

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

DEVICE PROFILING ANALYSIS IN DEVICE-AWARE
NETWORK

by

Shang-Yuan Tsai

December 2004

 Thesis Advisor: Singh Gurminder
 Thesis Co-Advisor: John Gibson

Approved for public release, distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2004

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
 Device Profiling Analysis in Device-Aware Network
6. AUTHOR(S) Shang-Yuan Tsai

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release, distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
As more and more devices with a variety of capabilities are Internet-capable, device independence

becomes a big issue when we would like the information that we request to be correctly displayed. This thesis

introduces and compares how existing standards create a profile that describes the device capabilities to achieve

the goal of device independence.

After acknowledging the importance of device independence, this paper utilizes the idea to introduce a

Device-Aware Network (DAN). DAN provides the infrastructure support for device-content compatibility

matching for data transmission. We identify the major components of the DAN architecture and issues associated

with providing this new network service. A Device-Aware Network will improve the network’s efficiency by

preventing unusable data from consuming host and network resources. The device profile is the key issue to

achieve this goal.

15. NUMBER OF
PAGES

83

14. SUBJECT TERMS
CC/PP, UPnP, SyncML, RDF, DevInf

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release, distribution is unlimited

DEVICE PROFILING ANALYSIS IN DEVICE-AWARE NETWORK

Shang-Yuan Tsai
Captain, Taiwan Army

B.S., Chung Cheng Institute of Technology, 1995

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEM ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

December 2004

Author: Shang-Yuan Tsai

Approved by: Singh Gurminder

 Thesis Advisor

 John Gibson
 Thesis Co-Advisor

 Dan C. Boger
 Chairman, Department of Information Science

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

As more and more devices with a variety of capabilities become Internet-

enabled, device independence becomes a big issue when we would like the information

that we request to be correctly displayed. This thesis introduces and compares how

existing standards create a profile that describes the device capabilities to achieve the

goal of device independence.

After acknowledging the importance of device independence, this thesis utilizes

the idea to introduce a Device-Aware Network (DAN). DAN provides the infrastructure

support for device-content compatibility matching for data transmission. We identify the

major components of the DAN architecture and issues associated with providing this new

network service. A Device-Aware Network will improve the network efficiency by

preventing unusable data from consuming host and network resources. The device profile

is the key to achieve this goal.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. APPROACH...2
C. THESIS ORGANIZATION..2

II. DEVICE PROFILE IN DEVICE-AWARE NETWORK ..5
A. DEVICES..5
B. DEVICE-AWARE NETWORKS INTRODUCTION..................................6
C. ARCHITECTURE OVERVIEW ...6
D. SERVICES IN A DEVICE-AWARE NETWORK.......................................6
E. USING DEVICE PROFILE IN DEVICE-AWARE NETWORK...............7

III. DEVICE PROFILE STANDARDS..9
A. CC/PP AND UAPROF ..9

1. CC/PP Introduction...9
2. RDF Introduction...9
3. CC/PP Architecture ...11

a. CC/PP Profile Structure ...11
b. LC/PP Profile Component Attribute11
c. CC/PP Profiles Defaults ...13
d. CC/PP Exchange Protocol..13

4. UAPROF...14
a. UAProf Introduction...14
b. UAProf Architecture ...15
c. Client Device ...17
d. Wireless Network and WAP Gateway17
e. Internet or Intranet ..18
f. Origin Server ...19

B. UPNP...19
1. UPnP Introduction...19
2. UPnP Architecture...20

a. UPnP Devices..21
b. UPnP Services ...21
c. UPnP Control Points ..22
d. Protocols Used by UPnP...22

3. Activities Involved in UPnP Network ..23
a. Addressing ...23
b. Discovery ...24
c. Description ..24
d. Control...24
e. Eventing...25
f. Presentation...25

C. SYNCML ..26

viii

1. SyncML Introduction ..26
2. SyncML Packages and Messages..27
3. SyncML Capabilities Exchange..28
4. Data Identifier Mapping..28
5. Refreshing Data..28
6. DevInf Introduction...29

D. COMPARISON OF THE STANDARDS ..30

IV. DEVICE PROFILE CREATION (USING CC/PP)..33
A. DESIGN OVERVIEW...33

1. Vocabulary Serialization ...34
2. Characteristic of Attributes ..35
3. Profile Resolution...35
4. Validating CC/PP and UAProf Profiles..36

a. Validation Using XML Schema Parser..................................36
b. Validation Using RDF Schema Parser38

5. Device Profiles Serialization in XSLT..38
6. Device Profiles Matching Rules ..39

B. AVAILABLE APPLICATION FOR CC/PP AND UAPROF
PROFILING...41
1. DELI Introduction...41
2. Testing Device Profiles in DELI ...42

a. Browser Profiles Testing...42
b. WML Profile Testing ..43
c. Customized Mobile Device Profile ...46

3. Apache Cocoon Introduction..47

V. CONCLUSION ..51
A. SUMMARY ..51
B. FUTURE WORK...52

1. Content Repurposing...52
2. Creating Legacy Devices Repository..53
3. Location Service in DAN...53
4. Performance Evaluation in DAN..54

APPENDIX A...55

APPENDIX B ...61

LIST OF REFERENCES..65

INITIAL DISTRIBUTION LIST ...67

ix

LIST OF FIGURES

Figure 1. Variations in Device Capabilities [From: 3]..5
Figure 2. Content Repurposing Types [From: 2] ..7
Figure 3. An RDF Graph Describing Eric Miller [From: 4] ...10
Figure 4. RDF/XML Describing Eric Miller [From: 4] ..11
Figure 5. Complete CC/PP profile example in XML [From: 4]13
Figure 6. The UAProf specification [From: 2]..15
Figure 7. UAPROF End-to-End framework [From: 6] ...16
Figure 8. UPnP Control Points, Devices, and Services [From: 7]20
Figure 9. The UPnP protocol stack [From: 7] ...23
Figure 10. SyncML framework [From: 8]...26
Figure 11. SyncML DevInf Specification [From: 2]..29
Figure 12. User Agent Proxy Architecture..33
Figure 13. DAN User Registration Mechanism ..34
Figure 14. Validating Device Profiles Using XSLT and XML Schema [From: 16].........37
Figure 15. The Profile of Internet Browser ..42
Figure 16. WML Profile Testing in Pocket PC Simulator ...43
Figure 17. W-HTTP Header Settings ..45
Figure 18. WML Profile Testing in Mobile Phone Simulator ..46
Figure 19. Resolve Device Profile Command...47
Figure 20. HTML Format of Mobile Device Profile...47
Figure 21. Browser Profile Resolution in HTML ...48
Figure 22. Browser Profile Resolution in WML...49
Figure 23. SIP Framework ..54

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF TABLES

Table 1. Comparison of the standards..31
Table 2. Conditionals of Capability Class ...41

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

ACKNOWLEDGMENTS

I would like to thank Professor Singh Gurminder, who gave me a lot of supports

not only on my thesis work but also the courses that I took from him. I would also like to

thank John Gibson for readily agreeing to be my Co-Advisor. His academic opinions help

a lot on how to organize my thesis.

Next, I would like to thank my government authorities for giving me this

opportunity to study abroad. Last but not the least, I would like to thank the colleagues

from my office who shared my work for two years during my absence.

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. BACKGROUND
A key challenge to communications on the network-centric battlefield is that the

end-devices must utilize limited resources to support the mission operations. This

requires the devices to conserve resources by avoiding the reception, transmission and

processing of unusable information, a capability not currently available. Today’s

networks are completely unaware of the capability of their end-points. Being dumb pipes,

they cannot optimize traffic to match the capabilities and requirements of their end

devices. For example, when a very large image is delivered to a small handheld device, a

significant amount of network resource is wasted because the handheld device is unable

to store or display the image. This situation becomes serious in Web applications. When

more and more Internet-capable devices are available, different devices have different

display specifications. In order to display the Web content correctly on different displays,

the authors have to create the Web pages in different versions in parallel, which is

impractical.

With such a problem present, the World Wide Web Consortium (W3C) introduces

the concept of device independence [1]. The idea is to let the client send the request with

information associated with the end device. The purpose of this information is to provide

information that may be needed to allow the final response to be repurposed to the

capabilities of the client. The request and the delivery context flow from the client,

through any intermediaries to the server. The server can use the appropriate repositories

of content in constructing the response to the request.

The goal of a Device-Aware Network (DAN) is to match the information

delivered to the capability of the end device, thereby optimizing the network resource

usage. On the battlefield, all resources -- including time, network bandwidth and battery

capacity -- are very limited. A device-aware network avoids the waste that happens in

current device-ignorant networks. By eliminating unusable traffic, a device-aware

network reduces the time the end-devices spend receiving extraneous information, and

thus saves time and conserves battery life.

2

To efficiently transmit information on a device-aware network, the capabilities

and conditions of an end-device must be defined in advance to adapt the data format. As

in the example above, when we want to transfer an image that can be displayed

appropriately in a handheld device screen, the resolution of the display has to be pre-

defined. Therefore, the concept of a device profile is utilized in device-aware networks.

In this protocol, the specification of device hardware and software can be described

systematically. However, some features of a device are not always static and need to be

updated periodically, such as device position, power status, bandwidth, and temperature

etc. If the original device profile is not kept current with these dynamic features,

communication errors may happen and the performance of the whole network may be

influenced, especially in resource constrained networks. As a result, dynamically

delivering device profiles is necessary in a device-aware network.

B. APPROACH
This thesis will discuss the current standards for device profiling and give a

comparison of these standards. It will then identify a suitable standard that can serve as

the starting point for creating a device profile request scenario for a device-aware

network. Currently the available standards for device profiling are: Composite

Capabilities/Preference Profile (CC/PP) developed by the W3C, User Agent Profile

(UAProf) developed by the WAP forum, SyncML developed by the mobile technology

industry and Universal Plug and Play (UPnP) developed by Microsoft. These standards

are developed for dealing with device independence by specifying device capabilities in a

device profile. The primary utility of these standards is in content repurposing so

different end devices can efficiently utilize the limited bandwidth.

C. THESIS ORGANIZATION
This thesis is organized into the following chapters:

Chapter I: Introduction. Describe the need for device profiles along with an

overview of device-aware network and the available standards.

3

Chapter II: Device Profiles in a Device-Aware Network. Give an introduction on

the architecture of a device-aware network and the basic requirements to achieve device

independence.

Chapter III: Device Profile Standards. Provide an overview of currently applied

standards with respect to device profiling. Then give a comparison of these standards and

find a suitable standard that can be applied to the device-aware network as an initial

demonstration.

Chapter IV: Device Profile Creation. Give a detailed description of device profile

created from the conclusions of Chapter III.

Chapter V: Conclusion. Give a conclusion based on the thesis work and provide

recommendations for future work on device-aware networks.

4

THIS PAGE INTENTIONALLY LEFT BLANK

II. DEVICE PROFILE IN DEVICE-AWARE NETWORK

A. DEVICES
Due to device proliferation, content providers can no longer deliver one version of

their content to the user because they need to deliver an appropriate form of content

depending on the capabilities of the viewing device. Re-authoring content to support

different markup languages or the different capabilities of each device is clearly

impractical, while providing content for a single device or browser excludes large

numbers of users.

Users want to view Internet content and use web applications on a variety of

devices, including PCs, electronic book readers, PDAs, phones, interactive TVs, voice

browsers, printers and embedded devices such as cameras. A useful summary of typical

variations in device capabilities is shown in Figure 1 [2].

5

Figure 1. Variations in Device Capabilities [From: 3]

When the device uses content, it receives it in the form of multimedia objects,

application languages or browser languages (shown on the right hand of Figure 1).

Current devices support a variety of different content types partly determined by their

underlying hardware capabilities (shown on the left hand side of Figure 1). In order to

support device independence we must be able to deliver content in a format compatible

Size / Resolution

Colour/Monochrome

dttlance ot viewer ^ Scr

revive ?qe ol lont

aspect r .;._

f ,: •■ .*; -

Multimedia obje

Application lanquaqe/ ^^^ »tea.
^DotNet

Browser lanquaq.

Memory

6

with a device. For example, if a handheld device can read GIF images but not JPEG

images, it is necessary to convert one format to another. In addition, the content must

reflect the underlying hardware capabilities of the device so we may need to do some

additional image processing if the target device can only display a 240x340 resolution

image properly [2].

B. DEVICE-AWARE NETWORKS INTRODUCTION
Based on the discussion of previous section, to achieve the goal of device

capabilities matching for data transmission and content repurposing, a new high-level

network service can be introduced. The design of a Device-Aware Network (DAN) is for

such a purpose. A Device-Aware Network improves the network efficiency by preventing

unusable data from consuming host and network resources. While DAN is useful in a

wired environment, it can be especially beneficial in wireless and mobile environments

where network as well as end-host device resources are scarce [3].

C. ARCHITECTURE OVERVIEW
In a device-aware network, however, the network is required to perform more

than the best-effort delivery service; it will need to optimize traffic to match the

capabilities and needs of end devices. As a result, our design considers the use of device

profiles as an integral part of the network architecture, not just a new addition to the basic

protocols as an afterthought. Thus, we do not constrain the DAN design to the Internet

architecture; all network components necessary to make the network aware of end device

are considered [3].

D. SERVICES IN A DEVICE-AWARE NETWORK
Device-Aware Networks provide two main services. The first service relates to

the sharing of device profile and capability information on the network. Therefore,

information exchange and discovery protocols must be developed to support the device-

awareness in the network. DAN supports encapsulating device information along with

each packet transmitted, allowing any network nodes (e.g.,, routers and end systems) to

access the device information in order to perform DAN-related processing. For lack of a

better term, we will refer to DAN-related operations as being done at the DAN layer, as if

DAN is a separate service layer between the network and transport services. To build

device-aware features into the existing IP networks, DAN services may be viewed as a

new layer in the network architecture, or an extension to current network layer services.

However, our proposed DAN design does not fit the conventional network layering

scheme, since its network service is also application dependent. [3]

E. USING DEVICE PROFILE IN DEVICE-AWARE NETWORK
There are three different ways of content repurposing by specifying the device

capabilities in a device profile, as shown in Figure 2: the server, the proxy and the client

browser. If adaptation occurs at the server or the proxy, these entities will need to know

something about the capabilities of the end device. They will either need a unique

identifier for the client device so they can retrieve a capability specification from a

repository, or they will need the capability specification itself.

Figure 2. Content Repurposing Types [From: 2]

Currently, servers and proxies can determine the identity of a particular device

using the request header field in the HTTP protocol. In addition there are four alternative

proposed capability specification schemes: the W3C composite capability / preferences

profile (CC/PP), the Wireless Application Group (WAG) User Agent Profile (UAPROF)

standard, the SyncML Device Information standard (DevInf) and the Universal Plug and

Play Standard (UPnP). Each of these standards will be discussed in later chapters.

7

Server Based
Adaptation

Adapted
content

Capability
P*.:itKjtior.,
'•quarts

Proxy Based
Adaptation

Adapted
content

Capability
l^speci tl cation.-

requests

Client Based
Adaptation

■content »

itqutfb-

 8

THIS PAGE INTENTIONALLY LEFT BLANK

 9

III. DEVICE PROFILE STANDARDS

A. CC/PP AND UAPROF

1. CC/PP Introduction
A CC/PP profile is a description of device capabilities and user preferences that

can be used to guide the adaptation of content presented to that device. As the number

and variety of devices connected to the Internet grows, there is a corresponding increase

in the need to deliver content that is tailored to the capabilities of different devices. Some

limited techniques, such as HTTP "accept" headers and HTML "alt=" attributes, already

exist. As part of a framework for content adaptation and contextualization, a general-

purpose profile format is required that can describe the capabilities of a user agent and

preferences of its user. CC/PP is designed to be such a format.

CC/PP is based on RDF, the Resource Description Framework, which was

designed by the W3C as a general-purpose metadata description language. RDF was

designed to describe the metadata or machine-understandable properties of the Web. RDF

is a natural choice for the CC/PP framework since device profiles are metadata intended

primarily for communication between end devices and resource data providers [4].

2. RDF Introduction
RDF is based on the idea of identifying things using Web identifiers (Uniform

Resource Identifier - URIs), and describing resources in terms of simple properties and

property values. This enables RDF to represent simple statements about resources as a

graph of nodes and arcs representing the resources, and their properties and values. To

make this discussion somewhat more concrete as soon as possible, the group of

statements "there is someone whose name is Eric Miller, whose email address is

em@w3.org, and whose title is Dr." could be represented as the RDF graph in Figure 3

[4].

Figure 3. An RDF Graph Describing Eric Miller [From: 4]

Figure 3 illustrates that RDF uses URIs to identify:

• individuals, e.g., Eric Miller, identified by

http://www.w3.org/People/EM/contact#me

• kinds of things, e.g., Person, identified by

http://www.w3.org/2000/10/swap/pim/contact#Person

• properties of those things, e.g., mailbox, identified by

 http://www.w3.org/2000/10/swap/pim/contact#mailbox

• values of those properties, e.g., mailto@w3.org as the value of the

mailbox property (RDF also uses character strings such as "Eric Miller"

as the values of some properties)

RDF also provides an XML-based syntax (called RDF/XML) for recording and

exchanging these graphs. Figure 4 is a small chunk of RDF in RDF/XML corresponding

to the graph in Figure 3:

 10

 11

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">

<contact:Person rdf:about="http://www.w3.org/People/EM/contact#me">
 <contact:fullName>Eric Miller</contact:fullName>
 <contact:mailbox rdf:resource="mailto:em@w3.org"/>
 <contact:personalTitle>Dr.</contact:personalTitle>
</contact:Person>

</rdf:RDF>

Figure 4. RDF/XML Describing Eric Miller [From: 4]

Like HTML, this RDF/XML is machine processable, and, using URIs, can link

pieces of information across the Web. However, unlike conventional hypertext, RDF

URIs can refer to any identifiable thing, including things that may not be directly

retrievable on the Web (such as the person Eric Miller). The result is that in addition to

describing such things as Web pages, we can also describe the characteristics or

capabilities of an Internet accessable device [4].

3. CC/PP Architecture

a. CC/PP Profile Structure
A CC/PP profile is broadly constructed as a 2-level hierarchy:

• a profile having at least one or more components, and

• each component having at least one or more attributes.

The initial branches of the CC/PP profile tree describe major components

of the client. Examples of major components are:

• the hardware platform upon which software is executing,

• the software platform upon which all applications are

 hosted, or

• an individual application, such as a browser [4].

b. LC/PP Profile Component Attribute
A CC/PP profile describes client capabilities and preferences in terms of a

number of "CC/PP attributes" for each component.

 12

The description of each component is a sub-tree whose branches are the

capabilities or preferences associated with that component. Though RDF makes modeling

a wide range of data structures possible, including arbitrary graphs, complex data models

are usually best avoided for profile attribute values. A capability can often be described

using a small number of CC/PP attributes, each having a simple, atomic value. Where

more complex values are needed, these can be constructed as RDF subgraphs. One useful

case for complex attribute values is to represent alternative values; e.g., a browser may

support multiple versions of HTML. A hypothetical profile might look like Figure 5 [4]:

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ccpp="http://www.w3.org/2002/11/08-ccpp-schema#"
 xmlns:ex="http://www.example.com/schema#">

 <rdf:Description
 rdf:about="http://www.example.com/profile#MyProfile">

 <ccpp:component>
 <rdf:Description

rdf:about="http://www.example.com/profile#TerminalHardware">
 <rdf:type

rdf:resource="http://www.example.com/schema#HardwarePlatf
orm" />

 <ex:displayWidth>320</ex:displayWidth>
 <ex:displayHeight>200</ex:displayHeight>
 </rdf:Description>
 </ccpp:component>

 <ccpp:component>
 <rdf:Description

rdf:about="http://www.example.com/profile#TerminalSoftware">
 <rdf:type

rdf:resource="http://www.example.com/schema#SoftwarePlatf
orm" />

 <ex:name>EPOC</ex:name>
 <ex:version>2.0</ex:version>
 <ex:vendor>Symbian</ex:vendor>
 </rdf:Description>
 </ccpp:component>

 <ccpp:component>
 <rdf:Description

rdf:about="http://www.example.com/profile#TerminalBrowser">
 <rdf:type
 rdf:resource="http://www.example.com/schema#BrowserUA" />
 <ex:name>Mozilla</ex:name>
 <ex:version>5.0</ex:version>
 <ex:vendor>Symbian</ex:vendor>
 <ex:htmlVersionsSupported>

 13

 <rdf:Bag>
 <rdf:li>3.2</rdf:li>
 <rdf:li>4.0</rdf:li>
 </rdf:Bag>
 </ex:htmlVersionsSupported>
 </rdf:Description>
 </ccpp:component>

 </rdf:Description>
</rdf:RDF>

Figure 5. Complete CC/PP profile example in XML [From: 4]

c. CC/PP Profiles Defaults
 Each component of a device profile may indicate a single separate

resource that in turn indicates a subordinate collection of default attribute values. This

collection of default values can be a separate RDF document that is named via a URI, or

it can appear in the same document as the client profile (though, in practice, there is

probably little value in defaults in the same document). If an attribute in the collection of

defaults is also present in the main part of the client profile, the non-default value takes

precedence. The intent is that a hardware vendor or system supplier may provide default

values that are common to a number of systems in a place easily accessible to an origin

server, and then use the device profile to specify variations from the common profile. The

owner of the device or system operator may be able to add or change options, such as

additional memory, that add new capabilities or change the values of some original

capabilities [4].

d. CC/PP Exchange Protocol
The major disadvantage of this format is that it is verbose. Some networks,

such as mobile phone networks, are very slow, and this would add an overhead to handle

the device profiles. There are several optimizations possible to help deal with network

performance issues. One strategy is to use references (URIs). Instead of enumerating each

set of attributes, a reference can be used to name a collection of attributes, such as the

hardware platform defaults. This has the advantage of enabling the separate fetching and

caching of functional subsets. Another problem is to propagate changes in the current

CC/PP descriptions to an origin server or a proxy. One solution is to transmit the entire

 14

CC/PP descriptions with each change. This is not ideal for slow networks. An alternative

is to send only the changes. The "CC/PP exchange protocol" is proposed to deal with this

situation. The CC/PP exchange protocol does not depend on the profile format which it

conveys. Therefore, another profile format besides the CC/PP description format could be

applied to the CC/PP exchange protocol.

The strategy of the CC/PP exchange protocol is to send a request with

profile information using as few references as possible. For example, a user agent issues a

request with URIs which address the profile information, and if the user agent changes

the value of an attribute, such as turning sound off, only that change is sent together with

the URIs. When an origin server receives the request, the origin server inquires CC/PP

repositories for the CC/PP descriptions, using the list of URIs. Then the origin server

creates a tailored content using the fully enumerated CC/PP descriptions.

The origin server might not obtain the fully enumerated CC/PP

descriptions when any one of the CC/PP repositories is not available. In this case, it

depends on the implementation whether the origin server should respond to the request

with a tailored content, a non-tailored content or an error. In any case, the origin server

should inform the user agent of the fact. A warning mechanism has been introduced for

this purpose [5].

4. UAPROF

a. UAProf Introduction
UAProf is a Wireless Application Protocol (WAP) Forum specification

that is designed to allow wireless mobile devices to declare their capabilities to data

servers and other network components. The design of UAProf is already based on RDF.

As such, its vocabulary elements use the same basic format that is used for CC/PP.

In this specification, UAProf considers five different categories of device

capability, as shown in Figure 4: software, hardware, browser, network and WAP. This

means the server can adapt to the capabilities of the network as well as the capabilities of

the device [2].

Figure 6. The UAProf specification [From: 2]

b. UAProf Architecture
The UAProf is an End-to-End framework, as shown in Figure 7. The

information of the end device is collected on the client device, encoded into an efficient

binary form, transmitted and cached within a Wireless Session Protocol (WSP) session,

optionally enhanced with information provided with a particular request, optionally

combined with other information available over the network, and made available to the

origin server. Over the Internet, this specification assumes the use of the CC/PP and the

CC/PP Exchange Protocol over HTTP.

 15

SuppQfteiiEeaiei;

Figure 7. UAPROF End-to-End framework [From: 6]

The End-to-End framework consists of five components:

• A client device capable of requesting and rendering WAP

content.

• A wireless network employing WAP 1.1 or later protocols.

• A WAP-capable gateway capable of translating WAP protocol

requests into corresponding requests over the Internet and

translating responses from the Internet into corresponding

responses over the WAP protocols.

• The Internet or an intranet using TCP/IP-based protocols and

possibly having one or more protocol gateways and

Web/HTTP proxies.

• An origin (Web) server that can generate requested content.

Though this specification refers to five end-to-end system components,

actual configurations may physically deploy those components in many forms. For

example, the latter three components (WAP gateway, Internet/intranet, and origin server)

might easily be merged into a single server-side system connected to the WAP network.

Moreover, the WAP gateway may itself be distributed, with different hosts serving as

endpoints for different layers of the WAP protocol stack [6].

 16

WAP Protocol
Gateway

n
WSP Proxy

Origin
Server

Internet

HTTP Proxy

 17

c. Client Device
The device profile consists of information gathered from the device

hardware, active user agent software, and user preferences. In many cases, much of this

information must be pre-installed directly on the device, possibly in the firmware. For

instance, the device may publish a single URI that points to default device capability

information made available by the device manufacturer. Similarly, the user agent may

publish a single URI that points to default software information made available by the

software developer.

The client device is assumed to employ the WAP communications

protocols, particularly WSP, to request content from an origin server. The device profile

is transmitted and maintained using designated WSP headers in accordance with that

specification . This information is initially conveyed when a WSP session is established

with a compliant WAP protocol gateway. The client thereafter assumes that the WAP

gateway caches the device profile and will apply it on all requests initiated during the

lifetime of the WSP session [6].

d. Wireless Network and WAP Gateway
WSP sessions are carried over wireless networks that are capable of

implementing the WAP protocols. The WAP gateway represents the server-side endpoint

for the client’s WSP session. To support these sessions, the gateway must suport the

Wireless Datagram Protocol (WDP) and Wireless Transaction Protocol (WTP) layers .

As part of its WSP session implementation, the WAP gateway must implement WSP

header caching, thereby allowing it to hold the device profile conveyed by the client

device during session establishment. The WAP gateway is responsible for translating

WSP requests into appropriate HTTP requests for delivery over an intranet or the Internet

to the designated origin server. In forwarding these requests, the gateway must also

forward the current device profile associated with the session and/or request. This

specification requires that the gateway use the HTTP Extension Framework to convey the

device profile within HTTP headers, as discussed above regarding the CC/PP protocol.

When generating the HTTP request, the gateway may optionally augment the received

 18

device profile with additional data obtained from local databases, such as a network

Home Location Register (HLR).

The WAP gateway is also responsible for translating HTTP responses into

appropriate WSP responses for delivery over the wireless network to the requesting end

device. In forwarding these responses, the gateway must also forward any device profile

usage headers provided by the origin server and/or any intermediate HTTP proxies [6].

e. Internet or Intranet
The HTTP requests generated by the WAP gateway are conveyed over an

intranet or the Internet, capable of carrying TCP/IP-based requests and responses. In

passing through these networks, the request may pass through one or more proxies, each

responsible for forwarding the request toward the particular origin server designated in

the request. These proxies may conform to either the HTTP 1.0 or HTTP 1.1 protocol

standards. It is important to note that the HTTP 1.0 proxies will discard all device profiles

contained in the HTTP request. The HTTP 1.1 proxies may or may not forward the

device profile intact, depending on whether the information is conveyed in mandatory or

optional headers. For HTTP 1.1 proxies that are aware of the HTTP Extension

Framework and CC/PP Exchange Protocol over HTTP optionally may add information to

the device profile conveyed in the outbound HTTP request.

Internet network elements, both proxies and origin servers, may provide

content caching capabilities. Caching is complicated by the presence of device profile

because the content associated with a particular URI may differ according to the device

presented to the origin server. As a rule, therefore, an HTTP proxy or origin server will

only deliver content from its cache if both of the following conditions hold:

• The content has not expired from the cache, in accordance with standard HTTP

caching semantics.

• The device profile associated with the cached request exactly matches the

device profile associated with the new request.

To minimize the possibility that an intermediate proxy that is unaware of

CC/PP accidentally sources content from its cache without first checking for a matching

 19

CC/PP profile, an origin server may set the Cache-Control headers in the HTTP response

to prevent the proxy from doing any caching [6].

f. Origin Server
The origin server is the ultimate recipient of the request initiated by the

end device (and forwarded as an HTTP request from the WAP gateway). The origin

server is responsible for receiving the request and generating appropriate content that is

subsequently transported as an HTTP response to the WAP gateway. In generating this

response, the origin server extracts the device profile conveyed with the HTTP request,

resolves all indirect references to information stored at other repositories in the network,

if necessary, and uses that information to select or otherwise customize the content being

delivered to the client. In generating the HTTP response using the CC/PP Exchange

Protocol over HTTP, a server must indicate the extent to which the device profile was

honored in producing the content contained within the HTTP response [6].

B. UPNP

1. UPnP Introduction
 With the addition of Device Plug and Play (PnP) capabilities to the operating

system it became a great deal easier to setup, configure, and add peripherals to a PC.

Universal Plug and Play (UPnP), which was developed by Microsoft, extends this

simplicity to include the entire network, enabling discovery and control of devices,

including networked devices and services, such as network-attached printers, Internet

gateways, and consumer electronics equipment.

 With UPnP, a device can dynamically join a network, obtain an IP address,

convey its capabilities, and learn about the presence and capabilities of other devices—all

automatically; truly enabling zero configuration networks. Devices can subsequently

communicate with each other directly; thereby further enabling peer-to-peer networking.

 UPnP uses standard TCP/IP and Internet protocols, enabling it to seamlessly fit

into existing networks. Using these standardized protocols allows UPnP to benefit from a

wealth of experience and knowledge, and makes interoperability an inherent feature.

Because UPnP is a distributed, open network architecture, defined by the protocols used,

it is independent of any particular operating system, programming language, or physical

medium (just like the Internet). UPnP does not specify the APIs applications will use,

allowing operating system vendors to create the APIs that will meet their customers’

needs [7].

 2. UPnP Architecture
There are three basic components of a UPnP network: devices, services and

control points. Figure 6 is the block diagram of the three components.

 20

Figure 8. UPnP Control Points, Devices, and Services [From: 7]

UPnP Enabled Device

UPnP Enabled Device

UPnP Enabled Device

Control Point

Device

Root Device

Embedded Device

Device

Service

Service 2Service 1

Service

Service 2Service 1

Control Point

Service

State
Table

Control
Server

Event
Server

 21

a. UPnP Devices
r of services and nested devices. For instance,

a VCR device

of services an

b. UPnP Services
 in a UPnP network is a service. A service

exposes action

rvice in a UPnP device consists of a state table, a control server and an

event server. T

A UPnP device is a containe

 may consist of a tape transport service, a tuner service, and a clock service.

A TV/VCR combo device would consist not just of services, but a nested device as well.

Different categories of UPnP devices will be associated with different sets

d embedded devices. For instance, services within a VCR will be different

than those within a printer. Consequently, different working groups will standardize on

the set of services that a particular device type will provide. All of this information is

captured in an XML device description document that the device must host. In addition to

the set of services, the device description also lists the properties (such as device name

and icons) associated with the device [7].

The smallest unit of control

s and models its state with state variables. For instance, a clock service

could be modeled as having a state variable, current_time, which defines the state of the

clock, and two actions, set_time and get_time, which allow designers to control the

service. Similar to the device description, this information is part of an XML service

description standardized by the UPnP forum. A pointer (URL) to these service

descriptions is contained within the device description document. Devices may contain

multiple services.

A se

he state table models the state of the service through state variables and

updates them when the state changes. The control server receives action requests (such as

set_time), executes them, updates the state table and returns responses. The event server

publishes events to interested subscribers anytime the state of the service changes. For

instance, the fire alarm service would send an event to interested subscribers when its

state changes to "ringing" [7].

 22

c. PnP Control Points
A control point in a UPnP network is a controller capable of discovering

and controlling her d , a control point could:

• tions to control the service.

e state of

It is expected that devices

enable true peer-to-peer networking [7].

PnP
UPnP leverages many existing, standard protocols. Using these

standardized p cols ability between vendor implementations.

Figure 7 is the

U

 ot evices. After discovery

• Retrieve the device description and get a list of associated

services.

• Retrieve service descriptions for interesting services.

Invoke ac

• Subscribe to the service’s event source. Anytime th

the service changes, the event server will send an event to the

control point.

 will incorporate control point functionality (and vice-versa) to

d. Protocols Used by U

roto aids in ensuring interoper

 protocol stack of UPnP.

UPnP Vendor Defined

UPnP Forum Working Committee Defined

UPnP Device Architecture Defined

HTTPMU
(Discovery)

HTTPU
(Discovery)

SOAP
(Control)

HTTP
(Description)

UDP TCP

SSDP GENA SSDP

IP

HTTP
GENA

(Events)

Figure 9. The UPnP protocol stack [From: 7]

3. Activities Involved in UPnP Network

a. Addressing
The foundation for UPnP networking is the TCP/IP protocol suite, and the

key to this suite is addressing. Each device must have a Dynamic Host Configuration

Protocol (DHCP) client and search for a DHCP server when the device is first connected

to the network. If a DHCP server is available, the device must use the IP address assigned

to it. If no DHCP server is available, the device must use Auto IP to get an address. In

brief, Auto IP defines how a device intelligently chooses an IP address from a set of

reserved private addresses, and is able to move easily between managed and unmanaged

networks.

A device may implement higher layer protocols outside of UPnP that use

friendly names for devices. In these cases, it becomes necessary to resolve friendly host

(device) names to IP addresses. Domain Name Services (DNS) are usually used for this.

 23

 24

A device that requires or uses this functionality may include a DNS client and may

support dynamic DNS registration for its own name to address mapping [7].

b. Discovery
Once devices are attached to the network and addressed appropriately,

discovery can take place. Discovery is handled by the Simple Service Discovery Protocol

(SSDP). When a device is added to the network, SSDP allows that device to advertise its

services to control points on the network. When a control point is added to the network,

SSDP allows that control point to search for devices of interest on the network.

The fundamental exchange in both cases is a discovery message

containing a few essential specifics about the device or one of its services, for example,

its type, identifier, and a pointer to its XML device description document [7].

c. Description
The next step in UPnP networking is description. After a control point has

discovered a device, the control point still knows very little about the device. For the

control point to learn more about the device and its capabilities, or to interact with the

device, the control point must retrieve the device's description from the URL provided by

the device in the discovery message.

Devices may contain other, logical devices and services. The UPnP

description for a device is expressed in XML and includes vendor-specific manufacturer

information including the model name and number, serial number, manufacturer name,

URLs to vendor-specific Web sites, and so forth. The description also includes a list of

any embedded devices or services, as well as URLs for control, eventing, and

presentation [7].

d. Control
After a control point has retrieved a description of the device, the control

point has the essentials for device control. To learn more about the service, a control

point must retrieve a detailed UPnP description for each service. The description for a

service is also expressed in XML and includes a list of the commands, or actions, the

 25

service responds to, and parameters or arguments for each action. The description for a

service also includes a list of variables; these variables model the state of the service at

run time, and are described in terms of their data type, range, and event characteristics.

To control a device, a control point sends an action request to a device's

service. To do this, a control point sends a suitable control message to the control URL

for the service (provided in the device description). Control messages are also expressed

in XML using Simple Object Access Protocol (SOAP). In response to the control

message, the service returns action specific values or fault codes [7].

e. Eventing
A UPnP description for a service includes a list of actions the service

responds to and a list of variables that model the state of the service at run time. The

service publishes updates when these variables change, and a control point may subscribe

to receive this information.

The service publishes updates by sending event messages. Event messages

contain the names of one of more state variables and the current value of those variables.

These messages are also expressed in XML and formatted according to the Generic Event

Notification Architecture (GENA). A special initial event message is sent when a control

point first subscribes; this event message contains the names and values for all evented

variables and allows the subscriber to initialize its model of the state of the service. To

support multiple control points, all subscribers are sent all event messages, subscribers

receive event messages for all evented variables, and event messages are sent no matter

why the state variable changed (in response to an action request or due to a state change)

[7].

f. Presentation
If a device has a URL for presentation, then the control point can retrieve a

page from this URL, load the page into a browser, and depending on the capabilities of

the page, allow a user to control the device and/or view device status. The degree to

which each of these can be accomplished depends on the specific capabilities of the

presentation page and device [7].

C. SYNCML

1. SyncML Introduction
SyncML was developed by the mobile technology industry. It is a specification

for a common data synchronization framework and XML-based format, or representation

protocol, for synchronizing data on networked devices. SyncML can also be used for

peer-to-peer data synchronization. SyncML is specifically designed to handle the case

where the network services and the device store the data they are synchronizing in

different formats or use different software systems.

The framework is depicted in Figure 10. In the figure, the scope of the SyncML

framework is shown by the dotted-line box. The Framework consists of SyncML

representation protocol, as well as a conceptual SyncML Adapter and the SyncML

Interface [8].

Figure 10. SyncML framework [From: 8]

The application "A" depicts a networked service that provides data

synchronization with other applications, in this case application "B," on some networked

device. The service and device are connected over some common application layer

protocols, such as HTTP and WSP. Application "A" utilizes a data synchronization
 26

Transport

Sync
Engine

e.g., HTTPAVSP/OBEX

 27

protocol, implemented as the "Sync Engine" process. The data synchronization protocol

is manifested on the network by client applications accessing the "Sync Server" network

resource. The "Sync Server Agent" manages the "Sync Engine" access to the network and

communicates the data synchronization operations to/from the client application. The

"Sync Server Agent" performs these capabilities through invocations to functions in the

"SyncML I/F" or interface. The "SyncML I/F" is the application programming interface

to the "SyncML Adapter". The "SyncML Adapter" is the conceptual process that the

originator and recipient of SyncML formatted objects utilize to communicate with each

other. The "SyncML Adapter" is also the framework entity that interfaces with the

network transport, which is responsible for creating and maintaining a network

connection between Application "A" and Application "B." Application "B" utilizes a

"Sync Client Agent" to access the network and it's "SyncML Adapter," through

invocations of functions in the "SyncML I/F" [8].

2. SyncML Packages and Messages
In SyncML, the data synchronization operations are conceptually bound into a

SyncML Package . The SyncML Package is just a conceptual frame for one or more

SyncML Messages that are required to convey a set of data synchronization semantics. A

SyncML Message is a well-formed, but not necessarily valid, XML document. The

document is identified by the SyncML root or document element type. This element type

acts as a parent container (i.e., root element type) for the SyncML Message. The SyncML

Message, as specified before, is an individual XML document. The document consists of

a header, specified by the "SynHdr" element type, and a body, specified by the

"SyncBody" element type. The SyncML header specifies routing and versioning

information about the SyncML Message. The SyncML body is a container for one or

more SyncML commands. The SyncML Commands are specified by individual element

types. The SyncML Commands act as containers for other element types that describe the

specifics of the SyncML command, including any synchronization data or meta-

information [8].

 28

3. SyncML Capabilities Exchange
SyncML supports capabilities exchange. Capabilities exchange is the ability of a

SyncML Client and Server to determine what device, user and application features each

supports. The capabilities exchange, from the SyncML Server perspective, is achieved by

using the "Get" command to retrieve the device information, user information and

application information documents from the SyncML Client. The capabilities exchange,

from the SyncML Client perspective, is achieved by using the "Get" command to

retrieve the analogous documents from the SyncML Server. These documents contain

profile information about support for well-defined features. In addition, the "Put"

command can be used by the SyncML Client to push capabilities exchange information

to the SyncML Server. The capabilities exchange can also be used to establish or

administer SyncML data synchronization services between a SyncML Client and Server

[8].

4. Data Identifier Mapping
SyncML does not require that two data stores being synchronized be of the same

schema (i.e., aren't homogeneous). Specifically, SyncML allows for both the data

identifiers and the data formats to be different in the two data collections. However, in

such cases in order to use SyncML, the synchronizing applications would need to provide

a mapping between data identifiers in one data store and those in another. For example, a

document on the data synchronization server could be identified with a 16-byte, globally

unique identifier (GUID). The corresponding version of this document on a mobile

device could be identified by a small, two-byte local unique identifier (LUID). Hence, to

synchronize the data on the mobile device with the data on the data synchronization

server, the synchronizing application would have to map the smaller identifiers of the

mobile device to the larger identifiers used by data synchronization server; and vice versa.

SyncML includes the necessary mechanism to specify such an identifier mapping [8].

5. Refreshing Data
In addition to synchronization, SyncML includes commands that are not normally

thought of as synchronization operations, but are still required in a practical data

synchronization protocol. For example, SyncML provides the capability for refreshing

the entire data on the SyncML client with the equivalent synchronization data on the

SyncML server. This may be necessary if the SyncML client and the SyncML server

versions are no longer "in sync" with each other due to a hardware or power failure in the

mobile device, or if the version on the SyncML client has become corrupted or erased

from memory. This capability is provided by the SyncML client issuing a "refresh" Alert

command to the SyncML server [8].

6. DevInf Introduction
By the SyncML standard, when two devices are in the process of synchronization,

they have to exchange their device profiles in advance. The device profile is exchanged

by using the SyncML Device Information (DevInf) standard. The DevInf is represented

in a markup language defined by WAP Binary XML (WBXML). In WBXML, the binary

format is designed to allow for compact transmission with no loss of functionality or

semantic information. It is also designed to preserve the element structure of XML,

allowing a browser to skip unknown elements or attributes. The binary format encodes

the parsed physical form of an XML document, i.e., the structure and content of the

document entities. Meta-information, including the document type definition and

conditional sections, is removed when the document is converted to the binary format [9].

Using DevInf, the device profile comes in four parts, as shown in Figure 11.

Figure 11. SyncML DevInf Specification [From: 2]

 29

version identifier of DTD

device manufacturer

device Model Name

original equipment manufacturer

firmware version

software version.

hardware version

device identifier,

device type..

content type _

property

■■ .-- ,t.-,| , i-, T i-r.-E-r-rf-,

parameters

device

content capabilities

lieof i property or pat tmetei .

display name

reference URI for local

display name

maximum global identifier size

preferred content type received by device

content type transmitted by device ^

preferred content type received by device ^

content type received by device

data store memory ^

ynchromsation capabilities

jiame oi e.lension element
xtensions X^,,,» n, ^„^

\ element

 30

D. COMPARISON OF THE STANDARDS
From the previous descriptions of the device profile standards, we give a

comparison in Table 1.

The design of CC/PP is backwards compatible with UAProf. The goal is that valid

UAProf profiles are also valid CC/PP profiles; however, not all CC/PP profiles are

necessarily valid UAProf profiles.

 31

 CC/PP UAProf UPnP SyncML
Proposer W3C WAP Forum Microsoft Communication

Industries
Standard used
for device
profile
creation

RDF RDF XML DevInf

Device profile
format XML XML XML XML

Vocabulary in
device profile

User-defined
based on
application

Designed and
developed by
WAP forum
specifically for
wireless
application

Provided by
vendors

Provided by the
proposers of the
standard

Protocol used
for device
profile
transmission

HTTP
Extension
Framework
(The CC/PP
specification
does not
impose
constraints on
transmission
protocol)

WSP HTTP HTTP/WSP/O
BEX

Main
application

Content
repurposing
between end
devices and
servers

Content
repurposing
between end
devices (mainly
wireless
devices) and
servers

Multimedia
devices control
(e.g., DVD
player, VCR)
and information
appliance (IA)
control

Synchronizati-
on between
devices (e.g.,
PDA and PC,
mobile phone
and PC)

Flexibility for
application
design

High,
developers can
create their own
device profile
vocabularies

Low, the
UAProf can be
viewed as an
application of
CC/PP

Low, the device
profile
description has
to be provided
by vendor

Low, the
standard is
focused on
mobile
communication

Table 1. Comparison of the standards

 32

THIS PAGE INTENTIONALLY LEFT BLANK

IV. DEVICE PROFILE CREATION (USING CC/PP)

A. DESIGN OVERVIEW
From the previous discussion, we can realize that to achieve the flexibility of

DAN application design, the CC/PP standard is the optimal solution among the available

standards. Furthermore, to reduce the load of a server, we may use the architecture of

user agent proxy, as shown in Figure 12, to process device profiles from different clients.

Figure 12. User Agent Proxy Architecture

For a DAN client, it is necessary to provide the username and password before

entering the system. Figure 13 shows the register mechanism for an end-device to login

to the DAN system.

 33

PC

Laptop

Mobile
phone

PDA

HTML
WML
XML+XSL

s -'■

^^

■'

Service
Provider

Service Consumer

Figure 13. DAN User Registration Mechanism

B. CC/PP AND UAPROF VOCABULARY

 A CC/PP or UAProf vocabulary defines the recognized components, their

attributes, and type information. In the CC/PP standard only a few core vocabularies were

defined. As for UAProf, there are two versions of vocabulary in the specification [6,10].

When CC/PP was created, it was expected that the creation of multiple vocabularies for

device profiles was unavoidable. Therefore, RDF has been designed to cope with data

from different sources using different vocabularies [11]. For example, the Intel PCA

Developer Network [12] device profile assigns two schemas by using two URIs in its

RDF file:

xmlns:prf="http://www.wapforum.org/profiles/UAPROF/ccppschema-
20010330#"
xmlns:pca="http://developer.intel.com/pca/developernetwork/devsupport/pca_sch
ema/2002_01#"

1. Vocabulary Serialization
A profile can use attributes from multiple vocabularies and schemas. This is

called vocabulary serialization. Different vocabularies can be used in a profile using

XML namespaces, as shown in a previous example. Within a profile, each vocabulary

that is used is associated with an XML namespace which uniquely identifies the attributes

in the profile. Because any application or operational environment that uses CC/PP may

define its own vocabulary, the vocabularies have to be defined more generally if wider

interoperability is taken into consideration [13].

 34

Service Consumer

Registration

User Agent Proxy

(Username, Password & Device Profile)

Confirm Message

TCP Header HTTP Header Registration Data

 35

2. Characteristic of Attributes
The attribute definition includes identifying the semantic description, attribute

type, and sample values. For a device profile, it is obvious that some attribute values may

keep changing, e.g., power status, device temperature, CPU frequency, connection speed.

It is necessary to classfy attributes into two catalogs (static and dynamic) if we would like

to cooperate with the end devices efficiently. In application design, the resolution rule of

a device profile should be assumed to be the default rule for static values. For dynamic

attributes, the values shown in a profile are assumed to be initial values only.

Subsequently, the values can be updated at a fixed rate based on the actual value at the

time the value is sampled. A monitor mechanism on the client side can be created to

perform the function of reading the dynamic values and updating the values in the profile

periodically [13]. In APPENDIX A, the tables give a detailed description and data types

of the device profile vocabularies developed by the Intel PCA Network. APPENDIX B is

the RDF format of a device profile derived from APPENDIX A.

3. Profile Resolution
UAProf and CC/PP standards define a data format and a protocol to be used for

the exchange and resolution of device capability information. They do not specify how to

collect this information or how to customize content based on the profile information.

Profile information must be collected on client devices and resolved on a server [13]. Both

CC/PP and UAProf clients may split up profile information in order to send it to the server

in an efficient way. They do this by using a standard profile, known as a reference profile,

and a list of overrides specific to the requesting device, known as a profile-diff. Other

devices in the communication path, such as proxies, may also add profile-diffs. The

process of reassembling the final profile from the reference profile(s) and profile-diff(s)

is known as profile resolution. CC/PP does not specify the exact mechanism for profile

resolution, apart from requiring that default attribute values are always overridden by

non-default attribute values. UAProf, in contrast, specifies a set of resolution rules that

apply to non-default values. Each attribute in a vocabulary is associated with a specific

resolution rule that is applied when multiple attribute values are encountered. In UAProf

these resolution rules are order dependent; for example, "locked" means take the first

 36

value encountered whereas "override" means take the last value encountered.

Unfortunately, these rules are difficult to implement in RDF, as RDF models do not have

any implicit concept of ordering statements. Ordering must be done explicitly, e.g., using

an RDF Sequence (rdf:Seq [15]). Unlike RDF, XML does implicitly order elements in

documents. When statements in an RDF model are unordered it is impossible to apply the

UAProf resolution rules to a single RDF model. Possible solutions include representing

each profile or profile-diff as a separate model and keeping track of the order of these

models. This allows resolution to be performed between models. An alternative approach

is to convert profiles to an intermediate data structure that stores attribute order before

performing profile resolution [11].

4. Validating CC/PP and UAProf Profiles
In order to validate CC/PP and UAProf profiles, there must be a set of rules that

determine what constitutes a valid profile. According to the CC/PP Structure and

Vocabularies Working Draft [4], a CC/PP profile must meet the following constraint: a

profile must be valid XML and a valid XML serialization of RDF. Based on the

description, there are two possible solutions for application developers to validate CC/PP

and UAProf profiles: XML schema parser and RDF schema parser [16].

a. Validation Using XML Schema Parser
It is important to note that although RDF schema and XML schema are

both schema languages, they perform slightly different roles: RDF schema’s primary aim

is to provide a machine-readable description of a particular vocabulary rather than

provide mechanisms for validating data. XML schema, on the other hand, can be used to

validate XML documents and enforce strict structural and datatype constraints. Therefore,

one solution to the validation problem in CC/PP would be to use XML schema parser to

validate profiles. In order to use XML schema in this way, it is necessary to solve another

related problem: in the XML serialization of RDF it is possible to serialize a single RDF

graph in several different ways, making the required XML schema complex and

unwieldy. The solution proposed here is to use XSLT (XSL Transformation) [19] to

convert a profile to a constrained form of RDF that maintains all the information from the

original serialization. After this the profile can be validated using XML schema, to ensure

that it is both syntactically correct and that it uses all referenced vocabularies correctly.

This process is shown diagrammatically in Figure 14 [16].

Figure 14. Validating Device Profiles Using XSLT and XML Schema [From: 16]

Using the stylesheet approach to validate device profiles has a number of

advantages: First, it provides a simple mechanism for validation that makes use of

existing tools, e.g., XSLT and XML schema. Furthermore, using this functionality in a

program is simple, since there are several open source XML schema parsers and XSLT

transformers available, such as Apache Xerces and Apache Xalan [18]. It also makes use

of existing information, e.g., the RDF schemas for UAProf. The downside of performing

validation in this way is that both profiles and vocabularies must be transformed before

they can be validated. Ideally, it should be possible to validate profiles without any

changes, as validating transformed profiles can lead to error messages that are difficult to

interpret, as they refer to a different profile than the one presented by the user.

Secondly, because there are various versions of the UAProf vocabulary,

each using a different namespace URI, it is necessary to have separate stylesheets to

convert profiles and schema belonging to the different versions. This is due to a

restriction in XSLT that prevents stylesheets from inserting namespace declaration

attributes into a document [16].

 37

 38

b. Validation Using RDF Schema Parser
Performing validation of RDF documents using a RDF schema parser is

more complex than validating XML documents, because there are no standardized tools

available to accomplish this task. This approach has the advantage of not requiring any

transformations of profiles or schema.

To determine the structure to which profiles must adhere, the validator

exploits the two-level structure of UAProf profiles (profiles contain components, which

contain properties). The UAProf vocabulary gives regular expressions for the datatypes it

defines, and these can be used in the validator. It became apparent, however, that many

profiles do not adhere to these specified expressions. For example, the literal datatype has

the following regular expression in the schema:

[A-Za-z0-9/.\-_]+

There are many literals in profiles that contain spaces, asterisks,

semicolons and various other characters forbidden by this expression. Although this

problem is easily solved by extending the expression to allow a wider variety of strings,

ideally these regular expressions should be machine readable, rather than written as XML

comments, to make it easier for RDF parsers to extract them and use them in profile

validation [16].

5. Device Profiles Serialization in XSLT
For content authors, it is a good solution to simplify the transformation process of

information in device profiles by using XML and XSLT. One problem with manipulating

CC/PP or UAProf profiles in XSLT is that these device profiles are represented using

RDF. Although RDF models can be represented in an XML serialization, it is difficult to

manipulate this serialization in XSLT, as it can represent the same model in many

different ways [11]. To make the device profiles easier to manipulate, we can create a

profile that only consists of profile attributes with all RDF format removed in XSLT,

e.g.,:

 39

<browser>
 <ScreenSize>90x120</ScreenSize>

 <IsColorCapable>Yes</IsColorCapable>
 <CcppAccept>
 text/html
 text/plain
 image/jpeg
 </CcppAccept>
</browser>

6. Device Profiles Matching Rules
Different Internet-capable devices have different input, output, hardware,

software, network and browser capabilities [18]. In order to provide optimized content to

different clients, the server must process device profiles correctly. The following

stylesheet demonstrates how we can use XPath [19] conditional statements to query

profiles within XSLT:

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version

="1.0">
 <xsl:param name="device-capabilities"/>
 <xsl:template match="/">
 <xsl:if test="contains($device-capabilities/browser/CcppAccept,’wml’) and

contains($deli-capabilites/browser/ScreenSize,'90x120') and
contains($deli-capabilities/browser/IsColorCapable,’Yes’)">

 <wml>
 <card id="init" newcontext="true">
 <p>Color device with 90x120 screen</p>
 </card>
 </wml>
 </xsl:if>
 </xsl:template>
</xsl:stylesheet>

In this example, the stylesheet only generates a WML page if the device is WML capable,

color capable and has a screen size 90x120 pixels. In addition to the contains() function,

we can also use the >, >=, <, <=, =, and != expressions in conditional statements.

However, the UAProf standard uses various data types that are difficult to process using

these conditional statements. First, UAProf has a data type called dimension that consists

 40

of two numbers separated by an "x," e.g., 90x120. It is not possible to apply numerical

expressions to this data type, so only the contains() function may be used. Second,

numbers in UAProf are integers, so instead of representing version numbers as numbers

they are represented as string literals.

In [18] the HP Lab proposed a method called "capability class" to overcome such

problems. Capability class works as follows: a number of capability classes are defined

where each class is associated with a set of constraints. When a server receives a profile,

it evaluates each set of constraints to determine if the target device belongs to one or

more of the capability classes. Once it has determined which capability classes are

supported by the device, this information is passed to the stylesheet to guide

transformation. For example, consider the file shown below:

 <?xml version="1.0" encoding="UTF-8"?>
<classes>
 <class name="smallScreen">
 <or>
 <lessthan value="160x160">ScreenSize</lessthan>
 <lessthan value="20x20">ScreenSizeChar</lessthan>
 </or>
 </class>
 <class name="largeScreen">
 <or>
 <greaterthan value="320x240">ScreenSize</greaterthan>
 <greaterthan value="80x40">ScreenSizeChar</greaterthan>
 </or>
 </class>
 <class name="jpegcapable">
 <contains value="image/jpeg">CcppAccept</contains>
 </class>
 <class name="color">
 <true>ColorCapable</true>
 </class>
 <class name="blackandwhite">
 <not>
 <true>ColorCapable</true>
 </not>
 </class>
 <class name="colorphone">
 <and>
 <lessthan value="90x120">ScreenSize</lessthan>
 <contains value="wml">CcppAccept</contains>

 41

 <true>IsColorCapable</true>
 </and>
 </class>
</classes>

This file defines four capability classes: smallScreen, largeScreen, jpegcapable

and color. In the case of smallScreen, the constraints are that the device has a screen

smaller than 160 wide and 160 pixels high or if it has a screen that is smaller than 20

characters wide and smaller than 20 characters high. Alternatively a device meets the

jpegcapable capability class criteria if it can display the MIME type image/jpeg.

Capability class files can contain three Boolean expressions for aggregating

constraints: and, or and not. It provides a number of conditionals: lessthan,

lessthanequals, greaterthan, greaterthanequals, equals, contains and true. Each

conditional is only applicable to specific attribute types, as shown in Table 2. For

dimensions, the conditionals mean the result is true if both numbers are met; otherwise it

returns false.

Conditional Compatible UAProf data types
lessthan number, dimension
lessthanequals number, dimension
greaterthan number, dimension
greaterthanequals number, dimension
equals number, dimension, single literal
contains set of literals, sequence of literals
true boolean

Table 2. Conditionals of Capability Class

B. AVAILABLE APPLICATION FOR CC/PP AND UAPROF PROFILING
In [20] there is a list of software available for handling CC/PP and UAProf device

profiles. This thesis provides a testing report on one of these software and demonstrates a

platform that can handle XML/XSLT architecture.

1. DELI Introduction
HP Labs’ DElivery context LIbrary (DELI) is a toolkit that allows Java servlets to

resolve HTTP requests containing delivery context information from CC/PP or UAProf

capable devices and query the resolved profile. It also provides support for legacy devices

so that the proprietary delivery context descriptions currently used by applications can be

replaced by standardized CC/PP descriptions [22].

2. Testing Device Profiles in DELI
In order to install DELI and run test servlets, an installation of the Java Runtime

Environment with a Java Servlet engine, such as Tomcat are necessary.

a. Browser Profiles Testing
 By typing the following address in the Internet Explorer browser, the

browser should display the profile properties of Internet Explorer as shown in Figure 15,

because the default value is set to reference msie.rdf in the DELI profile directory.

 http://localhost:8080/ccpp/html/

Figure 15. The Profile of Internet Browser

 42

3 Device Profile - Microsoft Internet Explorer

tSSs© IS«<E) <#*B(¥) 8#!ft£(A) XRCD

WKlKD) |«] http^/127.0.0. l:8O80/ccppAtml

^IS].*]

- J UQ

~E\ <>»£

Device Profile
Component Attribute Resolution G

http://www.wapforam.org/profiles/UAPROF/ccppschema-http :/^^
20010430#HardwarePlatform 20010430ColorCapable

Override Si

http J/vmvi. wapforum.org/prof iles/UAPROF/ccppschema- http y/www. wapf orum.org/trof iles/UAPROF/ccppschema-
20010430#HardwarePlatform 20010430TextInputCapable

http y/www. wapforum.org/prof iles/UAPROF/ccppschema- http Jmvm. wapforam.org/prof iles/UAPROF/ccppschema-
20010430fflardwarePlatform 20010430ImageCapable

http J/vmvi. wapforum.org/prof iles/UAPROF/ccppschema- http ://www. wapforam.org/trofiles/UAPROF/ccppschema-
20010430#HardwarePlatform 20010430Keyboard

http y/www. wapforum.org/prof iles/UAPROF/ccppschema- http Jmvm. wapforam.org/prof iles/UAPROF/ccppschema-
20010430fflardwarePlatform 20010430Vendor

http i'/www, wapforum.org/trof iles/UAPROF/ccppschema- http ://www. wapforam.org/trofiles/UAPROF/ccppschema-
20010430#HardwarePlatform 20010430SoundOutputCapable

http y/www. wapforum.org/prof iles/UAPROF/ccppschema- http y/www. wapforum.org/trof iles/UAPROF/ccppschema-
20010430fflardwarePlatform 20010430StandardFontProportional

http J/vmvi. wapforum.org/prof iles/UAPROF/ccppschema- http y/www. wapforum.org/trofiles/UAPROF/ccppschema-
20010430#BrowserUA 20010430BrowserName

Override Si

Override Si

Override Si

Override Si"

Override Si

Override Si

Override Si

http -J/vmw. wapforum.org/prof iles/UAPROF/ccppschema- http -Jmvm. wapforum.org/trof iles/UAPROF/ccppschema-
20010430#BrowserUA 20010430FramesCapable

http Jmvm. wapforum.org/trof iles/UAPROF/ccppschema- http Jmvm. wapforum.org/trof iles/UAPROF/ccppschema- _

i\ I

Override Si

fe]Ä*

b. WML Profile Testing
 With WML profile testing, we use two simulators to do the simulation:

Microsoft Pocket PC 2003 Emulator and Nokia Wap Gateway Simulator. In Microsoft

Pocket PC 2003 Emulator, we type the following address and get the device profile result

shown in Figure 16.

 http://:8080/ccpp/wml/

Figure 16. WML Profile Testing in Pocket PC Simulator

 43

&PockeiPC2003

Emulator Help

_ n x

 44

In Nokia Wap Gateway Simulator, we can assign the device profile for reference. For

example, if we use Nokia 9210i as our mobile phone interface, the deivce profile can be

assigned by the following two parameters in device settings: x-wap-profile and x-wap-

profile-diff. These are the headers of Wireless Profiled HTTP (W-HTTP) [23], a protocol

proposed by the WAP Forum to transport the device profile. An example W-HTTP

request is shown below :

GET /ccpp/html/ HTTP/1.1
Host: localhost
x-wap-profile:"http://localhost:8080/ccpp/profiles/ Nokia_9210i_WML.rdf,"
"1-Rb0sq/nuUFQU75vAjKyiHw=="
x-wap-profile-diff:1;<?xml version="1.0"?>
 <rdf:RDF xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:prf="http://www.wapforum.org/profiles/UAPROF/ccppschema-

20010430#">
 <rdf:Description rdf:ID="MyDeviceProfile">
 <prf:component>
 <rdf:Description rdf:ID="HardwarePlatform">
 <rdf:type rdf:resource="http://www.wapforum.org/profiles/UAPROF/ccpp

schema- 20010426#HardwarePlatform"/>
 <prf:BitsPerPixel>16</prf:BitsPerPixel>

</rdf:Description>
 </prf:component>
 </rdf:Description>
 </rdf:RDF>

In this request, the profile is referenced via the x-wap-profile line and has the URI:

http://localhost:8080/ccpp/profiles/Nokia_9210i_WML.rdf

After the profile reference, there is a value 1-Rb0sq/nuUFQU75vAjKyiHw== known as a

profile-diff digest.The first part of the profile-diff-digest, 1-, is the profile-diff sequence

number. This is used to indicate the order of the profile-diffs and to indicate which

profile-diff the profile-diff digest refers to [22]. Therefore, we have to add the parameter

values of Nokia 9210i HTTP request headers as shown in Figure 17.

Figure 17. W-HTTP Header Settings

In the Nokia Mobile Browser, if we type http://localhost:8080/ccpp/wml/ for

profile request, then the browser should display the contents of the Nokia 9210i profile,

as shown in Figure 18.

 45

Settings

Appearance Browser Connection

Headers MSISDN Telephony Response

Custom HTTP headers except those for Location

functions:

Name Value

W x-wap- profile 'http://localhost:8080/ccpp/profil.
W x-wap-profile-diff 1

Up rjowrr j Remove

OK Cancel Help

Figure 18. WML Profile Testing in Mobile Phone Simulator

c. Customized Mobile Device Profile
For most mobile devices, the dynamic parameters of device profiles are

not always static, e.g., power status, bandwidth, temperature etc. Therefore, to get the

correct information of a device, a detailed dynamic device vocabulary is necessary. In

DELI, the new device profile can be created by adding a new device profile schema. To

customize a new device profile with dynamic parameters, we use the device profile

created by Intel PCA Network and add a new vocabulary (DeviceTemperature) in this

schema. For some new mobile devices, the hardware temperature can be monitored by

the operating system, which can then turn off the device if the temperature level is higher

than the value for device operation. To view the content of the device profile, we use the

Java program provided in DELI. By typing the command as shown in Figure 19, the RDF

format profile can be resolved and displayed in HTML, formatted as shown in Figure 20.

 46

Figure 19. Resolve Device Profile Command

Figure 20. HTML Format of Mobile Device Profile

3. Apache Cocoon Introduction
Apache Cocoon is a web development framework built around the concept of

separation of concerns and component-based web development [24]. Cocoon was

developed by Apache for publishing XML to multiple target devices. It provides caching

to speed up document delivery. It uses XSP, the EXtensible Server Pages Language, an

XML compliant version of Java Server Pages to generate XML on the fly.

 47

^JnJüJ

C:\Tomcat\webapps\ccpp>java com.hp.hpl.del iTest.TestCCPPCI ient normal http://loc
alhost:8080/ccpp/profi les/pocketpc.rdf output.html_

3 Device Profile - Microsoft Internet Explorer

SS(E)

r*TOi

IAO) BMBOD
□

äffl*lt(D) |Cl C:\Tomcat\webappsVcppWput.html ~B M

HTTP/1.1 200 OK Content-Type: text/html Date: Tue, 23 Nov 2004 22:32:00 GMT Server: Apache-Coyote/1.1 Connection: close

Device Profile
Component

http://www.wapforum.org/UAPROF/ccppschema-
20010330Unknown

http://www.wapforum.org/UAPROF/ccppschema-
20010330#HardwarePlatf orm

http://www.wapforum.org/UAPROF/ccppschema-
20010330#HardwarePlatf orm

http://www.wapforum.org/UAPROF/ccppschema-
20010330#HardwarePlatf orm

http://www.wapforum.org/UAPROF/ccppschema-
20010330#HardwarePlatf orm

http://www.wapforum.org/UAPROF/ccppschema-
20010330#HardwarePlatf orm

http://www.wapforum.org/UAPROF/ccppschema-
20010330#HardwarePlatf orm

http://www.wapforum.org/UAPROF/ccppschema-

Attribute

http://www.wapforum.org/UAPROF/ccppscherna-20010330component

http://www.wapforum.org/UAPROF/ccppschema-20010330ScreenSize

http :/Avww.wapf orum.org/UAPROF/ccppschema-20010330Model

http://www.wapforum.org/UAPROF/ccppschema-20010330Vendor

http://www.wapforum.org/UAPROF/ccppschema-20010330CPU

http://www.wapforum.org/UAPROF/ccppschema-20010330InputCharSet

http://www.wapf orum.org/UAPROF/ccppschema-20010330ScreenSize Char

.

t3ft««m

Due to the features of Apache Cocoon, HP Labs now is integrating DELI with

Cocoon. By default, the profile resolution function is switched off on the Cocoon website.

To turn on the function of profile resolution, we have to add <map:parameter

name="use-deli" value="true"/> to the pattern match that specifies the stylesheet in

sitemap.xmap after the installation of Cocoon. Here is the match used for the deli test

stylesheet:

<map:match pattern="deli.wml">
 <map:generate src="docs/samples/hello-page.xml"/>
 <map:transform src="stylesheets/deli_test.xsl" type="xslt">
 <map:parameter name="use-deli" value="true"/>
 </map:transform>
 <map:serialize type="wml"/>
 </map:match>

Then we can test the profile resolution function by typing the following address to

resolve the web browser. The result is shown in Figure 21.

 http://localhost:8080/cocoon/deli.html

Figure 21. Browser Profile Resolution in HTML

 48

3 Test Page for DELI in Cocoon - Microsoft Internet Explorer

tgSS© MM(E) fäMQD ftttftSCi) XftCD
^JOJJIJ

w^s*y<jD
StofcQ) |*)Kttp:Mocalhost:8080/cocoon/deli.html ~3
ColorCapable: Yes
TextlnputCapable: Yes
ImageCapable: Yes
CcppAccept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vnd.ms-powerpoint, application/vnd.ms-
excel, application/msword, text/html,
CcppAccept-Charset: US-ASCH, ISO-8859-1, UTF-8, ISO-10646-UCS-2,
CcppAccept-Encoding: base64,
BrowserName: Microsoft
TablesCapable: Yes
ImageCapable: Yes
Keyboard: Qwerty
StandardFontProportional: Yes
SoundOutputCapable: Yes
TextlnputCapable: Yes
AcceptDownloadableSoftware: No
Vendor: Microsoft
FramesCapable: Yes

d

The test result of resolve profile via WML, by typing the following address, is shown in

Figure 22.

 http://localhost:8080/cocoon/deli.wml

Figure 22. Browser Profile Resolution in WML

 49

INJQKIA

NMB 4.0

TexIlnpulC apable Yes

CcppAccepl: texWnd.wap.wmt,
appllcatlorvMid.wap.wmlc,
apphcationMid wap wmlscriptc,

Image/gif. image/jpeg. imageM,
image/png, imageMid wap.wbmp,

WmlScriptVersion:1.1,
WmtVersion: 1.1,

BrowserName: Nokia
BrowserVersion: 921 Oi/Symbian-

Crystal 6.0 (1.00)
TablesCapable: Yes

WapVersion:1.1
WmlDeckSize: 65536
Keyboard: Owerty

 50

THIS PAGE INTENTIONALLY LEFT BLANK

 51

V. CONCLUSION

A. SUMMARY
The two main functions of a DAN network are capability discovery and content

repurposing. For capability discovery, an alternative design is to exchange device

capabilities by creating a device profile for each device. Once the device profiles are

known by two end devices, the subsequent control and data exchange can be made. For

example, a network printer in DAN can provide the print service by sending a device

profile without the need of configuration. Therefore, creating a device profile framework

is critical in DAN. This thesis began by providing an overview of the available device

profile standards. Then by the comparison of the standards, we concluded that the CC/PP

standard is a better choice in implementing DAN network. We demonstrated testing

scenarios of device profiles by using DELI and showed the result via HTTP and WML.

Even though the CC/PP and UAProf provide a good mechanism for device profiling,

there are still some problems that need to be solved, especially for CC/PP. In [4], the

W3C lists the issues needed to be considered when developing applications base on the

CC/PP standard:

• Device capability exchange protocol

• Trust model between end devices

• Device profile vocabulary

• Security mechanisms

• Constraints on allowable attribute value types

• Attribute value processing and/or matching rules

• Proxy vocabulary and processing

• Rules for request profile identification

• Additional information to be included with any transmitted resource data

 52

• URI forms allowed for identifying referenced profile documents (e.g.,

defaults)

 • Mechanisms for locating and retrieving referenced profile documents

• Interactions with any existing negotiation mechanisms in the host protocol

Upon surveying the current practice in device capability coordination, we

concluded that the CC/PP approach provides the most promise for adapting to the DAN

architecture. With the specification of UAProf that extended from CC/PP, the vendors

can create the device profiles base on the standard before release the reproducts on the

market, which solve the problem of interoperability. Furthermore, with the support for

delivering device profiles in wireless environment, the developers can easily desgin an

application that fits all differetn Internet environment without the problem of

compatibility. However, further development needs to be done with respect to the

mechanism for dynamic property status reporting and management. A test bed should be

developed in order to test the performance characteristics of dynamic profile management

over the CC/PP architecture.

B. FUTURE WORK
As the Device Aware Networking concept is still in its infancy, there are many

areas that bear further study. Following are several areas for futher investigation or

development.

1. Content Repurposing
Content repurposing is another function in DANs. After we fetch the hardware

and software properties from an end device, the next step is making use of these

properties and content adaption. Even though most of the content information can be

displayed in HTML format by using a browser as a user interface, there are still other end

devices that are not equipped with such software. For example, if we implement DAN on

the battlefield, most of the weapon systems console displays do not have the capability to

display the web pages. Therefore, displaying the non-HTML content format is another

issue needed to be discussed during the process of developing a device-aware network.

 53

2. Creating Legacy Devices Repository
 Instead of sending an entire profile with every request, a client can only send a

reference to a profile by assigning an URI to reduce the load of bandwidth. The URI is

the known as a profile repository. For most of the available mobile devices, the device

profiles have been created by the manufacturers. Therefore, it is easy to store these

profiles in a repository. As for devices that have no leagcy profile, the creation of a new

one for each device is necessary. But this creation would lead to another issue in

interoperability. It is inevitable for developers to deal with different versions of device

profiles. Therefore, the mechanism for handling multiple profile vocabularies must be

taken into consideration in DANs.

3. Location Service in DAN
Mobility is the defining feature of wireless devices. In the Internet, the Mobile IP

protocol was designed to support a mobile host. This concept can be introduced as a

location service in DANs that can make the management of end devices more efficient,

especially in battlefield environments. It is not currently practical to equip each device

with a Global Positioning System (GPS) due to the cost. Instead, we can make use of the

available Internet protocol that support mobile communication to approximate the

location of an end device. For example, the Session Initial Protocol (SIP) developed by

Internet Engineering Task Force (IETF) can be implemented for location service. SIP is a

signaling protocol for Internet conferencing, telephony, presence, events notification and

instant messaging [25]. With such functionality, we can provide a framework which is

capable of location acquisition. The system architecture is shown in Figure 23.

Figure 23. SIP Framework

In the SIP protocol, the users logical location information can be transmitted

during communication. Therefore, when a user enters a DAN network, the user location

information can be mapped to a Geographic Information Server (GIS) to approximate the

physical location.

4. Performance Evaluation in DAN
Efficiency is the primary concern when delivering device profiles and adapting

content in DANs. The purpose of DAN is to create an environment that can utilize the

limited network bandwidth, especially in wireless networks. In fact, there are many

factors that may influence the performance of a network. From the DAN perspective, the

major factors that may influence the efficiency include transport protocol and

intermediate user agent proxies. When a client sends the device profile to a server, the

information should be encapsulated in a protocol header. The overhead of a packet that

includes such a header must be taken into account when measuring the performance of a

network. After the packet is delivered, it is the user agent proxy’s responsibility to

process and resolve the packet efficiently. The performance can be evaluated based upon

the two testing points. But sometimes the performance is unpredictable when we use an

end device to do the proxy function in an Ad-Hoc network. Therefore, another evaluation

mechanism must be provided when developing a DAN network.
 54

Proxy Service Location Service
 1

Register Service DAN Server

SIP and registration
Information

SIP and registratio
Information

Location
Information

SEP and registration
Information

GIS

Server

Wireless Network

 55

APPENDIX A

Component: HardwarePlatform

Attribute Description Type Static/
Dynamic

Sample
Value

ExternalPower

Indicates whether the
device is currently
connected to AC Power
or any other power
source, such as a
cigarette
lighter in a car. "Yes"
means External Power is
ON. "No" means
External Power is OFF.

Boolean Dynamic

"Yes," "No"

BatteryChargeStatus

Gives the current status
of the battery as the
percentage of battery
charge remaining.

Number Dynamic

"10," 55,"
"80"

BatteryLifetime
Full lifetime of fully
charged battery (in
seconds).

Number Static
28800

BatteryLifetime
Remaining

Remaining lifetime of
battery, in seconds Number Dynamic "1200"

BackupBattery
ChargeStatus

Gives the current
status of the backup
battery as the percentage
of battery charge
remaining.

Number Dynamic

"10," 55,"
"80"

BackupBattery
Lifetime

Full lifetime of fully
charged backup
battery (in seconds).

Number Static
28800

BackupBattery
LifetimeRemaining

Remaining lifetime
of backup battery,
in seconds.

Number Dynamic
"1600"

NumberOfProcessors

Total number of
applications and
communications
processors in the device.

Number Static

"1," "2 "

CPURevision
Applications

Stepping of the
Application Processor.
The UAProf "CPU"
attribute is to be used to

Literal Static

"A0," "A1,"
"B1"

 56

specify the name and
model number of the
processor, such as "PXA
250" or "SA 1110."

CPUFrequency

Current core clock
frequency of the
Applications Processor,
in MHz.

Literal Dynamic

"353.95,"
"200," "100"

CPUFrequency
Maximum

Maximum core clock
frequency of the
Applications Processor,
in MHz.

Number Static

"200," "400"

CPUVoltage

Current voltage of
the Applications
Processor (in Volts)

Literal Dynamic
"1.5," "1.0"

CommProcessor

Name and model
number of the
communication
processors.

Literal Static

"CXY123"

CommProcessor
Revision

Stepping of the
Communications
Processor.

Literal Static
"A0," "A1,"
"B1," "C0"

DynamicFrequency
ChangeCapable

Indicates if the platform
has Dynamic Frequency
Management capability
or not.

Boolean Static

"Yes," "No"

HighConstrast
DisplayMode

Indicates if high contrast
display feature is
available and on.

Boolean Dynamic

"Yes," "No"

BacklightOn Indicates if the display
backlight is ON or OFF. Boolean Dynamic "Yes," "No"

SIMType
Type of the Subscriber
Identity Module in the
device.

Literal Static
"SIM,"
"USIM"

SIMToolkitVersion

Version number of the
SIM Toolkit installed, if
any. A version number of
0 indicates that SIM
Toolkit is not installed.
SIM Toolkit Vendor
name can be included, if
needed.

Literal Static

"0," "2.1"

AvailableExpansion
Slots

Lists the types of
expansion slots available

Literal
(Bag) Static "PCMCIA,"

"Compact

 57

in the device such as
PCMCIA, Compact
Flash and MultiMedia
Card (MMC) sockets.

Flash,"
"MMC"

ExpansionCards
Inserted

Identifies the cards
currently inserted, such
as PCMCIA 802.11,
CompactFlash 802.11,
PCMCIA GPRS, etc.

Literal
(Bag)

Dynamic

"PCMCIA
802.11," "CF
802.11," "CF
Memory,"
"PCMCIA
GPRS,"
"MMC,"
"CDPD"

CommunicationPorts

Lists all the available
means for
communication with
a host computer, such as
Serial Communications
port, USB and IrDA.

Literal
(Bag) Static

"Serial,"
"USB
Host,"
"USB
Client,"
"IrDA,"
"Ethernet"

DeviceTemperature Indicates the temperature
of CPU. Number Dynamic "50,""80"

Component: SoftwarePlatform

Attribute Description Type Static/
Dynamic

Sample
Value

CommProcessorOS
Name

Name of the
communications
processor’s operating
system.

Literal Static

"Smartphone
2002,"
"Nucleus"

CommProcessorOS
Vendor

Vendor of the
communications
processor’s operating
system.

Literal Static
"Microsoft,"
"Symbian"

CommProcessorOS
Version

Version of the
communications
processor’s operating
system.

Literal Static
"1.0," "2.5"

TotalProgram
Memory

Total memory in MB
that can be utilized
by runtime programs.

Number Dynamic
"32," "64,"
"128"

AvailableProgram
Memory

Free program memory in
MB that is currently

Literal Dynamic "12.45,"
"64," "128"

 58

available to runtime
programs, not including
the video frame buffer if
present.

FrameBufferSize Size of the video frame
buffer in KB.

Number Dynamic "512," "256"

TotalStorageMemory

Size of the total non-
persistent file storage
memory space on the
device, in MB.

Number Dynamic
"64," "256"

AvailableStorage
Memory

Size of the available
non-persistent file
storage memory space on
the device, in MB.

Literal Dynamic
"63.24,"
"30.16"

TotalRemovable
StorageMemory

Total removable storage
card memory in MB.

Number Dynamic "16," "32"

AvailableRemovable
StorageMemory

Available removable
storage card memory in
MB.

Literal Dynamic
"15.6," "32"

TotalPersistent
Memory

Total flash or other form
of persistent file storage
memory on the device, in
MB. This memory
persists across a total
power loss, such as a
dead battery or hard
reset.

Number Dynamic

"32," "64,"
"128"

AvailablePersistent
Memory

Available flash or other
form of persistent file
storage memory on the
device, in MB. This
memory persists across a
total power loss, such as
a dead battery or hard
reset.

Literal Dynamic

"12.45,"
"64," "128"

PersistentMemory
Manager

Type of persistent
memory manager
software.

Literal Dynamic
"PSM,"
"FDI,"
"VFM"

PersistentMemory
ManagerVersion

Version of persistent
memory manager
software.

Literal Dynamic
"1.0," "2.0"

PersistentMemory
XIP

Specifies whether the
software platform
supports Execute-In-
Place or not.

Boolean Dynamic
"Yes," "No"

 59

MessagingServices

List of messaging
capabilities (i.e., SMS,
ESMS, MMS).

Literal

(Bag)
Dynamic

"SMS,"
"MMS"

Component: NetworkCharacteristics

Attribute Description Type Static/
Dynamic

Sample
Value

CurrentBearerSignal
Strength

The signal strength as a
level between 0-100. Literal Dynamic "0," "60,"

"100"

CurrentBearer
MaximumBitRate

The maximum bit rate in
Kbps for the current
bearer service.

Literal Dynamic
"56.6,"
"10000"

CurrentBearerActual
BitRate

The current actual bit rate
in Kbps for the current
bearer service.

Literal Dynamic
"26.4," "100"

SupportedBearer
MaximumBitRates

The maximum reported
bit rate in Kbps for each
supported bearer service.
The bearers in this list
may or may not have an
active connection.

Literal
(Bag) Static

"56.6,"
"1600,"
"28.8"

ActiveBearers

A list of bearers from
"SupportedBearers" that
currently have an active
connection to a router or
gateway device.

Literal
(Bag)

Dynamic

"GPRS,"
"SMS,"
"802.11"

ActiveBearer
Addresses

The address, for each of
the bearers listed in
"ActiveBearers" in
the appropriate format, IP
or UMTS.

Literal
(Bag) Dynamic

"145.19.22.1
4," "555-555-
6262,"
"192.168.12.
14"

ActiveBearerActual
BitRates

The list of bit rates
supported by the bearers
listed in
"SupportedBearers," the
items should match one
for one with the list given
in "ActiveBearers"

Literal
(Bag) Dynamic

"56.6,"
"1600,"
"28.8"

ConnectedToHost

Indicates if the device is
currently connected to a
host computer through
USB, Bluetooth, or by
any other means.

Boolean Dynamic

"Yes," "No"

 60

CellID

Identifies the service
bearer cell that the device
is in at the current time.

Literal Dynamic
"2001," "100"

Component: BrowserUA

Attribute Description Type Static/
Dynamic

Sample
Value

VoiceXMLCapable
Indicates whether the
browser has Voice XML
capability.

Boolean Static
"Yes," "No"

TextToSpeech
Capable

Indicates whether the
browser has Text To
Speech (TTS) capability.

Boolean Static
"Yes," "No"

SpeechRecognition
Capable

Indicates whether the
browser has Speech
Recognition capability.

Boolean Static
"Yes," "No"

 61

APPENDIX B

INTEL® PCA profile example in RDF:
<?xml version="1.0" ?>
<RDF xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:prf="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010330#"
xmlns:pca="http://developer.intel.com/pca/developernetwork/devsupport/pca_schem
a/2002_01#">
<rdf:Description rdf:ID="MyPCADeviceProfile">
<prf:component>
<rdf:Description rdf:ID="HardwarePlatform">
<rdf:type rdf:resource=
"http://www.wapforum.org/profiles/UAPROF/ccppschema-
20010330#HardwarePlatform"/>
<prf:ScreenSize>80x100</prf:ScreenSize>
<prf:Model>S100</prf:Model>
<prf:Vendor>Intel</prf:Vendor>
<prf:CPU>PXA250</prf:CPU>
<prf:InputCharSet>
<rdf:Bag>
<rdf:li>ISO-8859-1</rdf:li>
<rdf:li>US-ASCII</rdf:li>
<rdf:li>UTF-8</rdf:li>
<rdf:li>ISO-10646-UCS-2</rdf:li>
</rdf:Bag>
</prf:InputCharSet>
<prf:ScreenSizeChar>15x20</prf:ScreenSizeChar>
<prf:BitsPerPixel>8</prf:BitsPerPixel>
<prf:ColorCapable>Yes</prf:ColorCapable>
<prf:TextInputCapable>Yes</prf:TextInputCapable>
<prf:ImageCapable>Yes</prf:ImageCapable>
<prf:Keyboard>PhoneKeypad</prf:Keyboard>
<prf:NumberOfSoftKeys>0</prf:NumberOfSoftKeys>
<prf:OutputCharSet>
<rdf:Bag>
<rdf:li>ISO-8859-1</rdf:li>
<rdf:li>US-ASCII</rdf:li>
<rdf:li>UTF-8</rdf:li>
<rdf:li>ISO-10646-UCS-2</rdf:li>
</rdf:Bag>
</prf:OutputCharSet>
<prf:SoundOutputCapable>Yes</prf:SoundOutputCapable>
<prf:StandardFontProportional>Yes</prf:StandardFontProportional>
<prf:PixelsAspectRatio>1x1</prf:PixelsAspectRatio>
<pca:BatteryLifetime>28800</pca:BatteryLifetime>
<pca:NumberOfProcessors>2</pca:NumberOfProcessors>
<pca:CPURevision>B0</pca:CPURevision>
<pca:CPUFrequency>200</pca:CPUFrequency>
<pca:CPUFrequencyMaximum>400</pca:CPUFrequencyMaximum>
<pca:CommProcessor>CXY123</pca:CommProcessor>
<pca:CommProcessorRevision>B1</pca:CommProcessorRevision>
<pca:HighContrastDisplayMode>Yes</pca:HighContrastDisplayMode>

 62

<pca:AvailableExpansionSlots>
<rdf:Bag>
<rdf:li>PCMCIA</rdf:li>
<rdf:li>Compact Flash</rdf:li>
<rdf:li>MMC</rdf:li>
</rdf:Bag>
</pca:AvailableExpansionSlots>
<pca:ExpansionCardsInserted>
<rdf:Bag>
<rdf:li>PCMCIA GPRS</rdf:li>
<rdf:li>CF 802.11</rdf:li>
</rdf:Bag>
</pca:ExpansionCardsInserted>
</rdf:Description>
</prf:component>
<prf:component>
<rdf:Description
rdf:ID="SoftwarePlatform">
<rdf:type rdf:resource=
"http://www.wapforum.org/profiles/UAPROF/ccppsch
ema-20010330#SoftwarePlatform"/>
<prf:OSName>PocketPC 2002</prf:OSName>
<prf:OSVendor>Microsoft</prf:OSVendor>
<pca:CommProcessorOSName>Nucleus</pca:CommProcessorOSName>
<pca:AvailableProgramMemory>128</pca:AvailableProgramMemory>
<prf:JVMVersion>Geode/1.0</prf:JVMVersion>
</rdf:Description>
</prf:component>
<prf:component>
<rdf:Description
rdf:ID="NetworkCharacteristics">

<rdf:type rdf:resource=
"http://www.wapforum.org/profiles/UAPROF/ccppschema-
20010330#NetworkCharacteristics"/>
<prf:SupportedBearers>
<rdf:Bag><rdf:li>GSM</rdf:li>

<rdf:li>GPRS</rdf:li>
</rdf:Bag>
</prf:SupportedBearers>
<pca:CurrentBearerMaximumBitRate>56.6</pca:CurrentBearerMaximumBitRat
e>
</rdf:Description>
</prf:component>
<prf:component>
<rdf:Description rdf:ID="BrowserUA">
<rdf:type rdf:resource=
"http://www.wapforum.org/profiles/UAPROF/ccppschema-20010330#BrowserUA"/>
<prf:BrowserName>Pocket IE</prf:BrowserName>
<prf:HtmlVersion>3.2</prf:HtmlVersion>
<prf:FramesCapable>Yes</prf:FramesCapable>
<prf:TablesCapable>Yes</prf:TablesCapable>
<prf:JavaAppletEnabled>No</prf:JavaAppletEnabled>
<prf:JavaScriptEnabled>Yes</prf:JavaScriptEnabled>
<prf:JavaScriptVersion>1.1</prf:JavaScriptVersion>
<pca:TextToSpeechCapable>No</pca:TextToSpeechCapable>

 63

<pca:VoiceXMLCapable>Yes</pca:VoiceXMLCapable>
</rdf:Description>
</prf:component>
</rdf:Description>
</RDF>

 64

THIS PAGE INTENTIONALLY LEFT BLANK

 65

LIST OF REFERENCES

1. Stephane Boyera and Rhys Lewis, "An Introduction to Device Independence"
[http://www.w3.org/2001/di/IntroToDI.html], October 2004

2. Mark H. Butler, "Current Technologies For Device Independence, HPL-2001-83"

[http://www.hpl.hp.com/personal/marbut/currTechDevInd.htm - _Toc510867875],
October 2004

3. Su Wen, and others, "Towards Device-Aware Networks," paper presented at the

conference at Naval Postgraduate School, July 2004

4. Graham Klyne, and others, "Composite Capability/Preference Profiles (CC/PP):

Structure and Vocabularies 1.0"
 [http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/], October 2004

5. Hidetaka Ohto and Johan Hjelm, "CC/PP exchange protocol based on HTTP

Extension Framework"
 [http://www.w3.org/1999/06/NOTE-CCPPexchange-19990624], October 2004

6. Wireless Application Group (WAG) SPEC-UAProf-19991110, User Agent

Profile Specification, 10 November 1999

7. Microsoft Corporation White Paper, Understanding Universal Plug and Play,

June 2000

8. Ericsson, and others, SyncML Representation Protocol, version 1.0.1, 15 June

2001

9. Bruce Martin and Bashar Jano, "WAP Binary XML Content Format "
 [http://www.w3.org/TR/wbxml/], October 2004

10. Wireless Application Group (WAG) WAP-248-UAProf-20011020-a, User Agent

Profile Specification, 20 October 2001

11. Mark H. Butler, "CC/PP and UAProf: Issues, Improvements and Future

Directions, HPL-2002-35"
 [http://www.hpl.hp.com/techreports/2002/HPL-2002-35.pdf], October 2004

12. Intel PCA Developer Network – Overview,

[http://www.intel.com/pca/developernetwork/overview/index.htm],October 2004

13. Intel 251604-001, Intel PCA Device Profile Design Guide, Revision 1.0 , 8

August 2002

http://www.w3.org/2001/di/IntroToDI.html
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/
http://www.w3.org/1999/06/NOTE-CCPPexchange-19990624
http://www.w3.org/TR/wbxml/
http://www.hpl.hp.com/techreports/2002/HPL-2002-35.pdf
http://www.intel.com/pca/developernetwork/overview/index.htm

 66

14. Mark H. Butler, "Implementing Content Negotiation Using CC/PP and WAP
UAProf, HPL-2002-190"
[http://www.hpl.hp.com/techreports/2001/HPL-2001-190.pdf], October 2004

15. Frank Manola and Eric Miller, "RDF Primer, W3C Recommendation 10 February

2004 "
 [http://www.w3.org/TR/rdf-primer/], October 2004

16. Charles Smith and Mark H. Butler, "Validating CC/PP UAProf Profiles, HPL-

2002-268"
 [http://www.hpl.hp.com/techreports/2002/HPL-2002-268.pdf],October 2004

17. James Clark, "XSL Transformations (XSLT) Version 1.0, W3C Recommendation

16 November 1999"
[http://www.w3.org/TR/xslt], October 2004

18. Mark H. Butler, "Using Capability Classes to Classify and Match CC/PP and

 UAProf Profiles"
 [http://www.hpl.hp.com/personal/marbut/capClass.htm], October 2004

 19. James Clark and Steve DeRose, "XSL Transformations (XSLT) Version 1.0,

W3C Recommendation 16 November 1999"
[http://www.w3.org/TR/xpath], October 2004

20. W3C, "CC/PP Information Page"
 [http://www.w3.org/Mobile/CCPP/], October 2004

21. Mark H. Butler, "Device Independence and The Web, HPL-2002-249"

[http://www.hpl.hp.com/research/papers/2003/device_independence.pdf], October
 2004

22. Mark H. Butler, "Deli: A Delivery context Library for CC/PP and UAProf, HPL-

2001-260"
[http://www.hpl.hp.com/personal/marbut/DeliUserGuideWEB.htm], October
2004

23. Wireless Application Group (WAG) WAP-229-HTTP-20010329-a, Wireless

Profiled HTTP, 29 March 2001

24. The Apache Cocoon Project

 [http://cocoon.apache.org/], October 2004

25. Session Initial Protocol (SIP)
 [http://www.cs.columbia.edu/sip/], October 2004

http://www.hpl.hp.com/techreports/2002/HPL-2002-35.pdf
http://www.w3.org/TR/rdf-primer/
http://www.hpl.hp.com/techreports/2002/HPL-2002-268.pdf
http://www.w3.org/TR/xslt
http://www.hpl.hp.com/personal/marbut/capClass.htm
http://www.w3.org/TR/xpath
http://www.w3.org/Mobile/CCPP/
http://www.hpl.hp.com/research/papers/2003/device_independence.pdf
http://www.hpl.hp.com/personal/marbut/DeliUserGuideWEB.htm
http://cocoon.apache.org/

 67

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Chairman
Information Sciences Department
Naval Postgraduate School
Monterey, California

4. Professor Singh Gurminder

Naval Postgraduate School
Monterey, California

5. Jonn Gibson
Naval Postgraduate School
Monterey, California

6. Shang-Yuan Tsai
Chung-Shan Institute of Science and Technology
Taoyuan, Taiwan

	I. INTRODUCTION
	BACKGROUND
	B. APPROACH
	C. THESIS ORGANIZATION

	II. DEVICE PROFILE IN DEVICE-AWARE NETWORK
	A. DEVICES
	DEVICE-AWARE NETWORKS INTRODUCTION
	ARCHITECTURE OVERVIEW
	SERVICES IN A DEVICE-AWARE NETWORK
	USING DEVICE PROFILE IN DEVICE-AWARE NETWORK

	III. DEVICE PROFILE STANDARDS
	A. CC/PP AND UAPROF
	1. CC/PP Introduction
	RDF Introduction
	CC/PP Architecture
	a. CC/PP Profile Structure
	b. LC/PP Profile Component Attribute
	c. CC/PP Profiles Defaults
	d. CC/PP Exchange Protocol

	UAPROF
	a. UAProf Introduction
	b. UAProf Architecture
	c. Client Device
	d. Wireless Network and WAP Gateway
	e. Internet or Intranet
	f. Origin Server

	UPNP
	1. UPnP Introduction
	2. UPnP Architecture
	a. UPnP Devices
	b. UPnP Services
	c. UPnP Control Points
	d. Protocols Used by UPnP

	3. Activities Involved in UPnP Network
	a. Addressing
	b. Discovery
	c. Description
	d. Control
	e. Eventing
	f. Presentation

	SYNCML
	1. SyncML Introduction
	2. SyncML Packages and Messages
	3. SyncML Capabilities Exchange
	4. Data Identifier Mapping
	Refreshing Data
	DevInf Introduction

	COMPARISON OF THE STANDARDS

	IV. DEVICE PROFILE CREATION (USING CC/PP)
	A. DESIGN OVERVIEW
	Vocabulary Serialization
	2. Characteristic of Attributes
	3. Profile Resolution
	4. Validating CC/PP and UAProf Profiles
	a. Validation Using XML Schema Parser
	b. Validation Using RDF Schema Parser

	5. Device Profiles Serialization in XSLT
	6. Device Profiles Matching Rules

	B. AVAILABLE APPLICATION FOR CC/PP AND UAPROF PROFILING
	1. DELI Introduction
	Testing Device Profiles in DELI
	a. Browser Profiles Testing
	b. WML Profile Testing
	c. Customized Mobile Device Profile

	3. Apache Cocoon Introduction

	V. CONCLUSION
	A. SUMMARY
	FUTURE WORK
	1. Content Repurposing
	2. Creating Legacy Devices Repository
	Location Service in DAN
	Performance Evaluation in DAN

	APPENDIX A
	APPENDIX B
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

