

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release, distribution is unlimited

NEW FICTITIOUS PLAY PROCEDURE FOR SOLVING
BLOTTO GAMES

by

Moon Gul Lee

December 2004

 Thesis Advisor: James N. Eagle
 Thesis Co-Advisor: W. Matthew Carlyle
 Second Reader: Jae-Yeong Lee

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2004

3. REPORT TYPE AND DATES
COVERED

Master’s Thesis
4. TITLE AND SUBTITLE: New Fictitious Play Procedure For Solving Blotto
Games

6. AUTHOR(S) Lee, Moon Gul, CPT ROKAF

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
 ORGANIZATION REPORT
 NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release, distribution is unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

In this thesis, a new fictitious play (FP) procedure is presented to solve two-person zero-sum (TPZS) Blotto games. The

FP solution procedure solves TPZS games by assuming that the two players take turns selecting optimal responses to the

opponent’s strategy observed so far. It is known that FP converges to an optimal solution, and it may be the only realistic approach

to solve large games. The algorithm uses dynamic programming (DP) to solve FP subproblems. Efficiency is obtained by limiting

the growth of the DP state space.

Blotto games are frequently used to solve simple missile defense problems. While it may be unlikely that the models

presented in this paper can be used directly to solve realistic offense and defense problems, it is hoped that they will provide

insight into the basic structure of optimal and near-optimal solutions to these important, large games, and provide a foundation for

solution of more realistic, and more complex, problems.

15. NUMBER OF
PAGES

53

14. SUBJECT TERMS Fictitious Play , New FP Procedure, Two Person Zero Sum, Blotto Game,
Dynamic Programming

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release, distribution is unlimited

NEW FICTITIOUS PLAY PROCEDURE FOR SOLVING BLOTTO GAMES

Moon Gul Lee
Captain, Republic of Korea Air force
B.S., Korea Air Force Academy, 1995

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
December 2004

Author: Moon Gul Lee

Approved by: Dr. James N. Eagle
Thesis Advisor

Dr. W. Matthew Carlyle
Co-Advisor

Dr. Jae-Yeong Lee
Second Reader

 Dr. James N. Eagle
Chairman, Department of Operations Research

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

In this thesis, a new fictitious play (FP) procedure is presented to solve two-

person zero-sum (TPZS) Blotto games. The FP solution procedure solves TPZS games by

assuming that the two players take turns selecting optimal responses to the opponent’s

strategy observed so far. It is known that FP converges to an optimal solution, and it may

be the only realistic approach to solve large games. The algorithm uses dynamic

programming (DP) to solve FP subproblems. Efficiency is obtained by limiting the

growth of the DP state space.

Blotto games are frequently used to solve simple missile defense problems. While

it may be unlikely that the models presented in this paper can be used directly to solve

realistic offense and defense problems, it is hoped that they will provide insight into the

basic structure of optimal and near-optimal solutions to these important, large games, and

provide a foundation for solution of more realistic, and more complex, problems.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

II. TWO PERSON ZERO-SUM GAMES ..3
A. DEFINITION ...3
B. LINEAR PROGRAMMING...5
C. FICTITIOUS PLAY (FP): BROWN-ROBINSON METHOD....................5
D. BLOTTO GAMES...7

1. Definition ..7
2. Playability ...8
3. ILP Formulation of Blotto Games..8
4. New Fictitious Play Procedure..10

III. DATA ANALYSIS AND RESULTS ..13
A. MODEL IMPLEMENATION..13
B. NUMERICAL RESULTS ...13

1. Rate of Convergence of FP..13
2. Elapsed Time per FP Iteration ...16
3. Comparisons with FP and ILP Procedure.......................................18

a. Convex Payoff Function...18
b. Capacitated Payoff Function..19
c. Binary Payoff Function..20

C. CONCLUSIONS ..21

IV. CONCLUSIONS AND FURTHER STUDY ...23

APPENDIX A. MATLAB CODE FOR NEW FP PROCEDURE.....................................25

APPENDIX B. GAMS CODE FOR ILP PROCEDURE ...31

LIST OF REFERENCES..35

INITIAL DISTRIBUTION LIST ...37

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. Number of pure strategies for player 1, for f=10 1≤n≤100, and for n=10,
1≤f≤100. ...7

Figure 2. With n fixed, the slope remains constant and the intercept increases with f
and g...14

Figure 3. The best-fit slope increases with n (f and g fixed). ...15
Figure 4. Convergence of asymptotic slope ..16
Figure 5. FP iterations vs. Elapsed time for 3 games ..17
Figure 6. Comparison of FP and ILP procedures with convex payoff function18
Figure 7. Comparison of FP of ILP procedures with the capacitated payoff function....19
Figure 8. Comparison of FP and ILP procedures with the binary payoff function.........20

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

ACKNOWLEDGMENTS

This work would not have been possible without the enormous support of these

people. First of all, I would like to extend my deepest appreciation to my thesis advisor,

Professor James Eagle, Co advisor, Professor Carlyle Matthew and Second Reader,

KNDU Professor Lee Jae-Yeong. Their expert advice, directions and patience have

expanded and enhanced my knowledge, and allowed me to complete my thesis.

Additionally, I wish to thank my wife, Cho Jung Hwa and my lovely son Yong

Bin for supporting me during the long hours I have spent away from home while

finishing this thesis. They have been the greatest supporters and inspirers whenever I was

discouraged. In addition, I greatly appreciate my country, the Republic of Korea, its

Airforce and KNDU for all the support during my journey to the Naval Postgraduate

School.

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

EXECUTIVE SUMMARY

Fictitious play (FP), first introduced by Brown and Robinson (1951), is an

iterative procedure used to approximate solutions to two-person zero-sum (TPZS) games.

At each iteration of FP, each player chooses a pure strategy that is a best reply to the

mixed strategy represented by the aggregation of all of other player’s pure strategies

played so far, assuming they will be chosen based on the empirical probability

distribution induced by their historical frequency in all previous iterations. Fictitious play

can be thought of as mimicking the behavior of players learning from their opponents.

 The purpose of this thesis is to investigate the use of fictitious play in the solution

of Blotto games and their generalizations. In Blotto games, opponents each allocate a

limited number of forces to a specified number of areas. Payoffs in each area accrue to

the players based on the number of forces assigned to each area. The main application of

Blotto games has been the analysis of missiles attack and defense problems.

In this thesis a new fictitious play (FP) procedure is presented to solve two-person

zero-sum (TPZS) Blotto games. The FP solution procedure solves TPZS games by

assuming that the two players take turns selecting optimal responses to the opponent’s

strategy observed so far. It is known that FP converges to an optimal solution, and it may

be the only realistic approach to solve large games. The algorithm we develop uses

dynamic programming (DP) to solve the FP subproblems. Efficiency is obtained by

limiting the growth of the DP state space. We derive the dynamic programming

recurrence relation for solving Blotto games with a general payoff function using

fictitious play. The recurrence can be solved without explicitly keeping track of every

attack or defense played; rather, the information required is simply the number of times a

given force level (number of attackers or defenders) has been used in each area, over all

attacks and defenses seen so far. Although our experiments considered one type of

attacker and one type of defender, we indicate how to generalize this procedure to cases

with more than one type of attacker or defender (or both).

 xiv

During this study, we identified other topics for further investigations. The first is

to investigate generalizations of Blotto games in which defenders can be placed in such a

way as to defend multiple areas at once. This is closer to the real situation with missile

defense. The second is to explore the issue of playability in the ILP formulations. Our

proposed playability constraint is currently too restrictive; we have provided examples in

which the optimal solution to the ILP, with the playability constraint, is not equal to the

value of the game. Further research should explore less restrictive, alternate formulations

of playability constraints. It is possible (although unlikely) that less restrictive playability

constraints would also yield more efficiently solvable ILP, making that approach

competitive with the DP-based procedure for larger problems.

While it is unlikely that the models presented in this paper can be used directly to

solve realistic offense and defense problems, it is hoped that they will provide insight into

the basic structure of optimal and near optimal solutions to these important, large games.

 1

I. INTRODUCTION

Fictitious play (FP), first introduced by Brown and Robinson (1951), is an

iterative procedure used to approximate solutions to two-person zero-sum (TPZS) games.

At each iteration of FP, each player chooses a pure strategy that is a best reply to the

mixed strategy represented by the aggregation of all of other player’s pure strategies

played so far, assuming they will be chosen based on the empirical probability

distribution induced by their historical frequency in all previous iterations. Fictitious play

can be thought of as mimicking the behavior of players learning from their opponents.

The purpose of this thesis is to investigate the use of fictitious play in the solution

of Blotto games and their generalizations. In Blotto games, opponents each allocate a

limited number of forces to a specified number of areas. Payoffs in each area accrue to

the players based on the number of forces assigned to each area. The main application of

Blotto games has been the analysis of missile attack and defense problems.

This thesis is organized as follows: in Chapter II, we introduce TPZS games,

Blotto games and the solution procedure. In Chapter III, we solve various versions of the

problem using FP. Chapter IV provides conclusions and suggests further work.

 2

THIS PAGE INTENTIONALLY LEFT BLANK

 3

II. TWO PERSON ZERO-SUM GAMES

A. DEFINITION
A two-person zero-sum (TPZS) game (von Neumann and Morgenstern, 1944) is a

situation where there are two players having directly opposite interests. In a TPZS game,

player 1 (also called X, the row player, or the maximizer) has m pure strategies and player

2 (Y, column player, minimizer) has n pure strategies. A player can commit to playing a

pure strategy, or, by randomizing his choice among several pure strategies, he can

employ a mixed strategy. A mixed strategy is represented by a vector of probabilities of

choosing each pure strategy. For player 1, we write this vector as:

1(, ,)T
mx x x= K .

Because x is a vector of probabilities, we have the restrictions that

1
1

m

i
i

x
=

=∑

and

0, 1,...,ix i m≥ = .

Similar notation and restrictions are used for player 2, whose mixed strategy is written as:

1(, ,)T
ny y y= K .

In a TPZS game, each player chooses a strategy (pure or mixed), unknown to the other,

and both strategies are revealed simultaneously. The result of the game depends on the

strategy used by each player. If X and Y choose their ith and jth pure strategies,

respectively, then the result of game, denoted aij, represents the amount that Y has to pay

X. Equivalently, the payoffs to X and Y are aij and – aij, respectively. Note that the sum of

the two payoffs is zero, which explains the name of the game. If two players employ

mixed strategies x and y (and a pure strategy is just a special case of a mixed strategy),

then the payoff to player 1 is:

 4

1 1

m n

i j ij
i j

x y a
= =
∑∑

which can be seen as the expected payoff among all of the pure strategies represented by

x and y.

Therefore, a TPZS game is completely defined when the payoff for each pair of X

and Y pure strategies is determined. These payoffs can be summarized in an m×n matrix,

generally referred to as a payoff matrix, i.e.

11 12 1

21 22 2

1 2

n

n

m m mn

a a a
a a a

A

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M M M

L

,

and the payoff to player 1 is then Tx Ay .

In playing the game, both players are assumed to choose a strategy that achieves

the most favorable outcome. This means that X would choose the strategy that

maximizes Tx Ay over all choices of y. On the other hand, Y would choose the strategy

that minimizes Tx Ay over all choices of x.

A TPZS game has an equilibrium point when each player can guarantee an

optimal result by always choosing a single pure strategy. When equilibrium cannot be

achieved, players must use mixed strategies to optimize the value of the game.

 To choose the best randomized strategy, X must find the 1(, ,)mx x x= K to

1 1
max{min[] : 1, 0, 1,..., }

m m

i ij i ijx i i
x a x x i m

= =

= ≥ =∑ ∑ .

Similarly, Y must find the 1(, ,)ny y y= K to

1 1

min{max[] : 1, 0, 1,..., }
n n

ij j j jy i j j

a y y y j n
= =

= ≥ =∑ ∑ .

Let x* and y* denote the optimal strategies for X and Y. Then, v* = (x*)TAy* is the value

of the game. One of the central results of game theory states (Winston, 1991) that:

 5

1 1
* max{min[] : 1, 0, 1,..., }

m m

i ij i ijx i i
v x a x x i m

= =

= = ≥ =∑ ∑ , and

1 1

* min{max[] : 1, 0, 1,..., }
n n

ij j j jy i j j

v a y y y j n
= =

= = ≥ =∑ ∑ .

B. LINEAR PROGRAMMING
When the payoff matrix is specified and it is not too large, linear programming

(Winston, 1991) can be used to find the optimal mixed strategies and the value of the

game. For the maximizer (player 1), the problem is to find the mixed strategy

1(, ,)mx x x= K which maximizes
1

min
n

i ijj i
x a

=
∑ . That is,

1

1

LP1: max

subject to 0, 1,...,

1, and 1,..., .

m

i ij
i

m

i i
i

v

x a v j n

x x m

=

=

− ≥ =

= =

∑

∑

Similarly, the minimizer (player 2) must solve LP 2:

1

1

LP 2 : min

subject to 0, 1,...,

1, and 1,..., .

n

j ij
j

n

j j
j

w

y a w i m

y y n

=

=

− ≤ =

= =

∑

∑

It is easy to show that problems LP1 and LP2 are duals of each other. Moreover, if

(v*, x*) and (w*, y*) are optimal to problems LP1 and LP2, respectively, then v*=w*.

C. FICTITIOUS PLAY (FP): BROWN-ROBINSON METHOD
Fictitious play (FP) was introduced by Brown and Robinson (1951). It is an

iterative solution procedure; in each iteration, players choose pure strategies that are the

best response to the empirical mix of their opponents’ pure strategies seen so far.

The FP procedure implemented here begins at iteration 1 with player 1 selecting

that row maximizing the minimum row value, and player 2 selecting that column

minimizing the maximum column value. Denote the players’ pure strategies at iteration 1

 6

as x(1) and y(1). These are vectors of all zeros except for a 1 at the selected row or column

locations. At iteration 2, player 1 selects pure strategy x(2), which is the best row response

to y(1); and player 2 selects pure strategy y(2), which is the best column response to x(1).

And for general iteration k ≥ 2, player 1 selects the pure strategy x(k), which is the best

row response to

1(1) ()

1

1
1

kk p

p

y y
k

−−

=

=
− ∑ , and

player 2 selects pure strategy y(k), which is the best column response to

1(1) ()

1

1
1

kk p

p

x x
k

−−

=

=
− ∑ .

For computational purposes,
(1)k

x
+

is conveniently updated from
()k

x and (1)kx + as follows:

(1) () (1)1
1 1

k k kkx x x
k k

+ +⎛ ⎞ ⎛ ⎞= ⋅ + ⋅⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
.

And similarly for player 2,

(1) () (1)1
1 1

k k kky y y
k k

+ +⎛ ⎞ ⎛ ⎞= ⋅ + ⋅⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
.

Any limit points of the sequences {
()k

x } and {
()k

y } are optimal mixed strategy

solutions to the game. Also upper and lower bounds on the value of the game, v*, are

determined at each game play. Specifically, at game iteration k,

(1) (1)() * ()() ()
k kt k k t

kkv x Ay v x Ay v
− −

≡ ≤ ≤ ≡ ,

and both kv and kv converge to v *, but not necessarily monotonically (Eagle and

Washburn, 1991).

 7

D. BLOTTO GAMES

1. Definition

In a Blotto game, there are n≥1 targets, or areas, for player 1 (the attacker) to

attack and player 2 (the defender) to defend. The attacker chooses a vector of allocations

x, where xk is the number of attacking units assigned to area k, and player 1 has f attackers

to distribute, resulting in the constraint
1

n

k
k

x f
=

≤∑ . The defender chooses a vector of

allocations y subject to
1

n

k
k

y g
=

≤∑ , where yk is the number defenders assigned by player 2

to area k. The payoff is
1

(,)
n

k k
k

A x y
=
∑ (See Washburn, 1994, pp.107-111 for a more

complete discussion). All allocations are required to be nonnegative, and in a discrete

Blotto game they are also required to be integers. The number of pure strategies for

player 1 is
1n f

f
+ −⎛ ⎞

⎜ ⎟
⎝ ⎠

and, for player 2,
1n g

g
+ −⎛ ⎞

⎜ ⎟
⎝ ⎠

, both of which grow too fast to allow

complete enumeration in even moderately sized games. Figure 1 displays a typical

increase in the number of pure strategies for player 1 as f or n increase.

Figure 1. Number of pure strategies for player 1, for f=10 1≤n≤100, and for n=10,

 8

1≤f≤100.

2. Playability
In Blotto games, it is sometimes convenient to represent a mixed strategy with the

marginal distributions of the random vector X=(X1,…, Xn), where Xi is the random

variable representing the number of attackers assigned to area i. Marginal distributions

satisfying k
k

X f=∑ are playable for the attacker. Similarly, the marginals for the random

variable Y= (Y1,…, Yn) are playable for the defender if k
k

Y g=∑ . However, the typical

approach is to relax these restrictions and simply require that ()k
k

E X f=∑ and

()k
k

E Y g=∑ .

3. ILP Formulation of Blotto Games
Washburn (1994) presents the LP formulation of Blotto games using the marginal

distributions. However, those formulations do not guarantee playability (although the

discussions of those formulations claim that playability is not an issue for large

problems). We modify the formulation in Washburn (1994) by explicitly adding

constraints that are sufficient to enforce playability. The cost of such constraints is

twofold: (1) they are sufficient, but not necessary conditions for playability, so the

solutions we obtain are potentially suboptimal; and (2) they introduce integer variables,

rendering integer linear programming (ILP) formulations.

 9

ILP 1 solves a Blotto defense game for the defender’s marginals 1(, ,)gy yK ,

where yi represents the probability that j defenders are used in any given area. Therefore,

()i k
k

j y E Y⋅ =∑ .

y, c, d

0

0

0

ILP1: min

. (,) ; 0,1...,

/

1

0, for all 0,1,...,

{0,..., } and 0

g

j
j

g

j
j

g

j
j

j j

j

j

v nc df

s t A i j y c d i i f

y j g n

y

ycount n y

y j g

ycount g d

=

=

=

= +

⋅ ≤ + ⋅ =

⋅ ≤

=

= ⋅

≥ =

∈ ≥

∑

∑

∑

ILP 2 solves a Blotto attack game for the attacker’s marginals 1(, ,)fx xK . The

integer restrictions or ycountj and xcounti are used to require playability.

x, a, b

1

1

1

ILP 2: max

s.t (,) ; 0,1...,

/

1

0, for all 0,1,...,
{0,..., } and 0

f

i
i

f

i
i
f

i
i

i i

i

i

v na bg

A i j x a b j j g

x i f n

x

xcount n x
x i f
xcount f b

=

=

=

= −

⋅ ≥ − ⋅ =

⋅ ≤

=

= ⋅
≥ =

∈ ≥

∑

∑

∑

These playability constraints are too restrictive; they are sufficient to enforce

playability but they are provably not necessary.

 10

4. New Fictitious Play Procedure

We derive the dynamic programming recurrence relation for solving Blotto games

with FP, using a general payoff function (,)kA x y , which is the amount player 2 pays to

player 1 when player 1 allocates x units to area k and player 2 allocates y units to area k.

The total payoff is obtained by summing the rewards over the n areas. The recurrence

can be solved without explicitly keeping track of every attack or defense played; rather,

the information required is simply the number of times a given force level (number of

attackers or defenders) has been used in each area, over all attacks and defenses seen so

far.

We first consider the defender’s problem at FP iteration K, which is to allocate g

defenders over n cities to minimize the expected payoff, given that K attacks have been

observed so far. Each attack can be represented by a column vector 1 2(, , ,)k k k k T
na a a a= K ,

1, ,k K= K . We define the values
()k

i

j
i a jk

r I
=

= ∑ , where
()k

ia j
I

=
 represents the indicator

variable for the event, “the kth attack used j attackers in area i.” Therefore, j
ir represents

the number of times exactly j attackers have been used against area i. We first determine

the value of placing g defenders optimally in area n. Then we define a recurrence

relation on a value function ()iv p that represents the expected payoff of placing p

defenders optimally in areas i, i+1,…, n. Then 1()v g is the solution to the original

problem. The boundary condition is given by

0

1() (,), 0, ,
f

p
n n n

p

v q r A p q q g
K =

= =∑ K , (1)

which is the total expected payoff when the defender uses q defenders in area n. This

states that the optimal defender strategy when only area n remains is to allocate all q

remaining defenders to that area. The recurrence for {1, , 1}i n∈ −K is:

 ()10, , 0

1() min (,)
f

p
i i i ij q p

v q r A p j v q j
K +=

=

⎧ ⎫
= + −⎨ ⎬

⎩ ⎭
∑

K
. (2)

 11

This is the expected payoff in area i plus the expected payoff generated by placing

the remaining (q-j) defenders optimally in areas i+1,…, n. The optimal defender

allocation to area i is the value of j minimizing equation (2).

Similarly, for the attacker’s problem, we assume that K defenses have been

observed so far, where the kth defense is 1 2(, , ,)k k k k T
nd d d d= K . The attacker wishes to

allocate f forces over the n areas to maximize the expected payoff. Let
()k

i

j
i d jk

s I
=

=∑ be

the number of times j defenders are placed in area i. Define ()iw p as the maximum

possible expected payoff in areas , ,i nK . The boundary conditions are:

0

1() (,), 0, ,
g

q
n n n

q
w p s A p q p f

K =

= =∑ K , (3)

and the recurrence is given by:

 10, , 0

1() max (,) ()
g

q
i i i ij p q

w p s A j q w p j
K +=

=

⎧ ⎫
= + −⎨ ⎬

⎩ ⎭
∑

K
. (4)

The optimal solution for the attacker is represented by ()1w f and the corresponding

decisions j maximizing (4) for each area.

Blotto games can be extended immediately to the case where the attacker

possesses different numbers of, say, two types of attacking units, f1 and f2, and the

defender also has a supply of, say, two types of defending unit, g1 and g2. The payoff

function now depends on the number of attackers and defenders of each type allocated to

each area: ()1 2 1 2, , ,iA p p q q . If we define 1 2,j j
ir as the number of times j1 attackers of type

1 and j2 of type 2 have been used in area i, and similarly for 1 2,j j
is , then our value

functions are two-dimensional, with boundary conditions

1 2

1 2

1 2

,
1 2 1 2 1 2

0 0

1(,) (, , ,)
f f

p p
n n n

p p
v q q r A p p q q

K = =

= ∑ ∑ , (5)

and

 12

1 2

1 2

1 2

,
1 2 1 2 1 2

0 0

1(,) (, , ,)
g g

q q
n n n

q q

w p p s A p p q q
K = =

= ∑∑ , (6)

and recurrences

()
1 2

1 2

1 1
1 22 2

,
1 2 1 2 1 2 1 1 1 2 20,..., 0 00,...,

1(,) min (, , ,) ,
f f

p p
i i i ij q p pj q

v q q r A p p j j v q j q j
K +=

= ==

⎧ ⎫⎪ ⎪= + − −⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑ . (7)

and

1 2
1 2

1 1
1 22 2

,
1 2 1 2 1 2 1 1 1 2 20, , 0 00, ,

1(,) max (, , ,) (,)
g g

q q
i i i ij p q qj p

w p p s A j j q q w p j p j
K +=

= ==

⎧ ⎫⎪ ⎪= + − −⎨ ⎬
⎪ ⎪⎩ ⎭
∑∑

K
K

. (8)

Clearly, the size of the static space grows with the product of the number of each type of

attacker or defender. It is still manageable with just a few types of attacker or defender.

 13

III. DATA ANALYSIS AND RESULTS

A. MODEL IMPLEMENATION
The FP model is implemented in MATLAB (Version 6.5). The ILP solution

procedure is implemented in GAMS (Revision 135, XA solver). Computations are done

on a 1.5 GHz Intel Centrino-based laptop computer with 512 MB of RAM. All computer

code appears in Appendices A and B.

B. NUMERICAL RESULTS

1. Rate of Convergence of FP

Define gap(k) to be the difference between the upper and lower bounds on the

value of the game at FP iteration k. Consistent with earlier FP studies (Washburn, 2001),

we find that the FP gap plotted against number of iterations is approximately

asymptotically linear on a log-log plot. That is, for large enough k,

() b
agap k k≈ , or

log(()) log() loggap k a b k≈ − ,

where k is number of iterations and a and b are fitted constants. Limited numerical

experimentation suggests that using a least square fit and dropping first 100 iterations the

intercept (log(a)) increases with increasing f or g, and the slope (-b) increases (to

approximately -1/2) with increasing n. These observations are illustrated in Figures 2, 3

and 4.

 14

pure strategies
Case f, g, n

Attacker Defender
Slope Intercept Final Gap

(UB-LB)

A1 50, 200, 10 12565671261 1.76081E+15 -0.48374 1.8887 3.8396

A2 25, 100, 10 52451256 4.26342E+12 -0.48378 1.5860 1.5260

A3 5, 20, 10 2002 10015005 -0.48376 0.8887 0.3052

Figure 2. With n fixed, the slope remains constant and the intercept increases with f

and g.

In Figure 2 we see the gap between the upper and lower bounds plotted against

the number of iterations of fictitious play, on log-log scale. The slope of the fitted line

(from the column labeled “slope” in the table above the plot) indicates the rate of

convergence. Note that the slope is constant as f and g increase, and n remains fixed.

 15

pure strategies
Case f, g, n

Attacker Defender

Slope
(a)

Intercept
(b)

Final Gap
(UB-LB)

Standard
 Error

B1 30, 50, 30 5.91E+16 3.33E+21 -0.517 1.8541 2.0374 0.0094
B2 30, 50, 20 1.89E+13 4.63E+16 -0.543 1.8954 1.7824 0.0157
B3 30, 50, 15 1.15E+11 4.79E+13 -0.580 1.9463 1.5238 0.0187
B4 30, 50, 10 2.12E+08 1.26E+10 -0.588 1.8839 1.1999 0.0270
B5 30, 50, 5 46376 316251 -0.851 2.1746 0.4787 0.0469
B6 30, 50, 2 31 51 -1.093 1.4431 0.0216 0.0194

Figure 3. The best-fit slope increases with n (f and g fixed).

If we increase n for a fixed f and g, we see in Figure 3 that the slope increases,

and appears to approach a limit of -0.5 (Figure 4). This is consistent with conjectures of

1
k

 convergence of FP.

1 1.5 2

log(# Iteration)

 16

Figure 4. Convergence of asymptotic slope

2. Elapsed Time per FP Iteration
We observe that for all tested values of f, g and n, the elapsed time per FP

iteration is constant as the number of FP iterations k increases. This is illustrated in

Figure 5 and occurs because the amount of FP data required to be manipulated and stored

does not increase with k.

1.5

0.5

Q.

O 0
O!
O

-0.5

-1

-1.5

-2

With f and g fixed, the asymptotic
slope increases to approximately
-0.5 as n becomes large

c^^^.

-^^^^^^^

^V^ BJ-*-**.

(I 0.5 1 ■5. '' * 2-5 KN. :

■

 Predicted B1:n=30

-Predicted B2: n=20

 Predicted B3: n-15

-Predicted B4:n=10

 Predicted B5: n-5

 Predicted B6: n=2

B6\j

log(# Iterations)

 17

Iteration 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

f, g, n Elapsed time (sec)

5, 6, 10 2.4 4.6 6.8 9.0 11.2 13.3 15.5 17.7 19.9 22.2

20, 25, 30 24.3 48.4 72.6 96.7 121.4 145.5 169.1 193.8 217.6 242.0

40, 45, 50 81.7 163.4 245.2 326.4 409.2 490.4 572.2 653.1 736.6 817.4

0

100

200

300

400

500

600

700

800

900

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Total FP Iterations, k

To
ta

l e
la

sp
se

d
tim

e(
se

c)

f=5, g=6, n=10
f=20, g=25, n=30
f=40, g=45, n=50

Figure 5. FP iterations vs. Elapsed time for 3 games

 18

3. Comparisons with FP and ILP Procedure

Comparisons are made between the ILP and FP solution procedures. Three

different payoff functions are examined.

a. Convex Payoff Function
The convex payoff function is given by

() (), max ,0i i i iA x y x y= − .

 Figure 6 shows how the two procedures performed.

FP (k = 2000) ILP
Run f, g, n Elapsed

 time Upper Lower Gap Elapsed
time

Value of
game

1 3, 4, 5 1.962 2.208 2.179 0.029 0.10 2.2

2 6, 8, 5 2.774 4.415 4.358 0.057 0.18 4.4
3 12, 16, 5 4.657 8.831 8.717 0.114 0.22 8.8
4 15, 20, 5 5.668 11.039 10.896 0.143 0.19 11
5 30, 40, 5 11.147 22.077 21.792 0.285 0.25 22
6 60, 80, 5 24.535 44.154 43.584 0.570 0.12 44
7 120, 160, 5 59.766 88.308 87.168 1.140 0.21 88
8 150, 200, 5 83.801 110.385 108.960 1.426 0.12 111

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8
Run

E
la

ps
ed

 ti
m

e(
se

c)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

G
ap

Elapsed time of ILP
Elapsed time of FP

Gap of FP

Figure 6. Comparison of FP and ILP procedures with convex payoff function

 19

b. Capacitated Payoff Function

 The capacitated payoff function is

()
max (,0),

,
,

i i i i
i i

i i

x y x y cap
A x y

cap x y cap
− − ≤⎧

= ⎨ − >⎩
,

where cap is the maximum possible payoff. We note that the ILP objective function need
not be either convex or concave. Figure 7 shows how the two procedures performed.

FP (k = 2000) ILP
Run f, g, n Elapsed

time Upper Lower Gap Elapsed
time Upper Lower Gap

1 3, 4, 5 1.743 2.208 2.179 0.029 0.180 2.200 2.200 0.000
2 6, 8, 5 2.704 2.958 2.872 0.086 0.100 3.120 2.800 0.320
3 12, 16, 5 4.697 3.935 3.767 0.168 0.100 4.114 3.800 0.314
4 15, 20, 5 5.748 4.252 4.078 0.174 0.170 4.333 4.000 0.333
5 30, 40, 5 11.226 4.884 4.619 0.265 0.190 5.143 4.200 0.943
6 60, 80, 5 24.536 5.350 4.960 0.389 1.420 5.807 4.200 1.607
7 120, 160, 5 59.946 5.622 5.130 0.492 62.380 6.250 4.200 2.050
8 150, 200, 5 82.278 5.713 5.144 0.570 102.170 6.338 4.091 2.247

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8
Run

E
la

ps
e

tim
e(

se
c)

0.0

0.5

1.0

1.5

2.0

2.5

G
ap

Elapse time of ILP
Elapse time of FP
Gap of ILP
Gap of FP

Figure 7. Comparison of FP of ILP procedures with the capacitated payoff function

 20

c. Binary Payoff Function

The binary payoff function is

()
0, 0

,
1, 0

i i
i i

i i

x y
A x y

x y
− ≤⎧

= ⎨ − >⎩
.

As with the capacitated payoff function, the ILP in this case need not be either convex or
concave. Figure 8 shows how the two procedures performed.

FP (k = 2000) ILP
Run f, g, n Elapsed

time Upper Lower Gap Elapsed
time Upper Lower Gap

1 3, 4, 5 1.021 1.216 1.179 0.037 0.12 1.200 1.200 0.000

2 6, 8, 5 2.805 1.477 1.407 0.070 0.17 1.600 1.400 0.200

3 12, 16, 5 4.757 1.675 1.574 0.101 0.19 1.920 1.400 0.520
4 15, 20, 5 5.668 1.721 1.618 0.103 0.11 2.000 1.333 0.667
5 30, 40, 5 11.186 1.850 1.694 0.156 0.30 2.000 1.400 0.600
6 60, 80, 5 24.756 1.921 1.716 0.205 2.57 2.167 1.400 0.767
7 120, 160, 5 60.758 1.990 1.703 0.287 61.96 2.182 1.400 0.782
8 150, 200, 5 83.260 2.012 1.686 0.326 149.89 2.214 1.400 0.814

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8
Run

E
la

ps
e

tim
e(

se
c)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

G
ap

Elapse time of ILP
Elapse timeof FP
Gap of ILP
Gap of FP

Figure 8. Comparison of FP and ILP procedures with the binary payoff function

 21

C. CONCLUSIONS

As has been observed in earlier FP studies the FP gap (the difference between the

upper and lower bounds or game value) as a function of number of FP iterations, k, is

approximately

() b
agap k k≈ ,

for large enough k.

The best-fit a increases with f and g, and the best-fit b decreases to approximately

1/2 with increasing n.

Because of efficiencies realized in the DP procedure used to solve the FP

subproblems, the computation time required for each FP iteration is approximately

constant as the number of FP iterations increases, for fixed f, g and n.

For the convex payoff function tested, the ILP formulation solved with GAMS

was faster and more accurate than the FP procedure.

For the non-convex payoff functions tested, the FP procedure was more

competitive and sometimes significantly outperformed than ILP procedure.

 22

THIS PAGE INTENTIONALLY LEFT BLANK

 23

IV. CONCLUSIONS AND FURTHER STUDY

We propose a new efficient fictitious play (FP) procedure to solve two-person

zero-sum Blotto games. The algorithm uses dynamic programming (DP) to solve the FP

subproblems at each iteration. By representing intermediate mixed strategies through

marginal distributions are keep the state space of the DP manageable and independent of

the number of iterations. Although our experiments considered one type of attacker and

one type of defender, we indicate how to generalize this procedure to cases with more

than one type of attacker or defender (or both).

During this study, we identified other topics for further investigations. The first is

to investigate generalizations of Blotto games in which defenders can be placed in such a

way as to defend multiple areas at once. This is closer to the real situation with missile

defense. The second is to explore the issue of playability in the ILP formulations. Our

proposed playability constraint is currently too restrictive; we have provided examples in

which the optimal solution to the ILP, with the playability constraint, is not equal to the

value of the game. Further research should explore less restrictive, alternate formulations

of playability constraints. It is possible (although unlikely) that less restrictive playability

constraints would also yield more efficiently solvable ILP, making that approach

competitive with the DP-based procedure for larger problems.

 24

THIS PAGE INTENTIONALLY LEFT BLANK

 25

APPENDIX A. MATLAB CODE FOR NEW FP PROCEDURE

1. Blotto_fp.m

% Blotto Game Fictitious Play Solution with general payoff matrix

% n = # areas to be attacked and defended
% f = # attackers to be allocated to the n areas
% g = # defenders to be allocated to the n areas

% Initialize with a vector of marginals for the attacker and
% defender.
% initialize A for attacker (each row is frequency of
% 0,1,2. ... ,f being assigned to area i=1,...,n),
% initialize D for defender (each row is frequency of
% 0,1,2, ... ,g being assigned to area i=1,...,n),
% initalize upper and lower bounds on the value of the game, and
% number of iterations desired.
% Calculate P(a,d) = return if a attackers and d defenders
% attack any area

clear;

f = 150; % number of attackers
g = 200; % number of defenders
n = 5; % number of areas to attack and defend
num_its = 2000; % number of FP iterations

for i = 1:f+1
 for j= 1:g+1
 P(i,j)=linearpayoff(i,j);
% P(i,j)=cappedpayoff(i,j);
% P(i,j)=binarypayoff(i,j);

 end
end

% Set initial A for all attacks in area 1
A(1,:) = [zeros(1,f),1];
for k=2:n
 A(k,:) = [1,zeros(1,f)];
end

% Set initial D to all defenses in area 1
D(1,:) = [zeros(1,g),1];
for k=2:n
 D(k,:) = [1,zeros(1,g)];
end

v_up = f; % assumes all missiles are leakers
v_low = 0; % assumes no missiles are leakers

% preallocates v_up and v_low in memory
v_up=v_up*ones(1,num_its+1);

 26

v_low=v_low*ones(1,num_its+1);

for k=1:num_its
 [opt_atk,v_u] = attacker(D,P,n,f,g);
% Find best pure attack for defenses seen so far
% (and upper bound).
 [opt_def,v_l] = defender(A,P,n,f,g);
% Find best pure defense for attacks seen so far
% (and lower bound).
 A = update_attack_marginals(A,opt_atk);
%Update attack and defense marginals.
 D = update_defense_marginals(D,opt_def);
 v_up(k+1) = min(v_u,v_up(k));
 v_low(k+1)= max(v_l,v_low(k));
 if (k/100 == floor(k/100)), home, k, gap=(v_up(k+1)-

v_low(k+1)), end
end

figure(1)
loglog([0:num_its],(v_up - v_low),'ro'),grid on, title('(upper

bound - lower bound) vs. #FP iterations')
figure(2)
plot([0:num_its],v_up,'go',[0:num_its],v_low,'rx'),grid on,

axis([0 num_its 0 f]),title('Upper and lower bounds vs. #FP
iterations')

bounds = [v_up(end),v_low(end)]
meanA = mean(A)/num_its
meanD = mean(D)/num_its

 27

2. Attacker.m

function [opt_attack,v_up] = attacker(D,P,n,f,g)

% Takes defenses D and returns optimal attack column vector and
% an upper bound on the value of the Blotto game.
% n areas, f attackers, g defenders
% Uses general payoff function P(a,d)
% #defenses (increases with FP iterations)

num_defenses = sum(D(1,:));

s=D*P'; % compute s(i,j) = exp. 1-step payoff
% when j attackers assigned to area i.
% Uses the marginal matrix
% D(i,j) = # times j defenders assigned to area i.

v_star = zeros(n,f+1); %initialize v_star(i,j) = optimal
% return when j attackers are available for i areas
a_star = zeros(n,f+1); %initialize a_star(i,j) = optimal
% # attackers to use when j attackers are available for i areas

% n = 1
v_star(1,:) = s(1,:); % optimal payoff when 1 area is included
a_star(1,:) = [0:f]; % optimal #attackers when 1 area is included

% n > 1
for i=2:n % areas
 for j=0:f % j attackers remain to be used
 v_starnew = zeros(1,j+1); %initialize a_starnew
 for k=0:j
 v_starnew(k+1) = s(i,k+1) + v_star(i-1,j-k+1);
% enumerating possible returns
 end
 [v_star(i,j+1),a_star(i,j+1)] = max(v_starnew);
% identifying the # attackers giving a max. payoff
 a_star(i,j+1) = a_star(i,j+1)-1;
% correcting for col. 1 being for 0 attackers
 end
end

v_up = v_star(n,f+1)/num_defenses;
opt_attack = zeros(n,1); % initialize opt_attack
opt_attack(n) = a_star(n,f+1);
% establish optmal #attackers to use for n areas

attackers_remaining = f - opt_attack(n);
% update #attackers remaining for remaining n-1 areas

for i=n-1:-1:1
 opt_attack(i) = a_star(i,attackers_remaining+1);
 attackers_remaining = attackers_remaining - opt_attack(i);
end

 28

3. Defender.m

function [opt_defense,v_low] = defender(A,P,n,f,g)

% Takes attacks A and returns optimal defense column vector and
% an lower bound on the value of the Blotto game.
% n areas, f attackers, g defenders
% Uses general payoff function P(a,d)

num_attacks = sum(A(1,:));

q=A*P; % compute q(i,j) = exp. 1-step payoff
% when j attackers assigned to area i.
 % Uses the marginal matrix
% A(i,j) = # times j attackers assigned to area i.

r_star = zeros(n,g+1); %initialize r_star and d_star
d_star = zeros(n,g+1);

% n = 1
r_star(1,:) = q(1,:);
d_star(1,:) = [0:g];

% n > 1
for i=2:n
 for j=0:g
 r_starnew = zeros(1,j+1); %initialize r_starnew
 for k=0:j
 r_starnew(k+1) = q(i,k+1) + r_star(i-1,j-k+1);
% enumerating possible # defenders
 end
 [r_star(i,j+1),d_star(i,j+1)] = min(r_starnew);
% identifying the # defenders giving a min. payoff
 d_star(i,j+1) = d_star(i,j+1)-1;
% correcting for col. 1 being for 0 defenders
 end
end

v_low = r_star(n,g+1)/num_attacks;
opt_defense = zeros(n,1);
opt_defense(n) = d_star(n,g+1);
defenders_remaining = g - opt_defense(n);
for i=n-1:-1:1
 opt_defense(i) = d_star(i,defenders_remaining+1);
 defenders_remaining = defenders_remaining - opt_defense(i);
end

 29

4. Update_attack_marginals.m

function [A_new] = update_attack_marginals(A,opt_atk)
[n,m]=size(A);
A_new=A;
for k=1:n
 z=opt_atk(k);
 A_new(k,z+1)=A_new(k,z+1)+1;
End

5. Update_defense_marginals.m

function [D_new] = update_defense_marginals(D,opt_def)
[n,m]=size(D);
D_new=D;
for k=1:n
 z=opt_def(k);
 D_new(k,z+1)=D_new(k,z+1)+1;
end

6. Payoff.m

Unconstrained target case:

Linearpayoff.m
function P=linearpayoff(a,d)
if a>d
 P=a-d;
else
 P=0;
end

Capacitated target case:

Cappedpayoff.m
function P = cappedpayoff(a,d,cap)
P=max(0,min(a-d,cap));

Binary target case:

Binarypayoff.m
function P = binarypayoff(a,d)
P=(a>d);

 30

THIS PAGE INTENTIONALLY LEFT BLANK

 31

APPENDIX B. GAMS CODE FOR ILP PROCEDURE

* Blotto Attack & Defense game
* Attacker is the row player and maximizer.
* Defender is the column player and minimizer.
* Uses integer restrictions to require playability

$offlisting
$inlinecom { }
OPTIONS
 SOLPRINT = OFF,
 DECIMALS = 2,
 LIMCOL = 0,
 LIMROW = 0,
 RESLIM = 86400, {MAX SECONDS}
 ITERLIM = 100000, {MAX PIVOTS}
 OPTCA = 0.01, {ABSOLUTE INTEGRALITY TOLERANCE}
 OPTCR = 0.00, {RELATIVE INTEGRALITY TOLERANCE}
 lp = xa,
 MIP = xa; {XA Solver}

SCALARS
 N total number of areas /5 /
 F total number of attackers /15 /
 G total number of defenders /20 /
 Time execution time /0 /
;

SETS
 i # attackers used /0attack*15attack/
 j # defenders used /0defend*20defend/
;

PARAMETER P(i,j) damage done when i attack and j defend;

LOOP ((i,j), P(i,j)=max((ord(i)-ord(j)),0)); {convex payoff}

*LOOP ((i,j), P(i,j)=min(P(i,j),3)); {capacitated payoff}

*LOOP ((i,j), if (P(i,j)>0,
 P(i,j)=1;
 else
 P(i,j)=0;)
); {binary payoff}

VARIABLES
 v1 value of game for defenders
 v2 value of game for attackers
 x(i) Attacker marginal distribution on # attackers used
 y(j) Defender marginal distribution on # defenders used
 xcount(i) Attacker marginal dist. * N

 32

 {= # times i attackers used}
 ycount(j) Defender marginal dist. * N

 {= # times j defenders used}
 a x-intercept
 b slope
 c y-intercept
 d slope;

POSITIVE VARIABLES x, y, b, d ;

INTEGER VARIABLES xcount, ycount ;
*POSITIVE VARIABLES xcount, ycount ;

EQUATIONS
 objective1 objective funtion
 expreturn_y(i) expected return
 meandefenders constraint on mean number of defenders
 probsum_y sum of probabilities is 1
* extraconstraint0 extra contraits to help explore

 different optimal solutions
 ycountdef(j) definition of ycount
;

objective1.. v1 =e= N*c + d*F ;

expreturn_y(i).. sum(j, P(i,j)*y(j)) =l= c+d*(ord(i)-1);

meandefenders.. N*sum(j,y(j)*(ord(j)-1)) =l= G ;

probsum_y.. sum(j,y(j)) =e= 1 ;

*extraconstraint0.. y('10defend') =e= .25 ;

ycountdef(j).. ycount(j) =e= N*y(j) ;

MODEL Defense /objective1,
 expreturn_y,
 meandefenders,
 probsum_y
 ycountdef
/;

EQUATIONS
 objective2 objective funtion
 expreturn_x(j) expected return
 meanattackers constraint on mean number of attackers
 probsum_x sum of probabilities is 1
 xcountdef(i) definition of xcount
;

objective2 .. v2 =e= N*a - b*G ;

expreturn_x(j) .. sum(i, x(i)*P(i,j)) =g= a-b*(ord(j)-1);

meanattackers .. N*sum(i,x(i)*(ord(i)-1)) =l= F ;

 33

probsum_x .. sum(i,x(i)) =e= 1 ;

xcountdef(i).. xcount(i) =e= N*x(i)

MODEL Attack /objective2,
 expreturn_x,
 meanattackers,
 probsum_x
 xcountdef
/;

SOLVE Defense using mip minimizing v1;

SOLVE Attack using mip maximizing v2;

Time=Time+Defense.resusd+Attack.resusd; {computation time}

DISPLAY v1.l, v2.l, y.l, x.l;
DISPLAY ycount.l,xcount.l, Time;

 34

THIS PAGE INTENTIONALLY LEFT BLANK

 35

LIST OF REFERENCES

Alan R. Washburn, 1994. Two-Person Zero-Sum Games, Institute for Operations

Research and the Management Sciences. pp. 36-38

Alan Washburn, 2001, A New kind of fictitious play, Naval Postgraduate School,

http://diana.or.nps.mil/~washburn/ModFicPlay/ pp. 1-2

Brown, G.W., 1951, “Iterative Solutions of Games by Fictitious Play.” In T.C. Koopmans

(ed.), Activity Analysis of Production and Allocation, Cowles Commission Monograph

13, pp. 377-380

Eagle, J. N. and Washburn, A.R. 1991. Cumulative Search-Evasion Games. Naval

Research Logistics, Vol. 38, pp.495-510

Robinson, J., 1951. An Iterative Method of Solving a Game. Annals of Mathematics, 54,

pp. 296-301

von Neumann, J., and O. Morgenstern. 1944. Theory of Games and Economic Behavior.

Princeton U. Press

Winston, W. I., 1991. Operations Research Applications and Algorithms, 2nd ed.,

PWSKENT, Co.

 36

THIS PAGE INTENTIONALLY LEFT BLANK

 37

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor James N. Eagle
Naval Postgraduate School
Monterey, California

4. Professor Carlyle W. Matthew
Naval Postgraduate School
Monterey, California

