈n, f, n1〉 ∈ H implies ρ′(n1) ∈ fieldf (r
′);

149

role BufferNode {

fields next : BufferNode | null;

slots BufferNode.next | main.buffer;

acyclic next;

}

role WorkNode {

fields next : WorkNode | null;

WorkNode.next | main.work;

acyclic next;

}

procedure main()

rootvar buffer : BufferNode | null,

work : WorkNode | null;

auxvar x, y;

{

// create buffer and work lists

...

// swap buffer and work

x = buffer;

y = work;

buffer = y;

work = x;

setRoleCascade(x:WorkNode, y:BufferNode);

}

Figure 6-32: Example of a Cascading Role Change

150

〈H, ρ, K, τ, E〉 st;〈H, ρ′, K, τ, E〉
st = setRoleCascade(x1 : r1, . . . , xn : rn)

ni : 〈proc, xi, ni〉 ∈ H
ρ′(ni) = ri

ρ′(n) = ρ(n), n ∈ onstage(H) \ {ni}i

N0 = {n ∈ offstage(H) | ∃n′ ∈ neighbors(n,H) : ρ(n′) 6= ρ′(n′)}
∀n ∈ N0 : cascadingOk(n,H, ρ,K, ρ′)

Figure 6-33: Abstract Execution for setRoleCascade

2. slotno(r′) = slotno(r) = k, and for every list 〈n1, f1, n〉, . . . , 〈nk, fk, n〉 ∈ H
if there is a permutation p : {1, . . . , k} → {1, . . . , k} such that 〈ρ(ni), fi〉 ∈
slotpi

(r), then there is a permutation p′ : {1, . . . , k} → {1, . . . , k} such that
〈ρ(ni), fi〉 ∈ slotpi

(r′);

3. identity relations were already satisfied or can be explicitly checked: 〈f, g〉 ∈
identities(ρ′(n)) implies

(a) 〈f, g〉 ∈ identities(ρ(n)) or

(b) for all 〈n, f, n′〉 ∈ H: K(n′) = i, and
if 〈n′, g, n′′〉 ∈ H then n′′ = n;

4. either acyclic(ρ′(n)) ⊆ acyclic(ρ(n)) or
acycCheck(n, 〈H, ρ′, K〉, offstage(H)).

In practice there may be zero or more solutions that satisfy constraints for a given
cascading role change. Selecting any solution that satisfies the constraints is sound
with respect to the original semantics. A useful heuristic for searching the solution
space is to first explore branches with as few roles changed as possible. If no solutions
are found, an error is reported.

6.8.5 Partial Roles

In this section we extend our framework to allow combining roles that specify mutually
independent properties of objects. First we generalize field and slot constraints to
allow specifying partial information about fields and slots of each role. We then give
an alternative semantics of roles where each node is assigned a set of roles. A pleasant
property of this semantics of roles is that the sets of roles applicable to each field can
be defined as the greatest fixpoint of the recursive role definitions. We then sketch an
extension of context matching and call site role reconstruction that allows procedures
to be analyzed without specifying the full set of roles of objects in the initial role
graphs.

Partial Roles and Role Sets

This section introduces partial roles. A partial role gives constraints only for a subset
of fields and slots. We use the term simple roles to refer to non-partial roles considered
so far.

151

role TR { // tree root

fields left : TN | null,

right : TN | null;

left,right slots ;

}

role TN { // tree node

fields left : TN | null,

right : TN | null;

left,right slots : TR.left | TR.right | TN.left | TN.right;

}

Figure 6-34: Definition of a Tree

Example 35 Consider the definition of a tree in Figure 6-34. This definition specifies
that a data structure is a tree along the left and right fields, but does not constrain
fields other than left and right. Similarly, the definition of a linked list in Figure 6-
35 gives only requirements for the next field. Note how definition of LH specifies a

role LH { // list header

fields next : NL | null;

next slots ;

}

role LN { // list node

fields next : LN | null;

next slots LH.next | LN.next;

}

Figure 6-35: Definition of a List

partial “negative” slot constraint, namely the absence of a next field.
A definition for a threaded tree, for example, can leverage the preceding role

definitions to define the composite data structure.

role LTN extends TN,LN { // linked tree node

fields data : Stored;

}

Every object playing LTN role simultaneously plays TN and LN roles as well. In general,
an object playing more roles satisfies more constraints. 4

For partial roles, we change the convention that the fields not mentioned in a
fields declaration are always constrained to be null. Instead, the absence of a
field f implies no constraints on the roles that field f references. A slot constraint

152

for a partial role r contains an additional set scope(r) = {f1, . . . , fk} of fields that
determine the scope of the slot constraints. A slot declaration gives complete aliases
for references along scope(r) fields, but poses no requirements on aliases from other
fields.

Partial role definitions can reuse previous role definitions using the extends key-
word. We represent the extends relationships by the set of roles subroles(r) for each
role r. A set S ⊆ R is closed if subroles(r) ⊆ S for every r ∈ S.

6.8.6 Semantics of Partial Roles

To give the semantics of partial roles we define role-set assignment ρs
c to assign a

closed set of roles to every object. We say that a role assignment ρc is a choice of
a role-set assignment ρs

c iff ρc(r) ∈ ρs
c(r) for every role r ∈ R. We first generalize

locallyConsistent to take the role of the object o independently of role assignment ρc.
This definition is identical to Definition 2 except that the role of the object o is r
instead of ρc(o).

Definition 36 locallyConsistent(o,Hc, ρc, r) iff all of the following conditions are met.

1) For every field f ∈ F and 〈o, f, o′〉 ∈ Hc, ρc(o
′) ∈ fieldf (r).

2) Let {〈o1, f1〉, . . . , 〈ok, fk〉} = {〈o′, f〉 | 〈o′, f, o〉 ∈ Hc} be the set of all aliases
of node o. Then k = slotno(r) and there exists some permutation p of the set
{1, . . . , k} such that 〈ρc(oi), fi〉 ∈ slotpi

(r) for all i.

3) If 〈o, f, o′〉 ∈ Hc, 〈o′, g, o′′〉 ∈ Hc, and
〈f, g〉 ∈ identities(r), then o = o′′.

4) It is not the case that graph Hc contains a cycle
o1, f1, . . . , os, fs, o1 where o1 = o and
f1, . . . , fs ∈ acyclic(r)

We now define the local role-set consistency as follows.

Definition 37 locallyRSConsistent(o,Hc, ρ
s
c) iff for every r ∈ ρs

c(o) there exists a
choice ρc of ρs

c such that locallyConsistent(o,Hc, ρc, r). We say that a heap Hc is role-
set consistent for a role-set assignment ρs

c if locallyRSConsistent(o,Hc, ρ
s
c) for every

o ∈ nodes(Hc). We call such role-set assignment ρs
c a valid role-set assignment.

We similarly extend the definitions of consistency for a given set of nodes from Defi-
nition 20.

The following observations follow from Definition 37:

1. if ρs
c is a valid role assignment, then |ρs

c(o)| ≥ 1 for every object o, otherwise
there would be no ρc which is a choice for ρs

c;

2. if |ρs
c(o)| = 1 for all o ∈ nodes(Hc), then heap consistency for partial roles is

equivalent to heap consistency for simple roles.

153

Fixpoint Definition of the Greatest Role Assignment

We first show that the set of all valid role-set assignments has a least upper bound.
We first define a partial order on functions from nodes(Hc) to P(R).

Definition 38 ρs
c1 v ρs

c2 iff ρs
c1(o) ⊆ ρs

c2(o) for every o ∈ Hc.

We then introduce the pointwise union.

Definition 39
(ρs

c1 t ρs
c2)(o) = ρs

c1(o) ∪ ρs
c2(o)

The union of two closed role-sets is a closed role-set, so the merge of two role-set
assignments is still a role-set assignment. Moreover, if both role-set assignments are
valid, the pointwise union is also a valid role-set assignment, as the following property
shows.

Property 40 Let ρs
c1 and ρs

c2 be valid role-set assignments for the heap Hc. Then
ρs

c1 t ρs
c2 is also a valid role assignment.

The property holds because every role assignment ρc which is a choice of ρs
c1 or a

choice of ρs
c2 is also a choice of ρs

c1 t ρs
c2.

Because there is a finite number of role-set assignments, Property 40 implies the
existence of the greatest role-set assignment ρsM

c which is the merge of all valid role
assignments.

Definition 41 Let ρs
c1, . . . , ρs

cN be all valid role assignments for the heap Hc. We
define the greatest role assignment ρsM

c as

ρsM
c = ρs

c1 t · · · t ρs
cN

Definition 42 Let ρs
c : nodes(Hc) → P(R). Then F (ρs

c) : nodes(Hc) → P(R) is a
defined by

F (ρs
c)(o) = {r ∈ ρs

c(o) | subroles(r) ⊆ ρs
c(o) and

there exists a choice ρc of ρs
c such that

locallyConsistent(o,Hc, ρc, r)}

Property 43 The greatest role-set assignment for a concrete heap Hc is a greatest
fixpoint of function F .

Proof. It is easy to see that F (ρs
c1) v F (ρs

c2) whenever ρs
c1 v ρs

c2. Also, F (ρs
c) v ρs

c

and the empty role-set assignment ρs
c(o) = ∅ is a fixpoint of F .

Let ρs
c0 be such that ρs

c0(o) = R for all o ∈ Hc. Consider the sequence F i(ρs
c0) for

i ≥ 0. There exists i0 such that F i(ρs
c0) = ρs

c∗ for i ≥ i0 where ρs
c∗ is a fixpoint of F .

Because F (ρs
c∗)(o) = ρs

c∗(o) for each o, it follows that ρs
c∗ is a valid role-set assignment.

Moreover, if ρs
c is any other valid role-set assignment, then ρs

c v F i(ρs
c0) for every i, so

ρs
c v ρs

c∗. We conclude that the fixpoint ρs
c∗ is the greatest valid role assignment ρsM

c .

154

Expressibility of Partial Roles

The partial roles allow data structures to be described compositionally. Another
nice property of partial roles is that there is a canonical role-set assignment ρsM

c .
A drawback of considering only the greatest role-set assignment is that some data
structure constraints are not expressible.

Example 44 The set of cycles of even length can be described using the following
simple role definitions.

role Even {

fields next : Odd;

slots Odd.next;

}

role Odd {

fields next : Even;

slots Even.next;

}

No odd length cycle satisfies this role assignment. Each even length cycle o1, . . . , o2k

has two role assignments ρc1 and ρc2, where ρc1(o2i+1) = Odd and ρc1(o2i) = Even,
whereas ρc2(o2i+1) = Even and ρc2(o2i) = Odd.

On the other hand, the same role definitions have unique greatest role assignment
ρs

c = ρs
c1 t ρs

c2, where ρs
c(o) = {Even, Odd} for all o. This role assignment is valid not

only for even length cycles, but also for odd length cycles. 4
The constraints that can be specified by partial roles and role-set assignments are

similar to constraints that can be specified using simple roles and role assignments.
In the absence of acyclicity constraints, given a set of partial role definitions, it is
possible to exhibit a set of simple role definitions which capture the same constraints.

This construction introduces a simple role each closed set of partial roles, similar
to the construction showing the equivalence of deterministic and nondeterministic
finite state automata [146] or deterministic and nondeterministic finite tree automata
[101, 65]. Construction is complicated by the form of our slot constraints, but can
be done by introducing additional roles that simulate slot constraint conjunction.
(The ability to perform conjunction of slot constraints is an easy consequence of the
equivalence of slot constraints with the generalized slot constraints in Section 6.9.1.)
The construction could also be performed for acyclicity constraints if we generalized
them to specify a family of sets of fields and forbid cycles along paths with fields from
each of the sets in the family.

Even after performing this construction, it remains the fact that partial roles
induce additional partial order structure, which is not available in simple roles.

6.8.7 Role Subtyping

We now consider the problem of role subtyping at procedure call sites. A larger set
of nodes for a node implies stronger constraints for that node. We would then expect

155

a procedure call to be legal when the caller’s role-sets are supersets of role-sets of
the initial context. The problem is that a larger set ρs

c(n), while implying a stronger
constraint on the node n, implies weaker constraint on the nodes adjacent to n. The
following example shows that the superset conditions on role-sets is in general not
sufficient.

Example 45 Define roles A and B as follows:

role A {

f slots A.f,

B.f | A.f;

}

role B { }

role C { }

Consider the following role graph in the caller

AB B

A

f
f

f f

f

C

a
b

c

and assume that the callee has the following initial role graph.

B B

A

f
f

f f

f

C

a
b

c

Clearly there is a homomorphism µ from the caller’s role graph to the initial role
graph such that ρs

1(n) ⊇ ρs
2(µ(n)) for all nodes n. The following heap is an instance

of the caller’s role graph.

156

AB

A

B

B

C

f

f

f
f

a
b

c

However, it is not possible to assign sets of roles to objects to make it an instance of
the role graph in the initial context. 4

The following property shows that a simple restriction on slot constraints makes
the role-set inclusion criterion valid.

Property 46 Let 〈H, ρs, K〉 and 〈HIC, ρ
s
IC, KIC〉 be role graphs and µ : nodes(H) →

nodes(HIC) a graph homomorphism such that:

1. ρs(n) ⊇ ρs
IC(µ(n)) for all n ∈ nodes(H);

2. if 〈n1, f, n0〉 ∈ H, r0 ∈ ρs
IC(µ(n0)), r1 ∈ ρs(n1), and 〈r1, f〉 ∈ sloti(r0) for some

i, then 〈r2, f〉 ∈ sloti(r0) for some r2 ∈ ρs
IC(µ(n1)).

Let Hc be a concrete heap such and ρs
c1 a valid role-set assignment for Hc. Assume that

h is a homomorphism from Hc to H such that ρs
c1(o) = ρs(h(o)) for all o ∈ nodes(Hc).

Define
ρs

c2(o) = ρs
IC(µ(h(o)))

for all o ∈ nodes(Hc). Then ρs
c2 is also a valid role-set assignment for Hc.

Proof. To show that ρs
c2 is a valid role-set assignment for Hc, consider any object

o ∈ nodes(Hc) and one of its roles r0 ∈ ρs
c2(o). Because r0 ∈ ρs

c2(o), identities and
acyclicity constraints hold for o. We show that field and slot constraints hold as well.

To show that field constraints of r0 hold, consider any edge 〈o, f, o1〉 ∈ Hc. Then
〈n, f, n1〉 ∈ HIC where n = µ(h(o)) and n1 = µ(h(o1)). Because HIC is a subgraph of
the static role diagram, fieldf (r0)∩ ρs

IC(n1) 6= ∅, otherwise the edge 〈n, f, n1〉 would be
superfluous. Since ρs

2(o1) = ρs
IC(n1) by definition of ρs

2, we have fieldf (r0) ∩ ρs
2(o1) 6= ∅

which means that the field constraint for f is satisfied in Hc.
To show that slot constraints of r0 hold, consider any edge 〈o1, f, o〉 ∈ Hc. Because

ρs
c1 is a valid role assignment and r0 ∈ ρs

c1(o), there exists slot i and role r1 ∈ ρs
c1(o1)

such that 〈r1, f〉 ∈ sloti(r0). By the assumption 2), since 〈h(o1), f, h(o)〉 ∈ H, r0 ∈
ρs

IC(h(o)) and r1 ∈ ρs(h(o1)), there exists r2 ∈ ρs
IC(µ(h(o1)) such that 〈r2, f〉 ∈ sloti(r0).

Since ρs
IC(µ(h(o1)) = ρs

c2(o1), it follows that the slot constraint of o is satisfied.

157

The condition 2) in Property 46 can be replaced by a stronger but simpler condi-
tion.

Definition 47 We say that role r0 depends on r1 iff for some slot i, 〈r1, f〉 ∈ sloti(r0)
and there exists another slot j 6= i of role r0 such that 〈r2, f〉 ∈ slotj(r0) for some role
r2.

Property 48 Let 〈H, ρs, K〉 and 〈HIC, ρ
s
IC, KIC〉 be role graphs and µ : nodes(H) →

nodes(HIC) a graph homomorphism such that:

1’) ρs(n) ⊇ ρs
IC(µ(n)) for all n ∈ nodes(H);

2’) if r1 ∈ ρs(n) \ ρs
IC(µ(n)) for some n, and r0 depends on r1, then for all n′ ∈

nodes(HIC), r0 /∈ ρs
IC(n

′).

Then the condition 2) of Property 46 is satisfied.

Proof. Let 〈n1, f, n〉 ∈ H, r0 ∈ ρs
IC(n), and r1 ∈ ρs(H) and 〈r1, f〉 ∈ sloti(r0). If

r1 ∈ ρs
IC(µ(n)) then we can take r2 = r1 and the condition 2) is satisfied. Now assume

r1 ∈ ρs(n) \ ρs
IC(µ(n)). Since r0 ∈ ρs

IC(n), by assumption 2’), r0 does not depend on
r1. This means that i is the only slot of r0 that contains the field f . Because the
edge 〈µ(n1), f, µ(n)〉 is in HIC, and HIC, it follows that 〈r2, f〉 ∈ sloti(r0) for some
r2 ∈ ρs

IC(n1). This means that the condition 2) is satisfied.

Based on previous properties we can derive a context matching algorithm that
allows role graphs in the call site to have larger sets of roles than nodes in the initial
context.

In order to further increase the precision of call site verification, we would like
to preserve the larger larger set of role graphs in the caller. This is possible because
procedure effects specify which object fields can be modified during execution of the
caller. The role reconstruction algorithm for partial roles is similar to algorithm in
Figure 6-29 except that it operates on sets of roles instead of individual roles. To
consider how to preserve the wider set of roles, consider a role r ∈ ρs(n) \ ρs

IC(µ(n)).
The role reconstruction splits n into a set of nodes each of which has assigned some
role-set S. In the absence of write effects the algorithm would need to generate nodes
with role-sets S that do not contain r. If the write effects imply that the role r
cannot be violated, then only role-sets S containing r need to be generated, which
increases the precision and reduces the size of role graphs after the procedure call.
To compute the set of roles that are preserved, role reconstruction starts with sets
p(n) = ρs(n) \ ρs

IC(µ(n)) assigned to each node n, and iteratively decreases sets p(n)
if a r ∈ p(n) depends on a modified field or previously eliminated role.

We note that, similarly to multislots, partial roles allow a statically unbounded
number of aliases. Whereas multislots explicitly give permission for existence of
certain aliases, partial roles allow all the existence of aliases not mentioned in the role
definition.

158

6.9 Decidability Properties of Roles

This section presents some further results about properties of roles. The first sec-
tion proves decidability of the satisfiability problem for roles with only field and slot
constraints. The second section proves undecidability of the implication problem for
roles.

6.9.1 Roles with Field and Slot Constraints

In this section we closely examine more closely properties of roles defined using solely
field and slot constraints. We ignore identity and acyclicity constraints in this and
the following section.

We show that we can use more general form of slot constraints without changing
the expressive power of roles. We then show how the generalized slot constraints
can entirely replace the field constraints, which means that these constraints are not
strictly necessary once the full set of role definitions is given. Finally we show decid-
ability of the satisfaction problem for a set of roles containing only slot constraints.

Forms of Slot Constraints

The particular form of our slot constraints introduced in Section 6.4.1 may seem some-
what arbitrary. In this section we introduce a more general form of slot constraints
and show that it can be reduced to our original role constraints. This observation
gives insight into the nature of slot constraints and is used in further sections.

Definition 49 A generalized slot constraint for role r, denoted gslot(r), is a list
c1, . . . , cn of incoming configurations. Each incoming configuration cs is a list of
pairs 〈rs1, fs1〉, . . . , 〈rsqs , fsqs〉 ∈ R× F where qs is the length of cs.

By abuse of notation, we write 〈rj, fj〉 ∈ cs if 〈rj, fj〉 is a member of the list cs where
cs represents the incoming configuration.

In addition to the role assignment ρc : nodes(Hc) → R, we introduce an incoming
configuration assignment ν : nodes(Hc) → N . For each node o, the incoming config-
uration assignment selects an incoming configuration cν(o) of the the role ρc(o). The
local consistency is then defined as follows.

Definition 50 locallyConsistent(o,Hc, ρc, ν) holds for generalized roles iff the follow-
ing conditions are met. Let r = ρc(o).

1) For every field f ∈ F and 〈o, f, o′〉 ∈ Hc, ρc(o
′) ∈ fieldf (r).

2) Let {〈o1, f1〉, . . . , 〈ok, fk〉} = {〈o′, f〉 | 〈o′, f, o〉 ∈ Hc} be the set of all aliases of
node o and s = ν(o). Then k = qs and there exists a permutation p of the set
{1, . . . , k} such that 〈ρc(opi

), fpi
〉 = 〈rsi, fsi〉 for 1 ≤ i ≤ k where 〈rsi, fsi〉 is the

i-the element of the list in incoming configuration cs.

We say that the pair 〈ρc, ν〉 of role assignment and incoming configuration assignment
is valid for Hc iff locallyConsistent predicate holds for all nodes o ∈ nodes(Hc); the
heap Hc is consistent if there exists a valid pair 〈ρc, ν〉. A nonempty heap consistent
with a given set of role definition is called a model for the role definitions.

159

Equivalence of Original and Generalized Slots

Our original slot constraints sloti(r) for 1 ≤ i ≤ k where k = slotno(r) can be
represented as generalized slot constraints with a list of all incoming configurations
c = 〈r1, f1〉, . . . , 〈rk, fk〉 for 〈ri, fi〉 ∈ sloti(r), 1 ≤ i ≤ k. This representation is a
direct consequence of Definitions 50 and 2.

Conversely, given a set of role definitions with generalized slots, we can construct
a set of role definitions with original slots as follows. Introduce a role r/c for each
incoming configuration c of role r with generalized slot constraint. Let origRoles(r)
denote the set of new roles r/c for all incoming configurations c of r. Define field and
slot constraints for r/c as follows:

fieldf (r/c) =
⋃
{origRoles(r′) | r′ ∈ fieldf (r)}

sloti(r/c) = {〈ri/c
′, fi〉 | c′ is an incoming configuration of ri}

where c = 〈r1, f1〉, . . . , 〈rk, fk〉. Let role assignment ρc assign roles with general-
ized slots to objects and ν be the incoming configuration assignment such that
locallyConsistent predicate holds for all heap objects. Define the assignment of original
roles by

ρ′c(o) = ρc(o)/ν(o)

Then locallyConsistent predicate holds for the ρ′c assigning original roles to objects.
We will use the generalized role constraints to establish the decidability of the

satisfiability problem. We first show how to eliminate field constraints.

Eliminating Field Constraints

In this section we argue that the field constraints are mostly subsumed by slot con-
straints if the entire set of role definitions is given. The constraint r′ /∈ fieldf (r) can
be specified as 〈r, f〉 /∈ sloti(r

′) for all slots i in the original slot constraints. In the
generalized slot constraints this conditions is specified by making sure that 〈r, f〉 is
not a member of any of the incoming configurations c of role r′. In order to allow this
construction to work for null references, we introduce multislot declaration for nullR
role by defining 〈r, f〉 ∈ multislots(nullR) iff nullR ∈ fieldf (r).

After this transformation, the field declarations will be satisfied whenever (gener-
alized) slot constraints and nullR multislot constraint are satisfied. In the sequel we
therefore ignore the field constraints.

Decidability of the Satisfiability Problem

In this section we show that is is decidable to determine if a given set of role definitions
(containing only field and slot constraints) has a model. We show how to reduce this
question to the solvability of an integer linear programming problem.

Assume a set of role definitions for roles R = {r1, . . . , rn}. Let Hc be a concrete
heap, ρc a role assignment and ν an incoming configuration assignment. Define the
following nonnegative integer variables. For every i, where 1 ≤ i ≤ n, let xi be the

160

number of nodes with role ri:

xi = |{o ∈ nodes(Hc) | ρ(o) = ri}|

Let yjs be the number of nodes with role ρc(rj) for which ν selects the incoming
configuration cs:

yjs = |{o ∈ nodes(Hc) | ρ(o) = rj, ν(o) = cs}|

We also introduce the values nfi denoting the number of null references from objects
with role ri along the field f :

nfi = |{〈o, f, null〉 ∈ Hc | ρc(o) = ri}|

Assume that locallyConsistent predicate holds for all objects o ∈ nodes(Hc). By
partitioning the set of objects first by roles and then by incoming configurations of
each role, we conclude that the following equations hold for 1 ≤ j ≤ n:

qj∑
s=1

yjs = xj (6.1)

Next, let us count for each role ri and each field f ∈ F , the number of f -references
from objects in ρ−1

c (ri). We assumed that each object has the field f , so counting
the source of these references yields xi. Out of these, nfi are null references, and
the remaining ones fill the slots of objects with incoming configurations that contain
〈ri, f〉. We conclude that for each f ∈ F and 1 ≤ i ≤ n the following linear equation
holds:

xi = nfi +
∑

〈ri,f〉∈cs

yjs (6.2)

Finally, for all 〈ri, f〉 /∈ multislots(nullR), we have

nfi = 0 (6.3)

We call equations 6.1, 6.2, and 6.3 the characteristic equations of role constraints.
We concluded that characteristic equations hold for each valid role and incoming

configuration assignment. We now argue that a nontrivial solution of these equations
implies the existence of a heap Hc, the role assignment ρc and incoming configuration
assignment ν such that locallyConsistent predicate is satisfied for all objects of the
heap.

Assume that there is a nontrivial solution of the characteristic equations. Con-
struct a heap Hc with N nodes where N =

∑
i=1 xi. Partition the nodes of the heap

into n classes and assign ρc(o) = ri for nodes in class i, such that the definition of
xi is satisfied for every i. This is possible by the choice of N . Next, partition each
class ρ−1

c (ri) into disjoint sets, one set for each incoming configuration, and assign
ν(o) = cs such that the definitions of yjs are satisfied. This is always possible because
equation 6.1 holds. Next, add edges to graph Hc so that slot constraints are satisfied.

161

This can be done by a simple greedy algorithm which adds one edge at a time so that
it does not violate any slot constraints. This construction is guaranteed to succeed
because of equation 6.2. The condition 6.3 guarantees that the resulting graph null
references will be present only for the fields for which they are allowed. The result is
a heap Hc consistent with the role definitions.

The next theorem follows directly from the previous argument and the decidability
of the integer linear programming problem.

Theorem 2 It is decidable to determine if there exists a model for a given set of role
definitions.

In addition to showing the decidability, the preceding argument also illustrates
that slot and field constraints are insensitive to graph operations that switch the
source of a reference from object o1 to object o2, as long as ρc(o1) = ρc(o2). This
implies that certain heap properties are not expressible using slot and field constraints
alone. In particular, slot constraints do not prevent cycles, which justifies introducing
the acyclicity constraints into the role framework.

6.9.2 Undecidability of Model Inclusion

In this section we explore the decidability of the question “is the set of models of one
set of role definitions S1 included in the set of models of another set of role definitions
S2”. This appears to be a more difficult problem than satisfiability of role definitions.
Indeed, we proved in Section 6.9.1 that the satisfiability is decidable for a restricted
class of role definitions; in this section we prove that the model inclusion problem is
undecidable for acyclic models.

Our role specifications are interpreted with respect to graphs which need not be
trees and can even contain cycles. It can therefore be expected that strong enough
properties are undecidable for such broad class of models. A common technique to
prove undecidability for problems on general graphs is to consider the class of graphs
called grids.

We define a grid as a labelled graph with edges x along the x-axis and edges y
along the y axis.

Definition 51 A grid m × n where m,n ≥ 5 is any graph isomorphic to the graph
with nodes

V = {1, . . . , m} × {1, . . . , n}
and edges E = Er ∪ Ed where

Ex = {〈〈i, j〉, x, 〈i + j, j〉〉 | 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n}

Ey = {〈〈i, j〉, y, 〈i, j + 1〉〉 | 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1}
The idea is to reduce the existence of a Turing machine computation history [182, 158]
to the problem on graphs considered. The rules for computation history are local and
thus can be expressed using slots and fields. However, it is not possible to use roles

162

to directly express the condition that a graph is a grid. The problem is that the
commutativity condition o.x.y = o.y.x for grids cannot be captured using our role
constraints, as the following reasoning shows.

Assume that there are role definitions which describe the class of grids. Since
grids do not have any identities 〈f, g〉, we may assume that these role definitions
do not contain identity declarations. Because the number of roles and incoming
configurations is finite, there exists a sufficiently large grid E, a valid role assignment
ρc and a valid incoming configuration assignment ν such that for some i, j where
2 < i < j, all of the following conditions hold:

ρc(〈i, 2〉) = ρc(〈j, 2〉)
ρc(〈i, 3〉) = ρc(〈j, 3〉)
ν(〈i, 2〉) = ν(〈j, 2〉)
ν(〈i, 2〉) = ν(〈j, 2〉)

1 2 2 3

4

4

7

5 5

5 5

6

6

8 8 9

x x x

x
x x

x
x x

x x x

y

y

y y y

y y

y

y

y y y

Figure 6-36: A Grid after Role Preserving Modification

Define a new graph E ′ in the following way (see Figure 6-36).

E ′ = (E \ {〈〈i, 2〉, x, 〈i, 3〉〉, 〈〈j, 2〉, x, 〈j, 3〉〉})
∪ {〈〈i, 2〉, x, 〈j, 3〉〉, 〈〈j, 2〉, x, 〈i, 3〉〉}

We claim that the new graph E ′ also satisfies the same role and incoming configuration
assignment. To see this, observe that the field and slot constraints remain satisfied
because the new edges connect nodes with same roles as in E, there are no identities
in role definitions, and the graph remains acyclic so acyclicity conditions cannot be
violated. But E ′ is not isomorphic to a grid, because every isomorphism would have

163

to be identity function on node 〈1, 1〉, and therefore also identity on all nodes 〈1, i〉
for i > 1. Next, since y-edges in E ′ are the same as in E, the isomorphism would
have to be identity function on all nodes, and this is not possible due to the change
performed in the set of x-edges. We conclude there is no set of role definitions that
captures the class of grids.

The idea of our undecidability construction is to use one set of role definitions S1

to approximate the grid up to the commutativity condition o.x.y = o.y.x as well as
to encode the transitions of a Turing machine. We then use the another set of role
definitions S2 to express the negation of the commutativity condition. The models of
S1 are not included in models of S2 if and only if there exists a model for S1 which is
not a model of S2. Any such model will have to be a grid because it satisfies S1 but
not S2, and the roles of S1 will encode the accepting Turing machine computation
history. Hence the question whether such a model exists will be equivalent to the
existence of an accepting Turing machine computation history and the undecidability
of model inclusion will follow from the undecidability of the halting problem.

Let us first consider how S1 and S2 define the grid used to encode the computation
histories. Without the loss of generality, we restrict ourselves to models that are
connected graphs. We define S1 to be a refinement of the definition for a sparse
matrix from Example 3, Figure 6-4. From properties in Section 6.4.3 we conclude
that the connected models of E are graphs for which there exist m, n ≥ 3 such that:

1. there is exactly one node A1, one node A3, one node A7 and one node A9;

2. there are m− 2 nodes A2 (by the choice of m);

3. there are m − 2 nodes A8 because the acyclic lists along y establish bijection
with A2 nodes;

4. there are n− 2 nodes A4 (by the choice of n);

5. there are n − 2 nodes A6 because the acyclic lists along x establish bijection
with A4 nodes;

6. there are at least max(m − 2, n − 2) nodes A5 (but not necessarily more than
that).

The idea of role definitions S2 is that if a graph satisfying S1 is not a grid, then
there must exist a node o such that o.x.y 6= o.y.x, which means that o.x.y and o.y.x
can be assigned distinct roles. We construct S2 to require the existence of five distinct
objects o, o.x, o.y, o.x.y and o.y.x with with five distinct roles P , Q, R, and T (see
Figure 6-37). We require Q to be referenced from P.x, R to be referenced from P.y,
T from Q.y and S from R.x. In addition to these five roles, we include the roles that
ensure that are assigned to the remaining nodes of a graph. We construct these roles
to ensure that every model of S2 contains an object of P role, relying on Property 12.

Finally, we explain how to encode the existence of an accepting Turing machine
computation history in the set of role definitions S1. Let M be a Turing machine and
w any input. We use the fact that the computation history of M on input w can be

164

P Q

R
T

S

x

x

y y

Figure 6-37: Roles that Force Violation of the Commutativity Condition

represented as a matrix, and represent the matrix as a grid. Each row of the matrix
represents configuration of the Turing machine encoded as a sequence of symbols.
Because all Turing machine transitions change the tape locally, there is a finite set
W1, . . . ,Wk of 3×2 tiles of symbols that characterize the matrix in the following way.
We call a 3 × 2 window in a the matrix acceptable if it matches a tile. We use the
fact [182] that a matrix represents a computation history of M iff

every 3× 2 window in the matrix is acceptable (6.4)

The condition 6.4 can be split into six conditions C11, C12, C13, C21, C22, C23 where
C ij ensures that every 3 × 2 window is acceptable if it starts at (i1, j1) where i1 ≡ i
(mod 3) and j1 ≡ j (mod 3). Let each tile Wt consist of symbols a11

t , a12
t , a13

t , a21
t ,

a22
t , a23

t .

The set of role definitions S1 is similar to roles in Example 3 except that it splits
the role A5 into multiple roles. Each new role of S1 is a sixtuple of positions (ts, is, js),
where 1 ≤ s ≤ 6, such that ai1j1

t1 = ai2j2
t2 = . . . = ai6j6

t6 . Each position (ts, is, js) in the
role sixtuple ensures that one of the conditions Cij is satisfied where s = 3(i− 1)+ j,
using the slot constraints. Along the x field, if j > 1, a role with position (t, i, j)
as k-th projection can have only aliases from roles with position (t, i, j − 1) as k-th
projection. If j = 1, the aliases can be from roles with (t′, i, 3) as the k-th projection.
Analogous slot constraints are defined for y fields.

An accepting computation history of the Turing machine M exists iff there exists
a matrix where all 3× 2 windows are valid which in turn holds iff there exists a grid
which satisfied the constraints given by role definitions S1. A graph which satisfies
role definitions S1 is a grid iff it does not satisfy the role definitions S2; such graph
exists iff the models of S1 are not included in models of S2. Hence an accepting
computation history of the Turing machine M exists iff the models of S1 are not
included in the models of S2. Since the first question is undecidable, so is the model
inclusion question.

165

6.10 Related Work

In this section we present the relationship of our work with previous approaches to
program analysis, checking, and verification. We first compare our work with the
typestate systems including alias types [183] and calculus of capabilities [71]. We
mention the previous work on aliasing control for object-oriented languages [121]
and the use of roles in object-oriented modeling [162] and database programming
languages [102]. We compare our role analysis with shape types [96], graph types
[152], path matrix analysis [105], and parametric shape analysis [179]. We briefly
relate our approach to some other interprocedural analyses and examine our work in
the context of program verification.

6.10.1 Typestate Systems

A typestate system for statically verifying initialization properties of values was pro-
posed in [188, 187]. The type state checking was based on a linear two-pass typestate
checking algorithm. In this typestate system, the state of an object depends only
on its initialization status. This system did not support aliasing of dynamically allo-
cated structures. Aliasing causes problems for typestate-based systems because the
declared typestates of all aliases must change whenever the state of the referred object
changes. Faced with the complexity of aliasing, [188] resorted to a more controlled
language model based on relations. Requiring the relations to exist only between fully
initialized objects enables verification of initialization status of objects in the presence
of dynamically growing structures. However, this solution is entirely inadequate for
the properties which our role system verifies. Our goal is to verify application-specific
properties of objects, and not object initialization. Different objects stored in dynam-
ically growing data structures have different application-specific properties, which our
system captures as different roles. When object’s properties change, our system ver-
ifies that the change is consistent with all relations in which the object participates.
Our technique is applicable regardless of whether the relations between objects are
implemented as pointer fields of records or in some other way. The data-flow anal-
ysis [177] performs verification of constraints on relations and sets that implement
dynamic structures, but it does not perform instantiation operation like [179] and our
role analysis, which leads to the loss of precision when analyzing destructive updates
to data structures.

More recently proposed typestate approaches [74, 200, 183, 71] use linear types
to support state changes of dynamically allocated objects. The goal of these systems
is to enforce safety properties of low-level code, in particular memory management.
This is in contrast with our system which aims at verifying higher-level constraints
in a language with a garbage collected heap memory model. The capability calculus
[71] allows tracking the aliasing of memory regions by doing a form of compile-time
reference counting, but does not track aliasing properties of individual objects. Alias
types [183] represent precisely the aliasing of individual objects referenced by local
variables, but do not support recursive data structures. Recursive alias types [200]
allow specification of recursive data structures as unfolding of basic elaboration steps.

166

This allows descriptions of tree-like data structures with parent pointers, but does
not permit approximating arbitrary data structures. This property of recursive alias
types is shared with shape types [96] and graph types [133] discussed below. Another
difference compared to our work is that these type systems present only a type check-
ing, and not a type inference algorithm, whereas our analysis performs role inference
inside each procedure. The application of these type systems to an imperative pro-
gramming language Vault is presented in [74]. Because it is based on alias types and
capability calculus, Vault’s type system cannot approximate arbitrary data struc-
tures. The type system of Vault tracks run-time resources using unique keys. To
simplify the type checking, Vault requires the equality of sets of keys at each program
point. This is in contrast to predicative data-flow analyses such as role analysis, which
track the sets of possible aliasing relationships at each program point. Our approach
makes the results of the analysis less sensitive to semantic preserving rearrangements
of statements in the program.

Like [206, 207], our role analysis performs non-local inference of program prop-
erties including the synthesis of loop invariants. The difference is that [206, 207]
focus on linear constraints between integers and handle recursive data structures
conservatively, whereas we do not handle integer arithmetic but have a more precise
representation of the heap that captures the constraints between objects participating
in multiple data structures.

6.10.2 Roles in Object-Oriented Programming

It is widely recognized that conventional mechanisms in object-oriented programming
languages do not provide sufficient control over object aliasing. As a result, it is not
possible to prevent representation exposure [79] for linked data structures. As some
previous systems, our roles can be used to avoid representation exposure, even though
this is not the only purpose of roles.

Islands [121] were designed to help reasoning about object-oriented programs. An
island is a set of objects dominated by a bridge object in the graph representing
the heap. To keep track of aliasing, [121] introduces unique and free variables with
reference counts zero and one, respectively. It also defines a destructive read operation
which can be used to pass free objects into procedures. Roles can also be used to
enforce the invariant that an object dominates a set of objects reachable along a given
set of fields by specifying slot constraints that prevent aliases from objects outside the
data structure. Our slot constraints substantially generalize unique and free variables.
Our role analysis uses precise shape analysis techniques, which is in sharp contrast
with purely syntactic rules of [121].

Balloon types [14] is another system that supports encapsulation. It requires
minimal program annotations. The encapsulation in balloon types is enforced using
abstract interpretation. The analysis representation records reachability status be-
tween objects referenced by variables and relationship of these objects with clusters
of objects. In most cases our role analysis is more precise than [14] because we track
the aliasing properties of objects in recursive data structures, and not only properties
of paths between objects.

167

Ownership types [63, 155] introduce the notion of object ownership to prevent
representation exposure. In contrast to the type system [63] where the owner of an
object is fixed, our role analysis allows the objects to change the data structure.
Furthermore, an object in our system can be simultaneously a member of multiple
data structures, and the role analysis verifies the movements of objects specified in
procedure interfaces.

The object-oriented community has also become aware of the benefits of the sys-
tems where the class of an object changes over the course of the computation. Predi-
cate classes [54] describe objects whose class depends on values of arbitrary predicates.
The system [54] computes the values of predicates at run-time and does not attempt
to statically infer values of these predicates, leaving to the user even the responsibility
of ensuring the disjointness of predicates for incomparable classes. One of the features
of predicate classes is a dynamic dispatch based on the current class of the object.
In contrast, we are proposing a a selected family of heap constraints and a static role
analysis that keeps track of these constraints. Our role system does not have dynamic
dispatch. Instead, the declared roles of parameters define a precondition on a proce-
dure call. This precondition changes the operations applicable for an object based on
the statically computable information about the dynamic state of the object. Finally,
[54] does not attempt to define the state of an object based on object’s aliases, which
is the central idea of our approach. Even with the great freedom gained by giving up
the static checking of classes, systems like [54] cannot verify invariants expressed with
our slot constraints; this would in general require adding additional instrumentation
fields that track the inverse references.

Dynamic object re-classification [84] presents a system closer to the conventional
class-based languages, with method invocation implemented through double dynamic
dispatch. The proposal [84] does not statically analyze heap constraints. The work
[208] describes a system inspired by a knowledge based reasoning system. The ob-
ject re-classification in [208] is also implemented by the run-time system. Other ap-
proaches propose using design patterns to overcome the absence of language support
for dynamically changing classes [98, 94, 109, 197].

The term “role” as used in object-oriented modeling and object-oriented database
communities is different from our concept of roles. A role of an object in these
systems does not capture object’s aliasing properties and other heap constraints.
In [162], role denotes the purpose of an object in a collaboration [197] or a design
pattern. Our concept of roles captures the associations between objects in a pattern
by specifying references that originate or terminate at that object. As in our system,
the role of an object in [162] changes over time, and an objects can play multiple
roles simultaneously, which corresponds to our partial roles. Our role system ensures
the conformance of these design concepts with the actual implementation, improving
the reliability of the application. In the database programming language Fibonacci
[102, 11] each object plays multiple roles simultaneously. The interface of an object
depends on the role through which the object is accessed. This is in contrast to
our role system where the role is a structural property of an object. As in most
other database implementations, the system [11] checks the inclusion and cardinality
constraints on associations at run-time, unlike our static analysis.

168

6.10.3 Shape Analysis

The precision of our role analysis for tracking references between heap objects is
closest to the precision of the shape analysis and verification techniques such as [179,
96, 133, 105]. Whereas these systems focus on analyzing a single data structure, our
goal is to analyze interactions between multiple data structures. This is reflected in
our choice of the properties to analyze. In particular, the slot constraints tracked by
our role analysis are a natural generalization of the sharing predicate in [179] and
can be used both to refine the descriptions of data structure nodes and to specify the
membership of objects in multiple data structures.

Shape Types [96] is a system for ensuring that the program heap conforms to a
context-free graph grammar [87, 171]. As a graph description formalism, context-free
graph grammars are incomparable to roles. On the one hand, graph grammars can-
not describe an approximation of sparse matrices or specify participation of objects
in multiple data structures. On the other hand, the nonparametrized role system
presented in this chapter does not include constraints such as “a node must have a
self loop”. We could express such constraints using roles parametrized by objects.
The problem of temporary violations of heap invariants is circumvented in [96] by
using high-level graph rewrite rules called reactions [97] as part of the implementa-
tion language. The model [96] does not support nested reactions on the same data
structure or procedure calls from reactions. In contrast, the model of onstage and off-
stage nodes can be directly applied to a Java-like language, and gives more flexibility
to the programmer because roles can be violated in one part of data structure while
invoking a procedure on disjoint part of the same data structure. There is no sup-
port for procedure specifications in [96]. While simple procedures might be described
precisely as reactions, for larger procedures it is necessary to use approximations to
keep procedure summaries concise. Our system achieves this goal by using effects as
nodeterministic procedure specifications that enable compositional interprocedural
analysis.

Graph types and the pointer assertion logic [133, 131, 152] are heap invariant
description languages based on monadic second-order logic [193, 69, 134]. In these
systems, each graph type data structure must be represented as a spanning tree with
additional pointer fields [152] constrained to denote exactly one target node. If a data
structure is expressible in this way, the system [152] can verify strong properties about
it, an example is manipulation of a threaded tree. Because of constraints on pointer
fields, however, it is not possible to approximate data structures such as trees with a
pointer to the last accessed leaf, skip lists, or sparse matrices. This restriction also
makes it impossible to describe objects that move between data structures while being
members of multiple data structures simultaneously. The moving objects cannot be
made part of any backbone because their membership in data structures changes
over time. The verification of programs in [152] is based on loop invariants. This
makes the technique naturally modular and hence no special mechanism is needed
for interprocedural analysis. Because the logic is second order, the effects of the
procedure can be specified by referring to the sets of nodes affected by the procedure.
The problem with this approach is the complexity of loop invariants that describe

169

the intermediate referencing relationships. In contrast, our role analysis uses fixpoint
computation to effectively infer loop invariants in the form of sets of role graphs and
uses procedures as a unit of a compositional interprocedural analysis.

Like shape analysis techniques [56, 105, 178, 179], we have adopted a constraint-
based approach for describing the heap. The constraint based approach allows us to
handle a wider range of data structures while potentially giving up some precision.

The path matrix approaches [106, 105] have been used to implement efficient
interprocedural analyses that infer one level of referencing relationships, but are not
sufficiently precise to track must aliases of heap objects for programs with destructive
updates of more complex data structures.

The ADDS data structure description language [124] uses declarations of unique
pointers and independent data structure dimensions to communicate data structures
invariants. Later systems [125, 120] replace these constraints with reachability axioms.
None of these systems has a concept of a role which depends on aliasing of an object
from other objects. These systems use sound techniques to apply the data structure
invariants for parallelization and general dependence testing but do not verify that
the data structure invariants are preserved by destructive updates of data structures
[123].

The use of the instantiation relation in role analysis is analogous to the material-
ization operation of [178, 179]. The shape analysis [178, 179] uses abstract interpreta-
tion [70] to compute the invariants that the program satisfies at each program point.
The values of invariants are stored as 3-valued models for the user-supplied instru-
mentation predicates. In contrast, our analysis representation is designed to verify a
particular role programming model with onstage and offstage nodes. Role graphs use
“may” interpretation of edges for offstage nodes and “must” interpretation of edges
adjacent to onstage nodes. The abstraction relation is based on graph homomorphism
and it is not necessarily a function, so there is no unique best abstract transformer
as in the abstract interpretation frameworks. Our role analysis can thus create the
summary nodes with different reachability predicates on demand, depending on the
behavior of the program. Next, the possibility of having multiple role assignments
with static analysis based on the instrumented semantics allows us to capture certain
properties of objects that depend not only on the current state of the heap but also
on the computation history. Reachability properties in our role analysis are derived
from the role graph instead of being explicitly stored as instrumentation predicates.
The advantage of our approach is that it naturally handles a class of reachability
predicates, without requiring predicate update formulae. Our approach thus avoids
the danger of a developer supplying incorrect predicate update formulae and thereby
compromising the soundness of the analysis. A disadvantage of our approach is that
it does not give must reachability information for paths containing several types of
fields where nodes have multiple aliases from those fields. The reason why we can re-
cover reachability for e.g. tree-like data structures is that the slot constraint in a role
which labels a summary node guarantees the existence of the parent for each node in
the path. Our role analysis handles acyclicity by using roles to store the acyclicity
assumptions for nodes in recursive data structures. Acyclicity assumptions are in-
stantiated using the the split operation. Our split operation achieves a similar goal

170

to the focus operation of [179]. However, the generic focus algorithm of [145] cannot
handle the reachability predicate which is needed for our split operation. This is be-
cause it conservatively refuses to focus on edges between two summary nodes to avoid
generating an infinite number of structures. Rather than requiring definite values for
reachability predicate, our role analysis splits according to reachability properties in
the abstract role graph, which illustrates the flexibility of the homomorphism-based
abstraction relation.

Type inference algorithms for dynamically typed functional languages [10, 53] have
the ability to statically approximate the values of types in higher order languages.
These systems usually work with purely functional subsets of functional languages
and do not consider the issues of aliasing.

6.10.4 Interprocedural Analyses

A precise interprocedural analysis [168] extends the shape analysis techniques to treat
activation records as dynamically allocated structures. The approach also effectively
synthesizes an application-specific set of contexts. Our approach differs in that it
uses a less precise but more scalable treatment of procedures. It also uses a compo-
sitional approach that analyzes each procedure once to verify that it conforms to its
specification.

Interprocedural context-sensitive pointer analyses [204, 107, 57] typically compute
points-to relationships by caching generated contexts and using fixpoint computation
inside strongly connected components of the call graph. Because our analysis tracks
more detailed information about the heap, we have chosen to make it compositional
at the level of procedures. Our analysis achieves compositionality using procedure
effects, which are also useful documentation for the procedure. Like [207] our inter-
procedural analysis can apply both may and must effects, but our contexts are general
graphs with summary nodes and not trees.

The system [116] introduces an annotation language for optimizing libraries. The
language describes procedure interfaces which enable optimization of programs that
use matrix operations. The supplied function annotations are not verified for the
conformance with procedure implementations. In contrast, our goal is to analyze
linked data structures to verify heap invariants; it is therefore essential that our role
analysis uses sound techniques for both effect verification and effect instantiation.

Our effects are more specific and precise than effects in [132]; as a result they are
not commutative. Both verification and instantiation of our effects require specific
techniques that precisely keep track of the correspondence between the initial heap
of a procedure and the heap at each program point. Our effect application rules
implement a form of effect masking. If there are no write effects with the NEW as
a target and the source other than NEW, the role graphs in the caller will not be
affected.

171

6.10.5 Program Verification

We can view our role analysis as one component of a general program verification
system. The role analysis conservatively attempts to establish a specific class of heap
invariants, but does not track other program properties. Verifying data structure
invariants is important because the knowledge of these invariants is crucial for rea-
soning about the behavior of programs with dynamically allocated data structures,
which is generally considered difficult. The difficulty of reasoning with dynamically
allocated data structures is indicated by some existing systems that verify properties
of interfaces but lack automatic verification of conformance between interface and
implementation [114], and systems that give up soundness [90, 79]. Advances in rea-
soning about linked data structures [165, 126] might be a useful starting point for
verification tools, although efficient manipulation of properties in verification tools
results in different representation requirements than manual reasoning. A combina-
tion of model checking [122] and sound automatic model extraction [28] might be
an appropriate implementation technique for verifying program properties, but the
applicability of this approach for verifying heap invariants remains to be proven.

6.11 Conclusion

We proposed two key ideas: aliasing relationships should determine, in large part,
the state of each object, and the type system should use the resulting object states as
its fundamental abstraction for describing procedure interfaces and object referenc-
ing relationships. We presented a role system that realizes these two key ideas, and
described an analysis algorithm that can verify that the program correctly respects
the constraints of this role system. The result is that programmers can use roles for
a variety of purposes: to ensure the correctness of extended procedure interfaces that
take the roles of parameters into account, to verify important data structure consis-
tency properties, to express how procedures move objects between data structures,
and to check that the program correctly implements correlated relationships between
the states of multiple objects. We therefore expect roles to improve the reliability
of the program and its transparency to developers and maintainers. By ensuring
that the program conforms to the design constraints expressed in role definitions,
role analysis makes design information available to the compilation framework. This
enables a range of high-level program transformations such as automatic distribution,
parallelization, and memory management.

172

Chapter 7

An Implementation of Scoped
Memory for Real-Time Java

7.1 Introduction

Java is a relatively new and popular programming language. It provides a safe,
garbage-collected memory model (no dangling references, buffer overruns, or memory
leaks) and enjoys broad support in industry. The goal of the Real-Time Specification
for Java [38] is to extend Java to support key features required for writing real-time
programs. These features include support for real-time scheduling and predictable
memory management.

This paper presents our experience implementing the Real-Time Java memory
management extensions. The goal of these extensions is to preserve the safety of
the base Java memory model while giving the real-time programmer the additional
control that he or she needs to develop programs with predictable memory system
behavior. In the base Java memory model, all objects are allocated out of a single
garbage-collected heap, raising the issues of garbage-collection pauses and unbounded
object allocation times.

Real-Time Java extends this memory model to support two new kinds of memory:
immortal memory and scoped memory. Objects allocated in immortal memory live
for the entire execution of the program. The garbage collector scans objects allocated
in immortal memory to find (and potentially change) references into the garbage
collected heap but does not otherwise manipulate these objects.

Each scoped memory conceptually contains a preallocated region of memory that
threads can enter and exit. Once a thread enters a scoped memory, it can allocate
objects out of that memory, with each allocation taking a predictable amount of
time. When the thread exits the scoped memory, the implementation deallocates all
objects allocated in the scoped memory without garbage collection. The specification
supports nested entry and exit of scoped memories, which threads can use to obtain
a stack of active scoped memories. The lifetimes of the objects stored in the inner
scoped memories are contained in the lifetimes of the objects stored in the outer
scoped memories. As for objects allocated in immortal memory, the garbage collector

173

scans objects allocated in scoped memory to find (and potentially change) references
into the garbage collected heap but does not otherwise manipulate these objects.

The Real-Time Java specification uses dynamic access checks to prevent dangling
references and ensure the safety of using scoped memories. If the program attempts to
create either 1) a reference from an object allocated in the heap to an object allocated
in a scoped memory or 2) a reference from an object allocated in an outer scoped
memory to an object allocated in an inner scoped memory, the specification requires
the implementation to throw an exception.

7.1.1 Threads and Garbage Collection

The Real-Time Java thread and memory management models are tightly intertwined.
Because the garbage collector may temporarily violate key heap invariants, it must be
able to suspend any thread that may interact in any way with objects allocated in the
garbage-collected heap. Real-Time Java therefore supports two kinds of threads: real-
time threads, which may access and refer to objects stored in the garbage-collected
heap, and no-heap real-time threads, which may not access or refer to these objects.
No-heap real-time threads execute asynchronously with the garbage collector; in par-
ticular, they may execute concurrently with or suspend the garbage collector at any
time. On the other hand, the garbage collector may suspend real-time threads at any
time and for unpredictable lengths of time.

The Real-Time Java specification uses dynamic heap checks to prevent interactions
between the garbage collector and no-heap real-time threads. If a no-heap real-time
thread attempts to manipulate a reference to an object stored in the garbage-collected
heap, the specification requires the implementation to throw an exception. We inter-
pret the term “manipulate” to mean read or write a memory location containing a
reference to an object stored in the garbage collected heap, or to execute a method
with such a reference passed as a parameter.

7.1.2 Implementation

The primary complication in the implementation is potential interactions between no-
heap real-time threads and the garbage collector. One of the basic design goals in the
Real-Time Java specification is that the presence of garbage collection should never
affect the ability of the no-heap real-time thread to run. We devoted a significant
amount of time and energy working with our design to convince ourselves that the
interactions did in fact operate in conformance with the specification.

7.1.3 Debugging

We found it difficult to use scoped and immortal memories correctly, especially in the
presence of the standard Java libraries, which were not designed with the Real-Time
Specification for Java in mind. We therefore found it useful to develop some debugging
tools. These tools included a static analysis which finds incorrect uses of scoped

174

memories and a dynamic instrumentation system that enabled the implementation
to print out information about the sources of dynamic check failures.

7.2 Programming Model

Because of the proliferation of different kinds of memory areas and threads, Real-Time
Java has a fairly complicated programming model.

7.2.1 Entering and Exiting Memory Areas

Real-Time Java provides several kinds of memory areas: scoped memory, immortal
memory, and heap memory. Each thread maintains a stack of memory areas; the
memory area on the top of the stack is the thread’s default memory area. When the
thread creates a new object, it is allocated in the default memory area unless the
thread explicitly specifies that the object should be allocated in some other memory
area. If a thread uses this mechanism to attempt to allocate an object in a scoped
memory, the scoped memory must be present in the thread’s stack of memory areas.
No such restriction exists for objects allocated in immortal or heap memory.

Threads can enter and exit memory areas. When a thread enters a memory area,
it pushes the area onto its stack. When it exits the memory area, it pops the area
from the stack. There are two ways to enter a memory area: start a parallel thread
whose initial stack contains the memory area, or sequentially execute a run method
that executes in the memory area. The thread exits the memory area when the run
method returns.

The programming model is complicated somewhat by the fact that 1) a single
thread can reenter a memory area multiple times, and 2) different threads can enter
memory areas in different orders. Assume, for example, that we have two scoped
memories A and B and two threads T and S. T can first enter A, then B, then A
again, while S can first enter B, then A, then B again. The objects in A and B are
deallocated only when T exits A, then B, then A again, and S exits B, then A, then
B again. Note that even though the programming model specifies nested entry and
exit of memory areas, these nested entries and exits do not directly translate into a
hierarchical inclusion relationship between the lifetimes of different memory areas.

7.2.2 Scoped Memories

Scoped memories, in effect, provide a form of region-based memory allocation. They
differ somewhat from other forms of region-based memory allocation [100] in that
each scoped memory is associated with one or more computations (each computation
is typically a thread, but can also be the execution of a sequentially invoked run
method), with all of the objects in the scoped memory deallocated when all of its
associated computations terminate.

The primary issue with scoped memories is ensuring that their use does not create
dangling references, which are references to objects allocated in scoped memories

175

that have been deallocated. The basic strategy is to use dynamic access checks to
prevent the program from creating a reference to an object in a scoped memory from
an object allocated in either heap memory, immortal memory, or a scoped memory
whose lifetime encloses that of the first scoped memory. Whenever a thread attempts
to store a reference to a first object into a field in a second object, an access check
verifies that:

If the first object is allocated in a scoped memory, then the second object
must also be allocated in a scoped memory whose lifetime is contained in
the lifetime of the scoped memory containing the first object.

The implementation checks the containment by looking at the thread’s stack of scoped
memories and checking that either 1) the objects are allocated in the same scoped
memory, or 2) the thread first entered the scoped memory of the second object be-
fore it first entered the scoped memory of the first object. If this check fails, the
implementation throws an exception.

Let’s consider a quick example to clarify the situation. Assume we have two scoped
memories A and B, two objects O and P, with O allocated in A and P allocated in B,
and two threads T and S. Also assume that T first enters A, then B, then A again,
while S first enters B, then A, then B again. Now T can store a reference to O in
a field of P, but cannot store a reference to P in a field of O. For S, the situation is
reversed: S cannot store a reference to O in a field of P, but can store a reference to
P in a field of O.

7.2.3 No-Heap Real-Time Threads

No-heap real-time threads have an additional set of restrictions; these restrictions
are intended to ensure that the thread does not interfere with the garbage collector.
Specifically, the Real-Time Specification for Java states that a no-heap real-time
thread, which can run asynchronously with the garbage collector, “is never allowed
to allocate or reference any object allocated in the heap nor is it even allowed to
manipulate the references to objects in the heap.” Our implementation uses five
runtime heap checks to ensure that a no-heap real-time thread does not interfere
with garbage collection by manipulating heap references. The implementation uses
three of these types of checks, CALL, METHOD, and NATIVECALL to guard
against poorly implemented native methods or illegal compiler calls into the runtime.
These three checks can be removed if all native and runtime code is known to operate
correctly.

• CALL: A native method invoked by a no-heap real-time thread cannot return
a reference to a heap allocated object.

• METHOD: A Java method cannot be passed a heap allocated object as an
argument while running in a no-heap real-time thread.

176

• NATIVECALL: A compiler-generated call into the runtime implementation
from a no-heap real-time thread cannot return a reference to a heap allocated
object.

• READ: A no-heap real-time thread cannot read a reference to a heap allocated
object.

• WRITE: As part of the execution of an assignment statement, a no-heap real-
time thread cannot overwrite a reference to a heap allocated object.

7.3 Example

We next present an example that illustrates some of the features of the Real-Time
Specification for Java. Figure 7-1 presents a sample program written in Real-Time
Java. This program is a version of the familiar “Hello World” program augmented
to use the Real-Time Java features. It first creates a scoped memory with a worst-
case Linear Time allocation scheme (LTMemory) with a size of 1000 bytes. It then
runs the code of the run method in this new scope. The run method creates a new
variable time allocation scoped memory (the VTMemory object) and a new Worker

NoHeapRealtimeThread. Both of these objects are allocated in the LTMemory scoped
memory. The run method then starts the Worker thread and executes its join

method, which will return when the Worker finishes.
The Worker thread runs in the new VTMemory. The Worker’s run method allo-

cates a new String[1] in ImmortalMemory and stores a reference to this string in the
static results field of the Main class, which was previously initialized to null. The
Worker then creates a new String, “Hello World!”, to place in the array. The worker
then finishes, and the implementation deallocates all of the objects allocated in the
VTMemory. Back in the main thread, the join method returns, and the main thread
returns back out of its run method. The implementation deallocates all of the objects
allocated in the LTMemory. Finally, the main thread prints “Hello World”, the first
element of the results array, to the screen.

Note that the LTMemory and VTMemory constructors differ slightly from the con-
structors described in the Realtime Java specification. We implemented these con-
structors in addition to the specified constructors to provide additional flexibility and
convenience for the programmer.

This Hello World program is a legal program using our system. However, any of
the following changes would make it an illegal program:

1. Replace the im.newInstance... with ‘‘Hello World!’’ and there would be
an illegal reference from an ImmortalMemory to a ScopedMemory.

2. Replace the im.newArray... with new String[1] and there would be an illegal
static reference to a ScopedMemory.

177

class Worker extends NoHeapRealtimeThread {
Worker(MemoryArea ma) { super(ma); }
public void run() {

ImmortalMemory im = ImmortalMemory.instance();
try {

Main.results =
(String[]) im.newArray(String.class, new int[] { 1 });

Main.results[0] =
(String)im.newInstance(String.class,

new Class[] { String.class },
new Object[] { ‘‘Hello World!’’ });

} catch (Exception e) { System.exit(-1); }
}

}
public class Main {
public static String[] results = null;
public static void main(String args[]) {

LTMemory lt = new LTMemory(1000);
lt.enter(new Runnable() {

public void run() {
Worker w = new Worker(new VTMemory());
w.start();
try { w.join(); }
catch (Exception e) { System.out.println(e); }

}
});
System.out.println(results[0]);

}
}

Figure 7-1: A Real-Time Java Example Program

3. Replace the ImmortalMemory.instance() with HeapMemory.instance(), and
there would be an illegal heap reference in a NoHeapRealtimeThread (READ).

4. Replace the null with a new String[1] and the NoHeapRealtimeThread would
be illegally destroying a heap reference by assigning Main.results (WRITE).

5. Place the Worker w in the main method and the assignment
w = new Worker... would illegally create a reference from the heap to a
ScopedMemory.

6. Place the System.out in the NoHeapRealtimeThread and the
NoHeapRealtimeThread would be illegally reading from the heap. System.out
is initialized in the initial MemoryArea at the start of the program, the HeapMemory
(READ) As a consequence, the NoHeapRealtimeThread cannot System.out.println
the message from the exception.

7. Place the entire Worker w = new Worker(new VTMemory()); outside the LTMemory

178

scope, and the this pointer of the NoHeapRealtimeThread would illegally point
to the heap (METHOD).

7.4 Implementation

Our discussion of the implementation focuses on three aspects: implementing the
heap and access checks, implementing the additional scoped immortal memory func-
tionality, and ensuring the absence of interactions between no-heap real-time threads
and the garbage collector.

7.4.1 Heap Check Implementation

The implementation must be able to take an arbitrary reference to an object and
determine the kind of memory area in which it is allocated. To support this function-
ality, our implementation adds an extra field to the header of each object. This field
contains a pointer to the memory area in which the object is allocated.

One complication with this scheme is that the garbage collector may violate object
representation invariants during collection. If a no-heap real-time thread attempts to
use the field in the object header to determine if an object is allocated in the heap,
it may access memory rendered invalid by the actions of the garbage collector. We
therefore need a mechanism which enables a no-heap real-time thread to differenti-
ate between heap references and other references without attempting to access the
memory area field of the object.

We first considered allocating a contiguous address region for the heap, then check-
ing to see if the reference falls within this region. We decided not to use this approach
because of potential interactions between the garbage collector and the code in the no-
heap real-time thread that checks if the reference falls within the heap. Specifically,
using this scheme would force the garbage collector to always maintain the invariant
that the current heap address region include all previous heap address regions. We
were unwilling to impose this restriction on the collector.

We then considered a variety of other schemes, but eventually settled on the
(relatively simple) approach of setting the low bit of all heap references. The generated
code masks off this bit before dereferencing the pointer to access the object. With this
approach, no-heap real-time threads can simply check the low bit of each reference
to check if the reference points into the heap or not.

Our current system uses the memory area field in the object header to obtain
information about objects allocated in scoped memories and immortal memory. The
basic assumption is that the objects allocated in these kinds of memory areas will
never move or have their memory area field temporarily corrupted or invalidated.

Figure 7-2 presents the code that the compiler emits for each heap check; Figure 7-
3 presents the code that determines if the current thread is a no-heap real-time thread.
Note that the emitted code first checks to see if the reference is a heap reference —
our expectation is that most Real-Time Java programs will manipulate relatively

179

READ WRITE CALL
use of *refExp in exp *refExp = exp; refExp = call(args);

becomes: becomes: becomes:

heapRef = *refExp; heapRef = *refExp; heapRef = call(args);
if (heapRef&1) if (heapRef&1) if (heapRef&1)
heapCheck(heapRef); heapCheck(heapRef); heapCheck(heapRef);

[*heapRef/*refExp] exp refExp = exp; refExp = heapRef;

NATIVECALL METHOD
refExp = nativecall(args); method(args) { body }

becomes: becomes:

heapRef = nativecall(args); method(args) {
if (heapRef&1) for arg in args:
heapCheck(heapRef); if (arg&1)

refExp = heapRef; heapCheck(arg);
body }

Figure 7-2: Emitted Code For Heap Checks

few references to heap-allocated objects. This expectation holds for our benchmark
programs (see Section 7.6).

7.4.2 Access Check Implementation

The access checks must be able to determine if the lifetime of a scoped memory area
A is included in the lifetime of another scoped memory area B. The implementation
searches the thread’s stack of memory areas to perform this check. It first searches
for the occurrence of A closest to the start of the stack (recall that A may occur
multiple times on the stack). It then searches to check if there is an occurrence of
B between that occurrence of A and the start of the stack. If so, the access check
succeeds; otherwise, it fails.

The current implementation optimizes this check by first checking to see if A and
B are the same scoped memory area. Figure 7-4 presents the emitted code for the
access checks, while Figure 7-5 presents some of the run-time code that this emitted
code invokes.

7.4.3 Operations on Memory Areas

The implementation needs to perform three basic operations on scoped and immortal
memory areas: allocate an object in the area, deallocate all objects in the area, and
provide the garbage collector with the set of all heap references stored in the memory
area. Note a potential interaction between the garbage collector and no-heap real-time

180

#ifdef DEBUG
void heapCheck(unwrapped_jobject* heapRef, const int source_line,

const char* source_fileName, const char* operation) {
#else /* operation = READ, WRITE, CALL, NATIVECALL, or METHOD */

void heapCheck(unwrapped_jobject* heapRef) {
#endif

JNIEnv* env = FNI_GetJNIEnv();
/* determine if in a NoHeapRealtimeThread */
if (((struct FNI_Thread_State*)env)->noheap) {

/* optionally print helpful debugging info */
/* throw exception */

}
}

Figure 7-3: The heapCheck function

New Object (or Array):

obj = new foo(); (or obj = new foo()[1][2][3];)

becomes:

ma = RealtimeThread.currentRealtimeThread().getMemoryArea();
obj = new foo(); (or obj = new foo()[1][2][3];)
obj.memoryArea = ma;

Access check:

obj.foo = bar;

becomes:

ma = MemoryArea.getMemoryArea(obj); // or ma = ImmortalMemory.instance(),
ma.checkAccess(bar); // if a static field)
obj.foo = bar;

Figure 7-4: Emitted Code for Access Checks

181

In MemoryArea:

public void checkAccess(Object obj) {
if ((obj != null) && (obj.memoryArea != null) && obj.memoryArea.scoped) {

/* Helpful native method prints out all debugging info. */
throwIllegalAssignmentError(obj, obj.memoryArea);

}
}

Overridden in ScopedMemory:

public void checkAccess(Object obj) {
if (obj != null) {

MemoryArea target = getMemoryArea(obj);
if ((this != target) && target.scoped &&

(!RealtimeThread.currentRealtimeThread()
.checkAccess(this, target))) {

throwIllegalAssignmentError(obj, target);
}

}
}

In RealtimeThread:

boolean checkAccess(MemoryArea source, MemoryArea target) {
MemBlockStack sourceStack = (source == getMemoryArea()) ?

memBlockStack : memBlockStack.first(source);
return (sourceStack != null) && (sourceStack.first(target) != null);

}

Figure 7-5: Code for performing access checks

182

threads. The garbage collector may be in the process of retrieving the heap references
stored in a memory area when a no-heap real-time thread (operating concurrently
with or interrupting the garbage collector) allocates objects in that memory area.
The garbage collector must operate correctly in the face of the resulting changes to
the underlying memory area data structures. The system design also cannot involve
locks shared between the no-heap real-time thread and the garbage collector (the
garbage collector is not allowed to block a no-heap real-time thread). But the garbage
collector may assume that the actions of the no-heap real-time thread do not change
the set of heap references stored in the memory area.

Each memory area may have its own object allocation algorithm. Because the
same code may execute in different memory areas at different times, our implementa-
tion is set up to dynamically determine the allocation algorithm to use based on the
current memory area. Whenever a thread allocates an object, it looks up a data struc-
ture associated with the memory area. A field in this structure contains a pointer to
the allocation function to invoke. This structure also contains a pointer to a function
that retrieves all of the heap references from the area, and a function that deallocates
all of the objects allocated in the area.

7.4.4 Memory Area Reference Counts

As described in the Real-Time Java Specification, each memory area maintains a
count of the number of threads currently operating within that region. These counts
are (atomically) updated when threads enter or exit the region. When the count
becomes zero, the implementation deallocates all objects in the area.

Consider the following situation. A thread exits a memory area, causing its ref-
erence count to become zero, at which point the implementation starts to invoke
finalizers on the objects in the memory area as part of the deallocation process.
While the finalizers are running, a no-heap real-time thread enters the memory area.
According to the Real-Time Java specification, the no-heap real-time thread blocks
until the finalizers finish running. There is no mention of the priority with which
the finalizers run, raising the potential issue that the no-heap real-time thread may
be arbitrarily delayed. A final problem occurs if the no-heap real-time thread first
acquires a lock, a finalizer running in the memory area then attempts to acquire the
lock (blocking because the no-heap real-time thread holds the lock), then the no-heap
real-time thread attempts to enter the memory area. The result is deadlock — the
no-heap real-time thread waits for the finalizer to finish, but the finalizer waits for
the no-heap real-time thread to release the lock.

7.4.5 Memory Allocation Algorithms

We have implemented two simple allocators for scoped memory areas: a stack al-
locator and a malloc-based allocator. The current implementation uses the stack
allocator for instances of LTMemory, which guarantee linear-time allocation, and the
malloc-based allocator for instances of VTMemory, which provide no time guarantees.

183

The stack allocator starts with a fixed amount of available free memory. It main-
tains a pointer to the next free address. To allocate a block of memory, it increments
the pointer by the size of the block, then returns the old value of the pointer as a
reference to the newly allocated block. Our current implementation uses this allo-
cation strategy for instances of the LTMemory class, which guarantees a linear time
allocation strategy.

There is a complication associated with this implementation. Note that multiple
threads can attempt to concurrently allocate memory from the same stack allocator.
The implementation must therefore use some mechanism to ensure that the alloca-
tions take place atomically. Note that the use of lock synchronization could cause
an unfortunate coupling between real-time threads, no-heap real-time threads, and
the garbage collector. Consider the following scenario. A real-time thread starts to
allocate memory, acquires the lock, is suspended by the garbage collector, which is
then suspended by a no-heap real-time thread that also attempts to allocate mem-
ory from the same allocator. Unless the implementation does something clever, it
could either deadlock or force the no-heap real-time thread to wait until the garbage
collector releases the real-time thread to complete its memory allocation.

Our current implementation avoids this problem by using a lock-free, nonblocking
atomic exchange-and-add instruction to perform the pointer updates. Note that on
an multiprocessor in the presence of contention from multiple threads attempting to
concurrently allocate from the same memory allocator, this approach could cause the
allocation time to depend on the precise timing behavior of the atomic instructions.
We would expect some machines to provide no guarantee at all about the termination
time of these instructions.

The malloc-based allocator simply calls the standard malloc routine to allocate
memory. Our implementation uses this strategy for instances of LTMemory. To provide
the garbage collector with a list of heap references, our implementation keeps a linked
list of the allocated memory blocks and can scan these blocks on demand to locate
references into the heap.

Our design makes adding a new allocator easy; the malloc-based allocator re-
quired only 25 lines of C code and only 45 minutes of coding, debugging, and test-
ing time. Although the system is flexible enough to support multiple dynamically-
changing allocation routines, VTMemorys use the linked-list allocator, while LTMemorys
use the stack-allocator.

7.4.6 Garbage Collector Interactions

References from heap objects can point both to other heap objects and to objects allo-
cated in immortal memory. The garbage collector must therefore recognize references
to immortal memory and treat objects allocated in immortal memory differently than
objects allocated in heap memory. In particular, the garbage collector cannot change
the objects in ways that that would interact with concurrently executing no-heap
real-time threads.

Our implementation handles this issue as follows. The garbage collector first scans
the immortal and scoped memories to extract all references from objects allocated

184

in these memories to heap allocated objects. This scan is coded to operate correctly
in the presence of concurrent updates from no-heap real-time threads. The garbage
collector uses the extracted heap references as part of its root set.

During the collection phase, the collector does not trace references to objects
allocated in immortal memory. If the collector moves objects, it may need to update
references from objects allocated in immortal memory or scoped memories to objects
allocated in the heap. It performs these updates in such a way that it does not interfere
with the ability of no-heap real-time threads to recognize such references as referring
to objects allocated in the heap. Note that because no-heap real-time threads may
access heap references only to perform heap checks, this property ensures that the
garbage collector and no-heap real-time threads do not inappropriately interfere.

7.5 Debugging Real-Time Java Programs

An additional design goal becomes extremely important when actually developing
Real-Time Java programs: ease of debugging. During the development process, fa-
cilitating debugging became a primary design goal. In fact, we found it close to
impossible to develop error-free Real-Time Java programs without some sort of assis-
tance (either a debugging system or static analysis) that helped us locate the reason
for our problems using the different kinds of memory areas. Our debugging was es-
pecially complicated by the fact that the standard Java libraries basically don’t work
at all with no-heap real-time threads.

7.5.1 Incremental Debugging

During our development of Real-Time Java programs, we found the following incre-
mental debugging strategy to be useful. We first stubbed out all of the Real-Time
Java heap and access checks and special memory allocation strategies, in effect run-
ning the Real-Time Java program as a standard Java program. We used this version
to debug the basic functionality of the program. We then added the heap and access
checks, and used this version to debug the memory allocation strategy of the program.
We were able to use this strategy to divide the debugging process into stages, with a
manageable amount of bugs found at each stage.

It is also possible to use static analysis to verify the correct use of Real-Time Java
scoped memories [191]. We had access to such an analysis when we were implementing
our benchmark programs, and the analysis was very useful for helping us debug our use
of scoped memories. It also dramatically increased our confidence in the correctness of
the final program, and enabled a static check elimination optimization that improved
the performance of the program.

7.5.2 Additional Runtime Debugging Information

Heap and access checks can be used to help detect mistakes early in the development
process, but additional tools may be necessary to understand and fix those mistakes

185

in a timely fashion. We therefore augmented the memory area data structure to
produce a debugging system that helps programmers understand the causes of object
referencing errors.

When a debugging flag is enabled, the implementation attaches the original Java
source code file name and line number to each allocated object. Furthermore, with the
use of macros, we also obtain allocation site information for native methods. We store
this allocation site information in a list associated with the memory area in which
the object is allocated. Given any arbitrary object reference, a debugging function
can retrieve the debugging information for the object. Combined with a stack trace
at the point of an illegal assignment or reference, the allocation site information from
both the source and destination of an illegal assignment or the location of an illegal
reference can be instrumental in quickly determining the exact cause of the error
and the objects responsible. Allocation site information can also be displayed at the
time of allocation to provide a program trace which can help determine control flow,
putting the reference in a context at the time of the error.

7.6 Results

We implemented the Real-Time Java memory extensions in the MIT Flex compiler
infrastructure.1 Flex is an ahead-of-time compiler for Java that generates both native
code and C; it can use a variety of garbage collectors. For these experiments, we
generated C and used the Boehm-Demers-Weiser conservative garbage collector.

We obtained several benchmark programs and used these programs to measure
the overhead of the heap checks and access checks. Our benchmarks include Barnes, a
hierarchical N-body solver, and Water, which simulates water molecules in the liquid
state. Initially these benchmarks allocated all objects in the heap. We modified the
benchmarks to use scoped memories whenever possible. We also present results for
two synthetic benchmarks, Tree and Array, that use object field assignment heavily.
These benchmarks are designed to obtain the maximum possible benefit from heap
and access check elimination.

Table 7.1 presents the number of objects we were able to allocate in each of the
different kinds of memory areas. The goal is to allocate as many objects as possible
in scoped memory areas; the results show that we were able to modify the programs
to allocate the vast majority of their objects in scoped memories. Java programs also
allocate arrays; Table 7.2 presents the number of arrays that we were able to allocate
in scoped memories. As for objects, we were able to allocate the vast majority of
arrays in scoped memories.

Table 7.3 presents the number and type of access checks for each benchmark.
Recall that there is a check every time the program stores a reference. The different
columns of the table break down the checks into categories depending on the target
of the store and the memory area that the stored reference refers to. For example, the

1Available at www.flexc.lcs.mit.edu

186

Table 7.1: Number of Objects Allocated In Different Memory Areas

Benchmark Heap Scoped Immortal Total

Array 13 4 0 17
Tree 13 65,534 0 65,547

Water 406,895 3,345,711 0 3,752,606
Barnes 16,058 4,681,708 0 4,697,766

Table 7.2: Number of Arrays Allocated In Different Memory Areas

Benchmark Heap Scoped Immortal Total

Array 36 4 0 40
Tree 36 0 0 36

Water 405,943 13,160,641 0 13,566,584
Barnes 14,871 4,530,765 0 4,545,636

Table 7.3: Access Check Counts

Heap Heap Scoped Scoped Scoped Immortal Immortal
Benchmark to to to to to to to

Heap Immortal Heap Scoped Immortal Heap Immortal

Array 14 8 0 400,040,000 0 0 0
Tree 14 8 0 65,597,532 65,601,536 0 0

Water 409,907 0 17,836 9,890,211 844 3 1
Barnes 90,856 80,448 9,742 4,596,716 1328 0 0

Scoped to Heap column counts the number of times the program stored a reference
to heap memory into an object or array allocated in a scoped memory.

Table 7.4 presents the running times of the benchmarks. We report results for
six different versions of the program. The first three versions all have both heap and
access checks, and vary in the memory area they use for objects that we were able
to allocate in scoped memory. The Heap version allocates all objects in the heap.
The VT version allocates scoped-memory objects in instances of VTMemory (which
use malloc-based allocation); the LT version allocates scoped-memory objects in
instances of LTMemory (which use stack-based allocation). The next three versions
use the same allocation strategy, but the compiler generates code that omits all of
the checks. For our benchmarks, our static analysis is able to verify that none of the
checks will fail, enabling the compiler to eliminate all of these checks [191].

These results show that checks add significant overhead for all benchmarks. But
the use of scoped memories produces significant performance gains for Barnes and
Water. In the end, the use of scoped memories without checks significantly increases
the overall performance of the program. To investigate the causes of the performance

187

Table 7.4: Execution Times of Benchmark Programs

With Checks Without Checks
Benchmark Heap VT LT Heap VT LT

Array 28.1 43.2 43.1 7.8 7.7 8.0
Tree 13.2 16.6 16.6 6.9 6.9 6.9
Water 58.2 47.4 37.8 52.3 40.2 30.2
Barnes 38.3 22.3 17.2 34.7 19.5 14.4

differences, we instrumented the run-time system to measure the garbage collection
pause times. Based on these measurements, we attribute most of the performance dif-
ferences between the versions of Water and Barnes with and without scoped memories
to garbage collection overheads. Specifically, the use of scoped memories improved
every aspect of the garbage collector: it reduced the total garbage collection overhead,
increased the time between collections, and significantly reduced the pause times for
each collection.

For Array and Tree, there is almost no garbage collection for any of the versions
and the versions without checks all exhibit basically the same performance. With
checks, the versions that allocate all objects in the heap run faster than the versions
that allocate objects in scoped memories. We attribute this performance difference to
the fact that heap to heap access checks are faster than scope to scope access checks.

7.7 Related Work

Christiansen and Velschow suggested a region-based approach to memory manage-
ment in Java; they called their system RegJava[60]. They found that fixed-size re-
gions have better performance than variable-sized regions and that region allocation
has more predictable and often better performance than garbage collection. Static
analysis can be used to detect where region annotations should be placed, but the
annotations often need to be manually modified for performance reasons. Compiling
a subset of Java which did not include threads or exceptions to C++, the RegJava
system does not allow regions to coexist with garbage collection. Finally, the RegJava
system permits the creation of dangling references.

Gay and Aiken implemented a region-based extension of C called C@ which used
reference counting on regions to safely allocate and deallocate regions with a mini-
mum of overhead[99]. Using special region pointers and explicit deleteregion calls,
Gay and Aiken provide a means of explicitly manipulating region-allocated memory.
They found that region-based allocation often uses less memory and is faster than tra-
ditional malloc/free-based memory management. Unfortunately, counting escaping
references in C@ can incur up to 16% overhead. Both Christiansen and Velschow and
Gay and Aiken explore the implications of region allocation for enhancing locality.

Gay and Aiken also produced RC [100], an explicit region allocation dialect of
C, and an improvement over C@. RC uses heirarchically structured regions and

188

sameregion, traditional, and parentptr pointer annotations to reduce the refer-
ence counting overhead to at most 11% of execution time. Using static analysis to
reduce the number of safety checks, RC demonstrates up to a 58% speedup in pro-
grams that use regions as opposed to garbage collection or the typical malloc and
free. RC uses 8KB aligned pages to allocate memory and the runtime keeps a map
of pages to regions to resolve regionof calls quickly. Regions have a partial order to
facilitate parentptr checks.

Region analysis seems to work best when the programmer is aware of the analysis,
indicating that explicitly defined regions which give the programmer control over stor-
age allocation may lead to more efficient programs. For example, the Tofte/Talpin
ML inference system required that the programmer be aware of the analysis to guard
against excessive memory leaks [195]. Programs which use regions explicitly may
be more hierarchically structured with respect to memory usage by programmer de-
sign than programs intended for the traditional, garbage-collected heap. Therefore,
Real-Time Java uses hierarchically-structured, explicit, reference-counted regions that
strictly prohibit the creation of dangling references.

Our research is distinguished by the fact that Real-Time Java is a strict superset
of the Java language; any program written in ordinary Java can run in our Real-Time
Java system. Furthermore, a Real-Time Java thread which uses region allocation
and/or heap allocation can run concurrently with a thread from any ordinary Java
program, and we support several kinds of region-based allocation and allocation in a
garbage collected heap in the same system.

7.8 Conclusion

The Real-Time Java Specification promises to bring the benefits of Java to program-
mers building real-time systems. One of the key aspects of the specification is extend-
ing the Java memory model to give the programmer more control over the memory
management. We have implemented these extensions. We found that the primary
implementation complication was ensuring a lack of interference between the garbage
collector and no-heap real-time threads, which execute asynchronously with respect
to the design. We also found debugging tools necessary for the effective development
of programs that use the Real-Time Java memory management extensions. We used
both a static analysis and a dynamic debugging system to help locate the source of
incorrect uses of these extensions.

189

190

RoushRV
Text Box
THIS PAGE WAS INTENTIONALLY LEFT BLANK

Chapter 8

Ownership Types for Safe
Region-Based Memory
Management in Real-Time Java

8.1 Introduction

The Real-Time Specification for Java (RTSJ) [38] provides a framework for building
real-time systems. The RTSJ allows a program to create real-time threads with hard
real-time constraints. These real-time threads cannot use the garbage-collected heap
because they cannot afford to be interrupted for unbounded amounts of time by the
garbage collector. Instead, the RTSJ allows these threads to use objects allocated in
immortal memory (which is never garbage collected) or in regions [195]. Region-based
memory management systems structure memory by grouping objects in regions under
program control. Memory is reclaimed by deleting regions, freeing all objects stored
therein. The RTSJ uses runtime checks to ensure that deleting a region does not
create dangling references and that real-time threads do not access heap references.

This chapter presents a static type system for writing real-time programs in Java.
Our system guarantees that the RTSJ runtime checks will never fail for well-typed
programs. Our system thus serves as a front-end for the RTSJ platform. It offers
two advantages to real-time programmers. First, it provides an important safety
guarantee that a program will never fail because of a failed RTSJ runtime check.
Second, it allows RTSJ implementations to remove the RTSJ runtime checks and
eliminate the associated overhead.

Our approach is applicable even outside the RTSJ context; it could be adapted to
provide safe region-based memory management for other real-time languages as well.

Our system makes several important technical contributions over previous type
systems for region-based memory management. For object-oriented programs, it com-
bines region types [59, 71, 111, 195] and ownership types [43, 44, 46, 62, 63] in a unified
type system framework. Region types statically ensure that programs never follow
dangling references. Ownership types statically enforce object encapsulation and en-
able modular reasoning about program correctness in object-oriented programs.

191

Consider, for example, a Stack object s that is implemented using a Vector

subobject v. To reason locally about the correctness of the Stack implementation,
a programmer must know that v is not directly accessed by objects outside s. With
ownership types, a programmer can declare that s owns v. The type system then
statically ensures that v is encapsulated within s.

In an object-oriented language that only has region types (e.g., [59]), the types of
s and v would declare that they are allocated in some region r. In an object-oriented
language that only has ownership types, the type of v would declare that it is owned
by s. Our type system provides a simple unified mechanism to declare both properties.
The type of s can declare that it is allocated in r and the type of v can declare that it
is owned by s. Our system then statically ensures that both objects are allocated in
r, that there are no pointers to v and s after r is deleted, and that v is encapsulated
within s. Our system thus combines the benefits of region types and ownership types.

Our system extends region types to multithreaded programs by allowing explicit
memory management for objects shared between threads. It allows threads to com-
municate through objects in shared regions in addition to the heap. A shared region
is deleted when all threads exit the region. However, programs in a system with only
shared regions (e.g., [110]) will have memory leaks if two long-lived threads commu-
nicate by creating objects in a shared region. This is because the objects will not be
deleted until both threads exit the shared region. To solve this problem, we introduce
the notion of subregions within a shared region. A subregion can be deleted more
frequently, for example, after each loop iteration in the long-lived threads.

Our system also introduces typed portal fields in subregions to serve as a starting
point for inter-thread communication. Portals also allow typed communication, so
threads do not have to downcast from Object to more specific types. Our approach
therefore avoids any dynamic type errors associated with these downcasts. Our system
introduces user-defined region kinds to support subregions and portal fields.

Our system extends region types to real-time programs by statically ensuring that
real-time threads do not interfere with the garbage collector. Our system augments
region kind declarations with region policy declarations. It supports two policies for
creating regions as in the RTSJ. A region can be an LT (Linear Time) region, or a VT
(Variable Time) region. Memory for an LT region is preallocated at region creation
time, so allocating an object in an LT region only takes time proportional to the size
of the object (because all the bytes have to be zeroed). Memory for a VT region is
allocated on demand, so allocating an object in a VT region takes variable time. Our
system checks that real-time threads do not use heap references, create new regions,
or allocate objects in VT regions.

Our system also prevents an RTSJ priority inversion problem. In the RTSJ, any
thread entering a region waits if there are threads exiting the region. If a regular
thread exiting a region is suspended by the garbage collector, then a real-time thread
entering the region might have to wait for an unbounded amount of time. Our type
system statically ensures that this priority inversion problem cannot happen.

Finally, we note that ownership-based type systems have also been used for pre-

192

venting data races [46] and deadlocks [43], for supporting modular software upgrades
in persistent object stores [45], for modular specification of effects clauses in the pres-
ence of subtyping [44, 46] (so they can be used as an alternative to data groups [144]),
and for program understanding [13]. We are currently unifying the type system pre-
sented in this chapter with the above type systems [41]. The unified ownership type
system requires little programming overhead, its typechecking is fast and scalable,
and it provides several benefits. The unified ownership type system thus offers a
promising approach for making object-oriented programs more reliable.

Contributions

To summarize, the research presented in this chapter makes the following contribu-
tions:

• Region types for object-oriented programs: Our system combines region
types and ownership types in a unified type system framework that statically
enforces object encapsulation as well as enables safe region-based memory man-
agement.

• Region types for multithreaded programs: Our system introduces 1) sub-
regions within a shared region, so that long-lived threads can share objects
without using the heap and without memory leaks and 2) typed portal fields to
serve as a starting point for typed inter-thread communication. It also intro-
duces user-defined region kinds to support subregions and portals.

• Region types for real-time programs: Our system allows programs to
create LT (Linear Time) and VT (Variable Time) regions as in the RTSJ. It
checks that real-time threads do not use heap references, create new regions, or
allocate objects in VT regions, so that they do not wait for unbounded amounts
of time. It also prevents an RTSJ priority inversion problem.

• Type inference: Our system uses a combination of intra-procedural type in-
ference and well-chosen defaults to significantly reduce programming overhead.
Our approach permits separate compilation.

• Experience: We have implemented several programs in our system. Our ex-
perience indicates that our type system is sufficiently expressive and requires
little programming overhead. We also ran the programs on our RTSJ plat-
form [32, 33]. Our experiments show that eliminating the RTSJ runtime checks
using a static type system can significantly speed-up programs.

The paper is organized as follows. Section 8.2 describes our type system. Sec-
tion 8.3 describes our experimental results. Section 8.4 presents related work. Sec-
tion 8.5 concludes.

193

O1. The ownership relation forms a forest of trees.

O2. If region r ºo object x, then x is allocated in r.

O3. If object z ºo y but z 6ºo x, then x cannot access y.

Figure 8-1: Ownership Properties

8.2 Type System

This section presents our type system for safe region-based memory management.
Sections 8.2.1, 8.2.2, and 8.2.3 describe our type system. Section 8.2.4 presents some
of the important rules for typechecking. The complete set of rules are presented in
[47]. Section 8.2.5 describes type inference techniques. Section 8.2.6 describes how
programs written in our system are translated to run on our RTSJ platform.

8.2.1 Regions for Object-Oriented Programs

This section presents our type system for safe region-based memory management in
single-threaded object-oriented programs. It combines the benefits of region types [59,
71, 111, 195] and ownership types [43, 44, 46, 62, 63]. Region types statically ensure
that programs using region-based memory management are memory-safe, that is,
they never follow dangling references. Ownership types statically enforce object en-
capsulation. The idea is that an object can own subobjects that it depends on, thus
preventing them from being accessible outside. (An object x depends on [143, 44]
subobject y if x calls methods of y and furthermore these calls expose mutable be-
havior of y in a way that affects the invariants of x.) Object encapsulation enables
local reasoning about program correctness in object-oriented programs.

Ownership Relation Objects in our system are allocated in regions. Every object
has an owner. An object can be owned by another object, or by a region. We write o1

ºo o2 if o1 directly or transitively owns o2 or if o1 is the same as o2. The relation ºo is
thus the reflexive transitive closure of the owns relation. Our type system statically
guarantees the properties in Figure 8-1. O1 states that our ownership relation has
no cycles. O2 states that if an object is owned by a region, then that object and
all its subobjects are allocated in that region. O3 states the encapsulation property
of our system, that if y is inside the encapsulation boundary of z and x is outside,
then x cannot access y.1 (An object x accesses an object y if x has a pointer to y, or
methods of x obtain a pointer to y.) Figure 8-6 shows an example ownership relation.
We draw a solid line from x to y if x owns y. Region r2 owns s1, s1 owns s1.head

and s1.head.next, etc.

1Our system handles inner class objects specially to support constructs like iterators. Details can
be found in [44].

194

R1. For any region r, heap º r and immortal º r.

R2. x ºo y =⇒ x º y.

R3. If region r1 ºo object o1, region r2 ºo object o2, and
r2 6º r1, then o1 cannot contain a pointer to o2.

Figure 8-2: Outlives Properties

Outlives Relation Our system allows programs to create regions. It also provides
two special regions: the garbage collected region heap, and the “immortal” region
immortal. The lifetime of a region is the time interval from when the region is
created until it is deleted. If the lifetime of a region r1 includes the lifetime of region
r2, we say that r1 outlives r2, and write r1 º r2. The relation º is thus reflexive and
transitive. We extend the outlives relation to include objects. We define that x ºo y
implies x º y. The extension is natural: if object o1 owns object o2 then o1 outlives
o2 because o2 is accessible only through o1. Also, if region r owns object o then r
outlives o because o is allocated in r. Our outlives relation has the properties shown
in Figure 8-2. R1 states that heap and immortal outlive all regions. R2 states that
the outlives relation includes the ownership relation. R3 states our memory safety
property, that if object o1 in region r1 contains a pointer to object o2 in region r2,
then r2 outlives r1. R3 implies that there are no dangling references in our system.
Figure 8-6 shows an example outlives relation. We draw a dashed line from region x
to region y if x outlives y. In the example, region r1 outlives region r2, and heap and
immortal outlive all regions. The following lemmas follow trivially from the above
definitions:

Lemma 3 If object o1 º object o2, then o1 ºo o2.

Lemma 4 If region r º object o, then there exists a unique region r’ such that r º r ′

and r ′ ºo o.

Grammar To simplify the presentation of key ideas behind our approach, we de-
scribe our type system formally in the context of a core subset of Java known as
Classic Java [93]. Our approach, however, extends to the whole of Java and other
similar languages. Figure 8-3 presents the grammar for our core language. A program
consists of a series of class declarations followed by an initial expression. A predefined
class Object is the root of the class hierarchy.

Owner Polymorphism Every class definition is parameterized with one or more
owners. (This is similar to parametric polymorphism [3, 48, 153] except that our
parameters are values, not types.) An owner can be an object or a region. Parame-
terization allows programmers to implement a generic class whose objects can have
different owners. The first formal owner is special: it owns the corresponding object;
the other owners propagate the ownership information. Methods can also declare an
additional list of formal owner parameters. Each time new formals are introduced,

195

P ::= def ∗ e
def ::= class cn 〈formal+〉 extends c

where constr ∗ { field ∗ meth ∗ }
formal ::= k fn

c ::= cn 〈owner+〉 | Object〈owner 〉
owner ::= fn | r | this | initialRegion | heap | immortal

field ::= t fd
meth ::= t mn 〈formal ∗〉((t p)∗) where constr ∗ { e }

constr ::= owner owns owner | owner outlives owner
t ::= c | int | RHandle〈r〉
k ::= Owner | ObjOwner | rkind

rkind ::= Region | GCRegion | NoGCRegion | LocalRegion
e ::= v | let v = e in { e } | v.fd | v.fd = v | new c |

v.mn 〈owner ∗〉(v∗) | (RHandle〈r〉 h) { e }
h ::= v

cn ∈ class names
fd ∈ field names

mn ∈ method names
fn ∈ formal identifiers

v, p ∈ variable names
r ∈ region identifiers

Figure 8-3: Grammar for Object Oriented Programs

1

Region

NoGCRegion GCRegion

user defined region kinds

Owner

2

ObjOwner

SharedRegionLocalRegion

Figure 8-4: Owner Kind Hierarchy: Section 8.2.1 uses only Area 1. Sections 8.2.2 &
8.2.3 use Areas 1 & 2.

programmers can specify constraints between them using where clauses [73]. The
constraints have the form “o1 owns o2” (i.e., o1 ºo o2) and “o1 outlives o2” (i.e.,
o1 º o2).

Each formal has an owner kind. There is a subkinding relation between owner
kinds, resulting in the kind hierarchy from the upper half of Figure 8-4. The hierarchy
is rooted in Owner, that has two subkinds: ObjOwner (owners that are objects; we
avoid using Object because it is already used for the root of the class hierarchy)
and Region. Region has two subkinds: GCRegion (the kind of the garbage collected
heap) and NoGCRegion (the kind of other regions). Finally, NoGCRegion has a single
subkind, LocalRegion. (At this point, there is no distinction between NoGCRegion

and LocalRegion. We will add new kinds in the next section.)

Region Creation The expression “(RHandle〈r〉 h) {e}” creates a new region and
introduces two identifiers r and h that are visible inside the scope of e. r is an
owner of kind LocalRegion that is bound to the newly created region. h is a runtime
value of type RHandle〈r〉 that is bound to the handle of the region r. The region
name r is only a compile-time entity; it is erased (together with all the ownership
and region type annotations) immediately after typechecking. However, the region

196

handle h is required at runtime when we allocate objects in region r (object allocation
is explained in the next paragraph). The newly created region is outlived by all regions
that existed when it was created; it is destroyed at the end of the scope of e. This
implies a “last in first out” order on region lifetimes. As we mentioned before, in
addition to the user created regions, we have special regions: the garbage collected
region heap (with handle h heap) and the “immortal” region immortal (with handle
h immortal). Objects allocated in the immortal region are never deallocated. heap

and immortal are never destroyed; hence, they outlive all regions. We also allow
methods to allocate objects in the special region initialRegion, which denotes the
most recent region that was created before the method was called. We use runtime
support to acquire the handle of initialRegion.

Object Creation New objects are created using the expression “new cn〈o1..n〉”.
o1 is the owner of the new object. (Recall that the first owner parameter always
owns the corresponding object.) If o1 is a region, the new object is allocated there;
otherwise, it is allocated in the region where the object o1 is allocated. For the purpose
of typechecking, region handles are unnecessary. However, at runtime, we need the
handle of the region we allocate in. The typechecker checks that we can obtain such
a handle (more details are in Section 8.2.4). If o1 is a region r, the handle of r must
be in the environment. Therefore, if a method has to allocate memory in a specific
region that is passed to it as an owner parameter, then it also needs to receive the
corresponding region handle as an argument.

A formal owner parameter can be instantiated with an in-scope formal, a region
name, or the this object. For every type cn 〈o1..n〉 with multiple owners, our type
system statically enforces the constraint that oi º o1, for all i ∈ {1..n}. In addition,
if an object of type cn〈o1..n〉 has a method mn , and if a formal owner parameter
of mn is instantiated with an object obj , then our system ensures that obj º o1.
These restrictions enable the type system to statically enforce object encapsulation
and prevent dangling references.

Example We illustrate our type system with the example in Figure 8-5. A TStack

is a stack of T objects. It is implemented using a linked list. The TStack class is
parameterized by stackOwner and TOwner. stackOwner owns the TStack object and
TOwner owns the T objects contained in the TStack. The code specifies that the
TStack object owns the nodes in the list; therefore the list nodes cannot be accessed
from outside the TStack object. The program creates two regions r1 and r2 such that
r1 outlives r2. The program declares several TStack variables: the type of TStack

s1 specifies that it is allocated in region r2 and so are the T objects in s1; TStack s2

is allocated in region r2 but the T objects in s2 are allocated in region r1; etc. Note
that the type of s6 is illegal. This is because s6 is declared as TStack〈r1,r2〉, and
r2 6º r1. (Recall that in any legal type cn 〈o1..n〉 with multiple owners, oi º o1 for all
i ∈ {1..n}.) Figure 8-6 presents the ownership and the outlives relations from this
example (assuming the stacks contain two elements each). We use circles for objects,
rectangles for regions, solid arrows for ownership, and dashed arrows for the outlives
relation between regions.

197

1 class TStack<Owner stackOwner, Owner TOwner> {

2 TNode<this, TOwner> head = null;

3

4 void push(T<TOwner> value) {

5 TNode<this, TOwner> newNode = new TNode<this, TOwner>;

6 newNode.init(value, head); head = newNode;

7 }

8

9 T<TOwner> pop() {

10 if(head == null) return null;

11 T<TOwner> value = head.value; head = head.next;

12 return value;

13 }

14 }

15

16 class TNode<Owner nodeOwner, Owner TOwner> {

17 T<TOwner> value;

18 TNode<nodeOwner, TOwner> next;

19

20 void init(T<TOwner> v, TNode<nodeOwner, TOwner> n) {

21 this.value = v; this.next = n;

22 }

23 }

24

25 (RHandle<r1> h1) {

26 (RHandle<r2> h2) {

27 TStack<r2, r2> s1;

28 TStack<r2, r1> s2;

29 TStack<r1, immortal> s3;

30 TStack<heap, immortal> s4;

31 TStack<immortal, heap> s5;

32 /* TStack<r1, r2> s6; illegal! */

33 /* TStack<heap, r1> s7; illegal! */

34 }}

Figure 8-5: Stack of T Objects

Safety Guarantees The following two theorems state our safety guarantees. Part
1 of Theorems 5 and 6 state the object encapsulation property. Note that objects
owned by regions are not encapsulated within other objects. Part 2 of Theorem 5
states the memory safety property.

Theorem 5 If objects o1 and o2 are allocated in regions r1 and r2 respectively, and
field fd of o1 points to o2, then

1. Either owner of o2 ºo o1, or owner of o2 is a region.

2. Region r2 outlives region r1.

Proof: Suppose class cn〈f1..n〉{... T 〈x1, ...〉 fd ...} is the class of o1. Field fd of type
T 〈x1, ...〉 contains a reference to o2. x1 must therefore own o2. x1 can be either 1)
heap, or 2) immortal, or 3) this, or 4) fi, a class formal. In the first two cases,
(owner of o2) = x1 is a region, and r2 = x1 º r1. In Case 3, (owner of o2) = o1 ºo

o1, and r2 = r1 º r1. In Case 4, we know that fi º f1, since all owners in a legal
type outlive the first owner. Therefore, (owner of o2) = x1 = fi º f1 º this = o1. If
(owner of o2) is an object, we know from Lemma 3 that (owner of o2) ºo o1. This also
implies that r2 = r1 º r1. If the (owner of o2) is a region, we know from Lemma 4
that there exists region r such that (owner of o2) º r and r ºo o1. Therefore r2 = r
º r1.

198

s1.head
(TNode)

s1 (TStack)

(TNode)
s1.head.next

s2 (TStack)

s2.head
(TNode) (TNode)

s2.head.next

s3 (TStack)

s3.head
(TNode) (TNode)

s3.head.next

s1.head.value
(T)

s2.head.value
(T)

(T)
s1.head.next.value

(T)
s2.head.next.value

(T)
s3.head.next.value

s3.head.value
(T)

r2

immortalheap

r1

Figure 8-6: TStack Ownership and Outlives Relations

Theorem 6 If a variable v in a method mn of an object o1 points to an object o2,
then

1. Either owner of o2 ºo o1, or owner of o2 is a region.

Proof: Similar to the proof of Theorem 5, except that now we have a fifth possibility
for the (owner of o2): a formal method parameter that is a region or initialRegion
(that are not required to outlive o1). In this case, (owner of o2) is a region. The other
four cases are identical.

Most previous region type systems allow programs to create, but not follow, dan-
gling references. Such references can cause a safety problem when used with moving
collectors. Our system therefore prevents a program from creating dangling references
in the first place. Part 2 of Theorem 5 prevents object fields from containing dangling
references. Even though Theorem 6 does not have a similar Part 2, we can prove,
using lexical scoping of region names, that local variables cannot contain dangling
references either.

8.2.2 Regions for Multithreaded Programs

This section describes how we support multithreaded programs. Figure 8-7 presents
the language extensions. A fork instruction spawns a new thread that evaluates the
invoked method. The evaluation is performed only for its effect; the parent thread
does not wait for the completion of the new thread and does not use the result of
the method call. Our unstructured concurrency model (similar to Java’s model) is
incompatible with the regions from Section 8.2.1 whose lifetimes are lexically bound.
Those regions can still be used for allocating thread-local objects (hence the name
of the associated region kind, LocalRegion), but objects shared by multiple threads
require shared regions, of kind SharedRegion.

Shared Regions “(RHandle〈rkind r〉 h) {e}” creates a shared region (rkind spec-
ifies the region kind of r; region kinds are explained later in this section). Inside
expression e, the identifiers r and h are bound to the region and the region handle,
respectively. Inside e, r and h can be passed to child threads. The objects allocated
inside a shared region are not deleted as long as some thread can still access them. To
ensure this, each thread maintains a stack of shared regions it can access, and each
shared region maintains a counter of how many such stacks it is an element of. When

199

P ::= def ∗ srkdef ∗ e
srkdef ::= regionKind srkn 〈formal ∗〉 extends srkind

where constr ∗ { field ∗ subsreg ∗ }
rkind ::= ... as in Figure 8-3 ... | srkind

srkind ::= srkn 〈owner ∗〉 | SharedRegion
subsreg ::= srkind rsub

e ::= ... as in Figure 8-3 ... |
fork v.mn 〈owner ∗〉(v∗) |
(RHandle〈rkind r〉 h) { e } |
(RHandle〈r〉 h = [new]opt h.rsub) { e } |
h.fd | h.fd = v

srkn ∈ shared region kind names
rsub ∈ shared subregion names

Figure 8-7: Extensions for Multithreaded Programs

a new shared region is created, it is pushed onto the region stack of the current thread
and its counter is initialized to one. A child thread inherits all the shared regions of
its parent thread; the counters of these regions are incremented when the child thread
is forked. When the scope of a region name ends (the names of the shared regions
are still lexically scoped, even if the lifetimes of the regions are not), the correspond-
ing region is popped off the stack and its counter is decremented. When a thread
terminates, the counters of all the regions from its stack are decremented. When the
counter of a region becomes zero, the region is deleted. The typing rule for a fork

expression checks that objects allocated in local regions are not passed to the child
thread as arguments; it also checks that local regions and handles to local regions are
not passed to the child thread.

Subregions and Portals Shared regions provide the basis for inter-thread commu-
nication. However, in many cases, they are not enough. E.g., consider two long-lived
threads, a producer and a consumer, that communicate through a shared region in a
repetitive way. In each iteration, the producer allocates some objects in the shared
region and the consumer subsequently uses the objects. These objects become un-
reachable after each iteration. However, these objects are not deleted until both
threads terminate and exit the shared region. To prevent this memory leak, we allow
shared regions to have subregions. In each iteration, the producer and the consumer
can enter a subregion of the shared region and use it for communication. At the
end of the iteration, both the threads exit the subregion and the reference count of
the subregion goes to zero—the objects in the subregion are thus deleted after each
iteration.

We must also allow the producer to pass references to objects it allocates in the
subregion in each iteration to the consumer. Note that storing the references in the
fields of a “hook” object is not possible: objects allocated outside the subregion cannot
point to objects in the subregion (otherwise, those references would result in dangling
references when objects in the subregion are deleted), and objects allocated in the
subregion do not survive between iterations and hence cannot be used as “hooks”. To
solve this problem, we allow (sub)regions to contain portal fields. A thread can store
the reference to an object in a portal field; other threads can then read the portal
field to obtain the reference.

200

1 regionKind BufferRegion extends SharedRegion {

2 BufferSubRegion b;

3 }

4

5 regionKind BufferSubRegion extends SharedRegion {

6 Frame<this> f;

7 }

8

9 class Producer<BufferRegion r> {

10 void run(RHandle<r> h) {

11 while(true) {

12 (RHandle<BufferSubRegion r2> h2 = h.b) {

13 Frame<r2> frame = new Frame<r2>;

14 get_image(frame);

15 h2.f = frame;

16 }

17 ... // wake up the consumer

18 ... // wait for the consumer

19 }}}

20

21 class Consumer<BufferRegion r> {

22 void run(RHandle<r> h) {

23 while(true) {

24 ... // wait for the producer

25 (RHandle<BufferSubRegion r2> h2 = h.b) {

26 Frame<r2> frame = h2.f;

27 h2.f = null;

28 process_image(frame);

29 }

30 ... // wake up the producer

31 }}}

32

33 (RHandle<BufferRegion r> h) {

34 fork (new Producer<r>).run(h);

35 fork (new Consumer<r>).run(h);

36 }

Figure 8-8: Producer Consumer Example

Region Kinds In practice, programs can declare several shared region kinds. Each
such kind extends another shared region kind and can declare several portal fields and
subregions (see grammar rule for srkdef in Figure 8-7). The resulting shared region
kind hierarchy has SharedRegion as its root. The owner kind hierarchy now includes
both Areas 1 and 2 from Figure 8-4. Similar to classes, shared region kinds can be
parameterized with owners; however, unlike objects, regions do not have owners so
there is no special meaning attached to the first owner.

Expression “(RHandle〈r2〉 h2 = [new]opt h1.rsub) {e}”
evaluates e in an environment where r2 is bound to the subregion rsub of the region
r1 that h1 is the handle of, and h2 is bound to the handle of r2. In addition, if the
keyword new is present, r2 is a newly created subregion, distinct from the previous
rsub subregion.

If h is the handle of region r, the expression “h.fd” reads r’s portal field fd , and
“h.fd = v” stores a value into that field. The rule for portal fields is the same as
that for object fields: a portal field of a region r is either null or points to an object
allocated in r or in a region that outlives r.

Flushing Subregions When all the objects in a subregion become inaccessible, the
subregion is flushed, i.e., all objects allocated inside it are deleted. We do not flush a

201

subregion if its counter is positive. Furthermore, we do not flush a subregion r if any
of its portal fields is non-null (to allow some thread to enter it later and use those
objects) or if any of r’s subregions has not been flushed yet (because the objects in
those subregions might point to objects in r). Recall that subregions are a way of
“packaging” some data and sending it to another thread; the receiver thread looks
inside the subregion (starting from the portal fields) and uses the data. Therefore,
as long as a subregion with non-null portal fields is reachable (i.e., a thread may
obtain its handle), the objects allocated inside it can be reachable even if no thread
is currently in the subregion.

Example Figure 8-8 contains an example that illustrates the use of subregions and
portal fields. The main thread creates a shared region of kind BufferRegion and then
starts two threads, a producer and a consumer, that communicate through the shared
region. In each iteration, the producer enters subregion b (of kind BufferSubRegion),
allocates a Frame object in it, and stores a reference to the frame in subregion’s portal
field f. Next, the producer exits the subregion and waits for the consumer. The
subregion is not flushed because the portal field f is non-null. The consumer then
enters the subregion, uses the frame object pointed to by its portal field f, sets f to
null, and exits the subregion. Now, the subregion is flushed (because its counter is
zero and all its fields are null) and a new iteration starts. In this chapter, we do not
discuss synchronization issues; we assume synchronization primitives similar to those
in Java.

8.2.3 Regions for Real-Time Programs

A real-time program consists of a set of real-time threads, a set of regular threads,
and a special garbage collector thread. (This is a conceptual model; actual imple-
mentations might differ.) A real-time thread has strict deadlines for completing its
tasks.2

Figure 8-9 presents the language extensions to support real-time programs. The
expression “RT fork v.mn 〈owner ∗〉(v∗)” spawns a new real-time thread to evaluate
mn . Such a thread cannot afford to be interrupted for an unbounded amount of
time by the garbage collector—the rest of this section explains how our type system
statically ensures this property.

Effects The garbage collector thread must synchronize with any thread that creates
or destroys heap roots, i.e., references to heap objects, otherwise it might end up
collecting reachable objects. Therefore, we must ensure that the real-time threads
do not read or overwrite references to heap objects. (The last restriction is needed
to support moving collectors.) To statically check this, we allow methods to declare
effects clauses [149]. In our system, the effects clause of a method lists the owners
(some of them regions) that the method accesses. Accessing a region means allocating
an object in that region. Accessing an object means reading or overwriting a reference

2Our terminology is related, but not identical to the RTSJ terminology. E.g., our real-time
threads are similar to (and more restrictive than) the RTSJ NoHeapRealtimeThreads.

202

meth ::= t mn 〈formal ∗〉((t p)∗) effects where constr ∗ {e}
effects ::= accesses owner ∗
owner ::= ... as in Figure 8-3 ... | RT

subsreg ::= srkind :rpol tt rsub
rpol ::= LT(size) | VT

tt ::= RT | NoRT
k ::= ... as in Figure 8-3 ... | rkind :LT
e ::= ... as in Figure 8-7 ... |

(RHandle〈rkind :rpol r〉 h) { e } |
RT fork v.mn 〈owner ∗〉(v∗)

Figure 8-9: Extensions for Real-Time Programs

to that object or allocating another object owned by that object. Note that we do
not consider reading or writing a field of an object as accessing that object. If a
method’s effects clause consists of owners o1..n, then any object or region accessed
by that method, the methods it invokes, and the threads it spawns (transitively) is
guaranteed to be outlived by oi, for some i ∈ {1..n}.

The typing rule for an RT fork expression checks all the constraints of a regular
fork expression. In addition, it checks that references to heap objects are not passed
as arguments to the new thread, and that the effects clause of the method evaluated
in the new thread does not contain the heap region or any object allocated in the
heap region. If an RT fork expression typechecks, the new real-time cannot receive
any heap reference. Furthermore, it cannot create a heap object, or read or overwrite
a heap reference in an object field—the type system ensures that in each of the above
cases, the heap region or an object allocated in the heap region appears in the method
effects.

Region Allocation Policies A real-time thread cannot create an object if this
operation requires allocating new memory, because allocating memory requires syn-
chronization with the garbage collector. A real-time thread can, however, create an
object in a preallocated memory region.

Our system supports two allocation policies for regions. One policy is to allocate
memory on demand (potentially in large chunks), as new objects are created in the
region. Allocating a new object can take unbounded time or might not even succeed
(if a new chunk is needed and the system runs out of memory). Flushing the region
frees all the memory allocated for that region. Following the RTSJ terminology, we
call such regions VT (Variable Time) regions.

The other policy is to allocate all the memory for a region at region creation time.
The programmer must provide an upper bound for the total size of the objects that
will be allocated in the region. Allocating an object requires sliding a pointer—if the
region is already full, the system throws an exception to signal that the region size
was too small. Allocating a new object takes time linear in its size: sliding the pointer
takes constant time, but we also have to set to zero each allocated byte. Flushing the
region simply resets a pointer, and, importantly, does not free the memory allocated
for the region. We call regions that use this allocation policy LT (Linear Time)
regions. Once we have an LT subregion, threads can repeatedly enter it, allocate
objects in it, exit it (thus flushing it), and re-enter it without having to allocate new
memory. This is possible because flushing an LT region does not free its memory.

203

LT subregions are thus ideal for real-time threads: once such a subregion is created
(with a large enough upper bound), all object creations will succeed, in linear time;
moreover, the subregion can be flushed and reused without memory allocation.

We allow users to specify the region allocation policy (LT or VT) when a new
region is created. The policy for subregions is declared in the shared region kind
declarations. When a user specifies an LT policy, the user also has to specify the size
of the region (in bytes). An expression “(RHandle〈rkind :rpol r〉 h) {e}” creates
a region with allocation policy rpol and allocates memory for all its (transitive) LT
(sub)regions (including itself). Our system checks that a region has a finite number
of transitive subregions.

If a method enters a VT region or a top level region (i.e., a region that is not
a subregion), the typechecker ensures that the method contains the heap region in
its effects clause. This is to prevent real-time threads from invoking such methods.
However, a method that does not contain the heap region in its effects clause can still
enter an existing LT subregion, because no memory is allocated in that case.

Preventing the RTSJ Priority Inversion So far, we presented techniques for
checking that real-time threads do not create or destroy heap references, create new
regions, or allocate objects in VT regions. However, there are two other subtle ways
a thread can interact with the garbage collector.

First, the garbage collector needs to know all locations that refer to heap objects,
including locations that are inside regions. Suppose a real-time thread uses an LT
region that contains such heap references (created by a non-real-time thread). The
real-time thread can flush the region (by exiting it) thus destroying any heap reference
that existed in the region. If we use a moving garbage collector, the real-time thread
has to interact with the garbage collector to inform it about the destruction of those
heap references. Therefore, we should prevent regions that can be flushed by a real-
time thread from containing any heap reference (even if the reference is not explicitly
read or overwritten by the real-time thread). Note that this restriction is relevant
only for subregions: a real-time thread cannot create a top-level region and hence
cannot flush a top-level region either.

Second, when a thread enters or exits a subregion, it needs to do some bookkeep-
ing. To preserve the integrity of the runtime region implementation, some synchro-
nization is necessary during this bookkeeping. E.g., when a thread exits a subregion,
the test that the subregion can be flushed and the actual flushing have to be exe-
cuted atomically, without allowing any thread to enter the subregion “in between”.
If a regular thread exiting a subregion is suspended by the garbage collector, then a
real-time thread entering the subregion might have to wait for an unbounded amount
of time. This priority inversion problem occurs even in the RTSJ.

To prevent these subtle interactions, we impose the restriction that real-time
threads and regular threads cannot share subregions. Subregions used by real-time
threads thus cannot contain heap references, and real-time threads never have to wait
for unbounded amounts of time.

For each subregion, programmers specify in the region kind definitions whether
the subregion will be used only by real-time threads (RT subregions) or only by regular

204

threads (NoRT subregions). Note that real-time and regular threads can still commu-
nicate using top-level regions. Any method that enters an RT subregion must contain
the special effect RT in its effects clause. Any method that enters a NoRT subregion
must contain the heap region in its effects clause. The type system checks that no
regular thread can invoke a method that has an RT effect, and no real-time thread
can invoke a method that has a heap effect.

8.2.4 Rules for Typechecking

Previous sections presented the grammar for our core language in Figures 8-3, 8-7,
and 8-9. This section presents some sample typing rules; [47] contains all the rules.

The core of our type system is a set of typing judgments of the form P; E; X; rcr `
e : t. P, the program being checked, is included to provide information about class
definitions. The typing environment E provides information about the type of the
free variables of e (t v, i.e., variable v has type t), the kind of the owners currently in
scope (k o, i.e., owner o has kind k), and the two relations between owners: the “own-
ership” relation (o2 ºo o1, i.e., o2 owns o1) and the “outlives” relation (o2 º o1, i.e., o2

outlives o1). More formally, E ::= ∅ | E, t v | E, k o | E, o2 ºo o1 | E, o2 º o1. rcr

is the current region. X must subsume the effects of e. t is the type of the expression
e.

A useful auxiliary rule is E ` X1 º X2, i.e., the effects X1 subsume the effects X2:
∀o ∈ X2, ∃g ∈ X1, s.t. g º o. To prove constraints of the form g º o, g ºo o etc. in
a specific environment E, the checker uses the constraints from E, and the properties
of º and ºo: transitivity, reflexivity, ºo implies º, and the fact that the first owner
from the type of an object owns the object.

The expression “(RHandle〈r〉 h) {e}” creates a local region and evaluates e in an
environment where r and h are bound to the new region and its handle respectively.
The associated typing rule is presented below:

[EXPR LOCAL REGION]

E2 = E, LocalRegion r, RHandle〈r〉 h, (re º r)∀re∈Regions(E)

P `env E2 P; E2; X, r; r ` e : t E ` X º heap

P; E; X; rcr ` (RHandle〈r〉 h) {e} : int

The rule starts by constructing an environment E2 that extends the original envi-
ronment E by recording that r has kind LocalRegion and h has type RHandle〈r〉.
As r is deleted at the end of e, all existing regions outlive it; E2 records this too
(Regions(E) denotes the set of all regions from E). e should typecheck in the con-
text of the environment E2 and the permitted effects are X, r (the local region r is
a permitted effect inside e). Because creating a region requires memory allocation,
X must subsume heap. The expression is evaluated only for its side-effects and its
result is never used. Hence, the type of the entire expression is int.

The rule for a field read expression “v.fd” first finds the type cn〈o1..n〉 for v. Next,
it verifies that fd is a field of class cn ; let t be its declared type. The rule obtains the

205

type of the entire expression by substituting in t each formal owner parameter fn i of
cn with the corresponding owner oi:

[EXPR REF READ]

P; E; X; rcr ` v : cn 〈o1..n〉 P ` (t fd) ∈ cn 〈fn1..n〉
t′ = t[o1/fn1]..[on/fnn]

((t′ = int) ∨ (t′ = cn′〈o′1..m〉 ∧ E ` X º o′1))
P; E; X; rcr ` v.fd : t′

The last line of the rule checks that if the expression reads an object reference (i.e.,
not an integer), then the list of effects X subsumes the owner of the referenced object.

For an object allocation expression “new cn〈o1..n〉”, the rule first checks that class
cn is defined in P:

[EXPR NEW]

class cn 〈(ki fni)i∈{1..n}〉 ... where constr1..c ... ∈ P
∀i = 1..m, (E `k oi : k ′i ∧ P ` k ′i ≤k ki ∧ E ` oi º o1)

∀i = 1..c, E ` constr i[o1/fn1]..[om/fnm]
E ` X º o1 E `av RH(o1)

P; E; X; rcr ` new cn 〈o1..n〉 : cn 〈o1..n〉

Next, it checks that each formal owner parameter fn i of cn is instantiated with an
owner oi of appropriate kind, i.e., the kind k ′i of oi is a subkind of the declared kind
ki of fn i. It also checks that in E, each owner oi outlives the first owner o1, and
each constraint of cn is satisfied. Allocating an object means accessing its owner;
therefore, X must subsume o1. The new object is allocated in the region o1 (if o1 is
a region) or in the region that o1 is allocated in (if o1 is an object). The last part of
the precondition, E `av RH(o1), checks that the handle for this region is available. To
prove facts of this kind, the type system uses the following rules:

[AV HANDLE]

E = E1, RHandle〈r〉 h, E2

E `av RH(r)

[AV THIS]

E `av RH(this)

[AV TRANS1]

E ` o1 ºo o2 E `av RH(o2)
E `av RH(o1)

[AV TRANS2]

E ` o1 ºo o2 E `av RH(o1)
E `av RH(o2)

The rule [AV HANDLE] looks for a region handle in the environment. The environ-
ment always contains handles for heap and immortal; in addition, it contains all
handle identifiers that are in scope. The rule [AV THIS] reflects the fact that our
runtime is able to find the handle of the region where an object (this in particular)
is allocated. The last two rules use the fact that all objects are allocated in the same
region as their owner. Therefore, if o1 ºo o2 and the region handle for one of them is
available, then the region handle for the other one is also available. Note that these
rules do significant reasoning, thus reducing annotation burden; e.g., if a method al-
locates only objects (transitively) owned by this, it does not need an explicit region
handle argument.

206

We end this section with the typing rule for fork. The rule first checks that the
method call is well-typed (see rule [EXPR INVOKE] in [47]) Note that mn cannot
have the RT effect: a non-real-time thread cannot enter a subregion that is reserved
only for real-time threads.

[EXPR FORK]

P; E; X \ {RT}; rcr ` v0.mn 〈o(n+1)..m〉(v1..u) : t

NonLocal(k)
def
= (P ` k ≤k SharedRegion) ∨ (P ` k ≤k GCRegion)
E ` RKind(rcr)=kcr NonLocal(kcr)

P; E; X; rcr ` v0 : cn 〈o1..n〉
∀i = 1..m, (E ` RKind(oi)=ki ∧ NonLocal(ki))
P; E; X; rcr ` fork v0.mn 〈o(n+1)..m〉(v1..u) : int

The rule checks that the new thread does not receive any local region or objects
allocated in a local region. It uses the following observation: the only owners that
appear in the types of the method arguments are: initialRegion, this, the for-
mals for the method and the formals for the class the method belongs to. Therefore,
the arguments passed to the method mn from the fork instruction may be owned
only by the current region at the point of the fork, by the owners o1..n that ap-
pear in the type of the object v0 points to, or by the owners o(n+1)..m that appear
explicitly in the fork instruction. For each such owner o, our system uses the rule
E ` RKind(o)=k to extract the kind k of the region it stands for (if it is a region), or
of the region it is allocated in (if it is an object). The rule next checks that k is a
subkind of SharedRegion or GCRegion. The rules for inferring statements of the form
E ` RKind(oi)=ki (see [47]) are similar to the previously explained rules for checking
that a region handle is available. The key idea they exploit is that a subobject is
allocated in the same region as its owner.

8.2.5 Type Inference

Although our type system is explicitly typed in principle, it would be onerous to
fully annotate every method with the extra type information that our system re-
quires. Instead, we use a combination of type inference and well-chosen defaults to
significantly reduce the number of annotations needed in practice. Our system also
supports user-defined defaults to cover specific patterns that might occur in user code.
We emphasize that our approach to inference is purely intra-procedural and we do not
infer method signatures or types of instance variables. Rather, we use a default com-
pletion of partial type specifications in those cases. This approach permits separate
compilation.

The following are some defaults currently provided by our system. If owners of
method local variables are not specified, we use a simple unification-based approach
to infer the owners. The approach is similar to the ones in [46, 43]. For parameters
unconstrained after unification, we use initialRegion. For unspecified owners in
method signatures, we use initialRegion as the default. For unspecified owners in
instance variables, we use the owner of this as the default. For static fields, we use
immortal as the default. Our default accesses clauses contain all class and method
owner parameters and initialRegion.

207

null

w2

Subregions

m

Portal

Memory space for region m

w1

Objects
allocated

in m

fields
Portal

Figure 8-10: Translation of a Region With Three Fields and Two Subregions.

8.2.6 Translation to Real-Time Java

Although our system provides significant improvements over the RTSJ, programs in
our language can be translated to RTSJ reasonably easily, by local translation rules.
This is mainly because we designed our system so that it can be implemented using
type erasure (region handles exist specifically for this purpose). Also, RTSJ has
mechanisms that are powerful enough to support our features. RTSJ offers LTMemory
and VTMemory regions where it takes linear time and variable time (respectively) to
allocate objects. RTSJ regions are Java objects that point to some memory space. In
addition, RTSJ has two special regions: heap and immortal. A thread can allocate
in the current region using new. A thread can also allocate in any region that it
entered using newInstance, which requires the corresponding region object. RTSJ
regions are maintained similarly to our shared regions, by counting the number of
threads executing in them. RTSJ regions have one portal, which is similar to a portal
field except that its declared type is Object. Most of the translation effort is focused
on providing the missing features: subregions and multiple, typed portal fields. We
discuss the translation of several important features from our type system; the full
translation is discussed in [190].

We represent a region r from our system as an RTSJ region m plus two auxiliary
objects w1 and w2 (see Figure 8-10). m points to a memory area that is pre-allocated
for an LT region, or grown on-demand for a VT region. m also points to an object w1
whose fields point to the representation of r’s subregions. (We subclass LT/VTMemory
to add an extra field.) In addition, m’s portal points to an object w2 that serves as a
wrapper for r’s portal fields. w2 is allocated in the memory space attached to m, while
m and w1 are allocated in the region that was current at the time m was created.

The translation of “new cn〈o1..n〉” requires a reference to (i.e., the handle of) the
region we allocate in. If this is the same as the current region, we use the more
efficient new. The type rules already proved that we can obtain the necessary handle,
i.e., E `av RH(o1); we presented the relevant type rules in Section 8.2.4. Those rules
“pushed” the judgment E `av RH(o) up and down the ownership relation until we
obtained an owner whose region handle was available: immortal, heap, this, or a
region whose region handle was available in a local variable. RTSJ provides mecha-
nisms for retrieving the handle in the first three cases: ImmortalArea.instance(),
HeapArea.instance(), and MethodArea.getMethodArea(Object), respectively. In
the last case, we simply use the handle from the local variable.

208

Program Lines of Code Lines Changed
Array 56 4
Tree 83 8
Water 1850 31
Barnes 1850 16
ImageRec 567 8
http 603 20
game 97 10
phone 244 24

Figure 8-11: Programming Overhead

Execution Time (sec)
Program Static Dynamic Overhead

Checks Checks
Array 2.24 16.2 7.23
Tree 4.78 23.1 4.83
Water 2.06 2.55 1.24
Barnes 19.1 21.6 1.13
ImageRec 6.70 8.10 1.21

load 0.667 0.831 1.25
cross 0.014 0.014 1.0
threshold 0.001 0.001 1
hysteresis 0.005 0.006 1
thinning 0.023 0.026 1.1
save 0.617 0.731 1.18

Figure 8-12: Dynamic Checking Overhead

8.3 Experience

To gain preliminary experience, we implemented several programs in our system.
These include two micro benchmarks (Array and Tree), two scientific computations
(Water and Barnes), several components of an image recognition pipeline (load, cross,
threshold, hysteresis, and thinning), and several simple servers (http, game, and phone,
a database-backed information sever). In our implementations, the primary data
structures are allocated in regions (i.e., not in the garbage collected heap). In each
case, once we understood how the program worked and decided on the memory man-
agement policy to use, adding the extra type annotations was fairly straightforward.
Figure 8-11 presents a measure of the programming overhead involved. It shows the
number of lines of code that needed type annotations. In most cases, we only had to
change code where regions were created.

We also used our RTSJ implementation to measure the execution times of these
programs both with and without the dynamic checks specified in the Real-Time Spec-
ification for Java. Figure 8-12 presents the running times of the benchmarks both
with and without dynamic checks. Note that there is no garbage collection overhead
in any of these running times because the garbage collector never executes. Our mi-

209

cro benchmarks (Array and Tree) were written specifically to maximize the checking
overhead—our development goal was to maximize the ratio of assignments to other
computation. These programs exhibit the largest performance increases—they run
approximately 7.2 and 4.8 times faster, respectively, without checks. The performance
improvements for the scientific programs and image processing components provide
a more realistic picture of the dynamic checking overhead. These programs have
more modest performance improvements, running up to 1.25 times faster without the
checks. For the servers, the running time is dominated by the network processing
overhead and check removal has virtually no effect. This chapter presents the over-
head of dynamic referencing and assignment checks. For a detailed analysis of the
performance of a full range of RTSJ features, see [67, 68].

8.4 Related Work

The seminal work in [196, 195] introduces a static type system for region-based mem-
ory management for ML. Our system extends this to object-oriented programs by
combining the benefits of region types and ownership types in a unified type system
framework. Our system extends region types to multithreaded programs by allowing
long-lived threads to share objects without using the heap and without having mem-
ory leaks. Our system extends region types to real-time programs by ensuring that
real-time threads do not interfere with the garbage collector.

One disadvantage with most region-based management systems is that they en-
force a lexical nesting on region lifetimes; so objects allocated in a given region may
become inaccessible long before the region is deleted. [9] presents an analysis that
enables some regions to be deleted early, as soon as all of the objects in the region are
unreachable. Other approaches include the use of linear types to control when regions
are deleted [71, 74]. None of these approaches currently support object-oriented pro-
grams and the consequent subtyping, multithreaded programs with shared regions, or
real-time programs with real-time threads (although it should be possible to extend
them to do so). Conversely, it should also be possible to apply these techniques to
our system. In fact, existing systems already combine ownership-based type systems
and unique pointers [64, 46, 13].

RegJava [59] has a region type system for object-oriented programs that supports
subtyping and method overriding. Cyclone [111] is a dialect of C with a region type
system. Our work improves on these two systems by combining the benefits of owner-
ship types and region types in a unified framework. An extension to Cyclone handles
multithreaded programs and provides shared regions [110]. Our work improves on
this by providing subregions in shared regions and portal fields in subregions, so that
long-lived threads can share objects without using the heap and without having mem-
ory leaks. Other systems for regions [99, 100] use runtime checks to ensure memory
safety. These systems are more flexible, but they do not statically ensure safety.

To our knowledge, ours is the first static type system for memory management in
real-time programs. [76, 77] automatically translates Java code into RTSJ code using
off-line dynamic analysis to determine the lifetime of an object. Unlike our system,

210

this system does not require type annotations. It does, however, impose a runtime
overhead and it is not safe because the dynamic analysis might miss some execution
paths. Programmers can use this dynamic analysis to obtain suggestions for region
type annotations. We previously used escape analysis [189] to remove RTSJ runtime
checks [191]. However, the analysis is effective only for programs in which no object
escapes the computation that allocated it. Our type system is more flexible: we allow
a computation to allocate objects in regions that may outlive the computation.

Real-time garbage collection [27, 23] provides an alternative to region-based mem-
ory management for real-time programs. It has the advantage that programmers do
not have to explicitly deal with memory management. The basic idea is to perform
a fixed amount of garbage collection activity for a given amount of allocation. With
fixed-size allocation blocks and in the absence of cycles, reference counting can de-
liver a real-time garbage collector that imposes no space overhead as compared with
manual memory management. Copying and mark and sweep collectors, on the other
hand, pay space to get bounded-time allocation. The amount of extra space depends
on the maximum live heap size, the maximum allocation rate, and other memory
management parameters. The additional space allows the collector to successfully
perform allocations while it processes the heap to reclaim memory. To obtain the
real-time allocation guarantee, the programmer must calculate the required mem-
ory management parameters, then use those values to provide the collector with the
required amount of extra space. In contrast, region-based memory management pro-
vides an explicit mechanism that programmers can use to structure code based on
their understanding of the memory usage behavior of a program; this mechanism may
enable programmers to obtain a smaller space overhead. The additional development
burden consists of grouping objects into regions and determining the maximum size
of LT regions [103, 104].

8.5 Conclusions

The Real-Time Specification for Java (RTSJ) allows programs to create real-time
threads and use region-based memory management. The RTSJ uses runtime checks
to ensure memory safety. This chapter presents a static type system that guarantees
that these runtime checks will never fail for well-typed programs. Our type system
therefore 1) provides an important safety guarantee and 2) makes it possible to elimi-
nate the runtime checks and their associated overhead. Our system also makes several
contributions over previous work on region types. For object-oriented programs, it
combines the benefits of region types and ownership types in a unified type system
framework. For multithreaded programs, it allows long-lived threads to share objects
without using the heap and without having memory leaks. For real-time programs,
it ensures that real-time threads do not interfere with the garbage collector. Our
experience indicates that our type system is sufficiently expressive and requires little
programming overhead, and that eliminating the RTSJ runtime checks using a static
type system can significantly decrease the execution time of real-time programs.

211

212

RoushRV
Text Box
THIS PAGE WAS INTENTIONALLY LEFT BLANK

Chapter 9

Incrementalized Pointer and
Escape Analysis

9.1 Introduction

Program analysis research has focused on two kinds of analyses: local analyses, which
analyze a single procedure, and whole-program analyses, which analyze the entire pro-
gram. Local analyses fail to exploit information available across procedure bound-
aries; whole-program analyses are potentially quite expensive for large programs and
are problematic when parts of the program are not available in analyzable form.

This paper describes our experience incrementalizing an existing whole-program
analysis so that it can analyze arbitrary regions of complete or incomplete programs.
The new analysis can 1) analyze each method independently of its caller methods,
2) skip the analysis of potentially invoked methods, and 3) incrementally incorpo-
rate analysis results from previously skipped methods into an existing analysis result.
These features promote a structure in which the algorithm executes under the direc-
tion of an analysis policy. The policy continuously monitors the analysis results to
direct the incremental investment of analysis resources to those parts of the program
that offer the most attractive return (in terms of optimization opportunities) on the
invested resources. Our experimental results indicate that this approach usually de-
livers almost all of the benefit of the whole-program analysis, but at a fraction of the
cost.

9.1.1 Analysis Overview

Our analysis incrementalizes an existing whole-program analysis for extracting points-
to and escape information [202]. The basic abstraction in this analysis is a points-
to escape graph. The nodes of the graph represent objects; the edges represent
references between objects. In addition to points-to information, the analysis records
how objects escape the currently analyzed region of the program to be accessed by
unanalyzed regions. An object may escape to an unanalyzed caller via a parameter
passed into the analyzed region or via the return value. It may also escape to a
potentially invoked but unanalyzed method via a parameter passed into that method.

213

Finally, it may escape via a global variable or parallel thread. If an object does not
escape, it is captured.

The analysis is flow sensitive, context sensitive, and compositional. Guided by the
analysis policy, it performs an incremental analysis of the neighborhood of the pro-
gram surrounding selected object allocation sites. When it first analyzes a method, it
skips the analysis of all potentially invoked methods, but maintains enough informa-
tion to reconstruct the result of analyzing these methods should it become desirable
to do so. The analysis policy then examines the graph to find objects that escape,
directing the incremental integration of (possibly cached) analysis results from poten-
tial callers (if the object escapes to the caller) or potentially invoked methods (if the
object escapes into these methods). Because the analysis has complete information
about captured objects, the goal is to analyze just enough of the program to capture
objects of interest.

9.1.2 Analysis Policy

We formulate the analysis policy as a solution to an investment problem. At each
step of the analysis, the policy can invest analysis resources in any one of several
allocation sites in an attempt to capture the objects allocated at that site. To invest
its resources wisely, the policy uses empirical data from previous analyses, the current
analysis result for each site, and profiling data from a previous training run to estimate
the marginal return on invested analysis resources for each site.

During the analysis, the allocation sites compete for resources. At each step, the
policy invests its next unit of analysis resources in the allocation site that offers the
best marginal return. When the unit expires, the policy recomputes the estimated
returns and again invests in the (potentially different) allocation site with the best
estimated marginal return. As the analysis proceeds and the policy obtains more
information about each allocation site, the marginal return estimates become more
accurate and the quality of the investment decisions improves.

9.1.3 Analysis Uses

We use the analysis results to enable a stack allocation optimization. If the analy-
sis captures an object in its allocating method, the object is unreachable once the
method returns. In this case, the generated code allocates the object in the activation
record of its allocating method. If the object escapes the allocating method, but is
captured in one or more of the methods that directly invoke the allocating method,
the compiler inlines the allocating method into the capturing callers, then generates
code to allocate the captured objects in the activation record of the caller. The suc-
cess of this optimization depends on the characteristics of the application. The vast
majority of the objects in our benchmark applications are allocated at a small subset
of the allocation sites. For some applications the analysis is able to capture and stack
allocate all of the objects allocated at these sites. In other applications these objects
escape and the analysis finds few relevant optimization opportunities.

214

Other optimization uses include synchronization elimination, the elimination of
ScopedMemory checks in Real-Time Java [38], and a range of traditional compiler
optimizations. Potential software engineering uses include the evaluation of program-
mer hypotheses regarding points-to and escape information for specific objects, the
discovery of methods with no externally visible side effects, and the extraction of
information about how methods access data from the enclosing environment.

Because the analysis is designed to be driven by an analysis policy to explore
only those regions of the program that are relevant to a specific analysis goal, we
expect the analysis to be particularly useful in settings (such as dynamic compilers
and interactive software engineering tools) in which it must quickly answer queries
about specific objects.

9.1.4 Context

In general, a base analysis must have several key properties to be a good candidate
for incrementalization: it must be able to analyze methods independently of their
callers, it must be able to skip the analysis of invoked methods, and it must be able
to recognize when a partial analysis of the program has given it enough information to
apply the desired optimization. Algorithms that incorporate escape information are
good candidates for incrementalization because they enable the analysis to recognize
captured objects (for which it has complete information). As discussed further in Sec-
tion 9.7, many existing escape analyses either have or can easily be extended to have
the other two key properties [172, 58, 35]. Many of these algorithms are significantly
more efficient than our base algorithm, and we would expect incrementalization to
provide these algorithms with additional efficiency increases comparable to those we
observed for our algorithm. Compiler developers would therefore be able to choose
from a variety of efficient analyses, with some analyses imposing little to no overhead.

An arguably more important benefit is the fact that incrementalized algorithms
usually analyze only a local neighborhood of the program surrounding each object
allocation site. The analysis time for each site is therefore independent of the overall
size of the program, enabling the analysis to scale to handle programs of arbitrary
size. And incrementalized algorithms can analyze incomplete programs.

9.1.5 Contributions

This paper makes the following contributions:

• Analysis Approach: It presents an incremental approach to program analysis.
Instead of analyzing the entire program, the analysis is focused by an analysis
policy to incrementally analyze only those regions of the program that may
provide useful results.

• Analysis Algorithm: It presents a new combined pointer and escape analysis
algorithm based on the incremental approach described above.

215

• Analysis Policy: It formulates the analysis policy as a solution to an in-
vestment problem. Presented with several analysis opportunities, the analysis
policy incrementally invests analysis resources in those opportunities that offer
the best estimated marginal return.

• Experimental Results: Our experimental results show that, for our bench-
mark programs, our analysis policy delivers almost all of the benefit of the
whole-program analysis at a fraction of the cost.

The remainder of the paper is structured as follows. Section 9.2 presents several
examples. Section 9.3 presents our previously published base whole-program analy-
sis [202]; readers familiar with this analysis can skip this section. Section 9.4 presents
the incrementalized analysis. Section 9.5 presents the analysis policy; Section 9.6
presents experimental results. Section 9.7 discusses related work; we conclude in
Section 9.8.

9.2 Examples

We next present several examples that illustrate the basic approach of our analysis.
Figure 9-1 presents two classes: the complex class, which implements a complex num-
ber package, and the client class, which uses the package. The complex class uses
two mechanisms for returning values to callers: the add and multiplyAdd methods
write the result into the receiver object (the this object), while the multiply method
allocates a new object to hold the result.

9.2.1 The compute Method

We assume that the analysis policy first targets the object allocation site at line 3

of the compute method. The goal is to capture the objects allocated at this site and
allocate them on the call stack. The initial analysis of compute skips the call to the
multiplyAdd method. Because the analysis is flow sensitive, it produces a points-
to escape graph for each program point in the compute method. Because the stack
allocation optimization ties object lifetimes to method lifetimes, the legality of this
optimization is determined by the points-to escape graph at the end of the method.

Figure 9-2 presents the points-to escape graph from the end of the compute

method. The solid nodes are inside nodes, which represent objects created inside
the currently analyzed region of the program. Node 3 is an inside node that rep-
resents all objects created at line 3 in the compute method. The dashed nodes are
outside nodes, which represent objects not identified as created inside the analyzed
region. Nodes 1 and 2 are a kind of outside node called a parameter node; they rep-
resent the parameters to the compute method. The analysis result also records the
skipped call sites and the actual parameters at each site.

In this case, the analysis policy notices that the target node (node 3) escapes
because it is a parameter to the skipped call to multiplyAdd. It therefore directs

216

class complex {
double x,y;
complex(double a, double b) { x = a; y = b; }
void add(complex u, complex v) {

x = u.x+v.x; y = u.y+v.y;
}
complex multiply(complex m) {

11: complex r = new complex(x*m.x-y*m.y, x*m.y+y*m.x);
return(r);

}
void multiplyAdd(complex a, complex b, complex c) {

complex s = b.multiply(c);
this.add(a, s);

}
}
class client {

public static void compute(complex d, complex e) {
3: complex t = new complex(0.0, 0.0);

t.multiplyAdd(d,e,e);
}

}

Figure 9-1: Complex Number and Client Classes

3 .multiplyAdd(1 , 2 , 2)

3t

2e

1d

Points-to Escape Graph Skipped Method Calls

inside node outside node

Figure 9-2: Analysis Result from compute Method

5a

4this

6b
8s

7c

Points-to Escape Graph Skipped Method Calls

8 = 6 .multiply(7)

4 .add(5 , 8)

Figure 9-3: Analysis Result from multiplyAdd Method

3t

1d

2e

Points-to Escape Graph Skipped Method Calls

8 = 2 .multiply(2)

3 .add(1 , 8)

Figure 9-4: Analysis Result from compute Method after Integrating Result from
multiplyAdd

217

3t

1d

2e

Points-to Escape Graph Skipped Method Calls

8 = 2 .multiply(2)

Figure 9-5: Analysis Result from compute Method after Integrating Results from
multiplyAdd and add

the algorithm to analyze the multiplyAdd method and integrate the result into the
points-to escape graph from the program point at the end of the compute method.

Figure 9-3 presents the points-to escape graph from the initial analysis of the
multiplyAdd method. Nodes 4 through 7 are parameter nodes. Node 8 is another
kind of outside node: a return node that represents the return value of an unanalyzed
method, in this case the multiply method. To integrate this graph into the caller
graph from the compute method, the analysis first maps the parameter nodes from
the multiplyAdd method to the nodes that represent the actual parameters at the call
site. In our example, node 4 maps to node 3, node 5 maps to node 1, and nodes 6 and
7 both map to node 2. The analysis uses this mapping to combine the graphs into the
new graph in Figure 9-4. The analysis policy examines the new graph and determines
that the target node now escapes via the call to the add method. It therefore directs
the algorithm to analyze the add method and integrate the resulting points-to escape
graph into the current graph for the compute method. Note that because the call
to the multiply method has no effect on the escape status of the target node, the
analysis policy directs the algorithm to leave this method unanalyzed.

Figure 9-5 presents the new graph after the integration of the graph from the add

method. Because the add method does not change the points-to or escape information,
the net effect is simply to remove the skipped call to the add method. Note that the
target node (node 3) is captured in this graph, which implies that it is not accessible
when the compute method returns. The compiler can therefore generate code that
allocates all objects from the corresponding allocation site in the activation record of
this method.

9.2.2 The multiply Method

The analysis next targets the object allocation site at line 11 of the multiply method
in Figure 9-1. Figure 9-6 presents the points-to escape graph from this method,
which indicates that the target node (node 11) escapes to the caller (in this case the
multiplyAdd method) via the return value. The algorithm avoids repeated method
reanalyses by retrieving the cached points-to escape graph for the multiplyAdd

method, then integrating the graph from the multiply method into this cached graph.
Figure 9-7 presents the resulting points-to escape graph, which is cached as the new
(more precise) points-to escape graph for the multiplyAdd method. This graph indi-
cates that the target node (node 11) does not escape to the caller of the multiplyAdd

218

Points-to Escape Graph
Skipped Method Calls

b
m

9this

10

return value

11

Figure 9-6: Analysis Result from multiply Method

5a

4this

6b
s

7c

Points-to Escape Graph Skipped Method Calls

11

4 .add(5 , 11)

Figure 9-7: Analysis Result from multiplyAdd Method after Integrating Result from
multiply Method

5a

4this

6b
s

7c

Points-to Escape Graph Skipped Method Calls

11

Figure 9-8: Analysis Result from multiplyAdd Method after Integrating Results from
multiply and add

method, but does escape via the unanalyzed call to the add method. The analysis
therefore retrieves the cached points-to escape graph from the add method, then in-
tegrates this graph into the current graph from the multiplyAdd method. Figure 9-8
presents the resulting graph. Once again, the algorithm caches this result as the new
graph for the multiplyAdd method. The target node (node 11) is captured in this
graph — it escapes its enclosing method (the multiply method), but is recaptured
in a caller (the multiplyAdd method).

At this point the compiler has several options: it can inline the multiply method
into the multiplyAdd method and allocate the object on the stack, or it can pre-
allocate the object on the stack frame of the multiplyAdd method, then pass it in
by reference to a specialized version of the multiply routine. Both options enable
stack allocation even if the node is captured in some but not all invocation paths, if
the analysis policy declines to analyze all potential callers, or if it is not possible to
identify all potential callers at compile time. Our implemented compiler uses inlining.

219

9.2.3 Object Field Accesses

Our next example illustrates how the analysis deals with object field accesses. Fig-
ure 9-9 presents a rational number class that deals with return values in yet another
way. Each Rational object has a field called result; the methods in Figure 9-9 that
operate on these objects store the result of their computation in this field for the
caller to access.

class Rational {
int numerator, denominator;
Rational result;
Rational(int n, int d) {

numerator = n;
denominator = d;

}
void scale(int m) {

result = new Rational(numerator * m,
denominator);

}
void abs() {

int n = numerator;
int d = denominator;
if (n < 0) n = -n;
if (d < 0) d = -d;
if (d % n == 0) {

4: result = new Rational(n / d, 1);
} else {

5: result = new Rational(n, d);
}

}
}
class client {

public static void evaluate(int i, int j) {
1: Rational r = new Rational(0.0, 0.0);

r.abs();
2: Rational n = r.result;

n.scale(m);
}

}

Figure 9-9: Rational Number and Client Classes

We next discuss how the analysis policy guides the analysis for the Rational

allocation site at line 1 in the evaluate method. Figure 9-10 presents the initial
analysis result at the end of this method. The dashed edge between nodes 1 and 2 is an
outside edge, which represents references not identified as created inside the currently
analyzed region of the program. Outside edges always point from an escaped node to
a new kind of outside node, a load node, which represents objects whose references
are loaded at a given load statement, in this case the statement n = r.result at line
2 in the evaluate method.

220

n

1r 2
result

inside edge outside edge

2 .scale()

1 .abs()

Points-to Escape Graph Skipped Method Calls

Figure 9-10: Analysis Result from evaluate Method

3this

result 4

5result

Points-to Escape Graph Skipped Method Calls

Figure 9-11: Analysis Result from abs Method

1r

result 4

5

n

result

{ 4 , 5 }.scale()

Points-to Escape Graph Skipped Method Calls

Figure 9-12: Analysis Result from evaluate After Integrating Result from abs

221

The analysis policy notices that the target node (node 1) escapes via a call to
the abs method. It therefore directs the analysis to analyze abs and integrate the
result into the result from the end of the evaluate method. Figure 9-11 presents
the analysis result from the end of the abs method. Node 3 represents the receiver
object, node 4 represents the object created at line 4 of the abs method, and node 5

represents the object created at line 5. The solid edges from node 3 to nodes 4 and 5

are inside edges. Inside edges represent references created within the analyzed region
of the program, in this case the abs method.

The algorithm next integrates this graph into the analysis result from evaluate.
The goal is to reconstruct the result of the base whole-program analysis. In the base
analysis, which does not skip call sites, the analysis of abs changes the points-to
escape graph at the program point after the call site. These changes in turn affect
the analysis of the statements in evaluate after the call to abs. The incrementalized
analysis reconstructs the analysis result as follows. It first determines that node 3

represented node 1 during the analysis of abs. It then matches the outside edge
against the two inside edges to determine that, during the analysis of the region
of evaluate after the skipped call to abs, the outside edge from node 1 to node 2

represented the inside edges from node 3 to nodes 4 and 5, and that the load node
2 therefore represented nodes 4 and 5. The combined graph therefore contains inside
edges from node 1 to nodes 4 and 5. Because node 1 is captured, the analysis removes
the outside edge from this node. Finally, the updated analysis replaces the load node
2 in the skipped call site to scale with nodes 4 and 5. At this point the analysis has
captured node 1 inside the evaluate method, enabling the compiler to stack allocate
all of the objects created at the corresponding allocation site at line 1 in Figure 9-9.

9.3 The Base Analysis

The base analysis is a previously published points-to and escape analysis [202]. For
completeness, we present the algorithm again here. The algorithm is compositional,
analyzing each method once before its callers to extract a single parameterized anal-
ysis result that can be specialized for use at different call sites.1 It therefore analyzes
the program in a bottom-up fashion from the leaves of the call graph towards the
root. To simplify the presentation we ignore static class variables, exceptions, and
return values. Our implemented algorithm correctly handles all of these features.

9.3.1 Object Representation

The analysis represents the objects that the program manipulates using a set n ∈ N of
nodes, which consists of a set NI of inside nodes and a set NO of outside nodes. Inside
nodes represent objects created inside the currently analyzed region of the program,
i.e., inside the current method or one of the analyzed methods that it (transitively)

1Recursive programs require a fixed-point algorithm that may analyze methods involved in cycles
in the call graph multiple times.

222

invokes. There is one inside node for each object allocation site; that node represents
all objects created at that site. The inside nodes include the set of thread nodes
NT ⊆ NI . Thread nodes represent thread objects, i.e. objects that inherit from
Thread or implement the Runnable interface.

The set of parameter nodes NP ⊆ NO represents objects passed as parameters
into the currently analyzed method. There is one load node n ∈ NL ⊆ NO for each
load statement in the program; that node represents all objects whose references are
1) loaded at that statement, and 2) not identified as created inside the currently
analyzed region of the program. There is also a set f ∈ F of fields in objects, a set
v ∈ V of local or parameter variables, and a set l ∈ L ⊆ V of local variables.

9.3.2 Points-To Escape Graphs

A points-to escape graph is a pair 〈O, I〉, where

• O ⊆ (N × F) × NL is a set of outside edges. We write an edge 〈〈n1, f〉 , n2〉 as

n1
f→ n2.

• I ⊆ ((N × F) × N) ∪ (V × N) is a set of inside edges. We write an edge 〈v, n〉
as v→ n and an edge 〈〈n1, f〉 , n2〉 as n1

f→ n2.

Inside edges represent references created within the currently analyzed part of
the program. Outside edges represent references not identified as created within the
currently analyzed part of the program. Outside edges usually represent references
created outside the currently analyzed part of the program, but when multiple nodes
represent the same object (for example, when a method is invoked with aliased pa-
rameters), an outside edge from one node can represent a reference from the object
created within the currently analyzed part of the program.

A node escapes if it is reachable in O∪ I from a parameter node or a thread node.
We formalize this notion by defining an escape function

eO,I(n) = {n′ ∈ NT ∪NP .n is reachable from n′ in O ∪ I}

that returns the set of parameter and thread nodes through which n escapes. We
define the concepts of escaped and captured nodes as follows:

• escaped(〈O, I〉 , n) if eO,I(n) 6= ∅

• captured(〈O, I〉 , n) if eO,I(n) = ∅

We say that an allocation site escapes or is captured in the context of a given analysis
if the corresponding inside node is escaped or captured in the points-to escape graph
that the analysis produces.

223

9.3.3 Program Representation

The algorithm represents the computation of each method using a control flow graph.
We assume the program has been preprocessed so that all statements relevant to
the analysis are either a copy statement l = v, a load statement l1 = l2.f, a store
statement l1.f = l2, an object allocation statement l = new cl, or a method call
statement l0.op(l1, . . . , lk).

9.3.4 Intraprocedural Analysis

The intraprocedural analysis is a forward dataflow analysis that produces a points-to
escape graph for each program point in the method. Each method is analyzed under
the assumption that the parameters are maximally unaliased, i.e., point to different
objects. For a method with formal parameters v0, . . . , vn, the initial points-to escape
graph at the entry point of the method is 〈∅, {〈vi, nvi

〉 .1 ≤ i ≤ n}〉 where nvi
is the

parameter node for parameter vi. If the method is invoked in a context where some of
the parameters may point to the same object, the interprocedural analysis described
below in Section 9.3.5 merges parameter nodes to conservatively model the effect of
the aliasing.

The transfer function 〈O′, I ′〉 = [[st]] (〈O, I〉) models the effect of each statement
st on the current points-to escape graph. Figure 9-13 graphically presents the rules
that determine the new graph for each statement. Each row in this figure contains
three items: a statement, a graphical representation of existing edges, and a graphical
representation of the existing edges plus the new edges that the statement generates.
Two of the rows (for statements l1 = l2.f and l = new cl) also have a where clause
that specifies a set of side conditions. The interpretation of each row is that whenever
the points-to escape graph contains the existing edges and the side conditions are sat-
isfied, the transfer function for the statement generates the new edges. Assignments
to a variable kill existing edges from that variable; assignments to fields of objects
leave existing edges in place. At control-flow merges, the analysis takes the union
of the inside and outside edges. At the end of the method, the analysis removes all
captured nodes and local or parameter variables from the points-to escape graph.

9.3.5 Interprocedural Analysis

At each call statement, the interprocedural analysis uses the analysis result from
each potentially invoked method to compute a transfer function for the statement.
We assume a call site of the form l0.op(l1, . . . , lk), a potentially invoked method op

with formal parameters v0, . . . , vk, a points-to escape graph 〈O1, I1〉 at the program
point before the call site, and a graph 〈O2, I2〉 from the end of op.

A map µ ⊆ N × N combines the callee graph into the caller graph. The map
serves two purposes: 1) it maps each outside node in the callee to the nodes in the
caller that it represents during the analysis of the callee, and 2) it maps each node in
the callee to itself if that node should be present in the combined graph. We use the
notation µ(n) = {n′. 〈n, n′〉 ∈ µ} and n1

µ−→ n2 for n2 ∈ µ(n1).

224

where

where

Statement Existing Edges Generated Edges

Figure 9-13: Generated Edges for Basic Statements

225

The interprocedural mapping algorithm 〈〈O, I〉 , µ〉 =
map(〈O1, I1〉 , 〈O2, I2〉 , µ̂) starts with the points-to escape graph 〈O1, I1〉 from the
caller, the graph 〈O2, I2〉 from the callee, and an initial parameter map

µ̂(n) =

{
I1(li) if {n} = I2(vi)
∅ otherwise

that maps each parameter node from the callee to the nodes that represent the corre-
sponding actual parameters at the call site. It produces the new mapped edges from
the callee 〈O, I〉 and the new map µ.

Figure 9-14 presents the constraints that define the new edges 〈O, I〉 and new map
µ. Constraint 9.1 initializes the map µ to the initial parameter map µ̂. Constraint 9.2
extends µ, matching outside edges from the callee against edges from the caller to
ensure that µ maps each outside node from the callee to the corresponding nodes in
the caller that it represents during the analysis of the callee. Constraint 9.3 extends
µ to model situations in which aliasing in the caller causes an outside node from the
callee to represent other callee nodes during the analysis of the callee. Constraints 9.4
and 9.5 complete the map by computing which nodes from the callee should be present
in the caller and mapping these nodes to themselves. Constraints 9.6 and 9.7 use the
map to translate inside and outside edges from the callee into the caller. The new
graph at the program point after the call site is 〈I1 ∪ I, O1 ∪O〉.

µ̂(n) ⊆ µ(n) (9.1)

n1
f→ n2 ∈ O2, n3

f→ n4 ∈ O1 ∪ I1, n1
µ−→ n3

n2
µ−→ n4

(9.2)

n1
µ−→ n3, n2

µ−→ n3, n1 6= n2,

n1
f→ n4 ∈ O2, n2

f→ n5 ∈ O2 ∪ I2

µ(n4) ⊆ µ(n5)

(9.3)

n1
f→ n2 ∈ I2, n1

µ−→ n, n2 ∈ NI

n2
µ−→ n2

(9.4)

n1
f→ n2 ∈ O2, n1

µ−→ n, escaped(〈O, I〉 , n)

n2
µ−→ n2

(9.5)

n1
f→ n2 ∈ I2

(µ(n1)× {f})× µ(n2) ⊆ I
(9.6)

n1
f→ n2 ∈ O2, n2

µ−→ n2

(µ(n1)× {f})× {n2} ⊆ O
(9.7)

Figure 9-14: Constraints for Interprocedural Analysis

Because of dynamic dispatch, a single call site may invoke several different meth-

226

ods. The transfer function therefore merges the points-to escape graphs from the
analysis of all potentially invoked methods to derive the new graph at the point after
the call site. The current implementation obtains this call graph information using
a variant of a cartesian product type analysis [1], but it can use any conservative
approximation to the dynamic call graph.

9.3.6 Merge Optimization

As presented so far, the analysis may generate points-to escape graphs 〈O, I〉 in

which a node n may have multiple distinct outside edges n
f→ n1, . . . , n

f→ nk ∈
O. We eliminate this inefficiency by merging the load nodes n1, . . . , nk. With this
optimization, a single load node may be associated with multiple load statements.
The load node generated from the merge of k load nodes n1, . . . , nk is associated with
all of the statements of n1, . . . , nk.

9.4 The Incrementalized Analysis

We next describe how to incrementalize the base algorithm — how to enhance the
algorithm so that it can skip the analysis of call sites while maintaining enough
information to reconstruct the result of analyzing the invoked methods should the
analysis policy direct the analysis to do so. The first step is to record the set S
of skipped call sites. For each skipped call site s, the analysis records the invoked
method ops and the initial parameter map µ̂s that the base algorithm would compute
at that call site. To simplify the presentation, we assume that each skipped call site
is 1) executed at most once, and 2) invokes a single method. Section 9.4.8 discusses
how we eliminate these restrictions in our implemented algorithm.

The next step is to define an updated escape function eS,O,I that determines how
objects escape the currently analyzed region of the program via skipped call sites:

eS,O,I(n) = {s ∈ S.∃n1 ∈ NP .n1
µ̂s−→ n2 and

n is reachable from n2 in O ∪ I} ∪ eO,I(n)

We adapt the interprocedural mapping algorithm from Section 9.3.5 to use this up-
dated escape function. By definition, n escapes through a call site s if s ∈ eS,O,I(n).

A key complication is preserving flow sensitivity with respect to previously skipped
call sites during the integration of analysis results from those sites. For optimization
purposes, the compiler works with the analysis result from the end of the method. But
the skipped call sites occur at various program points inside the method. We therefore
augment the points-to escape graphs from the base analysis with several orders, which
record ordering information between edges in the points-to escape graph and skipped
call sites:

• ω ⊆ S×((N×{f})×NL). For each call site s, ω(s) = {n1
f→ n2.

〈
s, n1

f→ n2

〉
∈

ω} is the set of outside edges that the analysis generates before it skips s.

227

• ι ⊆ S×((N×{f})×N). For each call site s, ι(s) = {n1
f→ n2.

〈
s, n1

f→ n2

〉
∈ ι}

is the set of inside edges that the analysis generates before it skips s.

• τ ⊆ S×((N×{f})×NL). For each call site s, τ(s) = {n1
f→ n2.

〈
s, n1

f→ n2

〉
∈

τ} is the set of outside edges that the analysis generates after it skips s.

• ν ⊆ S× ((N ×{f})×N). For each call site s, ν(s) = {n1
f→ n2.

〈
s, n1

f→ n2

〉
∈

ν} is the set of inside edges that the analysis generates after it skips s.

• β ⊆ S × S. For each call site s, β(s) = {s′. 〈s, s′〉 ∈ β} is the set of call sites
that the analysis skips before skipping s.

• α ⊆ S × S. For each call site s, α(s) = {s′. 〈s, s′〉 ∈ α} is the set of call sites
that the analysis skips after skipping s.

The incrementalized analysis works with augmented points-to escape graphs of
the form 〈O, I, S, ω, ι, τ, ν, β, α〉. Note that because β and α are inverses,2 the anal-
ysis does not need to represent both explicitly. It is of course possible to use any
conservative approximation of ω, ι, τ , ν, β and α; an especially simple approach uses
ω(s) = τ(s) = O, ι(s) = ν(s) = I, and β(s) = α(s) = S.

We next discuss how the analysis uses these additional components during the
incremental analysis of a call site. We assume a current augmented points-to escape
graph
〈O1, I1, S1, ω1, ι1, τ1, ν1, β1, α1〉, a call site s ∈ S1 with invoked operation ops, and an
augmented points-to escape graph 〈O2, I2, S2, ω2, ι2, τ2, ν2, β2, α2〉 from the end of ops.

9.4.1 Matched Edges

In the base algorithm, the analysis of a call site matches outside edges from the ana-
lyzed method against existing edges in the points-to escape graph from the program
point before the site. By the time the algorithm has propagated the graph to the end
of the method, it may contain additional edges generated by the analysis of state-
ments that execute after the call site. When the incrementalized algorithm integrates
the analysis result from a skipped call site, it matches outside edges from the invoked
method against only those edges that were present in the points-to escape graph at
the program point before the call site. ω(s) and ι(s) provide just those edges. The
algorithm therefore computes

〈O, I, µ〉 = map(〈ω1(s), ι1(s)〉 , 〈O2, I2〉 , µ̂s)

where O and I are the new sets of edges that the analysis of the callee adds to the
caller graph.

2Under the interpretation β−1 = {〈s1, s2〉 . 〈s2, s1〉 ∈ β} and α−1 = {〈s1, s2〉 . 〈s2, s1〉 ∈ α},
β = α−1 and β−1 = α.

228

9.4.2 Propagated Edges

In the base algorithm, the transfer function for an analyzed call site may add new
edges to the points-to graph from before the site. These new edges create effects that
propagate through the analysis of subsequent statements. Specifically, the analysis of
these subsequent statements may read the new edges, then generate additional edges
involving the newly referenced nodes. In the points-to graph from the incrementalized
algorithm, the edges from the invoked method will not be present if the analysis skips
the call site. But these missing edges must come (directly or indirectly) from nodes
that escape into the skipped call site. In the points-to graphs from the caller, these
missing edges are represented by outside edges that are generated by the analysis of
subsequent statements. The analysis can therefore use τ1(s) and ν1(s) to reconstruct
the propagated effect of analyzing the skipped method. It computes

〈O′, I ′, µ′〉 = map(〈O, I〉 , 〈τ1(s), ν1(s)〉 , {〈n, n〉 .n ∈ N})

where O′ and I ′ are the new sets of edges that come from the interaction of the
analysis of the skipped method and subsequent statements, and µ′ maps each outside
node from the caller to the nodes from the callee that it represents during the analysis
from the program point after the skipped call site to the end of the method. Note
that this algorithm generates all of the new edges that a complete reanalysis would
generate. But it generates the edges incrementally without reanalyzing the code.

9.4.3 Skipped Call Sites from the Caller

In the base algorithm, the analysis of one call site may affect the initial parameter
map for subsequent call sites. Specifically, the analysis of a site may cause the formal
parameter nodes at subsequent sites to be mapped to additional nodes in the graph
from the caller.

For each skipped call site, the incrementalized algorithm records the parameter
map that the base algorithm would have used at that site. When the incremental-
ized algorithm integrates an analysis result from a previously skipped site, it must
update the recorded parameter maps for subsequent skipped sites. At each of these
sites, outside nodes represent the additional nodes that the analysis of the previously
skipped site may add to the map. And the map µ′ records how each of these outside
nodes should be mapped. For each subsequent site s′ ∈ α1(s), the algorithm com-
poses the site’s current recorded parameter map µ̂s′ with µ′ to obtain its new recorded
parameter map µ′ ◦ µ̂s′ .

9.4.4 Skipped Call Sites from the Callee

The new set of skipped call sites S ′ = (S1 ∪ S2) contains the set of skipped call sites
S2 from the callee. When it maps the callee graph into the caller graph, the analysis
updates the recorded parameter maps for the skipped call sites in S2. For each site
s′ ∈ S2, the analysis simply composes the site’s current map µ̂s′ with the map µ to
obtain the new recorded parameter map µ ◦ µ̂s′ for s′.

229

9.4.5 New Orders

The analysis constructs the new orders by integrating the orders from the caller and
callee into the new analysis result and extending the orders for s to the mapped
edges and skipped call sites from the callee. So, for example, the new order between
outside edges and subsequent call sites (ω′) consists of the order from the caller (ω1),
the mapped order from the callee (ω2[µ]), the order from s extended to the skipped
call sites from the callee (S2 × ω1(s)), and the outside edges from the callee ordered
with respect to the call sites after s (α1(s)×O):

ω′=ω1 ∪ ω2[µ] ∪ (S2 × ω1(s)) ∪ (α1(s)×O)
ι′=ι1 ∪ ι2[µ] ∪ (S2 × ι1(s)) ∪ (α1(s)× I)
τ ′=τ1 ∪ τ2[µ] ∪ (S2 × τ1(s)) ∪ (β1(s)×O)
ν ′=ν1 ∪ ν2[µ] ∪ (S2 × ν1(s)) ∪ (β1(s)× I)
β′=β1 ∪ β2 ∪ (S2 × β1(s)) ∪ (α1(s)× S2)
α′=α1 ∪ α2 ∪ (S2 × α1(s)) ∪ (β1(s)× S2)

Here ω[µ] is the order ω under the map µ, i.e., ω[µ] = {
〈
s, n′1

f→ n′2
〉

.
〈
s, n1

f→ n2

〉
∈

ω, n1
µ−→ n′1, and n2

µ−→ n′2}, and similarly for ι, τ, and ν.

9.4.6 Cleanup

At this point the algorithm can compute a new graph
〈O1 ∪O ∪O′, I1 ∪ I ∪ I ′, S ′, ω′, ι′, τ ′, ν ′, β′, α′〉 that reflects the integration of the anal-
ysis of s into the previous analysis result 〈O1, I1, S1, ω1, ι1, τ1, ν1, β1, α1〉. The final step
is to remove s from all components of the new graph and to remove all outside edges
from captured nodes.

9.4.7 Updated Intraprocedural Analysis

The transfer function for a skipped call site s performs the following additional tasks:

• Record the initial parameter map µ̂s that the base algorithm would use when
it analyzed the site.

• Update ω to include {s} ×O, update ι to include {s} × I, update α to contain
S × {s}, and update β to contain {s} × S.

• Update S to include the skipped call site s.

Whenever a load statement generates a new outside edge n1
f→ n2, the transfer

function updates τ to include S ×{n1
f→ n2}. Whenever a store statement generates

a new inside edge n1
f→ n2, the transfer function updates ν to include S×{n1

f→ n2}.
Finally, the incrementalized algorithm extends the confluence operator to merge

the additional components. For each additional component (including the recorded
parameter maps µs), the confluence operator is set union.

230

9.4.8 Extensions

So far, we have assumed that each skipped call site is executed at most once and
invokes a single method. We next discuss how our implemented algorithm eliminates
these restrictions. To handle dynamic dispatch, we compute the graph for all of the
possible methods that the call site may invoke, then merge these graphs to obtain
the new graph.

We also extend the abstraction to handle skipped call sites that are in loops or
are invoked via multiple paths in the control flow graph. We maintain a multiplicity
flag for each call site specifying whether the call site may be executed multiple times:

• The transfer function for a skipped call site s checks to see if the site is already
in the set of skipped sites S. If so, it sets the multiplicity flag to indicate that
s may be invoked multiple times. It also takes the union of the site’s current
recorded parameter map µ̂s and the parameter map µ̂ from the transfer function
to obtain the site’s new recorded parameter map µ̂s ∪ µ̂.

• The algorithm that integrates analysis results from previously skipped call sites
performs a similar set of operations to maintain the recorded parameter maps
and multiplicity flags for call sites that may be present in the analysis results
from both the callee and the caller. If the skipped call site may be executed
multiple times, the analysis uses a fixed-point algorithm when it integrates the
analysis result from the skipped call site. This algorithm models the effect of
executing the site multiple times.

9.4.9 Recursion

The base analysis uses a fixed-point algorithm to ensure that it terminates in the
presence of recursion. It is possible to use a similar approach in the incrementalized
algorithm. Our implemented algorithm, however, does not check for recursion as it
explores the call graph. If a node escapes into a recursive method, the analysis may,
in principle, never terminate. In practice, the algorithm relies on the analysis policy
to react to the expansion of the analyzed region by directing analysis resources to
other allocation sites.

9.4.10 Incomplete Call Graphs

Our algorithm deals with incomplete call graphs as follows. If it is unable to locate all
of the potential callers of a given method, it simply analyzes those it is able to locate.
If it is unable to locate all potential callees at a given call site, it simply considers all
nodes that escape into the site as permanently escaped.

9.5 Analysis Policy

The goal of the analysis policy is to find and analyze allocation sites that can be
captured quickly and have a large optimization payoff. Conceptually, the policy uses

231

the following basic approach. It estimates the payoff for capturing an allocation site
as the number of objects allocated at that site in a previous profiling run. It uses
empirical data and the current analysis result for the site to estimate the likelihood
that it will ever be able to capture the site, and, assuming that it is able to capture the
site, the amount of time required to do so. It then uses these estimates to calculate
an estimated marginal return for each unit of analysis time invested in each site.

At each analysis step, the policy is faced with a set of partially analyzed sites that
it can invest in. The policy simply chooses the site with the best estimated marginal
return, and invests a (configurable) unit of analysis time in that site. During this
time, the algorithm repeatedly selects one of the skipped call sites through which the
allocation site escapes, analyzes the methods potentially invoked at that site (reusing
the cached results if they are available), and integrates the results from these methods
into the current result for the allocation site. If these analyses capture the site, the
policy moves on to the site with the next best estimated marginal return. Otherwise,
when the time expires, the policy recomputes the site’s estimated marginal return in
light of the additional information it has gained during the analysis, and once again
invests in the (potentially different) site with the current best estimated marginal
return.

9.5.1 Stack Allocation

The compiler applies two potential stack allocation optimizations depending on where
an allocation site is captured:

• Stack Allocate: If the site is captured in the method that contains it, the com-
piler generates code to allocate all objects created at that site in the activation
record of the containing method.

• Inline and Stack Allocate: If the site is captured in a direct caller of the
method containing the site, the compiler first inlines the method into the caller.
After inlining, the caller contains the site, and the generated code allocates all
objects created at that site in the activation record of the caller.

The current analysis policy assumes that the compiler is 1) unable to inline a method
if, because of dynamic dispatch, the corresponding call site may invoke multiple meth-
ods, and 2) unwilling to enable additional optimizations by further inlining the callers
of the method containing the allocation site into their callers. It is, of course, possible
to relax these assumptions to support more sophisticated inlining and/or specializa-
tion strategies.

Inlining complicates the conceptual analysis policy described above. Because each
call site provides a distinct analysis context, the same allocation site may have dif-
ferent analysis characteristics and outcomes when its enclosing method is inlined at
different call sites. The policy therefore treats each distinct combination of call site
and allocation site as its own separate analysis opportunity.

232

9.5.2 Analysis Opportunities

The policy represents an opportunity to capture an allocation site a in its enclosing
method op as 〈a, op, G, p, c, d, m〉, where G is the current augmented points-to escape
graph for the site, p is the estimated payoff for capturing the site, c is the count of
the number of skipped call sites in G through which a escapes, d is the method call
depth of the analyzed region represented by G, and m is the mean cost of the call
site analyses performed so far on behalf of this analysis opportunity. Note that a, op,
and G are used to perform the incremental analysis, while p, c, d, and m are used
to estimate the marginal return. Opportunities to capture an allocation site a in the
caller op of its enclosing method have the form 〈a, op, s, G, p, c, d, m〉, where s is the
call site in op that invokes the method containing a, and the remainder of the fields
have the same meaning as before.

Escapes Below Caller of

Enclosing Method

Unanalyzed

Escapes Below

Enclosing Method
 AbandonedCaptured

Figure 9-15: State-Transition Diagram for Analysis Opportunities

Figure 9-15 presents the state-transition diagram for analysis opportunities. Each
analysis opportunity can be in one of the states of the diagram; the transitions cor-
respond to state changes that take place during the analysis of the opportunity. The
states have the following meanings:

• Unanalyzed: No analysis done on the opportunity.

• Escapes Below Enclosing Method: The opportunity’s allocation site es-
capes into one or more skipped call sites, but does not (currently) escape to the
caller of the enclosing method. The opportunity is of the form 〈a, op, G, p, c, d, m〉.

• Escapes Below Caller of Enclosing Method: The opportunity’s site es-
capes to the caller of its enclosing method, but does not (currently) escape from
this caller. The site may also escape into one or more skipped call sites. The
opportunity is of the form 〈a, op, s, G, p, c, d,m〉.

• Captured: The opportunity’s site is captured.

• Abandoned: The policy has permanently abandoned the analysis of the op-
portunity, either because its allocation site permanently escapes via a static

233

class variable or thread, because the site escapes to the caller of the caller of its
enclosing method (and is therefore unoptimizable), or because the site escapes
to the caller of its enclosing method and (because of dynamic dispatch) the
compiler is unable to inline the enclosing method into the caller.

In Figure 9-15 there are multiple transitions from the Escapes Below Enclosing
Method state to the Escapes Below Caller of Enclosing Method state. These transi-
tions indicate that one Escapes Below Enclosing Method opportunity may generate
multiple new Escapes Below Caller of Enclosing Method opportunities — one new
opportunity for each potential call site that invokes the enclosing method from the
old opportunity.

When an analysis opportunity enters the Escapes Below Caller of Enclosing Method
state, the first analysis action is to integrate the augmented points-to escape graph
from the enclosing method into the graph from the caller of the enclosing method.

9.5.3 Estimated Marginal Returns

If the opportunity is Unanalyzed, the estimated marginal return is (ξ · p)/σ, where ξ
is the probability of capturing an allocation site given no analysis information about
the site, p is the payoff of capturing the site, and, assuming the analysis eventually
captures the site, σ is the expected analysis time required to do so.

If the opportunity is in the state Escapes Below Enclosing Method, the estimated
marginal return is (ξ1(d) · p)/(c · m). Here ξ1(d) is the conditional probability of
capturing an allocation site given that the algorithm has explored a region of call
depth d below the method containing the site, the algorithm has not (yet) captured
the site, and the site has not escaped (so far) to the caller of its enclosing method.
If the opportunity is in the state Escapes Below Caller of Enclosing Method, the
estimated marginal return is (ξ2(d) · p)/(c · m). Here ξ2(d) has the same meaning
as ξ1(d), except that the assumption is that the site has escaped to the caller of its
enclosing method, but not (so far) to the caller of the caller of its enclosing method.

We obtain the capture probability functions ξ, ξ1, and ξ2 empirically by prean-
alyzing all of the executed allocation sites in some sample programs and collecting
data that allows us to compute these functions. For Escapes Below Enclosing Method
opportunities, the estimated payoff p is the number of objects allocated at the oppor-
tunity’s allocation site a during a profiling run. For Escapes Below Caller of Enclosing
Method opportunities, the estimated payoff is the number of objects allocated at the
opportunity’s allocation site a when the allocator is invoked from the opportunity’s
call site s.

When an analysis opportunity changes state or increases its method call depth, its
estimated marginal return may change significantly. The policy therefore recomputes
the opportunity’s return whenever one of these events happens. If the best opportu-
nity changes because of this recomputation, the policy redirects the analysis to work
on the new best opportunity.

234

9.5.4 Termination

In principle, the policy can continue the analysis indefinitely as it invests in ever less
profitable opportunities. In practice, it is important to terminate the analysis when
the prospective returns become small compared to the analysis time required to realize
them. We say that the analysis has decided an object if that object’s opportunity
is in the Captured or Abandoned state. The payoffs p in the analysis opportunities
enable the policy to compute the current number of decided and undecided objects.

Two factors contribute to our termination policy: the percentage of undecided
objects (this percentage indicates the maximum potential payoff from continuing the
analysis), and the rate at which the analysis has recently been deciding objects. The
results in Section 9.6 are from analyses terminated when the percentage of decided
objects rises above 90% and the decision rate for the last quarter of the analysis drops
below 1 percent per second, with a cutoff of 75 seconds of total analysis time.

We anticipate the development of a variety of termination policies to fit the partic-
ular needs of different compilers. A dynamic compiler, for example, could accumulate
an analysis budget as a percentage of the time spent executing the application —
the longer the application ran, the more time the policy would be authorized to in-
vest analyzing it. The accumulation rate would determine the maximum amortized
analysis overhead.

9.6 Experimental Results

We have implemented our analysis and the stack allocation optimization in the MIT
Flex compiler, an ahead-of-time compiler written in Java for Java.3 We ran the ex-
periments on an 800 MHz Pentium III PC with 768Mbytes of memory running Linux
Version 2.2.18. We ran the compiler using the Java Hotspot Client VM version 1.3.0
for Linux. The compiler generates portable C code, which we compile to an executable
using gcc. The generated code manages the heap using the Boehm-Demers-Weiser
conservative garbage collector [36] and uses alloca for stack allocation.

9.6.1 Benchmark Programs

Our benchmark programs include two multithreaded scientific computations (Barnes
and Water), Jlex, and several Spec benchmarks (Db, Compress, and Raytrace).
Barnes and Water are well-known benchmarks in the parallel computing community;
our Java versions were derived from versions in the SPLASH-2 benchmark suite [205].
Figure 9-16 presents the compile and whole-program analysis times for the applica-
tions.

3The compiler is available at www.flexc.lcs.mit.edu.

235

Compile Time Whole-Program
Application Without Analysis Analysis Time
Barnes 89.7 34.3
Water 91.1 38.2
Jlex 119.5 222.8
Db 93.6 126.6
Raytrace 118.4 102.2
Compress 219.6 645.1

Figure 9-16: Compile and Whole-Program Analysis Times (seconds)

9.6.2 Marginal Returns and Profiling Information

We derived the estimated capture probability functions ξ, ξ1, and ξ2 from an instru-
mented analysis of all of the executed object allocation sites in Barnes, Water, Db,
and Raytrace. Figure 9-17 presents the capture probabilities ξ1(d) and ξ2(d) as a
function of the call depth d; ξ is .33.

|

0
|

3
|

6
|

9

|0.00

|0.30

|0.60

|0.90

 Call Depth

 C
ap

tu
re

 P
ro

ba
bi

lit
y

 ξ 2

|

0
|

3
|

6
|

9

|0.00

|0.30

|0.60

|0.90

 Call Depth

 C
ap

tu
re

 P
ro

ba
bi

lit
y

 ξ 2

Figure 9-17: Capture Probability Functions

To compute the estimated marginal returns and implement the termination policy,
the analysis policy needs an estimated optimization payoff for each allocation site. We
obtain these payoffs as the number of objects allocated at each site during a training
run on a small training input. The presented execution and analysis statistics are for
executions on larger production inputs.

9.6.3 Analysis Payoffs and Statistics

Figure 9-18 presents analysis statistics from the incrementalized analysis. We present
the number of captured allocation sites as the sum of two counts. The first count
is the number of sites captured in the enclosing method; the second is the number
captured in the caller of the enclosing method. Fractional counts indicate allocation
sites that were captured in some but not all callers of the enclosing method. In Db,
for example, one of the allocation sites is captured in two of the eight callers of its
enclosing method. The Undecided Allocation Sites column counts the number of
allocation sites in which the policy invested some resources, but did not determine
whether it could stack allocate the corresponding objects or not. The Analyzed Call

236

Analysis Captured Abandoned Undecided Total Analyzed Total
Time Allocation Allocation Allocation Allocation Call Call Analyzed Total

(seconds) Sites Sites Sites Sites Sites Sites Methods Methods
Barnes 0.8 3+0 0 2 736 18 1675 13 512
Water 21.7 33+0 4 33 748 94 1799 33 481
Jlex 0.9 0+2 1 2 1054 27 2879 12 569
Db 4.5 1+0.25 4 1.75 1118 54 2444 25 631
Raytrace 76.3 8+0.37 20.63 54 1067 271 3109 64 699
Compress 79.5 4+0.33 4 19.66 1354 111 4084 40 808

Figure 9-18: Analysis Statistics from Incrementalized Analysis

Sites, Total Call Sites, Analyzed Methods, and Total Methods columns show that the
policy analyzes a small fraction of the total program.

The graphs in Figure 9-19 present three curves for each application. The horizon-
tal dotted line indicates the percentage of objects that the whole-program analysis
allocates on the stack. The dashed curve plots the percentage of decided objects (ob-
jects whose analysis opportunities are either Captured or Abandoned) as a function
of the analysis time. The solid curve plots the percentage of objects allocated on
the stack. For Barnes, Jlex, and Db, the incrementalized analysis captures virtually
the same number of objects as the whole-program analysis, but spends a very small
fraction of the whole-program analysis time to do so. Incrementalization provides less
of a benefit for Water because two large methods account for a much of the analysis
time of both analyses. For Raytrace and Compress, a bug in the 1.3 JVM forced us
to run the incrementalized analysis, but not the whole-program analysis, on the 1.2
JVM. Our experience with the other applications indicates that both analyses run
between five and six times faster on the 1.3 JVM than on the 1.2 JVM.

9.6.4 Application Execution Statistics

Figure 9-20 presents the total amount of memory that the applications allocate in
the heap. Almost all of the allocated memory in Barnes and Water is devoted to
temporary arrays that hold the results of intermediate computations. The C++
version of these applications allocates these arrays on the stack; our analysis restores
this allocation strategy in the Java version. Most of the memory in Jlex is devoted
to temporary iterators, which are stack allocated after inlining. Note the anomaly in
Db and Compress: many objects are allocated on the stack, but the heap allocated
objects are much bigger than the stack allocated objects.

Figure 9-21 presents the execution times. The optimizations provide a significant
performance benefit for Barnes and Water and some benefit for Jlex and Db. Without
stack allocation, Barnes and Water interact poorly with the conservative garbage
collector. We expect that a precise garbage collector would reduce the performance
difference between the versions with and without stack allocation.

9.7 Related Work

We first address related work in escape analysis, focusing on the prospects for in-
crementalizing existing algorithms. We then discuss several interprocedural analyses

237

 Stack Allocation Percentage, Whole-Program Analysis

 Decided Percentage, Incrementalized Analysis

 Stack Allocation Percentage, Incrementalized Analysis

0.0

|

0.3

|

0.6

|

0.9

|0

|25

|50

|75

|100

 Barnes

 Analysis Time (seconds)

 P
er

ce
n
ta

g
e

o
f

O
b
je

ct
s

0

|

7

|

14

|

21

|0

|25

|50

|75

|100

 Water

 Analysis Time (seconds)

 P
er

ce
n
ta

g
e

o
f

O
b
je

ct
s

0.0

|

0.3

|

0.6

|

0.9

|0

|25

|50

|75

|100

 Jlex

 Analysis Time (seconds)

 P
er

ce
n
ta

g
e

o
f

O
b
je

ct
s

0.0

|

1.5

|

3.0

|

4.5

|0
|25

|50

|75

|100

 Db

 Analysis Time (seconds)

 P
er

ce
n
ta

g
e

o
f

O
b
je

ct
s

0

|

25

|

50

|

75

|0

|25

|50

|75

|100

 Compress

 Analysis Time (seconds)

 P
er

ce
n
ta

g
e

o
f

O
b
je

ct
s

0

|

25

|

50

|

75

|0

|25

|50

|75

|100

Raytrace

 Analysis Time (seconds)

 P
er

ce
n
ta

g
e

o
f

O
b
je

ct
s

Figure 9-19: Analysis Time Payoffs

(demand-driven analysis, fragment analysis, and incremental analysis) that are de-
signed to analyze part, but not all, of the program.

9.7.1 Escape Analysis

Many other researchers have developed escape analyses for Java [202, 58, 172, 35, 37].
These analyses have been presented as whole-program analyses, although many con-
tain elements that make them amenable to incrementalization. All of the analyses
listed above except the last [37] analyze methods independently of their callers, gen-
erating a summary that can be specialized for use at each call site. Unlike our
base analysis [202], these analyses are not designed to skip call sites. But we be-
lieve it would be relatively straightforward to augment them to do so. With this
extension in place, the remaining question is incrementalization. For flow-sensitive
analyses [202, 58], the incrementalized algorithm must record information about the
ordering of skipped call sites relative to the rest of the analysis information if it is
to preserve the precision of the base whole-program analysis with respect to skipped
call sites. Flow-insensitive analyses [172, 35], can ignore this ordering information
and should therefore be able to use an extended abstraction that records only the
mapping information for skipped call sites. In this sense flow-insensitive analyses
should be, in general, simpler to incrementalize than flow-sensitive analyses.

238

No Incrementalized Whole-Program
Application Analysis Analysis Analysis
Barnes 36.0 3.2 2.0
Water 190.2 2.2 0.6
Jlex 40.8 3.1 2.5
Db 77.6 31.2 31.2
Raytrace 13.4 9.0 6.7
Compress 110.1 110.1 110.1

Figure 9-20: Allocated Heap Memory (Mbytes)

No Incrementalized Whole-Program
Application Analysis Analysis Analysis
Barnes 33.4 22.7 24.0
Water 18.8 11.2 10.7
Jlex 5.5 5.0 4.7
Db 103.8 104.0 101.3
Raytrace 3.0 2.9 2.9
Compress 44.9 44.8 45.1

Figure 9-21: Execution Times (seconds)

Escape analyses have typically been used for stack allocation and synchronization
elimination. Our results show that analyzing a local region around each allocation site
works well for stack allocation, presumably because stack allocation ties object life-
times to the lifetimes of the capturing methods. But for synchronization elimination,
a whole-program analysis may deliver significant additional optimization opportu-
nities. For example, Ruf’s synchronization elimination analysis determines which
threads may synchronize on which objects [172]. In many cases, the analysis is able
to determine that only one thread synchronizes on a given object, even though the
object may be accessible to multiple threads or even, via a static class variable, to
all threads. Exploiting this global information significantly improves the ability of
the compiler to eliminate superfluous synchronization operations, especially for single
threaded programs. We do not see how an incrementalized analysis could extract this
kind of global information without scanning all of the code in each thread.

9.7.2 Demand-Driven Analysis

Demand-driven algorithms analyze only those parts of the program required to com-
pute an analysis fact at a subset of the program points or to answer a given query [6,
147, 85, 164]. This approach can dramatically reduce the analyzed part of the pro-
gram, providing a corresponding decrease in the analysis time. Like demand-driven
analyses, our analysis does not analyze those parts of the program that do not affect
the desired analysis results. Our approach differs in that it is designed to temporarily
skip parts of the program even if the skipped parts potentially affect the analysis
result. This approach works for its intended application (stack allocation) because

239

it enables the analysis to choose from a set of potential optimization opportunities,
some or all of which it is willing to forgo if the analysis cost is too high. In this
context, avoiding excessively expensive, even if ultimately successful, analyses is as
important as analyzing only those parts of the program required to obtain a specific
result. Because our analysis can skip call sites, it can incrementally invest in multiple
optimization opportunities, use the acquired information to improve its estimates of
the marginal return of each opportunity, then dynamically redirect analysis resources
to the currently most promising opportunities. In practice, this approach enables our
analysis policy to quickly discover and exploit the best opportunities while avoiding
opportunities that provide little or no optimization payoff.

9.7.3 Fragment and Incremental Analysis

Fragment analysis is designed to analyze a predetermined part of the program [175,
170]. The analysis either extracts a result that is valid for all possible contexts in
which the fragment may be placed [169], or is designed to analyze the fragment in the
context of a whole-program analysis result from a less expensive algorithm [170]. A
similar effect may be obtained by explicitly specifying the analysis results for missing
parts of the program [115, 175]. Our approach differs in that it monitors the analysis
results to dynamically determine which parts of the program it should analyze to
obtain the best optimization outcome.

Incremental algorithms update an existing analysis result to reflect the effect of
program changes [209]. Our algorithm, in contrast, analyzes part of the program
assuming no previous analysis results.

9.8 Conclusion

This paper presents a new incrementalized pointer and escape analysis. Instead of
analyzing the whole program, the analysis executes under the direction of an analysis
policy. The policy continually monitors the analysis results to direct the incremental
analysis of those parts of the program that offer the best marginal return on the
invested analysis resources. Our experimental results show that our analysis, when
used for stack allocation, usually delivers almost all of the benefit of the whole-
program analysis at a fraction of the cost. And because it analyzes only a local
region of the program surrounding each allocation site, it scales to handle programs
of arbitrary size.

240

Bibliography

[1] O. Agesen. The cartesian product algorithm: Simple and precise type inference
of parametric polymorphism. In Proc. 9th ECOOP. LNCS, 1995.

[2] O. Agesen, D. Detlefs, A. Garthwaite, R. Knippel, Y. Ramakrishna, and
D. White. An efficient meta-lock for implementing ubiquitous synchronization.
In Proceedings of the 14th Annual Conference on Object-Oriented Programming
Systems, Languages and Applications, pages 207–222, Denver, Colorado, Nov.
1999.

[3] O. Agesen, S. N. Freund, and J. C. Mitchell. Adding type parameterization to
the Java language. In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), October 1997.

[4] O. Agesen, J. Palsberg, and M. Schwartzbach. Type inference of SELF: anal-
ysis of objects with dynamic and multiple inheritance. Software—Practice and
Experience, 25(9):975–995, Sept. 1995.

[5] A. Aggarwal and K. H. Randall. Related field analysis. In Proceedings of
the ACM SIGPLAN ’01 Conference on Programming Language Design and
Implementation (PLDI), pages 214–220, Snowbird, Utah, June 2001.

[6] G. Agrawal. Simultaneous demand-driven data-flow and call graph analysis.
Aug. 1999.

[7] A. V. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, Mass., Reading, MA, second edition, 1986.

[8] A. Aiken. Introduction to set constraint-based program analysis. Science of
Computer Programming, 35:79–111, 1999.

[9] A. Aiken, M. Fähndrich, and R. Levien. Better static memory management:
Improving region-based analysis of higher-order languages. In Programming
Language Design and Implementation (PLDI), June 1995.

[10] A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft typing with conditional
types. In Proc. 21st ACM POPL, pages 163–173, New York, NY, 1994.

[11] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An introduction to the
database programming language Fibonacci. The VLDB Journal, 4(3), 1995.

241

[12] J. Aldrich, C. Chambers, E. Sirer, and S. Eggers. Static analyses for eliminating
unnecessary synchronization from java programs. In Proceedings of the 6th
International Static Analysis Symposium, Sept. 1999.

[13] J. Aldrich, V. Kostadinov, and C. Chambers. Alias annotations for program
understanding. In Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA), November 2002.

[14] P. S. Almeida. Balloon types: Controlling sharing of state in data types. In
Proc. 11th ECOOP, 1997.

[15] C. S. Ananian. Silicon C: A hardware backend for SUIF. Available from http://
flex-compiler.lcs.mit.edu/SiliconC/paper.pdf, May 1998.

[16] C. S. Ananian. MIT FLEX compiler infrastructure for Java. Available from
http://www.flex-compiler.lcs.mit.edu, 1998-2004.

[17] C. S. Ananian. Static single information form. Master’s thesis, Laboratory for
Computer Science, Massachusetts Institute of Technology, Sept. 1999.

[18] C. S. Ananian. The static single information form. Technical Report MIT-LCS-
TR-801, Massachusetts Institute of Technology, 1999. Available from http://

www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-801.pdf.

[19] C. S. Ananian and M. Rinard. Data size optimizations for java programs.
In Proceedings of the 2003 Workshop on Languages, Compilers, and Tools for
Embedded Systems (LCTES ’03), June 2003.

[20] C. S. Ananian and M. Rinard. Data size optimizations for java programs. In
2003 Workshop on Languages, Compilers, and Tools for Embedded Systems
(LCTES ’03), San Diego, June 2003.

[21] L. O. Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen, May 1994.

[22] A. Appel. Modern Compiler Implementation in Java. Cambridge University
Press, 1998.

[23] D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time garbage collector with low
overhead and consistent utilization. In Principles of Programming Languages
(POPL), January 2003.

[24] D. F. Bacon, S. J. Fink, and D. Grove. Space- and time-efficient implementation
of the Java object model. In B. Magnusson, editor, Proceedings of the 16th
European Conference on Object-Oriented Programming, volume 2374 of Lecture
Notes in Computer Science, pages 111–132, Málaga, Spain, June 2002.

242

[25] D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano. Thin locks: Featherweight
synchronization for Java. In Proceedings of the ACM SIGPLAN ’98 Conference
on Programming Language Design and Implementation (PLDI), pages 258–268,
Montreal, Canada, 1998.

[26] D. F. Bacon and P. F. Sweeney. Fast static analysis of C++ virtual func-
tion calls. In Proceedings of the 11th Annual Conference on Object-Oriented
Programming Systems, Languages and Applications, pages 324–341, California,
1996.

[27] H. G. Baker. List processing in real-time on a serial computer. Communications
of the ACM, 21(4):280–94, 1978.

[28] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate
abstraction of C programs. In Proc. ACM PLDI, 2001.

[29] Barendsen and J. E. W. Smetsers. Conventional and uniqueness typing in graph
rewrite systems. In Proceedings of the 13th Conference on the Foundations of
Software Technology and Theoretical Computer Science. Springer-Verlag, 1993.

[30] W. Beebee and M. Rinard. An implementation of scoped memory for real-
time java. In Proceedings of Embedded Software, First International Workshop,
EMSOFT 2001, Oct. 2001.

[31] W. Beebee and M. Rinard. An implementation of scoped memory for real-time
java. Oct. 2001.

[32] W. Beebee, Jr. Region-based memory management for Real-Time Java. MEng
thesis, Massachusetts Institute of Technology, September 2001.

[33] W. Beebee, Jr. and M. Rinard. An implementation of scoped memory for Real-
Time Java. In First International Workshop on Embedded Software (EMSOFT),
October 2001.

[34] M. Benedikt, T. Reps, and M. Sagiv. A decidable logic for linked data struc-
tures. In Proc. 8th ESOP, 1999.

[35] B. Blanchet. Escape analysis for object oriented languages. Application to Java.
In Proceedings of the 14th Annual Conference on Object-Oriented Programming
Systems, Languages and Applications, Denver, CO, Nov. 1999.

[36] H. Boehm and M. Weiser. Garbage collection in an uncooperative environment.
Software—Practice and Experience, 18(9):807–820, Sept. 1988.

[37] J. Bogda and U. Hoelzle. Removing unnecessary synchronization in java. In
Proceedings of the 14th Annual Conference on Object-Oriented Programming
Systems, Languages and Applications, Denver, CO, Nov. 1999.

243

[38] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and M. Turnbull. The
Real-Time Specification for Java. Addison-Wesley, Reading, Mass., 2000.

[39] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem.
Springer-Verlag, 1997.

[40] N. Bourbaki. Theory of Sets. Paris, Hermann, 1968.

[41] C. Boyapati. Ownership types for safe object-oriented programming. PhD
thesis, Massachusetts Institute of Technology. In preparation.

[42] C. Boyapati, R. Lee, and M. Rinard. Safe runtime downcasts with ownership
types. Technical Report TR-853, MIT Laboratory for Computer Science, June
2002.

[43] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming:
Preventing data races and deadlocks. In Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), November 2002.

[44] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation.
In Principles of Programming Languages (POPL), January 2003.

[45] C. Boyapati, B. Liskov, L. Shrira, C. Moh, and S. Richman. Lazy modular
upgrades in persistent object stores. In Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), October 2003.

[46] C. Boyapati and M. Rinard. A parameterized type system for race-free Java
programs. In Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), October 2001.

[47] C. Boyapati, A. Salcianu, W. Beebee, Jr., and M. Rinard. Ownership types for
safe region-based memory management in real-time Java. In PLDI 2003, June
2003.

[48] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future
safe for the past: Adding genericity to the Java programming language. In
Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), October 1998.

[49] D. Brélaz. New methods to color the vertices of a graph. Commun. ACM,
22:251–256, 1979.

[50] M. Budiu, S. Goldstein, M. Sakr, and K. Walker. BitValue inference: De-
tecting and exploiting narrow bitwidth computations. In Proceedings of the
EuroPar 2000 European Conference on Parallel Computing. Munich, Germany,
Aug. 2000.

[51] B. Cahoon and K. S. McKinley. Data flow analysis for software prefetching
linked data structures in Java. In Proc. 10th International Conference on Par-
allel Architectures and Compilation Techniques, 2001.

244

[52] M. C. Carlisle and A. Rogers. Software caching and computation migration in
Olden. In Proc. 5th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 1995.

[53] R. Cartwright and M. Fagan. Soft typing. In Proceedings of the ACM SIGPLAN
’91 Conference on Programming Language Design and Implementation (PLDI),
number 6 in 26, pages 278–292, 1991.

[54] C. Chambers. Predicate classes. In Proc. 7th ECOOP, pages 268–296, 1993.

[55] R. Chandra, A. Gupta, and J. Hennessy. Data locality and load balancing in
COOL. In Proceedings of the 4th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, San Diego, CA, May 1993. ACM, New
York.

[56] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of pointers and structures.
In Proc. ACM PLDI, 1990.

[57] R. Chatterjee, B. G. Ryder, and W. Landi. Relevant context inference. In Proc.
26th ACM POPL, pages 133–146, 1999.

[58] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff. Escape analysis
for Java. In Proceedings of the 14th Annual Conference on Object-Oriented
Programming Systems, Languages and Applications, Denver, CO, Nov. 1999.

[59] M. V. Christiansen, F. Henglein, H. Niss, and P. Velschow. Safe region-based
memory management for objects. Technical Report D-397, DIKU, University
of Copenhagen, October 1998.

[60] M. V. Christiansen and P. Velschrow. Region-based memory management in
Java. Master’s thesis, University of Copenhagen, May 1998.

[61] D. G. Clarke. Ownership and containment. PhD thesis, University of New
South Wales, Australia, July 2001.

[62] D. G. Clarke and S. Drossopoulou. Ownership, encapsulation and disjointness
of type and effect. In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), November 2002.

[63] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias
protection. In Proc. 13th Annual ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, 1998.

[64] D. G. Clarke and T. Wrigstad. External uniqueness is unique enough. In
European Conference for Object-Oriented Programming (ECOOP), July 2003.

[65] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997. release 1999.

245

[66] J. C. Corbett. Using shape analysis to reduce finite-state models of concurrent
Java programs. Software Engineering and Methodology, 9(1):51–93, 2000.

[67] A. Corsaro and D. Schmidt. The design and performance of the jRate Real-
Time Java implementation. In International Symposium on Distributed Objects
and Applications (DOA), October 2002.

[68] A. Corsaro and D. Schmidt. Evaluating Real-Time Java features and perfor-
mance for real-time embedded systems. In IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), September 2002.

[69] B. Courcelle. The expression of graph properties and graph transformations in
monadic second-order logic. In Handbook of graph grammars and computing by
graph transformations, Vol. 1 : Foundations, chapter 5. World Scientific, 1997.

[70] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Proc. 4th POPL, 1977.

[71] K. Crary, D. Walker, and G. Morrisett. Typed memory management in a
calculus of capabilities. In Proc. 26th ACM POPL, 1999.

[72] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph.
ACM Transactions on Programming Languages and Systems, 13(4):451–490,
Oct. 1991.

[73] M. Day, R. Gruber, B. Liskov, and A. C. Myers. Subtypes vs. where clauses:
Constraining parametric polymorphism. In Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), October 1995.

[74] R. DeLine and M. Fähndrich. Enforcing high-level protocols in low-level soft-
ware. In Proc. ACM PLDI, 2001.

[75] B. Demsky and M. C. Rinard. Role-based exploration of object-oriented pro-
grams. In Proceedings of the 2002 International Conference on Software Engi-
neering, May 2002.

[76] M. Deters and R. Cytron. Automated discovery of scoped memory regions
for Real-Time Java. In International Symposium on Memory Management
(ISMM), June 2002.

[77] M. Deters, N. Leidenfrost, and R. Cytron. Translation of Java to Real-Time
Java using aspects. In International Workshop on Aspect-Oriented Program-
ming and Separation of Concerns, August 2001.

[78] D. L. Detlefs, K. R. M. Leino, and G. Nelson. Wrestling with rep exposure.
Technical report, DIGITAL Systems Research Center, 1998.

246

[79] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended static
checking. Technical Report 159, COMPAQ Systems Research Center, 1998.

[80] A. Deutsch. Interprocedural may-alias analysis for pointers: beyond k-limiting.
SIGPLAN Notices, 29(6):230–241, 1994.

[81] S. Dieckmann and U. Hölzle. A study of the allocation behavior of the
SPECjvm98 Java benchmarks. In Proceedings of the 13th European Confer-
ence on Object-Oriented Programming, Aug. 1999.

[82] A. Diwan, K. McKinley, and J. E. B. Moss. Type-based alias analysis. In Proc.
ACM PLDI, 1998.

[83] N. Dor, M. Rodeh, and M. Sagiv. Checking cleanness in linked lists. In Proc.
7th International Static Analysis Symposium, 2000.

[84] S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. Fickle:
Dynamic object re-classification. In Proc. 15th ECOOP, LNCS 2072, pages
130–149. Springer, 2001.

[85] E. Duesterwald, R. Gupta, and M. Soffa. A practical framework for interpro-
cedural data flow analysis. ACM Transactions on Programming Languages and
Systems, 19(6):992–1030, Nov. 1997.

[86] J. Ellson, E. Gansner, E. Koutsofios, and S. North. Graphviz.
http://www.research.att.com/sw/tools/graphviz.

[87] J. Engelfriet. Context-free graph grammars. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages. Vol. III: Beyond Words, chapter 3,
pages 125–213. Springer, 1997.

[88] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly detecting rel-
evant program invariants. In International Conference on Software Engineering,
pages 449–458, 2000.

[89] M. D. Ernst, Y. Kataoka, W. G. Griswold, and D. Notkin. Dynamically discov-
ering pointer-based program invariants. Technical Report UW-CSE-99-11-02,
University of Washington, November 1999.

[90] D. Evans. Static detection of dynamic memory errors. In Proc. ACM PLDI,
1996.

[91] R. Familiar. Adaptive role playing. http://www.ccs.neu.edu/research/demeter/
adaptive-patterns/arp-bofam-checked.html.

[92] S. Feizabadi, W. S. Beebee, B. Ravindran, P. Li, and M. C. Rinard. Utility
accrual scheduling with real-time java. In Proceedings of The First Workshop
on Java Technologies for Real-Time and Embedded Systems, Nov. 2003.

247

[93] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In Principles
of Programming Languages (POPL), January 1998.

[94] M. Fowler. Dealing with roles.
http://www.martinfowler.com/apsupp/roles.pdf, July 1997.

[95] P. Fradet, R. Gaugne, and D. L. Metayer. An inference algorithm for the static
verification of pointer manipulation. Technical Report 980, IRISA, 1996.

[96] P. Fradet and D. L. Métayer. Shape types. In Proc. 24th ACM POPL, 1997.

[97] P. Fradet and D. L. Métayer. Structured gamma. Science of Computer Pro-
gramming, SCP, 31(2-3), pp. 263-289, 1998.

[98] E. Gamma, R. Helm, R. Johnson, and J. Vlisside. Design Patterns. Elements
of Reusable Object-Oriented Software. Addison-Wesley, Reading, Mass., 1994.

[99] D. Gay and A. Aiken. Memory management with explicit regions. In Proc.
ACM PLDI, Montreal, Canada, June 1998.

[100] D. Gay and A. Aiken. Language support for regions. In Proc. ACM PLDI,
2001.

[101] F. Gecseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages. Vol. III: Beyond Words, chapter 1.
Springer, 1997.

[102] G. Ghelli and D. Palmerini. Foundations for extensible objects with roles. In
Proc. 6th Workshop on Foundations of Object-Oriented Languages, 1999.

[103] O. Gheorghioiu. Statically determining memory consumption of real-time Java
threads. Master’s thesis, Massachusetts Institute of Technology, 2002.

[104] O. Gheorghioiu, A. Sălcianu, and M. C. Rinard. Interprocedural compatibility
analysis for static object preallocation. In Principles of Programming Languages
(POPL), January 2003.

[105] R. Ghiya and L. Hendren. Is it a tree, a DAG, or a cyclic graph? In Proc. 23rd
ACM POPL, 1996.

[106] R. Ghiya and L. J. Hendren. Connection analysis: A practical interprocedural
heap analysis for C. In Proc. 8th Workshop on Languages and Compilers for
Parallel Computing, 1995.

[107] R. Ghiya and L. J. Hendren. Putting pointer analysis to work. In Proc. 25th
ACM POPL, 1998.

[108] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification.
Sun Microsystems, Inc., 2001.

248

[109] G. Gottlob, M. Schrefl, and B. Roeck. Extending object-oriented systems with
roles. ACM Transactions on Information Systems, 14(3), 1994.

[110] D. Grossman. Type-safe multithreading in Cyclone. In Workshop on Types in
Language Design and Implementation (TLDI), January 2003.

[111] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-
based memory management in Cyclone. In Proc. ACM PLDI, 2002.

[112] D. Grunwald and H. Srinivasan. Data flow equations for explicitly parallel
programs. In Proceedings of the 4th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, San Diego, CA, May 1993.

[113] C. A. Gunter and J. C. Mitchell, editors. Theoretical Aspects of Object-Oriented
Programming. The MIT Press, Cambridge, Mass., 1994.

[114] J. Guttag and J. Horning. Larch: Languages and Tools for Formal Specification.
Springer-Verlag, 1993.

[115] S. Guyer and C. Lin. Optimizing the use of high performance libraries. Aug.
2000.

[116] S. Z. Guyer and C. Lin. An annotation language for optimizing software li-
braries. In Second Conference on Domain Specific Languages, 1999.

[117] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. The MIT Press, Cambridge,
Mass., 2000.

[118] C. Hauser, C. Jacobi, M. Theimer, B. Welch, and M. Weiser. Using threads in
interactive systems: A case study. In Proceedings of the Fourteenth Symposium
on Operating Systems Principles, Asheville, NC, Dec. 1993.

[119] N. Heintze and O. Tardieu. Ultra-fast aliasing analysis using CLA: A million
lines of C code in a second. In Proceedings of the ACM SIGPLAN ’01 Conference
on Programming Language Design and Implementation (PLDI), pages 254–263,
Snowbird, Utah, June 2001.

[120] L. J. Hendren, J. Hummel, and A. Nicolau. A general data dependence test for
dynamic, pointer-based data structures. In Proc. ACM PLDI, 1994.

[121] J. Hogg. Islands: Aliasing protection in object-oriented languages. In Proc.
5th Annual ACM Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, 1991.

[122] G. J. Holzmann. The model checker spin. IEEE Trans. on Software Engineering,
23(5):279–295, May 1997. Special issue on Formal Methods in Software Practice.

[123] J. Hummel. Data Dependence Testing in the Presence of Pointers and Pointer-
Based Data Structures. PhD thesis, Dept. of Computer Science, Univ. of Cali-
fornia at Irvine, 1998.

249

[124] J. Hummel, L. J. Hendren, and A. Nicolau. Abstract description of pointer
data structures: An approach for improving the analysis and optimization of
imperative programs. ACM Letters on Programming Languages and Systems,
1(3), Sept. 1993.

[125] J. Hummel, L. J. Hendren, and A. Nicolau. A language for conveying the
aliasing properties of dynamic, pointer-based data structures. In Proc. 8th In-
ternational Parallel Processing Symposium, Cancun, Mexico, Apr. 26–29 1994.

[126] S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data
structures. In Proc. 28th ACM POPL, 2001.

[127] D. Jackson. Alloy: A lightweight object modelling notation. Technical Report
797, MIT Laboratory for Computer Science, 2000.

[128] D. Jackson and J. Chapin. Redesigning air-traffic control: A case study in
software design, 2000.

[129] D. Jackson and A. Waingold. Lightweight extraction of object models from
bytecode. In International Conference on Software Engineering, pages 194–
202, 1999.

[130] B. Jacobs. Patterns using procedural/relational paradigm.
http://www.geocities.com/tablizer/prpats.htm.

[131] J. L. Jensen, M. E. Jørgensen, N. Klarlund, and M. I. Schwartzbach. Automatic
verification of pointer programs using monadic second order logic. In Proc. ACM
PLDI, Las Vegas, NV, 1997.

[132] P. Jouvelot and D. K. Gifford. Algebraic reconstruction of types and effects. In
Proc. 18th ACM POPL, 1991.

[133] N. Klarlund and M. I. Schwartzbach. Graph types. In Proc. 20th ACM POPL,
Charleston, SC, 1993.

[134] N. Klarlund and M. I. Schwartzbach. Graphs and decidable transductions based
on edge constraints. In Proc. 19th Colloquium on Trees and Algebra in Pro-
gramming, number 787 in LNCS, 1994.

[135] J. Knoop, B. Steffen, and J. Vollmer. Parallelism for free: Efficient and optimal
bitvector analyses for parallel programs. ACM Transactions on Programming
Languages and Systems, 18(3):268–299, May 1996.

[136] N. Kobayashi. Quasi-linear types. In Proc. 26th ACM POPL, 1999.

[137] J. Korn, Y.-F. Chen, and E. Koutsofios. Chava: Reverse engineering and track-
ing of Java applets. In Proceedings of the Sixth Working Conference on Reverse
Engineering, pages 314–325, October 1999.

250

[138] V. Kuncak, P. Lam, and M. Rinard. A language for role specifications. In
Proceedings of the 14th Workshop on Languages and Compilers for Parallel
Computing, volume 2624 of Lecture Notes in Computer Science, Springer, 2001.

[139] V. Kuncak, P. Lam, and M. Rinard. Roles are really great! Technical Report
822, Laboratory for Computer Science, Massachusetts Institute of Technology,
2001.

[140] V. Kuncak, P. Lam, and M. Rinard. Role analysis. In Proc. 29th ACM POPL,
2002.

[141] C. Lapkowski and L. J. Hendren. Extended SSA numbering: Introducing SSA
properties to languages with multi-level pointers. In Proc. 7th International
Conference on Compiler Construction. LNCS, Mar. 1998.

[142] D. Lea. Concurrent Programming in Java: Design Principles and Patterns.
Addison-Wesley, Reading, Mass., 2000.

[143] K. R. M. Leino and G. Nelson. Data abstraction and information hiding. Re-
search Report 160, Compaq Systems Research Center, November 2000.

[144] K. R. M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Using data groups to specify
and check side effects. In Programming Language Design and Implementation
(PLDI), June 2002.

[145] T. Lev-Ami. TVLA: A framework for kleene based logic static analyses. Mas-
ter’s thesis, Tel-Aviv University, Israel, 2000.

[146] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation.
Prentice-Hall, 1981.

[147] Y. Lin and D. Padua. Demand-driven interprocedural array property analysis.
La Jolla, CA, Aug. 1999.

[148] B. Liskov and J. M. Wing. A new definition of the subtype relation. Proc. 7th
ECOOP, 1993.

[149] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Principles
of Programming Languages (POPL), January 1988.

[150] N. Lynch and F. Vaandrager. Forward and backward simulations – Part I:
Untimed systems. Information and Computation, 121(2), 1995.

[151] D. Marinov and R. O’Callahan. Object equality profiling. Submitted to OOP-
SLA ’03, 2003.

[152] A. Møller and M. I. Schwartzbach. The Pointer Assertion Logic Engine. In
Proc. ACM PLDI, 2001.

251

[153] A. C. Myers, J. A. Bank, and B. Liskov. Parameterized types for Java. In
Principles of Programming Languages (POPL), January 1997.

[154] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag, 1999.

[155] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In Proc. 12th
ECOOP, 1998.

[156] T. Onodera and K. Kawachiya. A study of locking objects with bimodal fields.
In Proceedings of the 14th Annual Conference on Object-Oriented Programming
Systems, Languages and Applications, pages 223–237, Denver, Colorado, Nov.
1999.

[157] V. Pai, P. Druschel, and W. Zwaenepol. Flash: An efficient and portable web
server. In Proceedings of the Usenix 1999 Annual Technical Conference, June
1999.

[158] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading,
Mass., 1994.

[159] J. Plevyak, V. Karamcheti, and A. A. Chien. Analysis of dynamic structures
for efficient parallel execution. In Workshop on Languages and Compilers for
Parallel Architectures, 1993.

[160] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. In Commu-
nications of the ACM 33(6):668–676, 1990.

[161] Rational Inc. The unified modeling language. http://www.rational.com/uml.

[162] T. Reenskaug. Working With Objects. Prentice Hall, 1996.

[163] J. Reppy. Higher–order Concurrency. PhD thesis, Dept. of Computer Science,
Cornell Univ., Ithaca, N.Y., June 1992.

[164] T. Reps, S. Horowitz, and M. Sagiv. Demand interprocedural dataflow analysis.
In Proceedings of the ACM SIGSOFT 95 Symposium on the Foundations of
Software Engineering, Oct. 1995.

[165] J. C. Reynolds. Intuitionistic reasoning about shared mutable data structure.
In Proceedings of the Symposium in Celebration of the Work of C.A.R. Hoare,
2000.

[166] W. E. Riddle, J. Sayler, A. Segal, and J. Wileden. An introduction to the dream
software design system. volume 2, pages 11–23, July 1977.

[167] M. Rinard. Analysis of multithreaded programs. In Proceedings of 8th Static
Analysis Symposium, Paris, France, July 2001.

252

[168] N. Rinetzky and M. Sagiv. Interprocedual shape analysis for recursive programs.
In Proc. 10th International Conference on Compiler Construction, 2001.

[169] A. Rountev and B. Ryder. Points-to and side-effect analyses for programs built
with precompiled libraries. Apr. 2001.

[170] A. Rountev, B. Ryder, and W. Landi. Data-flow analysis of program fragments.
Sept. 1999.

[171] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformations Vol.1. World Scientific, 1997.

[172] E. Ruf. Effective synchronization removal for Java. In Proceedings of the SIG-
PLAN ’00 Conference on Program Language Design and Implementation, Van-
couver, Canada, June 2000.

[173] R. Rugina and M. Rinard. Pointer analysis for multithreaded programs. In
Proceedings of the SIGPLAN ’99 Conference on Program Language Design and
Implementation, Atlanta, GA, May 1999.

[174] R. Rugina and M. Rinard. Symbolic bounds analysis of pointers, array indexes,
and accessed memory regions. In Proceedings of the SIGPLAN ’00 Conference
on Program Language Design and Implementation, Vancouver, Canada, June
2000.

[175] R. Rugina and M. Rinard. Design-driven compilation. In Proc. 10th Interna-
tional Conference on Compiler Construction, 2001.

[176] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modelling Language
Reference Manual. Addison-Wesley, Reading, Mass., 1999.

[177] J. R. Russell, R. E. Strom, and D. M. Yellin. A checkable interface language for
pointer-based structures. In Proceedings of the workshop on Interface definition
languages, 1994.

[178] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in lan-
guages with destructive updating. In Proc. 23rd ACM POPL, 1996.

[179] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. In Proc. 26th ACM POPL, 1999.

[180] E. Schonberg, J. T. Schwartz, and M. Sharir. An automatic technique for se-
lection of data representations in Setl programs. Transactions on Programming
Languages and Systems, 3(2):126–143, 1991.

[181] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis
problems. In Program Flow Analysis: Theory and Applications. Prentice-Hall,
Inc., 1981.

253

[182] M. Sipser. Introduction to the Theory of Computation. PWS Publishing Com-
pany, 1997.

[183] F. Smith, D. Walker, and G. Morrisett. Alias types. In Proc. 9th ESOP, Berlin,
Germany, Mar. 2000.

[184] V. C. Sreedhar, M. Burke, and J.-D. Choi. A framework for interprocedural
optimization in the presence of dynamic class loading. In Proceedings of the
ACM SIGPLAN ’00 conference on Programming language design and imple-
mentation, pages 196–207. ACM Press, 2000.

[185] B. Steensgaard. Points-to analysis in almost linear time. In Proceedings of the
23rd Annual ACM Symposium on the Principles of Programming Languages,
St. Petersburg Beach, FL, Jan. 1996.

[186] M. Stephenson, J. Babb, and S. Amarasinghe. Bitwidth analysis with appli-
cation to silicon compilation. In Proceedings of the ACM SIGPLAN ’00 Con-
ference on Programming Language Design and Implementation (PLDI), pages
108–120, Vancouver, Canada, June 2000.

[187] R. E. Strom and D. M. Yellin. Extending typestate checking using conditional
liveness analysis. IEEE Transactions on Software Engineering, May 1993.

[188] R. E. Strom and S. Yemini. Typestate: A programming language concept for
enhancing software reliability. IEEE TSE, January 1986.

[189] A. Sălcianu. Pointer analysis and its applications to Java programs. Master’s
thesis, MIT Laboratory for Computer Science, 2001.

[190] A. Sălcianu, C. Boyapati, W. Beebee, Jr., and M. Rinard. A type system for
safe region-based memory management in Real-Time Java. Technical Report
TR-869, MIT Laboratory for Computer Science, November 2002.

[191] A. Sălcianu and M. Rinard. Pointer and escape analysis for multithreaded
programs. 2001.

[192] P. F. Sweeney and F. Tip. A study of dead data members in C++ applications.
In Proc. ACM PLDI, Montreal, Canada, 1998.

[193] W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages
Vol.3: Beyond Words. Springer-Verlag, 1997.

[194] M. Tofte and L. Birkedal. A region inference algorithm. ACM Transactions on
Programming Languages and Systems, 20(4), July 1998.

[195] M. Tofte and J. Talpin. Region-based memory management. In Information
and Computation 132(2), February 1997.

[196] M. Tofte and J. Talpin. Implementing the call-by-value λ-calculus using a stack
of regions. In Principles of Programming Languages (POPL), January 1994.

254

[197] M. VanHilst and D. Notkin. Using role components to implement collaboration-
based designs. In Proc. 11th Annual ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, 1996.

[198] F. Vivien and M. C. Rinard. Incrementalized pointer and escape analysis. In
Proceedings of the ACM SIGPLAN 2001 Conference on Programming Language
Design and Implementation (PLDI 2001), June 2001.

[199] P. Wadler. Linear types can change the world! In IFIP TC 2 Working Confer-
ence on Programming Concepts and Methods, Sea of Galilee, Israel, 1990.

[200] D. Walker and G. Morrisett. Alias types for recursive data structures. In
Workshop on Types in Compilation, 2000.

[201] M. N. Wegman and F. K. Zadeck. Constant propagation with condi-
tional branches. ACM Transactions on Programming Languages and Systems,
13(2):181–210, Apr. 1991.

[202] J. Whaley and M. Rinard. Compositional pointer and escape analysis for Java
programs. In Proceedings of the 14th Annual Conference on Object-Oriented
Programming Systems, Languages and Applications, Denver, CO, Nov. 1999.

[203] R. Wilhelm, M. Sagiv, and T. Reps. Shape analysis. In Proc. 9th International
Conference on Compiler Construction, Berlin, Germany, 2000. Springer-Verlag.

[204] R. Wilson and M. S. Lam. Efficient context-sensitive pointer analysis for C
programs. In Proc. ACM PLDI, June 1995.

[205] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The SPLASH-2 programs:
Characterization and methodological considerations. In Proceedings of the 22nd
International Symposium on Computer Architecture. ACM, New York, June
1995.

[206] Z. Xu, B. Miller, and T. Reps. Safety checking of machine code. In Proc. ACM
PLDI, 2000.

[207] Z. Xu, T. Reps, and B. Miller. Typestate checking of machine code. In Proc.
10th ESOP, 2001.

[208] P. M. Yelland. Experimental classification facilities for Smalltalk. In Proc.
6th Annual ACM Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, 1992.

[209] J. Yur, B. Ryder, and W. Landi. Incremental algorithms and empirical com-
parison for flow- and context-sensitive pointer aliasing analysis. May 1999.

[210] Y. Zhang and R. Gupta. Data compression transformations for dynamically
allocated data structures. In International Conference on Compiler Construc-
tion, volume 2304 of Lecture Notes in Computer Science, pages 14–28, Grenoble,
France, Apr. 2002. Springer Verlag.

255

256

RoushRV
Text Box
THIS PAGE WAS INTENTIONALLY LEFT BLANK

Chapter 10

Acronyms

BBN Bolt, Beranek, and Newman

CTAS Center-Tracon Automation System

Flex Flexible Compiler Infrastructure for Java developed at MIT

JDK Java Development Kit

JVM Java Virtual Machine

MIT Massachusetts Institute of Technology

OEP Open Experimental Platform

POSIX Portable Operating System Interface Standards

RTSJ Real-Time Specification for Java

SPEC Standard Performance Evaluation Corporation

SPECjvm98 SPEC Benchmark Suite for the Java Virtual Machine

SPLASH Stanford Parallel Applications for Shared Memory Benchmark Suite

TCP/IP Transmission Control Protocol/Internet Protocol

UML Unified Modeling Language

257

