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Preface 

New concepts such as network-centric operations and distributed and 
decentralised command and control have been suggested as techno- 
logically enabled replacements for platform-centric operations and for 
centralised command and control in military operations. But as 
attractive as these innovations may seem, they must be tested before 
adoption. This report assesses the effects of collaboration across alter- 
native information network structures in carrying out a time-critical 
task, identifies the benefits and costs of local collaboration, and looks 
at how 'information overload' affects a system. 

A joint US/UK study team conducted the research described in 
this report. In the United States, the research was carried out within 
RAND Europe and the International Security and Defense Policy 
Center of the RAND National Security Research Division, which 
conducts research for the US Department of Defense, allied foreign 
governments, the intelligence community, and foundations. In the 
United Kingdom, the Defence Science and Technology Laboratory 
(Dstl) directed the work and participated in the research effort. Dstl 
is the centre of scientific excellence for the Ministry of Defence, with 
a mission to ensure that the UK armed forces and government are 
supported with in-house scientific advice. RAND has been granted a 
licence from the Controller of Her Britannic Majesty's Stationery 
Office to publish the Crown Copyright material included in this 
report. 

This report will be of interest to military planners, operators, 
and personnel charged with assessing the effects of alternative infor- 
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mation network structures, processing facilities, and dissemination 
procedures. Planners contemplating the use of network-centric pro- 
cesses to achieve military objectives can use the methods described in 
the report to evaluate alternative structures and processes. Informa- 
tion technologists can assess the contribution of each alternative to 
the decisionmaker's knowledge prior to taking a decision. The ulti- 
mate goal is to develop tools that will allow operators to quickly 
evaluate plans for their level of situational awareness. 

For more information on the RAND International Security and 
Defense Policy Center, contact the director, James Dobbins. He can 
be reached by email at James_Dobbins@rand.org; by phone at 310- 
393-0411, extension 5134; or by mail at RAND Corporation, 1200 
South Hayes Street, Arlington, VA, 22202-5050. More information 
about RAND is available at www.rand.org. 
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Summary 

New information technologies introduced into military operations 
provide the impetus to explore alternative operating procedures and 
command structures. New concepts such as network-centric opera- 
tions and distributed and decentralised command and control have 
been suggested as technologically enabled replacements for platform- 
centric operations and for centralised command and control. As 
attractive as these innovations seem, it is important that military 
planners responsibly test these concepts before their adoption. To do 
this, models, simulations, exercises, and experiments are necessary to 
allow proper scientific analysis based on the development of both 
theory and experiment. 

The primary objective of this work is to propose a theoretical 
method to assess the effects of information gathering and collabora- 
tion across an information network on a group of local decision- 
making elements (parts of, or a complete, headquarters). The effect is 
measured in terms of the reduction in uncertainty about the informa- 
tion elements deemed critical to the decisions to be taken. 

Our approach brings together two sets of ideas, which have been 
developed thus far from two rather different perspectives. The first of 
these sets is the Rapid Planning Process, developed as part of a project 
on command and control in operational analysis models within the 
UK Ministry of Defence Corporate Research Programme. It is a con- 
struct for representation of the decisionmaking of military com- 
manders working within stressful and fast-changing circumstances. 
The second set of ideas comes from the work on modelling the effects 
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of network-centric warfare, carried out recently by the RAND 
Corporation for the US Navy. We assess the effects of collaboration 
across alternative information network structures in prosecuting a 
time-critical task using a spreadsheet model. We quantify the benefits 
and costs of local collaboration using a relationship based on 
information entropy as a measure of local network knowledge. We also 
examine the effects of complexity and information overload caused by 
such collaboration. 

Decisions in a Network 

New technologies are enabling militaries to leverage information 
superiority by integrating improved command and control capabili- 
ties with weapon systems and forces through a network-centric 
information environment. The result is a significant improvement in 
awareness, shared awareness, and collaboration. These improvements 
in turn affect the quality of the decisionmaking process and the deci- 
sion itself, which ultimately lead to actions that change the battle- 
space. 

In this report, we focus on the quality of the decisions, or the 
planned outcome, rather than on whether or not the desired effect is 
eventually achieved. 

We note that decisions are made based on the information avail- 
able from three sources: information that is resident at the decision 
node; information from collection assets and information processing 
facilities elsewhere in the network; and information from other local 
decisionmakers with whom the decision nodes are connected and 
with whom they share information. 

Rapid Planning Process 
In most cases, decisionmakers must make decisions without full 
understanding of the values of the critical information elements 
needed to support the decisions. The decision taken depends on the 
current values of the critical information elements, which are depen- 
dent on the scenario. This dependency is modelled using the Rapid 
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Planning Process. The critical information elements map out the 
commander's conceptual space. In the basic formulation of the Rapid 
Planning Process, a dynamic linear model is used to represent the 
decisionmaker's understanding of the values of these factors over 
time. This understanding is then compared with one or more of the 
fixed patterns within the commander's conceptual space, leading to a 
decision. 

A probabilistic information entropy model is used to represent 
the uncertainty associated with the critical information elements 
needed for the decision. Ideally, through the Rapid Planning Process, 
additional information from collection assets or from collaborating 
elements in the network serves to reduce uncertainty and therefore 
increase knowledge. 

Knowledge 
We are principally concerned with the information and cognitive 
domains, as depicted in Figure S.l. The domains of the information 
superiority reference model divide the command and control cycle 
into relatively distinct segments for ease of analysis. Their description 
includes the entities resident in the domain, the procedures per- 
formed and the products produced there, and the relationships 
among the domains. 

Information derived from sensors or other information gather- 
ing resides in the information domain. This information is trans- 
formed into awareness and knowledge in the cognitive domain and 
forms the basis of decisionmaking. Our metrics quantify this process 
through the use of information entropy and knowledge measures. 

Information sharing among nodes ideally tends to lower infor- 
mation entropy (and hence increase knowledge) partly because of the 
buildup of correlations among the critical information elements. That 
is, information can be gained about one critical information element 
(e.g., missile type) from another (e.g., missile speed). Such cross cou- 
pling is a key aspect for consideration, and we use conditional en- 
tropy to capture these relationships. 
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Figure S.1 
The Information Superiority Reference Model 
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Knowledge derived from entropy is a quantity that reflects the 
degree to which the local decisionmaker understands the values of the 
information elements. It is represented as a number between 0 and 1, 
with the former representing 'no understanding' and the latter repre- 
senting 'perfect understanding'. From this knowledge, decision- 
makers can assess whether or not they are in their 'comfort zone'— 
that is, whether the values of the key information elements support 
the decision they wish to take (such as one to launch the next attack 
mission). 
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Effects of Collaboration 

Networks provide an opportunity for participating entities to share 
information as part of a collaborative process.1 Here we focus on the 
synergistic effects of collaboration that improve the quantity (the 
completeness of our information) and the quality (its precision and 
accuracy) of the information needed to take decisions. We model the 
network as the combination of clusters of entities and represent each 
entity by a node. A cluster consisting of a single node is taken to be 
the degenerate case. Each such cluster consists of a set of entities, 
which have full shared awareness. Full shared awareness means that all 
entities in the cluster agree on the set of information elements and 
their values at any given time. 

Estimators 
Through observations of the battlespace, sensors and other informa- 
tion sources generate estimates for the information elements deemed 
critical to the decision. The uncertainty associated with the informa- 
tion elements is expressed in terms of probability distributions, the 
means of which are estimates of the ground-truth values. Because the 
mean of a probability distribution is a parameter of the distribution, 
we turn to parameter estimation theory to assess the quality of the 
information available to the decisionmaker and examine how the 
quality of the estimates contributes to knowledge. 

• Bias: Bias in an estimate is error introduced by systematic distor- 
tions. An unbiased estimator is one for which its statistical 
expectation is the true value of the estimated parameter. That is, 
the expected value of the estimate of the parameter, (1, is the 
true value of the parameter, |i. The bias in the estimate is there- 
fore the degree to which this is not true. 

• Precision: The variation in estimates of the critical information 
elements can occur in a purely random way. Random errors 

1 Collaboration in this context is taken to be a process in which operational entities actively 
share information while working together towards a common goal. 



xviii    Information Sharing Among Military Headquarters 

affect the precision of the estimates reported because they 
increase the variance of the distribution of the estimated infor- 
mation element. In general, precision is defined to be the degree 
to which estimates of the critical information element or ele- 
ments are close together.2 Bias and precision, therefore, are 
independent—that is, biased estimates may or may not be pre- 
cise. 

Precision and Entropy 
The amount of information available in a probability density is meas- 
ured in terms of information entropy, denoted H{x). Information 
entropy is always a function of the distribution variance, and there- 
fore we use it as the basis for developing a knowledge function. For 
example, the bivariate normal distribution is //(x,jy) = log|Z|, where 
£ is the covariance matrix. From this, we create a precision-based 
knowledge function as3 

K(x,y)=l-e~[° 
Sl       -H(x,y)\ 

I max       \   Jl\ 

\A I    In 

where |X|max is the determinant of the covariance matrix that pro- 
duces the maximum uncertainty. Based on precision alone, K{x,y) 
reflects the level of understanding within a cluster of decisionmakers. 

For the simple case of two collaborating decisionmakers (i.e., 
two nodes of the network forming a cluster) who share two pieces of 
information with a multivariate normal distribution, the change in 
knowledge is given by 

2 This is a commonly accepted definition. Ayyub and McCuen (1997, p. 191) define preci- 
sion as 'the ability of an estimator to provide repeated estimates that are very close together'. 
A similar definition can be found in Pecht (1995). 
3 Actually, the exact entropy value for the bivariate normal case is H[x,y) = log (2rce) 2. 
However, because we are concerned about the relative entropy, we use the simpler version, 
which we refer to as 'relative entropy'. 
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„2   _2_2 
Pl,2CTlG2 
2 2 

°l,maxö2,max 

where ph2 is the correlation coefficient, of ,o2 are the variances, and 
o2

max,o
2

jmax are the maximum or bounding values on the variance for 
the two pieces of information. 

Accuracy 

Accuracy is the degree to which the estimates of the critical informa- 
tion elements are close to ground truth. The concept of accuracy 
comprises both precision and bias. In general, if a is an information 
element whose value x is unknown with probability distribution f(x) 
and mean u representing ground truth, then the bias associated with 
the estimate of the mean is ^=|E((l)-(x|, where |1 is the estimate of 
the mean. Because accuracy consists of both bias and precision, we 
therefore need a metric that combines both. One such metric is the 
mean square error (MSE), E[((l-(J.)2] = ^2+o2, where o2 is the 
variance of |1. The MSE is an extremely useful metric because it 
includes both accuracy in the total and precision as a component. In 
estimating ground truth, the bias accounts for nonrandom errors and 
the precision accounts for random errors. 

We illustrate by continuing with the bivariate normal case. We 
assume that Bayesian updating is used to refine the location estimate 
based on the arriving reports. Bayesian updating is not always un- 
biased, and therefore we introduce systemic error. In this case, the 
bias is the Euclidean distance between the Bayesian estimate and the 
ground-truth value: 

V 

*=iH + A,-n. 
v 

y 
J 

By analogy with the MSE, the accuracy of the estimate is defined as 
D(x,y) = b2+\±\. 
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The Effects of Bias, Precision, and Accuracy on Knowledge 

We now account for bias, precision, and hence accuracy in the 
knowledge function by replacing the distribution variance with the 
MSE, or the accuracy measure D{x,y) in the knowledge function. 
Therefore, for the multivariate normal case, we get a modified knowl- 
edge function of the form:4 

The 'maximum mean square error' is a combination of the maximum 
bias and the maximum precision and represents the maximum in 
inaccuracy. Because bias and precision are independent, the maxi- 
mum occurs when both are maximised, or (£2+|E|)max =£max+|£|max. 
Like the variance, a suitable upper bound for bias can be found by 
searching for the largest possible measurement error the sensors or 
sources might produce. 

Completeness 
In addition to precision and accuracy, collaboration also affects the 
completeness of the critical information elements available within a 
cluster. For the entire network, we assume there are a maximum of N 
critical information elements. For a given cluster, the total number 
required is C<N. However, at a given time, t, only n<C might be 
available. If waiting for additional reports is not possible, a decision- 
maker would be required to take a decision without benefit of com- 
plete information. Depending on his experience and other contextual 
information, the decisionmaker may be able to infer some likely less 
reliable value for the missing information. For now, we assume that if 
the value of an information element is missing, the value of com- 
pleteness at cluster i is 

4 The subscript M denotes knowledge derived from the MSE. 
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-M»)= 

where t, is a 'shaping' factor. For values of £<1, the curve is con- 
caved downwards; for % > 1, it is concaved upwards; and for £ =1, it is 
a straight line. The selection of the appropriate value depends on the 
consequences associated with being forced to take a decision with 
incomplete information as well as the commander's attitude to risk. 

Information Freshness 

A final consideration when assessing uncertainty is that of freshness. 
The information arriving at a decision node consists of reports con- 
cerning one or more of the critical information elements necessary to 
take a decision. Both precision and accuracy depend on the joint 
probability density function that reflects the uncertainty in our 
knowledge of the ground-truth fixed pattern at a decision node. 
These reports are used to update the joint probability distribution of 
the information elements and hence the probability of correctness of 
each of the fixed patterns in the local decisionmaker's conceptual 
space. 

We have selected Bayesian updating as the method for combin- 
ing reports from various sources and sensors. All things being equal, 
we desire to give more weight to more recent reports, which requires 
that we reevaluate all available, valid reports at the time a decision is 
to be taken. A time-lapse estimate, 0 < O < 1, is used to determine the 
rate of information decay so that old information is given less weight 
than current information. 

Measuring the Overall Effect of Cluster Collaboration 

Finally, we combine the currency-adjusted precision and accuracy 
knowledge function with completeness to arrive at a single metric to 
assess the effects of collaboration across the cluster. The ideal case is 
when we have full completeness, i.e., Xt(n) = Xt(C) = l, and the 
knowledge shared across the cluster is fully accurate, KM{x) = \. 
Unfortunately, this ideal is seldom, if ever, achieved. Consequently, 
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we require a construct that gauges the degree to which accuracy, as 
calculated here, and completeness contribute to knowledge. 

In general, when X,(n) is small, the knowledge function should 
also be small. One way to reflect this behaviour is to replace the MSE 
in the entropy calculation with 

b2+a2 

X,(n) • 

This equation has the desirable property that, when X,(«)->1.0, the 
ratio is just the MSE, and when Xt(n)->0, it increases without 
bound. Because n is discrete, we can select n = 1 to be the worse case, 
with X,(1) = C_!\ Consequently, the upper bound on the resultant 
entropy calculation is 

2 
max   ' "max _ 

C 
c*(*L+oL)- 

If C = 1, there is no effect on the current entropy calculation or on 
the maximum entropy. If we let KK(x) be the knowledge within the 
cluster based on accuracy and completeness, with the maximum 
variance replaced with C^(b^„ +<?max), we get 

»   (»max+CTmax) 

for the univariate normal case.5 

Up to this point, we have captured the effects of collaboration 
among decision nodes within a cluster on knowledge. The measured 
effects of information sharing through collaboration are accuracy and 
completeness. For the most part, these effects are dynamical, because 
they vary with the quality and quantity of reports received and pro- 
cessed over time. Missing from this analysis so far is an assessment of 

5 The K subscript in this case refers to knowledge based on both the MSE and completeness. 
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the systemic effects of the network structure—that is, the effects that 
are more static. Next, we take up such measures of network com- 
plexity and combine them with the collaborative effects to arrive at a 
single measure of network performance and its effect on decision- 
making. 

Effects of Structural Complexity 

All networks exhibit complexity to a greater or lesser degree. Military 
command and control systems operating in a network-centric envi- 
ronment also exhibit complex behaviour. The challenge is under- 
standing exactly what the complexity is, what its effects are, and how 
to quantify these effects. We note that there are both good and bad 
effects of complexity. Unfortunately, the term 'complexity' has a 
negative connotation; therefore, we have adopted Murray Gell- 
Mann's more neutral term, 'plecticity'. 

In this context, plecticity refers to the ability of a connected set of 
actors to act synergistically via the connectivity between them. This 
measure is intended to take into account the fact that there may be 
constraints, due to technical or procedural limitations, on how nodes 
can constructively connect to other nodes; that is, a node's connec- 
tivity can add costs as well as benefits to the cluster. A measure of 
plecticity should account for the value of the cluster's ability to glean 
information from throughout the network to fulfil its particular func- 
tions, include a means for measuring the value of information redun- 
dancy, and reflect a cost to network effectiveness if nodes are over- 
whelmed. 

For networks with inadequate clustering, as with excessive 
clustering—flows 1 and 3, respectively, in Figure S.2—we would 
expect low plecticity scores. The goal is to configure the information 
flow over a network with established link connectivity so as to maxi- 
mise plecticity as measured in the terms discussed above and as illus- 
trated by flow 2 in the figure. 
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Figure S.2 
Overall Network Plecticity 
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Accessing Information 
The metric developed for completeness earlier is simply a ratio of 
counts: available required information elements to total required 
information elements. No attempt is made to assess the degree to 
which we can really expect to receive the information element, i.e., the 
degree to which the network allows the cluster to access information 
in the network. A metric that does so is the ratio of the aggregate 
expected degree of critical information access to the total number of 
required information elements. Such a metric accounts for the uncer- 
tainties associated with retrieving needed information. 

We thus replace the binary accounting for information ele- 
ments, with a connectivity score based on a distance function that 
recognises the cost imposed by the path the information must take 
through the network to arrive at the node requiring it. 

For any information element, at, we are interested in the shor- 
test path from source node to destination node, dl > 1, however 
calculated. The restriction that the path distances always exceed 1.0 
accounts for the fact that, for connectivity to exist at all, at least one 
link must exist between source and destination. The case in which no 
links exist implies an infinitely long path resulting in 0 connectivity. 
The quantity, dv, represents the expense incurred by moving infor- 
mation element at from source to destination. The associated con- 
nectivity value is calculated as 
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*/ = dfl 

where to, >1 is the rate at which kt varies with changing values of the 
distance function. 

The strength of the connectivity among all the nodes in such a 
path must take into account the vulnerability of path elements (links 
and nodes) to attack or failure. We can do this using the connectivity 
score described above by examining its value as we remove each 
node—link or both—one at a time from a given path. For simplicity, 
we consider only the loss of nodes. We create a depletion vector, L;, 
whose elements consist of the connectivity values for information 
element at, with each of the path nodes removed in turn. The vector 
Lj then represents the vulnerability of the path and, as such, 
expresses the degree of uncertainty associated with retrieving informa- 
tion element a1 from network sources. The adjusted connectivity for 
information element at from network sources to a single destination 
is calculated to be 

( 

ki-ki 

iV 

1-J 

where | Lt | is the cardinality of the vector L, and p is the edge 
expansion parameter of the network, which measures the overall 
robustness and reliability of the network. The resulting formula for 
accessibility, X{k), is 

X(k): 
(k^ 

\Cj 
1   otherwise 

where k = ^=lk] and C is, as before, the total number of information 
elements critical to the cluster. 



xxvi    Information Sharing Among Military Headquarters 

Benefits of Network Redundancy 
Network redundancy focuses on the reliability of the network; its 
ability to deliver information in the face of node loss; system outages; 
inefficient operating procedures; or some combination of all these 
elements. At the same time, a network can deliver excessive informa- 
tion, thus causing delays because of the time and resources required 
to process all of it. Consequently, network redundancy can be both a 
cost and a benefit of the network information flow. 

Needed information can be provided to a cluster from multiple 
sources. If the value of the information will change over time, we can 
expect multiple reports from each source. These multiple reports 
require combining in some way as previously discussed under col- 
laboration. Whatever method is used, the degree to which the reports 
contribute to estimates close to ground truth and to a narrowing of 
the distribution variance, a benefit will accrue to the cluster because 
of redundancy. Recall that the total number of required information 
elements across the whole network is TV; the number critical to a clus- 
ter is C, where C<N; and the number of these available within the 
cluster is n, where n<C. If we let the vector ® = [Ql>Q2,--,Qc] 
represent the aggregate value of reports received for each required 
information element (ava2,---,ac) from V = [px,p2,~;pcf sources, 
then we can construct a suitable normalised aggregate metric, -/?(©), 
as 

v   ' n 

where y, =1 if A -1 anc* 0 otherwise. We let ?}(©,) be the benefit 
accruing from obtaining reports on the value of information element 
at from />, sources where 0. =££,0,.,., and 6,; e [1,°°) measures the 
assessed reliability of the report on information element ai from 
source *,-. The parameter, 8,, reflects the relative importance of the 
information element, at. 

The combined benefit of information redundancy information 
to the cluster, based on the conditional dependency between accessi- 
bility and redundancy, is 
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s[R(0)l W1~ (ß-K)[ß-x(*)] 

where ß>l is a constant that ensures a nonzero denominator and 
K>0 is another constant that ensures that the combined metric is 
bounded between 0 and 1. 

Costs of Information Overload 
At the same time, a network can deliver excessive information. The 
more sources of required information and the more frequent the 
reporting, the longer it takes for the cluster to get a coherent view of 
the situation. That is, it takes time to process information, which may 
or may not contribute to improving the quality of the estimates. This 
excess is referred to as 'information overload'. In addition, some of 
the sources may provide disconfirming evidence. The value of the 
disconfirming evidence can be good or bad, depending on the degree 
to which it reflects ground truth. Disconfirming evidence requires 
time to evaluate and therefore may increase uncertainty and decrease 
the quality of the estimates. Finally, it is also possible that raw data 
may be processed before being sent, thus arriving at the cluster as 
time-stamped information with the time at which the processing 
ended. This possibility introduces an artificial latency that contributes 
to uncertainty. 

The supply of unneeded information to a cluster has an imme- 
diate negative impact, because it must be processed or, at a mini- 
mum, interferes with the receipt of needed information. However, as 
more unneeded information is supplied, its impact is reduced. Thus, 
a good function to model this behaviour is the exponential 
U(m) = '[-e~Vm, where m is the number of sources of unneeded infor- 
mation and v is a scaling parameter. 

The costs of information overload associated with needed 
information within a cluster are generally minimal for low levels of 
redundancy. Indeed, at these levels, the benefits far outweigh the 
costs, as discussed earlier. However, at some point, costs rise sharply 
so that the marginal cost of an additional source of information is 
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greater than the previous source. At some further point, this cost then 
levels off so that the marginal costs are minimal. This behaviour is 
best described using a logistics response function for each information 
element shared within the cluster. For simplicity, we express the 
combined costs of oversupply of needed information as a simple sum, 

where %,■ and (p, are shaping parameters. 
In considering the overall costs for the cluster, a balance is struck 

between costs of needed and unneeded information. We use a simple 
weighted linear sum of the two components of information overload, 
or 0[U(m),G(P)] = aU(m) + (l-a)G(l>), where 0<a<l, as a relative 
weight parameter. 

Redundancy-Based Plecticity 
The next step is to combine the costs and benefits of plecticity for a 
cluster associated with the mission at hand. For each cluster in the 
network, the measure of network plecticity, C(B,0), is calculated as 
follows: 

C(B,0)=B[R(G)\x(k)][l-0[U(m),G(T>)]]. 

Network Performance 

The last step is to combine the redundancy-based plecticity with the 
benefits of collaboration across all the clusters of the network. Our 
collaboration metric quantifies the effects of information sharing 
across a cluster on information completeness and accuracy, whereas 
plecticity measures the positive and negative effects of redundant 
information and the degree of information access. The former assesses 
the dynamic nature of the operation conducted on the network; the 
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latter measures the effects of the underlying network structure and is 
therefore systemic. All the dependencies among the several compo- 
nents of collaboration and plecticity are not generally well under- 
stood. However, we know that high-quality performance requires 
good cluster knowledge and the means to share it and that scores in 
either category are penalised by deficiencies in the other. Therefore, 
the measure of total network performance is taken to be 

ß(n,KAr)=if=1[c,(5,o)ir,K]<ö') 

where X^G), =1 and L is the number of clusters. 
For values of Q(I1,K^) close to 1.0, the network is performing 

well by producing the information required to take decisions within 
each of the clusters when required. However, this is not the whole 
story. The next step is to assess how well the combat mission is 
accomplished. As important as good decisions are, good combat out- 
comes are the ultimate measure of the value of network-centric opera- 
tions. An example application shows how these approaches can be 
combined. The mathematical approach is used to filter out preferred 
network and clustering assumptions, which are then tested in a 
simulation environment. This allows the development of both 
network-based Measures of Command and Control Effectiveness and 
higher-level Measures of Force Effectiveness. 
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Abbreviations and Glossary of Terms 

AABde 

Accuracy 

ACP 

AH Regt 

Armd Bde 

Armd Div 

Awareness 

Bias 

BSA 

C4ISR 

CEC 

CEP 

Cluster 

CMM 

CoA 

Air Assault Brigade 

The degree to which information agrees with 
ground truth 

Ammunition Control Point 

Attack Helicopter Regiment 

Armoured Brigade 

Armoured Division 

A realisation of the current situation 

Error in an estimate introduced by systematic 
distortions 

Brigade Supply Area 

command, control, communications, computers, 
intelligence, surveillance, and reconnaissance 

Cooperative Engagement Capability; a capability 
that combines data from all platforms in an 
operation and allows the combined data to 
produce a better shared CROP 

circular error probable 

A set of network nodes possessing full shared 
awareness 

Collaboration Metric Model 

course of action 
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Collaboration 

Complexity 

Conceptual space 

CROP 

DLM 

DSA 

Dstl 

FOB 

FSG 

Full shared 
awareness 

Information 
entropy 

Information 
superiority 

IPB 

Knowledge 

Logically 
connected nodes 

A process in which operational entities actively 
share information while working together towards 
a common goal 

The condition of having several interrelated parts 
in a network with several interrelated operational 
entities. Kolmogorov definition: The length of the 
shortest binary program needed to compute a 
string of data; the minimal description length 

The conceptual space of a commander is the space 
defined by the values of his critical information 
requirements 

common relevant operating picture; a view of the 
battlespace shared by all friendly forces 

dynamic linear model 

Divisional Supply Area 

Defence Science and Technology Laboratory 

Forward Operating Base 

Forward Support Group 

A set of network nodes that (1) share information, 
(2) agree on the same set of critical information 
elements, and (3) agree on the current values of 
the agreed critical information elements 

A measure of the average amount of information 
in a probability distribution (also referred to as 
Shannon entropy) 

The ability to collect, process, and disseminate 
information as needed; anticipate changes in the 
enemy's information needs; and deny the enemy 
the ability to do the same 

intelligence preparation of the battlefield 

Accumulated and processed information wherein 
conclusions are drawn from patterns 

Nodes with a communication path between them 
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MADM 

Measures 

Mech Bde 

Metrics 

MLRS Regt 

MSE 

Mutual 
information 

NAI 

PCPR 

Physically 
connected nodes 

Plecticity 

Precedence 
weighting 

Precision 

RPD 

SA 

SAW 

Shared awareness 

TAI 

multiple attribute decisionmaking 

Standards for comparison 

Mechanised Brigade 

Mathematical expressions that evaluate both the 
relative effect of alternatives and the degree to 
which one is better or worse than another 

Multiple-Launch Rocket System Regiment 

mean square error; a measure of the accuracy of an 
estimate. It is the sum of the bias and the 
precision of the estimate 

The amount of information gained about random 
variable X based on information gained about 
dependent variable Y 

named area of interest 

perceived combat power ratio 

Nodes with a communications link between them 

The ability of a connected set of actors to operate 
synergistically via the connectivity among them 

A multi-attribute decisionmaking method 

The degree to which multiple observations are 
close together 

Recognition Primed Decision 

situation awareness 

simple additive weights; a multi-attribute 
decisionmaking method 

The ability of a decisionmaking team to share 
realisations 

target area of interest 



CHAPTER ONE 

Introduction 

New information technologies introduced into military operations 
provide the impetus to explore alternative operating procedures and 
command structures. New concepts such as network-centric opera- 
tions and distributed and decentralised command and control have 
been suggested as technologically enabled replacements for platform- 
centric operations and centralised command and control. As attrac- 
tive as these innovations may seem, it is important that military plan- 
ners responsibly test these concepts before their adoption. To do this, 
models, simulations, exercises, and experiments are necessary. 

Objective 

The major objective of this work is to produce a method to assess the 
effects of information gathering and sharing across an information 
network on the quality of decisions taken by a group of local deci- 
sionmaking elements (parts of, or a complete, headquarters). The 
effect is measured in terms of the reduction in uncertainty about the 
information elements deemed critical to the decisions to be taken at 
these local decisionmaking elements. We are thus assuming that the 
set of information elements necessary to produce a local conceptual 
picture of the battlespace is known.' The issue here is the degree of 

1 Other experimentally based research work in the United Kingdom is considering what 
these factors are in different scenarios. 
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confidence with which they are known, as measured by the local deci- 
sionmaking element's level of knowledge. 

The term 'knowledge' has several meanings, and therefore it is 
important that, at the outset, we define what it means in the context 
of the decisionmaking processes described in this work. Formally, we 
define knowledge to be accumulated and processed information 
wherein conclusions are drawn from patterns. Information elements 
accumulated over time form patterns that can be matched to known 
patterns. The more reports confirming a given pattern, the less uncer- 
tainty remains and the more knowledge is gained. 

The Information Superiority Reference Model 

In terms of the categorisation developed by Alberts et al. (2001), we 
are representing the flow of information about the physical domain 
around the network in the information domain and its effect (in terms 
of knowledge, situation assessment, shared awareness, and decision- 
making) in the cognitive domain. These concepts are embodied in the 
information superiority reference model depicted in Figure 1.1. Infor- 
mation superiority is a term used to express the ability of one side in a 
conflict to impose its will over the other based on superior informa- 
tion collection, processing, and dissemination capabilities. Formally, 
we define information superiority to be the ability to collect, process, 
and disseminate information as needed; anticipate changes in the 
enemy's information needs; and deny the enemy the ability to do the 

same. 
Both sides in a conflict generally have different perceptions of a 

single reality, referred to as the situation. Figure 1.1 shows how the 
three domains contribute to this perception. We list the major activi- 
ties performed in each of the domains in each of the boxes. The 
physical domain is where reality, or ground truth, resides. In addition 
to physical objects, such as weapon systems, terrain features, and 
sensors, this domain also contains intangibles, such as enemy intent, 
plans, and current and projected activities. A complete assessment of 
the situation will contain estimates about each. 
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Figure 1.1 
The Information Superiority Reference Model 

Cognitive domain 

Situational awareness, shared situational awareness, collaboration, 
and decisionmaking 

Prior knowledge,                                   <;+,., lrtl lrpH jnfnrmatir>n rrROPl 
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Information d 
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Data collection, fusion to produce the CROP, dissemination of 
the CROP, and sensor tasking 

i 

Collected 
data 

Physical domain 1 

Sensor 
tasking 

Ground truth: entities, systems, intentions, plans, and physical 
activities 

RAND MG226-1.1 

In the information domain, data are extracted from the physical 
domain and processed to form structured information in the form of 
a common relevant operating picture (CROP). Three primary func- 
tions are performed in the information domain: collecting data 
through the use of sensors and sources, including tasking sensors, to 
close gaps in the data; processing the data through the fusion process 
to produce the CROP; and disseminating relevant parts of the CROP 
to friendly units. The last step contributes to the collaboration pro- 
cess in the cognitive domain in which the shared CROP is trans- 
formed into a shared awareness of the current arid future situation 
that can be used to gain understanding of threats and opportunities as 
well as the subsequent decisionmaking regarding an appropriate 
course of action. Our quantified assessment of the difference due to 
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local collaboration is a knowledge-based metric and hence resides in 

the cognitive domain.2 

Finally, the human activities associated with using the informa- 
tion available to form an estimate of the situation are accomplished in 
the cognitive domain. To the extent that decisionmaking teams exist, 
they collaborate to form a level of situational awareness. In addition 
to the CROP produced in the information domain, individual team 
members and the decisionmaker may have prior information from 
processes like the intelligence preparation of the battlefield (IPB) 
available to support their deliberations. Finally, the decisionmaker is 
likely to have concerns and expectations about the performance of his 
own forces, as well as the enemy's, that would colour his assessment 
of the situation and therefore his decision. These elements are de- 
picted in Figure 1.1 as emanating directly from the physical domain. 

This report documents the mathematical constructs and metrics 
used to assess the effectiveness of the various operating schemes and 
command arrangements. 

Research Approach 

The basis of our approach is to bring together two sets of ideas, which 
have been developed thus far from rather different perspectives. The 
first of these comes from the work performed as part of a project on 
command and control in operational analysis models within the UK 
Ministry of Defence Corporate Research Programme. The pro- 
gramme aims to provide the Ministry of Defence with the ability to 
carry out fundamental research not tied to particular procurement 
programmes. In this case, it has led to the development of the Rapid 
Planning Process (Moffat, 2002) as a construct for representation of 
the decisionmaking of military commanders working within stressful 
and fast-changing circumstances. The process is now well accepted 
and  has  been  included  in  a  number  of key  command  and 

2 Collaboration in this context is taken to be a process in which operational entities actively 
share information while working together towards a common goal. 
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control-centred simulation models developed or under development 
by the UK Defence Science and Technology Laboratory (Dstl). Such 
a representation approximates to the 'simple decisionmaking' of 
Alberts et al. (2001) in which the information elements and the crite- 
ria for decision are known and a satisficing strategy is adopted. 

The second set of ideas comes from the work on modelling the 
effects of network-centric warfare, carried out recently by the RAND 
Corporation for the US Navy (Perry et al., 2002). In this work, the 
effects of collaboration across alternative information network struc- 
tures in prosecuting a time-critical task can be assessed using a spread- 
sheet model. The benefits and costs of local collaboration are quanti- 
fied using a relationship based on information entropy as a measure 
of local network knowledge. The effects of network complexity and 
the completeness of the information collected are also reflected in the 
overall assessment of the quality of the information made available to 
the decisionmakers. 

To merge these two ideas, we examine the decisionmaking pro- 
cess among networked headquarters. We postulate that improved 
decisions are contingent on increased knowledge and, therefore, on 
diminished uncertainty. The pattern-matching features of the Klein 
Recognition Primed Decision (RPD) model (Klein, 1989) are used to 
match current estimates of critical information elements to the deci- 
sionmaker's set of typical situations or internalised patterns. A match 
is made when the current estimates lie within the comfort zone of one 
of the typical situations. 

There are several analytic techniques available that are able to 
match estimates of values of multiple information elements to sets of 
typical situations—variously referred to as pattern-matching tech- 
niques or classification processes. In this work, we rely on the 
matching algorithms within the Rapid Planning Process mentioned 
earlier and discussed in detail in Appendix A. The decision to be 
taken in this case is the selection of an appropriate course of action 
based on the closeness of the current critical information element 
estimates to one of the typical situations. 

Since, in a military operation, a rapid decision is usually desir- 
able, the focus now centres on the means used to collect information 
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about the uncertain critical information elements, the ease with 
which this information is shared among participants in the operation, 
the quality of the resulting processed information, and its effect on 
knowledge. The methodology then turns to examining the structure 
of the decision networks and the quality and quantity of the collabo- 
ration exercised on it, and how both contribute to overall knowledge 
and, by extension, better decisions. 

Organisation of This Report 

In the next chapter, we set forth the framework for thinking about 
decisionmaking in a network. In Chapter Three, we address the un- 
certainties associated with information elements needed to support 
decisions, and suggest statistical representations that include a knowl- 
edge metric. Chapter Four examines the effects of collaboration on 
network performance. In Chapter Five, we explore the effects of 
network complexity on network performance and combine collabora- 
tion and network complexity to achieve a single metric that measures 
the performance of networked clusters of decision nodes. 

In addition, we include three appendixes. Appendix A describes 
the Rapid Planning Process, and Appendix B discusses information 
entropy used in the development of the knowledge metric. Finally, 
Appendix C describes an application of the measures and metrics dis- 
cussed in the text to the logistics command and control problem dis- 
cussed in Chapter Two. Appendix C also discusses how the Measures 
of Command and Control Effectiveness, examined in the main body 
of this report, may be combined with combat models to assess the 
effects of increased knowledge on force effectiveness. 



CHAPTER TWO 

Decisions in a Network 

Western militaries are formulating new visions, strategies, and con- 
cepts that rely on acute situational awareness, the transformation of 
information into knowledge, and rapid, secure means of sharing 
knowledge. They seem to be placing great reliance on networked 
forces that are fully integrated with joint, national, and coalition or 
allied systems. To achieve these goals, militaries must create and lev- 
erage information superiority. It is foreseen that, under some circum- 
stances, a mix of command and control capabilities would be inte- 
grated with weapon systems and forces on an end-to-end basis 
through a network-centric information environment to achieve sig- 
nificant improvements in awareness, shared awareness, and collabora- 
tion (Alberts et al., 2001; Alberts et al., 2002). 

The ultimate effect, however, is on the quality of the decision- 
making process and the decision itself. These decisions ultimately 
lead to actions that change the battlespace. In this report, we are thus 
concerned with the quality of these decisions, i.e., the planned out- 
come, rather than the effect in the physical domain. It is almost an 
article of faith that a richly connected network of decision nodes will 
perform better by improving the quality of decisions. However, we 
need to quantify this benefit as well as consider and quantify the 
downside of such information sharing (such as the effect of informa- 
tion overload and the problems associated with resolving discon- 
firming evidence). 
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The Decision Model 

For this work, we assume that the decisions taken by the various deci- 
sion elements in the headquarters network are selections of courses of 
action (CoAs) in response to the perceived situations. The CoAs pre- 
scribe actions to be taken in the event that the situation in the battle- 
space deviates from what is expected. Ideally, a mutually exclusive 
and collectively exhaustive set of CoAs is known to the decision- 
makers, and all they need do is collect information that informs the 
perceived situation. In general, this is only partially true: CoAs can 
also be developed in response to unfolding events—events that may 
not have been perceived a priori. However, it is a reasonable assump- 
tion when representing expert decisionmakers in stressful and time- 
critical circumstances. 

This approach is consistent with the naturalistic decisionmaking 
paradigm of the RPD model, introduced by Gary Klein (1989). Klein 
argues that experienced decisionmakers store up a set of typical situa- 
tions and responses over time. They search the environment for clues, 
cues, and expectancies that might clarify the situation. Once the 
situation is perceived to match one of their stored situations, the deci- 
sionmakers are then able to respond accordingly by selecting what 
they feel is an appropriate course of action—generally something that 
has worked in the past. However, if the situation is not clarified, they 
seek additional information or examine the situation to determine 
causes for the lack of clarity. This assessment could lead to the modi- 
fication of a typical situation and response or to the creation of a 
whole new stored experience. The latter behaviour results in the crea- 
tion of new CoAs. 

Matching the current situation to one of the decisionmaker's 
stored situations is clearly a subjective process. Each decisionmaker 
assesses the current values of what are considered to be critical infor- 
mation elements and decides whether the values are 'close enough' to 
one of the stored situations. The choice of a 'good enough' stored 
situation defines what we refer to as the decisionmaker's comfort zone. 
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Figure 2.1 illustrates what is going on.1 In this case, the commander's 
conceptual space is described in terms of two critical information 
elements, ax and a2. The ground-truth values of these information 
elements are not known with certainty and therefore are considered 
to be random variables with known densities. The ellipses in the dia- 
gram represent the decisionmaker's comfort zones for each of the 
stored situations. The centre of each is the desired value set, and the 
major and minor axes represent acceptable deviations from this 
desired set. Both the centre and the axis lengths in each direction are 
fixed. The centre of the shaded ellipse represents the current estimates 
for ax and a2, and the axes represent the uncertainty in the estimate 
based on the covariance between the two. 

Figure 2.1 
Decisionmaker's Conceptual Space and Stored Situations 

Stored situations 

>ai 

NOTE: Adapted from Moffat (2002), p. 45. 
RAND MG226-2.1 

1 See Moffat (2002) for a more complete discussion. 
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In the diagram, we depict four stored situations, each with its 
degree of acceptable uncertainty depicted by the size of its ellipse. 
The shaded ellipse is the current estimate, and its size represents the 
uncertainty in the estimate. In this case, although the estimate is clos- 
est to situation Sl, it does not fall completely in the comfort zone. 
The issue then is to discern how close the shape must be to declare a 
match. In practise, this is a subjective process dependent in part on 
the decisionmaker's attitude to risk. 

Estimators 

Through observations of the battlespace, sensors and other informa- 
tion sources generate estimates for the information elements deemed 
critical to the decision. As we discuss in the next chapter, the uncer- 
tainty associated with the information elements is expressed in terms 
of probability distributions, the means of which are estimates of the 
ground-truth values. The quality of the estimates is therefore of con- 
cern to us as we assess the contribution of networking to the quality 
of the decisions taken. The mean of a probability distribution being a 
parameter of the distribution, we turn naturally to parameter estima- 
tion theory to assess the quality of the information available to the 
decisionmaker, and we examine how the quality of the estimates con- 
tribute to knowledge. Mathematical constructs from estimation 
theory exist for the quality of estimates such as accuracy, bias, pre- 
cision, sufficiency, efficiency, and consistency. We discuss some of 
these terms more fully in Chapter Four. 

A Networked Decision Model 

Figure 2.2 depicts a simple network of decisionmaking nodes that are 
connected to each other to form a decision network. In Alberts 
(2001), the point is made that such a node-based network should 
represent actors, decisionmakers (or knowledgeable entities), and sen- 
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Figure 2.2 
Network of Decisionmaking Elements 

Resident information source 

RAND MB226-2.2 

sots (in the most general sense of information gatherers). We put the 
focus here on information gathering and decisionmaking. Each node 
thus represents either a 'local decisionmaker'—i.e., a local com- 
mander who needs to make decisions, or an information source—i.e., 
a collection facility such as a sensor, a processing facility such as a 
fusion centre, or a source of information about future plans. Deci- 
sions are made based on the information available to them either 
locally, from collection assets and information processing facilities 
elsewhere in the network, or from other local decisionmakers with 
whom they are connected. The connectivity depicted is logical and 
not necessarily physical. The structure of this network (the local 
commanders represented and how they link up across a network) will 
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be determined by the way we choose to organise the system and 
develop a plan. 

Information is thus available from three sources: other decision 
nodes, external information sources, and information resident at the 
decision node.2 In this depiction, we are concerned solely with such 
information flows. 

Clusters 
In Figure 2.2, some of the decision nodes are linked together to form a 
cluster that allows for local sharing of information. The term 'cluster', 
as used here, refers to a set of network decision nodes that (1) share 
information, (2) agree on a common set of critical information ele- 
ments, and (3) agree on the current value of the agreed critical infor- 
mation elements and degree of uncertainty associated with the cur- 
rent values. The term 'local' refers to proximity in terms of logical 
connectivity. It does not necessarily imply physical nearness. In addi- 
tion, we assume that each of these clusters supports distributed 
decisionmaking over time. Hence, we consider the process to be 
dynamical. 

Clusters of decision nodes have the following properties: 

• Only decision nodes can be members of a cluster. 
• A cluster forms a complete graph. All decision nodes communi- 

cate with each other, thus producing n(n-\) connections, but 
these connections are not necessarily physical. 

• All decision nodes in a cluster are self-aware. Each decision node 
is aware of its own status and is able to inform others in the clus- 
ter. 

• A cluster could consist of a single decision node, a number of 
nodes, or perhaps even all decision nodes in the network. 

• Clusters may or may not communicate with each other. 

2 Resident information is sometimes referred to as 'organic information'. This expression is 
the preferred term in the Office of Force Transformation's network-centric operations 
framework (Office of Force Transformation, Network-Centric Operations Conceptual 
Framework, Version 1.0, 12 April 2004; available at www.oft.osd.mil). 
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• A decision network consists of the union of clusters. The total 
network consists of the decision network and all supporting 
nondecision nodes. 

For example, in Figure 2.2 decision nodes 1 and 2 share infor- 
mation and therefore form a cluster. Decision nodes 3, 4, and 5 also 
share information and therefore form another cluster. Note that 
although decision nodes 2 and 3 may share information with each 
other, neither shares information with the other decision nodes in the 
other's cluster. In the academic literature, 'small world networks' have 
taken an approach similar to this in which highly clustered sets of 
nodes are linked by longer-range 'shortcuts'. These types of links lead 
to desirable network properties such as a high clustering coefficient (a 
measure of how well the network is linked locally) and a low average 
path length (a measure of the mean number of links between two 
randomly chosen nodes).3 

Partitioning 

We mentioned earlier that our goal is to assess the degree to which 
networked headquarters increase (or decrease) the knowledge avail- 
able to the decisionmakers and at what cost. We stop short of actually 
taking the decision but rather measure success on the premise that 
more knowledge improves decisionmaking. 

One way to affect network knowledge may be to rearrange or 
partition the network clusters. In Figure 2.2, for example, there are 
several possible partitions, ranging from five separate independent 
clusters of a single decision node each to one cluster consisting of all 
five decision nodes.4 The question therefore is how best to partition 
the network to improve knowledge at an acceptable cost. 

3 See Watts (1999) and Albert and Barabasi (2002). 

For a three-decision node network, the number of partitions is five; for a four-decision 
node network, it increases to 15; and for the five-decision node network, depicted in Figure 
2.2, the number of possible partitions is 49. The number of partitions for n nodes is 
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Requirements for a Model of the Process 
We now take up the requirements for the general model in more 
detail. There are many ways in which networks can be evaluated, 
using a variety of methods such as petri nets, Bayesian networks, or 
Neural Nets. The approach chosen depends on the particular charac- 
teristics of the network and the metrics that have analytic value. Fol- 
lowing the ideas of Claude Shannon, we use information entropy as a 
key construct in developing metrics—since we wish to focus on 
information—and how it is converted into knowledge. We also use 
estimation theory to assess the quality of the estimates of the critical 
information elements needed to take decisions. In addition, we wish 
to capture the network dynamics of local information sharing, clus- 
tering in the form defined above, local collaboration, and the costs 
associated with complex network structures, since these capture core 
aspects of potential future headquarters structures. It is for these rea- 
sons that we have adopted the method presented here. 

Consider one of these clusters, i. Suppose a local decisionmaker 
within cluster /' must take a critical decision at time t. Estimates of the 
information required for the cluster to render a decision is accumu- 
lated over time so that if 

^(t)=[^{t)^2(t),--,xiiC(t)] 

represents the current estimated values for the C cluster-agreed critical 
information elements {av ,ac} needed at time t, the historical 
matrix of values for the estimates of the critical information elements 
is represented by the txC matrix: 

[x#x.(2)>"^W]=M>)L= 

M1) x-Al)    -   X-Äl) 
*;.i(2)    *w(2)        -       xijc(2) 

where S(n,k) (also known as the Stirling number) is the number of partitions of» nodes into 
k nonempty sets and S(n,k) = S(n-l,k-l)+kS(n-l,k) (Jackson and Thoro, 1989). 
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Each element in the matrix represents the perceived value (estimates) 
of the critical information element, ak, at timey for cluster i. 

We wish to represent the local decisionmaking process within 
cluster /, using ideas based on the Rapid Planning Process. We thus 
represent the local conceptual space of the decisionmakers within 
cluster /' by a space spanned by a small number, C, of information 
elements that are the key concerns of the decisionmakers within the 
cluster, as depicted for C = 2 in Figure 2.1. 

Framing 

For the entire network, we assume there is a maximum of N of these 
critical information elements, ak, and therefore A = {ax, ,aN] is 
the global set of critical information elements that we shall refer to as 
the superset of critical information elements. Each of the critical infor- 
mation elements, ak, is perceived to have the value xiik(j) at time step 
j within cluster i. 

Suppose N = 4, so that the complete information set is 
A = {ax,a2,a3,a4}. For each cluster, the local conceptual picture will be 
'framed' by selecting a subset of A. For example, the local conceptual 
space of a cluster might be framed by the set of elements A! ={ava2}. 
The space of a second cluster might be framed by the set 
A2 ={a2,ai,a4}. Then, given that the two clusters collaborate, the 
local collaboration between them results in a shared conceptual space 
that is framed by the elements 

Aj uA2 =|ä],ä2|U|ä2,ä3,ä4| = |ä1,ä2)ä3,ä4| = A12.
5 

Shared Awareness and Clustering 

A cluster of decision nodes as defined earlier corresponds to a form of 
shared awareness if the information shared among the cluster nodes is 
available and internalised at each decision node in the cluster. By 
'shared awareness', we mean the ability of the decision nodes in the 

5 In this simple example, we have that A, 2 = A; however, this is not always true. 
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cluster to share realisations about the critical information elements. 
We further state that the nodes of a cluster possess full shared aware- 
ness if, in addition to sharing the same set of critical information ele- 
ments, they further agree on the values each of these should take at a 
given time.6 

These perceived values, xik(j), of the critical information ele- 
ments form the input data to cluster i at time step; as described in 
Appendix A (The Rapid Planning Process) at stage 1 (observation 
analysis and parameter estimation). Within cluster /', we assume there 
are a shared number of fixed patterns or stored situations in the 
shared local conceptual space that are the areas of the space about 
which decisionmakers within the cluster are particularly concerned. 
These are represented by multivariate normal probability distribu- 
tions in the conceptual space in the basic approach, as described in 
Appendix A. However, when a multivariate normal representation is 
not appropriate, more general methods must be applied, as will be 
discussed later. In either case, these fixed patterns are assumed to be 
directly linked to one of a small set of key courses of action (or mis- 
sions) from which the local decisionmakers within the cluster can 

choose. 

A Simple Logistics Example 

Sustainment of deployed forces is one of the more difficult logistics 
tasks. In this simple model, we do not claim to have examined all the 
problems associated with supplying the force. In fact, we explore a 
single decision: allocating supplies to competing friendly units. This 
would be part of a sustainment plan, and our task is to examine how 
various decisionmakers contribute to the plan across a simple network 
of information sharing. 

Figure 2.3 depicts the structure of a push (a) and pull (b) system 
for logistics resupply from a holding point to two local commanders. 

6 This relates to the models of situational awareness such as those discussed in Endsley 
(1995) and Feltham, Sheppard, and Cooper Chapman (2003). 
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The allocation decision is made by the master in Figure 2.3a and the 
arbiter in Figure 2.3b. 

In Figure 2.3a, the master node decides which local commander 
has priority, and therefore there is no benefit to be gained from the 
two demand nodes collaborating. As a result, the demand nodes 
(local commanders) are considered sources of information about their 
own stock levels so that the critical information set required by the 
master is A = {a1,a2}, where the numerical subscripts refer to the sup- 
ply levels at the two demand points. Consequently, the network con- 
sists of the decision node 'cluster' and the two demand nodes. Infor- 
mation about global stock levels is only available at the master node. 

In Figure 2.3b, the arbiter responds to the demands from the 
local commanders. All three nodes in this case are decision nodes and 
require the same information to make their decisions—the local sup- 
ply levels A = {a1,a2}, as in the master case. The local commanders 
place demands on the arbiter based on their anticipated requirements, 
and the arbiter allocates stocks based on knowledge of global supplies 

Figure 2.3 
Networked Sustainment Decisions 

B. Pull sustainment 

A. Push sustainment 

s 

Demand nodes 

RAND MC226-2.3 
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and anticipated fixture needs at both demand nodes. The knowledge 
of global stock levels is based on shared information from the 
demanding nodes and the stock levels available to the arbiter. In this 
case, we can consider the benefit of the local commanders collabo- 
rating in order to ensure that their demands are placed by taking 
account of global knowledge about stock levels. The network there- 
fore consists of a single cluster that comprises the three decision 
nodes, as depicted in the diagram.7 

In the push case, no other partitions are possible because there is 
only one decision node. In the pull case, however, it is possible to 
consider the arbiter and one of the headquarters nodes in a single 
collaborating cluster and the other a single decision node cluster. 
Operationally, we would expect the arbiter, in this case, to give pri- 
ority to the connected headquarters, with the residual supply going to 
the single-node cluster. It is not possible, however, to partition the 
two headquarters as a single cluster with the arbiter as a single deci- 
sion node cluster because it would violate the operational concept. 
For this example, we consider the single cluster in each case. 

Each cluster supports local decisionmaking within the cluster. 
We can enrich the representation by adding an information node that 
supplies more detail on the operational plan, the synchronisation 
matrix of the forces, and the resultant likely pattern of demand for 
stocks. We focus here on the demand for fuel supplies to make the 
example more concrete. In Chapter Four, we will discuss the implica- 
tions of these two modes of supply in terms of information sharing 
through collaboration and network knowledge. Later, we will address 
the costs of achieving this level of knowledge as well. 

7 All three agree that the local and global stock levels are the critical information elements, 
they all share information about the value of these critical information elements, and they all 
agree on these values. 



CHAPTER THREE 

Representing Uncertainty 

The decisions within each of the clusters must be taken, in most 
cases, without full knowledge of the values of the critical information 
elements needed to support the decisions. The degree of uncertainty 
depends on the information collection assets devoted to the cluster's 
critical elements of information and the extent to which collaboration 
among the cluster decision nodes is facilitated. Information entropy is 
a reasonable estimate of the uncertainty, and consequently we use a 
probabilistic entropy model to represent the uncertainty associated 
with the critical information elements needed within the cluster. The 
reports on the values of the critical information elements are treated 
as estimates of the means of the distributions describing their uncer- 
tainty, and therefore the quality of the estimates is assessed using 
concepts from estimation theory. 

Decisions 

The decisions taken within each of the clusters depend on the sce- 
nario represented. In Figure 2.3, we depicted a simple logistics exam- 
ple in which the decision is the quantity of supply to allocate to each 
demanding unit. In general, we focus on operational and tactical 
decisions made at the division/brigade, ship group, or equivalent level 
and below. The decision taken within the cluster depends on the cur- 
rent estimated values of the critical information elements. 

19 
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The dependency among the critical information elements is 
modelled using the Rapid Planning Process, provided that uncer- 
tainty can be expressed in the form of normal distributions. The 
Rapid Planning Process is a set of algorithms that together represent 
local command decisionmaking at each of the decision nodes (Mof- 
fat, 2002). The process requires that the commander's local 'concep- 
tual space' be spanned by a small number of critical information ele- 
ments. These elements are a subset of the total set, {ax, ,aN), of 
information elements considered across the network. In the basic 
formulation, a dynamic linear model (DLM; see Appendix A) is then 
used to represent the decisionmaker's estimates of the values of these 
factors over time. Ideally, through this process, additional informa- 
tion from collection assets or from collaborating elements in the net- 
work serves to reduce uncertainty and therefore increase understand- 

ing. 

A Multivariate Normal Model 

We begin first with a simple case in which we assume that the uncer- 
tainty in these critical information elements is represented by a multi- 
variate normal distribution, and we are considering all the informa- 
tion elements A = {al,—,ac} shared across a cluster.1 Their values are 
represented by the random vector X = [x1,x2,---,xc] . In this case, the 
DLM can be used to make a local assessment of the overall uncer- 
tainty of the vector of critical information elements within the cluster. 
The uncertainty in the vector is represented as the multivariate nor- 

mal distribution 

/(*) = 
#<M 

-Ifx-jifr'pc-ii] 
■e' 

1 We will deal later with the more general case in which this assumption need not'hold. 
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where (l = [u.j,(a.2,---,{xc] is the mean and 

of ^1,2       • 
• ■    Y 

£2,1 °l        • ''     ^2,C 

J^C,\ "   <£_ 

is the covariance matrix. The ofF-diagonal elements are the covariance 
values between the random variables x,and XJ, calculated as 
ZitJ = E(x, -\iMxj -\Lj), The value 

Pi.j- 
G;G. 

is the correlation between the random variables, x, and Xj. When 
i = j, then Z,,; is just the variance G) depicted along the diagonal in 
the covariance matrix. The entropy of the distribution (as we will dis- 
cuss in more detail later) can be easily calculated from the covariance 
matrix and is then used as the basis for a quantifiable metric of the 
knowledge available to the cluster. With improved knowledge, we can 
refine the estimates of the critical information elements to more 
closely reflect ground truth. 

Knowledge from Entropy 

Decisions taken within a cluster depend on the degree to which the 
local decisionmakers know the true values for each of the critical 
information elements. /(X) represents the level of uncertainty associ- 
ated with the values of the critical information elements. It therefore 
forms the basis for measuring the level of knowledge. To quantify the 
level of knowledge, we apply the concept of information entropy, 
borrowed from information theory. 

Information entropy, sometimes referred to as Shannon entropy, 
measures the amount of information in a probability distribution 
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(Shannon, 1948). Shannon entropy for a probability density func- 
tion, /(X), is defined to be the expected value of the negative loga- 
rithm of /(X), or 

#(X) = i?[-log/(X)] = -J J- J f(X)logf(X)dxc-dx2axv 
X\ XI        XQ 

If, as in this case, /(X) is continuous, H(X) is referred to as differen- 
tial entropy? 

For the multivariate normal distribution, the differential entropy 
is calculated to be 

//(X) = Ilog(27t)CH+| = ilo{(27t,)C|4 (3.1) 

where |E| is the modulus of the determinant of the covariance matrix 
E and C < N is the number of information elements critical to the 
cluster. 

In this work, we are interested in relative entropy, and therefore 
noting that H(X) varies solely with the covariance (since C is held 
constant), we simplify equation (3.1) to //r(X) = log|Z|. Hr(X) is 
then a local measure of the (relative) information entropy. From now 
on, we will drop the subscript r. 

Knowledge 
Knowledge derived from entropy is a quantity, 0<AT(X)<1, that 
reflects the degree to which the local decisionmakers within a cluster 
know the true values of the information elements, {av---,ac}, and 
their interaction. For K(X) -> 1, knowledge is considered to be good, 
and for K(X) —> 0, it is considered to be poor. 

For the multivariate normal distribution, A'(X) is calculated as 
follows. We first assume the existence of a maximum joint entropy, 

Hm4x)=H\j\m3x. 

2 See Appendix B for a more detailed discussion of information entropy. 
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Physically, this can be interpreted to be the maximum uncertainty in 
the probability distribution, /(X). If, for example, the information 
elements consist of the x- and y-coordinates associated with the loca- 
tion of an enemy unit, the maximum entropy might be associated 
with search area. Search areas are derivative of 'named areas of inter- 
est' (NAIs) or 'target areas of interest' (TAIs). If, through the IPB 
process, we are able to describe a circular area in an NAI or TAI 
within which we are virtually certain the enemy unit is located, we 
can then relate this information through a circular error probable 
(CEP) to the variance of the location in the x- and y-directions.3 

If the maximum entropy is taken to be log|Z|max, then the 
residual entropy at any given time is log|Z|max -H(X). A formulation 
for K(X) therefore ensures that a value confined to the interval [0,1] 
is 

,  , -fioglsl    -H(X)\ 
K(X)=l-e [ S| lmax    [ n 

-.ja 
I    In 

When the modulus of the determinant of the covariance is close to its 
maximum, knowledge is at a minimum, whereas for small values of 
the covariance determinant, knowledge is greatest.4 

The Effects of Knowledge 
As a basis for our consideration of the effects of knowledge, we use 
the domain structure depicted in Figure 1.1. We are principally con- 
cerned with the information and cognitive domains. Information 
derived from sensors or other information gathering resides in the 
information domain. It is then transformed into awareness and 
knowledge in the cognitive domain and forms the basis of decision- 

3 For unit location, if we assume that a,=o,=G and that av = <3F = 0, then the CEP is 
related to the common variance as follows: a = CEP 11.1774. CEP in this formula is the radius 
of the maximum search area. See Burington and May (1958). 
4 See Perry et al. (2002). 



24    Information Sharing Among Military Headquarters 

making. Our metrics quantify this process through the use of infor- 
mation entropy and the derivative knowledge measures. Information 
sharing among nodes ideally tends to lower information entropy (and 
hence increases knowledge) because of the reduction in variance and 
the buildup of correlations among the critical information elements. 

One of the key aspects of increased knowledge (and, corre- 
spondingly, reduced entropy) is thus an increased understanding of 
the correlations between variables. This means information can be 
gained about one critical information element (e.g., missile type) 
from another (e.g., missile speed). Such cross coupling is a key aspect 
for consideration as we extend our analysis from normal to more arbi- 
trary probability distributions. 

More General Models 

The multivariate normal assumption is likely to be restrictive for 
some applications. The example above in which it was used to repre- 
sent the location of a target is perhaps the best-known military appli- 
cation. A more general model for a cluster recognises that the uncer- 
tainty associated with each of the critical information elements is 
likely to be represented by unique probability distributions and that 
their joint distribution is either unknown or can be discerned only 
through a laborious combinatorial process. 

For example, suppose we wish to model a US carrier battle 
group executing a cruise missile defence mission with its attached 
Aegis cruisers.5 Our cluster in this case might consist of the deci- 
sionmakers on board each of the Aegis cruisers taking part in the 
mission—assuming that all commanders in the cluster are able to 

5 This is a very real problem examined extensively by the Royal Navy and the US Navy. In 
the United States, the Cooperative Engagement Capability (CEC) is being developed in 
response to the challenges of littoral warfare, the shrinking size of US and Allied navies, and 
improvements to adversary capabilities. CEC is an approach to air defence that allows com- 
bat systems to rapidly share unfiltered sensor measurement data and track data to enable a 
carrier battle group to operate collectively. See 'The Cooperative Engagement Capability' 
(1995). 
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share information with each other. The decision to be taken is when 
and where to engage an incoming enemy cruise missile.6 We further 
assume that each weapon system (standard missiles on board the 
Aegis cruisers) requires the same information—the location of the 
target (latitude and longitude), its altitude and speed, its direction, 
and its type—so as to have a critical information set that is uniform 
among all decision nodes in the cluster:7 

A = {location,altitude,speed,direction,missile typeJ = {&1,a2,a3,a4,ai}. 

These are the information elements shared among the cluster, leading 
to full shared awareness within the cluster. The location of the missile 
has two components—latitude and longitude—and therefore we have 
ai =[a\,x>a\,y]- The uncertainty of these components is taken to be bi- 
variate normal as developed earlier. As tempting as it is to include 
altitude in location and model uncertainty in three dimensions, we 
recognise that altitude is bounded from below and therefore its uncer- 
tainty is better described using a density such as the lognormal or the 
gamma.8 This situation is also true of speed. Direction, however, is 
circular and therefore bounded between 0 and 27C. If normalised on 
[0,1], the uncertainty here can be represented by a beta density. Mis- 
sile type is nominal, and therefore its distribution is empirical. 

Although more realistic, this representation is clearly more 
problematic. Added to the complexity is the fact that not all the 
information elements are independent, and therefore their joint dis- 
tribution is not likely to be multiplicative. For example, the speed of 
a missile is, in some part, a function of its type—as is its altitude. Its 

6 We omit a discussion of shooting policy, centralised versus decentralised command and 
control, and the participation of ground defence units. These are all interesting aspects of the 
problem and their examination in a network-centric environment will lead to the assessment 
of several alternative network structures and command and control arrangements—what our 
models are ultimately designed to accomplish. 
7 In this case, direction refers to the bearing of the incoming missile and not its inclination. 
8 Actually, it is likely bounded from above as well, and therefore one might argue for a beta 
distribution. In either case, a normal distribution is not appropriate. 
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location and direction at any point in time, however (ignoring its 
trajectory history), need not be. 

Two problems arise from this more general representation: (1) 
describing the joint probability distribution, /(A), needed to account 
for the dependencies within the critical information elements, and (2) 
combining the knowledge functions for each of the marginal distribu- 
tions to create an overall measure of local knowledge. We discuss two 
methods for dealing with these issues: multi-attribute assessment and 

mutual information. 

Multi-Attribute Assessment 

The simplest (but perhaps not the most accurate) way to deal with 
the problem of combining the knowledge functions associated with 
multiple distributions is to create a weighted sum that represents the 
current level of knowledge of the combined critical information ele- 
ments. Weights generally imply some notion of relative importance. 
Although indeed desirable, weights are not enough in all cases. What 
is needed is some way to represent the inherent dependencies among 
the information elements. Regardless of how well we are able to 
achieve this goal, a weighted sum is inherently flawed because of the 
fact that knowledge need not be additive. Nevertheless, as a means of 
comparison, the methodology has value. 

The objective of multi-attribute assessment is to derive a single 
knowledge value that describes the joint level of knowledge about the 
critical information elements within a cluster and, ultimately, 
throughout the network. In the multivariate normal case, described 
earlier, this value is just the knowledge function derived from the dis- 
tribution's information entropy. By deriving this single value, we 
model the assessment of a decisionmaker within the cluster, of the 
current estimates of the critical information based on information he 
has received, and his level of knowledge derived from these estimates. 
This, in turn, can be used to select a course of action (take a deci- 

sion). 
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The two methods discussed here derive from multiple attribute 
decisionmaking (MADM) theory; in particular, the MADM tech- 
niques in which the decisionmaker is supplied with the value of dif- 
ferent sub-attributes that contribute to an overall value. Generally, 
MADM methods are used when a decision must be made between 
two or more alternatives based on multiple attributes that have 
incommensurable units—for example, speed and direction. The 
choice of one technique over another depends on the nature of the 
attributes being combined and their relation to one another. Here we 
discuss two methods: simple additive weights (SAW) and weighted 
product.9 In both methods, we use the terms 'system' and 'system 
instantiation' to refer to the combat situation at the time estimates of 
the critical information elements are to be assessed. 

Simple Additive Weights Method 
The SAW method (Fishburn, 1967) is perhaps the simplest method 
of aggregation and is a relatively old technique. It is cited in Article I, 
Section 2, of the US Constitution as a method to determine the 
degree of a state's representation in the Union.10 It is generally used 
when the attributes are independent of each other. For a case in 
which there are C attributes shared across the cluster, we get 

K(A)=Lf=1co,y(*,.), 

where V(A) is the value of the system instantiation with critical 
information elements, ar The term GO,, (5^=1(0,=1) is the weight 
(importance) of information element at, and V{at) is its value 
(knowledge function in this case) for the instantiation being consid- 
ered. Unfortunately, the likelihood that all information elements 
shared across the cluster are independent is very small, so this tech- 
nique is not widely applicable except where the weights can be made 
to account for the dependencies in some way. 

' For a complete discussion of several more methods, see Perry et al. (2002). 
10 See Yoon and Hwang (1995, p. 32). 
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Weighted Product Method 
The weighted product method (Bridgman, 1922) is similar to the 
SAW technique, except in this case the values of the different attrib- 
utes are multiplied. The general form of this method is 

where V(A), at, and to,- are as above. 
Although V(A) might be used directly as a measure of combined 

system value, it is often the case that its value in relation to a positive 
ideal is used instead, so we obtain 

WA  =—Mr, v '  V(A) 

where A* is the positive ideal that may or may not be achievable.11 

A similar approach is the Keeney-Raiffa multi-attribute utility 
method (de Neufville, 1990). In this method, the aggregation evalua- 

tion takes the form 

where Q is a normalising factor used to ensure consistency between 
the definition of V(A) and the Vial's. The value of Q. is given by 

ß+l = nf=1[ßco, + l]. 

This technique is advantageous because it allows for the consid- 
eration of possible interactions between the attributes—something 
clearly desirable if we wish to account for dependencies. For example, 

11 The positive ideal case, also sometimes referred to as the most favourable case, is the 
instantiation with the highest overall value. The positive ideal case is selected from the 
existing instantiations, a combination of the existing instantiations or using the maximum 
possible value for each attribute. 
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if C = 2, and {ava2} is the set of information elements shared across 
the cluster, we get 

V(A) = tOj V(al) + co2 V(a2) + ß cot co2 V(a1) V(a2), 

with Q. = (1 - cOj - to2 )/(co1 co2). 

Precedence Weighting 
Precedence weighting provides a method to get at the dependencies 
among the information elements. The weights are computed based 
on these dependencies. The relative importance of the information 
elements is assessed singly or in combination. For example, suppose 
we have decided that the information elements, shared across our 
CEC cluster, required to accurately engage an attacking cruise missile 
in our example are location, speed, direction, and missile type. Recall 
that the decision to be made is when and where to launch a standard 
missile to intercept the incoming enemy cruise missile. For each of 
the information elements and combinations of information elements, 
we ask: Can the decision be taken with just this (these) information ele- 
ment(s)\ For example, can the decision to intercept be taken knowing 
only the location of the enemy cruise missile? with location and 
speed? etc.? For a given set of information elements of size r, 2r, such 
questions must be asked. In this example, this amounts to 16 ques- 
tions.12 For large information sets, this method could become rather 
cumbersome, hence the omission of'altitude'. 

Other questions arise: If a decision can be made knowing the 
value of only one of the three information elements, what added 
value does knowing the other two provide? Are the information ele- 
ments not used in the decision therefore still 'critical'? First, we 
assume that if an information element is designated as 'critical', it is 
needed to fully inform the decision. We recognise, however, that 

12 This includes the empty set, i.e., no information elements are available, and the entire set, 
i.e., all information elements are available. We would expect the answer to the former to be 
'no' and the latter to be 'yes'. This is sometimes referred to as the information element power 
set. 
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decisions are taken with less-than-complete information but that 
there is some subset below which a decision is impossible or 
extremely risky—regardless of the urgency of the situation. In this 
example, having estimates for all information elements is better than 
two or one. One way to acknowledge this is to assign weights to 
various combinations of the information elements. However, doing 
this leads us back to subjective linear weighting. Consequently, we 
rely solely on counts for this method. 

The answers to the questions determine the weights assigned to 
each element. Table 3.1 summarises the answers to the 16 questions. 

The next step is to count the number of combinations that 
result in a 'yes' response in the last column of the table for each of the 
information elements. For example, of the 16 combinations here 
(including the empty set), location occurs in eight with a 'yes' 
response. In each of these, it was determined that a decision to engage 
the cruise missile could have been made with just the information 
elements in the combination. For the remaining three, the count is 
five each. 

Because location alone was considered sufficient for a launch 
decision, any of the other combinations that included location were 
also considered sufficient. The other three information elements 
appear in exactly five 'yes' combinations because no two combina- 
tions of them were considered sufficient to order a launch but all 
three together were considered sufficient. If it were the case that each 
of the four information elements alone were sufficient to order a 
launch, then each would earn a score of 8, which is equivalent to 
equally weighted, independent information elements. 

If all information elements were necessary and no lesser combi- 
nation sufficient to launch, we get the same result. In this case, each 
information element would receive a score of 1. 

Calculating the relative weights from these results consists of 
using the sum of the scores to normalise the weights so that 
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Table 3.1 
Precedent Weight Assessment 

Location (ax) Speed (a3) Direction (a^) TypeU5) Yes/No 

X     — Yes 
— X — — No 
— — X — No 
— — — X No 
X X — — Yes 
X — X — Yes 
X — — X Yes 
— X X — No 
— X — X No 
— — X X No 
X X X — Yes 
X — X X Yes 
— X X X Yes 
X X — X Yes 
X X X X Yes 

where c, is the score for information element a{. In this example, we 
would get the following weights: cOj = 0.348 and C02 = <B3 = C04 = 0.217. 

This method is practical only for small sets of information ele- 
ments, since the dimension of the problem increases exponentially 
with the number of information elements. However, for most opera- 
tional decisions, the number of critical information elements is small, 
and indeed, we assume this to be the case in this analysis. Even for 
those cases in which the number is large, it is likely that certain com- 
binations are not worth examining because it is obvious that the 
combination would not be sufficient. 

Mutual Information 

Next, we discuss a more direct method to derive the multi-attribute 
knowledge function for a set of information elements shared across a 
cluster. Mutual information is derived from information entropy (see 
Appendix B) and deals directly with the issue of independence (or 
rather lack thereof) among the information elements. Although a 
joint probability density function is still required, mutual information 



32    Information Sharing Among Military Headquarters 

allows us to account for the dependencies even when the joint distri- 
bution is empirical. 

What we desire is a mathematical construct that will allow us to 
modify our knowledge about a random variable (information ele- 
ment, X) based on our knowledge of a second random variable 
(information element, Y) whenXand Fare not independent random 
variables. Because one random variable informs another, we refer to 
this construct as mutual information. 

Relative Entropy 
Relative entropy measures the 'distance' between two probability 
mass functions, denoted D[p(x) || q(x)]. It is essentially the error 
incurred by assuming the true distribution for X is q(x), when it is 
really p(x). Relative entropy as defined by Cover and Thomas 
(1991)13is 

In this definition, we have 

0 i    / \      p(x) Olog—^ = 0 and plxUog—^- = 00. 
q{x) 0 

If p(x) = q(x), then D[p(x) \\ q(x)] = 0. However, relative entropy is not 
a true distance metric because it is not commutative. That is, 

D[p(x)\\q(x)] = D[q(x)\\p(x)) 

is not always true.14 Kullback (1978, p. 6) refers to the quantity 

13 See also Kullback (1978). 
14 A true metric satisfies the following properties: 

A metric space is a pair (X,d), whereX is a set and d is a metric on X (or a distance function on X), 
such that for all x,y,z e X we have: 
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D[p(x)\\q(xj\ + D[q(x)\\p(xj\ 

as a measure of divergence between p(x) and q(x) and, therefore, a 
measure of the difficulty of discriminating between them. 

Mutual Information 
We use the concept of relative entropy to arrive at a measure of 
mutual information. Suppose we have two dependent random vari- 
ables, Xand Y, with joint probability mass function p{x,y) and mar- 
ginal mass functions p(x) and p{y). We define the mutual informa- 
tion to be the relative entropy between the joint mass function and 
the product of the marginal mass functions, or 

l(X:Y)=D[p(x,y)\\p(x)p(y)] 

= X   I p(x,y)log 
xeX yeY p(x)p(y) 

Hence, I(X: F] defined in this way is the amount of informa- 
tion about Xgained from Y. 

Cruise Missile Type and Speed 

Recalling our example again of the CEC cluster, we note that the 
type of enemy cruise missile threatening a friendly fleet can be 
inferred somewhat from its speed of approach. However, the relation- 
ship between the two is not exact because the missile may be operat- 
ing at a speed other than its nominal speed and several of the missiles 
may operate at similar speeds. Nevertheless, if a report of missile 

d is real-valued, finite and nonnegative. 

d(x,y) = 0 if and only if x = y. 

d(x,y) = d{y,x). 

d[x,y) < d{x, z)+d[z, y). 

(Taken from Kreyszig, 1978.) 
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speed is received, it is possible to improve our knowledge about the 
type of missile threatening us. 

For example, suppose we let the random variables 5 and M 
represent the speed and enemy missile type, respectively. We define 
the joint probability mass function, p(s,m), in Table 3.2.15 Three 
missile types are listed as column headers. Continuous speed has been 
divided into four Mach intervals and are listed in the left-hand col- 
umn. The entries in the table are the joint probability mass for the 
events si U f»j or pis^mj). The marginal distributions p(sd) and 
/>(/»•) are the probability that a missile is travelling within the range 
Sj and that the missile launched is of type ttij, respectively. 

From this we calculate the mutual information: 

W>s)-uUaU*.~,H$$]- = 0.222. 

Table 3.2 
Joint Probability Mass Function for Speed and Missile Type 

C601 C801 
(m2) 

NOTE: The speeds are given in Mach units. 

SS-N-27 
(m3) M 

0-M0.75 
(*i) 

0.05 0.04 0.20 0.29 

MO.75-1.0 

(*2> 
0.14 0.15 0.02 0.31 

M1.0-2.0 

(*3> 
0.03 0.05 0.07 0.15 

>M2.0 

<*4> 
0.04 0.01 0.20 0.25 

p(mj) 0.26 0.25 0.49 1.00 

15 Although it is always possible to create such a table, it is generally very difficult to obtain 
credible table entries. In most cases, a normalisation process is needed to convert whole num- 
bers (generally from 1 to 10) supplied by operators to the joint probabilities. In any case, the 
entries are more likely to be subjective estimates. 
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Therefore, the amount of information about cruise missile type 
that can be gained from the speed of the incoming enemy missile is 
0.222 nats.16 Because I{M :S) = I{S:M), we may also interpret this 
to be the amount of information about the speed of the incoming 
enemy cruise missile that can be gained from its type. 

One way to use mutual information is to develop pairwise joint 
probability mass functions for all the critical information elements 
and calculate their mutual information. A high mutual information 
score between two information elements means that the two are non- 
randomly associated with each other, whereas a lower score signifies 
that the two are independent—that is, that the joint distribution of 
the two holds no more information than the information elements 
considered separately. Butte and Kohane (1999) use this pairwise 
assessment of mutual information to associate genes. They hypothe- 
sise that an association with high mutual information means that one 
gene is nonrandomly associated with another. They then select a 
threshold mutual information level and use the associations above the 
threshold to generate gene clusters or relevance networks.17 

The next, and more difficult, step is to develop the appropriate 
weights from these pairwise associations. We have not addressed this 
problem as yet; however, it appears that the relevance network 
approach suggested by Butte and Kohane might be applicable. 

Assuming a joint probability mass function can be found for all 
the information elements shared across a cluster, we can proceed as 
follows. 

Entropy and Mutual Information 
The knowledge function used to assess understanding relies on the 
calculation of information entropy. Consequently, it would be help- 

16 When information entropy is calculated using base 2 logarithms, the resulting measure of 
information present in the distribution is a 'nit'. When we use natural logarithms, the mea- 
sure is the 'nat', with reference to the natural logarithm. See Appendix B for a fuller dis- 
cussion. 
17 Two genes are connected in the network, if their mutual information scores exceed the 
threshold for that cluster. 
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ful to exploit the relationship between mutual information and 
information entropy. Fortunately, the relationship is quite straight- 
forward. First, however, we need to develop the concept of condi- 
tional entropy. 

Conditional entropies H{X\Y) and H(Y\X) are sometimes 
referred to as 'side information', i.e., the uncertainty (entropy) in one 
random variable is conditioned on another random variable.18 If the 
random variables Xand Fhave a joint probability density, p(x,y), the 
conditional entropy H{X \ Y) is defined as 

H(X\Y)=-1 p(x) I p(y|*)logp{y|*) 
xeX yeY 

= -II /•(*»>) log/(^ |*) 
xeXyeY 

From this, we can derive an expression for mutual information in 
terms of information entropy as follows: 

I{X:Y)=1   1 p(x,y)log-&$- 
V '      xeXytY p{x)P{y) 

v v (  M p(*\y) = X X p(x,y)loS ' 
xeXyeY P{x) 

= -X  I p{x,y)logp(x) + I  1 p(x,y)logp(x\y) 
xeXyeY xeXyeY 

= - X p(x)logp(x)- -XX p{x,y)\ogp{x\y) 
xeX L   xcXyeY 

= H(X)-H(X\Y). 

18 In communications theory, the conditional entropies can be thought of in terms of a 
communications channel with input Xand output Y. H(X \ Y) is then called the equivocation 
and corresponds to the uncertainty in the transmission from the receiver's point of view, and 
H(Y | X) is called the prevarication and represents the uncertainty from the transmitter's 
point of view. Taken from Blahut (1987). 



Representing Uncertainty    37 

This is helpful because all quantities can be expressed in terms of 
information entropy. 

The next step is to consider the multidimensional case. That is, 
how is the uncertainty in the perceived values of the critical cluster 
information elements {al,---,ac} affected by knowledge of the value of 
information element jy? By a simple extension of the relationship 
developed for two information elements, we get 

/(X1,Z2,-Zc:r) = Jf7(Z1,X2,-Xc)-i/(X1,Z2,-Zc|F). 

Assuming, of course, that the joint and conditional probabilities 
can be defined, this gives us a closed-form value for joint entropy. 

Another way to get at this value is to use conditional entropy. 
For the case in which all information elements are independent, the 
joint entropy calculation is additive so that 

//(X1,Z2,-Zc) = lf=1//(X/). 

This is, in effect, an upper bound on joint entropy so that, in general, 

#(*p*2,...*c)£Xf=1tf(X,.). 

However, if the conditional entropies can be calculated, joint entropy 
can be calculated directly as 

//(Z1,Z2,-Xc) = lf=lJf/(X,|Z,_1,-ZI). 

Summing Up 

The degree of uncertainty in a cluster depends on the information 
collection assets devoted to the cluster's critical elements of informa- 
tion and the extent to which collaboration among the cluster decision 
nodes is facilitated. We apply a probabilistic entropy model to repre- 
sent the uncertainty associated with the critical information elements 
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needed within the cluster. The reports from sensors or other informa- 
tion-gathering sources are treated as estimates of the means of the dis- 
tributions describing their uncertainty. 

These estimates are transformed into awareness and knowledge 
and form the basis of decisionmaking. The metrics we have developed 
in this chapter quantify this process through the use of information 
entropy and the derivative knowledge metrics. 

Information sharing among nodes ideally tends to lower infor- 
mation entropy (and hence increases knowledge) because of the 
reduction in variance and the buildup of correlations among the criti- 
cal information elements. One of the key aspects of increased knowl- 
edge is increased understanding. 

A key requisite for calculating cluster (and eventually network) 
knowledge is an acceptable method for combining knowledge gained 
from all critical information elements at a single headquarters, how 
that combination produces cluster knowledge, and how cluster 
knowledge combines to produce network knowledge. We have sug- 
gested several combining techniques, several of which require knowl- 
edge of a joint probability distribution. In many cases, the joint prob- 
ability distribution of all critical information elements is not known 
and is difficult, if not impossible, to calculate empirically. 



CHAPTER FOUR 

The Effects of Collaboration 

Networks provide an opportunity for participating decision entities 
to collaborate by sharing information as they form clusters. This is 
generally thought to be a good thing, as we have seen so far. By shar- 
ing, we experience synergistic effects that improve what we know (the 
completeness of our information) and how accurately we know it, as 
measured in terms of its bias and precision. In other words, collabora- 
tion improves both the quantity and quality of the information we 
need to take decisions. As compelling as this argument is, there is also 
a possible negative aspect of collaboration and information sharing: 
the expenditure of resources needed to deal with information over- 
load and disconfirming evidence. The former can lead to processing 
delays and the latter to indecision as contradictory information is 
resolved. We treat these in more detail in Chapter Five. Here the 
focus is on the role of collaboration across a cluster in producing 
information that is complete and accurate. 

Knowledge 

As discussed earlier, information entropy appears to be a good surro- 
gate for assessing the knowledge level within a cluster about a given 
critical information element. Until now, we have focused only on 
knowledge derived from the entropy associated with the probability 
distribution for the uncertain information elements. As noted earlier, 
the entropy function is always a function of the distribution variance, 

39 
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and therefore our knowledge function is a function of precision only; 
that is, it measures the degree to which the observations of the critical 
information element are 'close together'. To assess the degree to 
which the networked headquarters affect decisionmaking, our meas- 
ure of knowledge must also include the completeness and the bias of 
the estimates. We thus begin by examining the components of accu- 
racy, namely, bias and precision. 

Bias 
Bias in an estimate is error introduced by systematic distortions. For 
example, suppose we were to conduct an experiment in which the 
temperatures of some substance had to be measured over time. If the 
thermometer we used were calibrated such that every reading was off 
by 1 degree Celsius, the result would be a set of biased measurements. 
Bias therefore is systemic, not random, error. 

An unbiased estimator therefore is one for which E[|l] = n. That 
is, the expected value of the estimate of the parameter, (L, is the true 
value of the parameter, n. Thus, the bias in the estimate is the degree 
to which this is nottrue, or b=\ E[(l]-|l |. 

Precision 
The variation in estimates of the critical information elements can 
occur in a purely random way. For example, an observer may make 
an error in judgment such as reporting a tracked personnel carrier to 
be a tank. The variation may also be the result of uncontrollable envi- 
ronmental conditions, such as weather patterns, that cause sensor 
occlusions. In any event, random errors of this kind affect the preci- 
sion of the estimates reported because they increase the variance of 
the distribution of the estimated information element. In general, 
precision is defined to be the degree to which estimates of the critical 
information element(s) are close together.1 Bias and precision, there- 

1 This is a commonly accepted definition. Ayyub and McCuen (1997, p. 191) define preci- 
sion as 'the ability of an estimator to provide repeated estimates that are very close together'. 
A similar definition can be found in Pecht (1995). 
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fore, are independent. That is, biased estimates may or may not be 
precise. 

Precision and Entropy 
In Appendix A, we describe the Rapid Planning Process by way of a 
simple operational example based on a local perceived force ratio.2 

For a given cluster /, at intermediate time steps j, we need only pursue 
the process as far as assessing the probability of each fixed pattern 
within the conceptual space of a local decisionmaker within the clus- 
ter. (These are the stored situations depicted in Figure 2.1.) The 
estimate produced is declared to be one of the stored situations, pro- 
vided the estimate falls within the decisionmaker's comfort zone. 

The joint probability density /(x;(;)), a multivariate normal 
distribution with covariance matrix E, reflects the uncertainty asso- 
ciated with the critical information elements shared across cluster / at 
time step;', where ■x.i{j) = [xi^{j),xia(j),—,xiiC{j)'\y the vector of per- 
ceived values of the critical information elements in the shared con- 
ceptual space, assuming all C elements are available to the cluster. 
This is the shaded area labelled 'current estimate' in Figure 2.1 
(Chapter Two). 

The mean of the current estimate, /(x-(;')), reflects the current 
best estimate, based on reports received from organic sources and 
information shared across the cluster, and the covariance, X, reflects 
the precision of this estimate. The amount of information available in 
the joint (multivariate normal) probability density is measured in 
terms of the relative information entropy, //(x-(/')) = log|S|. Both 
precision and information entropy are a function of the covariance. 

2 The perceived force ratio is calculated from the recognised picture, generally defined by a 
number of attributes (elements of information). A detailed description of both the recog- 
nized picture and the perceived force ratio can be found in Chapter 2 of Moffat (2002). 
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Estimating Local Knowledge 
Local knowledge is a measure of understanding within cluster i? As 
demonstrated earlier, there is an inverse relation between entropy and 
knowledge based on precision alone: As entropy increases, knowledge 
decreases. In general, we get the following knowledge metric for a 
joint distribution of the information elements, which is multivariate 
normal:4 

^(X,(;))=i-"WZU"//(X',°'))] 

-W0 M I    In 

where log 12 |max is the maximum relevant information entropy and 
IE Lax ls tne determinant of the corresponding covariance matrix. 
/(x; (_/')) reflects the level of understanding within the cluster based 
on precision alone. 

Precision and Knowledge in the Logistics Example 

To illustrate, we continue with the logistics example from Chapter 
Two. In Figure 2.3a, when there is no collaboration among the 
nodes, each is monitoring its requirement for fuel and providing 
estimates to the single master decision node. This configuration pro- 
duces a single cluster comprising only the master node. "When the 
nodes are collaborating, as in Figure 2.3b, information is shared 
between the two nodes, and therefore we take them to be dependent. 
The network in this case is a single cluster consisting of the two 
demand nodes and the arbiter node. 

3 By understanding, we mean the ability of humans to draw inferences about the possible 
consequences of a situation. Clearly, knowledge enhances this ability and therefore can be 
considered a measure of understanding. 
4 Actually, the exact entropy value for the bivariate normal case is H(x,y) = log\(2KeYl.\. 
However, because we are concerned about the ratio of entropies, we use the simpler version. 



The Effects of Collaboration    43 

For simplicity, we start by assuming that the fuel requirement is 
normally distributed.5 Consequently, we let ax be the information 
element 'fuel demand for node 1' and a2 be 'fuel demand at node 2'. 
The fuel supply at the master node is assumed to be known with cer- 
tainty; that is, the master node is self-aware in both cases. Conse- 
quently, the critical information element set is A = {ava2}, and the 
value of each is depicted as x = [xvx2]

T. In each case, the distribution 
of uncertainty about the information element is normal with mean 
jl = [(ij,\i2]T and covariance 

2 = öf Pl,2ölCT2 
ph2c1a2      a]   _ 

The fuel levels at each of the demanding nodes may be corre- 
lated, and the effects of collaboration are therefore dependent on the 
correlation coefficient, —l<p12 <1.6 If, as in Figure 2.3a, the nodes 
are not collaborating, the 'network' consists of the master node and 
the two isolated demand nodes, and we model the lack of collabora- 
tion by setting p12 =0. That is, we assume that each headquarters is 
acting independently, and therefore all their demands for fuel are 
independent. The off-diagonal elements in the covariance matrix 
then are 0. This is clearly the simplest case to analyse because the 
implications of 'no collaboration' are clear in that it produces un- 
correlated fuel levels. In cases like Figure 2.3b, where collaboration 
between the nodes takes place and Pi^^O, collaboration can be 
shown to have a salutary effect. 

In general, total cluster information entropy is 

#(x)=iogfl=iog[o^(i-Py]. 

5 This is valid only when the mean demand is large and the variance is suitably small. 
6 Although the fuel is received from the same source, the demand may be generated inde- 
pendently and therefore may be uncorrelated. 



44    Information Sharing Among Military Headquarters 

In the non-collaboration case, this reduces to H(x) = log(o1G2). 
Because entropy measures the degree of uncertainty in probability 
distributions, small values of H(x) are desirable. Regardless of the 
values of the variances of and o\, this will occur when | pl2 | is near 
1.0. Conversely, maximum entropy and, therefore, maximum uncer- 
tainty occur for pu=0- The change in entropy from the non- 
collaboration case and the collaboration case then is 

#,(x)-#,(x) = -log(l-p?,2). 

As before, a value of | p; 21 close to 1.0 maximises this quantity. 
To convert entropy to knowledge, we first need to establish a 

maximum entropy value,7 which is equivalent to establishing a 
maximum variance or determinant of the covariance matrix as devel- 
oped in Chapter Three. Because the maximum covariance occurs 
when the random variables are uncorrelated, we have 

Hmm{ai>ai) = log(°?,maxö2,max) ■ 

We can now develop the knowledge metric to measure the cur- 
rent level of understanding of the fuel demand for both the collabora- 
tion (a) and non-collaboration {b) cases. We have for the non- 
collaboration case that 

Ca(x)=l-el 
2  2 

js-  i    \       - i    -   l.max^,max   lu»   1   2 

-r2_2 

2 2 
öl,maxö2,max 

7 This is necessary because entropy for continuous random variables (referred to as differen- 
tial entropy, see Appendix B) is always unbounded. 
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For the collaboration case, we have 

A loJ O?        O? Ho| (v ^1    l,max  2,max      ' «M1^ 

2 2 
l,max    2,max 

The benefits of collaboration therefore are measured as the difference 
between the two, or the increase in understanding represented by 

AK(x) = Kt(x)-Ka(x)-&?& 2 2 
l.max    2,max 

Here the buildup in correlation between the information elements ax 

and a2 causes the increase in knowledge. This relates to our com- 
monsense understanding of an increase in knowledge of our sur- 
roundings because we know how one thing relates to another. 

Accuracy 

Accuracy is the degree to which the estimates of the critical informa- 
tion elements are close to ground truth. Collaboration across a cluster 
affects the accuracy of the estimates of the information elements— 
and hence the degree to which fixed patterns in the shared conceptual 
space are indeed ground truth. The concept of accuracy comprises 
both precision and bias: The smaller the bias, the closer the estimate 
is to ground truth, and the more precise the estimates (i.e., the more 
closely they are grouped), the more confident we are in the estimate. 

We generally take ground truth to be the ideal distribution 
mean for the information and measure the bias of the estimates in 
terms of the distance from the ground-truth value. This assumes, of 
course, that we know ground truth, which is always the case in mod- 
els and simulations aimed at assessing and comparing alternative 
C4ISR (command, control, communications, computers, intelli- 
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gence, surveillance, and reconnaissance) systems, alternative network 
constructs, or alternative operating procedures. Support to actual 
operations in which ground truth is not known requires an assess- 
ment of the consistency of the information reported. In some cases, we 
may instead take as our point of comparison the estimates coming 
from the higher-level planning process. For our fuel logistics illus- 
tration, we can, for example, compare the perception of the fuel 
demand from each of the two nodes, with the assessment made from 
the top-down planning assumptions. 

In general, if a is an information element whose value, x, is un- 
known with probability distribution f(x) and mean \i representing 
ground truth, then the bias associated with the estimate of the mean 
is £=|E(|ÜL)-|J,|, where |1 is the estimate of the mean based on one or 
more reports on the value of a. Because accuracy consists of both bias 
and precision, we need a metric that combines both. One such metric 
is the mean square error (MSE), defined as E[(\i,-\i)2]. It can be 
shown that E[(|l-u)2] = ^2+o2, where a2 is the variance of |1.8 This 
metric is extremely useful because it includes both accuracy in the 
total and precision as a component. In estimating ground truth, the 
bias accounts for nonrandom errors and the precision accounts for 
random errors. 

To illustrate this, in our CEC cluster example, suppose we want 
to estimate the location of an enemy cruise missile based on several 
sequentially arriving reports from the collaborating team. Each report 
is processed in turn using Bayesian updating to refine the location 
estimate.9 In this case, we need an estimate for both the x-coordinate 
and the y-coordinate. The bivariate normal distribution is used to 
represent the uncertainty associated with the random location vector, 
x = [x,y]T. The estimator in this case is a Bayesian estimator of the 
form: 

8 See, for example, Cover and Thomas (1991). 
9 Later in this chapter, we suggest maintaining the incoming reports and variance estimates 
until a decision is imminent. If we perform the updates sequentially at that time, we can 
account for the age of the reports—essentially discounting older reports. 
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/ 

M-»+i=I, 
^ 

V 
2,+2 A+2 

V1 

Z,+Z H, (4.1) 

and 

V 
2, + Z (4.2) 

In this formulation, (1 is the collaborating team's current estimate of 
\l = \lix>VLy]T. The instrument (sensor, source, process) used to obtain 
the estimate has an associated error, which we record as % an esti- 
mate of the variance. This may be acquired from the target location 
error associated with sensor or source and existing environmental 
conditions prevailing when the measurement was made.10 This 
matrix serves as a weight. For large Z, the expression E,(E,+ £)"' is 
very small (close to the zero matrix) and £(2, + £)_1 is approximately 
the identity. Therefore, the current report has little influence on H^., • 
The reverse is true for small E. The initiating estimates, |A0 and 20, 
are obtained from the IPB process or are estimates prevailing at the 
last decision point. 

The task now is to assess just how accurate the estimate is. If we 
are conducting a controlled experiment, such that the true location of 
the unit is known, then, as mentioned above, we can take advantage 
of the fact and calculate the bias in the estimate. In this case, the bias 
is the Euclidean distance between the Bayesian estimate and the 
ground-truth location of the unit, or 

*=Vftw-»i*)2+(*i'+i.7-il>)2 

10
 It is also possible to use the sample mean of several reports as an estimate of the latest of 

several reports, the 'best' report, etc. Each will require an accompanying estimate of the vari- 
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For our purposes, we can take this estimate to be the true location of 
the enemy cruise missile at a specific moment in time. By analogy 
with the MSE, the accuracy of the estimate is defined as 

Z>(x) = £2+|Z{+1|. 

Accuracy in the Logistics Example 
Recall that the amount of fuel required at each node is x = [xvx2] . 
We assume the x is bivariate normal with mean H = [p,1,p.2] . Reports 
on projected fuel requirements are processed sequentially to create a 
current estimate of future requirements for both nodes. As in the 
location estimate discussed above, the estimator is Bayesian and the 
bias is the Euclidean distance between the estimates and ground 
truth. However, unlike the location example above, the error associ- 
ated with each report is generated from two sources. In the first case 
(no collaboration), the errors are independent, and in the second case 
(collaboration) they are not. We also assume that a report is received 
from both nodes near-simultaneously. 

The estimate covariance matrices depend on the model selected 
and the update methodology. For example, in the no-collaboration 
case (Figure 2.3a), the sample covariance matrix is 

Z„ = 
£2 

0 £2 

When they are collaborating, as in Figure 2.3b, the sample covariance 
matrix is 

Z*: 

£.2 c 

A A A 

Pl,2Öl°2 

ft,2 «Ma 

£2 
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Generating these estimates may be problematic. The sources of the 
reports are generally the headquarters themselves, so the errors are 
associated with both the assessment of fuel on hand and future 
requirements. Standards may exist for predicting fuel requirements 
that vary with a unit's posture. In any event, it will be necessary to 
provide error estimates in both cases. 

The bias is the Euclidean distance, as previously discussed, so 
that 

At any time, the estimates of the covariance for both cases are 

^t+U - 
.   0      C2

+1>2_ 

and 

^t+1,4 ~ 

_2 
P*+1°»+1,1CT*+12 

_2 

and therefore the accuracy metrics for the two cases are (iteration sub- 
scripts omitted) 

Da(x) = b2+G2G2
2 and D/,{x) = b2 + G2G2

2-p2G2G2
2. 

Consequently, the increase in accuracy in the collaboration case is 
p2G2G2

2. Again, this quantity is maximised when |p| is close to 1.0. 
The task now is to measure these effects on cluster and network 
knowledge. 
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The Effects of Bias, Precision, and Accuracy on 
Knowledge 

One way to account for bias, precision, and, hence, accuracy in the 
knowledge function is to replace the distribution variance with the 
MSE, or the accuracy measure, D(x), in the knowledge function. 
Doing so has the effect of increasing the variance to account for bias. 
The MSE is bounded from below by the variance, so when the bias is 
0, the MSE is just the variance. In the general case, we express knowl- 
edge as 

where KM{X) is the knowledge function with the variance replaced 
by the MSE. To do this, we calculate the maximum and current 
entropies in the usual way and then replace the variance (or more 
generally, the covariance) with the MSE. 

For the multivariate normal case, for example, we get a modified 
knowledge function of the form: 

b2+\A 
K+HL 

The 'maximum' MSE is a combination of the maximum bias and the 
maximum precision and represents the maximum in inaccuracy. 
Because bias and precision are independent, the maximum occurs 
when both are maximised, or (£2+|Z|)max = 4L+I sLx- Like the vari' 
ance, a suitable upper bound for bias can be found by searching for 
the largest possible measurement error the sensors or sources might 
produce. 

We can apply this to the simple logistics problem. For the non- 
collaboration case, we get 

/2      ,  _2       _2 
"max +0l,max°2,max 
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For the collaboration case, we have 

2^.2     ^2^.2^.2 
2 

b1  +ct   a, max l,max    2,max 

The maximum MSE is the same for both cases, given that the covari- 
ance is maximised when p = 0 and the variances are fixed. The differ- 
ence between the two now reflects the effects of collaboration on 
knowledge as measured by precision, accuracy, and bias and is calcu- 
lated to be 

'«.W-^W'-s-S^ 
2^.2^.2 

7" 
''max l.max    2,max 

As expected, this quantity is diminished over the previously calculated 
values that considered precision only. However, if the estimate is un- 
biased (£ = 0), the results are the same. Also, in the rare case that an 
estimate is reported as ground truth (no variance), bias is still possible 
so that there is no improvement in knowledge from the non- 
collaboration to the collaboration case. 

We next discuss the contribution to information sharing of the 
completeness of the information available to take a decision. The 
combining of precision, accuracy, bias, and completeness then will 
measure the overall contribution of collaboration across the cluster to 
knowledge and thus to improved local decisionmaking. 

Completeness 

For any cluster i, we have defined the complete data set at time t as 
the set Xj(j) = [xiil(j))xii2(j),---,xitC(j)]. The set consists of a maxi- 
mum of C elements of critical information; however, only a subset 
consisting of n < C out of C elements might be available at time t. If 
waiting for additional reports is not possible, a decisionmaker would 
be required to take a decision without the benefit of complete infor- 
mation. Depending on his experience and other contextual informa- 
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tion, he may be able to infer some likely less reliable value for the 
missing information. For now, we assume that if the value of an in- 
formation element is missing, the value of completeness for cluster /is 

MnY 

where £ is a 'shaping' factor that reflects the decisionmaker's aversion 
to risk because the selection of the appropriate value depends on the 
consequences, as perceived by the decisionmaker, of being forced to 
take a decision with incomplete information. For values of %<l, the 
curve is concaved downwards, thus reflecting a high aversion to risk; 
for %>\, it is concaved upwards, reflecting little aversion to risk; and 
for 4 = 1» h is a straight line, reflecting the decisionmaker's equivoca- 
tion concerning risk. The ultimate impact of this lack of complete- 
ness is the uncertainty of the decisionmaker's perception of where he 
is in the conceptual space, as depicted in Figure 2.1. The selection of 
the appropriate values depends on the consequences associated with 
being forced to take a decision with incomplete information. 

With the addition of completeness, we are now ready to com- 
bine the measures of collaboration, namely accuracy (i.e., precision 
and bias) and completeness, to produce a single knowledge metric 
that can be subsequently combined with the measures of complexity 
discussed in Chapter Five. But before we develop the combined col- 
laboration metric, we must first address another measure of informa- 
tion quality: its currency. It is generally assumed that more recent, or 
fresher, information is desirable over older information. This supposi- 
tion is certainly true in the modern battlespace, where events change 
rapidly. 
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Information 'Ageing' 

The information gathered by a cluster consists of reports concerning 
one or more of the critical information elements shared across the 
cluster, which are necessary to take a decision.11 These reports are 
used to update the joint probability distribution of uncertainty con- 
cerning these information elements. If the reports are old, we assume 
that their contribution to reducing uncertainty is less than if they are 
fresh. In addition, if resources within a cluster are such that reports 
arriving are not processed in a reasonable period of time, they will age 
in a queue with the same effect. 

Freshness is a consideration that is separate from timeliness. 
Freshness is concerned with how old the information is and, as such, 
is generally context free. Timeliness, however, deals with when the 
information is needed and, as such, is situation dependent. Both 
timeliness and freshness are functions of the time volatility of infor- 
mation, i.e., the rate at which information is likely to change over 
time. For example, consider assessing the location of a missile versus 
the location of a mountain. Information about the location of a 
mountain is considered time resilient, and therefore freshness and 
timeliness are essentially equivalent. However, we take the position 
here that the older the information is, the lower its quality. 

Precision, bias, and, hence, accuracy depend on the estimator 
selected (a Bayesian estimator in this case) to estimate fixed patterns 
of ground truth shared across a cluster. They are also dependent on 
the joint probability density function that reflects the uncertainty in 
our knowledge. Consequently, what is needed is a methodology that 
allows us to incorporate the age of the reports in our updating pro- 
cess. 

Time Lapse 

For each critical information element, £,-,_,-, shared across cluster i at 
time period j, we record the time that its estimated value, x,,;, was 

11 In Chapter Five, we address the issue of unneeded information and its contribution to 
'information overload'. 
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last reported and shared across cluster /', *(>;. If a decision within 
cluster * is to take place at time *,-, then Fj =tt -titj is a measure of 
the freshness of information element at the time it is used. We can 
further express the importance of freshness by an exponent so that we 
get 

where the parameter T\ > 0 reflects the degree to which freshness of a 
report concerning information element at at time period j is an 
important consideration in taking a decision, i.e., the time volatility 
of the information. For example, the freshness of information con- 
cerning the location of the Baath Party's headquarters in An 
Nasiriyah is not as critical as a report on the location of Fedayeen 
Saddam forces in the city. 

To be consistent with other metrics, we choose to normalise Fitj 
as follows: 

O    = 

where t0 is the time at which the data collection begins in cluster / for 
this decision. In the case of the Baath Party headquarters, a value of 
T) > 1 would be appropriate. In the case of the Fedayeen, we would 
place considerable importance on fresh information and therefore 
assign a value of T| < 1. 

Updating 
Within the time required to take a decision within cluster i, several 
reports from sensors and sources of the estimated value of aitj are 
likely to be produced—each with time-lapse estimate <&,,,, calculated 
as above. By updating the value of the information element over 
time, we can also account for the age of the data reported. In this 
way, we directly affect the information and therefore its knowledge 
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function. As mentioned earlier, we have elected to update our esti- 
mates using Bayesian updating. 

We assume that at some time t, U sequentially arriving reports 
concerning information elements, {(\I1,G

2
),(\I2,GI)---,(\IU,GU)} are to 

be combined to support a decision to be made at time t.u The pairs, 
Ql^Gj) are the £th sequential estimate of the mean and variance of 
the distribution describing the uncertainty in the value of the 
information element a. The scalar versions of equations (4.1) and 
(4.2), uncorrected for freshness, are 

~2   .   *2 

and 

G 
-T-2 *2 

2   _ otak 
k+l      «-2_i_^2' 

The pair (n0>co) are tne estimates existing at time t0. This could be 
the IPB estimate, or it could be the estimate at the last decision. Next, 
we modify the estimates to account for the freshness of the reports. 

We assume that the effect of ageing makes the estimate less cer- 
tain. Ageing therefore is a function of the estimated variance coupled 
with the normalised freshness factor, ®k. For the more recent reports, 
<t>k is small, and for older reports, it is large. In any case, 0 < Q>k < 1, 
which suggests a net present value model for measuring the effect of 
Oj on the variance of the estimate; that is, we replace the variance 
with (l + O^o2, ,13 This yields the following modified Bayesian update 

12 We drop the cluster and time period subscripts for clarity. It should be clear that the 
information element is required at cluster i and that the time period at which the combining 
takes place is/ 
13 The net present value, P, of a principal amount, A, compounded over n time periods is 
P = A(\+i)", where/ is the rate of return. The argument for an analogous approach in this 
case is that freshness can be thought of as the rate at which the variance increases. 
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formulas for producing the current estimate for the value of the 
information element a: 

_G2
kjik+(l + <l>k)6l\lk 

UM 2      /,      .*.   \ A 2 
o* + (l+**)o* 

and 

r\ . i i -+- ii J .   in 

G*+1~      2   , /,   . *   \*2' 

a;(l+fl>,)a; 

In the best case, when the freshness factor is 0 (the report arrives at 
decision time), there is no effect on the reported variance. In the 
worst case, when the report dates to the beginning of collection for 
the current decision, the reported variance is doubled. 

The final estimate, |%, calculated in this way is taken to be the 
estimate of the true mean of the distribution with bias, and variance 
estimate, av. The updated density function is therefore 
/(xiHy.Gy). From this we can calculate a current, updated knowl- 
edge estimate, KM(x).u 

Measuring the Overall Effect of Cluster Collaboration 

Finally, we combine the currency adjusted precision and accuracy 
knowledge function with completeness to arrive at a single metric to 
assess the effects of collaboration across the cluster. The ideal case is 
when we have full completeness, i.e., Xt(n) = Xt(C) = l, and the 
knowledge shared across the cluster is fully accurate, i.e., KM(x) = l, 
for the multivariate case. In this case, collaboration is able to provide 
complete   information,   and   its   accuracy   provides   the   local 

14 In the special case of a multivariate normal distribution of uncertainty across the infor- 
mation elements, this effect can be put in place by adjusting the initial values of the 'obser- 
vation noise' and 'system noise' in the DLM (as discussed in West and Harrison, 1997). 
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decisionmaker with perfect knowledge or situational awareness. 
Unfortunately, this ideal is seldom, if ever, achieved. Consequently, 
we require a construct that gauges the degree to which accuracy, as 
calculated here, and completeness contribute to knowledge. 

The knowledge function, KM{TL), is derived by replacing the 
variance in the entropy calculation with the MSE, thus allowing us to 
account for both precision and bias. It is logical that we proceed in 
the same way with completeness; that is, we replace the MSE with a 
function of the MSE and completeness. In general, when Xt(n) is 
small, (i.e., when there exists estimates for only a small fraction of the 
required number of information elements), the knowledge function 
should also be small, all things being equal, because this means that 
the aggregate accuracy of the estimates is based on only a few ele- 
ments of information. One way to reflect this behaviour is to replace 
the MSE in the entropy calculation with 

X,(n) • 

This calculation has the desirable property that when Xt(n) —> 1.0, the 
ratio is just the MSE, and that when Xt(n)^0, it increases without 
bound. This indeed reflects the fact that if we have no information, 
we have no knowledge and thus the bias and variance estimates are 
irrelevant. However, it is not practical to use this calculation as a 
lower bound, since it will drive the ratio 

h2+G2       /(b2+Q\ 

Xt(n)/    [Xt(n)l 

15 Although we illustrate the discussion with the univariate case, this applies equally to the 
multivariate case. 
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to increase without bound for all values of n. To avoid this, we arbi- 
trarily select w = l to be the worse case with Xt\\) = C~% .l6 Conse- 
quently, the upper bound on the resultant entropy calculation is 

^max+gLx_r 5/^.2      .„2    \ 

This has the effect of increasing the maximum MSE when the requi- 
site number of information elements is large. Note that if C = 1, there 
is no effect on the current entropy calculation or on the maximum 
entropy. If we let KK(x) be the knowledge within the cluster based on 
accuracy and completeness, then 

where HKmax(x) is the entropy calculated with the maximum variance 
replaced with C5(^ +o2

m3X) and HK(x) is the current entropy calcu- 
lated with the current variance replaced with 

b2+a2 

Xt(n) 
(b2+a2). 

Applying this to the normal case, we get the knowledge gained 
when completeness is accounted for as 

b2+o2 

Knowledge increases when the values of more of the requisite infor- 
mation elements have been reported and is maximised when n = C. 
This simple formulation is intuitively satisfying because we would 
expect that for all the precision and accuracy, unless information on 
all the information elements is present, our knowledge will be defi- 
cient. This scales naturally to the multivariate normal case as 

5 We discuss the special case of C = 1 later. 



The Effects of Collaboration    59 

Up to this point, we have captured the effects of collaboration 
among decision nodes within a cluster on knowledge. The measured 
effects of information sharing through collaboration are accuracy and 
completeness. For the most part, these effects are dynamical, since 
they vary with the quality and quantity of reports received and pro- 
cessed over time. Missing from this analysis so far has been an assess- 
ment of the systemic effects of the network architecture, effects that 
are more static. In the next chapter, we take up such measures of 
network complexity and combine them with the collaborative effects 
to arrive at a single measure of network performance and its effect on 
decisionmaking. 



CHAPTER FIVE 

The Effects of Complexity 

In the previous chapter, we were concerned about measuring the 
effects of collaborative decisionmaking among the decision nodes 
within a cluster. Although the ability to collect, process, and share 
information is dependent on the structure of the supporting network, 
we focused our assessment on the dynamics of operations: the effects 
of processed and shared information over time. In this chapter, we 
focus on the network itself and its ability to enable efficient and effec- 
tive information flow. Our measure is complexity, and we examine 
both the detrimental effects of overly complex networks and the salu- 
tary effects of complexity.1 

Complex Networks 

All networks are complex to a greater or lesser degree, including mili- 
tary command and control systems operating in a network-centric 
environment. The challenge is to understand the nature of complex- 
ity, what its effects are, and how to quantify them. All three tasks 
have been attacked in the past (we briefly summarise a history below); 
however, a satisfactory resolution is still elusive. One thing is certain, 

1 Much of the discussion on complexity in this chapter is taken from an unpublished RAND 
report: W. Perry, F. Bowden, J. Bracken, R. Button, J. McEver, and T. Sullivan, Advanced 
Metrics for Network-Centric Naval Operations, December 2002 (J. McEver contributed the 
work on complex systems in the referenced report.) 

61 
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though: There are both good and bad effects of complexity. For this 
reason, we have adopted Murray Gell-Mann's more neutral term plec- 
ticity to describe the effects of the network infrastructure on military 
operations. This characterisation avoids the negative aspects of the 
term 'complexity'.2 

What Is Complexity? 
Complex networks (such as the World Wide Web, which operates on 
another complex network, the Internet), have been studied for years 
in attempts to understand their structure and properties. The science 
of complex adaptive systems, too, has evolved in less than two dec- 
ades as an interdisciplinary attempt to understand how components, 
when tied together in certain ways, yield systems with capabilities dif- 
ferent from those of their constituent components taken separately.3 

Still, although general agreement exists on what, broadly, complexity 
is, there are no agreed-on definitions of complexity, much less quanti- 
tative measures of complexity in networks. 

For decades, researchers have recognised that as systems grow 
and become more complicated, their behaviour departs substantially 
from that of the system's components (Anderson, 1972). In 1965, 
Kolmogorov proposed a useful definition of complexity: 'The com- 
plexity of an object is the shortest binary computer program that 
describes the object' (Kolmogorov, 1965). It can be shown that, 
defined in this way, complexity is approximately equivalent to Shan- 
non entropy, a well-defined mathematical construct described earlier 
(Shannon, 1948). Shannon entropy, as a surrogate for complexity, is 
used in medical research to assess the complexity of biological sys- 
tems. Other definitions, similar in spirit to the Kolmogorov com- 

2 Gell-Mann (1995/1996) argues that the study of complex adaptive systems is better 
referred to as plectics, because it is 'a broad, transdisciplinary subject covering many aspects 
of simplicity and complexity as well as the properties of complex adaptive systems, including 
composite complex adaptive systems consisting of many adaptive agents'. Gell-Mann derives 
the word 'plectics' from the Greek work plektos, which can refer to both simplicity and com- 
plexity. Invocation of the word plectics allows for the study of entanglement or the lack 
thereof. 
3 See, for example, Moffat (2003). 
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plexity, have been proposed, including Gell-Mann's effective complex- 
ity, defined as the length of the description of the regularities, or the 
'grammar' of a system, and Bennett's logical depth, which defines 
complexity as the processing time theoretically required for a com- 
puter to go from the description of a system to the ability to duplicate 
the system itself (Gell-Mann, 1995). 

In addition to these attempts at defining complexity, some 
quantitative definitions of complexity aimed at calculating the com- 
plexity of specific systems have been proposed. Again, no consensus 
definitions have emerged from the literature, which has the flavour of 
a spirited debate among many camps. Wolpert and Macready (1997) 
propose a quantification of how the spatio-temporal patterns of dif- 
ferent scales of a system differ from one another ('self-dissimilarity') 
as a signature of system complexity. Sporns and Tononi (2002) 
describe a method they and Edelman developed to measure the com- 
plexity of the brain by relating functional segregation and integration 
measures. Sole" and Luque (2002) discuss and refine a proposed sto- 
chastic-based complexity measure of nonlinear physical systems, 
based on the system entropy, the number of states to which the sys- 
tem has access, and a measure of the interaction between the com- 
ponents of the system. Other quantifications of complexity exist as 
well, and ultimately we too present a complexity metric in this work, 
specifically for a decision network, such as that proposed above, that 
can be applied to evaluate alternative network clustering structures. 

Even though this literature has yielded useful insight into the 
problem of defining network complexity and understanding what 
features of a complex network result in the effectiveness and adapt- 
ability properties we desire, direct application of these complexity 
definitions has proven difficult. This is particularly true in the context 
of a command and control network in which the network compo- 
nents themselves are complex and adaptive and, specifically, do not 
have simple rules for how they interact with their network neighbours 
(as is assumed in models of complex physical systems). Instead, by 
combining insight from physics, medicine, and neural network 
approaches to complexity measurement with an understanding of 
network topology and desired decision network features, we can 
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move towards defining a metric for evaluating various network clus- 
tering possibilities. 

Plecticity 
In this context, plecticity refers to the ability of a connected set of 
actors to act synergistically via the connectivity between them. This 
measure is, in effect, the value added to the capability of the system 
by the entanglements between the system's nodes (decision nodes in 
this work). It is intended to take into account the fact that there may 
be constraints on how nodes can constructively connect to other 
nodes, because of either technical or procedural limitations. That is, a 
node's connectivity can add costs as well as benefits to network per- 
formance. Thus, networks can gain value both from the entangle- 
ments that are present and from those that are not. A measure of 
plecticity should account for the value of the nodes' ability to glean 
information from throughout the network to fulfil its particular func- 
tions, include a means for measuring the value of network redun- 
dancy, and reflect a cost to network effectiveness if nodes are over- 
whelmed. 

Command and control networks that do well with regard to 
these measure attributes should be able to more readily enable the 
acquisition of timely information and facilitate a decisionmaker's 
more effective use of information resources gleaned from the network 
for the performance of mission functions. 

Accessing Information 

A decision network must provide the decisionmakers in a cluster the 
ability to gain easy access to information needed to support deci- 
sionmaking. Whether the information is 'pushed', as from sensors 
and sources, or 'pulled', as with queries over the Internet, the degree 
to which the information is accessible is an important measure of a 
network's effectiveness. Because accessibility is closely related to the 
completeness of information, we begin the development of the acces- 
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sibility metric from the completeness metric developed in the previ- 
ous chapter. 

The metric developed earlier for the completeness of the infor- 
mation set shared across the cluster is simply a ratio of counts: [avail- 
able required information elements] to [total required information 
elements]. Therefore, no attempt was made to assess the degree to 
which we can really expect to receive the information element, i.e., the 
degree to which the network allows the cluster to access information 
in the network, or information accessibility. A metric that does this is 
the ratio of [the aggregate expected degree of critical information 
access] to [the total number of information elements across the net- 
work]. Such a metric accounts for the uncertainties associated with 
retrieving needed information. For our CEC cluster example, in 
maintaining an enemy missile track, the 'distance' required informa- 
tion must travel from source to destination might be used to assess 
the strength of the connectivity between the source and the destina- 
tion for a given information element.4 If we calculate the connectivity, 
kt, for information element at in such a way that 0<kt <1, we arrive 
at a connectivity value k < n, with the equality holding only when the 
distance is negligible and the connectivity is robust. As before, n is the 
number of critical information elements for which at least one report 
has been made available. In this case, k = f(kl).

5 Although not 
technically a probability, connectivity calculated in this way does 
reflect the uncertainties associated with moving information through 
a network. 

Another way to look at it is in terms of transmission costs. Re- 
placing the binary accounting for information elements as was done 
in the completeness score, with a connectivity score based on a dis- 
tance function of this sort, recognises the cost imposed by the path 
the information must take through the network to arrive at the clus- 
ter requiring it. That is, if, for a given network configuration, a speci- 

4 Distance in this context refers not only to the physical separation between source and des- 
tination, but may also include other factors such as the time required to move information. 
5 It is understood that the information element is critical to node i at time t. However, for 
ease of exposition, we omit these two subscripts. 
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fied type of information follows an 'expensive' path in getting from 
its source to the cluster requiring it, that source's contribution to the 
supply of information to the cluster takes a value lower than one that 
is less expensive. Consequently, the accessibility is diminished. 

Distance and Connectivity 
The distance function can be something as simple as the number of 
links in the path from source to sink. A more complicated function 
might take into account the individual capabilities of each link and 
node in the path. Because both nodes and links comprise a path's 
length, the more realistic assessment considers both. For now, we 
defer the mathematical construct of the distance function and focus 
on its use in constructing a connectivity metric. For any cluster 
information element, a,, we are interested in the shortest path from 
source node to destination node, dt > 1, however calculated.6 The 
quantity, dt, represents the expense incurred by moving information 
element at from source to destination. This value is now used to cal- 
culate the connectivity value, kt, for information element at as fol- 
lows: 

d?< 

where G), > 1 is the rate at which k, varies with changing values of the 
distance function by reflecting the importance of the distance dl. To 
adequately determine a suitable value for Oty, it is necessary to assess 
the relative importance of obtaining reports on information element 
at. Given that a costless direct connection between two nodes results 
from a distance cost score of d, = 1, a strong connectivity score of 
kt = 1 results. As the distance cost increases, the connectivity value 
approaches 0. If no path exists between any source of information 
element x, and its destination, then dt -> °° and k{ = 0. 

6 The restriction that the path distances always exceed 1.0 accounts for the fact that, for con- 
nectivity to exist at all, at least one link must exist between source and destination. The case 
in which no links exist implies an infinitely long path resulting in 0 connectivity. 
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The strength of the connectivity among all the nodes in a path 
must take into account the vulnerability of path elements (links and 
nodes) to attack or failure. We can account for this using the connec- 
tivity score described above by examining its value as we remove each 
node, link, or both, one at a time from a given path (which we 
assume here is the shortest path and has r, nodes). For simplicity, we 
consider only the loss of nodes along the path.7 We define the value 
>kt as the connectivity value for information element al with the jth. 
path node removed. We create a depletion vector, L/5 whose 
elements are measures of how much connectivity is lost by the 
removal of each node, or L{ =[ln>li2->---JirlY > where lij = ki-3ki and r{ 

(as already noted) is the number of nodes in the shortest path that 
delivers information element al from any source to its destination. 

The vector L, represents the vulnerability of the shortest path 
and as such expresses the degree of uncertainty associated with re- 
trieving information element at from network sources. The next step 
is to reduce the vector L; to a scalar that can be used to reduce kt, 
that is, to reflect the path uncertainty in terms of its connectivity 
value. A logical choice is the vector norm defined as 

ii ii  I~T— 
||L/|| = "VL/L/ • 

The vector norm measures the magnitude of the vector and 
therefore in this sense measures the magnitude of the potential deple- 
tions based on the shortest path. A large norm indicates that the de- 
pletion associated with removal of nodes from the shortest path is 
considerable. This means the connectivity associated with the shortest 
path is tenuous and should therefore be reduced accordingly. Con- 
versely, if the norm is small, it reflects the fact that the shortest path is 
fairly robust and the reduction in the connectivity score should be 
minimal. Taking this into consideration, the adjusted connectivity for 
information element at from network sources to a single destination 
is calculated to be 

7 This approach, however, is equally valid if applied to links or both nodes and links. 
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k*=k, 

where \LA is the cardinality of the vector L, and 0<p<l is the edge 
expansion parameter of the network that reflects the reliability of the 
network (Davidoff, Sarnak, and Valette, 2003). The edge expansion 
parameter is a generalisation of the clustering coefficient of a net- 
work, moving from considering single nodes to clusters of nodes. For 
example, Watts uses the clustering coefficient as part of the charac- 
terisation of small world networks (Watts, 1999). 

The most reliable network is one in which every node is directly 
connected to every other node. Such a network is called 'complete' 
and leads to a value of p = 1. A value of p near to 1 thus implies that 
there are redundant paths in the network and, hence, high reliability. 
The edge expansion parameter p is calculated by considering clusters 
of nodes and how well they are connected to the rest of the network. 
Formally, for a finite network V, consider a subset U of V and let | U\ 
and \V\ represent the number of nodes in Uand V, respectively. Let 
EQVXV be the edge set of V. For a given node v in V, define the 
neighbours of v as T{v) = {ue V;{v,u) e E}. For the cluster U, we can 
then define the neighbours of Uns r(U) = uveUT(v). The boundary 
of the cluster f/is defined as the neighbours of the cluster Uless those 
nodes actually in the cluster U, i.e., dU = T(U)-U. Finally, the edge 
expansion parameter p is calculated by looking at the ratio of the size 
of the boundary of a cluster to the size of a cluster, considering all 
clusters within the network. In fact, we need only to consider clusters 
up to half the size of the total network to do this; thus, 

p = min* 
W\ 
\u\ 

■:(/cK;0< £/<L-l 
2 

Figure 5.1 illustrates three simple cases, which are fragments of a 
larger network, for which the edge expansion parameter is p = 0.5. 
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Figure 5.1 
Three Simple Connectivity Assessments 

Case 1 

d, = 2 d; = 2 
k, = 0.5 k, = 0.5 
L,= [0.5,0] L,= [0.5,0.25] 

IMI = 0.5 |LJ = 0.559 
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= 0.281 = 0.259 
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d,= 2 
k, = 0.5 
L,= [0.5,0.17] 

IM = 0-527 
/t;=0.5(1-0.527/2)2 

= 0.271 

We assume that the distance function, dt, for information element 
at from a single source is measured as the number of nodes between 
the source and the destination. In addition, we set the decay factor as 

CO; =1. 

In all three cases, the initial connectivity score is 0.5. In case 1, 
removing the source (node 1) results in a total loss of connectivity 
reflected in the first entry in L,. Removing node 4 results in no loss 
of connectivity because there exists an alternative path, not including 
node 4, of the same length. This is reflected in the second entry in 
L[. In the second case, removing node 1 has the same effect as in case 
1, but removing node 6 has the effect of reducing connectivity by 
0.25. The entries in the vector L, reflect results from the removal of 
both nodes in turn. In the last case, removing node 6 results only in a 
loss of 0.17 because of the existence of a shorter alternative path. 

The examples in Figure 5.1 all have a single source for the 
information element at. A more realistic example would be one in 
which there are several sources for the same information element. 
Figure 5.2 examines two networks with three source nodes. 
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Figure 5.2 
Connectivity Assessments with More Than One Source Node 

RAND MG22C-S.2 

In case 1, the shortest path is from 3 to 8 to 9. If node 3 is 
eliminated, the shortest path has four links. The same thing happens 
if node 8 is removed, which results in a depletion vector that reflects a 
loss of half the connectivity score for both nodes. The effective con- 
nectivity drops from 0.5 to 0.338. In case 2, the addition of the link 
between nodes 4 and 9 provides an alternative path that is as short as 
the original path. This means that there is no loss in connectivity. 

Accounting for the quality of information contained in accessi- 
bility, X(k) entails replacing the binary count of the number of 
required information elements available in completeness with a con- 
nectivity score for each of the cluster critical information elements, or 

X(k) = \ 
'k* 

K<=J 
1 otherwise 
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where k = ^=lk] and C is, as before, the total number of information 
elements needed to render a decision within the cluster.8 

Network Redundancy 

Network redundancy focuses on the reliability of the network—i.e., 
its ability to enable the delivery of information in the face of node 
loss, system outages, inefficient operating procedures, or some com- 
bination of all these. At the same time, a network can encourage the 
excessive delivery of information, thus causing delays as a result of the 
time and resources required to process it all. Consequently, network 
redundancy can be both a cost and a benefit of the network informa- 

tion flow. 
In Figure 5.3, for our CEC cluster example, we assume that the 

node in the centre of the diagram is a decision node within the clus- 
ter, deciding an appropriate response to an incoming missile threat. 
The three nodes labelled ax provide position and velocity informa- 
tion; a2 provides missile type information; and a3 provides status 
information on friendly response systems (go, no-go). The nodes 
labelled a4 and *% are also providing information; however, this 
information is not necessary to the node's decision to select a weapon 
system to engage the enemy missile. 

The command nodes receive reports on the missile's position 
and speed from three sources. Because both will change over time, we 
can expect multiple reports from each. These multiple reports require 
combining in some way. We reflect the uncertainty associated with 
the position and speed of the missile by assuming they are random 
variables with known probability distributions, as discussed earlier. 
One method that allows for the sequential updating of probability 

8 Note that this formulation assumes that all information elements are equally important 
and that they are independent. We discuss dependent information elements in Chapter 
Three. 
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Figure 5.3 
Node-Centric View of Information 

RAND MG226-5.3 

distributions is the one we have chosen: Bayesian updating.9 "What- 
ever method used, the degree to which the reports contribute to esti- 
mates close to ground truth and to narrowing the distribution vari- 
ance can be considered a benefit in terms of redundancy. 

However, all things being equal, the more sources of required 
information and the more frequent the reporting, the longer it takes 
for the decision node within the cluster to get a coherent view of the 
situation. This results from the fact that it takes time to process 
information that may or may not contribute to improving the quality 
of the estimates—essentially what is referred to as 'information over- 
load'. In addition, some of the sources may provide disconfirming 
evidence. The value of the disconfirming evidence can be good or bad 
depending on the degree to which it reflects ground truth. Neverthe- 
less, its presence increases uncertainty, requires time to evaluate, and 

9 In addition to Bayesian updating, the Dempster rule of combination and moving averages 
may be used to combine multiple observations. See Pearl (1987) and Shafer (1976). 
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therefore may decrease the quality of the estimates. Finally, it is also 
possible that raw data are processed before being sent, thus arriving at 
the command node as information that is time stamped with the time 
at which the processing ended. This possibility introduces an addi- 
tional latency that contributes to uncertainty. 

Unneeded Information 
Dealing with information that is not needed is treated as a pure 
cost.10 In Figure 5.3, the two information elements, aA and a5, pro- 
vide no useful purpose to the missile tracking and response mission. 
The costs of dealing with information of this type increases with the 
number of different information elements arriving at the command 
node and with their redundancy. 

The Combined Effects 
In the next section, we develop metrics for the measures just dis- 
cussed. The result will be an overall metric for network plecticity. For 
networks with inadequate information flow, as with excessive infor- 
mation flow, we would expect low plecticity scores. The goal is to 
configure the information flow and clustering over a network with 
established link connectivity so as to maximise plecticity as measured 
in terms just discussed. If we assume a normalised plectic score, with 
0 representing no plecticity and 1 representing maximum plecticity, 
then Figure 5.4 illustrates how the costs and benefits affect this score. 

• Minimal flow. The first flow depiction in Figure 5.4 represents 
minimal information flow and a set of isolated nodes. Although 
depicted as having no information flow, in reality we would 
expect that there are a few sources of required information. 
However, there is no opportunity to share information, and we 

10 This is not always the case. In a rapidly evolving combat situation, information not 
needed at one moment can become crucial the next. In this case, it is important that the 
network be capable of adapting rapidly. However, there is still some cost associated with 
accepting and processing information that is not needed to prosecute the current operation. 
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Figure 5.4 
Overall Network Plecticity 
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assume that the decision nodes need not consult with each other 
before acting. The result is no benefits, no costs, and therefore a 
low plectic score. 

• Excessive flow. Turning to the last flow depiction in Figure 5.4, 
the effects of information overload resulting from too much 
required and/or unneeded information results in low plectic val- 
ues as well. The high benefits associated with a rich information 
flow are offset by the high costs of processing excessive informa- 
tion. Information can be shared directly among all the nodes. 

• Adequate flow. Finally, the centre flow configuration in Figure 
5.4 depicts reasonable redundancy of required information and 
limited unneeded information sources, thus resulting in optimal 
plectic values. The high benefits are associated with just the 
right amount of information flow and the costs associated with 
processing excessive information are therefore very low. The 
connectivity is rich, allowing for direct and indirect information 
sharing. The fewer channels per node result in fewer network 
ties and, therefore, a more manageable network. 

The Benefits of Redundancy 
As mentioned earlier, redundancy has both cost and benefit aspects, 
each requiring definition in metric form. Multiple reports of required 
information from several sources can increase the reliability of the 
estimates of information elements. At the same time, too many 
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reports coming into, and being shared around, a cluster incur a cost 
because of information overload, reports of unneeded information, 
and possible disconfirming reports. We address the benefits first, but 
before beginning, we recognise the possibility that because the source 
of a rendered report is extremely reliable, its benefit might be consid- 
ered equivalent to several reports from less reliable sources. This adds 
a complicating factor because the reliability of the sources of all 
reports must be assessed. Assuming the data are available to make this 
assessment, we can provide for this phenomena through suitable 
weighting. 

First, we let >}(©,•) be the benefit accruing from obtaining 
reports on the value of information element a{ from pt sources, 
where 0. =y^i,0,,-, and 0, , e [1,°°) measures the assessed reliability 
of the report on information element <z, from source Sj(\<j<pi). 
This formulation ensures that 0, > 1, as long as at least one report is 
received for information element ai. Also, if all sources are minimally 
reliable, then ri{®i) = ri{pi), since 0,j = l for all sources Sj. As with 
the accessibility metric X, we restrict ^(0,) to be between 0 and 1. In 
this case, >}(©,.) = 0 implies no benefit from redundancy. This result is 
equivalent to the case in which a reported estimate for information 
element at emanates from a single, marginally reliable source 
(0,^=1), or if no report is rendered, >}(©,.)-»1 for some number of 
sources. A suitable model that reflects this behaviour is 

h-e^M       Pi>l   _ 
[        0 otherwise 

The parameter 8, reflects the relative importance of the information 
element a;. If a single report from an extremely reliable source 
arrives, it can be given a large weight so that 0, = 0,,! is large and 
^(0;) —> 1 for a single report. This metric therefore not only measures 
the effects of redundancy but also reflects the adequacy of the source 
of the report. Figure 5.5 illustrates how the value of the constant 0, 
influences how rapidly redundancy and adequacy scores contribute to 
convergence. 
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Figure 5.5 
The Effect of 8, and 0, on the Benefits of Redundancy 
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The table below the figure records the data used to construct the 
graphs. Note that for the third entry, only a single report source 
(/>3 = 1) exists, but it is considered more reliable than the two and 
three sources for entries 1 and 2. However, regardless of the redun- 
dancy scores, the impact of the information element importance 
scores is dramatic. 

Having determined a redundancy benefit for each information 
element in a cluster's information set, we now combine the scores to 
arrive at an aggregate score for the required information set available 
across the cluster. Recall that the total number of required informa- 
tion elements across the whole network is N; the number critical to a 
cluster is C, where C<N; and the number of required information 
elements available within the cluster is n, where n<C. If we let the 
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vector 0 = [01,02,---,0c]r represent the value of reports received 
from the P = [pi,p2''"'Pc^T sources, we can construct a suitable 
normalised aggregate metric, R(@), as follows:11 

*(e) = ixf=1,(e,) 

n 

where y, =1 if pi; > 1 and 0 otherwise. No penally is assessed for miss- 
ing information. This is accounted for in the accessibility score dis- 
cussed earlier. In the case in which n = C = 0, we must have that 
0,- =0 and therefore R(Q) = 0—i.e., there is no redundancy benefit, 
even though the accessibility score is X(k) = 1. 

Combining the Benefits 

The next step is to combine the beneficial effects of information 
access, X, and redundancy, R, into a single metric for the cluster. To 
do this, we choose a conditional model. The benefits of redundancy 
depend on the information elements received by the cluster, in addi- 
tion to the number of sources for each. The conditioning, however, is 
quite weak. For example, it is possible for a cluster to have perfect 
information access and score 0 for redundancy. Conversely, a cluster 
with very limited access can have a rather large redundancy score. But 
it is impossible to obtain positive redundancy benefit unless there is at 
least one report on at least one information element. A simple ratio, 
R{®)IX(k), exposes the desired relationship. However, the ratio is 
only bounded between 0 and 1 when R(S)<X(k) and Xt(k)*0. We 
can modify the ratio using parameters to avoid a zero denominator 

11 Implicit assumptions in this form of aggregation are that (1) the value attributed to the 
reports is linear and (2) there is no value associated with the interactions among the reports. 
We discuss the issue of multi-attribute aggregation in Chapter Three. 
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and ensure the combined metric is bounded on [0,1]. We begin by 
setting 

r  ,  ,,    . .,     K+R(e)     , 
B[R(Q)\X(k)] = c^-^ + d. 

In this formulation, the parameter ß>l ensures a nonzero 
denominator and the parameter K>0 with the two constants c and d 
are used to ensure the combined metric is bounded between 0 and 1. 
The parameters, ß and K, reflect the relative importance placed on 
redundancy and completeness. The desired boundary conditions are 
i?(0|0) = 0 and 5(1|1) = 1. That is, obtaining the maximum redun- 
dancy given maximum access produces a maximum combined score, 
whereas it is impossible to achieve any redundancy given no access to 
the critical information elements.12 The first condition yields 

5(0|0) = c^+^ = 0 and ^ = -c|; 

hence, we get 

The second boundary condition yields 

ah hi      K+1      K    C(ß+K)    i. B 1 1 \ = c- c— = -^--—f = 1 L ' J      ß-1      ß    ß(ß-l) 

therefore, 

12 Two other 'edge' conditions might be considered as well: 5(11 0), and 5(011). The for- 
mer is not possible because it is impossible to accrue any benefit from redundant reports if 
critical information is inaccessible. The latter is equally impossible because it suggests that no 
benefit from redundancy is possible even though critical information is totally accessible. If 
at least one source reports on each critical information element, then /?(©,) > 0. 
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ß+K ß+K 

This gets us the final relationship, 

W)I*MJ—(P+K)[P.XW] ■ 

which is bounded between 0 and 1 and exhibits the required depend- 
ency between accessibility and the benefits of redundancy. Substi- 
tuting 

X(k)= A ' and i?(e) = l--lf=1Yie-8'(0'-l) 

yCj 

yields 

(M 
4Ä(e)i*«]= 

K 
\Cj 

+ßl--l£,Y^M 

(ß + K) 
7      /    "\£ 

KCJ 
ß- 

The Costs of Information Within a Cluster 

The contribution of costs to plecticity within a cluster arises from 
three sources: (1) information overload, (2) disconfirming evidence, 
and (3) incomplete information. The latter cost is included in the 
calculation of the benefits associated with information accessibility. 
Disconfirming evidence has been covered previously as well. It arises 
as an issue when reports for disparate sources and sensors must be 
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combined to create a common operating picture. In this section, we 
focus exclusively on the costs of information overload. As mentioned 
earlier, information overload arises from too many sources of needed 
information and any source of unneeded information, which are both 
functions of redundancy. We begin with the costs of unneeded 
information. 

Costs of Unneeded Information 
In this analysis, the supply of unneeded information places a burden 
on the node receiving it and sharing it around the cluster. It has an 
immediate negative impact in that it must be processed or, at a 
minimum, interferes with the receipt of needed information. How- 
ever, as more of it is supplied, its marginal impact is reduced in the 
same way email spam is dealt with in a modern office environment. 
Thus, a good function to model this behaviour is the exponential 

U(m) = l- -VI» 
■e     , 

where m is the number of sources of unneeded information and v is a 
scaling parameter that reflects the rate at which unneeded informa- 
tion contributes to cost. This calculation then indicates the effect 
across the whole cluster, rather than at an individual affected node. In 
this case, no distinction is made between multiple sources of the same 
unneeded information and multiple sources of different information 
elements. Thus, the same cost results from the same information ele- 
ment supplied x times or x different information elements supplied 
once each. We show the influence of v on the cost in Figure 5.6. As 
v increases from zero, the saturation point is reached more rapidly. 

Costs of Redundant but Needed Information 
We now examine the effects of the cluster receiving too much needed 
information. As mentioned earlier, an overabundance of needed 
information contributes to information overload, increases the likeli- 



The Effects of Complexity   81 

Figure 5.6 
Cost of Unneeded Information 

RAND MG226-5.6 

hood that some of the information will be disconfirming, and there- 
fore may cause delays in processing. The costs of information over- 
load associated with needed information are generally minimal for 
low levels of redundancy. Indeed, at these levels, the benefits far out- 
weigh the costs, as discussed earlier. However, at some point, costs 
rise sharply so that the marginal cost of an additional source of 
information is greater than the previous source. At some further 
point, this cost then levels off so that the marginal costs are minimal. 
This behaviour is best described using a logistics response function 
such as the following: 

gi{p) = 
-{li*9iPi) 

l + e -{xWiPi) 

In this formulation, the pt values are the number of sources for 
information element at as before and %* and (p, are shaping parame- 
ters. We illustrate the influence of these parameters in Figures 5.7 and 
5.8. The actual values will depend on the effects of receiving extra 
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Figure 5.7 
The Costs of Redundancy for cp, = 1 
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Figure 5.8 
The Costs of Redundancy for %, =-6 
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needed information. They can be assessed based on the point at 
which the extra sources of needed information begin to have a detri- 
mental effect on operations at the node, the point at which the mar- 
ginal cost of redundant information increases rapidly, and how soon 
after this the saturation point is reached—i.e., the point at which the 
marginal costs become negligible. 

As was the case in calculating the overall benefit of redundancy, 
the costs of oversupply of each needed information type can be com- 
bined in a variety of ways. For simplicity, we expressed it here as a 
simple sum.13 

G(P) =-X^,-(A) 

1,   „ „-{Xi+fi+Pi) 

l + e-{Xi+<fi+Pi) 

where V = [px,p2,-,pc]T and y.=j    ' Pi .   . 
10 otherwise 

Combining the Costs of Information for a Cluster 

In considering the overall costs, a balance is struck between costs of 
needed and unneeded information. Unfortunately, the two are not 
independent. That is, the presence of one can greatly affect the cost of 
the other. For example, dealing with redundant needed information 
in the absence of any extraneous, noncontributing reports is clearly 
different than if the unneeded reports are present. However, the 
nature of the dependency is not clear. Consequently, we use a simple 
weighted linear sum of the two, or 

0[U(w), G(P)] = aU(»)+(l - cc)G(P), 

where 0 < a < 1 is a relative weight parameter. 

13 The same assumptions made for the benefits of redundancy apply here as well. 
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Some may argue here that two functions have been used to 
model what is essentially the same cost: information overload. How- 
ever, it is considered that these two types of information overload 
have different impacts on cluster effectiveness. Needed information 
affects the amount of information that needs to be processed, but 
there is also a greater chance of conflicting information, which places 
an additional burden on the cluster. Unneeded information is more 
easily dismissed, given that it is not essential to the user's needs. 

Combining Costs and Benefits 

The next step is to combine the costs and benefits of network plec- 
ticity for a cluster within the network, associated with the mission at 
hand. The term 'costs' suggests a simple cost-benefit analysis might 
be appropriate. In such a case, the benefit is divided by the cost, 
resulting in an assessment of the cost for a unit of benefit. However, 
in this analysis, we are not dealing with a true cost in the cost-benefit 
sense, but rather a cost more closely described as a penalty. We began 
this chapter by describing the characteristics of the network-plecticity 
metric, as illustrated in Figure 5.4. We assume each of the clusters in 
the network is logically connected to support a given mission. Plec- 
ticity for a cluster is then associated with the flow of information 
associated with that cluster. Both minimal (inadequate) flow and 
excessive flow should result in low plecticity, whereas 'optimal' (ade- 
quate) flow should result in high plecticity. Therefore, for each cluster 
Win the network, the measure of network plecticity C(B,0) is calcu- 
lated as follows: 

C(B,0) = B[R(e) | X(k)] [l-0[U(m),G(T>)]] 

(ß-l)H?) + K^)][l-at/H-(l-a)G(P)] 

(ß + K)(ß-*(*)) 
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Overall Network Performance 

The last step is to combine this redundancy-based plecticity with the 
benefits of collaboration to produce a metric that will assess the per- 
formance of networked decisionmaking headquarters. Collaboration 
measures the effects of information sharing across a cluster on infor- 
mation completeness and accuracy (i.e., bias and precision), whereas 
redundancy-based plecticity measures the effects of redundant infor- 
mation and the degree of information access. The former assesses the 
dynamic nature of the operation conducted on the network; the latter 
measures the effects of the underlying network structure and is there- 
fore systemic. All the dependencies among the several components of 
collaboration and plecticity are not generally well understood. How- 
ever, we know that high-quality performance requires good cluster 
knowledge and the means to share it and that scores in either category 
are penalised by deficiencies in the other. Therefore, the measure of 
total network performance is taken to be 

ß(n,K^)=i,t1[c,.(5,o)^,K](0', 

where Xjl,a>; =1 an<l ^ ls tne tota^ number of clusters across the net- 
work. 

For values of Q.(U,KNet) close to 1.0, the network is performing 
well by producing the information required to take decisions within 
each of the clusters when required. However, this is not the whole 
story. The next step is to assess how well the combat mission is 
accomplished. As important as good decisions are, good combat out- 
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comes are the ultimate measure of the value of network-centric opera- 
tions. 

Summing Up 

In assessing the effects of networking headquarters on increasing deci- 
sionmakers' knowledge and therefore improving decisions, we have 
analysed the network in terms of its static structure and of the 
dynamics associated with performing the operational mission. The 
former resulted in the development of a structural 'plecticity' metric 
for each cluster, and the latter in a dynamic 'knowledge' metric for 
each cluster. Both these metrics were developed by viewing a network 
of connected headquarters as a set of clusters within each of which all 
decision nodes (headquarters) share information. They are then com- 
bined to form a metric of overall network performance. 

In the process of developing these metrics, we have appealed to 
information sciences, probability and statistics, estimation theory, 
complexity theory, combinatorics, and, of course, a large measure of 
heuristics. In the process, several terms were introduced as shaping 
parameters. For the most part, these parameters are designed to reflect 
the behaviour of both physical and cognitive phenomena. Where pos- 
sible, we suggest methods for assessing reasonable values for these 
parameters. Nevertheless, we recognise that establishing methods for 
assessing these values is an open research question that will require 
considerable experimentation. 

The aim of the work presented in this chapter is to contribute to 
the development of a theory of such complex information networks 
in order to stimulate both further theoretical development and 
experimentation. Although we include an application of the measures 
and metrics in Appendix C, there is still much more work to be done 
in progressing this new science. 



CHAPTER SIX 

Conclusion 

At the outset, we argued that it is important that military planners 
responsibly test the emerging network-centric concepts before their 
adoption. Several observers concerned about the 'irrational exuber- 
ance' surrounding the claimed benefits of network-centric operations 
support this view as well.1 They argue, as we do, that the claimed 
benefits may prove to be true but that analysts should strive to assist 
the military community in assessing them. This recommendation 
implies employing the full range of analytic techniques: models, 
simulations, exercises, and experiments. The problem, however, is the 
paucity of tools that will allow us to quantify the benefits of local 
collaboration and clustering across an information network. Although 
we make no claim that the methods reported here are definitive, they 
do represent an approach that draws on several disciplines to assess 
how well alternative operating procedures and network configurations 
contribute to the decisions made by headquarters that share informa- 
tion and thus develop shared awareness and collaboration. 

The approach taken brings together two key ideas. The first idea 
comes from previous work by RAND that shows how Shannon 
entropy can be used as the basis of a quantified measure of the 
knowledge resident within a cluster of decisionmakers who share 
information. Such an approach allows the concept of full shared 
awareness to be precisely defined in terms of such clusters and also 

1 See, for example, Giffen and Reid (2003) and Barnett (1999). 
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permits the measure of benefit to be lifted from the information 
domain to the cognitive domain in terms of our process model of 
information age warfare. The second idea comes from Dstl research 
on the representation of command and control (and the other associ- 
ated elements of C4ISR) in aggregate constructive simulation models 
of conflict. This concept has resulted in the Rapid Planning Process, 
which gives a basis in terms of mathematical algorithms for the repre- 
sentation of expert decisionmaking in fast-paced, fluid circumstances. 
These ideas are brought together using the idea of 'plecticity' drawn 
from our view of the network as a complex system. Combining col- 
laboration and plecticity results in a total measure of the benefits and 
costs associated with a particular local collaboration and clustering 
across such a network. The measure captures the ability of the clusters 
to support the decisionmaking process at a key decision point, in 
terms of determining to what extent the distributed decisionmakers 
are within their 'comfort zones' in relation to the values of their key 
decision elements, which are shared across the clusters. 

We have adopted an approach that first deals with the concep- 
tually simplest case, when the information elements forming the basis 
of the decisionmaking in a cluster of the network all have the same 
distribution of uncertainty (hence, we assume they are all normally 
distributed). In this case, with full shared awareness across the cluster, 
the knowledge available to the cluster can be quantified on the basis 
of the variance of the key decision elements and their covariance, 
which builds up over time. This first part of the work highlights in 
particular the benefit to local knowledge of such covariance (i.e., the 
degree to which one element of information relates to another) in 
quantifying such knowledge. Such a measure thus relates closely to 
'commonsense' ideas of knowledge in terms of understanding how a 
number of elements relate one to another. 

We then deal with the more general case of when the informa- 
tion elements shared across a cluster have more general distributions 
of uncertainty. A number of approaches to this case are examined 
based on a mixture of empirical and theoretical ideas. By combining 
these ideas, it is possible to form a complete chain of quantifica- 
tion—from an initial network architecture and local collaboration, 
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through the formation of clusters across the network, through to the 
overall plecticity and performance of such a network. In this way, dif- 
ferent possibilities for collaboration (and hence different future head- 
quarters structures based on such distributed clustering and local 
decisionmaking) can be compared in terms of their total network per- 
formance. This comparison measures the ability of such distributed 
decisionmakers to make better decisions, based on better under- 
standing of the critical information elements shared across collabo- 
rating clusters in the network. 



APPENDIX A 

The Rapid Planning Process 

Gary Klein's Recognition Primed Decision (RPD) model emphasises 
situation awareness (SA) (Klein, 1989). The goal of the SA process is 
to provide the decisionmaker (the command agent) with an under- 
standing of what is happening in the outside world. In particular, the 
command agent, through SA, tries to answer the question: 'Is the 
situation that I perceive in the outside world one that I recognise? 
Because if I do recognise the situation, then my experience (long-term 
memory) tells me immediately which course of action (CoA) I should 
adopt, given this situation.' 

The focus of the SA process is thus on pattern matching— 
analysing the information available about the outside world and try- 
ing to match the perceived state of the world to one of an existing 
array of patterns held in the command agent's long-term memory. 
Each pattern is a representation of a situation, and each situation is 
linked directly to a CoA appropriate to that situation. This linkage, 
held in the command agent's long-term memory, represents the 
command agent's experience and is what enables the command agent 
to make decisions rapidly without recourse to extensive option 
generation and evaluation. 

We model this behaviour through the Rapid Planning Process. 
The model thus comprises four main stages: (1) observation analysis 
and parameter estimation, (2) situation assessment, (3) pattern 
matching and preferred posture selection, and (4) posture transition. 
We discuss the first three in the context of a simple land operation 
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example. The headquarters model is concerned only with the overall 
process up to the decision. 

Stage 1: Observation Analysis and Parameter Estimation 

Stage 1 involves analysing the command agent's current observations 
of the battlespace, which comprise data received by the command 
agent via its sensors. The analysis of these data consists of data 
smoothing and parameter (mean and covariance) estimation. Where 
the variables are normally distributed, the data analysis is performed 
by a collection of dynamic linear models (DLMs). A DLM is a 
mathematical structure for short-term forecasting, modelling, and 
analysis of time-series processes with normal errors. (DLMs are fully 
described in West and Harrison, 1997.) 

A Simple Land Operations Example 
Figure A. 1 illustrates the details of stage 1 of the Rapid Planning 
Process for this example. We assume decisionmaking is based on the 
perceived combat power ratio (PCPR) (see stage 3). The command 
agent deduces the PCPR from observations (via sensors) of two quan- 
tities in the local area of interest,1 namely enemy combat power and 
friendly-force combat power. These two data input streams are ana- 
lysed independently within the command agent via a pair of DLM 
class II mixture models—one model tracks the enemy combat power 
values while the other model independently tracks friendly-force 
combat power values.2 In general, each class II mixture model com- 
prises four separate DLMs: a 'standard' DLM, an outlier-generating 
DLM, a level change DLM, and a slope change DLM. 

1 The command agent's local area of interest is a circular region centred on the agent. The 
radius of this region is user specified. The agent's recognised picture covers only this region 
and is thus 'mobile'—that is, it moves with the agent. 
2 See West and Harrison (1997), §12.3. 
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Figure A.1 
Stage 1: Observation Analysis and Parameter Estimation 
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In each case, we look at a time series of observations of force lev- 
els (as assessed by a set of sensors or fed to the commander by an 
information source). Each DLM represents a predisposition by the 
commander to look at the series of estimates in a particular way, tak- 
ing account of other contextual knowledge that may be available to 
him. 

The 'standard' DLM represents the assumption by the com- 
mander that nothing much is changing; he expects that the time 
series of observations will carry on at about the same level. 
The outlier DLM makes the assumption that the current 
observation is a significant deviation from the observations seen 
so far (causing a much higher variance in the series) but that the 
series is expected to settle back to the previous level. 
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• The level change and slope change DLMs represent an assump- 
tion by the commander that there will be significant change in 
level or slope (rate of change) of the series. For example, if the 
commander has access to his superior commander's plan, he 
may know that, at a certain time, additional friendly-force ele- 
ments will move into his area of interest. He will thus be predis- 
posed to look out for this when tracking the value of his own 
force strength over time. 

Each of these DLMs is equivalent to a corresponding hypothesis 
by the commander about what is happening in his local area of inter- 
est while tracking the critical information element of force level over 
time: no change; a blip, which can be ignored; a step change; or a 
change in slope (growth or decay). When we have a vector of critical 
information elements making up the commander's conceptual space 
(also called the common relevant operating picture, or CROP), these 
hypotheses relate to the likely behaviour of the values of the critical 
information elements that form a vector characterising the conceptual 

space. 
The 'standard' DLM is a first-order polynomial DLM, repre- 

senting a system model Mx that describes a constant level time series. 
The parameters estimated by the DLM are the mean and variance of 
the time series level denoted, at time t, by m{t) and C(t), respectively. 

The other three DLMs in the mixture model are all second- 
order polynomial DLMs. The outlier-generating DLM represents a 
system model, M2, that describes a transient in the time series. The 
level change DLM represents a system model, M3, that describes a 
step change in the time series. The slope change DLM represents a 
system model, M4, that describes a slope change in the time series. 
The parameters estimated by each of these three DLMs are the mean 
values of the level and the growth rate of the time series denoted, at 
time t, by vector m(t), and the associated covariance of the level and 
growth rates denoted, at time t, by matrix C(*). 
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The Common Relevant Operating Picture 

The CROP (the local conceptual space) is spanned by the set of criti- 
cal information elements. For our simple example, these relate to the 
local force ratio. In each case, the DLM formulation updates the 
assessment of where the commander perceives he is located within the 
space described by the vector of information elements. This corre- 
sponds to a multivariate normal distribution. The commander's fixed 
patterns correspond to particular 'areas' within this space that he con- 
siders important, such as good own force level and poor perceived 
enemy force level locally. To each of these fixed patterns is associated 
a particular mission, such as 'advance', representing the direct link 
between situation assessment and choice of feasible CoA required by 
the RPD approach. The overlap between the output from the DLM 
and the fixed patterns is used to update the probability that each of 
these patterns is the most relevant.3 

In more detail, and taking as an example enemy and own force 
strengths as the factors forming the recognised picture, each DLM 
mixture model operates on an input time series, i.e., a sequence of 
observations received from external sensors.4 For one mixture model, 
the input time series comprises observations of the enemy combat 
power in the command agent's local area of interest; this series is de- 
noted by Ye(t) in Figure A.1 and comprises the sequence 

{Ye(0),Ye(l),.;Ye(t-l),Yc(t)}. 

For the other mixture model, the input time series comprises observa- 
tions of the friendly-force combat power in the command agent's 
local area of interest; this series is denoted by Y0{t) and comprises the 
sequence 

{Yo(0),Yo(l),...,Yo(t-l),Yo(t)}. 

3 An example of how this can be implemented is shown in Chapter 2 of Moffat (2002; also 
see p. 38). 
4 In this example, we focus on only a single critical information element: combat power. 
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Note that the observations in the two time series need not necessarily 
coincide because they are independent input streams. 

Each DLM mixture model processes its associated time series of 
observations in the same way (and independently from the other 
DLM mixture models). We describe this process below for the enemy 
combat power time series; an analogous process operates in parallel 
for the friendly-force combat power time series. Figure A.1 shows the 
state of the parameter estimation process after the observations up to, 
and including, Ye(t-\) have been processed by the DLM mixture 
model and before the next observation, Ye{t), is processed. To process 
the next enemy combat power observation, Yt (t) is fed into the DLM 
mixture model and analysed. The DLM algorithms follow the Baye- 
sian methods developed in West and Harrison (1997). At each stage 
of the process, a probability is computed for each of the commander's 
hypotheses (corresponding to one of the DLMs). These probabilities 
are tracked over time to assess whether we are approaching the 
boundary of the 'OK' state, i.e., the probability of no change has 
declined significantly. The following are key outputs of the mixture 

model: 

• Updated estimates of the system model parameters. These 
estimates now take into account the new observation Ye(t). 
There are four sets of these estimates, denoted (me(t),Ce(t)) , 
where k e [1,4] is the DLM type. One set of estimates is pro- 
duced by each DLM in the mixture model. The particular val- 
ues (me(t),Ce(t)y are the current estimates of the mean and co- 
variances of the enemy combat power (level and growth) on the 
assumption that system model M' represents the time series 

seen to date. 
• Likelihood estimates for each system model. This is the likeli- 

hood that the observation Ye{t) would have been obtained from 
each system model. There are four of these, one for each DLM 
in the mixture model. The likelihoods are denoted 
L{Ye{t)\M

k,De{t-\)), where De(t-\) represents all observations 
seen up to, but not including, the current observation, Ye(t). 
This is repeated for the friendly-force estimates. 
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• Posterior probabilities that each hypothesis is correct. The pos- 
terior probabilities p(Mk \ De(t)) are the probability that model 
Mk best describes the time series of observations seen up to time 
t. This is repeated for the friendly-force estimates. 

The posterior probabilities p(Mk | De{t)) (for the enemy combat 
power observations) and p(Mk \ D0{t)) (for the friendly force combat 
power observations) are updated on a continuous basis as part of the 
command agent's sensing cycle. 

Stage 2: Situation Assessment 

The means, covariances, likelihood estimates, and posterior probabili- 
ties are input to stage 2 in the Rapid Planning Process. Figure A.2 
illustrates the processes in this stage. At each command and control 
cycle (which runs independently of the sensing cycle), the command 

Figure A.2 
Stage 2: Situation Assessment 

RAND MG226-A2 
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agent performs an SA to decide whether the perceived situation, 
based on the sensor observations made to date, is currently 'OK' or 
'Not OK'. The situation assessment is performed in two steps. 

Step 1—OK/Not OK Assessment 
The first step of the SA considers the enemy combat power and 
friendly-force combat power observations separately, as follows. 
Examining each DLM mixture model: 

• If the 'standard' DLM has the highest posterior probability, the 
situation is deemed OK. This conclusion is based on the fact 
that the combat power observed is currently showing a steady 

level.5 

• If any of the other three DLMs (the outlier, the level change, or 
the growth change models) has the highest posterior probability, 
the situation is deemed Not OK. This conclusion is based on 
the fact that the combat power observed has changed from a 

steady level. 

Step 2—Initial Situation Assessment 
Step 1 generates an OK/Not OK result from each DLM mixture 
model. In the second step, we combine these results, using Table A.1, 
to determine an overall assessment of the current situation. This 
corresponds to the 'storytelling' level of SA discussed by Klein (1989). 

5 In West and Harrison's version of the DLM class II mixture model (West and Harrison, 
1997, §12.3), the 'standard' model is the linear growth model (the second-order polynomial 
DLM). It should now be clear why, in our case, we actually need the standard model to be 
the constant model (the first-order polynomial DLM), representing a system model that 
describes a constant level time series. It is because a linear growth model used as the standard 
model (the OK model) might remain the most likely model throughout—so that we would 
interpret the situation as remaining OK—while actually tracking a steady drift of combat 
power values across a wide range—so that the situation therefore might not always be OK 
from a PCPR perspective. The only OK situation is the one in which the combat power 
observations are remaining more or less constant—hence the use of the constant (first-order) 
DLM. 
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Table A.1 
Initial Situation Assessment Matrix 

Enemy Combat Power Mixture Model 

Friendly-Force Combat 
Power Mixture Model 

OK Not OK 

OK OK Not OK 

Not OK Not OK Not OK 

Thus, the overall SA is OK only if the situation is OK with 
respect to both the enemy and friendly-force combat power observa- 
tions. In each of the other cases, one or another, and possibly both, of 
the SAs are Not OK because there has been a significant change in 
the enemy and/or friendly-force combat power and the overall SA is 
deemed Not OK. 

The idea behind the SA described here is to provide an initial 
OK/Not OK alert to the command agent. If the situation is OK, the 
command agent carries on doing whatever it is currently doing—it 
remains in its current posture; there is no need to do any (stage 3) 
pattern matching and preferred posture selection, because everything 
is currently OK. 

If, however, the situation is Not OK, then only in this case does 
the command agent need to go into stage 3 of the Rapid Planning 
Process and do some pattern matching to find out if a change in 
posture is required. 

If the situation is Not OK, the command agent invokes stage 3 
of the Rapid Planning Process model. Some key data items6 are 
passed to stage 3—namely me{t) and m0{t), the current best estimates 
of the enemy and own force combat power values, respectively, and 
their associated variances, Ce{t) and C0(t). These 'best' estimates are 

In this version of the Rapid Planning Process model, only the means and variances of the 
combat power values are used in stage 3. We do not forward to stage 3 any of the additional 
information that is actually available at the end of stage 2, namely the growth rate and its 
variance (in the case of second-order polynomial DLMs) and knowledge of which system 
models are the better descriptors of each combat power time series. Future enhancements to 
the model will likely make use of this additional information. 
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the values output by the DLM, in each mixture model, which cur- 
rently has the highest posterior probability. 

Stage 3: Pattern Matching and Course of Action Selection 

Stage 3 of the Rapid Planning Process model attempts to recognise 
the extant battlespace situation, based on the data received by the 
command agent, and identify the posture (CoA) appropriate to this 
situation. Figure A.3 illustrates the process. 

As mentioned earlier, the inputs to stage 3 are the current best 
estimates of the enemy and own force combat power values, respec- 
tively, and their associated variances. From these, we calculate the 

Figure A.3 
Stage 3: Pattern Matching and Course of Action Selection 
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PCPR at the current time t, denoted PCPR(f). The PCPR(*) is a ran- 
dom variable with probability density having a time-dependent mean, 
\lz(t), and a standard deviation, vz(t). We depict these elements in 
Figure A.3. The PCPR(?) distribution characterised by its mean and 
standard deviation is input to the main pattern-matching process. 

The pattern-matching process (denoted by symbol <S> in Figure 
A. 3) compares the PCPR(?) distribution against a number of 
patterns, denoted P(k). Each pattern is a representation of one 
possible situation that could exist in the battlespace. Comparing is 
aimed at selecting the most likely pattern given the PCPRW being 
compared. The comparison (pattern match) of PCPR(*) against a 
given pattern, P(k), yields two outputs: 

• L(PCPR(t)\P(k)): The likelihood that PCPR(f) would have 
been obtained had the situation in the battlespace been the one 
represented by pattern P(k). 

• p(P(k) | D(t)): The posterior probability that pattern P(k) is the 
one that best represents the situation in the battlespace, given 
the time series of (enemy and own force combat power) observa- 
tions seen up to time t (i.e., the current situation). 

Having calculated the posterior probability of each pattern 
P{\),P{2),---,P(n), we select the pattern P{k) with the highest 
posterior probability as the one that best represents the situation 
extant in the battlespace. The situation has now been 'recognised'. 

The next step—and the essence of the RPD model of decision- 
making—is to invoke the decisionmaker's experience and map the 
recognised situation to an appropriate CoA. In Figure A.3, experience 
is represented by the set of one-to-one mappings between patterns 
P(t) and CoA(/) for all i e [1,«] stored in the command agent's long- 
term memory. Thus, the selected pattern P{k), representing the rec- 
ognised situation, leads directly to the selection of an appropriate 
CoA, namely CoA(£). 

CoA(£), selected in this way, is referred to as the preferred 
posture. It is the posture that the command agent's experience says is 
most appropriate, given the situation recognised in the agent's local 
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area of interest. The preferred posture is then passed into stage 4 
(posture transition) of the Rapid Planning Process model. We do not 
make use of stage 4 of the Rapid Planning Process in the method 
proposed in this report. Our processing terminates with the selection 

ofCoA(*). 
Moffat (2002) details the mathematical development of these 

algorithms for the general case of a conceptual space with several fac- 
tors. 

Application 

The following is an example application. The modelling test bed used 
is CLARION+, an experimental test bed developed by the Defence 
Science and Technology Laboratory (Dstl) to examine the effect of 
such decisionmaking on combat behaviour. Figure A.4 is a screen 

Figure A.4 
CLARION* Screen Image of Land-Air Interaction 
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image from CLARION+ that shows a campaign-level land-air inter- 
action between two forces (Red and Blue) in which Red, using a bold 
command strategy developed by a genetic algorithm, fixes Blue in the 
south and then flanks north to exploit a hole in Blue's defence. The 
boxes with a single diagonal line marking are airborne sensors that 
help to generate the operational picture and assessment of enemy 
intent on which the plan is based. 

For one of the brigades in the circle, the dynamics of the Rapid 
Planning DLMs used to assess the level of enemy force strength in the 
local area of interest of the brigade are shown in Figure A. 5. 

At the top left-hand part of the figure, the mean values of enemy 
force strength assessed in the local area are shown for each of the four 
mixture models (standard, outlier, level change, slope change).7 These 
values vary with time along the x-axis and grow as the brigade 
encounters an enemy group in its local picture. 

Figure A.5 
Rapid Planning Type II Mixture Model Depiction 

RANDMG226-A5 

7 In Figure A.5, these models are called constant, outlier, level, and growth, respectively. 
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The bottom left-hand corner of the figure displays the time- 
varying Bayesian probabilities that each of the four models is a correct 
assessment of the situation. These probabilities also vary with time 
along the x-axis. The most likely hypothesis moves from the standard 
model, through the outlier model, to a realisation that there is a level 
change in enemy combat power occurring in the local area. The con- 
stant model later supersedes this again. 

At the top right is a display of the probability that each of the 
fixed patterns (and hence the associated CoA) is the best pattern 
match for the current perceived situation, for that brigade, at the time 
the simulation test bed was paused. The possible courses of action are 
advance, attack, defend, delay, or withdraw. The figure shows that at 
the time the simulation was paused, the local commander favoured 
advancing or attacking. 
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Information Entropy 

Claude Shannon first introduced information entropy in 1948. In the 
early 1940s, it was generally believed that noise limited the flow of 
information through a channel. That is, if one decreased the prob- 
ability of error in the received message, the true rate of data transmis- 
sion decreased. Consequently, an error-free message could only occur 
if transmission ceased! Shannon disproved this theory. He was able to 
show that, in fact, if a channel had nonzero capacity (calculated from 
the noise of the channel), an arbitrarily low probability of error could 
be achieved as long as the transmission rate was below the channel 
capacity. He also argued that random processes such as speech and 
music had an irreducible complexity below which signal compression 
was impossible. He referred to this as entropy and further claimed that 
if the entropy at the source of a communication channel was less than 
its capacity, an arbitrarily low error rate could be achieved.1 

It is this reference to communications as a stochastic or random 
process that leads to its application in the field of statistics. In his 
book on information theory, Solomon Kullback (1978, p. 1) cites 
several sources to support his argument that the statistical theory of 
communications is synonymous with communications theory and 
that communications theory and information theory are also syn- 
onymous. Because probability distributions describe the uncertainty 
associated with mutually exclusive and collectively exhaustive events, 

1 This summary draws on Cover and Thomas (1991), Blahut (1987), and Kullback (1978). 
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it is natural to ask about uncertainty's complement, that is, what is 
known, or the amount of information available. This leads us to the 
modern use of information theory as a measure of the average infor- 
mation available in a probability distribution. 

A Statistical Theory of Information 

Suppose X-{xl,x2,--;x„} is a discrete random variable with 
probability mass function P(X = xi) = pi. Each of the *, represents an 
event (as do conjunctions and disjunctions of the #,.), the occurrence 
of which imparts information. What we seek is a measure for the 
amount of information imparted. It seems logical to assume that this 
amount, whatever it is, is inversely proportional to the likelihood that 
the event will occur, or 

For example, the fact that the sun rose this morning imparts no 
information, because we knew it all along. That is, the likelihood of 
its occurrence is 1.0. Conversely, being told that you have just won 
the lottery conveys considerable information because it is an unlikely 
event. 

In a 1928 paper, Ralph Hartley was the first to suggest the use 
of the logarithm in a measure of information by defining a measure 
of information to be the logarithm of the number of possible symbol 
sequences (Hartley, 1928). Shannon picked up the idea of using the 
logarithm as the proportionality constant and suggested that the 
amount of information in the occurrence of an event is 

/(*,.) = log = -log(/>,). 

This was a particularly good choice because it is closely related 
to the concept of data compression, as we shall see next. Shannon was 
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concerned with the output of a discrete information source where 
each of the x, represents a source output that occurs with probability 
p{. For this reason, the base 2 logarithm was used and information 
was measured in terms of bits? However, in this work and elsewhere, 
we use the base e and measure information in terms of'natural units', 
or nats. 

The next step is to assess the average or expected information in 
the probability distribution. This quantity is referred to as informa- 
tion entropy or Shannon entropy and is calculated as 

E[-log(P(X))} = H(X) = -i;=1 Pi log pt. 

The quantity H(X) represents the mean information content in 
P(X) or the amount of uncertainty in P(X). The latter interpretation 
implies that information entropy is a function of the variance of a 
distribution. This is the case and is readily evident in continuous dis- 
tributions. If the base 2 logarithm is used, it is also the number of bits 
required, on average, that are used to describe the random variable, X. 

It is interesting to note that for discrete random variables, 
entropy is indeed bounded. A lower bound (maximum certainty) 
occurs when p{ =1 and />. =0 for all j*i. In this case, 

#(X) = -llogl-(«-l)0log0 = 0.3 

Therefore, the average information is 0 nats when there is no un- 
certainty. This is consistent with the earlier definition of information. 
At the other end of the spectrum, complete uncertainty exists when 
all events are equally probable. The entropy calculation in this case is 

2 It turns out that one bit of information is the minimum information required to resolve 
the uncertainty in a situation with two equally probable alternatives. 
3 It can be shown that 

lim 
xloex = 0. 

*->0     6 
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x   ' n      n    n 

Consequently, for discrete random variables, the average 
information of the probability mass function is bounded, or 
H{X) e [0,log«]. We show later that this is never true for continuous 
random variables; that is, the entropy for continuous random vari- 
ables is unbounded. 

Differential Entropy 

The foregoing discussion assumed that the random variable was dis- 
crete, and we were able to show that the entropy of its probability 
mass function was bounded. In information theory, this is the 
equivalent to stating that the information source is discrete and that it 
generates discrete information at a finite rate. In contrast, the entropy 
of the density function for a continuous random variable is un- 
bounded. In information theory, this is equivalent to a continuous 
information source that can assume any one of an uncountable infi- 
nite number of amplitude values, thus requiring an infinite number 
of binary bits for its complete specification. Because this is never pos- 
sible, its entropy is unbounded. 

Suppose now that X is a continuous random variable with prob- 
ability density function f(x). The differential entropy of X'm nats is 
defined to be 

H(X) = -\Z.f{x)Hf(x)dx. 

Unlike the entropy of a discrete random variable, the entropy of 
a continuous random variable is unbounded. We can illustrate this 
fact by approximating the continuous probability density, f(x), with 
a probability mass function, p(x), that is constant on intervals of 
width Ax. The approximating probability density function has prob- 
ability p: on the^'th interval. To ensure that 
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i/v=1> 
; 

we set pj = p(xj)Ax, where x;- is a point in theyth interval such that 
p(x-)Ax is the area under p(x) in the^'th interval. The entropy of the 
approximating probability distribution is 

H{p)=-'LpjHpj 
i 

= -Itp[xj)Ax log[/>(x;.)Ax] 
j 

= -1 p(xj}Ax log[/>(xy)] - S p(x^Ax log[Ax] 
j j 

= -1 p(xj) Ax hg[p[Xj)] - log [Ax]. 
j 

Now, if we let Ax —» 0, the summation converges to an integral, 
but log[Ax] —> -°o. Because there is no way to avoid this divergence, 
the entropy of a continuous random variable is always unbounded. 

Differential entropy can also be negative. For example, consider 
a random variable, X, distributed uniformly from 0 to a. Its density 
function is 

., .    \\la if0<x<a 
f\x) ~ 1 [0   otherwise 

The differential entropy therefore is 

H(X) = -JZ-log-dx = loga. 
v   ' a      a 

Note that for a<\, H{X) = \oga<Q. H(X) is also unbounded at 
a = 0. 

Suppose X is a continuous random variable distributed exponen- 
tially with mean l/X. The density function for Xtherefore is 

f(x) = Xe-hc, x>0. 
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The differential entropy is 

H(x)=-!;ie-h:logke-h'dx 

= l-log(?iy) 
f    \ 

e 
= log 

V J J 

The differential entropy for several probability distributions 
have been tabulated by Thomas Cover and Joy Thomas and can be 
found in their book, Elements of Information Theory (1991). 



APPENDIX C 

Application to a Logistics Network1 

This appendix records the application of both the plecticity and col- 
laboration metrics, with some extensions, to the logistics example dis- 
cussed in the main text. As mentioned earlier, it is important to assess 
the effects of improved decisionmaking on combat outcomes. The 
measures and metrics we have developed are designed to assess the 
degree to which sharing information among headquarters in a clus- 
tered network contributes to improved decisionmaking. The ultimate 
measure of this effect is how well the friendly forces achieved their 
mission, i.e., combat effectiveness. Consequently, Dstl has developed 
a spreadsheet version of the information-sharing model, the Collabo- 
ration Metric Model (CMM), which is used to calculate both the 
plecticity and collaboration metrics described in the text for specific 
clusterings of decisionmaking nodes across an information network. 

Figure C.l summarises a methodology for assessing alternative 
command and control processes, using a combination of combat 
simulation modelling and the CMM. Information flows recorded in 
the simulation model are used as inputs for the CMM. The CMM 
results may then be used to select preferred network structures as in- 
puts to the simulation model, as depicted in Figure C.l by the dashed 
line. It is then possible to relate Measures of Command and Control 

1 The analysis presented in this appendix is primarily the work of RAND colleague Chris 
Pernin while on secondment to Dstl. 
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Figure C.1 
Assessing the Effects of Information Sharing on Combat Effectiveness 
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Effectiveness of the network clustering and Measures of Force Effec- 
tiveness, thus illustrating the relationships between information 
sharing and combat effectiveness. 

The CMM can handle up to 10 decision nodes, 10 information 
elements, and 10 information sources (see Figure 2.2 in Chapter Two 
for illustrations of these different network elements). This capacity 
allows a reasonable representation of a rather robust headquarters. 
The metrics discussed in the text form the basis of the Overall 
Network Performance metric calculated by the model and include 
both the static systemic measures of plecticity and the dynamic 
measures of collaboration. These are combined to arrive at a single 
metric to assess the effects of collaboration and plecticity across a 
cluster of information-sharing entities. 

Cases Examined 

Three logistics command and control structures were assessed using 
the CMM. The decision made in all cases is the logistics allocation 
decision described in Chapter Two; except that in this application, 
the resupply of ammunition, not fuel, was the focus. The first case is 
a supply-driven network similar to the 'push' sustainment model 
depicted in Figure 2.3 in Chapter Two. In this case, denoted S, the 
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Forward Support Group (FSG); the Air Assault Brigade, Brigade 
Supply Area (AA Bde BSA); the Armoured Division, Divisional Sup- 
ply Area (Armd Div DSA); and the Corps Artillery, Brigade Supply 
Area (Corps Arty BSA) all form decision nodes, as shown by the rec- 
tangles in Figure C.2. However, there is no information sharing to 
form a common perception; thus, each of these decision nodes is a 
degenerate 'cluster' consisting of one node, shown by the dashed 
ellipses. Information on logistics demand is sent to these second and 
third line units from the Attack Helicopter Regiment Forward Oper- 
ating Base (AH Regt FOB); the Armoured Brigade, Brigade Supply 
Area (Armd Bde BSA); the Mechanised Brigade, Brigade Supply Area 
(Mech Bde BSA); and the Multiple-Launch Rocket System Regiment 
Ammunition Control Point (MLRS Regt ACP). These information 
sources are shown as circles in Figure C.2. The amount supplied is 
based on a set expectation of use. 

Figure C.2 
A Supply-Driven Information Network: Case S 
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The next two cases are demand driven and denoted as Dl and 
D2. Demand driven means that the units anticipate their supply 
requirements and decide how much resupply to request, or 'pull', 
from their arbiters at the next command echelon. How well they do 
this depends on their ability to share information, as we will see. 

In the first demand case, Dl, depicted in Figure C.3, each first 
and second line unit (10 units in total) sends its demand for an asset, 
which is met by the resource manager. The managers deal with each 
demand separately (i.e., they do not cross-correlate demands from 
different subordinate units). In this case, there are 10 decision nodes, 
each of which forms an isolated cluster of size 1. 

Figure C.3 
A Demand-Driven Information Network with No 
Information Sharing: Case D1 
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The second demand-driven network, case D2, is depicted in 
Figure C.4. In this final case, each of the three second line logistics 
units is clustered with its subordinates into a full information sharing 
and shared awareness cluster. The superior units use their knowledge 
of all their subordinates' information elements to update their percep- 
tion of the current status and needs of each unit. 

The first two cases, S and Dl, are extremes in logistic decision- 
making. The first case uses doctrine to push materiel to the units, 
regardless of unfolding events. The amount being pushed to the units 
is decided a priori and is not updated over time. The second case uses 
a daily update of what was consumed to resupply stocks to previous 

Figure C.4 
A Demand-Driven Information Network with Information Sharing: 
Case D2 
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levels. The third case (D2) is a variant on the second case but con- 
tains additional clustering of information. This case uses three clus- 
ters that contain the 10 decision nodes. 

Discussion and Results 

Figures C.5 and C.6 show two metrics calculated by the CMM. Fig- 
ure C.5 is the Overall Network Performance (combining collabora- 
tion and plecticity) for each of the three options. These values can 
range from 0 (very poor performance) to 1 (excellent performance). 
The shaded region defines the minimum and maximum of the value 
over the 24-hour scenario; the black bar shows the average over time. 
From Figure C.5, we can see that the most significant difference 
arises from the clustering of decision nodes. Cases Dl and D2 have 
the same information elements and number of decision nodes. They 
differ crucially in the number of clusters sharing information. In the 
former case, each logistics unit is introduced to one information ele- 
ment and develops an understanding of the logistics consumption 
based on that information. In the latter, the decision nodes are able to 
access information from neighbouring units that help build a better 
understanding of the situation. Even though both demand cases seem 
to have a much better understanding of the information elements 
over time compared with the supply-driven case, it is only when the 
information is shared among decision nodes that the increase in 
Overall Network Performance becomes evident. In this example, the 
sharing of information provides a greater increase to the overall ability 
of the network to perform compared with the location of the deci- 
sionmaking. 

Figure C.6 records the knowledge derived from collaboration 
only, that is, the dynamic elements of the information network. The 
collaboration-based knowledge metric measures the knowledge 
gained from the dynamics of the information network, as discussed in 

Chapter Four. 



Figure C.5 
Overall Network Knowledge 
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There are two main differences among the three cases. The first 
is the variation within each data set. A comparison of the three cases 
reveals that the upper case (case D2) has much less variation between 
adjacent points than the lower two cases (cases Dl and S). The 
enhanced clustering in case D2 compared with Dl has perhaps 
relieved the uncertainty of unexpected changes in the information 
elements. A reduced sensitivity to changes in the information ele- 
ments is reflected in a less volatile and smoother line. The knowledge 
of three units engaged in a sudden change in their supply level will be 
more understandable ox palatable to a commander than if only one 
unit experiences that change. 

The second difference among the data is the level of 
collaboration-based knowledge. Case S exhibits the lowest knowledge 
level, reflecting the large differences between the average doctrinal use 
compared with the actual use during combat. The two demand cases 
provide enhanced knowledge compared with the supply case because 
the baseline is much more closely related to the actual use. The differ- 
ence between the two demand cases provides the value of shared 
information between peers. The information elements and baselines 
are the same in both demand cases. However, the system values cal- 
culated through the dynamic linear models (see Appendix A) are 
much closer, and hence have enhanced knowledge, in the case of the 
more collaborative network. In this example, the three-cluster 
demand-driven network (case D2) provides the clearest picture of the 
consumption of the subordinate units. 
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