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ABSTRACT 

Computer simulations which forecast the performance of complicated systems are 

used as decision aids in many applications.  For example, a ship’s defensive system may 

use simulation to support an automated real-time response to a perceived threat, such as 

an incoming missile.  The system uses cumulative simulation data to evaluate a set of 

options in order to choose the best countermeasure.  Since everything happens in “real 

time”, the system has limited time to run the simulation. 

Normally, a system would run the simulation an equal number of times for each 

option before coming to a decision.  But this may cause the system to waste time on 

options which can be deemed non-optimal after only a few simulation runs.  This time 

can be better used to help adjudicate between the better options.   

We evaluate the performance of sequential multiple comparisons algorithms to 

eliminate inferior options as quickly as possible, in order to have more time to dedicate to 

the exploration of better options, so that better decisions may be made.  These algorithms 

allow inferior options to be dropped quickly depending on how well separated they are 

from others, but the algorithms differ in how well they achieve this objective. 
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EXECUTIVE SUMMARY 
 

Computer simulations are often used as decision aids to forecast the performance 

of complicated systems.  For example, a ship’s defensive system may use simulation to 

support an automated real-time response to a perceived threat, such as an incoming 

missile.  The ship has several countermeasures (options) from which to choose to respond 

to the threat.  The defensive system wants to choose the option that is best; namely, that 

which minimizes the probability that the missile will hit the ship.    Typically, the “kill 

probabilities” for the different options are unknown, because they depend on factors such 

as the number of missiles that were launched and their trajectories.  To choose the best 

option the system uses available information about the threat, and conducts simulations to 

estimate the kill probabilities.  These estimates are subject to uncertainty, which is 

decreased as the number of simulations is increased.   But the threat must be engaged in 

real time.  This limits the number of simulations that can be conducted while leaving 

enough time to successfully engage the threat. 

We consider the problem of selecting the best from a set of options based on 

accumulating information, where the resources that can be devoted to simulation are 

limited.  A possible solution to this problem is to run the simulation an equal number of 

times for each option before coming to a decision.  But by doing so the system may waste 

time on options which can be deemed non-optimal after only a few simulation runs.  This 

time can be better used to help adjudicate between the better options.  All selection 

procedures that pre-allocate simulation resources among a set of options have this 

shortcoming.    

Our objective is to identify selection procedures that allow the system to eliminate 

inferior options as quickly as possible, leaving more time to dedicate to the exploration of 

better options, and leading, hopefully, to better decisions.  The selection procedures that 

we consider are designed to operate sequentially as simulation data accumulate in real 

time.  By dropping clearly inferior options early, more resources can be dedicated to 

sharpening estimates of differences between options that are less clearly distinguished.  
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This is in contrast to fixed-allocation schemes, which are unable to dynamically allocate 

resources. 

We examine a class of statistical techniques known as Sequential Multiple 

Comparisons with the Best (SMCB) to satisfy our objective.  Although SMCB 

procedures have the sequential decision-making feature that we seek, they tend to be 

conservative in eliminating inferior options.  This tendency arises from their formulation, 

which is structured to allow for the elimination of the best option with only a small 

probability.  In our context, however, only one option is selected once the simulated 

budget is exhausted, regardless of how many options are “alive” at that point.  Even if the 

best option has survived until the end, which is regarded as a “success” in the SMCB 

formulation, it may not survive our final selection, which we regard as a “failure”. 

At each sampling stage, a SMCB procedure maintains a set of options that is 

offered to contain the best option.  Each option in this set is sampled once, and estimates 

of the means and variances of the options are updated.  An elimination rule is then 

applied to these “live” options, and the set is updated.  The set of live options is strictly 

non-increasing, and it may fail to converge to a single (putatively best) option once the 

procedure is terminated.  Similarly, it may discard the best option erroneously at any 

stage.  Although erroneous elimination risk is controlled by fixing the Type I error of the 

process, this and other aspects of SMCB procedures are calibrated to a set of 

distributional assumptions (normality, known or equal variances) that may be violated in 

practice. 

For these reasons, it is not clear that SMCB procedures always perform better 

than non-sequential procedures.  To examine the tradeoffs between the two types of 

procedures we conduct a series of simulation experiments in which several different types 

of SMCB procedures are compared to a “base case” of equal allocation of sampling effort 

across all options.  We vary the number of options, their pattern of separation, and the 

probability distributions of the simulated observations.  We also consider the effects of 

applying a SMCB procedure when its assumptions are violated.  Comparisons are made 

using two measures of performance:  probability of selecting the best option, and average 

difference of the means of the chosen and best options.  



 xvii

The primary benefit of using a SMCB procedure is to eliminate clearly inferior 

options early.  If the best option is well separated from some of the others it is possible 

for a system to capitalize on this property.  But this advantage is quickly lost if the 

options are not well separated or if important assumptions are violated.  In the former 

case SMCB procedures are almost indistinguishable from non-sequential procedures 

unless the sampling budget is set very high.  This is particularly true of SMCB 

procedures based on an assumption of normal data and unequal, unknown variances.  

SMCB procedures for normal data and equal, known variances can eliminate inferior 

options faster, but they carry a greater risk of eliminating the best option if the variance is 

specified incorrectly. 
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I. INTRODUCTION 

A. BACKGROUND 
The problem’s origins come from an anti-missile decision aid system.  We do not 

get into details about this system, but we describe its important features, only to help the 

reader visualize and understand the problem. 

The anti-missile system is activated as soon as an approaching missile is detected.  

The system receives different parameters such as the location and velocity of the 

incoming missile, the wind state and the time of day.  According to these parameters, the 

system comes up with several possible options of how to defend against the incoming 

missile.  These options may include using electronic warfare (EW), using counter-

missiles, maneuvering, releasing decoys or even not doing anything at all. 

To decide on the best option, the system runs a simulation of the incoming missile 

with each of the options.  The output of the simulation is the probability that the missile 

will hit its target.  If the simulation were deterministic, the system would just have to pick 

the option which generated the lowest probability that the missile will hit its target.  

However, since the simulation is of Monte Carlo type, using random variables for 

unknown parameters, the output is a random variable as well.  Therefore, the system 

should run the simulation several times for each option and choose the option with the 

best mean. 

If time were of no importance, the system would have to run the simulation many 

times for each option to decide which option is the best.  Unfortunately, since the missile 

is on its way, the system can only run the simulation a limited number of times.  We shall 

refer to the total number of simulation-runs the system can perform as the “budget” of the 

system. 

Currently, the system divides its simulation budget evenly among the different 

options, then picks the option with the best mean.  We shall refer to this as the “base 

case”.  While the base case may seem reasonable, there might be a better way to divide 

the budget among the options.  For example, in a scenario where one of the options 
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generates results which are revealed to be clearly inferior, the system can eliminate this 

option early and allocate more time to decide among the remaining, better options.  

B. THE PURPOSE OF THIS THESIS 
This research attempts to find a better way of choosing the best option, using 

early elimination of inferior options.  The purpose of this thesis is to provide system 

developers with the tools to incorporate such a process in the system, so that the decision 

would be more accurate.  We introduce measures of performance and discuss the 

parameters which should be considered. 

The problem is more important for systems operating in situations in which time 

is limited and the decision process is automatic.  If the decision is not automatic and the 

operators have enough time to decide which options to eliminate, they can gain 

“intuition” of the situation and make calculations and comparisons accordingly. 

C. SEQUENTIAL COMPARISON TESTING 
The typical way to decide on the best option among several is to provide as many 

observations as possible for all the options, calculate their means and select the option 

that appears to be the best.  In this paper we are looking at a method which compares the 

different options while the observations are being generated, which influences the 

selection process itself.   

Testing and elimination can take place at different times during the process, for 

example:  

• Two steps – generate 50 percent of the observations, test for elimination and 

generate the rest of the observations for the kept options. 

• Four steps – generate 25 percent of the observations, test for elimination, 

generate another 25 percent of the observations and so on. 

• Sequential – after generating at least one observation for each option, generate 

another observation for an option, test for elimination, generate another 

observation, test for elimination and so on. 
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In this thesis we consider sequential processes as a means of finding the best 

option.  Unlike many such processes in the statistical literature, however, we impose a 

constraint on the number of observations that can be made.  If the budget is exhausted 

and a single option has not been identified as being the best, we select the best of all 

options that are alive at that point, where “best” refers to the option with the smallest or 

largest sample mean depending on the context. 

D. TRADE-OFFS IN EARLY ELIMINATION 
In order to save as many simulation-runs as possible, we would like to eliminate 

inferior options as soon as possible.  However, eliminating options too early might result 

in a false elimination of the best option.  How early is early enough, but not too early? 

The answer to this question depends on: 

• The budget.  A bigger budget allows us to postpone eliminations until we are 

more confident about them. 

• The number of options.  With more options to choose from, we would like to 

eliminate options earlier, which might leave us with more good options 

towards the end. 

• The results.  The farther apart the sample means of the different options are, 

the more confident we are in making eliminations.  Here “distance” is 

expressed in terms of the differences between option means and the variability 

of simulated observations. 

E. DISTRIBUTION OF RESULTS 
In order to understand the complexity of our problem, let’s assume a simple 

scenario in which the results for each of the options are drawn from normal distributions 

with a known common variance.  All we need to find out is which option has the best 

mean.  In this thesis, the best option refers to the option with the smallest mean.  We first 

apply a straightforward, intuitive method. 

Since we know the variance, after a few observations we can estimate the mean of 

each option, and bound it within a confidence interval.  As an elimination rule, we can 



eliminate any option for which the confidence interval of its mean does not overlap with 

the confidence interval for the best option so far.  Figure 1 illustrates how this intuitive 

elimination rule is applied: 
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Figure 1. An intuitive elimination method based on confidence intervals 
for sample means. 

But how large should the confidence intervals be? Should we use the typical 95 percent 

confidence level, or 90 percent or even 70 percent, or should we go as high as 99 

percent?   The answer depends on the budget and on the number of observations we have 

– with more budget and fewer observations we can postpone any elimination until we are 

very confident about it, hence using a wider confidence interval. 

Now consider a problem in which we do not know the variances of the 

observations, or the shapes of their probability distributions.  To handle this situation we 

will present several processes with different parameters, which the user can adjust for the 

system at hand.  We assume that the simulation is accessible for the developer, so that it 

is possible to try these processes as much as needed, changing the parameters to best suit 

the problem. 

F. OUR TOOLS 
In order to test the different processes and to compare them with the base case, we 

wrote a computer program in Java to simulate data for different test scenarios, and to 

process the results using the methods we tested.  

 4
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The program generates results according to normal and beta distributions, as well 

as from a simple unclassified simulation of the anti-missile system, which we developed 

according to information that is available to us, and using our own understanding of the 

problem.  The program processes the results according to each method we want to test, as 

well as the base case.  When a method declares which option is the best, the program 

compares it to the true best option.  This process is repeated many times with different 

parameters for the methods, with different probability distributions, and under different 

budgets. 

G. HEURISTIC APPROACH 
An elimination process can be designed using a heuristic approach.  We can build 

many different methods to choose the best option under different numbers of options, 

budget constraints and distributions of the options, and conduct a “contest” between the 

methods, comparing the results for each scenario with the base case.  The best method 

would be chosen for each scenario. 

The problem with this heuristic approach is that the number of parameters we 

need to change is very large, and if we want to try each parameter with several different 

values then we would have too many options to try.  Therefore, we decided to use 

existing methods, even if they are not designed for this problem, which we then change 

and calibrate to suit our needs. 

H. EXISTING METHODS 
We focus on a class of techniques from the statistical literature known as 

“Sequential Multiple Comparisons with the Best”.  We shall refer to this as the SMCB 

process.  A formal description of the SMCB process can be found in Hsu and Edwards 

(1983).  We found several versions of the SMCB process, each fitting a different set of 

assumptions.  A more detailed discussion of the SMCB process is deferred to Chapter II. 

The SMCB process deals with a slightly different problem than the one we 

described: how to eliminate inferior options such that the probability of eliminating the 

best option by mistake is small.  The process is not limited by any budget, and is not 

designed to be the fastest way to do this elimination.  The SMCB process uses a 
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probabilistic method which sequentially gathers observations and uses this information to 

eliminate options, while the procedures make sure that the probability of eliminating the 

best option is controlled at a small value.  The SMCB process considers it a success when 

the best option is not eliminated, and it does not force the selection of one of the 

remaining options when the budget is exhausted.  In our research problem, however, the 

budget cannot be ignored, and only one option must be selected. 

I. BUDGET 
Suppose that our budget allows for only a limited number of simulation runs.  

There are two ways to look at this limitation: 

1. The number of runs is limited to a certain number (e.g. 100 runs). 

2. The faster the algorithm chooses the best scenario, the better.  This way, 

each run should have a penalty or cost associated with it. 

The first case can be considered as a special case of the second one, where the 

penalty for each run is a step function, with zero for each run below the limit, and infinity 

for each run over it.  Since we do not know the trade-off between the number of runs and 

the quality of the decision, we will consider only the first case, where the number of runs 

is simply finite.  In future work, one can look at a more complex cost function of the 

budget. 

J. RESULTS 
Compared to the base case, SMCB processes have an advantage in being able to 

eliminate obviously inferior options early.   But this advantage quickly diminishes as the 

separation between the best option and inferior options decreases.  Based on the results 

presented in Chapter III, we cannot make a conclusive statement about the advantage of 

using SMCB processes for moderately separated options.  The sequential methods show 

potential under some combinations of test scenarios and budgets, but it seems that in 

order to unlock this potential the system developer needs to know more about the 

distributional properties of the simulation data than may be available. 
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Although our results show that the SMCB processes we consider are not always 

better than the base case, there may be other processes which perform better.  We find 

that the SMCB processes do not eliminate options fast enough, and they do not take the 

budget into account when deciding whether or not to eliminate an option.  On the other 

hand, as we noted above, the base case never eliminates any option, no matter how bad it 

is.  However, extending the advantage of sequential methods beyond this case remains a 

challenging problem. 
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II. BACKGROUND 

A. EXISTING SOLUTIONS 
We searched the statistical literature for existing solutions to our problem of 

choosing the best option with a fixed budget of observations.  We did not find any such 

methods, but we did find methods for addressing a related problem: how to eliminate 

options while controlling the probability of eliminating the best option.  These methods 

tend to be conservative, failing to eliminate inferior options quickly because there is no 

penalty for failing to do so. 

We took these processes and modified them so that they fit our problem.  In 

Chapter III we describe several other methods which we believe might provide better 

solutions. 

B. THE SMCB PROCESS 
This section continues the description of the SMCB process from Chapter I, 

showing its mathematical formulation as well as different methods to construct the 

thresholds. 

The objective of the process is to eliminate options from a set of options, so that 

the probability of eliminating the best option is not greater than a specified probability 

P*.  We define the best option as the one with the smallest mean, for example, in the case 

of the anti-missile system we are looking for the option which generates the smallest 

probability of the missile to hit the ship. 

The SMCB process operates in stages – we start by generating one observation 

for each option; this is the first stage.  Each time we add another observation to each of 

the live (not-eliminated) options we advance one stage.  This means that all the live 

options have n observations at stage n. 

Before advancing to the next stage, the process tries to eliminate options.  

Eliminated options do not call for any more observations, and cannot return at a later 

stage.  To eliminate an option, the process compares each option with the best option at 



that point – if the difference is too big, that option is eliminated.  The main issue in 

designing a SMCB algorithm is choosing the correct thresholds for elimination. 

There are several methods of choosing these thresholds in the literature, 

depending on the distribution of observations: whether it is normal, and whether or not 

we know the standard deviation.  Formulas for these thresholds are provided later on in 

this chapter. 

1. General SMCB Formulation 
Consider a scenario where we have k different options represented by (π1, π2… 

πk), and we are interested in choosing the option with the smallest mean (with minor 

changes we can look for the largest mean or we can use a different statistic). 

When we start the process all the options are relevant (none are eliminated).  We 

shall refer to non-eliminated options as “live” options.  We shall denote the set of live 

options at stage n as Πn.  Notice that since eliminated options cannot return at a later 

stage: Πn ⊇  Πn+1. 

At the first stage we have one observation for each live option.  Likewise, at stage 

n we have n observations for each live option.  At each stage (we shall denote the stage 

number as n) we check which of the options should be eliminated before proceeding to 

the next stage: 

a. We mark the option with the best sample mean so far.  This option 

will not be eliminated.  Assume that option j is that one. 

b. For each of the remaining live options, calculate the difference 

between their sample mean and the sample mean of the best option: 

}:{,ˆˆ nijii iiji Π∈∈≠−= πµµδ  

c. Eliminate any option for which iδ is greater than the threshold (Cn) 

at this stage. 

d. If more than one live option is left, add another observation for each 

live option, and repeat the elimination process. 
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We can limit the SMCB process by a maximum number of stages or a maximum 

number of observations, choosing the option with the best mean among the remaining 

live options when the limit is reached.  We made a slight modification to the process: if 

only two options are left alive and the budget is not yet fully used, the process will not 

eliminate another option before the budget is fully used. 

The thresholds for elimination become smaller and smaller with each stage, 

making eliminations easier.  Figure 2 illustrates how the thresholds decrease with the 

number of stages for an SMCB process based on normal distributions with known 

variances: 
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Figure 2. Threshold versus stage number for the SMCB process. 
Based on five options with normal distributions and a known, common standard 
deviation of 0.1.  Type I error is controlled at P* = 0.8. 

The following sections describe methods for selecting the elimination thresholds 

used by some of the SMCB processes in the statistical literature.  These methods assume 

independence of observations in addition to the assumptions described below.  Other 

methods for choosing the thresholds are described in Chapter V section A. 

2. Thresholds for a Known Common Variance, Normal Distribution 
This method, which is described in Swanepoel and Geertsema (1976), assumes 

that the observations for all options are normally distributed with a known common 
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standard deviation.  The mathematical formulation of the problem is not intuitive, and is 

based on results from sequential statistical analysis. 

 Let k be the number of options, and P* the probability of not eliminating the best 

option at any stage.  We define b = b(k, P*) to satisfy the following equation: 
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where Φ and φ are the CDF and density of the standard normal distribution, respectively.  
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The threshold at stage n is ),(2 bngσ , where σ2 is the common variance of all the 

options.  We denote this method as SMCBknown, to recognize that this process assumes a 

known common variance. 

3. Thresholds for an Unknown Variance, Normal Distribution 
This method, which is also described in Swanepoel and Geertsema (1976), 

assumes that the observations for all the options are normally distributed with unknown 

and possibly different standard deviations, which must be estimated in the process. 

Let k be the number of options, and P* the probability of not eliminating the best 

option at any stage.  We define a = a(k, P*) to satisfy the following equation: 
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The quantity h(t,n) is one component of the threshold, which is multiplied by another 

component which takes the observations’ estimated variances into account.  This 

component is calculated using the differences of each pair of options.  Denote two of 
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these options by i and j.  At stage number n, )(nX i  is the average over all observation for 

option i.  Letting Xiβ denote the βth observation under option i, we define 
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Finally, the threshold at stage n when comparing option i and option j is 

),,(),()( nijHnthnC = . 

Since we do not know the variances, it might happen that the best option has a 

large variance compared to the others, and this will make eliminations harder.  Therefore, 

in this scenario we should compare all the different pairs, since eliminations might occur 

between two options which are not the best so far, even if none of them was eliminated 

by the best option so far.   Figure 3 illustrates this – the bars on the left are the confidence 

intervals for the sample means of options A, B and C.  The bars on the right are the 

threshold limits for each comparison between two options.  Option A is eliminated by 

option B rather than option C, even though option C has the best (smallest) sample mean. 
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Figure 3. An illustration of the use of confidence intervals for selecting the 
option with the smallest mean. 

Assuming normality and unknown, possibly different standard deviations. 

We denote this method as SMCBunknown, to recognize that this process assumes an 

unknown variance. 
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C. COMPUTATIONAL COMPLEXITY 
The problem we are dealing with is one in which time is limited.  Therefore, we 

should be concerned about the running time of the different algorithms – if any of the 

algorithms is too slow it might leave less time to generate observations.  The running 

time of the algorithms depends on the total number of observations across all the options 

and the number of options.  We shall denote the total number of observations as b (for 

budget), and the number of options as k.  We shall follow the convention and present the 

running time of the algorithms by the dependence on the order of the parameters, 

O(parameter).  In short, this is a common form to specify the running time of an 

algorithm according to the parameter which influences it the most.  For example, if the 

running time is 30n2, then we say that it is of the order of n2, or O(n2). 

In the base case we need to calculate the sample mean for every option and find 

the option with the best sample mean.  Calculating the sample mean for every option 

takes time in the order of b, and the time to choose the option with the best mean is in the 

order of k.  Since the number of options is not greater than the budget, k ≤ b, the total 

running time is O(b).   

With the sequential process we have a variable number of calculations at each 

stage.  The number of stages depends on the budget and the number of options at each 

stage, and can be marked as b/k.  At each stage we need to calculate the mean of each 

option.  Although calculating the mean of n numbers takes O(n), we can use the value 

from the previous stage to calculate the mean in a time of O(1) at each stage. 

Choosing the best option at each stage takes O(k), and comparing this option to 

each of the other options takes another O(k).  So, if the number of stages is O(b/k) then 

the total running time is also O(b). 

In case we need to compare each pair of live options at each stage, the running 

time for that is O(k2), and the total running time would be O(kb).  

To summarize, we can say that the running time for the base case is O(b) and for 

the sequential procedures it is either O(b) or O(kb).  However, calculating the order of the 

running time might be deceiving, as the actual running time of the sequential procedure 
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may be several times that of the base case, even with O(b).  To say whether this 

difference is significant or not requires a comparison between the running time of the 

simulation and that of the sequential process. 
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III. METHODOLOGY 

A. THE SIMULATION COMPUTER PROGRAM 
In this section we describe the computer program we developed to test different 

algorithms for selecting the best of a collection of options.  Our description does not 

include features and attributes which are not important to the understanding of the 

program.  The computer program is available from the author and advisor of this thesis. 

1. Overview 
The program generates observations according to the test scenarios described later 

in this chapter.  Each time the program generates observations for a single test scenario, it 

runs the base case and sequential algorithms on these observations.  Each algorithm 

chooses the best option according to its rules, and a comparison is made with the true best 

option.  This process is repeated many times for each test scenario.  The test scenarios 

can come from the normal distribution, the beta distribution or from a simplified 

simulation of missile trajectories that we describe below. 

2. The Missile Trajectory Simulation 
This simulation assumes that there is a missile approaching a ship.  The ship can 

put decoys around it, hoping that the missile will choose one of the decoys instead of the 

ship.  Each of the decoys, as well as the ship, has a signal strength (represents the radar 

cross section, for example), and the missile randomly chooses one of these elements and 

homes in on it. 

The probability of choosing each element is proportional to its signal strength 

times the cosines of its angle from the missile’s axis.  The missile’s flight direction is 

randomly chosen around the element to which it is homing.  The probability that the 

missile will kill the ship is estimated from the simulation, using the minimum distance of 

the missile from the ship.  Figure 4 illustrates this: 



β α 
γ 

Offset 

Min distance 

X  

Figure 4. An illustration of the missile trajectory simulation. 
A missile starts at a distance X from the ship at a random offset.  The missile 
chooses a decoy according to the element’s signal power and angle from the 
missile’s axis.  The chosen decoy is marked by the red star, and the missile 
actually heads to the green point, randomly chosen next to it.  The probability of 
kill is calculated according to the minimum distance of the missile from the ship 
during its flight. 

The advantage of using this simulation is that it might generate observations 

according to a distribution that is very different from the normal or beta distributions.  On 

the other hand, it is more difficult for us to predict how well a method would perform in a 

given scenario.  One must also have the simulation in order to reproduce the results, 

whereas it is much easier in the case of the conventional distributions.  

3. Determining Which is the Best Option 
In a simulation using a known probability distribution, we know in advance which 

is the best option, and we can compare the results of the algorithms with this option.  In 

other types of simulation this may not be possible.  To determine which is the best option, 

the program generates ten thousands observations for each test scenario (much more than 

the budget), calculates the mean for each option and chooses the best one.  Actually, we 

use this method for the normal and beta distributions as well. 

 18
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B. MEASURES OF PERFORMANCE 
Our simulation generates observations for all the options, each algorithm chooses 

the best option according to its rules, and a comparison is made with the best option.  In 

this section we describe several measures of performance that can be used to compare 

algorithms for selecting the best option: 

1.    The Fraction of Times an Algorithm is Correct  
This tells us the fraction of times the algorithm chose the best option, but it does 

not show us how far from the best the algorithm was when it chose the wrong option – it 

might have chosen the second best, but it also might have chosen the worst one.  We shall 

denote this measure of performance as MOP1. 

2. The Average Error 
Each time an algorithm chooses an option we calculate the difference in means 

between this option and the best option (i.e. if it chooses the best option, the difference is 

zero).  The average of these differences is our second objective function.  We shall 

denote this measure of performance as MOP2. 

3. The Average Number of Observations Needed 
The average number of observations needed to get the correct option a certain 

fraction of the time.  Although this is an important measure of performance for time-

critical applications, we did not use this measure of performance in our research. 

C. SMCB VERSUS THE BASE CASE 
The SMCB process might not be any better than the base case – consider a case 

where the thresholds for elimination are very large, such that no options are eliminated 

until the entire observation budget is used.  In that case, the budget is equally divided 

among the options and the selection is made for the option with the best mean.  This case 

is the same as the base case, where the observations budget is divided equally among the 

options at the beginning, and therefore the result would be the same.  However, the 

SMCB process would have imposed greater computational costs than the base case, with 

no additional benefit. 



 20

Likewise, the SMCB process might be better or worse than the base case, 

depending on several parameters, some of which are described in Chapter I and some 

which are described later in this chapter.  One of these parameters is the existence of very 

bad options which can be eliminated early.  In order to make it clearer, we consider three 

types of scenarios: 

• All the options which are non-optimal are statistically the same.  If that is the 

case, either the non-optimal options are close to the optimal one and no options 

will get eliminated early or they are so far from it that using the base case is 

good enough.  In either case, the results are likely to be close to those of the 

base case; hence we label this the “worst case” scenario. 

• There is a combination of non-optimal options, some of which are close to the 

optimal and others far from the optimal.  The options are likely to be 

eliminated one by one, gradually leaving only the options which are close to 

the optimal one.  We label this the “gradual” scenario. 

• Half of the non-optimal options are close to the optimal one and unlikely to get 

eliminated early, while the other half are far from it and might get eliminated 

early.  We label this the “half-and-half” scenario. 

The next chapter describes the test scenarios we chose to use for the evaluation of 

the performance of the SMCB processes compared to that of the base case.   

D. TEST SCENARIOS 
In order to test the algorithms and to compare their efficiency to that of the base 

case, we need to test it on data from the actual system simulation.  Unfortunately, we do 

not have access to the actual simulation, so we developed a substitute. 

We used three types of sources for randomly generated data: normal distributions, 

beta distributions and a simplified interpretation of the actual simulation, which we built 

according to our understanding of the problem.  For each source we decided on several 

test scenarios, each with a different number of options to choose from, and different 



parameters for those options.  We chose the test scenarios so that they will span the space 

of options with the following dimensions: 

1. Number of Options and the Budget 
We expect test scenarios with more options and a smaller budget to show a bigger 

difference between the base case and the sequential algorithms. 

2. Separation of Options 
We define the separation between two options as the difference in means divided 

by the standard deviation: 
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This measure is directly related to the probability that for a single observation 

from each option, observation from the better option will be greater than that of the other 

one.  We shall refer to this as the separation between the options.  We considered two 

factors regarding the separation: 

a. The separation between the best option and the second best. 

b. The distribution of the means of good and inferior options. 

Other than these guiding rules, the construction of the test scenarios is arbitrary. 

We divide the test scenarios in three groups according to the type of source: 

normal distribution, beta distribution and the simplified anti-missile simulation.  The next 

three sections discuss the test scenarios for these sources.  In addition we use several 

other test scenarios, which are described in Chapter III. 

E. TEST SCENARIOS FOR THE NORMAL DISTRIBUTION 
For the normal distribution we use the following parameters in order to build the 

test scenarios:   
 21
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1. Number of Options 
We use both k=5 and k=9 options in our simulations.  While these numbers are 

arbitrary, we think that having five options is the minimal scenario which is interesting 

for this problem and a scenario with nine options represents one with many options.   

2. Separation 
We use separations of ∆1,2= 0.1 , 0.2, 0.3  … up to 1.0.  This is an appropriate 

range for the budget we use and the precision we require – a smaller separation requires a 

larger budget, while a larger separation results in a very small probability of mistake in 

choosing the best. 

3. Distribution of the Separation of Options 
We consider three simple cases: 

a. One best option, all the other options are the same, separated from 

the best by the specified separation.  This corresponds to the “worst 

case” scenario described in section C, above. 

b. The best is separated from the second best by the specified 

separation, from the third best by twice the specified separation, 

from the fourth by three times the specified separation and so on.  

This corresponds to the “gradual” scenario described in section C. 

c. Half of the non-optimal options are separated from the best by the 

specified separation, while the other half is separated by four times 

the specified separation.  This corresponds to the “half-and-half” 

scenario described in section C.  

4. Standard Deviation 
All but one of the scenarios we consider have a common standard deviation for all 

the options.   



The total number of test scenarios is: 

60)__(3)(10)(2 =×× sseparationofonsdistributisseparationoptions . 

The extra test scenario with the varying standard deviation is a variation of the “half-and-

half” case, but for all the options the standard deviation is changed so that the ratio µ/σ is 

kept constant. 

5. Budget 
Our problem of selecting the best option is limited in running time, which limits 

the number of observations we can generate.  We define the total number of observations 

available as the budget.  Since in the base case the total budget is divided evenly among 

the options, we decided to set the budget levels according to the number of options in a 

test scenario. 

We consider four levels of budget per option: 5, 10, 20, and 40, which translate to 

total budget over all the observations of 25, 50, 100 and 200 for the scenarios with five 

options, and 45, 90, 180 and 360 for the scenarios with nine options. 

F. TEST SCENARIOS FOR THE BETA DISTRIBUTION 
The beta distribution is characterized by two parameters: α and β.  The 

distribution is concentrated in the [0,1] interval, with a mean of µ=α/(α+β) and a variance 

of 
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The shape of a beta distribution is defined by the parameters α and β, and is asymmetrical 

for µ ≠ 0.5.  Due to these properties, the beta distribution is commonly used as an 

approximation for unknown probability distributions.  

We decided to use the same scenarios as those for the normal distribution, with 

the following necessary changes: 

1. The Mean 
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The beta distribution is concentrated on the interval [0,1] and so its mean is 

between 0 and 1.  Changing the location of the mean in this interval also changes the 



shape of the distribution.  We use two scenarios, one with the means around 0.5, 

signifying a symmetric bell-shaped distribution, and one with the means around 0.1, for 

an asymmetric distribution. 

2. The Standard Deviation 
In order to keep the same separation values as we did in the normal case, we use a 

standard deviation of 0.1, instead of 1. 

3.  The Parameters 
The beta distribution is specified by two parameters: α and β.  We translated the 

means and standard deviation into these parameters according to these equations: 

α
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We test these scenarios with different budgets, the same way as for the normal 

distribution scenarios. 

G. TEST SCENARIOS FOR THE MISSILE TRAJECTORY 
SIMULATION 
The test scenarios for the simulation are more arbitrary than the previous ones.  

Since we cannot define the mean or the standard deviation of the results a-priori, we need 

to change the parameters in an arbitrary way. 

Description of the missile trajectory simulation is given in this chapter in section 

A.2.  The parameters we can change are the number of decoys, the signal strength of each 

decoy and that of the ship, the location of the decoys, the distribution of the offset and the 

missile’s accuracy.  Each option represents a set of values for these parameters, and each 

scenario has several options, one of which is the best.  These are the scenarios we use: 

• In the first scenario, we use a different number of decoys for each option, 

cutting the uppermost decoys first.   

• In the second, third and forth scenarios we change the signal strength of the 

decoys compared to that of the ship, making their signal strength weaker and 

 24
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weaker for every option.  In the second scenario this difference is small, and it 

gets larger in the third and forth scenario, hence it is more difficult to discern 

the best option in the second test scenario and easiest in the forth. 

• In the fifth scenario we change the accuracy of the missile. 

• In the sixth scenario we change the location of the decoys, placing them closer 

and closer to the ship. 

• In the other four scenarios we mix options arbitrarily from the six scenarios 

described above. 

For the SMCBknown method we need to specify a standard deviation value.  We 

use σ=0.5 since it is an upper limit for the real value. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 26

 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



IV. RESULTS 

A. PREFACE 
The purpose of this chapter is to show whether the SMCB methods are better than 

the base case.  The results are not conclusive about this, and the advantage depends on 

several parameters such as the number of options and the budget. 

The next section describes the expected results from the SMCB methods as well 

as from the base case.  Samples from the raw results follow that section, and then a 

discussion about the actual advantage of using the SMCB methods.   

B. EXPECTED RESULTS 
In this section we compare the different selection algorithms, and we describe the 

qualitative results we expect to see for any of the selection processes.  The discussion in 

this section is qualitative in nature and is intended to help the reader understand results 

presented later in this chapter. 

1. Performance versus Separation 
We use two measures of performances: 

a. Fraction of correct decisions versus separation (MOP1) 

Reasonable algorithms should produce monotone, non-decreasing graphs 

– the greater the separation (see section III.D.2) the more often we are correct.  The 

graphs should appear as shown in Figure 5: 
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Figure 5. Depiction of the expected percentage of correct decisions (MOP1) 
versus separation for a typical selection algorithm. 
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b. Average difference error versus separation 

The difference in means between the best option and the option chosen by 

the selection process can be used as a measure of distance.  Because the selection process 

operates on random data, this distance is also random.  For our measure of performance 

we take the average difference over the simulation.  If the separation is very small, 

choosing a wrong option would result in a small difference from the best option, because 

the options are close to one another.  If the separation is very large, the process would be 

correct most of the time, and the average difference would be very small.  Therefore, a 

plot of the average difference versus separation should appear as shown in Figure 6: 

 

 

 

Figure 6. Depiction of the average error (MOP2) versus separation for a 
typical selection algorithm. 
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2. Performance versus Budget 

When the budget is greater, we expect to get a better decision, resulting in a 

higher probability of choosing the best option, and a smaller average error.  For the base 

case, when the budget is very large the probability of making the correct decision is close 

to one.  When the budget is small, we expect the sequential processes to have better 

results than the base case.  However, for the sequential processes we use, a false 

elimination can occur at some stage, and a large budget will not compensate for that.  

Therefore, for the sequential processes the limit is less than one.  Figure 7 illustrates this: 
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Figure 7. Expected performance versus budget, sequential and base case 
processes. 
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Figure 7 shows a scenario where the sequential process is better than the base case 

for a small budget, and worse for a large one.  While this scenario is possible, it is also 

possible that the sequential process would always be worse than the base case, if it 

eliminates options too fast. 

3. Performance versus Number of Options 
If we fix the number of observations per option and add more options the base 

case will only do worse – there are more opportunities to choose a wrong option.  While 

the sequential processes also have more opportunities to choose a wrong option, they also 

have more opportunities to eliminate bad options and use their saved observations for the 

other options.  An extreme example would be to add an option which is so bad that it will 

get eliminated on the first or second stage, with practically no chance of being selected as 

the best one.  In this example the base case is not affected, but the sequential processes 

will eliminate this option early and have a bigger budget for the other options; it is like 

changing the overall budget of the sequential process while leaving the base case budget 

fixed. 

4. Performance versus Distribution of Observations 
The sequential (SMCB) processes that we consider are based on an assumption 

that the data are normally distributed.  However, these processes might be sensitive to 

changes in the type of distribution, especially distributions with asymmetric shapes.  The 

base case should be more robust; i.e., less sensitive to these changes. 

5. The Quality of the Processes 
We check two types of sequential processes: one in which the standard deviations 

of the observations are known and one which they are not.  We expect the first to be 

better, since it is optimized for the case of a known standard deviation.  It is difficult to 

say which of the different P*’s performs better.  However, we expect that as P* becomes 

larger, it would eliminate less options, and therefore be closer to the base case, which 

does not eliminate any options until the entire budget is expended.  
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6. The Combination of Inferior and Superior Options 
Section III.E.3 describes the three ways we distribute the inferior and superior 

options of a test scenario: “worst” case, “gradual” case and “half-and-half” case.  We 

expect the sequential methods to do better than the base case in scenarios where there are 

extremely inferior options that can be eliminated early.  In the “gradual” and “half-and-

half” cases, there are such extremely inferior options and therefore we expect to see the 

advantage of a sequential method under these cases.  In the “worst” case, on the other 

hand, all inferior options have the same mean, so if the separation between the best and 

these inferior options is too small they will not be able to discard options before the 

budget is exhausted.  Thus, the sequential methods will work just like the base case, and 

if the separation is big enough for the sequential methods to eliminate an option, then it is 

probably also easy for the base case to distinguish the best option.  Taking into account 

the fact that the sequential methods might falsely eliminate the best option, the results of 

the sequential methods can either be slightly better or worse than those of the base case. 

C. SIMULATION RESULTS 
Each test scenario generates a comparison between the base case process and the 

SMCB processes.  We use two SMCB processes, one which assumes a known standard 

deviation, SMCBknown, and one which assumes unknown standard deviation, 

SMCBunknown, and four values of P* for each of these two processes.  This results in 

hundreds of comparisons.  For obvious reasons we only show a summary of the results in 

this paper, and a few examples of the results.  The examples are taken from three test 

scenarios using normal distribution.  The next section discusses the overall of the results.  

1. The Normal Distribution, Five Options, Budget of 100 Observations, 
“Gradual” Separation 

The following graph shows the portion of time the different processes chose the 

best option for this test scenario, for different values of separation: 
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Figure 8. Percentage of correct decisions (MOP1) versus separation. 
Different methods with a budget of 100 observations, observations from the 
normal distribution, “gradual” separation case. 

There is a very small difference, if any, between the different processes.  All the 

processes are doing better with a bigger separation, as expected.  It is difficult to see 

anything else from this graph, and a better presentation is discussed later, in section 3 of 

this chapter. 

2. The Normal Distribution, Five Options, Budget of 100 Observations, 
“Half-and-Half” Separation 

The following graph shows the average error (see MOP2 in III.B.2) of the 

different processes under this test scenario; we reduced the number of processes for the 

clarity of presentation. 
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Figure 9. Average error (MOP2) of different processes versus separation. 
Different methods with a budget of 100 observations, observations from the 
normal distribution, five options, “half-and-half” separation case. 

Each of the processes has a maximum that occurs somewhere between the 

smallest and largest separation, as expected (see B.1.b).  At the beginning, the base case 

is a bit better than the other processes, and then it turns to be the worst, and returns to be 

one of the best when the separation is big enough. 

3. Difference from the Base Case 

It is not easy to see the details in the figures presented in section 2.  To make the 

details clearer we present the measures of performance for the sequential (SMCB) 

methods as differences from the base case: 

• 1 _1 1MOP sequential base caseMOP MOP∆ = − , and 

• 2 _2 2MOP sequential base caseMOP MOP∆ = −  

Alternatively, one may argue that these differences should be expressed relative to the 

base case: 
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but then we have to deal with a possible division by zero.  Note that the sequential 

(SMCB) methods perform better then the base case according to whether 
1MOP∆  is 

positive and/or 2MOP∆  is negative. 

After making these transformations, Figure 8 and Figure 9 are re-expressed as 

Figure 10 and Figure 11 below; we also reduced the number of processes for the clarity 

of presentation. 
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Figure 10. Percentage of time correct, difference from the base case (∆MOP1).  
Positive values are favorable for the SMCB methods.  Budget of 100 
observations, observations from the normal distribution, “gradual” separation 
case, five options.  Data are the same as for Table 1. 
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Figure 11. Average difference error, difference from the base case (∆MOP2). 
Negative values are favorable for the SMCB methods.  Budget of 100 
observations, observations from the normal distribution, five options, “half-and-
half” separation case.  Data are the same as for Table 2. 

Figure 10 and Figure 11 can also be represented in a table form, where each row 

represents a value of separation in a test scenario and each column represents a sequential 

method with a specific P* value. Table 1 and Table 2 show these figures in table form.  

The colors help to distinguish visually the cases where a method is worst than the base 

case (orange), slightly better than the base case (light green) or a lot better (dark green). 
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SMCBknown SMCBunknown
Separation P* = 0.8 P* = 0.99 P* = 0.8 P* = 0.99 

0.1 -1.0% -1.0% -1.0% 0.0% 
0.2 0.0% -1.0% 0.0% 0.0% 
0.3 3.0% 0.0% 1.0% 0.0% 
0.4 4.0% 0.0% 0.0% 0.0% 
0.5 3.0% 1.0% 0.0% 0.0% 
0.6 2.0% 2.0% 1.0% 1.0% 
0.7 1.0% 1.0% 0.0% 0.0% 
0.8 0.0% 0.0% 0.0% 0.0% 
0.9 0.0% 0.0% 0.0% 0.0% 
1.0 0.0% 0.0% 0.0% 0.0% 

Table 1. Percentage of time correct, difference from the base case (∆MOP1).  
Positive values are favorable for the SMCB methods.  Budget of 100 
observations, observations from the normal distribution, “gradual” separation 
case, five options.  Data are the same as for Figure 10. 

 SMCBknown SMCBunknown
Separation P* = 0.8 P* = 0.99 P* = 0.8 P* = 0.99 

0.1 0.0029 0.0052 0.0001 -0.0002 
0.2 -0.0022 0.0023 -0.0007 0 
0.3 -0.0085 0.0033 0.0018 0.0003 
0.4 -0.0137 -0.0079 -0.0062 -0.0008 
0.5 -0.0099 -0.0149 -0.0042 -0.0025 
0.6 -0.0136 -0.016 -0.0063 -0.0036 
0.7 -0.0104 -0.0139 -0.0054 -0.0034 
0.8 -0.0024 -0.008 0 -0.0039 
0.9 0.0017 -0.0037 0.0035 -0.0019 
1.0 0.002 -0.003 0.002 -0.001 

Table 2. Average difference error, difference from the base case (∆MOP2). 
Negative values are favorable for the SMCB methods.  Budget of 100 
observations, observations from the normal distribution, five options, “half-and-
half” separation case.  Data are the same as for Figure 11. 
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4. The Normal Distribution, Five Options, Different Budgets, “Worst Case” 
Separation 

Figure 12 shows the percentage of correct decisions (MOP1) for the base case, 

SMCBknown, and SMCBunknown selection processes with P* = 0.8 and four different budget 

levels (25, 50, 100, and 200). 
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Figure 12. Percentage of correct decisions (MOP1) of different methods 
versus separation. 

Budget levels of 25, 50, 100 and 200 observations, observations from normal 
distribution, five options, “worst case” separation. 

Each of the processes shown in Figure 12 performs better with a larger budget.  

We can see that in this test scenario the base case is a bit better than the SMCB process 

when the budget is small, and this advantage gets smaller as the budget gets larger. 

D. THE ADEQUACY OF SEQUENTIAL METHODS 
The simulation results reveal cases in which the sequential methods do better than 

the base case, and others in which they do worse.  Therefore, we can say that there is 

potential for using the sequential methods, but assigning the correct method might not be 

easy.  This section describes the strengths and weaknesses of using the sequential 

methods, as seen in the results.  Since the test scenarios we use do not represent the actual 
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problem, we put the emphasis on the points which we think are important for future use 

of these methods, rather than on the numerical results. 

In this section we describe the performance of the SMCB methods compared to 

that of the base case under the same conditions (same test scenario), not their absolute 

performance.  It is possible that other sequential methods behave differently than the 

methods we introduced, and a complete analysis is needed for any other method. 

1. Test Scenarios 

The sequential methods’ advantage is strong in some of the test scenarios, while 

in others it is weak to the point of turning into a disadvantage. 

The advantage can be seen in test scenarios containing options which are 

extremely far from the best option.  The SMCB methods perform the worst in the “worst 

case” test scenarios, as expected.  The performances in the “gradual” and “half-and-half” 

are usually better than the base case and very close to one another. 

2. Budget 
We expected to see the advantage of the sequential methods relative to the base 

case in scenarios with a small observation budget, and a disadvantage for scenarios with a 

large budget.  However, the results show that the sequential methods may start with a 

disadvantage for small budgets, an advantage for bigger budgets and a disadvantage 

again for even bigger budgets.  Figure 13 shows an example for the relative error versus 

the budget: 
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Figure 13. The relative error versus the budget (∆MOP2), separation of 0.7. 
The errors of the methods after subtracting out the base case errors.  Negative 
values are favorable for the SMCB methods.  Observations from a normal test 
scenario, five options, “half-and-half” separation. 

The points at which the disadvantage turns into an advantage and vice versa 

depend on the test scenario, and on the separation for this test scenario.  Figure 14, Figure 

15 and Figure 16 illustrate this dependence.   
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Figure 14. The relative error versus the budget (∆MOP2), separation of 0.2. 
The errors of the methods after subtracting out the base case errors.  Negative 
values are favorable for the SMCB methods.  Observations from a normal test 
scenario, five options, “half-and-half” separation. 
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Figure 15. The relative error versus the budget (∆MOP2), separation of 0.5. 
The errors of the methods after subtracting out the base case errors.  Negative 
values are favorable for the SMCB methods.  Observations from a normal test 
scenario, five options, “half-and-half” separation. 
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Figure 16. The relative error versus the budget (∆MOP2), separation of 0.9. 
The errors of the methods after subtracting out the base case errors.  Negative 
values are favorable for the SMCB methods.  Observations from a normal test 
scenario, five options, “half-and-half” separation. 

In the eyes of a system developer, the results of our research suggest that the 

existence of very bad options and a small budget are not the only criteria for the 
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usefulness of the sequential methods.  The separation of the non-optimal options from the 

best option should also be taken into account. 

3. Beta versus Normal Distribution 

We expected to find the sequential methods doing better under a normal 

distribution than under a beta distribution.  The results show this difference.  There is a 

big difference between the normal distribution and the beta distribution, and a small 

difference between the symmetric beta distribution (with µ= 0.5) and the asymmetric beta 

distribution (with µ=0.1).  Figure 17 shows a comparison of the results for these three 

scenarios: 
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Figure 17. Comparison of results for observations from the normal, 
symmetric beta and asymmetric beta distributions. 

The errors of the methods after subtracting out the base case errors (∆MOP2).  
Negative values are favorable for the SMCB methods.  Scenarios have 5 options, 
“half-and-half” separation and a budget of 100 observations. 

4. Common Standard Deviation versus Unequal Standard Deviations 
The standard deviations of different options can be unequal.  We tested the 

sequential methods in one scenario of unequal standard deviations.  The options in this 

scenario have the same means as the test scenario with nine options, observations from a 

normal distribution and a “half-and-half” separation, but the standard deviations are 

unequal – options with a larger mean have a larger standard deviation, such that the ratio 

µ/σ is the same for all the options. 
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We find that using unequal standard deviations in the simulations produces 

inferior results from the SMCBknown method.  This method assumes a known, common 

value for the standard deviation, and we consider the use of a value that is not correct for 

all the options in this test scenario.  The SMCBunknown method was less affected by the 

change of the deviation, and produced results which were sometimes better and 

sometimes worse, with no obvious difference.  

Figure 18 shows the results for a budget of 180 observations: 
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Figure 18. Differences in the relative errors (∆MOP2) of the sequential 
methods for equal and unequal variances from the base case 

The errors of the methods after subtracting out the base case errors.  Negative 
values are favorable for the sequential methods.  Observation from a normal 
distribution, nine options, “half-and-half” separation, budget of 180 observations. 

5. Sensitivity of the SMCBknown Method to Misspecification of the Standard 
Deviation 

When using the SMCBknown method, it may not be possible to know in advance 

the exact standard deviation.  We use one of the test scenarios to see how the results are 

affected by assuming a wrong standard deviation.  The results show that this method is 

very sensitive to such inaccuracies. 

Using a standard deviation twice as big as the real one, the results were 

unfavorable especially in scenarios of a small budget.  Using a standard deviation half 
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that of the real one results in an improvement of the results for a small budget, but this 

advantage quickly turns into a huge disadvantage with a larger budget. 

Figure 19 shows the results when assuming the correct standard deviation, half of 

that and twice of that: 
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Figure 19. The relative error (∆MOP2) of the SMCBknown method, with wrong 
standard deviation assumptions. 

The errors of the methods after subtracting out the base case errors.  Negative 
values are favorable for the sequential methods.  Observations from the normal 
distribution, five options, “half-and-half” separation, budget of 100 observations. 

E. THE MISSILE TRAJECTORY SIMULATION SCENARIOS 
We use ten test scenarios for the missile trajectory simulation.  These scenarios 

are described in Chapter III section G.  Table 3 shows the performance of the sequential 

methods compared to the base case in these scenarios, with a budget of 50 and 100 

observations: 
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SMCBknown; P* = 0.8; SMCBunknown; P* = 0.8; 
Scenario budget 50 budget 100 budget 50 budget 100 

1 0.0022 0.0106 -0.0005 0.0006 
2 -0.0009 0.0027 0 -0.0009 
3 0.0024 0.0146 -0.0016 -0.0013 
4 0.0137 0.0316 -0.0034 -0.0002 
5 0.0005 0.0001 0 0.0002 
6 0.002 0.0004 -0.0005 -0.0013 
7 0.003 0.0022 -0.0004 -0.0001 
8 0.0055 0.001 0 -0.0018 
9 0.0047 0.0032 -0.0008 0.0006 
10 0.0021 0.0003 -0.001 -0.0008 

Table 3. The relative errors (∆MOP2) of the sequential methods for the 
missile simulation scenarios. 

Negative values (painted green) are favorable to the SMCB methods, positive 
values (painted orange) are unfavorable. 

The SMCBknown, which assumes a common known standard deviation, usually 

performs worse than the base case.  On the other hand, the SMCBunknown method performs 

slightly better than the base case. 

These test scenarios are arbitrary in nature, and therefore it is difficult to 

recognize patterns or to say general things about these results.  System developers might 

learn more by testing the sequential methods with pre-existing realistic scenarios.  

However, these results highlight the sensitivity of the SMCBknown method to the 

distribution, as well as the robustness of the SMCBunknown method.  

F. SUMMARY 
Compared to the base case, SMCB processes have an advantage in being able to 

eliminate obviously inferior options early.   But this advantage quickly diminishes as the 

separation between the best option and inferior options decreases.  Based on the results, 

we cannot make a conclusive statement about the advantage of using SMCB processes 

for moderately separated options.   

The sequential methods show potential under some combinations of test scenarios 

and budgets, but it seems that in order to unlock this potential the system developer needs 
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to know more about the distributional properties of the simulation data than may be 

available.  We expect the sequential methods to perform better than the base case if there 

are options that can be identified as inferior and eliminated quickly. 

Although our results show that the SMCB processes we consider are not always 

better than the base case, there may be other processes which perform better.  We find 

that the SMCB processes do not eliminate options fast enough, and they do not take the 

budget into account when deciding whether or not to eliminate an option.  On the other 

hand, as we noted above, the base case never eliminates any option, no matter how bad it 

is.  However, extending the advantage of sequential methods beyond this case remains a 

challenging problem. 

Other measures of performance, such as the average total number of observations 

needed to be correct a certain portion of the time, might show a greater advantage for the 

SMCB methods. 

Using the sequential methods may produce an inferior result, compared to the 

base case.  The SMCBknown is sensitive to the accuracy of the standard deviation we 

assume, and a wrong value (especially a smaller one) may generate very big mistakes.  

On the other hand, the SMCBunknown proved to be much more robust, and is less likely to 

perform much worse than the base case, even in scenarios which are unfavorable to 

sequential methods. 
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V. SUMMARY 

A. FUTURE WORK 
We tested several sequential selection methods from the statistical literature and 

changed them according to our needs.  In a future work, many other methods can be 

developed for the elimination of inferior options.  We have several ideas for elimination 

procedures, which we could not test due to a lack of time.  Some of these methods use 

non-parametric techniques which may be less powerful but more widely applicable. 

1. Binomial Pairs Comparison 
At each stage we compare all possible pairs of options; each such comparison 

might end with the elimination of one of them.  To perform the comparison, we look at 

the number of times option A is better than option B by comparing the results in the order 

they were generated in (i.e. first observation of option A versus the first observation of 

option B and so on).   

After counting the number of times the observations of option A are better than 

those in option B, we assume that we have a binomial test with the null hypothesis that 

the probability of success is p=50%.  According to the number of successes, we can 

calculate the probability that p is greater than 50%, and the probability that p is less than 

50%.  If the probability for one of these is high enough, we eliminate one of the options, 

accordingly. 

This method should be calibrated so that the threshold of elimination will take 

into account the number of live options left, the budget, etc.  It is a type of sequential sign 

test, which bears resemblance to a method described in McPherson and Armitage (1970) 

for choosing the better option from a pair of options, with a limited budget. 

2. Multinomial Comparisons 

This method assumes that each option has a probability of being the best at each 

stage.  The null hypothesis is that all the options have an equal probability of p=1/k, 

where k is the number of the remaining live options.  At each stage, for each option, we 

calculate the probability that p is less than 1/k.  If the probability for that is high enough, 



we eliminate this option.  The method can be changed so that it takes into account the 

probability of being the best or second best (not only the best), not being the worst or 

some other combination of this type. 

3. Mann-Whitney Comparisons 
The Mann-Whitney test uses all observations from a pair of options, ranks them 

from smallest to largest, and calculates a p-value for testing the null hypothesis that both 

options have the same distribution against the alternative that one option produces larger 

observations than the other.  Procedures for constructing a SMCB procedure from the 

Mann-Whitney test can be developed within the framework described by Swanepoel 

(1977).  Investigation of this or similar nonparametric procedures would be worthwhile 

because they would require minimal distributional assumptions on the data. 

4. Normal Distribution, Confidence Interval Overlap 
Assume that the observations come from normal distributions with known 

variances (but unknown means).  Since we know the variances, after a few observations 

we can estimate the mean of each option, and bound it within a confidence interval.  As 

an elimination rule, we can eliminate any option for which the confidence interval of its 

mean does not overlap with the confidence interval for the best option so far. 

The thresholds are set by choosing the bounds (α level) of the confidence interval. 

We can also use this approach if we do not know the variances, by estimating 

them from the observations. 

5. Any Chosen Distribution, Using Bayes Theory 
If we assume that the observations come from a specific distribution for which we 

know everything but the mean, we can calculate the likelihood for each observation under 

different means.  Using Bayes theorem we can find the maximum likelihood and 

construct a posterior distribution of the mean for each option.  In order to eliminate an 

option we look at two options, A and B, with unknown means µA and µB, respectively.  If 

we can find a value µ′ , for which the probability p that µA < µ′  and µB > µ′  is high 
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enough, then it means that these options are separated enough, and therefore we eliminate 

the inferior one.  The calibration of the thresholds is done by choosing probability p. 
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