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ABSTRACT 
 
 
 

In this thesis, a new fictitious play (FP) procedure is presented to solve two-

person zero-sum (TPZS) Blotto games. The FP solution procedure solves TPZS games by 

assuming that the two players take turns selecting optimal responses to the opponent’s 

strategy observed so far. It is known that FP converges to an optimal solution, and it may 

be the only realistic approach to solve large games. The algorithm uses dynamic 

programming (DP) to solve FP subproblems. Efficiency is obtained by limiting the 

growth of the DP state space. 

Blotto games are frequently used to solve simple missile defense problems. While 

it may be unlikely that the models presented in this paper can be used directly to solve 

realistic offense and defense problems, it is hoped that they will provide insight into the 

basic structure of optimal and near-optimal solutions to these important, large games, and 

provide a foundation for solution of more realistic, and more complex, problems. 
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EXECUTIVE SUMMARY 

Fictitious play (FP), first introduced by Brown and Robinson (1951), is an 

iterative procedure used to approximate solutions to two-person zero-sum (TPZS) games. 

At each iteration of FP, each player chooses a pure strategy that is a best reply to the 

mixed strategy represented by the aggregation of all of other player’s pure strategies 

played so far, assuming they will be chosen based on the empirical probability 

distribution induced by their historical frequency in all previous iterations. Fictitious play 

can be thought of as mimicking the behavior of players learning from their opponents.  

 The purpose of this thesis is to investigate the use of fictitious play in the solution 

of Blotto games and their generalizations. In Blotto games, opponents each allocate a 

limited number of forces to a specified number of areas. Payoffs in each area accrue to 

the players based on the number of forces assigned to each area. The main application of 

Blotto games has been the analysis of missiles attack and defense problems. 

In this thesis a new fictitious play (FP) procedure is presented to solve two-person 

zero-sum (TPZS) Blotto games. The FP solution procedure solves TPZS games by 

assuming that the two players take turns selecting optimal responses to the opponent’s 

strategy observed so far. It is known that FP converges to an optimal solution, and it may 

be the only realistic approach to solve large games. The algorithm we develop uses 

dynamic programming (DP) to solve the FP subproblems. Efficiency is obtained by 

limiting the growth of the DP state space. We derive the dynamic programming 

recurrence relation for solving Blotto games with a general payoff function using 

fictitious play. The recurrence can be solved without explicitly keeping track of every 

attack or defense played; rather, the information required is simply the number of times a 

given force level (number of attackers or defenders) has been used in each area, over all 

attacks and defenses seen so far. Although our experiments considered one type of 

attacker and one type of defender, we indicate how to generalize this procedure to cases 

with more than one type of attacker or defender (or both). 



 xiv

During this study, we identified other topics for further investigations. The first is 

to investigate generalizations of Blotto games in which defenders can be placed in such a 

way as to defend multiple areas at once. This is closer to the real situation with missile 

defense. The second is to explore the issue of playability in the ILP formulations. Our 

proposed playability constraint is currently too restrictive; we have provided examples in 

which the optimal solution to the ILP, with the playability constraint, is not equal to the 

value of the game. Further research should explore less restrictive, alternate formulations 

of playability constraints. It is possible (although unlikely) that less restrictive playability 

constraints would also yield more efficiently solvable ILP, making that approach 

competitive with the DP-based procedure for larger problems. 

While it is unlikely that the models presented in this paper can be used directly to 

solve realistic offense and defense problems, it is hoped that they will provide insight into 

the basic structure of optimal and near optimal solutions to these important, large games. 
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I. INTRODUCTION 

Fictitious play (FP), first introduced by Brown and Robinson (1951), is an 

iterative procedure used to approximate solutions to two-person zero-sum (TPZS) games. 

At each iteration of FP, each player chooses a pure strategy that is a best reply to the 

mixed strategy represented by the aggregation of all of other player’s pure strategies 

played so far, assuming they will be chosen based on the empirical probability 

distribution induced by their historical frequency in all previous iterations. Fictitious play 

can be thought of as mimicking the behavior of players learning from their opponents. 

The purpose of this thesis is to investigate the use of fictitious play in the solution 

of Blotto games and their generalizations. In Blotto games, opponents each allocate a 

limited number of forces to a specified number of areas. Payoffs in each area accrue to 

the players based on the number of forces assigned to each area. The main application of 

Blotto games has been the analysis of missile attack and defense problems. 

This thesis is organized as follows: in Chapter II, we introduce TPZS games, 

Blotto games and the solution procedure. In Chapter III, we solve various versions of the 

problem using FP. Chapter IV provides conclusions and suggests further work. 
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II.  TWO PERSON ZERO-SUM GAMES 

A. DEFINITION 
A two-person zero-sum (TPZS) game (von Neumann and Morgenstern, 1944) is a 

situation where there are two players having directly opposite interests. In a TPZS game, 

player 1 (also called X, the row player, or the maximizer) has m pure strategies and player 

2 (Y, column player, minimizer) has n pure strategies. A player can commit to playing a 

pure strategy, or, by randomizing his choice among several pure strategies, he can 

employ a mixed strategy. A mixed strategy is represented by a vector of probabilities of 

choosing each pure strategy. For player 1, we write this vector as: 

1( , , )T
mx x x= K . 

Because x is a vector of probabilities, we have the restrictions that 

1
1

m

i
i

x
=

=∑  

and 

0, 1,...,ix i m≥ = . 

Similar notation and restrictions are used for player 2, whose mixed strategy is written as: 

1( , , )T
ny y y= K .  

In a TPZS game, each player chooses a strategy (pure or mixed), unknown to the other, 

and both strategies are revealed simultaneously. The result of the game depends on the 

strategy used by each player. If X and Y choose their ith and jth pure strategies, 

respectively, then the result of game, denoted aij, represents the amount that Y has to pay 

X. Equivalently, the payoffs to X and Y are aij and – aij, respectively. Note that the sum of 

the two payoffs is zero, which explains the name of the game. If two players employ 

mixed strategies x and y (and a pure strategy is just a special case of a mixed strategy), 

then the payoff to player 1 is: 
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1 1

m n

i j ij
i j

x y a
= =
∑∑  

which can be seen as the expected payoff among all of the pure strategies represented by 

x and y. 

Therefore, a TPZS game is completely defined when the payoff for each pair of X 

and Y pure strategies is determined. These payoffs can be summarized in an m×n matrix, 

generally referred to as a payoff matrix, i.e. 

11 12 1

21 22 2

1 2

n

n

m m mn

a a a
a a a

A

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M M M

L

, 

and the payoff to player 1 is then Tx Ay . 

In playing the game, both players are assumed to choose a strategy that achieves 

the most favorable outcome. This means that X would choose the strategy that 

maximizes Tx Ay  over all choices of y. On the other hand, Y would choose the strategy 

that minimizes Tx Ay  over all choices of x. 

A TPZS game has an equilibrium point when each player can guarantee an 

optimal result by always choosing a single pure strategy. When equilibrium cannot be 

achieved, players must use mixed strategies to optimize the value of the game. 

 To choose the best randomized strategy, X must find the 1( , , )mx x x= K  to 

1 1
max{min[ ] : 1, 0, 1,..., }

m m

i ij i ijx i i
x a x x i m

= =

= ≥ =∑ ∑ . 

Similarly, Y must find the 1( , , )ny y y= K  to 

1 1

min{max[ ] : 1, 0, 1,..., }
n n

ij j j jy i j j

a y y y j n
= =

= ≥ =∑ ∑ . 

Let x* and y* denote the optimal strategies for X and Y. Then, v* = (x*)TAy* is the value 

of the game. One of the central results of game theory states (Winston, 1991) that: 
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1 1
* max{min[ ] : 1, 0, 1,..., }

m m

i ij i ijx i i
v x a x x i m

= =

= = ≥ =∑ ∑ , and 

1 1

* min{max[ ] : 1, 0, 1,..., }
n n

ij j j jy i j j

v a y y y j n
= =

= = ≥ =∑ ∑ . 

B. LINEAR PROGRAMMING 
When the payoff matrix is specified and it is not too large, linear programming 

(Winston, 1991) can be used to find the optimal mixed strategies and the value of the 

game. For the maximizer (player 1), the problem is to find the mixed strategy 

1( , , )mx x x= K  which maximizes 
1

min
n

i ijj i
x a

=
∑ . That is, 

1

1

LP1: max

subject to 0, 1,...,

1, and 1,..., .

m

i ij
i

m

i i
i

v

x a v j n

x x m

=

=

− ≥ =

= =

∑

∑

 

Similarly, the minimizer (player 2) must solve LP 2: 

1

1

LP 2 : min

subject to 0, 1,...,

1, and 1,..., .

n

j ij
j

n

j j
j

w

y a w i m

y y n

=

=

− ≤ =

= =

∑

∑

 

It is easy to show that problems LP1 and LP2 are duals of each other. Moreover, if       

(v*, x*) and (w*, y*) are optimal to problems LP1 and LP2, respectively, then v*=w*. 

C. FICTITIOUS PLAY (FP): BROWN-ROBINSON METHOD 
Fictitious play (FP) was introduced by Brown and Robinson (1951). It is an 

iterative solution procedure; in each iteration, players choose pure strategies that are the 

best response to the empirical mix of their opponents’ pure strategies seen so far.  

The FP procedure implemented here begins at iteration 1 with player 1 selecting 

that row maximizing the minimum row value, and player 2 selecting that column 

minimizing the maximum column value. Denote the players’ pure strategies at iteration 1 
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as x(1) and y(1). These are vectors of all zeros except for a 1 at the selected row or column 

locations. At iteration 2, player 1 selects pure strategy x(2), which is the best row response 

to y(1); and player 2 selects pure strategy y(2), which is the best column response to x(1). 

And for general iteration k ≥ 2, player 1 selects the pure strategy x(k), which is the best 

row response to 

1( 1) ( )

1

1
1

kk p

p

y y
k

−−

=

=
− ∑ , and 

player 2 selects pure strategy y(k), which is the best column response to 

1( 1) ( )

1

1
1

kk p

p

x x
k

−−

=

=
− ∑ . 

For computational purposes, 
( 1)k

x
+

is conveniently updated from 
( )k

x and ( 1)kx +  as follows: 

( 1) ( ) ( 1)1
1 1

k k kkx x x
k k

+ +⎛ ⎞ ⎛ ⎞= ⋅ + ⋅⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
. 

And similarly for player 2, 

( 1) ( ) ( 1)1
1 1

k k kky y y
k k

+ +⎛ ⎞ ⎛ ⎞= ⋅ + ⋅⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
. 

Any limit points of the sequences {
( )k

x } and {
( )k

y } are optimal mixed strategy 

solutions to the game. Also upper and lower bounds on the value of the game, v*, are 

determined at each game play. Specifically, at game iteration k, 

( 1) ( 1)( ) * ( )( ) ( )
k kt k k t

kkv x Ay v x Ay v
− −

≡ ≤ ≤ ≡ , 

and both kv  and kv  converge to v *, but not necessarily monotonically (Eagle and 

Washburn, 1991). 
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D. BLOTTO GAMES  

1. Definition 

In a Blotto game, there are n≥1 targets, or areas, for player 1 (the attacker) to 

attack and player 2 (the defender) to defend. The attacker chooses a vector of allocations 

x, where xk is the number of attacking units assigned to area k, and player 1 has f attackers 

to distribute, resulting in the constraint 
1

n

k
k

x f
=

≤∑ . The defender chooses a vector of 

allocations y subject to 
1

n

k
k

y g
=

≤∑ , where yk is the number defenders assigned by player 2 

to area k. The payoff is 
1

( , )
n

k k
k

A x y
=
∑ (See Washburn, 1994, pp.107-111 for a more 

complete discussion). All allocations are required to be nonnegative, and in a discrete 

Blotto game they are also required to be integers. The number of pure strategies for 

player 1 is
1n f

f
+ −⎛ ⎞

⎜ ⎟
⎝ ⎠

and, for player 2,
1n g

g
+ −⎛ ⎞

⎜ ⎟
⎝ ⎠

, both of which grow too fast to allow 

complete enumeration in even moderately sized games. Figure 1 displays a typical 

increase in the number of pure strategies for player 1 as f or n increase. 

 

Figure 1.   Number of pure strategies for player 1, for f=10 1≤n≤100, and for n=10, 
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1≤f≤100. 
 
2. Playability 
In Blotto games, it is sometimes convenient to represent a mixed strategy with the 

marginal distributions of the random vector X=(X1,…, Xn), where Xi is the random 

variable representing the number of attackers assigned to area i. Marginal distributions 

satisfying k
k

X f=∑ are playable for the attacker. Similarly, the marginals for the random 

variable Y= (Y1,…, Yn) are playable for the defender if k
k

Y g=∑ . However, the typical 

approach is to relax these restrictions and simply require that ( )k
k

E X f=∑  and 

( )k
k

E Y g=∑ . 

3. ILP Formulation of Blotto Games 
Washburn (1994) presents the LP formulation of Blotto games using the marginal 

distributions. However, those formulations do not guarantee playability (although the 

discussions of those formulations claim that playability is not an issue for large 

problems). We modify the formulation in Washburn (1994) by explicitly adding 

constraints that are sufficient to enforce playability. The cost of such constraints is 

twofold: (1) they are sufficient, but not necessary conditions for playability, so the 

solutions we obtain are potentially suboptimal; and (2) they introduce integer variables, 

rendering integer linear programming (ILP) formulations. 
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ILP 1 solves a Blotto defense game for the defender’s marginals 1( , , )gy yK , 

where yi represents the probability that j defenders are used in any given area. Therefore, 

( )i k
k

j y E Y⋅ =∑ . 

y, c, d

0

0

0

ILP1: min

. ( , ) ; 0,1...,

/

1

0, for all 0,1,...,

{0,..., } and 0

g

j
j

g

j
j

g

j
j

j j

j

j

v nc df

s t A i j y c d i i f

y j g n

y

ycount n y

y j g

ycount g d

=

=

=

= +

⋅ ≤ + ⋅ =

⋅ ≤

=

= ⋅

≥ =

∈ ≥

∑

∑

∑  

ILP 2 solves a Blotto attack game for the attacker’s marginals 1( , , )fx xK . The 

integer restrictions or ycountj and xcounti are used to require playability. 

x, a, b

1

1

1

ILP 2: max

s.t ( , ) ; 0,1...,

/

1

0, for all 0,1,...,
{0,..., } and 0

f

i
i

f

i
i
f

i
i

i i

i

i

v na bg

A i j x a b j j g

x i f n

x

xcount n x
x i f
xcount f b

=

=

=

= −

⋅ ≥ − ⋅ =

⋅ ≤

=

= ⋅
≥ =

∈ ≥

∑

∑

∑  

These playability constraints are too restrictive; they are sufficient to enforce 

playability but they are provably not necessary. 
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4. New Fictitious Play Procedure 

We derive the dynamic programming recurrence relation for solving Blotto games 

with FP, using a general payoff function ( , )kA x y , which is the amount player 2 pays to 

player 1 when player 1 allocates x units to area k and player 2 allocates y units to area k.  

The total payoff is obtained by summing the rewards over the n areas.  The recurrence 

can be solved without explicitly keeping track of every attack or defense played; rather, 

the information required is simply the number of times a given force level (number of 

attackers or defenders) has been used in each area, over all attacks and defenses seen so 

far. 

We first consider the defender’s problem at FP iteration K, which is to allocate g 

defenders over n cities to minimize the expected payoff, given that K attacks have been 

observed so far.  Each attack can be represented by a column vector 1 2( , , , )k k k k T
na a a a= K , 

1, ,k K= K .  We define the values
( )k

i

j
i a jk

r I
=

= ∑ , where 
( )k

ia j
I

=
 represents the indicator 

variable for the event, “the kth attack used j attackers in area i.”  Therefore, j
ir represents 

the number of times exactly j attackers have been used against area i.  We first determine 

the value of placing g defenders optimally in area n.  Then we define a recurrence 

relation on a value function ( )iv p that represents the expected payoff of placing p 

defenders optimally in areas i, i+1,…, n.  Then 1( )v g  is the solution to the original 

problem.  The boundary condition is given by 

 
0

1( ) ( , ), 0, ,
f

p
n n n

p

v q r A p q q g
K =

= =∑ K ,                                                      (1) 

which is the total expected payoff when the defender uses q defenders in area n.  This 

states that the optimal defender strategy when only area n remains is to allocate all q 

remaining defenders to that area. The recurrence for {1, , 1}i n∈ −K  is: 

 ( )10, , 0

1( ) min ( , )
f

p
i i i ij q p

v q r A p j v q j
K +=

=

⎧ ⎫
= + −⎨ ⎬

⎩ ⎭
∑

K
.                                          (2) 
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This is the expected payoff in area i plus the expected payoff generated by placing 

the remaining (q-j) defenders optimally in areas i+1,…, n.  The optimal defender 

allocation to area i is the value of j minimizing equation (2).  

Similarly, for the attacker’s problem, we assume that K defenses have been 

observed so far, where the kth defense is 1 2( , , , )k k k k T
nd d d d= K .  The attacker wishes to 

allocate f forces over the n areas to maximize the expected payoff.  Let 
( )k

i

j
i d jk

s I
=

=∑  be 

the number of times j defenders are placed in area i.  Define ( )iw p  as the maximum 

possible expected payoff in areas , ,i nK . The boundary conditions are: 

 
0

1( ) ( , ), 0, ,
g

q
n n n

q
w p s A p q p f

K =

= =∑ K ,                                                   (3) 

and the recurrence is given by: 

 10, , 0

1( ) max ( , ) ( )
g

q
i i i ij p q

w p s A j q w p j
K +=

=

⎧ ⎫
= + −⎨ ⎬

⎩ ⎭
∑

K
.                                        (4) 

The optimal solution for the attacker is represented by ( )1w f  and the corresponding 

decisions j maximizing (4) for each area. 

Blotto games can be extended immediately to the case where the attacker 

possesses different numbers of, say, two types of attacking units, f1 and f2, and the 

defender also has a supply of, say, two types of defending unit, g1 and g2.  The payoff 

function now depends on the number of attackers and defenders of each type allocated to 

each area: ( )1 2 1 2, , ,iA p p q q .  If we define 1 2,j j
ir  as the number of times j1 attackers of type 

1 and j2 of type 2 have been used in area i, and similarly for 1 2,j j
is , then our value 

functions are two-dimensional, with boundary conditions 

 
1 2

1 2

1 2

,
1 2 1 2 1 2

0 0

1( , ) ( , , , )
f f

p p
n n n

p p
v q q r A p p q q

K = =

= ∑ ∑ ,                                             (5) 

and 
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1 2

1 2

1 2

,
1 2 1 2 1 2

0 0

1( , ) ( , , , )
g g

q q
n n n

q q

w p p s A p p q q
K = =

= ∑∑ ,                                             (6) 

and recurrences 

( )
1 2

1 2

1 1
1 22 2

,
1 2 1 2 1 2 1 1 1 2 20,..., 0 00,...,

1( , ) min ( , , , ) ,
f f

p p
i i i ij q p pj q

v q q r A p p j j v q j q j
K +=

= ==

⎧ ⎫⎪ ⎪= + − −⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑ .          (7) 

and  

1 2
1 2

1 1
1 22 2

,
1 2 1 2 1 2 1 1 1 2 20, , 0 00, ,

1( , ) max ( , , , ) ( , )
g g

q q
i i i ij p q qj p

w p p s A j j q q w p j p j
K +=

= ==

⎧ ⎫⎪ ⎪= + − −⎨ ⎬
⎪ ⎪⎩ ⎭
∑∑

K
K

.        (8) 

Clearly, the size of the static space grows with the product of the number of each type of 

attacker or defender. It is still manageable with just a few types of attacker or defender. 
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III. DATA ANALYSIS AND RESULTS 

A. MODEL IMPLEMENATION 
The FP model is implemented in MATLAB (Version 6.5). The ILP solution 

procedure is implemented in GAMS (Revision 135, XA solver). Computations are done 

on a 1.5 GHz Intel Centrino-based laptop computer with 512 MB of RAM. All computer 

code appears in Appendices A and B. 

 

B. NUMERICAL RESULTS 

1. Rate of Convergence of FP 

Define gap(k) to be the difference between the upper and lower bounds on the 

value of the game at FP iteration k. Consistent with earlier FP studies (Washburn, 2001), 

we find that the FP gap plotted against number of iterations is approximately 

asymptotically linear on a log-log plot. That is, for large enough k, 

( ) b
agap k k≈ , or 

log( ( )) log( ) loggap k a b k≈ − , 

where k is number of iterations and a and b are fitted constants. Limited numerical 

experimentation suggests that using a least square fit and dropping first 100 iterations the 

intercept (log(a)) increases with increasing f or g, and the slope (-b) increases (to 

approximately -1/2) with increasing n. These observations are illustrated in Figures 2, 3 

and 4. 
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# pure strategies 
Case f,   g,   n 

Attacker Defender 
Slope Intercept Final Gap 

(UB-LB) 

A1 50, 200, 10 12565671261 1.76081E+15 -0.48374 1.8887 3.8396 

A2 25, 100, 10 52451256 4.26342E+12 -0.48378 1.5860 1.5260 

A3   5,   20, 10 2002 10015005 -0.48376 0.8887 0.3052 

 

 
Figure 2.   With n fixed, the slope remains constant and the intercept increases with f 

and g. 

In Figure 2 we see the gap between the upper and lower bounds plotted against 

the number of iterations of fictitious play, on log-log scale. The slope of the fitted line 

(from the column labeled “slope” in the table above the plot) indicates the rate of 

convergence. Note that the slope is constant as f and g increase, and n remains fixed. 
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# pure strategies 
Case f,  g,  n 

Attacker Defender 

Slope 
(a) 

Intercept 
(b) 

Final Gap 
(UB-LB) 

Standard 
 Error 

B1 30, 50, 30 5.91E+16 3.33E+21 -0.517 1.8541 2.0374  0.0094 
B2 30, 50, 20 1.89E+13 4.63E+16 -0.543 1.8954 1.7824 0.0157 
B3 30, 50, 15 1.15E+11 4.79E+13 -0.580 1.9463 1.5238  0.0187 
B4 30, 50, 10 2.12E+08 1.26E+10 -0.588 1.8839 1.1999  0.0270 
B5 30, 50,   5 46376 316251 -0.851 2.1746 0.4787 0.0469 
B6 30, 50,   2 31 51 -1.093 1.4431 0.0216  0.0194 

 

 
Figure 3.   The best-fit slope increases with n (f and g  fixed). 

 

If we increase n for a fixed f and g, we see in Figure 3 that the slope increases, 

and appears to approach a limit of -0.5 (Figure 4). This is consistent with conjectures of 

1
k

 convergence of FP. 

1 1.5 2 

log( # Iteration) 
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Figure 4.   Convergence of asymptotic slope 

 
2. Elapsed Time per FP Iteration 
We observe that for all tested values of f, g and n, the elapsed time per FP 

iteration is constant as the number of FP iterations k increases. This is illustrated in 

Figure 5 and occurs because the amount of FP data required to be manipulated and stored 

does not increase with k. 
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Iteration 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

f,  g,  n Elapsed time (sec) 

5,   6,  10 2.4 4.6 6.8 9.0 11.2 13.3 15.5 17.7 19.9 22.2 

20, 25, 30 24.3 48.4 72.6 96.7 121.4 145.5 169.1 193.8 217.6 242.0 

40, 45, 50 81.7 163.4 245.2 326.4 409.2 490.4 572.2 653.1 736.6 817.4 
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Figure 5.   FP iterations vs. Elapsed time for 3 games 
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3. Comparisons with FP and ILP Procedure 

Comparisons are made between the ILP and FP solution procedures. Three 

different payoff functions are examined. 

a. Convex Payoff Function 
The convex payoff function is given by 

( ) ( ), max ,0i i i iA x y x y= − . 

 Figure 6 shows how the two procedures performed. 
 

FP (k = 2000) ILP 
Run f,  g,  n Elapsed 

     time Upper Lower Gap Elapsed 
time 

Value of 
game 

1 3,     4,  5 1.962 2.208 2.179 0.029 0.10 2.2 

2 6,     8,  5 2.774 4.415 4.358 0.057 0.18 4.4 
3 12,   16,  5 4.657 8.831 8.717 0.114 0.22 8.8 
4 15,   20,  5 5.668 11.039 10.896 0.143 0.19 11 
5 30,   40,  5 11.147 22.077 21.792 0.285 0.25 22 
6 60,   80,  5 24.535 44.154 43.584 0.570 0.12 44 
7 120, 160,  5 59.766 88.308 87.168 1.140 0.21 88 
8 150, 200,  5 83.801 110.385 108.960 1.426 0.12 111 
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Figure 6.   Comparison of FP and ILP procedures with convex payoff function 
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b. Capacitated Payoff Function 

 The capacitated payoff function is 

( )
max ( ,0),

,
,

i i i i
i i

i i

x y x y cap
A x y

cap x y cap
− − ≤⎧

= ⎨ − >⎩
, 

where cap is the maximum possible payoff. We note that the ILP objective function need 
not be either convex or concave. Figure 7 shows how the two procedures performed. 
 

FP (k = 2000) ILP 
Run f, g, n Elapsed 

time Upper  Lower Gap Elapsed
time Upper  Lower Gap 

1 3,   4, 5 1.743 2.208 2.179 0.029 0.180 2.200 2.200 0.000
2 6,   8, 5 2.704 2.958 2.872 0.086 0.100 3.120 2.800 0.320
3 12,  16, 5 4.697 3.935 3.767 0.168 0.100 4.114 3.800 0.314
4 15,  20, 5 5.748 4.252 4.078 0.174 0.170 4.333 4.000 0.333
5 30,  40, 5 11.226 4.884 4.619 0.265 0.190 5.143 4.200 0.943
6 60,  80, 5 24.536 5.350 4.960 0.389 1.420 5.807 4.200 1.607
7 120, 160, 5 59.946 5.622 5.130 0.492 62.380 6.250 4.200 2.050
8 150, 200, 5 82.278 5.713 5.144 0.570 102.170 6.338 4.091 2.247
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Figure 7.   Comparison of FP of ILP procedures with the capacitated payoff function 
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c. Binary Payoff Function 

The binary payoff function is 

( )
0, 0

,
1, 0

i i
i i

i i

x y
A x y

x y
− ≤⎧

= ⎨ − >⎩
. 

As with the capacitated payoff function, the ILP in this case need not be either convex or 
concave. Figure 8 shows how the two procedures performed. 
 

FP (k = 2000) ILP 
Run f,  g,  n Elapsed 

time Upper Lower Gap Elapsed 
time Upper  Lower Gap 

1 3,  4, 5 1.021  1.216 1.179 0.037 0.12 1.200  1.200  0.000 

2 6,  8, 5 2.805  1.477 1.407 0.070 0.17 1.600  1.400  0.200 

3 12,  16, 5 4.757  1.675 1.574 0.101 0.19 1.920  1.400  0.520 
4 15,  20, 5 5.668  1.721 1.618 0.103 0.11 2.000  1.333  0.667 
5 30,  40, 5 11.186  1.850 1.694 0.156 0.30 2.000  1.400  0.600 
6 60,  80, 5 24.756  1.921 1.716 0.205 2.57 2.167  1.400  0.767 
7 120, 160, 5 60.758  1.990 1.703 0.287 61.96 2.182  1.400  0.782 
8 150, 200, 5 83.260  2.012 1.686 0.326 149.89 2.214  1.400  0.814 
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Figure 8.   Comparison of FP and ILP procedures with the binary payoff function 



 21

C. CONCLUSIONS 

As has been observed in earlier FP studies the FP gap (the difference between the 

upper and lower bounds or game value) as a function of number of FP iterations, k, is 

approximately 

( ) b
agap k k≈ , 

for large enough k. 

The best-fit a increases with f and g, and the best-fit b decreases to approximately 

1/2 with increasing n. 

Because of efficiencies realized in the DP procedure used to solve the FP 

subproblems, the computation time required for each FP iteration is approximately 

constant as the number of FP iterations increases, for fixed f, g and n. 

For the convex payoff function tested, the ILP formulation solved with GAMS 

was faster and more accurate than the FP procedure. 

For the non-convex payoff functions tested, the FP procedure was more 

competitive and sometimes significantly outperformed than ILP procedure. 
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IV. CONCLUSIONS AND FURTHER STUDY 

We propose a new efficient fictitious play (FP) procedure to solve two-person 

zero-sum Blotto games. The algorithm uses dynamic programming (DP) to solve the FP 

subproblems at each iteration. By representing intermediate mixed strategies through 

marginal distributions are keep the state space of the DP manageable and independent of 

the number of iterations. Although our experiments considered one type of attacker and 

one type of defender, we indicate how to generalize this procedure to cases with more 

than one type of attacker or defender (or both). 

During this study, we identified other topics for further investigations. The first is 

to investigate generalizations of Blotto games in which defenders can be placed in such a 

way as to defend multiple areas at once. This is closer to the real situation with missile 

defense. The second is to explore the issue of playability in the ILP formulations. Our 

proposed playability constraint is currently too restrictive; we have provided examples in 

which the optimal solution to the ILP, with the playability constraint, is not equal to the 

value of the game. Further research should explore less restrictive, alternate formulations 

of playability constraints. It is possible (although unlikely) that less restrictive playability 

constraints would also yield more efficiently solvable ILP, making that approach 

competitive with the DP-based procedure for larger problems. 
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APPENDIX A. MATLAB CODE FOR NEW FP PROCEDURE 

1. Blotto_fp.m 
 
% Blotto Game Fictitious Play Solution with general payoff matrix 
 
% n = # areas to be attacked and defended 
% f = # attackers to be allocated to the n areas 
% g = # defenders to be allocated to the n areas 
 
%  Initialize with a vector of marginals for the attacker and  
%  defender.  
%  initialize A for attacker (each row is frequency of 
%  0,1,2. ... ,f being assigned to area i=1,...,n),  
%  initialize D for defender (each row is frequency of 
%  0,1,2, ... ,g being assigned to area i=1,...,n), 
%  initalize upper and lower bounds on the value of the game, and 
%  number of iterations desired. 
%  Calculate P(a,d) = return if a attackers and d defenders 
%  attack any area 
 
clear; 
 
f = 150;    % number of attackers 
g = 200;    % number of defenders 
n = 5;    % number of areas to attack and defend 
num_its = 2000;   % number of FP iterations 
 
for i = 1:f+1 
 for j= 1:g+1 
  P(i,j)=linearpayoff(i,j);  
%       P(i,j)=cappedpayoff(i,j);  
%       P(i,j)=binarypayoff(i,j);  
 
 end 
end 
 
% Set initial A for all attacks in area 1 
A(1,:) = [zeros(1,f),1]; 
for k=2:n 
 A(k,:) = [1,zeros(1,f)]; 
end 
 
% Set initial D to all defenses in area 1 
D(1,:) = [zeros(1,g),1]; 
for k=2:n 
 D(k,:) = [1,zeros(1,g)]; 
end 
 
v_up = f;  % assumes all missiles are leakers 
v_low = 0; % assumes no missiles are leakers 

% preallocates v_up and v_low in memory 
v_up=v_up*ones(1,num_its+1);   
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v_low=v_low*ones(1,num_its+1); 
 
for k=1:num_its 
 [opt_atk,v_u] = attacker(D,P,n,f,g);  
% Find best pure attack for defenses seen so far 
% (and upper bound). 
 [opt_def,v_l] = defender(A,P,n,f,g);  
% Find best pure defense for attacks seen so far 
% (and lower bound). 
 A = update_attack_marginals(A,opt_atk);     
%Update attack and defense marginals. 
 D = update_defense_marginals(D,opt_def); 
 v_up(k+1) = min(v_u,v_up(k)); 
 v_low(k+1)= max(v_l,v_low(k)); 
 if (k/100 == floor(k/100)), home, k, gap=(v_up(k+1)-

v_low(k+1)), end  
end 
 
figure(1) 
loglog([0:num_its],(v_up - v_low),'ro'),grid on, title('(upper 

bound - lower bound) vs. #FP iterations') 
figure(2) 
plot([0:num_its],v_up,'go',[0:num_its],v_low,'rx'),grid on, 

axis([0 num_its 0 f]),title('Upper and lower bounds vs. #FP 
iterations') 

 
bounds = [v_up(end),v_low(end)] 
meanA = mean(A)/num_its 
meanD = mean(D)/num_its 
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2. Attacker.m 

 
function [opt_attack,v_up] = attacker(D,P,n,f,g) 
 
% Takes defenses D and returns optimal attack column vector and 
% an upper bound on the value of the Blotto game. 
% n areas, f attackers, g defenders 
% Uses general payoff function P(a,d) 
% #defenses (increases with FP iterations) 
 
num_defenses = sum(D(1,:));   
 
s=D*P';          % compute s(i,j) = exp. 1-step payoff 
% when j attackers assigned to area i. 
% Uses the marginal matrix 
% D(i,j) = # times j defenders assigned to area i.  
 
v_star = zeros(n,f+1);  %initialize v_star(i,j) = optimal 
% return when j attackers are available for i areas  
a_star = zeros(n,f+1); %initialize a_star(i,j) = optimal 
% # attackers to use when j attackers are available for i areas 
 
% n = 1 
v_star(1,:) = s(1,:); % optimal payoff when 1 area is included 
a_star(1,:) = [0:f]; % optimal #attackers when 1 area is included 
 
% n > 1  
for i=2:n           % areas 
 for j=0:f     % j attackers remain to be used 
  v_starnew = zeros(1,j+1);  %initialize a_starnew 
  for k=0:j 
   v_starnew(k+1) = s(i,k+1) + v_star(i-1,j-k+1);   
% enumerating possible returns  
  end 
  [v_star(i,j+1),a_star(i,j+1)] = max(v_starnew);    
% identifying the # attackers giving a max. payoff 
  a_star(i,j+1) = a_star(i,j+1)-1;     
% correcting for col. 1 being for 0 attackers 
 end 
end 
 
v_up = v_star(n,f+1)/num_defenses; 
opt_attack = zeros(n,1);   % initialize opt_attack 
opt_attack(n) = a_star(n,f+1);    
% establish optmal #attackers to use for n areas 
 
attackers_remaining = f - opt_attack(n);   
% update #attackers remaining for remaining n-1 areas 
 
for i=n-1:-1:1 
 opt_attack(i) = a_star(i,attackers_remaining+1); 
 attackers_remaining = attackers_remaining - opt_attack(i); 
end 
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3. Defender.m 
 
function [opt_defense,v_low] = defender(A,P,n,f,g) 
 
% Takes attacks A and returns optimal defense column vector and 
% an lower bound on the value of the Blotto game. 
% n areas, f attackers, g defenders 
% Uses general payoff function P(a,d) 
 
num_attacks = sum(A(1,:)); 
 
q=A*P;      % compute q(i,j) = exp. 1-step payoff  
% when j attackers assigned to area i. 
                % Uses the marginal matrix  
% A(i,j) = # times j attackers assigned to area i.  
 
r_star = zeros(n,g+1);    %initialize r_star and d_star 
d_star = zeros(n,g+1); 
 
% n = 1 
r_star(1,:) = q(1,:); 
d_star(1,:) = [0:g]; 
 
% n > 1 
for i=2:n 
 for j=0:g 
  r_starnew = zeros(1,j+1);  %initialize r_starnew 
  for k=0:j 
   r_starnew(k+1) = q(i,k+1) + r_star(i-1,j-k+1);   
% enumerating possible # defenders  
  end 
  [r_star(i,j+1),d_star(i,j+1)] = min(r_starnew);    
% identifying the # defenders giving a min. payoff 
  d_star(i,j+1) = d_star(i,j+1)-1;     
% correcting for col. 1 being for 0 defenders 
 end 
end 
 
v_low = r_star(n,g+1)/num_attacks; 
opt_defense = zeros(n,1); 
opt_defense(n) = d_star(n,g+1); 
defenders_remaining = g - opt_defense(n); 
for i=n-1:-1:1 
 opt_defense(i) = d_star(i,defenders_remaining+1); 
 defenders_remaining = defenders_remaining - opt_defense(i); 
end 
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4. Update_attack_marginals.m 
 
function [A_new] = update_attack_marginals(A,opt_atk) 
[n,m]=size(A); 
A_new=A; 
for k=1:n 
 z=opt_atk(k); 
 A_new(k,z+1)=A_new(k,z+1)+1; 
End 
 

5. Update_defense_marginals.m 

 
function [D_new] = update_defense_marginals(D,opt_def) 
[n,m]=size(D); 
D_new=D; 
for k=1:n 
 z=opt_def(k); 
 D_new(k,z+1)=D_new(k,z+1)+1; 
end 

 

6. Payoff.m 

 
Unconstrained target case: 
 
Linearpayoff.m 
function P=linearpayoff(a,d) 
if a>d 
 P=a-d; 
else 
 P=0; 
end  
 
Capacitated target case: 
 
Cappedpayoff.m 
function P = cappedpayoff(a,d,cap) 
P=max(0,min(a-d,cap)); 
 
 
Binary target case: 
 
Binarypayoff.m 
function P = binarypayoff(a,d) 
P=(a>d); 
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APPENDIX B. GAMS CODE FOR ILP PROCEDURE 

 
*  Blotto Attack & Defense game 
*  Attacker is the row player and maximizer. 
*  Defender is the column player and minimizer. 
*  Uses integer restrictions to require playability 
 
$offlisting 
$inlinecom { } 
OPTIONS 
         SOLPRINT =     OFF, 
         DECIMALS =       2, 
         LIMCOL   =       0, 
         LIMROW   =       0, 
         RESLIM   =   86400,   {MAX SECONDS} 
         ITERLIM  =   100000,  {MAX PIVOTS} 
         OPTCA    =     0.01,  {ABSOLUTE INTEGRALITY TOLERANCE} 
         OPTCR    =     0.00,  {RELATIVE INTEGRALITY TOLERANCE} 
         lp       =    xa, 
         MIP      =    xa; {XA Solver} 
 
SCALARS 
         N       total number of areas       /5  / 
         F       total number of attackers   /15 / 
         G       total number of defenders   /20 / 
         Time    execution time              /0  / 
; 
 
SETS 
         i       # attackers used   /0attack*15attack/ 
         j       # defenders used   /0defend*20defend/ 
; 
 
PARAMETER P(i,j) damage done when i attack and j defend; 
 
LOOP ((i,j), P(i,j)=max((ord(i)-ord(j)),0)); {convex payoff} 
 
*LOOP ((i,j), P(i,j)=min(P(i,j),3)); {capacitated payoff} 
 
*LOOP ((i,j), if (P(i,j)>0, 
                         P(i,j)=1; 
                    else 
                         P(i,j)=0;) 
); {binary payoff} 
 
 
VARIABLES 
         v1   value of game for defenders 
         v2   value of game for attackers 
         x(i) Attacker marginal distribution on # attackers used 
         y(j) Defender marginal distribution on # defenders used 
         xcount(i) Attacker marginal dist. * N 
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 {= # times i attackers used} 
         ycount(j) Defender marginal dist. * N 

 {= # times j defenders used} 
         a       x-intercept 
         b       slope 
         c       y-intercept 
         d       slope; 
 
POSITIVE VARIABLES x, y, b, d ; 
 
INTEGER VARIABLES xcount, ycount ; 
*POSITIVE VARIABLES xcount, ycount ; 
 
EQUATIONS 
        objective1        objective funtion 
        expreturn_y(i)    expected return 
        meandefenders     constraint on mean number of defenders 
        probsum_y         sum of probabilities is 1 
*       extraconstraint0  extra contraits to help explore 

 different optimal solutions 
        ycountdef(j)      definition of ycount 
; 
 
objective1.. v1 =e= N*c + d*F ; 
 
expreturn_y(i).. sum(j, P(i,j)*y(j)) =l= c+d*(ord(i)-1); 
 
meandefenders.. N*sum(j,y(j)*(ord(j)-1)) =l= G ; 
 
probsum_y.. sum(j,y(j)) =e= 1 ; 
 
*extraconstraint0.. y('10defend') =e= .25 ; 
 
ycountdef(j)..  ycount(j) =e= N*y(j) ; 
 
MODEL Defense  /objective1, 
                expreturn_y, 
                meandefenders, 
                probsum_y 
                ycountdef 
/; 
 
EQUATIONS 
         objective2       objective funtion 
         expreturn_x(j)   expected return 
         meanattackers    constraint on mean number of attackers 
         probsum_x        sum of probabilities is 1 
         xcountdef(i)     definition of xcount 
; 
 
objective2 .. v2 =e= N*a - b*G ; 
 
expreturn_x(j) .. sum(i, x(i)*P(i,j)) =g= a-b*(ord(j)-1); 
 
meanattackers .. N*sum(i,x(i)*(ord(i)-1)) =l= F ; 
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probsum_x .. sum(i,x(i)) =e= 1 ; 
 
xcountdef(i)..  xcount(i) =e= N*x(i) 
 
MODEL Attack  /objective2, 
               expreturn_x, 
               meanattackers, 
               probsum_x 
               xcountdef 
/; 
 
 
SOLVE Defense using mip minimizing v1; 
 
SOLVE Attack using mip maximizing v2; 
 
Time=Time+Defense.resusd+Attack.resusd; {computation time} 
 
DISPLAY v1.l, v2.l, y.l, x.l; 
DISPLAY ycount.l,xcount.l, Time; 
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