M

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

DEVICE PROFILING ANALYSIS IN DEVICE-AWARE
NETWORK

by
Shang-Yuan Tsai
December 2004

Thesis Advisor: Singh Gurminder
Thesis Co-Advisor: John Gibson

Approved for public release, distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 2004 Master’s Thesis

4. TITLE AND SUBTITLE: 5. FUNDING NUMBERS
Device Profiling Analysis in Device-Aware Network

6. AUTHOR(S) Shang-Yuan Tsai

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) | 10. SPONSORING / MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release, distribution is unlimited

13. ABSTRACT (maximum 200 words)
As more and more devices with a variety of capabilities are Internet-capable, device independence

becomes a big issue when we would like the information that we request to be correctly displayed. This thesis
introduces and compares how existing standards create a profile that describes the device capabilities to achieve
the goal of device independence.

After acknowledging the importance of device independence, this paper utilizes the idea to introduce a
Device-Aware Network (DAN). DAN provides the infrastructure support for device-content compatibility
matching for data transmission. We identify the major components of the DAN architecture and issues associated
with providing this new network service. A Device-Aware Network will improve the network’s efficiency by
preventing unusable data from consuming host and network resources. The device profile is the key issue to

achieve this goal.

14. SUBJECT TERMS 15. NUMBER OF
CC/PP, UPnP, SyncML, RDF, Devinf PAGES
83
16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF | OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release, distribution is unlimited
DEVICE PROFILING ANALYSIS IN DEVICE-AWARE NETWORK
Shang-Yuan Tsai

Captain, Taiwan Army
B.S., Chung Cheng Institute of Technology, 1995

Submitted in partial fulfillment of the
requirements for the degree of
MASTER OF SCIENCE IN SYSTEM ENGINEERING
from the
NAVAL POSTGRADUATE SCHOOL
December 2004

Author: Shang-Yuan Tsali

Approved by: Singh Gurminder
Thesis Advisor

John Gibson
Thesis Co-Advisor

Dan C. Boger
Chairman, Department of Information Science

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

As more and more devices with a variety of capabilities become Internet-
enabled, device independence becomes a big issue when we would like the information
that we request to be correctly displayed. This thesis introduces and compares how
existing standards create a profile that describes the device capabilities to achieve the
goal of device independence.

After acknowledging the importance of device independence, this thesis utilizes
the idea to introduce a Device-Aware Network (DAN). DAN provides the infrastructure
support for device-content compatibility matching for data transmission. We identify the
major components of the DAN architecture and issues associated with providing this new
network service. A Device-Aware Network will improve the network efficiency by
preventing unusable data from consuming host and network resources. The device profile

is the key to achieve this goal.

THIS PAGE INTENTIONALLY LEFT BLANK

Vi

TABLE OF CONTENTS

INTRODUGCTION. ..ottt st e s e e e s b e e sab e e e saba e s saba e s saeeas 1
A. BACKGROUNDooiiitii ettt ettt sttt sba e s saae e erae e 1
B. APPROACH ... et 2
C. THESIS ORGANIZATION ..o 2
DEVICE PROFILE IN DEVICE-AWARE NETWORKccoooiiiieiiie e 5
A. DEVICESottt e e s e e srbe e eraeeans 5
B DEVICE-AWARE NETWORKS INTRODUCTION........ccocveiiiieiiieeeieee 6
C ARCHITECTURE OVERVIEWooiiiiiici e 6
D. SERVICES IN A DEVICE-AWARE NETWORK.........ccooviiiiiiiee e, 6
E. USING DEVICE PROFILE IN DEVICE-AWARE NETWORK............... 7
DEVICE PROFILE STANDARDS.......co ottt 9
A. CC/PP AND UAPROF ...ttt 9
1. (O@F] = =30 101 1 oo [V Te] £ o] o HN T 9

2. RDF INtrodUCTION. ...t 9

3. CC/PP AFChITECIUNE ...ttt 11

a. CC/PP Profile StrUCLUIecoeevvieeiiie e 11

b. LC/PP Profile Component Attributeccccoeeviiiienninne. 11

C. CC/PP Profiles Defaultsc..ccocvviviieicieiiiee e 13

d CC/PP Exchange Protocol..........ccccovviiiininniiniiee e 13

4, UAPROF ...t 14

a. UAPTof INtroduction...........coovcviiiiiiiiiee e 14

b UAPTOf ArChiteCtUIE ... 15

C. (O 11T 01 B B 71/ o7 - O 17

d. Wireless Network and WAP Gatewaycccccevevevverveinennns 17

e Internet or INtranet...........ccoce i, 18

f. OFIQIN SEIVET ...veiieieee et sre e 19

B.] | TR 19
1. UPNP INtrodUCHIONcvvviiciee e 19

2. UPNP AFrCHITECTUIE ... 20

a. UPNP DBVICES.....viiiivie ettt ettt 21

b. UPNP SEIVICES ...ttt 21

C. UPNP Control POINESccoiieiiic e 22

d. Protocols Used by UPNP ... 22

3. Activities Involved in UPNP Networkccccoevvviiiiicie i 23

a. AAAIESSING ... 23

b DISCOVEIY ..ttt nns 24

c DESCHIPLION ...t 24

d. (O0] 011 £0] IR 24

e. EVENTING. ... s 25

f Presentation........coccvveei i 25

C R 1 O 1Y SR 26

1. SYNCML INtrodUCTIONcvvieieciece e 26
2. SyncML Packages and MEeSSagesS.........ccvvvererieieenieniee e 27
3. SyncML Capabilities EXchange.........ccccccooevieviiie i 28
4, Data Identifier Mapping......ccccoveiieiiiieiiesese e 28
5. REfreshing Data..........cocvoveiieiiiiieie e 28
6. DevINf INtrodUCTIONooieiiiiieece e 29
D. COMPARISON OF THE STANDARDSccooiiiriiinineseeeeeeeee e, 30
IV. DEVICE PROFILE CREATION (USING CC/PP)......cccouiieierieienene e e 33
A. DESIGN OVERVIEW......ccoiiiiiiiiiieiee s 33
1. Vocabulary Serialization ... 34
2. Characteristic of ATFIDULESccoooviiiiiii e, 35
3. Profile ReSOIULION.......cccoiiiiiie e 35
4 Validating CC/PP and UAProf Profiles..........ccccovveviiiinivcieiiennn 36
a. Validation Using XML Schema Parser..........cccooceveenieniennns 36
b. Validation Using RDF Schema Parsercccoocevveveivennne 38
5. Device Profiles Serialization in XSLTcccccooiiiiiiiiiininniieseee 38
6. Device Profiles Matching RUIEScccoveviiie i 39
B. AVAILABLE APPLICATION FOR CC/PP AND UAPROF
PROFILINGcoiiiee et 41
1. DELI INTrodUCTION ... 41
2. Testing Device Profiles IN DELIcccooveiiiiivice e 42
a. Browser Profiles TeStiNg.......ccocvveiirnieniiie e 42
b. WML Profile TeStINGccoviieiiee e 43
C. Customized Mobile Device Profilecccccooviiiiiiininnnnne 46
3. Apache Cocoon INtroductioncccccvevieieiieie e 47
V. CONCLUSION ..ottt ettt stesbearenneas 51
A. SUMMARY .ttt ettt enne e enes 51
B. FUTURE WORK ..ottt 52
1. CoNtent REPUIPOSING.....c..civiiiriieieieiesie et 52
2. Creating Legacy Devices RepOSItOrY........cccccvevevievieeieiieie e 53
3. Location Service iN DAN ..o 53
4 Performance Evaluation in DAN..........cccooviiiinininnen e 54
APPENDIX A oottt ettt ettt te et e Re e e ettt e reenennan 55
APPENDIX B ..ottt bbbttt ettt b benne s 61
LIST OF REFERENCEScoot ettt sttt st neenneneas 65
INITIAL DISTRIBUTION LIST ottt 67

viii

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 109.
Figure 20.
Figure 21.
Figure 22.
Figure 23.

LIST OF FIGURES

Variations in Device Capabilities [From: 3]......cccccoiveiiiiiiiieiieie e 5
Content Repurposing TYPes [From: 2] ..o 7
An RDF Graph Describing Eric Miller [From: 4] ..o 10
RDF/XML Describing Eric Miller [From: 4] ..o 11
Complete CC/PP profile example in XML [From: 4]cccooovvveviviiviieiienne 13
The UAProf specification [From: 2].......cccccooeiiiiniinin e 15
UAPROF End-to-End framework [From: 6]cccccccevveviveieniieneeie e 16
UPNP Control Points, Devices, and Services [From: 7]ccccccevvvvvviiniennnn 20
The UPNP protocol stack [From: 7] ...c.ccoevveieiieie e 23
SyncML framework [From: 8]........ccceiieiiiiiiieiiie e 26
SyncML Devinf Specification [From: 2]........cccccevviiiiniiiie i 29
User Agent ProxXy ArChIteCIUIe.........couiiii i 33
DAN User Registration MechaniSmccccecvviieiiirieiieeneec e 34
Validating Device Profiles Using XSLT and XML Schema [From: 16]......... 37
The Profile of INternet BrOWSENccviiiiiiiiiiiceeee s 42
WML Profile Testing in Pocket PC Simulatorcccooviiiiiiinnniece, 43
W-HTTP Header SEttINGSccoveiiiieieeieeie et se et 45
WML Profile Testing in Mobile Phone Simulatorcccoooeviieinicin, 46
Resolve Device Profile Command...........ccoceiiiiiininieiene s, 47
HTML Format of Mobile Device Profile...........cccoceiiiininiiiiiecce e 47
Browser Profile Resolution in HTML ..., 48
Browser Profile Resolution in WML ...t 49
SIP FIaMEWOTK ..ottt 54

THIS PAGE INTENTIONALLY LEFT BLANK

Table 1.
Table 2.

LIST OF TABLES

Comparison of the standards

Conditionals of Capability Classccooeriiiieiiiie e

Xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

ACKNOWLEDGMENTS

I would like to thank Professor Singh Gurminder, who gave me a lot of supports
not only on my thesis work but also the courses that | took from him. | would also like to
thank John Gibson for readily agreeing to be my Co-Advisor. His academic opinions help

a lot on how to organize my thesis.

Next, 1 would like to thank my government authorities for giving me this
opportunity to study abroad. Last but not the least, | would like to thank the colleagues

from my office who shared my work for two years during my absence.

Xiii

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

l. INTRODUCTION

A. BACKGROUND

A key challenge to communications on the network-centric battlefield is that the
end-devices must utilize limited resources to support the mission operations. This
requires the devices to conserve resources by avoiding the reception, transmission and
processing of unusable information, a capability not currently available. Today’s
networks are completely unaware of the capability of their end-points. Being dumb pipes,
they cannot optimize traffic to match the capabilities and requirements of their end
devices. For example, when a very large image is delivered to a small handheld device, a
significant amount of network resource is wasted because the handheld device is unable
to store or display the image. This situation becomes serious in Web applications. When
more and more Internet-capable devices are available, different devices have different
display specifications. In order to display the Web content correctly on different displays,
the authors have to create the Web pages in different versions in parallel, which is

impractical.

With such a problem present, the World Wide Web Consortium (W3C) introduces
the concept of device independence [1]. The idea is to let the client send the request with
information associated with the end device. The purpose of this information is to provide
information that may be needed to allow the final response to be repurposed to the
capabilities of the client. The request and the delivery context flow from the client,
through any intermediaries to the server. The server can use the appropriate repositories
of content in constructing the response to the request.

The goal of a Device-Aware Network (DAN) is to match the information
delivered to the capability of the end device, thereby optimizing the network resource
usage. On the battlefield, all resources -- including time, network bandwidth and battery
capacity -- are very limited. A device-aware network avoids the waste that happens in
current device-ignorant networks. By eliminating unusable traffic, a device-aware
network reduces the time the end-devices spend receiving extraneous information, and

thus saves time and conserves battery life.

To efficiently transmit information on a device-aware network, the capabilities
and conditions of an end-device must be defined in advance to adapt the data format. As
in the example above, when we want to transfer an image that can be displayed
appropriately in a handheld device screen, the resolution of the display has to be pre-
defined. Therefore, the concept of a device profile is utilized in device-aware networks.
In this protocol, the specification of device hardware and software can be described
systematically. However, some features of a device are not always static and need to be
updated periodically, such as device position, power status, bandwidth, and temperature
etc. If the original device profile is not kept current with these dynamic features,
communication errors may happen and the performance of the whole network may be
influenced, especially in resource constrained networks. As a result, dynamically

delivering device profiles is necessary in a device-aware network.

B. APPROACH

This thesis will discuss the current standards for device profiling and give a
comparison of these standards. It will then identify a suitable standard that can serve as
the starting point for creating a device profile request scenario for a device-aware
network. Currently the available standards for device profiling are: Composite
Capabilities/Preference Profile (CC/PP) developed by the W3C, User Agent Profile
(UAProf) developed by the WAP forum, SyncML developed by the mobile technology
industry and Universal Plug and Play (UPnP) developed by Microsoft. These standards
are developed for dealing with device independence by specifying device capabilities in a
device profile. The primary utility of these standards is in content repurposing so

different end devices can efficiently utilize the limited bandwidth.

C. THESIS ORGANIZATION
This thesis is organized into the following chapters:

Chapter I: Introduction. Describe the need for device profiles along with an

overview of device-aware network and the available standards.

Chapter 11: Device Profiles in a Device-Aware Network. Give an introduction on
the architecture of a device-aware network and the basic requirements to achieve device

independence.

Chapter 1l1: Device Profile Standards. Provide an overview of currently applied
standards with respect to device profiling. Then give a comparison of these standards and
find a suitable standard that can be applied to the device-aware network as an initial

demonstration.

Chapter 1V: Device Profile Creation. Give a detailed description of device profile

created from the conclusions of Chapter III.

Chapter V: Conclusion. Give a conclusion based on the thesis work and provide

recommendations for future work on device-aware networks.

THIS PAGE INTENTIONALLY LEFT BLANK

Il. DEVICE PROFILE IN DEVICE-AWARE NETWORK

A. DEVICES

Due to device proliferation, content providers can no longer deliver one version of
their content to the user because they need to deliver an appropriate form of content
depending on the capabilities of the viewing device. Re-authoring content to support
different markup languages or the different capabilities of each device is clearly
impractical, while providing content for a single device or browser excludes large

numbers of users.

Users want to view Internet content and use web applications on a variety of
devices, including PCs, electronic book readers, PDAs, phones, interactive TVs, voice
browsers, printers and embedded devices such as cameras. A useful summary of typical
variations in device capabilities is shown in Figure 1 [2].

GlF=

Size [Resolution JPGs
Colour f Monochrome Multimedia ohje HBMPS
distance of viewer Screern AN
retative size of fo IP3s
aspect rati Qutput QuickTime
Syrthesized Speech Sound, </
Paper autput St i Mative code
o 1Cation langua J
Braille; Py yuay Intermediate Code o
! Drotidet
Touchscreen Devices
Mouse 0803001 - w23) HTRL
Kewboard S — Al
3, Input HOML
Mevpad Cortert Markup f—- = =
Woice Inp b
Jovystic EVG

Browser language Flagh

Processor) Cliert Sicle Scripting SRS

Java
& ctivel

& pplets

Memo .
lincy ces

Figure 1. Variations in Device Capabilities [From: 3]

When the device uses content, it receives it in the form of multimedia objects,
application languages or browser languages (shown on the right hand of Figure 1).
Current devices support a variety of different content types partly determined by their
underlying hardware capabilities (shown on the left hand side of Figure 1). In order to

support device independence we must be able to deliver content in a format compatible
5

with a device. For example, if a handheld device can read GIF images but not JPEG
images, it is necessary to convert one format to another. In addition, the content must
reflect the underlying hardware capabilities of the device so we may need to do some
additional image processing if the target device can only display a 240x340 resolution

image properly [2].

B. DEVICE-AWARE NETWORKS INTRODUCTION

Based on the discussion of previous section, to achieve the goal of device
capabilities matching for data transmission and content repurposing, a new high-level
network service can be introduced. The design of a Device-Aware Network (DAN) is for
such a purpose. A Device-Aware Network improves the network efficiency by preventing
unusable data from consuming host and network resources. While DAN is useful in a
wired environment, it can be especially beneficial in wireless and mobile environments

where network as well as end-host device resources are scarce [3].

C. ARCHITECTURE OVERVIEW

In a device-aware network, however, the network is required to perform more
than the best-effort delivery service; it will need to optimize traffic to match the
capabilities and needs of end devices. As a result, our design considers the use of device
profiles as an integral part of the network architecture, not just a new addition to the basic
protocols as an afterthought. Thus, we do not constrain the DAN design to the Internet
architecture; all network components necessary to make the network aware of end device

are considered [3].

D. SERVICES IN A DEVICE-AWARE NETWORK

Device-Aware Networks provide two main services. The first service relates to
the sharing of device profile and capability information on the network. Therefore,
information exchange and discovery protocols must be developed to support the device-
awareness in the network. DAN supports encapsulating device information along with
each packet transmitted, allowing any network nodes (e.g.,, routers and end systems) to

access the device information in order to perform DAN-related processing. For lack of a
6

better term, we will refer to DAN-related operations as being done at the DAN layer, as if
DAN is a separate service layer between the network and transport services. To build
device-aware features into the existing IP networks, DAN services may be viewed as a
new layer in the network architecture, or an extension to current network layer services.
However, our proposed DAN design does not fit the conventional network layering
scheme, since its network service is also application dependent. [3]

E. USING DEVICE PROFILE IN DEVICE-AWARE NETWORK

There are three different ways of content repurposing by specifying the device
capabilities in a device profile, as shown in Figure 2: the server, the proxy and the client
browser. If adaptation occurs at the server or the proxy, these entities will need to know
something about the capabilities of the end device. They will either need a unique
identifier for the client device so they can retrieve a capability specification from a

repository, or they will need the capability specification itself.

Adapted
Server Based Server [content i
Adaptation Capability
(—sp e cification—
requests

content—as | :Adapted

Froxy Based o Prox content s
Adaptation ¥ Capability

—requests —— l=sp ecification

requests
. conte nt—a
Client BEased .
. Server Client

Adaptation

—re quests ——

Figure 2. Content Repurposing Types [From: 2]

Currently, servers and proxies can determine the identity of a particular device
using the request header field in the HTTP protocol. In addition there are four alternative
proposed capability specification schemes: the W3C composite capability / preferences
profile (CC/PP), the Wireless Application Group (WAG) User Agent Profile (UAPROF)
standard, the SyncML Device Information standard (DevInf) and the Universal Plug and

Play Standard (UPnP). Each of these standards will be discussed in later chapters.

THIS PAGE INTENTIONALLY LEFT BLANK

I11. DEVICE PROFILE STANDARDS

A. CC/PP AND UAPROF

1. CC/PP Introduction

A CC/PP profile is a description of device capabilities and user preferences that
can be used to guide the adaptation of content presented to that device. As the number
and variety of devices connected to the Internet grows, there is a corresponding increase
in the need to deliver content that is tailored to the capabilities of different devices. Some
limited techniques, such as HTTP "accept™" headers and HTML "alt=" attributes, already
exist. As part of a framework for content adaptation and contextualization, a general-
purpose profile format is required that can describe the capabilities of a user agent and
preferences of its user. CC/PP is designed to be such a format.

CC/PP is based on RDF, the Resource Description Framework, which was
designed by the W3C as a general-purpose metadata description language. RDF was
designed to describe the metadata or machine-understandable properties of the Web. RDF
is a natural choice for the CC/PP framework since device profiles are metadata intended

primarily for communication between end devices and resource data providers [4].

2. RDF Introduction

RDF is based on the idea of identifying things using Web identifiers (Uniform
Resource Identifier - URIS), and describing resources in terms of simple properties and
property values. This enables RDF to represent simple statements about resources as a
graph of nodes and arcs representing the resources, and their properties and values. To
make this discussion somewhat more concrete as soon as possible, the group of
statements “there is someone whose name is Eric Miller, whose email address is

em@wa3.org, and whose title is Dr." could be represented as the RDF graph in Figure 3

[4].

hittp: fwwenr. w3, orgf200001 O/swap/pim/contact#Person

hittp feww. w2 orgit 990222 -rdf-syntax-nsitype

hittp: fwww.w 3. org/Pecple/EM/contact#me

ttp: fwewew.w3.orgf2000/1 Oiswap/pim/contact#fullName

Eric Miller

hittp: www. w3, orgf2000/10/swap/pimicontact#mailbox

mailto:em@w3.org

hittp: fawenow 3. 0rg/2000010fswap/pimicontact#personal Title

Dr.

Figure 3. An RDF Graph Describing Eric Miller [From: 4]

Figure 3 illustrates that RDF uses URIs to identify:
e individuals, e.g., Eric Miller, identified by
http://www.w3.0rg/People/EM/contact#me
e Kkinds of things, e.g., Person, identified by
http://www.w3.0rg/2000/10/swap/pim/contact#Person

e properties of those things, e.g., mailbox, identified

http://www.w3.0rg/2000/10/swap/pim/contact#mailbox

e values of those properties, e.g., mailto@w3.org as the value of the

mailbox property (RDF also uses character strings such as "Eric Miller"

as the values of some properties)

RDF also provides an XML-based syntax (called RDF/XML) for recording and
exchanging these graphs. Figure 4 is a small chunk of RDF in RDF/XML corresponding

to the graph in Figure 3:

10

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:contact="http://www.w3.0rg/2000/10/swap/pim/contact#">

<contact:Person rdf:about="http://www.w3.0org/People/EM/contact#me"' >
<contact:ful IName>Eric Miller</contact:ful IName>
<contact:mailbox rdf:resource="mailto:em@w3.org"/>
<contact:personalTitle>Dr.</contact:personalTitle>
</contact:Person>

</rdf:RDF>
Figure 4. RDF/XML Describing Eric Miller [From: 4]

Like HTML, this RDF/XML is machine processable, and, using URIs, can link
pieces of information across the Web. However, unlike conventional hypertext, RDF
URIs can refer to any identifiable thing, including things that may not be directly
retrievable on the Web (such as the person Eric Miller). The result is that in addition to
describing such things as Web pages, we can also describe the characteristics or
capabilities of an Internet accessable device [4].

3. CC/PP Architecture
a. CC/PP Profile Structure
A CC/PP profile is broadly constructed as a 2-level hierarchy:

e aprofile having at least one or more components, and

e each component having at least one or more attributes.

The initial branches of the CC/PP profile tree describe major components
of the client. Examples of major components are:
e the hardware platform upon which software is executing,
e the software platform upon which all applications are
hosted, or

e anindividual application, such as a browser [4].

b. LC/PP Profile Component Attribute
A CC/PP profile describes client capabilities and preferences in terms of a
number of "CC/PP attributes” for each component.
11

The description of each component is a sub-tree whose branches are the
capabilities or preferences associated with that component. Though RDF makes modeling
a wide range of data structures possible, including arbitrary graphs, complex data models
are usually best avoided for profile attribute values. A capability can often be described
using a small number of CC/PP attributes, each having a simple, atomic value. Where
more complex values are needed, these can be constructed as RDF subgraphs. One useful
case for complex attribute values is to represent alternative values; e.g., a browser may

support multiple versions of HTML. A hypothetical profile might look like Figure 5 [4]:

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:ccpp="http://www.w3.0rg/2002/11/08-ccpp-schema#"
xmlns:ex=""http://www.example.com/schema#">

<rdf:Description
rdf:about="http://www.example.com/profile#MyProfile'>

<ccpp:component>
<rdf:Description
rdf:about=""http://www.example.com/profile#TerminalHardware>
<rdf:type
rdf:resource="http://www.example.com/schema#HardwarePlatf
orm' />
<ex:displayWidth>320</ex:displayWidth>
<ex:displayHeight>200</ex:displayHeight>
</rdf:Description>
</ccpp:component>

<ccpp:component>
<rdf:Description
rdf:about="http://www.example.com/profile#TerminalSoftware">
<rdf:type
rdf:resource="http://www.example.com/schema#SoftwarePlatf
orm” />
<ex:name>EPOC</ex:name>
<ex:version>2.0</ex:version>
<ex:vendor>Symbian</ex:vendor>
</rdf:Description>
</ccpp:component>

<ccpp:component>

<rdf:Description

rdf:about="http://www.example.com/profile#TerminalBrowser'>
<rdf:type

rdf:resource="http://www.example.com/schema#BrowserUA™ />

<ex:name>Mozi l la</ex:name>
<ex:version>5.0</ex:version>
<ex:vendor>Symbian</ex:vendor>
<ex:htmlVersionsSupported>

12

<rdf:Bag>
<rdf:1i>3.2</rdf:1i>
<rdf:1i>4_0</rdf:1i>
</rdf:Bag>
</ex:htmlVersionsSupported>
</rdf:Description>
</ccpp:component>

</rdf:Description>
</rdf:RDF>

Figure5. Complete CC/PP profile example in XML [From: 4]

C. CC/PP Profiles Defaults

Each component of a device profile may indicate a single separate
resource that in turn indicates a subordinate collection of default attribute values. This
collection of default values can be a separate RDF document that is named via a URI, or
it can appear in the same document as the client profile (though, in practice, there is
probably little value in defaults in the same document). If an attribute in the collection of
defaults is also present in the main part of the client profile, the non-default value takes
precedence. The intent is that a hardware vendor or system supplier may provide default
values that are common to a number of systems in a place easily accessible to an origin
server, and then use the device profile to specify variations from the common profile. The
owner of the device or system operator may be able to add or change options, such as
additional memory, that add new capabilities or change the values of some original
capabilities [4].

d. CC/PP Exchange Protocol

The major disadvantage of this format is that it is verbose. Some networks,
such as mobile phone networks, are very slow, and this would add an overhead to handle
the device profiles. There are several optimizations possible to help deal with network
performance issues. One strategy is to use references (URISs). Instead of enumerating each
set of attributes, a reference can be used to name a collection of attributes, such as the
hardware platform defaults. This has the advantage of enabling the separate fetching and
caching of functional subsets. Another problem is to propagate changes in the current

CC/PP descriptions to an origin server or a proxy. One solution is to transmit the entire

13

CC/PP descriptions with each change. This is not ideal for slow networks. An alternative
is to send only the changes. The "CC/PP exchange protocol” is proposed to deal with this
situation. The CC/PP exchange protocol does not depend on the profile format which it
conveys. Therefore, another profile format besides the CC/PP description format could be
applied to the CC/PP exchange protocol.

The strategy of the CC/PP exchange protocol is to send a request with
profile information using as few references as possible. For example, a user agent issues a
request with URIs which address the profile information, and if the user agent changes
the value of an attribute, such as turning sound off, only that change is sent together with
the URIs. When an origin server receives the request, the origin server inquires CC/PP
repositories for the CC/PP descriptions, using the list of URIs. Then the origin server
creates a tailored content using the fully enumerated CC/PP descriptions.

The origin server might not obtain the fully enumerated CC/PP
descriptions when any one of the CC/PP repositories is not available. In this case, it
depends on the implementation whether the origin server should respond to the request
with a tailored content, a non-tailored content or an error. In any case, the origin server
should inform the user agent of the fact. A warning mechanism has been introduced for
this purpose [5].

4, UAPROF

a. UAProf Introduction

UAProf is a Wireless Application Protocol (WAP) Forum specification
that is designed to allow wireless mobile devices to declare their capabilities to data
servers and other network components. The design of UAProf is already based on RDF.
As such, its vocabulary elements use the same basic format that is used for CC/PP.

In this specification, UAProf considers five different categories of device
capability, as shown in Figure 4: software, hardware, browser, network and WAP. This
means the server can adapt to the capabilities of the network as well as the capabilities of
the device [2].

14

AcceptDownloadableSoftware

AvdioinputEncoder
BitzPetPixel

Software

Hardware

UAProf
2E0202001 - w12

B~

Mapbevicetlass
WAPPUshMEgPriarit
AAPPUYshM ST
YA PY ersion
WAP :I AL Lreck:
- WML Scriptlibraries
LE=cript'Yersion
L' ersian
Allibraries
CurrertBearerSetvice AN ersion
SecuritySupport Network

Figure 6. The UAProf specification [From: 2]

b. UAProf Architecture
The UAProf is an End-to-End framework, as shown in Figure 7. The

information of the end device is collected on the client device, encoded into an efficient
binary form, transmitted and cached within a Wireless Session Protocol (WSP) session,
optionally enhanced with information provided with a particular request, optionally
combined with other information available over the network, and made available to the
origin server. Over the Internet, this specification assumes the use of the CC/PP and the

CC/PP Exchange Protocol over HTTP.

15

Origin
WAP Protocol /"’“\ Server
Gateway
t \ : Internet \R/
WSP Proxy HTTP Proxy

"-._,_‘_‘_‘_‘_‘__'_._'_._,_,_.-r'\"

Figure 7.

UAPROF End-to-End framework [From: 6]

The End-to-End framework consists of five components:

A client device capable of requesting and rendering WAP
content.

A wireless network employing WAP 1.1 or later protocols.

A WAP-capable gateway capable of translating WAP protocol
requests into corresponding requests over the Internet and
translating responses from the Internet into corresponding
responses over the WAP protocols.

The Internet or an intranet using TCP/IP-based protocols and
possibly having one or more protocol gateways and
Web/HTTP proxies.

An origin (Web) server that can generate requested content.

Though this specification refers to five end-to-end system components,

actual configurations may physically deploy those components in many forms. For
example, the latter three components (WAP gateway, Internet/intranet, and origin server)
might easily be merged into a single server-side system connected to the WAP network.
Moreover, the WAP gateway may itself be distributed, with different hosts serving as

endpoints for different layers of the WAP protocol stack [6].

16

C. Client Device

The device profile consists of information gathered from the device
hardware, active user agent software, and user preferences. In many cases, much of this
information must be pre-installed directly on the device, possibly in the firmware. For
instance, the device may publish a single URI that points to default device capability
information made available by the device manufacturer. Similarly, the user agent may
publish a single URI that points to default software information made available by the
software developer.

The client device is assumed to employ the WAP communications
protocols, particularly WSP, to request content from an origin server. The device profile
is transmitted and maintained using designated WSP headers in accordance with that
specification . This information is initially conveyed when a WSP session is established
with a compliant WAP protocol gateway. The client thereafter assumes that the WAP
gateway caches the device profile and will apply it on all requests initiated during the
lifetime of the WSP session [6].

d. Wireless Network and WAP Gateway

WSP sessions are carried over wireless networks that are capable of
implementing the WAP protocols. The WAP gateway represents the server-side endpoint
for the client’s WSP session. To support these sessions, the gateway must suport the
Wireless Datagram Protocol (WDP) and Wireless Transaction Protocol (WTP) layers .
As part of its WSP session implementation, the WAP gateway must implement WSP
header caching, thereby allowing it to hold the device profile conveyed by the client
device during session establishment. The WAP gateway is responsible for translating
WSP requests into appropriate HTTP requests for delivery over an intranet or the Internet
to the designated origin server. In forwarding these requests, the gateway must also
forward the current device profile associated with the session and/or request. This
specification requires that the gateway use the HTTP Extension Framework to convey the
device profile within HTTP headers, as discussed above regarding the CC/PP protocol.

When generating the HTTP request, the gateway may optionally augment the received

17

device profile with additional data obtained from local databases, such as a network
Home Location Register (HLR).

The WAP gateway is also responsible for translating HTTP responses into
appropriate WSP responses for delivery over the wireless network to the requesting end
device. In forwarding these responses, the gateway must also forward any device profile
usage headers provided by the origin server and/or any intermediate HTTP proxies [6].

e. Internet or Intranet

The HTTP requests generated by the WAP gateway are conveyed over an
intranet or the Internet, capable of carrying TCP/IP-based requests and responses. In
passing through these networks, the request may pass through one or more proxies, each
responsible for forwarding the request toward the particular origin server designated in
the request. These proxies may conform to either the HTTP 1.0 or HTTP 1.1 protocol
standards. It is important to note that the HTTP 1.0 proxies will discard all device profiles
contained in the HTTP request. The HTTP 1.1 proxies may or may not forward the
device profile intact, depending on whether the information is conveyed in mandatory or
optional headers. For HTTP 1.1 proxies that are aware of the HTTP Extension
Framework and CC/PP Exchange Protocol over HTTP optionally may add information to
the device profile conveyed in the outbound HTTP request.

Internet network elements, both proxies and origin servers, may provide
content caching capabilities. Caching is complicated by the presence of device profile
because the content associated with a particular URI may differ according to the device
presented to the origin server. As a rule, therefore, an HTTP proxy or origin server will
only deliver content from its cache if both of the following conditions hold:

e The content has not expired from the cache, in accordance with standard HTTP
caching semantics.

e The device profile associated with the cached request exactly matches the
device profile associated with the new request.

To minimize the possibility that an intermediate proxy that is unaware of

CC/PP accidentally sources content from its cache without first checking for a matching

18

CC/PP profile, an origin server may set the Cache-Control headers in the HTTP response

to prevent the proxy from doing any caching [6].

f. Origin Server

The origin server is the ultimate recipient of the request initiated by the
end device (and forwarded as an HTTP request from the WAP gateway). The origin
server is responsible for receiving the request and generating appropriate content that is
subsequently transported as an HTTP response to the WAP gateway. In generating this
response, the origin server extracts the device profile conveyed with the HTTP request,
resolves all indirect references to information stored at other repositories in the network,
if necessary, and uses that information to select or otherwise customize the content being
delivered to the client. In generating the HTTP response using the CC/PP Exchange
Protocol over HTTP, a server must indicate the extent to which the device profile was

honored in producing the content contained within the HTTP response [6].

B. UPNP

1. UPNP Introduction

With the addition of Device Plug and Play (PnP) capabilities to the operating
system it became a great deal easier to setup, configure, and add peripherals to a PC.
Universal Plug and Play (UPnP), which was developed by Microsoft, extends this
simplicity to include the entire network, enabling discovery and control of devices,
including networked devices and services, such as network-attached printers, Internet
gateways, and consumer electronics equipment.

With UPnP, a device can dynamically join a network, obtain an IP address,
convey its capabilities, and learn about the presence and capabilities of other devices—all
automatically; truly enabling zero configuration networks. Devices can subsequently
communicate with each other directly; thereby further enabling peer-to-peer networking.

UPNP uses standard TCP/IP and Internet protocols, enabling it to seamlessly fit
into existing networks. Using these standardized protocols allows UPnP to benefit from a
wealth of experience and knowledge, and makes interoperability an inherent feature.
Because UPnP is a distributed, open network architecture, defined by the protocols used,

19

it is independent of any particular operating system, programming language, or physical
medium (just like the Internet). UPnP does not specify the APIs applications will use,
allowing operating system vendors to create the APIs that will meet their customers’

needs [7].

2. UPnP Architecture
There are three basic components of a UPnP network: devices, services and

control points. Figure 6 is the block diagram of the three components.

UPnP Enabled Device

Device

(* Service 1 Service 2

UPnP Enabled Device A

Control Point

Device

Control Point
Service

UPnP Enabled Device

Root Device

Embedded Device

\> » Service Service 1 Service 2

a \

/ N
/ N
/ A
7/ N\
Control

Server
State Event
Table Server

Figure 8. UPnP Control Points, Devices, and Services [From: 7]

Service

20

a. UPNP Devices

A UPnP device is a container of services and nested devices. For instance,
a VCR device may consist of a tape transport service, a tuner service, and a clock service.
A TV/VCR combo device would consist not just of services, but a nested device as well.

Different categories of UPnP devices will be associated with different sets
of services and embedded devices. For instance, services within a VCR will be different
than those within a printer. Consequently, different working groups will standardize on
the set of services that a particular device type will provide. All of this information is
captured in an XML device description document that the device must host. In addition to
the set of services, the device description also lists the properties (such as device name

and icons) associated with the device [7].

b. UPNP Services

The smallest unit of control in a UPnP network is a service. A service
exposes actions and models its state with state variables. For instance, a clock service
could be modeled as having a state variable, current_time, which defines the state of the
clock, and two actions, set_time and get time, which allow designers to control the
service. Similar to the device description, this information is part of an XML service
description standardized by the UPnP forum. A pointer (URL) to these service
descriptions is contained within the device description document. Devices may contain
multiple services.

A service in a UPnP device consists of a state table, a control server and an
event server. The state table models the state of the service through state variables and
updates them when the state changes. The control server receives action requests (such as
set_time), executes them, updates the state table and returns responses. The event server
publishes events to interested subscribers anytime the state of the service changes. For
instance, the fire alarm service would send an event to interested subscribers when its

state changes to "ringing” [7].

21

C. UPNP Control Points
A control point in a UPnP network is a controller capable of discovering
and controlling other devices. After discovery, a control point could:

e Retrieve the device description and get a list of associated
services.

e Retrieve service descriptions for interesting services.

e Invoke actions to control the service.

e Subscribe to the service’s event source. Anytime the state of
the service changes, the event server will send an event to the
control point.

It is expected that devices will incorporate control point functionality (and vice-versa) to

enable true peer-to-peer networking [7].

d. Protocols Used by UPnP
UPNnP leverages many existing, standard protocols. Using these
standardized protocols aids in ensuring interoperability between vendor implementations.

Figure 7 is the protocol stack of UPnP.

22

UPNP Vendor Defined

UPNP Forum Working Committee Defined

UPNP Device Architecture Defined

SOAP
(Control)

HTTP D
(Description)

ubpP TCP

SSDP | HTTPMU ‘ GENA

‘SSDP‘ HTTPU
(Discovery)

(Discovery)

HTTP

GENA
(Events)

Figure 9. The UPnP protocol stack [From: 7]

3. Activities Involved in UPnP Network

a. Addressing

The foundation for UPnP networking is the TCP/IP protocol suite, and the
key to this suite is addressing. Each device must have a Dynamic Host Configuration
Protocol (DHCP) client and search for a DHCP server when the device is first connected
to the network. If a DHCP server is available, the device must use the IP address assigned
to it. If no DHCP server is available, the device must use Auto IP to get an address. In
brief, Auto IP defines how a device intelligently chooses an IP address from a set of
reserved private addresses, and is able to move easily between managed and unmanaged
networks.

A device may implement higher layer protocols outside of UPnP that use
friendly names for devices. In these cases, it becomes necessary to resolve friendly host
(device) names to IP addresses. Domain Name Services (DNS) are usually used for this.

23

A device that requires or uses this functionality may include a DNS client and may
support dynamic DNS registration for its own name to address mapping [7].

b. Discovery

Once devices are attached to the network and addressed appropriately,
discovery can take place. Discovery is handled by the Simple Service Discovery Protocol
(SSDP). When a device is added to the network, SSDP allows that device to advertise its
services to control points on the network. When a control point is added to the network,
SSDP allows that control point to search for devices of interest on the network.

The fundamental exchange in both cases is a discovery message
containing a few essential specifics about the device or one of its services, for example,

its type, identifier, and a pointer to its XML device description document [7].

C. Description

The next step in UPnP networking is description. After a control point has
discovered a device, the control point still knows very little about the device. For the
control point to learn more about the device and its capabilities, or to interact with the
device, the control point must retrieve the device's description from the URL provided by
the device in the discovery message.

Devices may contain other, logical devices and services. The UPnP
description for a device is expressed in XML and includes vendor-specific manufacturer
information including the model name and number, serial number, manufacturer name,
URLs to vendor-specific Web sites, and so forth. The description also includes a list of
any embedded devices or services, as well as URLs for control, eventing, and
presentation [7].

d. Control

After a control point has retrieved a description of the device, the control
point has the essentials for device control. To learn more about the service, a control
point must retrieve a detailed UPnP description for each service. The description for a

service is also expressed in XML and includes a list of the commands, or actions, the
24

service responds to, and parameters or arguments for each action. The description for a
service also includes a list of variables; these variables model the state of the service at
run time, and are described in terms of their data type, range, and event characteristics.
To control a device, a control point sends an action request to a device's
service. To do this, a control point sends a suitable control message to the control URL
for the service (provided in the device description). Control messages are also expressed
in XML using Simple Object Access Protocol (SOAP). In response to the control

message, the service returns action specific values or fault codes [7].

e. Eventing

A UPnP description for a service includes a list of actions the service
responds to and a list of variables that model the state of the service at run time. The
service publishes updates when these variables change, and a control point may subscribe
to receive this information.

The service publishes updates by sending event messages. Event messages
contain the names of one of more state variables and the current value of those variables.
These messages are also expressed in XML and formatted according to the Generic Event
Notification Architecture (GENA). A special initial event message is sent when a control
point first subscribes; this event message contains the names and values for all evented
variables and allows the subscriber to initialize its model of the state of the service. To
support multiple control points, all subscribers are sent all event messages, subscribers
receive event messages for all evented variables, and event messages are sent no matter

why the state variable changed (in response to an action request or due to a state change)

[7]1.

f. Presentation

If a device has a URL for presentation, then the control point can retrieve a
page from this URL, load the page into a browser, and depending on the capabilities of
the page, allow a user to control the device and/or view device status. The degree to
which each of these can be accomplished depends on the specific capabilities of the

presentation page and device [7].
25

C. SYNCML

1. SyncML Introduction

SyncML was developed by the mobile technology industry. It is a specification
for a common data synchronization framework and XML-based format, or representation
protocol, for synchronizing data on networked devices. SyncML can also be used for
peer-to-peer data synchronization. SyncML is specifically designed to handle the case
where the network services and the device store the data they are synchronizing in
different formats or use different software systems.

The framework is depicted in Figure 10. In the figure, the scope of the SyncML
framework is shown by the dotted-line box. The Framework consists of SyncML
representation protocol, as well as a conceptual SyncML Adapter and the SyncML
Interface [8].

App A
SyncML
Framework
Engine | |
. Application/vnd.syncml .
[SyncML ¥
= XML |
i SyncML | SyncML | Opjects |SyncML | SyncML SYn(.:
Server [+ UF Adapter | o IF Adapter — Engine
Engine I I

‘[Transport I

e.g., HTTP/WSP/OBEX

Figure 10. SyncML framework [From: 8]

The application "A" depicts a networked service that provides data
synchronization with other applications, in this case application "B," on some networked
device. The service and device are connected over some common application layer

protocols, such as HTTP and WSP. Application "A" utilizes a data synchronization
26

protocol, implemented as the "Sync Engine" process. The data synchronization protocol
is manifested on the network by client applications accessing the "Sync Server" network
resource. The "Sync Server Agent" manages the "Sync Engine" access to the network and
communicates the data synchronization operations to/from the client application. The
"Sync Server Agent" performs these capabilities through invocations to functions in the
"SyncML I/F" or interface. The "SyncML I/F" is the application programming interface
to the "SyncML Adapter”. The "SyncML Adapter” is the conceptual process that the
originator and recipient of SyncML formatted objects utilize to communicate with each
other. The "SyncML Adapter" is also the framework entity that interfaces with the
network transport, which is responsible for creating and maintaining a network
connection between Application "A" and Application "B." Application "B" utilizes a
"Sync Client Agent” to access the network and it's "SyncML Adapter,” through

invocations of functions in the "SyncML I/F" [8].

2. SyncML Packages and Messages

In SyncML, the data synchronization operations are conceptually bound into a
SyncML Package . The SyncML Package is just a conceptual frame for one or more
SyncML Messages that are required to convey a set of data synchronization semantics. A
SyncML Message is a well-formed, but not necessarily valid, XML document. The
document is identified by the SyncML root or document element type. This element type
acts as a parent container (i.e., root element type) for the SyncML Message. The SyncML
Message, as specified before, is an individual XML document. The document consists of
a header, specified by the "SynHdr" element type, and a body, specified by the
"SyncBody" element type. The SyncML header specifies routing and versioning
information about the SyncML Message. The SyncML body is a container for one or
more SyncML commands. The SyncML Commands are specified by individual element
types. The SyncML Commands act as containers for other element types that describe the
specifics of the SyncML command, including any synchronization data or meta-

information [8].

27

3. SyncML Capabilities Exchange

SyncML supports capabilities exchange. Capabilities exchange is the ability of a
SyncML Client and Server to determine what device, user and application features each
supports. The capabilities exchange, from the SyncML Server perspective, is achieved by
using the "Get" command to retrieve the device information, user information and
application information documents from the SyncML Client. The capabilities exchange,
from the SyncML Client perspective, is achieved by using the "Get" command to
retrieve the analogous documents from the SyncML Server. These documents contain
profile information about support for well-defined features. In addition, the "Put"
command can be used by the SyncML Client to push capabilities exchange information
to the SyncML Server. The capabilities exchange can also be used to establish or

administer SyncML data synchronization services between a SyncML Client and Server

[8].

4. Data Identifier Mapping

SyncML does not require that two data stores being synchronized be of the same
schema (i.e., aren't homogeneous). Specifically, SyncML allows for both the data
identifiers and the data formats to be different in the two data collections. However, in
such cases in order to use SyncML, the synchronizing applications would need to provide
a mapping between data identifiers in one data store and those in another. For example, a
document on the data synchronization server could be identified with a 16-byte, globally
unique identifier (GUID). The corresponding version of this document on a mobile
device could be identified by a small, two-byte local unique identifier (LUID). Hence, to
synchronize the data on the mobile device with the data on the data synchronization
server, the synchronizing application would have to map the smaller identifiers of the
mobile device to the larger identifiers used by data synchronization server; and vice versa.

SyncML includes the necessary mechanism to specify such an identifier mapping [8].

5. Refreshing Data
In addition to synchronization, SyncML includes commands that are not normally

thought of as synchronization operations, but are still required in a practical data
28

synchronization protocol. For example, SyncML provides the capability for refreshing
the entire data on the SyncML client with the equivalent synchronization data on the
SyncML server. This may be necessary if the SyncML client and the SyncML server
versions are no longer "in sync" with each other due to a hardware or power failure in the
mobile device, or if the version on the SyncML client has become corrupted or erased
from memory. This capability is provided by the SyncML client issuing a "refresh” Alert

command to the SyncML server [8].

6. DevInf Introduction

By the SyncML standard, when two devices are in the process of synchronization,
they have to exchange their device profiles in advance. The device profile is exchanged
by using the SyncML Device Information (Devinf) standard. The Devinf is represented
in a markup language defined by WAP Binary XML (WBXML). In WBXML, the binary
format is designed to allow for compact transmission with no loss of functionality or
semantic information. It is also designed to preserve the element structure of XML,
allowing a browser to skip unknown elements or attributes. The binary format encodes
the parsed physical form of an XML document, i.e., the structure and content of the
document entities. Meta-information, including the document type definition and
conditional sections, is removed when the document is converted to the binary format [9].

Using DeviInf, the device profile comes in four parts, as shown in Figure 11.

version idertifier of OTD
device manufacturer reference LRI for local datastore

device Model Marme display name
original equipment manufacturer maximum global identifier size
firmware version device preferred content type received by device i
zoftware version datastore content type transmitted by device P
referred content type received by device I
contert type received by device -
Devinf
02032001 - w35 f
cortent type e ER—
ropert
enumerated value of propert
parameters & content capabilities

zize of @ property or parameter

hardware version

device idertifier

device type

display name
data type

extensions value of extension

element

Figure 11. SyncML Devinf Specification [From: 2]
29

D. COMPARISON OF THE STANDARDS
From the previous descriptions of the device profile standards, we give a

comparison in Table 1.

The design of CC/PP is backwards compatible with UAProf. The goal is that valid
UAProf profiles are also valid CC/PP profiles; however, not all CC/PP profiles are

necessarily valid UAProf profiles.

30

CC/PP UAProf UPnP SyncML
Proposer wWa3C WAP Forum Microsoft Communlt_:atlon
Industries
Standard used
for device RDF RDF XML Devlnf
profile
creation
Device profile XML XML XML XML
format
Vocabulary in |User-defined |Designed and |Provided by Provided by the
device profile |based on developed by |vendors proposers of the
application WAP forum standard
specifically for
wireless
application
Protocol used |HTTP
for device Extension
profile Framework
transmission |(The CC/PP
specification HTTP/WSP/O
does not WSP HTTP BEX
impose
constraints on
transmission
protocol)
Main Content Content Multimedia Synchronizati-
application repurposing repurposing devices control |on between
betweenend |betweenend |(e.g., DVD devices (e.g.,
devices and devices (mainly |player, VCR) |PDA and PC,
servers wireless and information|mobile phone
devices) and |appliance (1A) |and PC)
Servers control
Flexibility for |High, Low, the Low, the device|Low, the
application developers can |UAProf can be |profile standard is
design create their own|viewed as an |description has [focused on
device profile |application of |to be provided |mobile

vocabularies

CC/pPP

by vendor

communication

Table 1.

31

Comparison of the standards

THIS PAGE INTENTIONALLY LEFT BLANK

32

IVV. DEVICE PROFILE CREATION (USING CC/PP)

A. DESIGN OVERVIEW

From the previous discussion, we can realize that to achieve the flexibility of
DAN application design, the CC/PP standard is the optimal solution among the available
standards. Furthermore, to reduce the load of a server, we may use the architecture of

user agent proxy, as shown in Figure 12, to process device profiles from different clients.

.
[
l> wE

I5ER XML+ XSL
Agent [* :
Mobile /’ PTOXY
phone F
¥ Service
R~
—_—
PDA {
.:’?Jsﬁ

Service Consumer

Figure 12. User Agent Proxy Architecture

For a DAN client, it is necessary to provide the username and password before
entering the system. Figure 13 shows the register mechanism for an end-device to login
to the DAN system.

33

Service Consumer User Agent Proxy

Registration
(Username, Password & Device Profile) |

Confirm Message

TCP Header | HTTP Header | Registration Data

Figure 13. DAN User Registration Mechanism

B. CC/PP AND UAPROF VOCABULARY

A CC/PP or UAProf vocabulary defines the recognized components, their
attributes, and type information. In the CC/PP standard only a few core vocabularies were
defined. As for UAProf, there are two versions of vocabulary in the specification [6,10].
When CC/PP was created, it was expected that the creation of multiple vocabularies for
device profiles was unavoidable. Therefore, RDF has been designed to cope with data
from different sources using different vocabularies [11]. For example, the Intel PCA
Developer Network [12] device profile assigns two schemas by using two URIs in its
RDF file:

xmlIns:prf="http://www.wapforum.org/profilessy=UAPROF/ccppschema-
20010330#"
xmlins:pca="http://developer.intel.com/pca/developernetwork/devsupport/pca_sch
ema/2002_01#"

1. Vocabulary Serialization

A profile can use attributes from multiple vocabularies and schemas. This is
called vocabulary serialization. Different vocabularies can be used in a profile using
XML namespaces, as shown in a previous example. Within a profile, each vocabulary
that is used is associated with an XML namespace which uniquely identifies the attributes
in the profile. Because any application or operational environment that uses CC/PP may
define its own vocabulary, the vocabularies have to be defined more generally if wider

interoperability is taken into consideration [13].

34

2. Characteristic of Attributes

The attribute definition includes identifying the semantic description, attribute
type, and sample values. For a device profile, it is obvious that some attribute values may
keep changing, e.g., power status, device temperature, CPU frequency, connection speed.
It is necessary to classfy attributes into two catalogs (static and dynamic) if we would like
to cooperate with the end devices efficiently. In application design, the resolution rule of
a device profile should be assumed to be the default rule for static values. For dynamic
attributes, the values shown in a profile are assumed to be initial values only.
Subsequently, the values can be updated at a fixed rate based on the actual value at the
time the value is sampled. A monitor mechanism on the client side can be created to
perform the function of reading the dynamic values and updating the values in the profile
periodically [13]. In APPENDIX A, the tables give a detailed description and data types
of the device profile vocabularies developed by the Intel PCA Network. APPENDIX B is
the RDF format of a device profile derived from APPENDIX A.

3. Profile Resolution

UAProf and CC/PP standards define a data format and a protocol to be used for
the exchange and resolution of device capability information. They do not specify how to
collect this information or how to customize content based on the profile information.
Profile information must be collected on client devices and resolved on a server [13]. Both
CC/PP and UAProf clients may split up profile information in order to send it to the server
in an efficient way. They do this by using a standard profile, known as a reference profile,
and a list of overrides specific to the requesting device, known as a profile-diff. Other
devices in the communication path, such as proxies, may also add profile-diffs. The
process of reassembling the final profile from the reference profile(s) and profile-diff(s)
is known as profile resolution. CC/PP does not specify the exact mechanism for profile
resolution, apart from requiring that default attribute values are always overridden by
non-default attribute values. UAProf, in contrast, specifies a set of resolution rules that
apply to non-default values. Each attribute in a vocabulary is associated with a specific
resolution rule that is applied when multiple attribute values are encountered. In UAProf

these resolution rules are order dependent; for example, "locked” means take the first
35

value encountered whereas "override” means take the last value encountered.
Unfortunately, these rules are difficult to implement in RDF, as RDF models do not have
any implicit concept of ordering statements. Ordering must be done explicitly, e.g., using
an RDF Sequence (rdf:Seq [15]). Unlike RDF, XML does implicitly order elements in
documents. When statements in an RDF model are unordered it is impossible to apply the
UAProf resolution rules to a single RDF model. Possible solutions include representing
each profile or profile-diff as a separate model and keeping track of the order of these
models. This allows resolution to be performed between models. An alternative approach
is to convert profiles to an intermediate data structure that stores attribute order before
performing profile resolution [11].

4. Validating CC/PP and UAProf Profiles

In order to validate CC/PP and UAProf profiles, there must be a set of rules that
determine what constitutes a valid profile. According to the CC/PP Structure and
Vocabularies Working Draft [4], a CC/PP profile must meet the following constraint: a
profile must be valid XML and a valid XML serialization of RDF. Based on the
description, there are two possible solutions for application developers to validate CC/PP

and UAProf profiles: XML schema parser and RDF schema parser [16].

a. Validation Using XML Schema Parser

It is important to note that although RDF schema and XML schema are
both schema languages, they perform slightly different roles: RDF schema’s primary aim
is to provide a machine-readable description of a particular vocabulary rather than
provide mechanisms for validating data. XML schema, on the other hand, can be used to
validate XML documents and enforce strict structural and datatype constraints. Therefore,
one solution to the validation problem in CC/PP would be to use XML schema parser to
validate profiles. In order to use XML schema in this way, it is necessary to solve another
related problem: in the XML serialization of RDF it is possible to serialize a single RDF
graph in several different ways, making the required XML schema complex and
unwieldy. The solution proposed here is to use XSLT (XSL Transformation) [19] to

convert a profile to a constrained form of RDF that maintains all the information from the
36

original serialization. After this the profile can be validated using XML schema, to ensure
that it is both syntactically correct and that it uses all referenced vocabularies correctly.

This process is shown diagrammatically in Figure 14 [16].

| Device Profile | ‘ Profile stylesheet | ‘ Vocabulary schema ‘ ‘ Vocabulary stylesheet
[X{SLT Transformer [XSLT Transformer]
| Transformed Profile | | XML Schema |

» ML Schema Validator] <

Validated Profile

Figure 14. Validating Device Profiles Using XSLT and XML Schema [From: 16]

Using the stylesheet approach to validate device profiles has a number of
advantages: First, it provides a simple mechanism for validation that makes use of
existing tools, e.g., XSLT and XML schema. Furthermore, using this functionality in a
program is simple, since there are several open source XML schema parsers and XSLT
transformers available, such as Apache Xerces and Apache Xalan [18]. It also makes use
of existing information, e.g., the RDF schemas for UAProf. The downside of performing
validation in this way is that both profiles and vocabularies must be transformed before
they can be validated. Ideally, it should be possible to validate profiles without any
changes, as validating transformed profiles can lead to error messages that are difficult to
interpret, as they refer to a different profile than the one presented by the user.

Secondly, because there are various versions of the UAProf vocabulary,
each using a different namespace URI, it is necessary to have separate stylesheets to
convert profiles and schema belonging to the different versions. This is due to a
restriction in XSLT that prevents stylesheets from inserting namespace declaration

attributes into a document [16].

37

b. Validation Using RDF Schema Parser

Performing validation of RDF documents using a RDF schema parser is
more complex than validating XML documents, because there are no standardized tools
available to accomplish this task. This approach has the advantage of not requiring any
transformations of profiles or schema.

To determine the structure to which profiles must adhere, the validator
exploits the two-level structure of UAProf profiles (profiles contain components, which
contain properties). The UAProf vocabulary gives regular expressions for the datatypes it
defines, and these can be used in the validator. It became apparent, however, that many
profiles do not adhere to these specified expressions. For example, the literal datatype has
the following regular expression in the schema:

[A-Za-z0-9/.\-_]+

There are many literals in profiles that contain spaces, asterisks,
semicolons and various other characters forbidden by this expression. Although this
problem is easily solved by extending the expression to allow a wider variety of strings,
ideally these regular expressions should be machine readable, rather than written as XML
comments, to make it easier for RDF parsers to extract them and use them in profile
validation [16].

5. Device Profiles Serialization in XSLT

For content authors, it is a good solution to simplify the transformation process of
information in device profiles by using XML and XSLT. One problem with manipulating
CC/PP or UAProf profiles in XSLT is that these device profiles are represented using
RDF. Although RDF models can be represented in an XML serialization, it is difficult to
manipulate this serialization in XSLT, as it can represent the same model in many
different ways [11]. To make the device profiles easier to manipulate, we can create a

profile that only consists of profile attributes with all RDF format removed in XSLT,

e.g.,:

38

<browser>
<ScreenSize>90x120</ScreenSize>
<IsColorCapable>Yes</IsColorCapable>
<CcppAccept>
text/html
text/plain
image/jpeg

</CcppAccept>
</browser>
6. Device Profiles Matching Rules

Different Internet-capable devices have different input, output, hardware,
software, network and browser capabilities [18]. In order to provide optimized content to
different clients, the server must process device profiles correctly. The following
stylesheet demonstrates how we can use XPath [19] conditional statements to query
profiles within XSLT:

<?xml version="1.0"?>
<xsl:stylesheet xmIns:xsl="http://www.w3.0rg/1999/XSL/Transform™ version
="1.0">
<xsl:param name="device-capabilities"/>
<xsl:template match="/">
<xsl:if test="contains($device-capabilities/browser/CcppAccept,’wml’) and
contains($deli-capabilites/browser/ScreenSize,'90x120") and
contains($deli-capabilities/browser/IsColorCapable,’Yes’)">
<wml>
<card id="init" newcontext="true">
<p>Color device with 90x120 screen</p>
</card>
</wml>
</xsl:if>
</xsl:template>
</xsl:stylesheet>

In this example, the stylesheet only generates a WML page if the device is WML capable,
color capable and has a screen size 90x120 pixels. In addition to the contains() function,
we can also use the >, >=, <, <= =, and != expressions in conditional statements.
However, the UAProf standard uses various data types that are difficult to process using

these conditional statements. First, UAProf has a data type called dimension that consists
39

of two numbers separated by an "x," e.g., 90x120. It is not possible to apply numerical
expressions to this data type, so only the contains() function may be used. Second,
numbers in UAProf are integers, so instead of representing version numbers as numbers
they are represented as string literals.

In [18] the HP Lab proposed a method called "capability class™ to overcome such
problems. Capability class works as follows: a number of capability classes are defined
where each class is associated with a set of constraints. When a server receives a profile,
it evaluates each set of constraints to determine if the target device belongs to one or
more of the capability classes. Once it has determined which capability classes are
supported by the device, this information is passed to the stylesheet to guide
transformation. For example, consider the file shown below:

<?xml version="1.0" encoding="UTF-8"?>
<classes>

<class name="smallScreen">
<or=
<lessthan value="160x160">ScreenSize</lessthan>
<lessthan value="20x20">ScreenSizeChar</lessthan>
</or>

</class>

<class name="largeScreen">
<or=
<greaterthan value="320x240">ScreenSize</greaterthan>
<greaterthan value="80x40">ScreenSizeChar</greaterthan>
</or>

</class>

<class name="jpegcapable"”>
<contains value="image/jpeg">CcppAccept</contains>

</class>

<class name="color">
<true>ColorCapable</true>

</class>

<class name="blackandwhite">
<not>
<true>ColorCapable</true>
</not>

</class>

<class name="colorphone">
<and>
<lessthan value="90x120">ScreenSize</lessthan>
<contains value="wml">CcppAccept</contains>

40

<true>IsColorCapable</true>
</and>
</class>
</classes>

This file defines four capability classes: smallScreen, largeScreen, jpegcapable
and color. In the case of smallScreen, the constraints are that the device has a screen
smaller than 160 wide and 160 pixels high or if it has a screen that is smaller than 20
characters wide and smaller than 20 characters high. Alternatively a device meets the
jpegcapable capability class criteria if it can display the MIME type image/jpeg.

Capability class files can contain three Boolean expressions for aggregating
constraints: and, or and not. It provides a number of conditionals: lessthan,
lessthanequals, greaterthan, greaterthanequals, equals, contains and true. Each
conditional is only applicable to specific attribute types, as shown in Table 2. For
dimensions, the conditionals mean the result is true if both numbers are met; otherwise it

returns false.

Conditional Compatible UAProf data types
lessthan number, dimension
lessthanequals number, dimension
greaterthan number, dimension
greaterthanequals | number, dimension
equals number, dimension, single literal
contains set of literals, sequence of literals
true boolean

Table 2. Conditionals of Capability Class

B. AVAILABLE APPLICATION FOR CC/PP AND UAPROF PROFILING

In [20] there is a list of software available for handling CC/PP and UAPTrof device
profiles. This thesis provides a testing report on one of these software and demonstrates a
platform that can handle XML/XSLT architecture.

1. DELI Introduction
HP Labs’ DElivery context Llbrary (DELI) is a toolkit that allows Java servlets to

resolve HTTP requests containing delivery context information from CC/PP or UAProf

41

capable devices and query the resolved profile. It also provides support for legacy devices
so that the proprietary delivery context descriptions currently used by applications can be
replaced by standardized CC/PP descriptions [22].

2. Testing Device Profiles in DELI
In order to install DELI and run test servlets, an installation of the Java Runtime

Environment with a Java Servlet engine, such as Tomcat are necessary.

a. Browser Profiles Testing
By typing the following address in the Internet Explorer browser, the

browser should display the profile properties of Internet Explorer as shown in Figure 15,

because the default value is set to reference msie.rdf in the DELI profile directory.
http://localhost:8080/ccpp/html/

k=1 ft Internet ==l %]
| [}
| -8~ - @0 d Qus BaneE dye @ B9 0-H0E
| FEHECD) [€] hitp://127.0.0.1:8080/ccpp/html | oEE
Device Profile
Component Attribute Resolution Ci
http /. wapforum.orgfprofiles/ T APR OFfccppschema- hitp:iwww wapforum.org/profiles/IT APE OF/ccppschema- Override S
20010430#HardwarePlatform 20010430ColorCapable
http s wapforum.org/profiles/TU APR OF/coppscherma- hitp/Asew wapforurm.org/profiles TAPR OF/fcoppacherma- Override S
20010430#HardwarePlatform 20010430 TextInputCapable
hitp /e wapforum.orgfprofiles/U APR OFfcoppschema- hitp:ifwww wapforum.org/profiles/IT APE. OF/coppschema- Override S
20010430#HardwarePlatform 20010430l mageCapable
http #rwrw wapforum.org/profiles/TT APR OF/coppscherma- hitp/Asnew wapforum.org/profilesTMAPR OFfcoppacherna- owiids S
20010430#HardwarePlatform 200104 30K evhoard
hitp/fwrwrve. wapforum.orgfprofiles/U APR OFfccppschema- hitp:ifwww wapforum.org/profiles/TT APR. OF/coppschema- Override Si—
200104 30#HardwarePlatform 20010430V endor
http s wapforum.org/profiles/TT APR OF/ccppscherma- hitp/fsww wapforum.org/profilesTMAPR OF/ceppacherma- Override S
20010430#HardwarePlatform 200104230Sound Cutput Capable
hitp /e wapforum.orgfprofiles/U APROP/ccppschema—http://www.Wapforum.org/profilestAPROP/ccppschema— Override S
20010430#HardwarePlatform 200104 30StandardFontProportional
http s wapforum.orgfprofiles/UJ APR OFforppschema- hitp:iwww wapforum.org/profiles/IT APR OF/coppschema- ovtids S
200104304 BrowserUA 20010430Browsertame
hitp /s wrapforum.orgfprofiles/U APR OF/coppechema- httpwrww wapforum.org/profiles/U APR OF/coppechema- Override S
200104304 BrowserUA 200104 30FramesCapable
tittp Jharens wapforum.org/profiles/U APROPfccppschema—http:f/www.wapforum.orgfprofilestAIPROPfccppschema— P
4 3
A %

Figure 15. The Profile of Internet Browser

42

b. WML Profile Testing

With WML profile testing, we use two simulators to do the simulation:
Microsoft Pocket PC 2003 Emulator and Nokia Wap Gateway Simulator. In Microsoft
Pocket PC 2003 Emulator, we type the following address and get the device profile result
shown in Figure 16.

http://:8080/ccpp/wml/

=0l

Emulater Help

HardhwarePlatform
ColorCapable
[es]

HardhwarePlatform
TextInputCapable
[ves]

HardhwarePlatform
ImnageCapable

[ves]

HardhwarePlatform
kKevboard
[Quverty]

Ll vyl -4 £

view Tools ¢ € @} - E|‘

Figure 16. WML Profile Testing in Pocket PC Simulator

43

In Nokia Wap Gateway Simulator, we can assign the device profile for reference. For
example, if we use Nokia 9210i as our mobile phone interface, the deivce profile can be
assigned by the following two parameters in device settings: x-wap-profile and x-wap-
profile-diff. These are the headers of Wireless Profiled HTTP (W-HTTP) [23], a protocol
proposed by the WAP Forum to transport the device profile. An example W-HTTP
request is shown below :

GET /ccpp/html/ HTTP/1.1
Host: localhost
x-wap-profile:"http://localhost:8080/ccpp/profiles/ Nokia_9210i WML.rdf,"
"1-Rb0sg/nuUFQU75VAjKyiHW=="
x-wap-profile-diff:1;<?xml version="1.0"?>
<rdf:RDF xmlns="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlins:prf="http://www.wapforum.org/profiless’tUAPROF/ccppschema-
20010430#">
<rdf:Description rdf:ID="MyDeviceProfile">
<prf:component>
<rdf:Description rdf:ID="HardwarePlatform">
<rdf:type rdf:resource="http://www.wapforum.org/profilessfUAPROF/ccpp
schema- 20010426#HardwarePlatform"/>
<prf:BitsPerPixel>16</prf:BitsPerPixel>
</rdf:Description>
</prf:component>
</rdf:Description>
</rdf:RDF>

In this request, the profile is referenced via the x-wap-profile line and has the URI:
http://localhost:8080/ccpp/profiles/Nokia_9210i_WML.rdf

After the profile reference, there is a value 1-Rb0sq/nuUFQU75vAjKyiHw== known as a

profile-diff digest. The first part of the profile-diff-digest, 1-, is the profile-diff sequence

number. This is used to indicate the order of the profile-diffs and to indicate which

profile-diff the profile-diff digest refers to [22]. Therefore, we have to add the parameter

values of Nokia 9210i HTTP request headers as shown in Figure 17.

44

Cathie x|

Appearance | Browser | Connectian
Headers | MSISOM | Telephany | Response

Custom HTTF headers except those for Location
functions:

Mamme YWalue

v |sx-weap-profile "hitp:#localhost:B080/ccpp/profil..
v |w-weap-profile-diff

—

g | D | Fermave |

0] Cancel | Apply | Help

Figure 17. W-HTTP Header Settings

In the Nokia Mobile Browser, if we type http://localhost:8080/ccpp/wml/ for
profile request, then the browser should display the contents of the Nokia 9210i profile,

as shown in Figure 18.

45

=10f x|

R doolouiion NMB 4.0

HardwarePlatform
BitzsPerPixel

2]
HardwarePlatform
ScreenSize

[490:1 B64]
HardwarePlatform
ScreenSizeChar

[27x9]

HardwarePlatform
StandardFantPraportional
[res]

HardwarePlatform
Vendor

[Mokia]

Figure 18. WML Profile Testing in Mobile Phone Simulator

C. Customized Mobile Device Profile

For most mobile devices, the dynamic parameters of device profiles are
not always static, e.g., power status, bandwidth, temperature etc. Therefore, to get the
correct information of a device, a detailed dynamic device vocabulary is necessary. In
DELLI, the new device profile can be created by adding a new device profile schema. To
customize a new device profile with dynamic parameters, we use the device profile
created by Intel PCA Network and add a new vocabulary (DeviceTemperature) in this
schema. For some new mobile devices, the hardware temperature can be monitored by
the operating system, which can then turn off the device if the temperature level is higher
than the value for device operation. To view the content of the device profile, we use the
Java program provided in DELI. By typing the command as shown in Figure 19, the RDF

format profile can be resolved and displayed in HTML, formatted as shown in Figure 20.

46

Figure 19. Resolve Device Profile Command

b file - Microsoft Internet Explorer _IEl _XJ
| #20 FEE® HH0 FMEER IEO BE0 [= |
|+t—=~---Q[d Qps @amesx Ise I B-30-008

| HEhE D) ChTomeatwebappsicepphontput, html - |

HEHkD) €1 PEE

-

HTTF/L.1 200 OF Content-Type: text/htm] Date: Tue, 23 Nov 2004 22:32:00 GMT Server: Apache-Coyote/].1 Connection: close

Device Profile

http/fwrena wapforum.org/U APR OF/coppschema-
20010330#HardwarePlatform

http:fwrwrn wapforum.org/UJ APR OF/coppschema-
20010330#HardwarePlatform

http:fwrwrn wapforum.ors/J APR OF/coppschema-
20010330#HardwarePlatform

hitpfwrenn wapforum.ors/J APR OFfcoppschema-
200103304HardwarePlatform

httpfwrenn wapforum.ors/J APR OF/coppschema-
20010330#HardwarePlatform

httpafwrwrn wapforum.ors/J APR OF/coppschema-

Component Attribute —
hitp/farwna wapforum.org/U APR OF/coppschema- .
200103300 nknown httpfimwra wapforum.org/U APR OF/coppschema-20010330component

httpfwww. wapforum.org/U APR OF fccppschema-200103308creenSize
hitpffwww. wapforum.org/UAPR OF fccppschema-200103300odel
httpAwww. wapforum.org/UT APR OFfocppschema-200 10330 Vendor

http s wapforum.org/U APR OF/fcoppschema-20010330CPU

httpAwww wapforum.org/TTAPR OFfcoppschema-200 10330Input CharSet

httpAwww wapforum.org/UTAPR OFfcoppschema-200103305creenSizeChar

20010330#HardwarePlatform

}ittp:/fwww.wapforum.orngAPROPf cicppschema— htnefhorrs wrarfamim arefTTA DR AT leennecharmas IMN1N22NMRiteDarDival —Ill
4 »
Ewa N = 7
Figure 20. HTML Format of Mobile Device Profile
3. Apache Cocoon Introduction

Apache Cocoon is a web development framework built around the concept of
separation of concerns and component-based web development [24]. Cocoon was
developed by Apache for publishing XML to multiple target devices. It provides caching
to speed up document delivery. It uses XSP, the EXtensible Server Pages Language, an

XML compliant version of Java Server Pages to generate XML on the fly.

47

Due to the features of Apache Cocoon, HP Labs now is integrating DELI with
Cocoon. By default, the profile resolution function is switched off on the Cocoon website.
To turn on the function of profile resolution, we have to add <map:parameter
name="use-deli" value="true"/> to the pattern match that specifies the stylesheet in
sitemap.xmap after the installation of Cocoon. Here is the match used for the deli test
stylesheet:

<map:match pattern="deli.wml|">
<map:generate src="docs/samples/hello-page.xml"/>
<map:transform src="stylesheets/deli_test.xsl" type="xslt">
<map:parameter name="use-deli" value="true"/>
</map:transform>
<map:serialize type="wml"/>
</map:match>

Then we can test the profile resolution function by typing the following address to
resolve the web browser. The result is shown in Figure 21.

http://localhost:8080/cocoon/deli.html
o1 n -k ft Internet Explorer = IEI il
| BEE ke SB0 BHEEW THO o [= |
|#b—m -~ - 00 & Qus Gxwez Fxg 3| 2-S0 -

| #Eak@) If-B:] hitp://localhost:808 0 cocoontdels. html L! P EE

for DELI 1n

ColorCapable: Yes

TextInputCapable: Yes

ImageCapable: Yes

CceppAccept: image/gif, image/x-xbitmap, image/jpeg, image/pipeg, application/vnd.ms-powerpoint, application/vnd.ms-
excel, application/msword, text/html,

CeppAccept-Charset: US-ASCI, IS0-8859-1, UTF-8, [S0O-10646-UCS-2,
CceppAccept-Encoding: base64,

BrowserName: Microsoft

TablesCapable: Yes

ImageCapable: Yes

Keyboard: Qwerty

StandardFontProportional: Yes

SoundQutputCapable: Yes

TextInputCapable: Yes

AcceptDownloadableSoftware: No

Vendor: Microsoft

FramesCapable: Yes

eSS [[B P

Figure 21. Browser Profile Resolution in HTML

48

The test result of resolve profile via WML, by typing the following address, is shown in
Figure 22.
http://localhost:8080/cocoon/deli.wml

kia Mobile Brows - |O] x|

8 Eile . Tools Help NMB 4.0

TedinputCapahle: Yes
CrppAccept: texthvnd weapawmil,
applicationdnd.swapawmle,
applicationvnd wapwmlscripte,
imadefaif, imageljpeg, imagetif,
imadeipng, imageind wapwhmp,
WimlScriptYersion: 1.1,
Wimlersion: 1.1,

BrowserMarme: Mokia
BrowseMersion: 921 0iymbian-
Crestal 6.0 {1.000
TahlesCapahle: Yes
Wapiersion: 1.1

WimlDeckSize: 65536

Fevhoard: thwerty

Figure 22. Browser Profile Resolution in WML

49

THIS PAGE INTENTIONALLY LEFT BLANK

50

V. CONCLUSION

A. SUMMARY

The two main functions of a DAN network are capability discovery and content
repurposing. For capability discovery, an alternative design is to exchange device
capabilities by creating a device profile for each device. Once the device profiles are
known by two end devices, the subsequent control and data exchange can be made. For
example, a network printer in DAN can provide the print service by sending a device
profile without the need of configuration. Therefore, creating a device profile framework
is critical in DAN. This thesis began by providing an overview of the available device
profile standards. Then by the comparison of the standards, we concluded that the CC/PP
standard is a better choice in implementing DAN network. We demonstrated testing
scenarios of device profiles by using DELI and showed the result via HTTP and WML.
Even though the CC/PP and UAProf provide a good mechanism for device profiling,
there are still some problems that need to be solved, especially for CC/PP. In [4], the
Wa3C lists the issues needed to be considered when developing applications base on the
CC/PP standard:

e Device capability exchange protocol

e Trust model between end devices

e Device profile vocabulary

e Security mechanisms

e Constraints on allowable attribute value types

e Attribute value processing and/or matching rules
e Proxy vocabulary and processing

e Rules for request profile identification

e Additional information to be included with any transmitted resource data

51

e URI forms allowed for identifying referenced profile documents (e.g.,
defaults)

e Mechanisms for locating and retrieving referenced profile documents
e Interactions with any existing negotiation mechanisms in the host protocol

Upon surveying the current practice in device capability coordination, we
concluded that the CC/PP approach provides the most promise for adapting to the DAN
architecture. With the specification of UAProf that extended from CC/PP, the vendors
can create the device profiles base on the standard before release the reproducts on the
market, which solve the problem of interoperability. Furthermore, with the support for
delivering device profiles in wireless environment, the developers can easily desgin an
application that fits all differetn Internet environment without the problem of
compatibility. However, further development needs to be done with respect to the
mechanism for dynamic property status reporting and management. A test bed should be
developed in order to test the performance characteristics of dynamic profile management
over the CC/PP architecture.

B. FUTURE WORK
As the Device Aware Networking concept is still in its infancy, there are many
areas that bear further study. Following are several areas for futher investigation or

development.

1. Content Repurposing

Content repurposing is another function in DANs. After we fetch the hardware
and software properties from an end device, the next step is making use of these
properties and content adaption. Even though most of the content information can be
displayed in HTML format by using a browser as a user interface, there are still other end
devices that are not equipped with such software. For example, if we implement DAN on
the battlefield, most of the weapon systems console displays do not have the capability to
display the web pages. Therefore, displaying the non-HTML content format is another

issue needed to be discussed during the process of developing a device-aware network.
52

2. Creating Legacy Devices Repository

Instead of sending an entire profile with every request, a client can only send a
reference to a profile by assigning an URI to reduce the load of bandwidth. The URI is
the known as a profile repository. For most of the available mobile devices, the device
profiles have been created by the manufacturers. Therefore, it is easy to store these
profiles in a repository. As for devices that have no leagcy profile, the creation of a new
one for each device is necessary. But this creation would lead to another issue in
interoperability. It is inevitable for developers to deal with different versions of device
profiles. Therefore, the mechanism for handling multiple profile vocabularies must be

taken into consideration in DANS.

3. Location Service in DAN

Mobility is the defining feature of wireless devices. In the Internet, the Mobile IP
protocol was designed to support a mobile host. This concept can be introduced as a
location service in DANs that can make the management of end devices more efficient,
especially in battlefield environments. It is not currently practical to equip each device
with a Global Positioning System (GPS) due to the cost. Instead, we can make use of the
available Internet protocol that support mobile communication to approximate the
location of an end device. For example, the Session Initial Protocol (SIP) developed by
Internet Engineering Task Force (IETF) can be implemented for location service. SIP is a
signaling protocol for Internet conferencing, telephony, presence, events notification and
instant messaging [25]. With such functionality, we can provide a framework which is

capable of location acquisition. The system architecture is shown in Figure 23.

53

Proxy Service Location Service | Register Service | DAN Server

SIP and registration Location
Information Information
User Agent Proxy -

SIP and registration
Information

SIP and registration GIS

Information 5 erver

Wired Network Wireless Network

Figure 23. SIP Framework

In the SIP protocol, the users logical location information can be transmitted
during communication. Therefore, when a user enters a DAN network, the user location
information can be mapped to a Geographic Information Server (GIS) to approximate the

physical location.

4. Performance Evaluation in DAN

Efficiency is the primary concern when delivering device profiles and adapting
content in DANs. The purpose of DAN is to create an environment that can utilize the
limited network bandwidth, especially in wireless networks. In fact, there are many
factors that may influence the performance of a network. From the DAN perspective, the
major factors that may influence the efficiency include transport protocol and
intermediate user agent proxies. When a client sends the device profile to a server, the
information should be encapsulated in a protocol header. The overhead of a packet that
includes such a header must be taken into account when measuring the performance of a
network. After the packet is delivered, it is the user agent proxy’s responsibility to
process and resolve the packet efficiently. The performance can be evaluated based upon
the two testing points. But sometimes the performance is unpredictable when we use an
end device to do the proxy function in an Ad-Hoc network. Therefore, another evaluation

mechanism must be provided when developing a DAN network.
54

APPENDIX A

Component: HardwarePlatform

Attribute

Description

Type

Static/
Dynamic

Sample
Value

ExternalPower

Indicates whether the
device is currently
connected to AC Power
or any other power
source, such as a
cigarette

lighter in a car. "Yes"
means External Power is
ON. "No" means
External Power is OFF.

Boolean

Dynamic

"Yes," "No"

BatteryChargeStatus

Gives the current status
of the battery as the
percentage of battery
charge remaining.

Number

Dynamic

"10," 55,"
II8OII

BatteryLifetime

Full lifetime of fully
charged battery (in
seconds).

Number

Static

28800

BatteryLifetime
Remaining

Remaining lifetime of
battery, in seconds

Number

Dynamic

"1200"

BackupBattery
ChargeStatus

Gives the current

status of the backup
battery as the percentage
of battery charge
remaining.

Number

Dynamic

"10," 55,"
II8OII

BackupBattery
Lifetime

Full lifetime of fully
charged backup
battery (in seconds).

Number

Static

28800

BackupBattery
LifetimeRemaining

Remaining lifetime
of backup battery,
in seconds.

Number

Dynamic

"1600"

NumberOfProcessors

Total number of
applications and
communications
processors in the device.

Number

Static

"1," ll2 n

CPURevision
Applications

Stepping of the
Application Processor.
The UAProf "CPU"
attribute is to be used to

Literal

Static

"A0," "Al,"
llBlll

55

specify the name and
model number of the
processor, such as "PXA
250" or "SA 1110."

CPUFrequency

Current core clock
frequency of the
Applications Processor,
in MHz.

Literal

Dynamic

"353.95,"
""200," 100"

CPUFrequency
Maximum

Maximum core clock
frequency of the
Applications Processor,
in MHz.

Number

Static

"'200," "400"

CPUVoltage

Current voltage of
the Applications
Processor (in Volts)

Literal

Dynamic

"1.5" "1.0"

CommProcessor

Name and model
number of the
communication
processors.

Literal

Static

"CXY123"

CommProcessor
Revision

Stepping of the
Communications
Processor.

Literal

Static

"A0," "Al"
"B1," "CO"

DynamicFrequency
ChangeCapable

Indicates if the platform
has Dynamic Frequency
Management capability
or not.

Boolean

Static

"Yes," "No"

HighConstrast
DisplayMode

Indicates if high contrast
display feature is
available and on.

Boolean

Dynamic

"Yes," "No"

BacklightOn

Indicates if the display
backlight is ON or OFF.

Boolean

Dynamic

"Yes," "No"

SIMType

Type of the Subscriber
Identity Module in the
device.

Literal

Static

"SIM,"
"USIM™

SIMToolkitVersion

Version number of the
SIM Toolkit installed, if
any. A version number of
0 indicates that SIM
Toolkit is not installed.
SIM Toolkit VVendor
name can be included, if
needed.

Literal

Static

"0," "2.1"

AvailableExpansion
Slots

Lists the types of
expansion slots available

Literal
(Bag)

Static

"PCMCIA"
"Compact

56

in the device such as Flash,"
PCMCIA, Compact "MMC"
Flash and MultiMedia
Card (MMC) sockets.
Identifies the cards "PCMCIA
currently inserted, such 802.11," "CF
as PCMCIA 802.11, 802.11," "CF
ExpansionCards CompactFlash 802.11, Literal Dynamic |Memory,"
Inserted PCMCIA GPRS, etc. (Bag) "PCMCIA
GPRS,"
"MMC,"
"CDPD"
Lists all the available "Serial,"
means for "USB
communication with Literal Host,"
CommunicationPorts |a host computer, such as (Bag) Static "USB
Serial Communications Client,"
port, USB and IrDA. "IrDA,"
"Ethernet"
DeviceTemperature Indicates the temperature Number Dynamic 50,80
of CPU.
Component: SoftwarePlatform
. . Static/ Sample
Attribute Description Type Dynamic Value
Name of the "Smartphone
CommProcessorOS [cOmmunications Literal Static 2002,"
Name processor’s operating "Nucleus"
system.
Vendor of the "Microsoft,"
CommProcessorOS [communications Literal Static | Symbian”
Vendor processor’s operating
system.
Version of the "1.0," "2.5"
CommProcessorOS [communications Literal Static
Version processor’s operating
system.
TotalProaram Total memory ?n MB o ["32," 64,
g that can be utilized Number | Dynamic |+10g"
Memory .
by runtime programs.
AvailableProgram |Free program memory in | | iteral Dynamic | 12.45,"
Memory MB that is currently "64," "128"

57

available to runtime
programs, not including
the video frame buffer if
present.

FrameBufferSize

Size of the video frame
buffer in KB.

Number

Dynamic

"512," "256"

TotalStorageMemory

Size of the total non-
persistent file storage
memory space on the
device, in MB.

Number

Dynamic

"64," "256"

AvailableStorage
Memory

Size of the available
non-persistent file
storage memory space on
the device, in MB.

Literal

Dynamic

"63.24,"
"30.16"

TotalRemovable
StorageMemory

Total removable storage
card memory in MB.

Number

Dynamic

"16," "32"

AvailableRemovable
StorageMemory

Available removable
storage card memory in
MB.

Literal

Dynamic

"15.6," "32"

TotalPersistent
Memory

Total flash or other form
of persistent file storage
memory on the device, in
MB. This memory
persists across a total
power loss, such as a
dead battery or hard
reset.

Number

Dynamic

"32," "64,"
"128"

AvailablePersistent
Memory

Available flash or other
form of persistent file
storage memory on the
device, in MB. This
memory persists across a
total power loss, such as
a dead battery or hard
reset.

Literal

Dynamic

"12.45,"
"64," "128"

PersistentMemory
Manager

Type of persistent
memory manager
software.

Literal

Dynamic

"PSM,"
"FDI"
"VEM"

PersistentMemory
ManagerVersion

Version of persistent
memory manager
software.

Literal

Dynamic

"1.0," "2.0"

PersistentMemory
XIP

Specifies whether the
software platform
supports Execute-In-
Place or not.

Boolean

Dynamic

"YeS," IINOII

58

MessagingServices |List of messaging Literal Dynamic | SMS,”
capabilities (i.e., SMS, (Bag) "MMS"
ESMS, MMS). g
Component: NetworkCharacteristics
. I Static/ Sample
Attribute Description Type Dynamic Value
Strength level between 0-100. Literal Dynamic "100"
CurrentBearer The maximum bit rate in) _ |"56.6,"
. . Kbps for the current Literal Dynamic |»10000"
MaximumBitRate .
bearer service.
CurrentBearerActual The current actual bit rate _ _["26.4," 100"
, in Kbps for the current Literal Dynamic
BitRate .
bearer service.
The maximum reported "56.6,"
bit rate in Kbps for each _ "1600,"
SupportedBearer |supported bearer service, | Literal Static '28.8"
MaximumBitRates [The bearers in this list (Bag)
may or may not have an
active connection.
A list of bearers from "GPRS,"
_ “SupportedBearers™ that Literal Dynamic SMS
ActiveBearers currently have an active 802.11
: (Bag)
connection to a router or
gateway device.
The address, for each of "145.19.22.1
. the bearers listed in . 4," "555-555-
ActiveBearer o . Literal . -
Addresses ActlveBea_rers in (Bag) Dynamic 6262,
the appropriate format, IP "192.168.12.
or UMTS. 14"
The list of bit rates "56.6,"
supported by the bearers "1600,"
ActiveBearerActual ,I.'Sted n q " th Literal . 288
BitRates _Supporte Bearers," the (Bag) Dynamic
items should match one
for one with the list given
in "ActiveBearers"
Indicates if the device is "Yes," "No"
currently connected to a
ConnectedToHost host computer through Boolean Dynamic

USB, Bluetooth, or by
any other means.

59

CelllD Identifies the service "2001," "100"
bearer cell that the device| Literal Dynamic
IS in at the current time.
Component: BrowserUA
i I Static/ Sample
Attribute Description Type Dynamic Value
Indicates whether the) "Yes," "No"
VoiceXMLCapable |browser has Voice XML | Boolean Static
capability.
TextToSpeech Indicates whether the Bool Stat "Yes," "No"
Capable browser has Text To oolean atic
Speech (TTS) capability.
. Indicates whether the "Yes," "No"

Capable

browser has Speech
Recognition capability.

60

APPENDIX B

INTEL® PCA profile example in RDF:

<?xml version="1.0" ?>

<RDF xmlns="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns: rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"

xmlns :prf="http://wvww.wapforum.org/profiles/lUAPROF/ccppschema-20010330#"
xmlns:pca="http://developer.intel.com/pca/developernetwork/devsupport/pca_schem
a/2002_01#">

<rdf :Description rdf:ID="MyPCADeviceProfile">
<prf:component>

<rdf:Description rdf:ID="HardwarePlatform">

<rdf:type rdf:resource=
vhttp:/iwww.wapforum.org/profiles/lUAPROF/ccppschema-
20010330#HardwarePlatform" / >
<prf:ScreenSize>80x100</prf:ScreenSize>

<prf :Model>S100</prf:Model>

<prf :Vendors>Intel</prf :Vendors>

<prf:CPU>PXA250</prf :CPU>

<prf:InputCharSet>

<rdf :Bag>

<rdf:11>1S0-8859-1</rdf:11i>

<rdf:11i>US-ASCll</rdf:11i>

<rdf:1i>UTF-8</rdf:1i>

<rdf:11>1S0-10646-UCS-2</rdf:1i>

</rdf :Bag>

</prf:InputCharSet>
<prf:ScreenSizeChar>15x20</prf:ScreenSizeChar>
<prf:BitsPerPixel>8</prf:BitsPerPixel>
<prf:ColorCapable>Yes</prf:ColorCapable>
<prf:TextInputCapables>Yes</prf:TextInputCapable>
<prf:ImageCapable>Yes</prf:ImageCapable>

<prf :Keyboard>PhoneKeypad</prf :Keyboards>

<prf :NumberOfSoftKeys>0</prf :NumberOfSoftKeys>
<prf:OutputCharSet>

<rdf :Bag>

<rdf:11>1S0-8859-1</rdf:11i>

<rdf:11i>US-ASCll</rdf:1i>

<rdf:1i>UTF-8</rdf:11i>

<rdf:11>1S0O-10646-UCS-2</rdf:11i>

</rdf :Bag>

</prf:OutputCharSet>
<prf:SoundOutputCapable>Yes</prf : SoundOutputCapable>
<prf:StandardFontProportional>YesS</prf:StandardFontProportional>
<prf:PixelsAspectRatio>1X1l</prf:PixelsAspectRatio>
<pca:BatteryLifetime>28800</pca:BatteryLifetime>
<pca:NumberOf Processors>2</pca:NumberOf Processors>
<pca:CPURevision>B0</pca:CPURevision>
<pca:CPUFrequency>200</pca:CPUFrequency>
<pca:CPUFrequencyMaximum>400</pca: CPUFrequencyMaximums>
<pca:CommProcessor>CXY123</pca:CommProcessor>
<pca:CommProcessorRevision>Bl</pca:CommProcessorRevisions>
<pca:HighContrastDisplayMode>Yes</pca:HighContrastDisplayModes>

61

<pca:AvailableExpansionSlots>
<rdf :Bag>
<rdf:11i>PCMCIA</rdf:11i>
<rdf:1li>Compact Flash</rdf:1i>
<rdf:1i>MMC</rdf:11i>
</rdf :Bag>
</pca:AvailableExpansionSlots>
<pca:ExpansionCardsInserteds>
<rdf :Bag>
<rdf:11>PCMCIA GPRS</rdf:1i>
<rdf:11>CF 802.11</rdf:1i>
</rdf :Bag>
</pca:ExpansionCardsInserteds>
</rdf :Description>
</prf :component>
<prf:component>
<rdf :Description
rdf : ID="SoftwarePlatform" >
<rdf:type rdf:resource=
"http://www.wapforum.org/profiles/lUAPROF/ccppsch
ema-20010330#SoftwarePlatform" />
<prf :0SName>PocketPC 2002</prf : 0SName >
<prf :0SVendor>Microsoft</prf :0SvVendor>
<pca:CommProcessorOSName>Nucleus</pca: CommProcessorOSName >
<pca:AvailableProgramMemory>128</pca:AvailableProgramMemory >
<prf:JVMVersion>Geode/l.0</prf:JVMVersion>
</rdf :Description>
</prf :component>
<prf:component>
<rdf:Description

rdf : ID="NetworkCharacteristics" >
<rdf:type rdf:resource=
vhttp:/iwww.wapforum.org/profiles/lUAPROF/ccppschema-
20010330#NetworkCharacteristics" />
<prf:SupportedBearerss>
<rdf:Bag><rdf:1i>GSM</rdf:11i>

<rdf:11i>GPRS</rdf:11i>

</rdf :Bag>
</prf:SupportedBearers>
<pca:CurrentBearerMaximumBitRate>56.6</pca:CurrentBearerMaximumBitRat
e>
</rdf :Description>
</prf:component>
<prf:component>
<rdf:Description rdf:ID="BrowserUA">
<rdf:type rdf:resource=
vhttp:/iwww.wapforum.org/profiles/lUAPROF/ccppschema-20010330#BrowserUA" / >
<prf :BrowserName>Pocket |IE</prf :BrowserName>
<prf:HtmlVersion>3.2</prf:HtmlVersion>
<prf:FramesCapable>YesS</prf:FramesCapable>
<prf:TablesCapable>Yes</prf:TablesCapables>
<prf:JavaAppletEnabled>No</prf:JavalAppletEnabled>
<prf:JavaScriptEnabled>Yes</prf:JavaScriptEnableds>
<prf:JavaScriptVersion>1l.1</prf:JavaScriptVersion>
<pca:TextToSpeechCapable>N0O</pca: TextToSpeechCapable>

62

<pca:VoiceXMLCapable>Yes</pca:VoiceXMLCapable>
</rdf :Description>

</prf:component>

</rdf :Description>

</RDF>

63

THIS PAGE INTENTIONALLY LEFT BLANK

64

10.

11.

12.

13.

LIST OF REFERENCES

Stephane Boyera and Rhys Lewis, "An Introduction to Device Independence™
[http://www.w3.0rg/2001/di/IntroToDI.html], October 2004

Mark H. Butler, "Current Technologies For Device Independence, HPL-2001-83"
[http://www.hpl.hp.com/personal/marbut/currTechDevind.htm - Toc510867875],
October 2004

Su Wen, and others, "Towards Device-Aware Networks," paper presented at the
conference at Naval Postgraduate School, July 2004

Graham Klyne, and others, "Composite Capability/Preference Profiles (CC/PP):
Structure and VVocabularies 1.0"
[http://www.w3.0rg/TR/2004/REC-CCPP-struct-vocab-20040115/], October 2004

Hidetaka Ohto and Johan Hjelm, "CC/PP exchange protocol based on HTTP
Extension Framework"
[http://www.w3.0rg/1999/06/NOTE-CCPPexchange-19990624], October 2004

Wireless Application Group (WAG) SPEC-UAProf-19991110, User Agent
Profile Specification, 10 November 1999

Microsoft Corporation White Paper, Understanding Universal Plug and Play,
June 2000

Ericsson, and others, SyncML Representation Protocol, version 1.0.1, 15 June
2001

Bruce Martin and Bashar Jano, "WAP Binary XML Content Format "
[http://www.w3.0rg/TR/wbxml/], October 2004

Wireless Application Group (WAG) WAP-248-UAProf-20011020-a, User Agent
Profile Specification, 20 October 2001

Mark H. Butler, "CC/PP and UAProf: Issues, Improvements and Future
Directions, HPL-2002-35"
[http://www.hpl.hp.com/techreports/2002/HPL-2002-35.pdf], October 2004

Intel PCA Developer Network — Overview,
[http://www.intel.com/pca/developernetwork/overview/index.htm],October 2004

Intel 251604-001, Intel PCA Device Profile Design Guide, Revision 1.0, 8
August 2002

65

http://www.w3.org/2001/di/IntroToDI.html
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/
http://www.w3.org/1999/06/NOTE-CCPPexchange-19990624
http://www.w3.org/TR/wbxml/
http://www.hpl.hp.com/techreports/2002/HPL-2002-35.pdf
http://www.intel.com/pca/developernetwork/overview/index.htm

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

Mark H. Butler, "Implementing Content Negotiation Using CC/PP and WAP
UAProf, HPL-2002-190"
[http://www.hpl.hp.com/techreports/2001/HPL-2001-190.pdf], October 2004

Frank Manola and Eric Miller, "RDF Primer, W3C Recommendation 10 February
2004 "
[http://www.w3.0rg/TR/rdf-primer/], October 2004

Charles Smith and Mark H. Butler, "Validating CC/PP UAProf Profiles, HPL-
2002-268"
[http://www.hpl.hp.com/techreports/2002/HPL-2002-268.pdf],October 2004

James Clark, "XSL Transformations (XSLT) Version 1.0, W3C Recommendation
16 November 1999
[http://www.w3.0rg/TR/xslt], October 2004

Mark H. Butler, "Using Capability Classes to Classify and Match CC/PP and
UAProf Profiles"
[http://www.hpl.hp.com/personal/marbut/capClass.htm], October 2004

James Clark and Steve DeRose, "XSL Transformations (XSLT) Version 1.0,
W3C Recommendation 16 November 1999
[http://www.w3.0rg/TR/xpath], October 2004

Wa3C, "CC/PP Information Page"
[http://www.w3.0rg/Mobile/CCPP/], October 2004

Mark H. Butler, "Device Independence and The Web, HPL-2002-249"
[http://www.hpl.hp.com/research/papers/2003/device independence.pdf], October
2004

Mark H. Butler, "Deli: A Delivery context Library for CC/PP and UAProf, HPL-
2001-260"

[http://www.hpl.hp.com/personal/marbut/DeliUserGuideWEB.htm], October
2004

Wireless Application Group (WAG) WAP-229-HTTP-20010329-a, Wireless
Profiled HTTP, 29 March 2001

The Apache Cocoon Project
[http://cocoon.apache.org/], October 2004

Session Initial Protocol (SIP)
[http://www.cs.columbia.edu/sip/], October 2004

66

http://www.hpl.hp.com/techreports/2002/HPL-2002-35.pdf
http://www.w3.org/TR/rdf-primer/
http://www.hpl.hp.com/techreports/2002/HPL-2002-268.pdf
http://www.w3.org/TR/xslt
http://www.hpl.hp.com/personal/marbut/capClass.htm
http://www.w3.org/TR/xpath
http://www.w3.org/Mobile/CCPP/
http://www.hpl.hp.com/research/papers/2003/device_independence.pdf
http://www.hpl.hp.com/personal/marbut/DeliUserGuideWEB.htm
http://cocoon.apache.org/

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

Chairman

Information Sciences Department
Naval Postgraduate School
Monterey, California

Professor Singh Gurminder
Naval Postgraduate School
Monterey, California

Jonn Gibson
Naval Postgraduate School
Monterey, California

Shang-Yuan Tsai

Chung-Shan Institute of Science and Technology
Taoyuan, Taiwan

67

	I. INTRODUCTION
	BACKGROUND
	B. APPROACH
	C. THESIS ORGANIZATION

	II. DEVICE PROFILE IN DEVICE-AWARE NETWORK
	A. DEVICES
	DEVICE-AWARE NETWORKS INTRODUCTION
	ARCHITECTURE OVERVIEW
	SERVICES IN A DEVICE-AWARE NETWORK
	USING DEVICE PROFILE IN DEVICE-AWARE NETWORK

	III. DEVICE PROFILE STANDARDS
	A. CC/PP AND UAPROF
	1. CC/PP Introduction
	RDF Introduction
	CC/PP Architecture
	a. CC/PP Profile Structure
	b. LC/PP Profile Component Attribute
	c. CC/PP Profiles Defaults
	d. CC/PP Exchange Protocol

	UAPROF
	a. UAProf Introduction
	b. UAProf Architecture
	c. Client Device
	d. Wireless Network and WAP Gateway
	e. Internet or Intranet
	f. Origin Server

	UPNP
	1. UPnP Introduction
	2. UPnP Architecture
	a. UPnP Devices
	b. UPnP Services
	c. UPnP Control Points
	d. Protocols Used by UPnP

	3. Activities Involved in UPnP Network
	a. Addressing
	b. Discovery
	c. Description
	d. Control
	e. Eventing
	f. Presentation

	SYNCML
	1. SyncML Introduction
	2. SyncML Packages and Messages
	3. SyncML Capabilities Exchange
	4. Data Identifier Mapping
	Refreshing Data
	DevInf Introduction

	COMPARISON OF THE STANDARDS

	IV. DEVICE PROFILE CREATION (USING CC/PP)
	A. DESIGN OVERVIEW
	Vocabulary Serialization
	2. Characteristic of Attributes
	3. Profile Resolution
	4. Validating CC/PP and UAProf Profiles
	a. Validation Using XML Schema Parser
	b. Validation Using RDF Schema Parser

	5. Device Profiles Serialization in XSLT
	6. Device Profiles Matching Rules

	B. AVAILABLE APPLICATION FOR CC/PP AND UAPROF PROFILING
	1. DELI Introduction
	Testing Device Profiles in DELI
	a. Browser Profiles Testing
	b. WML Profile Testing
	c. Customized Mobile Device Profile

	3. Apache Cocoon Introduction

	V. CONCLUSION
	A. SUMMARY
	FUTURE WORK
	1. Content Repurposing
	2. Creating Legacy Devices Repository
	Location Service in DAN
	Performance Evaluation in DAN

	APPENDIX A
	APPENDIX B
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

