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1 SUMMARY 

1.1 Objectives 

BBN’s primary goal was to dramatically increase the accuracy of evidence extraction, in 

particular, achieving at least 90% of human performance on extracting relations given the 

entities.  A second performance objective was to be able to extract entities that have names at 

80% of human performance.  An additional objective was to have a prototype robust enough that 

it could extract evidence continually (24x7) from a daily English news feed. 

All objectives were achieved. 

1.2 Approach and Techniques 

BBN’s approach has four main elements: 

• Integrate statistical learning algorithms wherever feasible. 

• Analyze all text into propositions, i.e., relations among entities, where the relations 
(predicates) are literally stated in the text. 

• Map relations to the most specific relation in the ontology as input for link discovery and 
pattern learning. 

• Integrate general linguistic training (e.g., names and treebanks) and small domain training 
sets (e.g., relations in terms of the ontology) into the models. 

Our extraction engine, SERIF (Statistical Entity & Relation Information Finding), embodies this 

approach.  It uses trained statistical models both for the core linguistic analysis components, like 

the parser, and for components that depend more on the particular domain, like the model that 

predicts the semantic type of noun phrases.  As shown in Figure 1, the models that do general 

linguistic analysis can be trained using large preexisting training corpora, while the more 

domain-specific models like those for the specific target relations are trained on smaller batches 

of relevant training data annotated for the purpose.  
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SERIF’s combined analysis models map the text into its component propositions, which 

represent the relations among entities that are literally stated in the text.  For example, if the text 

says “Sergey, a Russian envoy in Paris, was shot by unidentified gunmen”, the system would 

first recognize that “Sergey”, “envoy”, and “gunmen” are all of type Person, and that the first 

two refer to the same person.  The extracted propositions would then include the modification of 

“envoy” by “Russian”, the “in” connection between the “envoy” and “Paris”, and the “shot” 

relation between the “gunmen” and “Sergey”.  That propositional representation, which 

represents the literal meaning of the text, is then mapped to the specific target relations, 

determining here that the envoy was “affiliatedWith” Russia, that the envoy was “inRegion” 

Paris, and that there had been an AttackOnTangible event involving the envoy as “victim” and 

the gunmen as “performedBy”.  

A new statistical model (Boschee et al., 2003) was developed early in this program for learning 

to extract relations from the propositional sentence analyses.  This algorithm combines two 

separate approaches that utilize the same training data – one a classifier based on feature vectors 

extracted from the examples, and one a generative probability model that evaluates the examples 

expressed as proposition trees.  Each approach estimates the probability that a relationship exists 

between two entity mentions that are syntactically connected.  Each bases its estimate on a 

probability model generated from the distribution of relations across the proposition structures, 

which combine information from entity extraction and parse trees to represent the basic 

predicate-argument structure of the sentence.  The two scores are then combined. The algorithm 

is able to generalize accurately across familiar and unfamiliar words and syntactic structures, and 
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proved able to predict the existence and type of relations roughly as well as carefully handcrafted 

rules. Further progress was made on this task in 2004, when a new model was developed that 

was able to expand the set of instances considered to include all pairs of mentions (not just those 

which are syntactically connected) and to access features of the data previously unavailable to 

the algorithm due to their complex interdependencies. This new model successfully improved 

performance beyond the targets already met in 2003.  

SERIF also includes the capability to extract relationships from text even when the relationship 

cannot be resolved as a specific relation in a pre-defined ontology.  The proposition can be 

extracted, retaining the lexical predicate word and the phrase explicitly stating the relation, even 

if the closest matching predication in the ontology is just that entity X and entity Y are related. 

Figure 2:  Illustrating the Difference Between Cascaded Models and an Integrated Model 

An important advantage in the SERIF design is that it allows for some integration between the 

model components. Rather than being chained together, with each component outputting only a 

single best guess, thereby allowing errors to compound themselves throughout the extraction 

process, SERIF (as shown in Figure 2) is able to maintain a level of integration that allows 

“later” components to influence earlier decisions.  This is achieved by allowing the n-best 

alternatives from each component, as judged by probability estimates, to be passed to the next 

component.  

SERIF is also easily portable to a new domain and a new set of entity, event, and relation types.  

Most models were shown to be rapidly adaptable, requiring, at most, new training examples.  For 

models sensitive to changes in the ontology, such as name extraction, no change was required 
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except for the creation of new annotation data, while for tasks involving general linguistic 

principles such as co-reference and parsing, no change at all was necessary.   

Cross-domain performance was shown to be relatively robust with no changes to either the 

system or the training data, with only small degradation on the surprise “Al-Qaida” data set.  

Cross-lingual adaptation is also possible given training examples; SERIF is in the process of 

being trained for Arabic and Chinese under other efforts. 

1.3 Accomplishments 

First and foremost, BBN was one of the groups that achieved the program goal of 90% of human 

performance in evidence extraction.  Using a hybrid of statistical learning algorithms and 

handcrafted patterns, SERIF achieved 93% of human performance in extracting entities, events, 

and relations and 96% of human performance in extracting relations given entities and events. 

Note that this surpassed our own initial goals, which were to achieve 80% of human performance 

on entities with names, and 90% on relations when given the entities. This performance was then 

further improved in the relation extraction work done in 2004. 

BBN’s SERIF system also represents a significant advance for extraction systems in architecture 

and implementation. The combination of general linguistic models trained on preexisting corpora 

with domain specific components trained for the particular task allows powerful linguistic 

analysis tools to be efficiently brought to bear on extracting the relations and events of a new 

domain. The use of propositions as an intermediate step was an important part of this strategy, 

encapsulating the literal meaning of the text from which the target relations could then be 

derived. 
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SERIF now serves as the extraction engine at the core of BBN’s FactBrowser™ system, which 

fills a database with information extracted about entities and relations and provides for 

visualization of that data through a web browser.  FactBrowser has been trained and tested on 

dozens of entity types, and a version of it is now either complete or near completion in both 

Chinese and Arabic. 

 

Figure 3:  Explicitly stated links extracted from Russian organized crime corpus. 



  6

Integrating FactBrowser with the VisuaLinksTM link analysis tool has also provided another 

method of data visualization and analysis, with direct graphical display of the entities found in 

the corpus and of the relations connecting them. Figure 3 shows the link analysis diagram that 

resulted when this process was applied to the corpus of documents about Russian organized 

crime that was provided as part of the EE challenge problem.  To produce that graph, BBN’s 

FactBrowser was run over the corpus, producing a database that was then displayed using 

VisuaLinksTM.  The sample shown below in Figure 4 is a small portion of this same extracted 

network. 

 

Figure 4:  Example of entities and relations automatically extracted from the Russian organized 
crime corpus 

BBN has also delivered SERIF to other projects, including the following: 

• The Prototype Platform and the Data Protected Platform, extracting 5 entity types and 24 

relation types from Foreign Broadcast information Service (FBIS) sources.   
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• The TIDES (Translingual Information Detection Extraction and Summarization) Integrated 

Feasibility Experiment of FY03, where it extracts 5 types of entities and 24 types of 

relations, and is being ported to Arabic and Chinese. 

• BBN’s name extraction technology, IdentiFinderTM, is also included in SERIF as a 

subcomponent. IdentiFinder was independently delivered to Fetch Technologies, and has 

been distributed as a trained name extraction component for English text to over a dozen sites 

for research purposes.  
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2 RESULTS IN 2002 AND 2003:  TWO SIMPLE APPROACHES TO LEARNING TO 
EXTRACT RELATIONS 

For more than a decade, the “standard” approach in information extraction from text has been to 

write handcrafted rules.  This standard approach, dating back to the earliest Message 

Understanding Conferences (MUC), has been applied to a full range of extraction tasks, 

including names, entities, and relations.  In an effort to avoid this necessity for handcrafting, 

learning techniques are also increasingly being explored for these same tasks.  While learning 

techniques have produced state-of-the-art performance in name tagging (e.g., Bikel, et al., 1999; 

Palmer, 1999), few attempts (e.g., Miller, et al, 2000; Zelenko, et al., 2002) had been made until 

recently to learn to extract relations from text, such as news. 

The main work we will present was done in the context of the 2002 ACE/EELD/TIDES 

evaluation, which involves extracting both entities and relations.  The Entity Detection and 

Tracking (EDT) task as defined for that evaluation targets five entity types: person, organization, 

facility, location, and GPE (geo-political entity, e.g. city, state/province, or country).  EDT 

systems identify and link all textual mentions of those entities, including names, descriptions, 

and pronouns.  

The relation target as defined in the companion Relation Detection and Characterization (RDC) 

task is inherently more challenging than the Template Relations (TR) task as defined in MUC.  

In particular, instead of the 3 relation types in MUC TR, there are 24 relation types in RDC 

(Doddington, 2002; Linguistic Data Consortium, 2002).   

In order to extract these relations, we developed three classifiers:  

• a tree-based generative model, where we estimate the probability of generating the 

propositional structures connecting mentions of the two entities,  

• a model that represents the connections between entity mentions as a flat vector of features, 

which is somewhat analogous to traditional handcrafted patterns over chunk parses, and  

• a mixture model that combines the above two models. 

This latter combination outperformed all but one of the systems in the 2002 Automatic Content 

Extraction (ACE) evaluation, and performed near human levels as measured by the Linguistic 

Data Consortium.   
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We will also report on the performance of the three models as a function of training set size, and 

on experiments showing the viability of using active learning techniques to maximize the impact 

of training.  

2.1 Relation Finding and Scoring 

2.1.1 Task Definition 
The RDC task requires detection and characterization of relations between (pairs of) entities.  

There are five general types of relations, some of which are further sub-divided, yielding a total 

of 24 types/subtypes of relations:  

• Role, the role a person plays in an organization, which can be subcategorized as 

Management, General-Staff, Member, Owner, Founder, Client, Affiliate-Partner, Citizen-Of, 

or Other,  

• Part, i.e., part-whole relationships, subcategorized as Subsidiary, Part-Of, or Other, 

• At, location relationships, which can be subcategorized Located, Based-In, or Residence, 

• Near, to identify relative locations and  

• Social, subcategorizable as Parent, Sibling, Spouse, Grandparent, Other-Relative, Other-

Personal, Associate, or Other-Professional.   
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The type constraints on the arguments to these relations are shown in Table 1. 

 

 FAC GPE LOC ORG PER 

FAC Part-Of Located-In Located-In   

GPE   
Located-In  

Rel-Location 
Client  

LOC  Rel- Location    

ORG Located-In 
Part-Of 

Located-In 

Based-In 

Subsidiary 

Located-In 
Client 

Subsidiary 
Client 

PER 

Residence 

Located-In 

Management 

General-Staff 

Owner 

Founder 

Residence 

Located-In 

Rel-Location 

Management 

General-Staff 

Affiliate 

Citizen-Of 

Residence 

Located-In 
Rel-Location 

Management 

General-Staff 

Member-Of 

Owner 

Founder 

Affiliate 

Client 

Sibling 

Spouse 

Grandparent 

Other-
Relative 

Other-
Personal 

Associate 

Other-
Professional 

Member-Of 

Affiliate 

Client 

Table 1: Type Constraints on Relations.  An entry in cell (i,j) indicates a possible relation 
 between entities of type i and those of type j. 

2.1.2 Scoring 
The scoring in ACE (Doddington, 2002) at both the entity level (EDT) and the relation level 

(RDC) differs from the recall, precision, and F measures used in earlier information extraction 

evaluations.  Both EDT and RDC scoring assume a two-pass process:  first, system output 

entities (or relations) are mapped against the answer key entities (or relations). Second, a 

weighted sum of errors is computed from the false alarms (system entities or relations that do not 
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map to any answer key entity/relation), misses (answer key entities/relations for which there is 

no mapped system entity/relation), and substitution errors (system entities/relations that do map 

to an answer key entity/relation, but with some error, e.g., incorrect type).  The final score is the 

“value” of the extracted information, computed by subtracting the weighted sum of errors from 

100. 

For a system relation to map to an answer key relation, each of the entity arguments in the 

system output must potentially map to the corresponding entity argument in the answer key, that 

is, it must share a mention with that corresponding answer key entity. This is much more 

stringent than the scoring in the MUC measurements of relation extraction; in MUC scoring, a 

relation could map if any slot was correct, e.g., the type or either entity. Many system relations 

that would have mapped in MUC to an answer key relation (and thus received substantial partial 

credit) are not mappable in ACE RDC, resulting in both a missed relation and a false alarm 

relation. 

After an RDC relation has mapped, multiplicative partial credit factors are applied for missed 

slots, as follows: incorrect time value (90%), incorrect type (60%), incorrect subtype (80%), and 

incorrectly mapped entity argument (30%).  In MUC template relations scoring, each slot of the 

relation template had equal weight (e.g., entity, relation type, etc.). Partial credit for ACE RDC 

tends to be less generous than for MUC.  For instance, if the system got the type and one entity 

correct, the partial score in MUC would have been 0.67, but in ACE RDC, it would be 0.30. 

MUC template relations did not have to predict relation subtype or time, and the cumulative 

effect of slot errors in RDC multiplies, while in MUC it merely added.   

As a result of these differences in task definition and in scoring, while state-of-the-art 

performance on the MUC TR task of 3 relations was in the low 70s (Marsh & Perzanowski, 

1998), state-of-the-art performance in 2002 ACE RDC on 24 relation types was in the low 20s. 

2.2 The Probabilistic Models 

We approach the task of extracting relations from text by focusing on places in the text where 

mentions of two different entities are syntactically linked within a single phrase or clause. 

(Roughly 93% of the target relations are expressed in such a manner.) We train statistical 

classifiers to judge, based on the entities and the structure that connects them, whether or not a 

relationship between the entities is being conveyed, and, if so, what kind of relationship it is. 
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Thus given a pair <M1,M2> of noun phrases in text (mentioning a corresponding pair of entities) 

and the syntactic connection between those two mentions, we use a classifier to predict the pair’s 

most likely relation type, if any. (We include coreference as an additional identity “relation” 

type.) 

Rather than working directly from the parse trees, the syntactic connections between the entity 

mentions are first translated into sets of propositions. These propositions attempt to capture the 

underlying predicate argument structure of the connections without trying to resolve word sense 

ambiguity. For example, in the phrase “the government was attacked by the party”, the 

propositional form records that “party” is the logical subject and “government” the logical object 

of “attack”, without resolving whether what occurred was a speech or a raid. 

In this section, we present two separate classification models for finding relations from 

propositions, one generative and one feature-based, and discuss their relative advantages and 

disadvantages. Finally, we present a combined model.  

2.2.1 A Generative Model using Propositions 

2.2.1.1 Representing Propositions 
Propositions represent an approximation of predicate-argument structure and take the form: 

           predicate (role1: arg1, … , rolen: argn) 

The predicate is typically a verb or noun.  Arguments can be either an entity or another 

proposition.  The most common roles include logical subject, logical object, premodifier (for 

noun predicates), and object of a prepositional phrase modifying the predicate.  For example, 

“Smith went to Spain” is represented as went(logical subject: Smith, PP-to: Spain), and “the U.S. 

president” is represented as president(premodifier: U.S.). 

For our generative model, propositions are represented as trees. Each tree has a left branch 

(mention M1) and a right branch (mention M2).  Each node of the tree represents either the 

predicate of a proposition (non-terminals) or the type of an entity mention (terminals).  Each 

branch has a label representing the role that its child node plays in the parent proposition.  So, 

“Smith traveled to Spain” is represented as: 

 
 
 
 

travel

  PER GPE

subject PP-to
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Here, “travel” is the stemmed predicate of the proposition; “subject” and “PP-to” are the roles 

that the child nodes play; and PER (person) and GPE (geo-political entity) are the entity types of 

M1 and M2. 

Relational nouns are handled analogously.  Though M1 is not syntactically realized as an 

argument of the predicate, the same graphical representation will suffice.  “The president of the 

U.S.” is represented as: 

 
 
 
 

Where the connection between the two mentions is nested, the tree is extended.  For example, 

“Smith traveled to a meeting in Spain” is represented below.  This representation is considerably 

more flexible than the flat vector model (discussed in 3.2), and it allows us to treat each part of 

the propositional structure relatively independently.  

 
 
 
 
 
 
 

2.2.1.2 The Generative Probability Model 

Our generative model computes the probability that a particular propositional structure conveys a 

particular relationship by estimating the joint probability of the relation and the structure. This 

probability is estimated by tracing out the following sequence of decisions that together generate 

the relation and propositional structure:  

1) Generate a relation type.  

2) Given that relation type, decide whether the predicate has only one explicit argument or two.  

In the first case, only the right branch represents an explicit argument to the predicate; in the 

second both branches of the tree represent explicit arguments to the predicate. 

3) Generate the lexical predicate itself.  

president

   PER GPE

      (referent) PP-of

travel

   PER meeting

subject PP-to

PP-in

   GPE
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4) For each branch that represents an argument to a predicate, generate its label: the role that its 

child node plays in the parent proposition (e.g. logical subject, object, or PP-to).   

5) For each child node, generate either an entity type or the predicate of a nested proposition.  

When there are nested propositions, their children are generated recursively, using the same 

probability tables, allowing trees of arbitrary depth. 

The dependencies for the probabilistic model of this generative process are as follows: 

 

Element Depends on 

relation type NONE 

top proposition type relation type 

predicate relation type, top proposition type 

branch label relation type, predicate 

node relation type, branch label, predicate 
 

In addition, the probabilities of branch labels and node types/words are estimated separately for 

the left and right branches.  

Thus the probability of generating “Smith traveled to Spain” as an expression of an At.Located 

relation would be estimated as the product of the following probabilities: 

 
P (At.Located) 
P (predicate-has-two-args | At.Located) 
P (travel | At.Located, predicate-has-two-args) 
Pleft (subject | At.Located, travel) 
Pleft (PER | At.Located, subject, travel) 
Pright (PP-to | At.Located, travel) 
Pright (GPE | At.Located, PP-to, travel) 
 

Each of these probability measures is computed as a smoothed mixture of maximum likelihood 

estimates, using a formula similar to Witten-Bell.  The backoff scheme for each component 

probability is as follows, where “ ” lines show the successive backoff levels for those choices 

that have backoffs: 

P (relation_type) 
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P (tree_type | relation_type) 
P (predicate | relation_type, tree_type)  

 P (predicate) or 1/10000 if the predicate is not in vocabulary 
Pleft/right (branch | relation_type, predicate)  

 Pleft/right (branch | relation_type)  
Pleft/right (node | relation_type, branch, predicate)  

 Pleft/right (node | relation_type, branch)  
 Pleft/right (node | relation_type) 

2.2.2 The Feature Vector Model 
In our second and simpler model, we express each mention pair <M1,M2> with its syntactic 

connection as a set of feature values.  Then, given these feature vectors, we use maximum 

likelihood estimates to select the most likely relation type.  

The feature set for two mentions connected by a single proposition is represented as follows: 

f1 =  entity type of M1 
f2 =  entity type of M2 
f3 =  the syntactic role M1 plays in the connecting proposition  
f4 =  the syntactic role M2 plays in the connecting proposition 
f5 = the (stemmed) predicate of the connecting proposition 

Examples: 

“IBM hired Smith”   
 [ORG PER subject object hire]  

“Smith traveled to Spain” 
 [PER GPE subject PP-to travel] 

“the U.S. president” 
 [PER GPE referent premod president] 

When the connection between the two mentions is a nested structure involving two propositions 

(e.g. Smith visited a conference in Moscow), f5 is the stemmed predicate of the first (top) 

proposition, while f3 is left to represent the nesting by combining the role that the second 

proposition plays in the first and the role that the relevant entity mention plays in the second.  

For example: 

“Smith visited a conference in Moscow” 
 [PER GPE subject object;PP-in visit] 

2.2.2.1 Formal Probability Model 

The probability estimate for a relation type is a mixture of two maximum likelihood estimates, 

one based on all five features, and one based on all but the last feature: 

P1 (relation_type | <M1,M2>)   
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 = P (relation_type, {f1-5}), and  
P2 (relation_type | <M1,M2>)   

 = P (relation_type, {f1-4})   
 

Smoothing was done using a formula similar to Witten-Bell. 

2.2.2.2 Analogy to Handcrafted Patterns 

In general, this model’s approach to relation classification is similar to that of traditional 

handcrafted patterns.  The features are not treated independently (unlike in the generative 

model), and together they define a simple syntactic construction that one might write a pattern to 

cover.  In addition, the model can tolerate significant amounts of noise since it relies on a 

simplified representation of the situation to make its classification, and one component even 

ignores the predicate (for cases where insufficient information exists). 

For example, this model will likely classify any vector of the form [PER LOC subject PP-in *] as 

At.Located.  This is functionally equivalent to a pattern that says whenever there is a 

prepositional phrase attached to a verb whose subject is a person, and when that prepositional 

phrase’s headword is “in” and its object is a location, we find an At.Located relation between the 

person and the location. 

2.2.3 Advantages and Disadvantages 
The two models have different strengths.  The feature vector model performs well on vectors 

similar to those seen in training, and it also has the ability to generalize across unseen predicate 

words.  For example, as noted above, it can correctly classify “Smith ice-skated in Brazil” as an 

At.Located relation even though it has never seen the predicate “ice-skate.”  On the other hand, it 

treats each pair of entity types as fundamentally separate from every other pair.  Thus, even when 

the training contains the ice-skating example above—where the feature vector [PER GPE ice-

skate subject PP-in] predicts At.Located—the model will still know nothing about the vector 

[PER FAC ice-skate subject PP-in], e.g., “Smith ice-skated in the local rink”.  Finally, because 

this model ignores the intermediate word in nested constructions, expressions such as “Smith 

made a deal with Anderson” are unlikely to be correctly classified. 

The generative proposition model, on the other hand, can handle nested propositional structures 

without difficulty.  In addition, since the generative model treats the two arguments 

independently, it can classify relations where it has accurate training information for the 

probabilities of each of the individual arguments, even if it has not often seen them paired 
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together (as in the previous example “Smith ice-skated in the local rink”, which the vector model 

missed).  

These independence assumptions in the generative model are often reasonable and help to 

maximize the impact of the training data.  On the other hand, they can sometimes lead the model 

to overgeneralize.  For example, the expression “Chechnya's southern mountains” conveys a 

Part.Part-Of relation between “Chechnya's southern mountains” and “Chechnya”.  The feature 

vector model is familiar with the exact construction GPE’s LOC, and easily classifies this 

instance as Part.Part-Of (with probability 0.98).  The generative model, on the other hand, 

analyzes each part of the construction separately and incorrectly classifies it as At.Located, with 

“Chechnya” being “located” at “Chechnya's southern mountains”.  Each aspect of this 

classification is independently supportable: the model has often seen the first argument of an 

At.Located relation attached as a possessive premodifier, as in “the man’s hotel room”; it has 

seen a number of entities (mostly persons) located at mountains; and it has certainly seen many 

LOCs as the second argument in At.Located relations.  Generating GPE as the type of the first 

argument is not its most likely choice, but it is not so unlikely as to outweigh the other factors.  It 

therefore classifies this instance incorrectly due to the independence assumptions inherent in the 

model. 

2.2.4 Model Combination 
The fact that the two models have contrasting advantages and disadvantages suggests trying a 

combination model.  In our combination model, we allow a mention pair to be classified as an 

RDC relation if and only if both models found some RDC relation present.  If the models do both 

find a relation but disagree as to which relation, we output the one chosen by the feature vector 

model, under the assumption that the specific relation type classification sometimes subtly 

depends on the specific combination of the two entity types.  

2.3 Training Data 

2.3.1 General Approach 
We used the following annotation strategy to gather our training data.  We ran our current trained 

entity extraction system over the text, and selected sentences where it found two linked entity 

mentions.  We then presented those individual sentences to our annotators with the two mention 

spans pre-marked.  If the annotator judges the entity marking as correct, they then annotate the 



  18

RDC relation, if any, between the two mentions.  If the EDT marking is incorrect, the potential 

relation instance is tagged as incorrect and is not used for training.  The full training set is 38K 

potential relation instances, which include 28K actual relations.   

2.3.2 Active Learning 
We also ran a set of experiments designed to explore the viability of using active learning 

techniques to maximize the usefulness of the training data annotated for use by the system.  The 

idea is to begin with a small training set and to add intelligently to it with examples that provide 

maximal information to the model being trained. For instance, in the case of relation finding, 

providing the system with a tenth example of “the president of <some organization>” yielding a 

Role.Management relation, is less useful than providing it with the first example of “the 

<organization> analyst” yielding a Role.General-Staff relation. The goal is to develop a process 

that can focus high-demand training resources on examples that confuse the system, rather than 

wasting time with examples the system already knows how to classify. 

For these experiments, we began with a model trained on 10000 potential relation instances.  For 

the baseline performance, we added examples to the training set at random. Table 2 shows the 

results of relation-finding with the randomly trained model on the documents and (human-

generated) entities from the 2002 evaluation: 

training set size score 

10000 40.0 

20000 40.2 

30000 40.9 

Table 2: Relation finding performance with a randomly trained model 
 

For the active learning experiments, we iteratively added examples in increments of 2000.  At 

each iteration, we retrained the model and then added 2000 examples about which the current 

model was sufficiently ill-informed. Because the relation-finding model is a combination of two 

separate sub-models, we began by considering the model to be confused about an instance if its 

sub-models disagreed on the classification.  We later expanded the definition to take into 

consideration the difference in probability between the model’s first-best classification and its 
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second-best classification. The basic result was as desired: when the model is allowed to 

intelligently select examples for annotation, its performance improves more quickly than if it is 

forced to accept examples at random. In fact, whereas the random selection process required 

20000 additional examples for the model to reach a score of 40.9, the intelligent process required 

only 4000, and its performance with 20000 examples well surpassed that of model trained on the 

randomly selected set: 

score 

training set size 
random 
selection

active 
learning

10000 40.0 40.0 

12000  40.5 

14000  41.0 

16000  41.3 

18000  41.1 

20000 40.2 41.5 

22000  41.6 

24000  41.6 

26000  41.9 

28000  41.9 

30000 40.9 42.3 

Table 3: Comparison of relation finding performance between randomly trained model 
and model trained with intelligently selected training examples 

2.4 Results 

We were able to measure and compare the performance of the three classifiers on the full RDC 

task in two ways.  First, by using our trained entity extraction technology to find the entities, we 

could compare the learned classifiers to the state of the art, as reported in the 2002 ACE 

evaluation.  Second, since the Linguistic Data Consoritum (Strassel, 2003) has provided their 

inter-annotator agreement scores on perfect entity markup, we ran our relation classifiers on 
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perfect EDT input and were able to compare our learning algorithm approach to human 

performance on this task.   

2.4.1 Comparison across Systems 
There are five document collections in the September 2002 evaluation test set, from five 

different sources: newspaper (npaper), newswire (nwire), broadcast news (bnews), and two 

topic-based EELD sets (eeld1 and eeld2).  Results are presented for each source. 

Table 4 shows the results of both individual models, the combined model, our former rule-based 

relation extraction component (using the same trained system to extract entities), and the best 

reported system from the 2002 RDC evaluation results.  The combined model outperforms either 

of the individual models and our rule-based relation extractor. It comes close to the performance 

of the best system fielded in that evaluation, which was rule-based. 

 Vector 
model 

Generative tree 
model Mixture model Our rule-based Best RDC 

system 

bnews 14.4 17.2 20.1 21.6 23 

eeld_1 20.9 19.8 21.7 20.3 20.2 

eeld_2 25.5 20.8 25.5 21.2 17.5 

npaper 10.9 11.3 13.6 15.1 16.6 

nwire 24.8 24.0 25.2 24.4 29.3 

ALL 18.5 18.5 20.6 20.5 unknown 

Table 4: Relative Performance:  Performance of the vector classifier, proposition classifier, 
their combination, our rule-based system, and best system are reported on the five test sets and 

overall. 

 

Table 5 shows the overall performance of each of the three statistical models when trained with 

different percentages of the available training data; Figure 5 graphs this performance on a 

logarithmic scale.  
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Table 5: Performance given varying training set sizes. 
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Figure 5:  Performance of the three classifiers as a function of Training set size 

 

The vector model in particular seems to be nearly as effective with only 25% of the training data.  

Presumably, it learns relatively quickly the general sorts of constructions that convey certain 

relations.  The improvement thereafter is likely due largely to specific variations in those 

constructions based on the lexical information contained in the predicate.  Because the space of 

possible predicates is so vast, it is not surprising the model’s improvement levels off.   

The generative proposition model and combined models, on the other hand, are more complex 

and benefit more from the expansion of the training set; note that performance has not leveled 

off, suggesting that the generative proposition model is under-trained. This is further supported 

by the success of the active learning experiments reported on in section 2.3.2.  
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2.4.2 Comparison with Human Performance 
Lastly, we compare the system’s performance with human performance.  Thanks to (Strassel, 

2003), there is an inter-annotator estimate based on sampling the work of annotators experienced 

at the 2002 RDC task and starting from the same entity markup.  The scorer, when applied to the 

differing annotators’ 2002 RDC markup, gives a value of 32.   

Though not on the same documents, the closest comparison of our algorithm achievable on this 

task involves running the learning algorithm on the official evaluation data, and supplying it with 

the correct entity markup (rather than with the errorful output of our EDT system, as was done in 

the previous section).  Testing in this style, too, as shown in Figure 6, the learned model slightly 

outperforms our former rule-based relation finder. Figure 7, which breaks down the comparison 

between the learned model and our former rule-based system into more detail, shows that that the 

learning algorithm outperforms our state-of-the-art handcrafted rules on each of the test sets 

described in the previous section. 

Finally, comparing the learned model’s score in Figure 6 to the inter-annotator agreement score 

cited above indicates that the learning algorithm also performs quite respectably compared to 

human inter-annotator agreement; however, that comparison, while indicative, is not rigorous on 

two grounds:   

The test sets are not identical 

The human performance is a raw inter-annotator agreement score based on correct entity 

annotation; scores of a single annotator against an adjudicated answer key may be higher. 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 6:  Overall performance. 
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Figure 7:  The learning algorithm outperformed our handcrafted rules on each test set. 
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3 RESULTS IN 2004:  IMPROVED LEARNING ALGORITHM 

3.1 Summary 

Our primary accomplishment in 2004 was improved performance in extracting relations from 

text using trained statistical systems. We developed a new system designed to capitalize on the 

information not accessible to our 2003 system. This 2004 system outperformed the approach to 

relation finding described in section 2 and provides a new, easily modifiable component that can 

be retrained for any target relation set.  

We measured overall improvement by comparing performance on the 2004 ACE/TIDES task1. 

This task is similar in form to the 2002 ACE RDC task described in section 2.1.1, with seven 

relation types and 24 relation subtypes. We trained both systems on the same set of annotated 

data and tested both on the 2004 ACE/TIDES evaluation corpus.  The result was a clear gain in 

performance as evident in Figure 8. 

Figure 8:  Improved relation extraction performance in 2004. 

These results represent the performance of each relation classification system on the “connect-

the-dots” task, which measures the ability of the system to detect and classify relationships given 

entities (as input).  This is the clearest way to evaluate RDR performance in isolation from other 

potentially confusing factors such as co-reference of mentions of entities.  Scores are calculated 

using the 2004 ACE scorer with default weights.  

                                                 
1 The 2004 ACE evaluation plan, available at http://www.nist.gov/speech/tests/ace/ace04/doc/ace04-evalplan-
v7.pdf, contains a full description of the task and of the scoring metric used in the evaluation.  
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3.2 Core Concept 

The core concept driving the development of the 2004 system was the desire to explore a wider 

and more diverse feature space.  The 2003 system, as previously described, was a probabilistic 

model that considered pairs of mentions linked by predicate-argument structures derived from 

parse trees.  That 2003 system used a limited set of features based on that predicate-argument 

structure, and all such features were required to be independent of each other or have their 

dependencies specifically managed by the model’s carefully constructed back-off schemes.  

The driving motivation behind the development of a new relation finder was a desire to move 

beyond that restricted set of features to a variety of inter-dependent features.  For example, we 

believe that there is significant and useful information gained by extracting semantic structures 

from large unannotated corpora.  This kind of information, however, seems best represented as a 

collection of potentially overlapping descriptions of a word or construction: for instance, one 

might want to say that the word “manager” is often found in the same contexts as “coordinator” 

and simultaneously say that the word “manager” is occasionally found in the same contexts as 

the word “vendor.”  These two assertions (drawn from real, automatically extracted word 

clusters) are, however, not independent of each other.  The more such non-independent features 

introduced into a model, the more difficult it becomes to design a generative model that 

adequately manages all such dependencies.  

One central decision made, therefore, was to begin experimenting with discriminative learning 

algorithms—which have no such feature independence constraints—in order to take advantage 

of the wide set of features potentially useable in such a framework.  The algorithm that drives the 

relation classifier here is a perceptron-style Viterbi training algorithm.  

Development of the new system was then able to expand into this larger feature space.  This 

primarily included the use of word clusters extracted from unannotated corpora, WordNet 

synsets, surface-level features connecting pairs of mentions, and features derived from predicate-

argument structures.  Results of these explorations are described in detail below.  

3.3 Model Description 

3.3.1 Algorithm 
The system considers each pair of mentions in a sentence independently.  Possible classifications 

for that pair include all target relation types as well as a classification indicating no relation is 
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present (“NONE”).  For each possible classification of a mention pair, a set of features is 

extracted. For example, when considering whether “Bush did not visit Moscow” conveys a 

Physical.Located relation, a feature might be expressed as: 

Physical.Located negated-proposition,  

(corresponding to the physical, located relation being expressed in a negated proposition.) 

Each such feature has had a weight assigned to it in training, roughly corresponding to how 

likely it is that such a feature exists in a correctly classified instance.  So, in this example, one 

would expect the value of this feature weight to be low (or negative), since it is unlikely that a 

Physical.Located relation is expressed by a negated proposition.  On the other hand, one would 

expect the value of NONE negated-proposition to be fairly high, since most negated propositions 

do not convey relations. 

Given these features and their weights, then, the model makes its decision by selecting 

whichever classification generates the features whose summed weight is the highest.  This is a 

basic perceptron-style model.  After the relation classification is finalized, argument ordering 

(e.g., whether A hired B or vice versa) is determined by a simple maximum likelihood model 

based on the entity types and the predicate-argument connection (if any). 

In training, the feature weights are determined by iterating over a set of training instances, 

decoding them one at a time and adjusting the weights whenever the system makes a mistake. 

Specifically, if the system misclassifies a training instance, it decrements by some fixed amount 

the weights of the features extracted from the incorrect classification of the mention pair, and 

increments (by the same fixed amount) the weights of the features that would have been 

extracted given the correct classification.  In all the experiments discussed here, the system 

iterates over the full training set five times.  Finally, the final feature weights are taken to be the 

average weight for each feature over the course of the training. 

3.3.2 Feature Templates 
The relation classification model deployed in the 2004 ACE/TIDES evaluation used 11 feature 

templates.  Descriptions are given below, as well as the specific feature(s) that would be 

extracted for the following simple example: 

“The assailant fled Moscow the day after the murder”: Physical.Located relation 
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The two mentions of entities are “the assailant” and “Moscow.” 
1) The entity types of the two mentions involved 

Physical.Located PER GPE 
2) The entity and mention types of the two mentions involved 

Physical.Located PER Nominal GPE Name 
3) The predicate-argument structure connecting the two entities, if any, using a stemmed 

version of the predicate 
Physical.Located  “flee” <subject> <object> 

4) The predicate-argument structure connecting the two entities, if any, using a stemmed 
version of the predicate, plus the entity types of the mentions involved 

Physical.Located  “flee” <subject> PER <object> GPE 
5) If the proposition is negative, a feature indicating such 

none;  
6) The simple predicate-argument structure connecting the two entities, if any, replacing the 

predicate with WordNet synsets (of varying size) that include the predicate 
Physical.Located  “run, turn tail, escape” <sub> <obj> 
Physical.Located  “leave, go forth, go away” <sub> <obj> 

7) The simple predicate-argument structure connecting the two entities, if any, replacing the 
predicate with word clusters (of varying size) that include the predicate  

Physical.Located  cluster-32 <sub> <obj> 
Physical.Located  cluster-243 <sub> <obj> 
Physical.Located  cluster-3057 <sub> <obj> 

8) The token(s) between the two mentions, plus the entity types of the mentions 
Physical.Located  PER fled GPE 

9) The parts of speech of the token(s) between the two mentions, plus the entity types of the 
mentions 

Physical.Located  PER VBD GPE 
10) If one mention modifies another (as in “the Russian president”), the modified word along 

with the type of modification and the entity type of the modifier—so, for instance, 
Employee.Management president <premod> GPE 

11) If each mention is the object of a prepositional phrase modifying the same noun phrase, a 
feature indicating such. This gives a handle on the relationship between mentions that 
might be parsed (correctly or incorrectly) like [the hotel [in Moscow] [near the river]]. 

The word clusters described in template (6) are n-gram word clusters generated as described in 

(Brown et al. 1992), derived from a corpus of 100 million words of Reuters news data.  
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3.4 Discussion of Features New in 2004 

3.4.1 Semantic features 
The first new type of feature we wanted to explore is covered by feature templates (6) and (7). 

These templates generate features that encode semantic information extracted from outside 

resources—either from WordNet or from word clusters generated from unannotated corpora.  

The assumption is that although the predicate “flee” may never have been seen in our annotation, 

it appears in the same word cluster or WordNet synset as “leave,” which we may have seen. 

Knowing that the two words are connected gives us an additional handle on such an instance. 

Obviously each predicate word is likely a member of many WordNet synsets, ranging from the 

most specific (“president”) to the most general (“person”, “living thing”).  The structure of the 

word clusters is analogous: the clustering is done by organizing the N most frequent words in a 

corpus into a tree based on the similarity of the contexts they appear in, and a cluster is just a 

branch of that tree.  Each branch higher in the tree includes a set of lower (more “specific”) 

branches, just as a higher synset in the WordNet tree includes all of its hyponym sets.  

Including a feature for every branch a word appears in (or every synset that includes the word) 

will generate a great deal of redundancy.  On the other hand, picking only one cluster or synset 

for each word obviously restricts the usefulness of the information, dictating a specificity or 

generality level that may not be appropriate for any given case.  We experimented with different 

ways of selecting features using these hierarchical semantic groupings.  In the end, we settled on 

using every third WordNet synset in the hierarchy and not allowing the most general synsets 

(e.g. “entity”).  For word clusters we used a similar scheme, selecting three preset levels of 

specificity and using clusters of those sizes (and only those sizes) in our features.   

3.4.2 Surface-level features 
The second type of new feature is expressed by templates (8) and (9). These templates explore 

surface-level structure that may contain information missed by a model that relies fully on 

propositional structure for its information.  For instance, in the phrase “his wife and daughter,” 

the parser will rarely create a structure where “his” modifies “daughter.”  The 2003 system 

would for this reason usually miss the relation between “his” and “daughter.”  On the other hand, 

the surface-level feature “PER wife and PER” is quite indicative (as well as common enough to 
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occur in the training data), so that with the addition of such a feature the 2004 system correctly 

classifies this instance as SOC.Family. 

3.4.3 Results of feature space expansion 
Figure 9 below shows the impact of adding both sets of additional features to the model, 

compared both to the 2003 model and to a baseline 2004 model that uses only the features that 

were available to the 2003 model (proposition-based, no word clusters or WordNet).  The third 

column shows the improvement gained from adding the “semantic” features generated by 

templates (6) and (7).  The fourth column shows the impact of adding the surface-level (“string”) 

features generated by templates (8) and (9).  

It should be noted that without the advantage of new features, the 2004 model does not match the 

performance of the old model.  This is not surprising; given the same features, a carefully 

constructed generative model should out-perform a relatively more simple discriminative 

algorithm.  

Figure 9:  Relation performance given various feature sets for the 2004 model. 

3.5 Performance Maximization 

The new statistical model outperformed the 2003 model but still under-predicted relations.  To 

address this problem, we took advantage of the fact that the new model is significantly different 

in structure from the 2003 model.  This difference means that, although on the whole, the 2004 

model performs better than the 2003 model, there are instances where the 2003 model can 

correctly predict a relation and the 2004 model does not.  Because of this and specifically 
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because the 2003 model has very high  precision, we were able to use the old model to improve 

the recall of the new: if the new model did not predict a relation between two mentions, but the 

old model did, we allowed the old model’s prediction to be added to the full 2004 output.  This 

operation, analogous to the previous mixing of the two 2003 sub-models, successfully improved 

performance by more than 2 points.  Figure 10 below shows the 2003 baseline, the 

discriminative model using the 2004 features, and the full 2004 system that includes input from 

the old model.  

Figure 10:  Combining models from 2003 and 2004 gives best performance. 

3.6 Conclusion 

The 2004 system successfully expanded the feature space to allow a wider and more diverse set 

of features, and to take advantage of information unavailable to the 2003 system.  It was shown 

to improve performance over the 2003 system, specifically by the addition of such information. 

This system was submitted as a part of the 2004 ACE/TIDES evaluation, where it was the top-

performing system participating in the connect-the-dots RDR evaluation (extract relations, given 

entities).  Its performance was state-of-the-art, among the top performing systems, in the 

composite RDR task of detecting entities and relations among those detected entities. 
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4 RELATED WORK 

Given a set of sentences annotated with relations, Miller, et al. (2000) describes a procedure that 

rewrites automatically generated parse trees for those sentences into relation-augmented trees; 

those trees form the training data for a statistical parser.  A simple traversal of the tree converts 

the relation-augmented tree produced by the parser into the extracted relations.  This system was 

formally evaluated in MUC-7 on the TR relations (person works for organization, organization 

located at place, and organization makes product).  

Zelenko, et al. (2002) apply support vector machines (SVM) to extract relations based on 

shallow parsing.  The SVM was applied to ACE RDC after that publication with excellent 

results. 

Like Miller, our approach uses full parsing, but the classifier is based on propositions rather than 

parse trees.  

Like Zelenko, our approach views the task as a classifier applied to text mentioning entities, 

though we explored mixtures of several classifiers.  Unfortunately, both efforts are promising 

and warrant further research and development.   

Our use of word cluster features builds on work of Miller et al. (2004), which used word cluster 

features for name finding.  That approach combines the distributional word clustering of Brown 

et al. (1990) with discriminative modeling methods trained using the voted perceptron approach 

described in Collins and Duffy (2002). 
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