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ABSTRACT 

Silicon Blocked Impurity Band (BIB) detectors are highly efficient, 

radiation-hardened photodetectors that operate in the range of 5-40 µm.  To 

further extend BIB coverage to 40-350 µm, Ge and GaAs BIB detectors are 

under development; however, these new detectors face fabrication issues that 

have delayed their introduction.  This thesis will describe the use of a numerical 

model to examine alternate operating modes for GaAs BIB detectors in order to 

bypass current fabrication issues.  The numerical simulations provide an 

understanding of the fundamental physics that governs detector transport.  The 

proposed alternatives to standard operation are created by reversing the 

detector’s bias and varying the blocking layer thickness.  Modeling indicates that 

reversing the bias on these detectors provides a larger signal current than 

standard configurations, while preserving the principal benefits gained from a 

multilayered device.  At the same time, the alternate bias configuration allows for 

the use of thicker blocking layers, while preserving overall detector responsivity 

and reducing shot noise.  This proposed new model of operation should allow for 

the relaxation of fabrication constraints without sacrificing the inherent benefits 

associated with BIB detectors.   These devices are of potential interest for missile 

defense and terahertz surveillance applications. 
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I. INTRODUCTION  

A. OBJECTIVES  
Blocked Impurity Band (BIB) photodetectors currently provide for imaging 

and spectroscopy in the far infrared (FIR) range between 5 and 40 µm.  Also 

known as Impurity Band Conduction (IBC) photodetectors, these devices were 

first developed in 1977 by Petroff and Stapelbroek at the Rockwell Science 

Center [1].  Constructed through vapor or liquid phase epitaxial growth, these 

detectors consist of two ohmic contacts, a heavily doped IR active layer and a 

thin layer of high-purity material.  The active layer of the detector consists of a 

thin (~20-40 µm) extrinsic region with doping concentration 10-1000 times higher 

than typically employed in a conventional photoconductor [2].  The hopping 

current present in the heavily doped material is then blocked by the thin high-

purity “blocking” layer.  Success of BIBs as FIR detectors stems from their ability 

to exhibit high quantum efficiency, lower radiation sensitivity, increased photon 

absorption, broader wavelength response, while lacking the transient problems 

that plague standard photodetectors [3]. 

 Si BIB detectors currently operate in the 15-40 µm range, while Ge BIBs 

are under development to extend the wavelength response to 120 µm.  Uniaxial 

compression techniques have pushed the wavelength limits of conventional 

extrinsic Ge photoconductors to 220 µm; however, the material stress limits 

placed on a detector from compression prevent further wavelength extension [4]. 

The use of uniaxial compression techniques remains extremely costly and limits 

the size of available detector arrays, which restricts the employment of this 

technique to highly specialized applications.  In order to extend the further 

available wavelengths into the 200-350 µm range, new GaAs BIB detectors have 

been proposed.  GaAs BIBs would offer a wavelength response up to 330 µm 

without the complications associated with uniaxial compression techniques. 

Studies were conducted in the 1960s examining the potential of n-type 

GaAs material in the use of photoconductors.  It was found that Tellurium doped 
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GaAs has a ground state ionization energy of 5.7 meV and a first excited state 

ionization energy of 4.3 meV, which represents wavelengths of 217 µm and 286 

µm respectively [5].  Unfortunately, these low ionization energies can cause an 

unacceptable amount of dark current when employed in standard 

photoconductors.  The ability of BIB detectors to block this dark current makes 

their configuration extremely attractive.   

For optimal GaAs BIB detector performance, the impurities in the blocking 

layer must be held below 1013 cm-3, which can be achieved through the use of 

Liquid Phase Epitaxy (LPE) growth methods.  This purity level was demonstrated 

during research conducted at the University of California, Berkeley in 2003 [6].  

Growing a high purity layer next to an extrinsic active layer on a single 

semiconductor device has proven much more difficult.  In the ideal case, the 

active layer in a GaAs BIBs would have n-type doping in the range of 1014 cm-3 to 

1015 cm-3 and a minority doping concentration in the range of 1012 cm-3 to 1013 

cm-3.  Attempts have been made to grow tellurium doped GaAs samples; 

however, these samples have demonstrated majority doping levels close to 1016 

cm-3 and unacceptably high levels of compensation doping [7].  Problems 

creating GaAs BIBs through LPE also exist because of the diffusion of the doping 

material from the active region into the blocking region of the device.  This 

diffusion creates a doping transition grade at the blocking to active layer 

interface, which can cause several negative effects on BIB performance. This 

grade results in a reduction of long wavelength response and a reduction in the 

effectiveness of the blocking layer [8].   Increasing the blocking layer thickness 

would alleviate this problem, but would result in a significant loss in of detector 

responsivity for a given bias if applied to a conventional BIB detector.  In order to 

alleviate these limitations, this thesis explores the consequences of applying 

alternate bias modes on BIB devices and proposes detector configurations that 

could minimize the impact of manufacturing limitations for longer wavelength 

applications. 
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B. THEORY OF STANDARD BIAS OPERATION  
The basic principle behind the operation of a BIB detector is the blocking 

of the hopping currents in the heavily doped regions of the device by the high 

purity layer of the device.  At the same time, the device permits free carriers that 

have been excited into the conduction band through photo ionization to reach an 

ohmic contact.  In the case of n-type BIBs, the IR absorbing layer consists of 

both a large amount of n-type dopant and a low level of residual p-type dopant.  

Because of this unique doping configuration, n-type BIB detectors differ from 

other photoconductors through their utilization of both electrons and ionized 

donors within the conduction process.   

The detection process begins with the application of a positive voltage to 

the blocking layer contact.  This configuration is referred to as “standard bias.”  

The positive voltage pushes away the positive charge on the ionized donors, +
DN , 

from a region of the active layer.  This region, known as the depletion region, 

maintains its concentration of ionized acceptors, −
AN , and neutral donors, DN , 

which creates an area of negative space charge.  The negative space charge 

establishes an electric field region (or gradient) in both the active and blocking 

layers of the device that serves to separate and collect any charges created 

through photo-ionization.  The depletion region of the device deserves special 

consideration and is discussed in further detail below.  When photons of 

sufficient energy are absorbed in the depletion region of the active layer, they 

interact with the neutral donors present, which allow electrons to jump from the 

impurity band into the conduction band.  Once in the conduction band, the 

electrons are free to pass through the blocking layer and are moved to the 

positively biased contact by the electric field.  Also affected by the electric field, 

the newly created ionized donors, +
DN , drift and recombine at the opposite 

contact.  This movement provides the current required to measure the FIR light 
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incident upon the detector.  Figures 1 and 2 depict the basic operation of a n-type 

BIB detector and its charge carrier movement. 

 
Figure 1.   Schematic Diagram of N-Type BIB. 

 
Figure 2.   Energy Level Diagram for N-Type BIB ([From [09]). 
 
The theory of a p-type BIB detectors follow the same basic operating 

principles described above, but with a few important variations.  In this case the 

process begins by placing a negative voltage at blocking layer’s contact.  This 

bias creates a region of depleted of ionized acceptors −
AN   and a surplus of both 

positively charged ionized donors, +
DN , and neutral acceptors.  This space 

charge imbalance creates an electric field gradient that allows for the collection of 

photocurrent.  In this case, an absorbed photon interacts with a neutral acceptor 

and creates a hole in the valence band of the detector.  The hole is swept 

towards the negatively charged contact and passed through the blocking layer to 
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be collected as photocurrent.  The photo ionization also creates an ionized 

acceptor in the impurity band of the detector that is collected and recombined at 

the other contact.  In some ways, the operation of BIB detectors mirrors the 

operation of reverse bias p-n junctions.  This process is depicted in Figures 3 and 

4, where the red line designates the electric field profile.  

 
Figure 3.   Schematic Diagram of P-Type BIB. 

 
Figure 4.   Energy Level Diagram for P-Type BIB (From [10]). 

  

The depletion region of BIB detectors represents the key region for the 

collection of photocurrent within the device and requires a quantitative inspection.  

The size of the depletion region of a BIB detector depends on the amount of bias 

voltage applied and the concentration of minority dopant in the active layer.  For 

our discussion, we will examine a n-type BIB.  The width of the depletion region 

can be obtained through an application of Poisson’s equation in the active layer. 

oo

A

oo

x qN
x

E
εκεκ

ρ
==

∂
∂     (1.1) 
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In Poisson’s equation oκ  represents the semiconductor’s dielectric constant and 

AN  represents the density of ionized acceptors.  Remembering the relation 

between the electric field and applied voltage is xEx
V =∂

∂  (1.2), the solution for 

the width w of the depletion region is given by 

BBb
A

oo ttV
qN
k

w −⎥
⎦

⎤
⎢
⎣

⎡
+=

2/1
22 ε     (1.3) 

where tB is the thickness of the blocking layer and VB represents the applied bias 

voltage [11].  The peak electric field strength Ex is then represented by the 

following equation. 

)(
2

wqNE
oo

A
x εκ

=     (1.4) 

The dependence of electric field strength and depletion width upon the minority 

acceptors concentration drives the manufacturing process of BIBs to maintain 

strict control over the amount of minority impurities and adds layers of difficulty to 

the fabrication process.  These equations assume that electric field is constant in 

the blocking layer and a linear function inside the active layer of the device.  

These assumptions require a condition in which space charge does not exist in 

the blocking layer and is constant in the active layer.  Unfortunately, these 

assumptions are not always valid and can lead to inaccurate results.  The use of 

a finite difference computer code eliminates these inaccuracies and is discussed 

in the next chapter.      
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II. COMPUTER MODELING AND SIMULATION 

A. BIB SIMULATION PROGRAM AND COMPUTER SUITE SETUP 
The design and setup of the BIB Simulation Computer Suite (BSCS) was 

based on work previously completed at Fairfield University and the White 

Numeric Consulting Company.  The BSCS consists of three individual computers 

that operate with the following specifications. 

Operating System Suse Linux 9.1 

Processor AMD (3000+) Athlon 64 Bit 

Memory 2 GB 400 DDR RAM 

Hard Drive 2 Computers with 80 GB  

1 Computer with 120 GB 

Table 1.   BIB Computer Suite Specifications. 
 

These computers were purchased in August, 2004 and provide a 

significant improvement in computational power over the legacy suite.  The 

BSCS supports a numerical finite difference computer simulation that requires 

fifteen to twenty thousand iterations to produce a single solution.  Programmed in 

FORTRAN, the BIB simulation program utilizes NAGWare F95 Revision 4.0 

Compiler and the related LAPACK Numeric Libraries.  This thesis required over 

277 simulations, which represents approximately 2000 hours of computation. 

 
Figure 5.   The BIB Simulation Computer Suite. 
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B. COMPUTER MODELING OF BIB DETECTORS 
The finite difference numerical simulation used to model BIB behavior 

calculates the steady state distribution of electric field, carrier concentration, free 

carrier current, and ionized impurity (hopping) current as functions of position 

[12].  The modeling builds on earlier work for both p-n junction devices and 

transient modeling of conventional photoconductors [13, 14].  In order to compute 

these detector characteristics, this model simultaneously solves several 

fundamental equations in one dimension.  These equations include Poisson’s 

equation, Continuity Equations for both positive and negative charges, the 

generation and recombination of holes and electrons, and a doping dependent 

expression for the mobility of ionized acceptors.   

Since the model operates in one dimension, Poisson’s equation simplifies 

to the following 

)( −+ −+−=
∂

∂
AD

o NNnpq
x

Eεε
    (2.1) 

where q is the fundamental charge of an electron, p  and n are the respective 

concentration of positively and negatively charged free carriers, −
AN  is the 

concentration of ionized acceptors and +
DN  is the concentration of ionized donors 

[15].  Along with Poisson’s Equation, the simulation solves the Continuity 

Equation for both positively and negativity charged ionized carriers.  These 

equations are 

x
J

RG
t
p p

∂

∂
−−=

∂
∂      (2.2) 

x
J

GR
t
n N

∂
∂

−−=
∂
∂     (2.3) 

where the time derivatives are set to zero, G represents generation and R 

represents recombination of free carriers [16].  It becomes important to 

understand that both the pJ  and the NJ  are the sum of drift and diffusion 

currents [17]. 
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x
pDEp

q
J

pP
p

∂
∂

−= µ     (2.4) 

x
nDEn

q
J

nn
n

∂
∂

−= µ     (2.5) 

To solve these equations, the model requires the mobility µ  and the 

diffusion coefficient D for the mobile carriers within the device. Generation relates 

to Recombination through the following equation. 

( )( ) pnnNpRG pAp συσυγ −−+=−   (2.6) 

For This equation, γ  is the optical generation of free carriers, σ  is capture cross 

section of the mobile carriers, pυ  is the effective speed of the holes across the 

device, and 1p  is found through an application of the mass action law [18]. 

ANppn 1≅       (2.7)     

Calculating the hopping current within the detector requires special 

consideration.  The computer model calculates hopping current by approximating 

the mobility of the ionized acceptors within the device.  Following an approach 

created by Petroff and Stapelbroek, the model calculates the mobility by 

employing known values for both the Bohr radius Ba  and the concentration of the 

majority carrier dopant AN .  This mobility is found through two equations, given 

by  
x

o ex −= 5.3µµ      (2.8) 

[ ]BA aNx 3/12=      (2.9) 

where oµ  is a temperature dependent pre-factor  [19]. 

In order to handle the interfaces between the different layers of a BIB 

detector, the computer model employs an empirically derived hyperbolic function.  

This hyperbolic function ensures a smooth transition of the detector’s changing 

doping concentrations, while allowing for the control over the gradient region.  

The transition between two layers is represented by 

( )[ ]gxae
NNN

N /
121

1
)(

−+
−+

=    (2.10) 



10 

where 1N and 2N  are the dopant concentrations of the adjoining layers, a is the 

position of the interface, x is the position along the detector, and g is the grading 

parameter [20].  The model’s ability to represent the dopant grade at an interface 

creates a realistic depiction of the doping transitions created during the LPE 

growth of a detector. 

Employing the equations described above, the model treats a BIB detector 

as a quasiambipolar system with free electrons and ionized donors for n-type 

devices or free holes and ionized acceptors for p-type devices [21].  To 

accomplish this task, the model requires the doping levels for each of the 

detector’s layers.  The front and back contacts of the device are simulated as 

heavily doped regions that provide free carriers at all temperatures.  The model 

also allows for variation of the majority and minority dopant concentrations in 

both the active and blocking layers of the device.  The model also includes 

variable thicknesses for all four of the detector’s layers, which dictates the 

detector’s overall length.   As previously discussed, the model represents all 

doping transitions by employing a hyperbolic grading function.  In order to handle 

several different photoconducting host materials, the model allows for the varying 

of the mobility, the hopping mobility prefactor oµ , the Bohr radius Ba , and the 

ionization energy of the device’s majority dopant.  The model also maintains the 

ability to simulate various operating conditions.  This is accomplished through the 

variation of temperature, optical generation rateγ , and applied bias.  Figure 6 

depicts the input file and all required variables of the computer model. 
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Figure 6.   Data Input File for Bib Simulation Program. 

 
The time to complete a single simulation varies with the parameters 

entered into the model.  For instance, reducing the temperature, the optical 

generation rate, and the compensation doping in the active layer increases the 

amount of time required to complete a simulation.  Due to the large number of 

variables within the model, the time to complete a single simulation varies from 

several minutes to several days.  Upon completion, the model provides a single 

computer file that contains 13 individual data fields that are listed in Table 2.  

Each data field represents the spatial variation of a detector’s internal 

distributions.  
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 Position Valence Band Energy 

Acceptor Concentration CPIAC 

Donor Concentration −Na  Mobility 
−Na  Concentration  Electric Field 

Hole Concentration −Na  Current 
−Na  Quasi Fermi Level Hole Current 

Hole Quasi Fermi Level  

Table 2.   Output data fields of the BIB model for a p-type device simulation. 
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III. ALTERNATE BIAS CONFIGURATIONS 

A. THEORY OF ALTERNATE BIAS OPERATION 
To further extend BIB performance into the far IR range (40-350 µm), 

alternative host materials for BIBs such Ge and GaAs have been introduced with 

limited success.  The performance of these new devices has been limited by 

material purity, blocking-active layer interface quality, and the lack of a reliable 

and reproducible method of growing an appropriately thin blocking layer.  An 

alternate bias configuration serves to isolate and minimize many of these 

limitations, while maintaining acceptable charge collection characteristics.  This 

alternate bias configuration is created by reversing the polarity of the applied bias 

on the detector.  For a n-type device, the applied positive voltage resides on the 

active layer contact, which serves to push positively charged ionized donors +
DN   

towards the active to blocking layer interface of the device.  For a p-type device, 

the applied negative voltage resides on the active layer contact, which moves the 

ionized acceptors −
AN  out of the active layer of the device.  The alternate bias 

configuration forces the creation of the depletion region exclusively in the active 

layer.  These processes are depicted in Figures 7 and 8. 
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Figure 7.   N-Type BIB Detector in Alternate Mode. 

 
Figure 8.   P-Type BIB Detector in Alternate Mode. 

 

+v 

-V 
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It is important to remember that the changing roles of the contacts 

facilitate the sign change of the electric field.  The exclusion of the blocking layer 

from the depletion region raises key questions concerning the basic operation of 

the device.  These questions include the alternate bias mode’s effect on the 

width of the depletion region, the amount of photocurrent created by a given flux, 

the utility of the blocking layer, and the drift and diffusion of the free carriers 

present in both contact layers. 

To answer these questions, the BIB computer model simulated the 

behavior of a standard GaAs detector that was placed under multiple biases in 

both modes of operation.  Table 3 summarizes the parameters utilized to 

simulate a GaAs detector under varying bias conditions. 

Absorbing Layer Majority Doping 7x1015 cm-3 

Absorbing Layer Minority Doping 5x1011 cm-3 
Absorbing Layer Thickness 5 µm 
Blocking Layer Majority Doping 1x1013 cm-3 
Blocking Layer Minority Doping 1x1012 cm-3 
Blocking Layer Thickness 15 µm 
Temperature 1.9 K 
Applied Bias 0, ± 5, ± 10, ± 15, ± 20, ± 25  

± 30, ± 35, ± 40, ± 45, ± 50 
± 55 mV, ± 60, ± 65, ± 75, ± 80 

Bohr Radius 91x10-10 m  
Interface grade parameter 2x10-6 cm (ideal sharp) 
Contact Grade parameter 1x10-5 cm 
Optical flux rate γ  5x10-9 s-1 

Table 3.   GaAs modeling parameters. 
 
Figure 9 depicts the electric field profile as a function of position for both 

standard and alternate bias.  As expected, the alternate bias mode produces an 

electric field adjacent to the active layer contact and avoids significant voltage 

drop across the blocking layer.  Consequently, the depletion regions created in 

the active layer by the alternate mode are larger than those created using a 

standard configuration.  The larger depletion region allows detectors in the 

alternate configuration to produce higher amounts of photocurrent at a given 

applied voltage, which also increases the device’s responsivity.  These results 

are seen in Figure 10. 
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Figure 9.   Electric Field as a function of Position for Varying Applied Bias. 

 
Figure 10.   Total Photocurrent as a Function of Bias. 
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A closer examination of Figure 9 uncovers some important characteristics 

concerning alternate bias operation.  First, a comparison of the electric field 

profiles between the two bias modes demonstrates the ability of an alternate bias 

configuration to isolate the depletion region from the interface between the 

blocking layer and active layer.  At the same time, the gradient of the electric field 

remains nearly constant within the depletion region of active layer regardless of 

bias or bias mode.  The gradient of the field reflects the net space charge ρ , 

where +−+ ≈−+≈ DAD NNpNρ  (3.1) [22].  Figure 9 also shows that under 

alternate bias mode the electric field undergoes a sign change within the blocking 

layer.  This sign change is a result of the changing predominance of drift and 

diffusion currents within the detector and will be discussed in detail in the 

following section.  Under the alternate bias configuration, the electric field 

ensures that when photo-ionization occurs the subsequent electrons and ionized 

donors +
DN  are swept in opposite directions along the detector.  Ultimately, the 

electrons are collected at the active layer contact and the ionized donors stopped 

by the blocking layer.  

Within an n-type detector, the net motion of the ionized donors +
DN  

generates the hopping current that needs to be stopped by the blocking layer.  

Fortunately, the BIB computer simulation allows for the separate calculation of 

the hopping current as a function of position. 
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Figure 11.   Hopping Current as a Function of Position for multiple Bias 

Voltages. 
 
Figure 11 displays the hopping current for standard and alternate bias 

configurations.  For standard bias operation, Figure 11 depicts the current 

created by the ionized donors +
DN  moving outside the depletion region.  The 

ionized donors which move outside of the depletion region recombine with free 

carriers present near the active layer contact.  This prevents the build up of 

hopping currents near the contact.  At the same time, the blocking layer prevents 

re-introduction of ionized donors into the depletion region of the device and 

restricts the overall contribution of the hopping current.  Note that the magnitudes 

of the currents in Figure 11 are several orders of magnitude lower than in Figure 

10.  For alternate bias operation, the figure shows that the blocking layer 

prevents the current from the ionized donors from reaching the blocking layer 

contact.  In this case, the extremely low mobility of the high purity blocking layer 

prevents the electrons that make up the hopping current from passing through 
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the blocking layer.  These electrons are confined to the dopant band and cannot 

complete the circuit through the device. 

The change of polarity required to create an alternate bias mode affects 

the free carriers that reside in the each of device’s contacts.  An examination of 

diffusion currents will show that these free carriers do not contribute to the 

detector’s photocurrent regardless of the bias modes.  When a standard bias is 

applied to a detector, the free carriers present in the blocking layer contact 

migrate out of the detector and have no significant effect on the device operation.  

The free carriers present in the active layer contact diffuse into the active layer of 

the device; however, this diffusion is limited by the compensation doping present 

in the active layer.   Figure 12 depicts the effects of near contact diffusion on the 

electric field profile.   

 
Figure 12.   The Effects of Near-Contact Diffusion on the Electric Field 

(Standard Bias). 
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Known as the Debye tail, the carrier diffusion affects a relatively small portion of 

the device and its effects terminate prior to reaching the depletion region of the 

device. Near contact diffusion is discussed in detail within the next section.   The 

alternate bias configuration forces a similar reaction by both contacts’ free 

carriers.  When applying an alternate bias to a device, the free carriers in the 

active layer contact migrate out of the device and do contribute to device 

operation.  The free carriers in the blocking layer contact of the device diffuse 

into the blocking layer of the device.  If the blocking layer is sufficiently thick, 

these carriers fail to pass through the blocking layer and will not affect the 

depletion region of the device.  The direction of free carriers’ diffusion along with 

the resulting Debye tail is depicted in Figure 13.  A detailed analysis of drift and 

diffusion currents is provided in the next chapter.  In the near contact region, both 

drift and diffusion can play important roles in determining the net current.  

Because the blocking layer serves as the injecting contact in an alternate bias 

BIB, it is necessary to take a detailed look at carrier dynamics in the blocking 

layer.  
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Figure 13.   The Effects of Near-Contact Diffusion on the Electric Field 

(Alternate Bias). 
 

B. DIFFUSION CURRENTS 
Within the BIB computer model, the ohmic contacts are treated as heavily 

doped layers, whose dopant concentrations grade into both the active and 

blocking layers of the device.  These contacts are degenerate and contain a free 

carrier concentration that is in excess of the Mott transition, which allows for 

diffusion into the adjacent layers of the device, at all temperatures.  This 

phenomenon is known as near-contact diffusion and was discussed in detail for 

Ge:Ga and Si:As photoconductors by C.S. Olsen et al. in a paper published in 

1993 [23].  The extent of this free carrier diffusion into the blocking or active layer 

of the device depends on the concentration of minority dopant.  The 

compensation provides for ionized donors +
DN , which trap the negatively charged 

free carriers and prevent any further intrusion into the adjacent layer.  As the free 

carriers diffuse into the adjacent layer, they produce both current and an 

5 10 15 

Position (microns) 

Alternate Bias Electric Field 
Electric Field under the 
influence of Near Contact Diffusion 
Blocking Layer 
Active Layer Contact 
Blocking Layor Contact 



22 

opposing electric field.  As discussed in an early section this electric field is 

known as a Debye tail.  Because of these relationships, a higher compensation 

level in either the active or blocking layers of the device will limit diffusion lengths, 

which produces a smaller Debye tail. 

To understand the carrier dynamics within a BIB device, it is important to 

examine the spatial variation of the currents that were caused by near-contact 

diffusion.  To accomplish this task, the model allows for the calculation of the 

individual components of the total photocurrent.  In the near-contact region, 

diffusion and drift represent the dominant sources of current. The diffusion 

current is represented by, 

x
nkTJ Diffusion ∂

∂
= µ     (3.2) 

where µ  is the bulk material’s mobility, k is the Boltzmann constant, T is the 

temperature, and n is the concentration of electrons present.  Figure14 shows 

the calculated diffusion current profile for a GaAs detector (Table 3) that is 

employing the standard bias mode.  Under standard bias mode, the free carriers 

in the active layer’s contact move into the active layer of the device, which 

creates both current and an opposing electric field. This free carrier migration 

creates current that is moving towards the blocking layer contact and is 

represented by the blue line in Figure 14.  As the free carriers move into the 

device, they interact with any ionized donors present which forces the current 

and electric field to decay.  Outside of the Debye tail, any changes in the 

diffusion current profile within the device reflect minor changes in the electron 

distribution.  Since bias is applied to the blocking layer contact, the Debye tail is 

shorter in the blocking layer.  This diffusion of current moves towards the active 

layer and is depicted by the short red line in Figure 14. 
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Figure 14.   Diffusion Currents as a Function of Position for the Standard Bias 
Mode. 

 

Figure 15 shows the diffusion current for the same GaAs detector; 

however, the alternate bias mode is now applied.  Since positive voltage is 

applied to the active layer contact, the near contact diffusion in the active layer is 

less extensive.  This current moves towards the blocking layer, which is 

represented by the blue line.  The small changes in diffusion current within the 

active layer of the device reflect variations in the detector’s electron distribution.  

When approaching the blocking layer, the direction of current experiences a 

change that is consistent with the changes in dopant at the blocking layer to 

active layer interface.  The diffusion current in the blocking layer is influenced by 

both near-contact diffusion and the applied voltage.  The low levels of 

compensation in the blocking layer allow for an extended Debye tail within this 

region of the device.  The applied voltage at the active layer contact promotes 

the extension of the Debye tail further into the blocking layer.  Because of this 
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increase in diffusion lengths, alternate bias mode BIB detectors may require 

thicker blocking layers.  The thicker blocking layer will ensure that the Debye tail 

remains isolated from the depletion region of the device.  This isolation prevents 

the blocking layer contact from saturating the detector with free carriers.  The 

ramification of creating thicker blocking layers is discussed in the next chapter.  

The currents depicted in Figure 14 and 15 demonstrate several important 

aspects for BIB operation that occur regardless of bias mode.  First, the large 

amount of diffusion current present at each of the contacts must be negated by 

drift current.  The interaction of drift and diffusion currents will allow for the total 

current flowing within the device to remain constant.  Once the currents present 

at the contacts have been balanced, the diffusion does not contribute in large 

amounts to the total photocurrent.  Once these facts are understood, it becomes 

important to study drift currents in order to completely understand the carrier 

dynamics of these devices. 

 
Figure 15.   Diffusion Currents as a Function of Position for the Alternate Bias 

Mode. 
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C. DRIFT CURRENTS 
An examination of the drift currents was conducted in order to understand 

the carrier transport in the near-contact regions for both bias modes.  

Representing the dominant component of the total photo-current, the drift current 

is given by 

xDrift EneJ µ=     (3.3) 

where n is the concentration of electrons, e is the fundamental charge, µ  is 

mobility, and xE  is the magnitude of the electric field as a function of position.  

Figure 16 shows the drift current profile for the fore-mentioned GaAs detector, 

while operating under the standard bias mode.  The electric field created by the 

near-contact diffusion at the active layer contact creates a drift current back 

towards the contact, which is represented by the positive values (red line) in 

Figure 16.  At the same time, the negative values (blue line) represent drift 

current moving towards the blocking layer contact.  This current is under the 

influence of the depletion region’s electric field.  The large amount current 

present at each contact is negated by a large amount of diffusion current moving 

in the opposite direction, which is represented in Figure 16.  The two currents 

present at the contacts counter-act and ensure that total current remains 

constant throughout the entire BIB detector.  When an alternate bias mode is 

applied to the same detector, similar results are produced.  In this case, the 

depletion region and its associated electric field are created solely in the active 

layer of the device.  This electric field drives the drift current towards the active 

layer contact and is depicted by the red line in Figure 17.  At the same time, the 

electric field that was created by the near-contact diffusion in the blocking layer 

forces the drift current in the opposite direction.  The combination of drift and 

diffusion currents ensure that the total photocurrent remains constant across the 

device.  This balance between drift and diffusion currents ensures that the free 

carriers in the contacts do not saturate the device. 
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Figure 16.   Drift Current as a Function of Position for a Standard Bias BIB 

Detector. 

 
Figure 17.   Drift Current as a Function of Position for an Alternate Bias BIB 

Detector. 
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IV. MODELING AND SIMULATION RESULTS 

A. SIGNAL TO NOISE RATIO OF BOTH BIAS MODES 
The results from Chapter III detail a comparison between the depletion 

regions created by alternate and standard bias modes.  Figure 9 shows that the 

alternate bias mode produces a greater depletion region for a given voltage and 

creates more current.  These results raise the following question:  Is the increase 

in current demonstrated by the alternate bias mode only a product of increased 

dark or hopping current levels?  In order to answer this question, a series of 

simulations were conducted to determine the Signal to Noise Ratio (SNR) of both 

bias modes.  Table 4 summarizes the parameters utilized to simulate a Si 

detector under varying bias conditions. 

Absorbing Layer Majority Doping 2.0 x 1017 cm-3 

Absorbing Layer Minority Doping 1.0 x 1013 cm-3 
Absorbing Layer Thickness 4 µm 
Blocking Layer Majority Doping 1.0 x 1012 cm-3 
Blocking Layer Minority Doping 1.0 x 1011 cm-3 
Temperature 4 K 
Applied Bias 0, ± 150, ± 300, ± 450, ± 600,  

± 750, ± 900, ± 1050,  
± 1200 mV 

Bohr Radius 15 x 10-10 m 
Interface grade parameter 2.0 x 10-7 cm 
Contact grade parameter 1.0 x 10-5 cm 
Optical flux rate γ 5.0 x 10-7 s-1  for Photo-Current 

5.0 x 10-10 s-1 for Dark Current 
Table 4.   Si Modeling Parameters. 

 
Three important characteristics of this experiment must be explained.  

First, the modeling can only approximate the photon limited shot noise that is 

present in the detector.  There are no mechanisms in the model for contact noise 

or any noise that might be associated with supporting electronics.   Second, Si 

detectors were utilized because their modeling parameters allow for significantly 

lower simulation times when compared to those of a GaAs detector.  At the same 

time, Si BIBs represent a majority of the available experimental data that could 

be employed for further detector characterization.  Lastly, the optical flux rate γ 
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was set to 5.0 x 10-10 s-1 when examining dark current cases due to limitations in 

the BIB computer program.  Attempts to lower the optical flux rates resulted in 

extremely long simulation run times or numerical underflows within the BIB 

simulation computer program.  Under absolute zero light conditions, the thermal 

current is too small to calculate numerically, so a low value of γ was used to 

simulate a fixed dark current and/or background flux. Figures 18, 19 and 20 show 

the results of these simulations.  

 
Figure 18.   Electric Field as a Function of Position for Various Applied Bias. 
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Figure 19.   Photocurrent as a Function of Applied Bias. 

 
Figure 20.   Dark Current as a Function of Applied Bias. 
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Figure 18 depicts several of the electric fields as a function of position for 

varying bias.  Mirroring the results seen earlier for a GaAs detector, the alternate 

bias mode provides for a larger depletion region within the active layer of the 

device.  The larger depletion regions provide for a greater amount of total 

photocurrent, which is plotted as a function of bias in Figure 19.  Similarly, the 

alternate bias mode creates a larger amount of dark current, which is shown in 

Figure 20.  It is important to remember that dark current is a combination of 

thermally generated current and hopping current.  In order to compare the 

performance of the bias modes, the SNR was calculated through 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

)(2
log20

DCeB
TPCSNR     (4.1) 

where TPC is the total photocurrent (Figure 19), B is the bandwidth of the 

detector, e represents the fundamental charge of an electron, and DC is the dark 

current (Figure 20) [24].  In this case, B was set to 1 Hz.  Figure 21 shows that 

the alternate bias mode provides a larger SNR, which increases the detector’s 

overall desirability. 
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Figure 21.   SNR as a Function of Applied Bias for Conditions of Table 4. 
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Figure 22.   Photocurrent as a Function of Applied Bias Utilizing a Linear Scale. 
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B. BLOCKING LAYER THICKNESS 
Despite the success of the Si based BIB detectors, the introduction of 

longer wavelength Ge and GaAs detectors has been delayed due to limitations in 

LPE growth techniques.  Unfortunately, near equilibrium LPE growth techniques 

allow for the diffusion of doping materials across the blocker-active layer 

interface.  This phenomenon could create a situation where the blocking layer 

becomes contaminated with dopant and does not reach the desired level of purity 

and resistance.  Creating a thicker blocking layer represents the simplest solution 

to this problem.  In order to fully understand the consequences of creating a 

thicker blocking layer, a series of simulations were completed covering the 

detector characteristics depicted in Table 5. 

Absorbing Layer Majority Doping  2.0 x 1017 cm-3 

Absorbing Layer Minority Doping  5.0 x 1012 cm-3 
Absorbing Layer Thickness 20 µm 
Blocking Layer Majority Doping 1.0 x 1012 cm-3 
Blocking Layer Minority Doping 1.0 x 1011 cm-3 
Blocking Layer Thickness 4 µm, 6 µm, 8 µm  
Temperature 4.2 K  
Applied Bias 0, ± 150 , ± 300, ± 450, ± 600,  

± 750, ± 900 mV 
Bohr Radius 15  x 10-10 m 
Interface Grade Parameter 2.0 x 10-7 cm     
Contact Grade Parameter 1.0 x 10-5 cm     
Optical Flux Rate γ  5.0 x 10-7 s-1     

Table 5.   Si BIB Modeling Characteristics for Varying Blocker Thickness. 
 

A BIB detector employing the standard bias mode requires a relatively thin 

blocking layer in order to maintain the detector’s efficiency.  As discussed in 

Chapter I, the width of the depletion region can be analytically approximated by 
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    (4.2) 

where w is the width of the depletion region, bV  is the bias voltage, AN  is the 

density of the ionized acceptors, oκ  is the dielectric constant of the active layer 

material, oε  is the permittivity of the active layer material, and Bt is the blocking 
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layer thickness [25].  This analytic expression clearly shows that the width of the 

depletion region depends directly upon the blocker thickness.  By increasing 

blocker thickness, a BIB detector employing the standard bias mode creates a 

smaller depletion region, which produces a smaller photocurrent across all 

ranges of applied bias.  The area under the electric field in the blocker represents 

a net voltage drop.  These results are seen in Figures 23 and 24. 

 
Figure 23.   Electric Field as a Function of Position for Various Blocker 

Thicknesses with a Constant 750 mV Bias. 
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Figure 24.   Current as a Function of Bias Voltage for Various Blocker 

Thicknesses. 
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Figure 25.   Electric Field as a Function of Position for Various Blocker 

Thicknesses with a Constant 750 mV Bias. 

 
Figure 26.   Current as a Function of Bias Voltage for Various Blocker 

Thicknesses. 
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Comparing Figures 24 and 26 shows that increasing blocker thickness 

produces greatly divergent results for the two operating modes.  When employing 

the standard bias mode, an increase in blocker thickness decreases the amount 

of photocurrent produced by the device for a given voltage.  At the same time, an 

increase in blocker thickness produces only slight changes in the available 

photocurrent when operating under the alternate bias mode.  This conclusion is 

quantified in Table 6.  In this table, the data have been normalized to the current 

that is produced by a 150 mV standard bias acting on a detector with a 4 micron 

blocker.  The effect of increasing blocker thickness at 150 mV illustrates these 

conclusions.  In standard bias mode, the detector loses 22% of its photocurrent 

when the blocker thickness is increased from 4 microns to 8 microns.  In the 

alternate bias mode, the amount of photocurrent produced remains the same 

regardless of the blocker thickness.       

 Blocker Thickness 
 4 micron 6 micron 8 micron 

Standard 
Bias 

   

150 mV 1.00 0.86 0.78 
450 mV 2.39 1.83 1.49 
750 mV 6.39 3.98 2.86 

Alternate 
Bias 

   

150 mV 1.40 1.40 1.40 
450 mV 4.15 4.13 4.13 
750 mV 17.79 17.51 17.39 

Table 6.   Normalized Photocurrent in Comparison to Blocker Thickness. 
 
Building upon the methodology employed in Chapter III to calculate the 

Signal to Noise Ratio, Table 7 quantifiably shows that operating under alternate 

bias modes allows for the use of thicker blockers without suffering significant 

performance degradation.  Despite the reduced role that the blocker thickness 

plays in alternate mode configurations, it is important to remember that 

increasing overall device thickness tends to reduce some of the inherent 

advantages of the device.  For instance, a larger device increases the volume of 

the detector and makes it more vulnerable to radiation damage.  The issues 

governing overall detector performance would preclude the employment of 
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extravagantly thick detectors.  At the same time, the alternate bias mode 

produces a situation where an increased photocurrent signal is produced with 

less voltage, which reduces both the power and cooling requirements assigned 

to the detector design. These are important factors in detector use on cryogenic 

space platforms, where both power and cooling are valuable resources.    

Ultimately, BIB detectors employing an alternate bias configuration require 

further analysis to determine optimal device performance. 

 

 Blocker Thickness 
 4 micron 6 micron 8 micron 

Standard 
Bias 

   

150 mV 124.61 dB 124.61 dB 124.61 dB 
450 mV 129.11 dB 129.10 dB 129.10 dB 
750 mV 135.00 dB 134.94 dB 134.91 dB 

Table 7.   Signal to Noise Ratios in Comparison to Blocker Thickness for the 
Alternate Bias Mode. 
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V. CONCLUSIONS 

A. CONCLUSIONS 
To further extend BIB detector coverage into the 40-350 µm range, Ge 

and GaAs BIB detectors are required.  Unfortunately, the introduction of these 

new detectors has been delayed due to growth and fabrication limitations.  These 

limitations include the inability to grow either a sufficiently thin high purity 

blocking layer or an efficient blocking to active layer interface.  Numerical 

modeling shows that an alternate bias mode exists for BIB detectors that 

minimizes these fabrication issues.  The computer simulations demonstrate that 

the alternate bias mode allows for the creation of a depletion region exclusively in 

the active layer of the device.  The creation of a depletion region in this manner 

allows for the isolation of the blocking to active layer interface, which minimizes 

the impact of any grading between the two layers.  Since minimal voltage is lost 

across the blocking layer, the alternate bias mode creates a wider depletion 

region.  Because of these factors, devices employing the alternate bias mode 

generate more total photocurrent than those using the standard bias mode.  The 

currents created by both modes of operation for several applied biases and two 

different optical generation rates were calculated in order to determine the SNR 

of both BIB configurations.  The alternate bias mode consistently produced a 

larger SNR, which highlights the asymmetries between the different bias modes.   

To determine the feasibility of fielding an alternate bias mode BIB detector 

the internal detector transport was examined.  The modeling shows that the 

blocking layer still effectively prevents hopping currents from reaching the 

appropriate contact, which preserves the benefits associated with this multi-

layered device.  The inherent strengths of the computer simulation allow for the 

examination of near contact diffusion and its effect upon device operation.  The 

heavily doped ohmic contacts produce drift and diffusion currents within the 

device.   Examinations  of  these  two different components of current shows that  
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the free carriers present in the two ohmic contacts do not saturate the device.  

Near contact diffusion along with LPE growth considerations make thicker 

blocking layers more desirable. 

B. FUTURE WORK 
The work compiled in this thesis provides the basic operational theory of 

BIB detectors employing an alternate bias mode; however, much work remains.  

To further this endeavor, improvements to the BIB computer suite, continued 

modeling, and experimental work are required.  The computational suite can be 

improved through the introduction of a 64 bit operational system, which would 

allow for the utilization of improved FORTRAN compilers and mathematical 

libraries.  These efforts ensure that the computer model remains supportable with 

current technology, while possibly improving computational speeds.  At the same 

time, the establishment of file sharing between the individual computers would 

significantly reduce the amount of time required to manipulate output data, while 

reducing the organizational requirements associated with the storage of historical 

lab data files.  The introduction of advanced high performance computer 

measures such as parallel super computing would represent the apex of the 

existing BIB computer suite.  This could be accomplished through the 

employment of a Class I Beowulf Cluster, which would take advantage of the 

commercial technology employed in the lab.  A Beowulf Cluster would greatly 

reduce the run time of any simulation and provide the computational power 

necessary for any new modeling capabilities that is desired.  The improvements 

suggested in this chapter do not require any additional hardware, but do involve 

an investment in new software. 

The inherent flexibility of the computer model allows for further studies into 

feasibility of fielding alternate bias mode BIB detectors.  An examination of the 

effects of non-optimal dopant and compensation concentrations upon detector 

performance is required.  Because of the effects of near contact diffusion in the 

blocking layer, modeling is required to determine the consequences of creating 

significantly wider blocking layers upon overall detector performance and the 

mechanisms for current injection through the blocker while in an alternate bias 
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mode.   These studies would continue the efforts to find detector configurations 

that reduce the effects of LPE growth limitations upon the introduction of GaAs 

and Ge devices.  Ultimately, the modeling could provide a detector configuration 

that is achievable with current manufacturing techniques. Despite any insights 

gained through the modeling of BIB detectors, the fielding of an alternate bias 

mode detector depends upon substantial experimental work. 

 In order to convince the far infrared detector community of the viability of 

an alternate bias mode BIB device, significant experimental work is required.  

This work would include the fabrication and characterization of a BIB device 

specifically created for alternate bias mode operation.  Once a detector was 

created, the photo-response could be measured and compared to the modeling 

results.  Prior to the completion of this thesis, researchers from the Naval Post 

Graduate School and the University of California Berkeley have begun 

collaborative efforts to fabricate and test an alternate bias mode BIB device.  In 

the end, these efforts will determine if an alternate bias mode BIB represent a 

solution for high sensitivity, radiation hard, large format array detection in the 40 

to 350 µm range. 
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