

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

SIMULATION MODELING AND ANALYSIS OF DEVICE-
AWARE NETWORK ARCHITECTURES

by

Jin Hou, KOH

December 2004

 Thesis Advisor: Gurminder Singh
 Thesis Co-Advisor: Su Wen

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2004

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Simulation Modeling and Analysis of Device-Aware
Network Architectures
6. AUTHOR(S) Jin Hou Koh

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
As the popularity of Internet soars, the content on the Internet is increasingly accessed by mobile devices that are

usually small in form factor and limited in resources, in terms of processing capability, bandwidth and battery power. With the
changing environment, content providers must serve a large number of access devices with different profiles, while the users
have access to a large number of services with different content types. A key challenge in such an environment is how to
enable the best possible fit between content and capabilities of a specific access device type.

 The goal of this thesis research is to explore on the concept of a device-aware network (DAN) that can provide the
infrastructure support for device-content compatibility matching to avoid the unnecessary wastage of network and device
resources that happens in current device-ignorant networks. A more efficient architecture is proposed which encapsulates
device profile information in transmitting packets and incorporates content repurposing functionality in existing network
entities, such as routers along the data path. Simulation models are developed to statistically evaluate the performance of the
proposed architecture in comparison to existing content repurposing frameworks. The results demonstrated the feasibility and
suitability of the architecture, with improvement in network bandwidth conservation.

15. NUMBER OF
PAGES

103

14. SUBJECT TERMS Communications, Device-Aware Network, Content Repurposing, Device
Profiling, Simulation, OPNET, OMNeT++.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

SIMULATION MODELING AND ANALYSIS OF DEVICE-AWARE NETWORK
ARCHITECTURES

Jin Hou, KOH

Civilian, Singapore Defence Science and Technology Agency
B.Eng. (First Class Honors), National University of Singapore, 1997

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2004

Author: Jin Hou, KOH

Approved by: Gurminder Singh

Thesis Advisor

Su Wen
Thesis Co-Advisor

Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

As the popularity of Internet soars, the content on the Internet is increasingly

accessed by mobile devices that are usually small in form factor and limited in resources,

in terms of processing capability, bandwidth and battery power. With the changing

environment, content providers must serve a large number of access devices with

different profiles. A key challenge in such an environment is how to enable the best

possible fit between content and capabilities of a specific access device type.

The goal of this thesis research is to explore the concept of a device-aware

network (DAN). A device aware network can provide the infrastructure support for

device-content compatibility matching to avoid the unnecessary wastage of network and

device resources that happens in the current device-ignorant networks. A more efficient

architecture is proposed which encapsulates device profile information in transmitting

packets and incorporates content repurposing functionality in existing network entities,

such as routers along the data path. Simulation models are developed to statistically

evaluate the performance of the proposed architecture in comparison to existing content

repurposing frameworks. Our results demonstrate the feasibility and suitability of the

architecture, with improvement in network bandwidth conservation.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. ORGANIZATION ...3

II. REVIEW OF RELATED WORK..5
A. CONTENT REPURPOSING..5

1. Client-based Repurposing...7
2. Server-based Repurposing ..7
3. Proxy-based Repurposing ...8

B. DEVICE PROFILING ..11
1. Composite Capability / Preference Profiles (CC/PP)11
2. User Agent Profile (UAProf)...12

C. CAPABILITY NEGOTIATION ..13
1. Session Initiation Protocol (SIP) and Session Description

Protocol (SDP)..13

III. OVERVIEW OF NETWORK SIMULATION TOOLS – OPNET AND
OMNET++..17
A. OPNET..17

1. Modeling Architecture...18
2. Modeling Application Traffic ...21

a. Terminology in Custom Application21
b. Configuring Tasks and Phases...22
c. Configuring Applications and Profiles22

3. Collecting Statistics and Viewing Results ..24
B. OMNET++..25

1. Modeling Architecture...26
a. Hierarchical Modules ...26
b. Communication using Messages, Gates, and Links26
c. Topology Description Language ..27

2. Running the Simulation...28
3. Analyzing the Results ..28

IV. PROPOSED DEVICE-AWARE NETWORK ARCHITECTURE.......................31
A. DEVICE CAPABILITY DISCOVERY...32
B. CONTENT REPURPOSING FUNCTIONALITY IN DAN

PROCESSING UNIT (DPU)...34
C. CAPABILITY-CONTENT COMPATIBILITY POLICY ENGINE........36
D. ADVANTAGES OF PROPOSED DAN ARCHITECTURE.....................37

V. SIMULATION MODELING AND PERFORMANCE EVALUATION39
A. SIMULATION MODEL A: CLIENT-BASED AND SERVER-

BASED REPURPOSING ..39
1. Scenario Description..40

 viii

2. Task Definition and Parameters Used ...42
3. Profile Definition and Running the Simulation46

B. COMPARING SIMULATION RESULTS FOR SIMULATION
MODEL A...46

C. SIMULATION MODEL B: PROXY-BASED REPURPOSING AND
DAN ARCHITECTURE ...48
1. Scenario Description and Parameters Used50
2. Profile Definition and Running the Simulation54

D. COMPARING SIMULATION RESULTS FOR SIMULATION
MODEL B...54

E. SIMULATION MODEL C: DEVICE PROFILE ENCAPSULATION...58
1. Network Description (NED) File ..58
2. Implementation Details ...59
3. Running the Simulation...61

F. COMPARING SIMULATION RESULTS FOR SIMULATION
MODEL C...61

VI. CONCLUSION ..65

APPENDIX A – USER AGENT PROFILE FOR NOKIA 665067

APPENDIX B – SOURCE CODES FOR OMNET++ MODEL75
A. DAN_PROTOCOL.NED...75
B. CLIENT.CPP ...77
C. SERVER.CPP...79
D. ROUTER.CPP..83

LIST OF REFERENCES..85

INITIAL DISTRIBUTION LIST ...87

 ix

LIST OF FIGURES

Figure 1. Challenge of having different access devices accessing to different content
type (After Ref [Nokia, 2003]) ..2

Figure 2. Results of a Google search repurposed for WAP-enabled mobile phone
and PDA (From Ref [MediaLab, 2004])..6

Figure 3. Client-based approach..7
Figure 4. Server-based approach ...8
Figure 5. Proxy-based approach..9
Figure 6. Sync request from mobile device (From Ref [AvantGo, 2004])10
Figure 7. Sync response to desktop, after repurposing performed by AvantGo sync

server - an intermediate proxy server (From Ref [AvantGo, 2004])10
Figure 8. Adapted content relayed to mobile device (From Ref [AvantGo, 2004])11
Figure 9. A CC/PP graph explanation (After Ref [WASP, 2004])12
Figure 10. Architecture using UAProf (After Ref [Nokia, 2003])13
Figure 11. A simple SIP session (After Ref [Kurose, 2003])..14
Figure 12. Hierarchical levels of OPNET model (After Ref [OPNET, 2004]).................18
Figure 13. Graphical editors for network, node and process models20
Figure 14. Custom application modeling terminology (From Ref [OPNET, 2004])21
Figure 15. Sample configuration of tasks and phases ...22
Figure 16. Hierarchical structure of building application model (From Ref [OPNET,

2004])...23
Figure 17. Sample configuration of application definition ...23
Figure 18. Sample configuration of profile definition ..24
Figure 19. Statistic viewed in graphical format ..25
Figure 20. Hierarchical modules and link connections in OMNeT++ (From Ref

[Varga, 2003])..27
Figure 21. Demonstration and Debugging user interfaces in OMNeT++.........................28
Figure 22. Plove view of output vector file...29
Figure 23. Schematic diagram of proposed architecture for DAN system32
Figure 24. Structure of IP Option format (From Ref [Tcpipguide, 2004])33
Figure 25. Example of DAN format to represent device capability information..............34
Figure 26. Comparison between proxy-based and DAN-based approach35
Figure 27. Simulation model for client-server communication ..39
Figure 28. Transaction flow for Scenario 2: client-based repurposing41
Figure 29. Transaction flow for Scenario 3: server-based repurposing42
Figure 30. Prediction of image transcoding time (in ms) for a transcoded image

(From Ref [Han et al, 1998]) ...45
Figure 31. Sample configuration of phases and traffic description in OPNET for

Scenario 3...45
Figure 32. Comparing CPU utilization of content server for 3 different scenarios46
Figure 33. Comparing CPU utilization of client node for 3 different scenarios47

 x

Figure 34. Comparing network utilization for client-based and server-based
repurposing approaches ...47

Figure 35. Sample traceroute result to AccuWeather website ..49
Figure 36. Simulation model used for proxy-based repurposing approach and DAN

architecture...50
Figure 37. Transaction flow for Scenario 1: proxy-based repurposing.............................52
Figure 38. Transaction flow for Scenario 2: DAN architecture ..52
Figure 39. Packet analysis of New York Post homepage in Ethereal53
Figure 40. Sample simulation results of network utilization and response time...............55
Figure 41. Comparing network utilization between proxy-based repurposing and

DAN approach ...55
Figure 42. Comparing response time between proxy-based repurposing and DAN

approach...56
Figure 43. Effect on response time with varying content repurposing delay....................57
Figure 44. OMNeT++ simulation model...60
Figure 45. Graphical results of client response times ...62

 xi

LIST OF TABLES

Table 1. OPNET modeling domains (After Ref [OPNET, 2004]).................................19
Table 2. Descriptions of scenarios using client-server communication model..............41
Table 3. Definition of phases in Scenario 1 ...43
Table 4. Definition of phases in Scenario 2 ...43
Table 5. Definition of phases in Scenario 3 ...44
Table 6. List of AvantGo channels selected for simulation model................................49
Table 7. Descriptions of scenarios for simulation model B...51
Table 8. Message sizes of different channels used in simulation (Homepage size is

captured through Ethereal on 6 October 2004)..53
Table 9. Parameters used in NED description file ...59
Table 10. Description of scenarios used in OMNeT++ model ..61
Table 11. Computation of client response times...62

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

The author would like to thank Professors Gurminder Singh and Su Wen for their

support and guidance throughout the course of his thesis work. Their keen interest and

knowledge in the subject area and technical expertise have been a great source of

assistance. The author is extremely grateful for his wife Meng Geah, LING who has

constantly provided him with her support, unselfish love, and understanding throughout

the research.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

Until recently, there were a few select ways of accessing the Internet, mainly

through desktop PCs and workstations. However, the current trend is to access Internet

content and applications anytime, anywhere and on any device. More and more wireless

and mobile users with different terminals use the various services available in the

Internet. In fact, more than 600 wireless and mobile device profiles are documented for

accessing on-line information [W3C, 2004]. The range of access devices includes mobile

phones, Personal Digital Assistants (PDAs), desktops, laptops, wearable PCs, and set-top

boxes. With military transformation towards network-centric warfare, surveillance

devices, sensors, Unmanned Aerial Vehicles (UAVs), launching and targeting platforms,

and missiles are likely to be networked, which will bring the number of access devices to

an even larger figure.

With the changing environment, the service and content providers must serve a

large number of access devices with different profiles. Figure 1 exemplifies this

environment. The key challenge in such an environment is how to enable the best

possible fit between the content to be delivered and the capabilities of the specific access

device.

Most of today’s content and applications are designed for desktop PCs and

workstations with large color screens, ample CPU power and broadband Internet access.

Unfortunately, most of the other access devices have different profiles, particularly

wireless and mobile devices, which are predominantly smaller in form factor and have

limited resources – they differ in network connectivity, storage, memory, battery power,

processing power, display, and format handling capabilities. To give an example, desktop

PCs have a screen resolution of at least 1024 x 768 pixels, while PDAs have displays

with a maximum of 240 x 320 pixels, and the screens of mobile phones are even smaller

at 176 x 208 pixels or less. If a large image, which displays well on a PC, is delivered to

small handheld device, it may be too overwhelming for the screen of the handheld device

and the user of the device. In addition, the handheld device may lack the memory and

processing power to handle the image. Receiving such an image will only result in the

device discarding it, thus resulting in wastage CPU processing, network bandwidth,

device battery and time. For these reasons, device awareness becomes necessary to

optimize user experience and minimize wastage of resources, so that “usable” content

delivery can be achieved.

Figure 1. Challenge of having different access devices accessing to different content

type (After Ref [Nokia, 2003])

Today’s networks are completely unaware of the capabilities of their end-points.

Being dumb transport pipes, they cannot optimize the traffic that flows through them and

adapt the content to match the capabilities and requirements of their end-points. The goal

of this thesis research is to explore the concept of a device-aware network (DAN) that

can provide the infrastructure support for device-content compatibility matching.

Resources unnecessary expended handling “unusable” content would have been better

utilized for appropriately formatted content, especially in time-sensitive networks.

2

^

§p J Java & Music
|" Downloads

\D
MMS

r. Picture
^ ..; INTERNET^ * | '' catalog

•' Browsing

L Application
Vendor

3

With DAN, the benefits will include, not limited to the following:

Better user experience. DAN provides the means to deliver the most suitable
content for a specific device type. It avoids the situation whereby a user faces
frustration when an “unusable” content is delivered to the device.

Minimize wastage of critical resources. DAN is particularly useful in a wireless
and mobile environment, where devices with small form factor are more
prevalent and resources such as time, network bandwidth and battery power
are limited and scarce.

Transparency for content providers. Leveraging on DAN, content providers do
not need to be bothered about keeping multiple copies of content and
handcrafting content for different device type, which is expensive to
implement and a management nightmare.

A. ORGANIZATION
This chapter provides an introduction to the problem and the motivation for the

research. The approach for the research is to explore on various architectural designs

suitable to support device-aware networking, by examining relevant technologies and

implementations. Simulation models of the proposed architectural approaches are

developed to investigate design considerations of device-aware networks. The models

will serve to provide guidance on suitability of different architectural designs. Chapter II

provides a review of current technologies and implementations relevant to device-aware

networking. Chapter III introduces the discrete event simulation tools OPNET and

OMNET++ that are used to model the proposed system designs for device-aware

networks. Chapter IV proposes possible designs for the architectural framework to enable

device awareness, while Chapter V documents the development of the device-aware

network simulation models for performance evaluation, and discusses the analysis of the

simulation results. Chapter VI discusses recommendations of the proposed model for

device-aware network based on the simulation results, and also presents the conclusions

that can be drawn from this research.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. REVIEW OF RELATED WORK

The Internet today relies largely on the Internet Protocol (IP) for communications

among interconnected computer systems. The delivery mechanism is a best-effort

service, and the implementation is a simple one – payload is encapsulated in IP

datagrams with IP headers, and intermediate entities such as network routers make use of

the fixed-length addresses in the IP headers to transmit the datagrams towards their

destinations [RFC791, 1981]. There are no mechanisms to augment end-to-end data

reliability, flow control or sequencing. These services are usually implemented as host-

to-host protocols.

To enable device-aware networking, the network architecture will require some

modifications to provide additional services than best-effort delivery in order to achieve

the objective of optimizing traffic to match the capabilities and requirements of end-

points. DAN needs to provide at least three main services – the repurposing of the content

to match the capabilities and requirements of the end devices; the sharing and delivery of

device profile and capability information on the network; and capability negotiation.

This chapter provides a review of the current technologies and implementations

relating the three services which DAN will need to provide, namely content repurposing,

device profiling and content negotiation. Section A examines the three approaches

currently practiced – client-based, server-based and proxy-based, for content repurposing

and discusses the advantages and limitations of the different approaches. Section B

presents device profiling techniques, while Section C discusses capability negotiation

process to determine compatibility of content to end device.

A. CONTENT REPURPOSING
Content repurposing is described as the process of selection, generation or

modification of content (text, images, audio and video) to suit to the user’s computing

environment and usage context [Singh, 2004], [MediaLab, 2004]. It can be applied to

transformation within media types, for example reducing the image size or transforming

from high-fidelity color JPEG to low-fidelity GIF format; across media types, for

example speech to text or video item to image set; or to both of them [Canali et al, 2003].

To get a clearer understanding of content repurposing, take an example of a

normal web page accessed by a PC connected to the Internet via broadband. The user will

see the original web page with all text, images and video, without repurposing. However,

when the same web page is accessed using a PDA, the user will not see the same content.

Images would be rescaled and compressed, text would be summarized into a single

paragraph, and if there is video in the original content, it would be delivered as a set of

images. Figure 2 illustrates this concept of content repurposing, where the original results

of a Google search is repurposed (reduction in the amount of text and images used) to suit

a Nokia 6230 WAP-enabled mobile phone and an HP iPAQ Pocket PC handheld.

Figure 2. Results of a Google search repurposed for WAP-enabled mobile phone

and PDA (From Ref [MediaLab, 2004])

There are three widely-used approaches for content repurposing depending on the

entities that perform the repurposing process. The content can be repurposed at the client

end, on the server, or in an intermediate entity called a proxy. The following sections will

discuss in details the different approaches for content repurposing.

6

Googl
A«h i:ru.-pis <>">!111 i Na—* F nirijli moil -

romart ■«■»pat on ::-- ~rr—-

W«b ki-mrtii ii '"'i' i.i- .i| ;uvi it it.u;

v. ':t-T " .;,' ■■t vtf r v. MI (■"i.vi.irv'it in Conteit Adaptations
■, .1- i - n i ic ii ■ It..■)•■ :■! '.'t i.. j II II ■ - 1 Uni A.|.t|.i.m.ii« i -in'
\| .III ■ H

I»i II
I J. - . irttt.OMpwaMiial.Ooiaihv BMIM -

'«v11->-1 ."""ri.. i,. i i-■ i. II ,i

-I le-c - Conttnt Adaptation I

VMVVMp.Wg' * ...iJ;iHj- JüIIIIM: UJ'.'.

-.»I'Ml- V " 1"-
: : i : jt- I: 'i .:■ '. ■ , . .. i>: " ■ - t '■■ ■ ■loi- r ■ < mi<
MpfMlM II ■■< N |oMtkn ».»iii-iil A.l.iputhin «no* NfgcliaNn ...
"» ie •■»■•• ,l> I(KII Kvit - i i > • > i " ™i nn'(iT'i|»i.li'(nf««i~>^fc
'-l-i-Sir KMM1

.y.,.TisMV.-g9nt*nt Adaptation j ■■■; .. vyf,.'
Dynamic MMS Com*in A4.i|tt.nl"ii md CoiwerBiOn Iks MMSC tuilt
».[Mi M'v'C C<nii*-tii Adaptation PiB<y Dynamic MMO ConMtt.
w* ihijb tsaVaunHa • ii i ■ ' i.n: - i i -<«i •■

A Psflhon CAP my»
A frftmtwfc (or iiHirn« ioni*ni Adaptation... Ttii» span IOUK* iiajtv
' (i ;.-i.irl. tgt IB«BW1 4>ni«<lti Ail.ipf.ifim« D«»4 on |h«j IQAp) Opittwi
icap-MiVtr. foutceiaroa n»If- 1->

II I 1 o
....

Rnubl %<4ibitf l,«70.O» to

A4t"*wtni. ;-"-"i "M«1
. , .l.,i:. "i.vii'i:-

1. Client-based Repurposing
In the client-based approach, the client device performs the required repurposing.

The content is transmitted in its original form from the server to the client, as depicted in

Figure 3.

Sends Request

Deliver original content

Client Server

Repurposing
processed at
client device

11

22

33

Figure 3. Client-based approach

In this approach, existing communication protocols do not need to be changed

since the client does not need to communicate any information about its capabilities and

requirements to the server, and content providers do not need to keep multiple versions of

the same content to meet the requirements of different device types. However, content

repurposing process generally involves computationally intensive operations. Adopting

client-based approach will be very time consuming for wireless and mobile devices

which have limited battery power, processing power and low-bandwidth connection.

Furthermore, client-based approach does not make sense from the network optimization

perspective since the content traverses across the network in its original size only to have

parts of information discarded or reduced subsequently at the client end.

Opera Software is an example that employs client-based content repurposing. It

uses a proprietary “Small-Screen Rendering” technology in its web browser for mobile

wireless devices that intelligently reformats today’s web sites to fit inside smaller screen

width, eliminating the need for horizontal scrolling [Opera, 2004].

2. Server-based Repurposing
In the server-based approach, the server adapts the content to match the

requesting device profile and specifications. This is illustrated in Figure 4.

7

-

Sends Request with
capability specifications

Deliver adapted content to
match client specifications

Client Server

Multiple
variants of

same content

11 22

33
Figure 4. Server-based approach

There are many techniques for achieving server-based repurposing. Traditionally,

content authors handcraft the same content for different device specifications, and the

multiple variants are stored on the server. Appropriate version is then selected to match

the client specifications. Adopting server-based repurposing, transmission times are

reduced and network bandwidth usage is optimized since it involves delivery of already

adapted content. Furthermore, already adapted content will be less taxing in terms of

battery power and processing power for wireless and mobile devices. However, from the

perspective of the content provider, it is expensive to maintain multiple variants of the

same content, especially if the size of the clients requiring some form of repurposing is

unknown. If real-time repurposing is performed, extra computational load will be

inevitably added to the server.

IBM WebSphere Transcoding Publisher is an example of a server-based

repurposing technology that dynamically translates web content and applications into

multiple markup languages and optimizes it for delivery to mobile devices, such as

mobile phones and handheld computers [WebSphere, 2004]. Such technology for

adapting content for many devices and languages, at least eliminates the need to store

multiple variants on the server.

3. Proxy-based Repurposing
In the proxy-based approach, a proxy server, located in an intermediate position

along the communication path between the client device and the content server, will

8

analyze and perform the required repurposing on the requested content, before delivering

the adapted content to the client device, as shown in Figure 5.

Client ServerProxy

Deliver original
content

Sends Request with
capability specifications

Sends Request on
behalf of client

Deliver adapted
content to match

client specifications

Repurposing
processed at

proxy

11 22

33

44

55

Figure 5. Proxy-based approach

In this approach, neither the client nor the server needs to be modified for content

repurposing. Having offloaded the computationally intensive repurposing process to the

intermediate proxy, computational load on the server will be reduced. However, a

potential issue lies in the location of the intermediate proxy with respect to the content

servers; if the proxy is far away from the content server (network connectivity sense), the

original content will still need to traverse over long distance before adaptation at the

proxy, and that is not optimizing network bandwidth.

AvantGo service is an excellent example of a system implemented using the

proxy-based approach [AvantGo, 2004]. In a nutshell, a user subscribes to an AvantGo

channel, which is a mobile website with personalized and reformatted content for PDAs

and smartphones. The entire reformatting process is shown in Figures 6, 7, and 8. When a

user syncs the mobile device, a connection will be established to the AvantGo sync

server. The AvantGo server, after looking up what channels the user is subscribed to, will

download those web pages from the relevant sites on the Internet. The AvantGo sync

9

server will pre-process these pages, which include shrinking images too large for the

mobile device's screen, discarding pieces that cannot be used by the AvantGo Client

(such as Java applets), and compressing the rest of the HTML. Once that is done, the

compressed pages will be uploaded to the mobile device.

Figure 6. Sync request from mobile device (From Ref [AvantGo, 2004])

Figure 7. Sync response to desktop, after repurposing performed by AvantGo sync

server - an intermediate proxy server (From Ref [AvantGo, 2004])

10

Figure 8. Adapted content relayed to mobile device (From Ref [AvantGo, 2004])

The process described is for subscribers who access the service by syncing their

mobile devices via laptops or desktops – the “offline” mode. The service also supports

real-time, wireless mode using 802.11b WiFi, Bluetooth connections, as well as cellular

networks.

B. DEVICE PROFILING
The previous section described various approaches for content repurposing.

Before the content servers and proxies can modify the content for a given device, they

need to know what kind of device is making the requests. The methods for devices to

communicate their capabilities and preferences to the servers will be discussed in this

section.

1. Composite Capability / Preference Profiles (CC/PP)
As the number and variety of devices connected to the Internet grows, there is a

corresponding increase in the need to deliver content tailored for the different devices.

The Composite Capability / Preference Profiles (CC/PP), which becomes a World Wide

Web Consortium (W3C) recommendation on 15 January 2004, is a general purpose

profile format that describes device capabilities and user preference that can be used to

11

guide the adaptation of content presented to that device [CC/PP, 2004]. The strength of

CC/PP lies in its flexibility. CC/PP is based on RDF, the Resource Description

Framework – a general purpose metadata description language – that allows the creation

of whole vocabularies, making the expression of device and agent capability, as well as

user preference, infinitely extensible [WASP, 2004].

Using CC/PP, producers of devices and user agents can easily define precise

profiles for their products, while content servers and proxies can use these profiles to

repurpose the content they serve to the requirements of the devices.

Figure 9 shows a graph that provides an example of how CC/PP can be used to

describe device capability and user preference.

Figure 9. A CC/PP graph explanation (After Ref [WASP, 2004])

2. User Agent Profile (UAProf)
User Agent Profile (UAProf) specification, developed by Open Mobile Alliance

(OMA), uses CC/PP model to define a framework for describing and transmitting

“Capability and Preference Information” (CPI) about WAP (Wireless Application

Protocol)-enabled devices [WAG, 2001]. UAProf is an XML-format document which is

published on a public repository server, and it contains device capability information

such as hardware characteristics (screen size, color capabilities, image capabilities,

manufacturer, etc), software characteristics (operating system vendor and version, list of
12

audio and video encoders, etc.), application/user preferences (browser manufacturer and

version, markup languages and versions supported, scripting languages supported, etc.),

WAP characteristics (WML script libraries, WAP version, WML deck size, etc.), and

network characteristics (bearer characteristics such as latency and reliability, etc.).

The architecture by which UAProf is transported between the mobile device,

WAP Gateway and content server is illustrated in Figure 10. The WAP Gateway supports

UAProf header forwarding. Though UAProf XML-files are comprehensive, they tend to

be large in size as well. Take for example; the UAProf XML-file for Nokia 6650 phone,

which is shown in Appendix A, is 12 KB. For this reason, device vendors usually have

their own device profile repository where content servers can download device profiles as

XML documents. Mobile devices will provide the profile document URL in their request

session header to the content server, as shown in Figure 10.

HTTP HTTP
WAP

Adapted
Content

Figure 10. Architecture using UAProf (After Ref [Nokia, 2003])

C. CAPABILITY NEGOTIATION

1. Session Initiation Protocol (SIP) and Session Description Protocol
(SDP)

The Session Initiation Protocol (SIP), as defined in [RFC2543, 1999] is a

lightweight application-layer control protocol that can establish, modify and terminate

multimedia sessions or calls. It is an out-of-band protocol that is used to initiate sessions

between end systems. It is relevant to the design of DAN because of its potential as a

means to communicate and exchange device capabilities and user preferences between

13

accept -language: en
accept-charset: ISO-8859-1, UTF-8; Q=0.8, ISO-10646-UCS-2; Q=0.6
profile: http://nds.nokia.com/uaprof/N6100rlQQ.xml
user-agent: Nokia6100/1.0 (4.02) Profile/MIDP-1.0 Conflguration/CLDC-1.0

WAPGW
J
Content Server Device Profile Repository

end systems. Another important functionality of SIP, which is of relevance to the design

of DAN, is the determination of media and media parameters to be used in multimedia

sessions between participants – capability negotiation. SIP uses Session Description

Protocol (SDP) specified in [RFC2327, 1998] as a data format to describe and convey

multimedia sessions.

To understand the essence of SIP, it is best to look at a simple SIP call, as

illustrated in Figure 11 [Kurose, 2003].

Time Time

167.180.112.24 193.64.210.89
INVITE bob@193.64.210.89
c=IN IP4 167.180.112.24
m=audio 38060 RTP/AVP 0

port 5060

BobAlice

200 OK
c=IN IP4 193.64.210.89
m=audio 48753 RTP/AVP 3

ACK

port 5060

port 5060

port 38060

port 48753

PCM encoded µ-law

GSM

Figure 11. A simple SIP session (After Ref [Kurose, 2003])

As shown in Figure 11, the SIP session begins when Alice sends Bob an INVITE

message on SIP well-known port of 5060. The message contains enough information to

establish a multimedia session between participants. This information includes media

14

ü>

15

capabilities that Alice can receive and the transport address where Alice expects Bob to

send the media data. In this example, Alice is expecting PCM µ-law audio (AVP 0)

encapsulated in RTP, at IP address 167.180.112.24 on port 38060. Bob sends back an OK

response, indicating that he is accepting the request, as well as information describing his

desired encoding and packetization (GSM audio encapsulated in RTP – RTP/AVP 3), and

port number (48753) to receive the data. Once the initiation session is completed, the

multimedia session will follow with each party receiving media according to the

requested encoding and transported on the requested port number.

There also exists an ongoing initiative called SDPng (SDP Next Generation)

which extends SDP to include capability negotiation [SDPng, 2004]. SDP is designed to

provide description of a session parameters, but it is inadequate to describe all

capabilities of a system and possibly provide a choice between a number of alternatives.

This is the objective of SDPng. SDPng is an application-independent framework that

defines the description syntax for both potential and actual capabilities, and the

processing rules that are applied in the capability negotiation process to generate an inter-

working capability from two or more usable potential capabilities.

16

THIS PAGE INTENTIONALLY LEFT BLANK

17

III. OVERVIEW OF NETWORK SIMULATION TOOLS – OPNET
AND OMNET++

A. OPNET
OPNET (Optimized Network Engineering Tools) was originally developed at

MIT and introduced in 1987 as the first commercial network simulator. OPNET provides

a comprehensive development environment supporting the modeling of communication

networks and distributed systems [OPNET, 2004]. Some typical applications of OPNET

include, but not limited to the following:

• Performance modeling of standards-based Local Area Networks (LAN) and
Wide Area Network (WAN).

• Planning of large internetworks.

• Research and development in communication architectures and protocols.

• Mobile packet radio networks.

OPNET categories the simulation software into several products to better provide

users with their specific needs. Some of the products and the specific domains for they

are designed, are listed below:

• IT Guru. OPNET IT Guru enables enterprise users in operations, planning and
application development to be far more effective in confronting the challenges
in cost-effective management of networks and applications, as their reliance
on IT infrastructure continues to increase.

• ACE. OPNET Application Characterization Environment (ACE) module
enables IT Guru users identify the root-cause of end-to-end application
performance problems.

• Modeler. OPNET Modeler is a powerful modeling and simulation platform,
and provides a network development environment, essential for design and
analysis of networks, network equipment, and communication protocols in the
research and development domain.

• Wireless Module. OPNET Wireless Module extends the functionality of
OPNET Modeler with modeling, simulation, and analysis of wireless
networks.

For the simulations in this thesis, OPNET Modeler has been used with Wireless

Module. A brief overview of OPNET Modeler is provided in the following few sections

in this chapter.

1. Modeling Architecture
OPNET modeling architecture consists of hierarchical models, paralleling the

structure of actual communications networks. Each hierarchical level of an OPNET

model is referred to as a modeling domain. The top-level modeling domain is the network

domain. The network domain contains node domain, which in turn contains module

domain. Lastly, lowest-level modeling domain, the process domain is nested within the

module domain. The relationship between the domains is illustrated in Figure 12.

Network

Node

Module
Process

Figure 12. Hierarchical levels of OPNET model (After Ref [OPNET, 2004])

The network domain is used to define the topology of a communications network.

The communicating entities within a network domain are called nodes, and a network

domain can support any number of nodes. These nodes are interconnected via

communication links such as point-to-point and bus links.

The node domain provides for the modeling of communication devices, such as

workstations, switches, and routers. Each node domain is expressed in terms of smaller

building blocks called modules. Modules are information sources, sinks, processors and

queues. Connection such as packet stream will allow data flow between modules. The

tasks performed by each module are called processes, which are sets of instructions,

much like executing a software program.

The process domain is expressed in a language called Proto-C, which is an

OPNET variant on the C/C++ language, specifically designed to support developing

protocols and algorithms. Proto-C is a compiled language combining graphical state-

transition-diagrams (STDs), embedded C/C++ language data items and statements, and a

18

19

library of Kernel Procedures that provide commonly needed functionality for modeling

communications and information processing systems. Process models are represented by

finite state machines (FSMs), which define a set of primary states that the process can

enter, and for each state, the conditions that would cause the process to transit to another

state. The conditions, needed for a particular change in state to occur and the associated

destination state are called a transition. Operations and actions performed in each state or

for a transition are described in embedded C/C++ code blocks. In addition, OPNET also

provides an extensive library of over 300 Kernel Procedures that can be invoked within

the process models by the simulation kernel to do commonly needed operations and

actions.

The modeling function addressed by each domain is summarized in Table 1, and

the graphical editors for the network, node and process domains are shown in Figure 13.

Domain Modeling Function

Network Network topology described in terms of subnetworks, nodes, links,

and geographical context.

Node Node internal architecture described in terms of functional elements

and data flow between them.

Module Modules include information source, sink, processor and queue.

Some modules have pre-defined behavior while others are

programmable via process model.

Process Behavior of processes (protocols, algorithms and applications)

specified using finite state machines and extended high-level

languages (C or C++ programming language).

Table 1. OPNET modeling domains (After Ref [OPNET, 2004])

Figure 13. Graphical editors for network, node and process models

20

3*»t?9/'P*B3

f •

Node Domain
o—.— —.-.—..

5 g . —I EBIIiIBi3

i— :■'

2. Modeling Application Traffic
After the network topology, the next step is to provide application traffic for

exchange of information within the network. OPNET provides standard client-server

application models – FTP, Email, Remote Login, Video Conferencing, Database access,

HTTP, Print service, Voice communications, and Custom application. Of particular

interest is Custom application, which is a user-definable multi-tier application and is used

extensively for the simulation work in the course of this research. It will be elaborated in

this section.

a. Terminology in Custom Application
In configuring custom application, there are a few definitions that need to

be clarified. They are defined as follows, and explained pictorially in Figure 14:

• Task: A basic unit of user activity within the context of an application.
Examples of a task include reading an email message; obtaining a record from
a database system; and performing a file transfer.

• Phase: An interval of related activity that is contained within a task. Examples
of a phase include data transfer phase and processing phase.

• Step: A phase is made up of a number of steps. Take for example; obtaining a
single record from a database server involves at least 2 steps. The first step is
to send a request to the database server, and the second step is to receive the
corresponding response from the database server.

Figure 14. Custom application modeling terminology (From Ref [OPNET, 2004])

21

b. Configuring Tasks and Phases
Tasks and phases are building blocks of custom application, and they are

defined in Task Definition Object, as shown in Figure 15. Tasks are configured in the

task specification table, and there can be many tasks depending on the defined

application. In the example, only one task is shown. Within each task, there are many

phases configured. For the example shown in Figure 15, the sample configuration table

shows a task with 6 phases. Transactions #1, #3, #5 and #6 are data transfer phases with

defined entities as sources and destinations. Transactions #2 and #4 are processing phases

as they have Destination attribute set to Not Applicable.

Figure 15. Sample configuration of tasks and phases

c. Configuring Applications and Profiles
Once the tasks and phases are defined in Task Definition Object, they can

be used to build custom applications in Application Definition Object. The application

definitions can then be used in profiles that are deployed to client workstations using the

application. These profiles are defined in Profile Definition Object. Profiles are

constructed to describe activity patterns of a user or a group of users in terms of the

applications used over a period of time. The hierarchical structure of building custom

application in OPNET is summarized in Figure 16. A sample configuration of application
22

G (Task Specification) Table @@l
Task Name Manual Configuration

Custom_Task (...)

ACEFiename d
NolApplcable

d
li > |

j |1 Rom I
Details | Promote | Can«) | OK

Q (Manual Configuration! Table ©B
Phase Name

Transaction ttl
Transaction 02

Transaction 83

Transaction tt4

Transaction 05
Transaction tt6

Start Phase Alter

Application Stalls

Previous Phase E..

Previous Phase E..
Previous Phase E..

Previous Phase E..
Previous Phase E

Source

Originating Source

Proxy Server
Proxy Server

Destination [S

Proxy Servei (.

Not Applicable (.

ource->0est Traflic Dest->Source Tialf

.) No Response

.) No Response

: REQ/RESP Fallen

REQ->REQ-> „R..

REQ->REQ->....R...

REQ->REQ->....R...
REQ->REQ->....R...

REQ->REQ->....R...
REQ->REQ->....R...

End Phase When

Final Request Arriv.

Final Request Arriv.
Final Request ArrrV.

Final Request Arriv.

Final Request Arriv.
Final Request Arriv.

Timeout Properties

Not Used
Not Used

Not Used
Not Used

Not Used
Not Used

Main Server (. .) No Response
Main Server

Main Server
Proxy Server

Not Applicable (.

Proxy Servei (.
Originating Source (.

.) No Response

.) No Response

.) No Response

«I 1 ►

I '_'■"' p I MoveDown I

Cancel

definition in Application Definition Object is illustrated in Figure 17, while a sample

configuration of profile definition in Profile Definition Object is illustrated in Figure 18.

Figure 16. Hierarchical structure of building application model (From Ref [OPNET,

2004])

Figure 17. Sample configuration of application definition

23

application

C (application) Attributes ÜÜ
Type: U Sties

Attribute

® rname
® l-model
(?) 0ACE Tin Information
@ [+] Application Defmitens
(J) J+jVoice Encoda Schemes

Value ^3
Application Conlig

None
(...)
Al Schemes d

■ *PP
S3 (Description) Table mm

Attribute

Custom

Database

Email

Ftp

Http

Print

Remote L

Detail

Value

(...)
Oil

Oil

on

Advanced

:■

S3 (Custom) Table 'nJS
Attribute Value

Task Description
Task Ordering

Transport Protocol

(...)
Serial (Ordered)

TCP

Type of Service Best Effort (0)

Refresh Connection

RSVP Parameters

Aftec Every Phase

None

B (Task Desciiption) Table mm
Task Name TaskWeighl d
Custom Task 100000

-U

±1
Insert i rate I Move Up

11

1 Rows Move Down 1

Ptci Cancel OK

Figure 18. Sample configuration of profile definition

3. Collecting Statistics and Viewing Results
The eventual goal of simulation is to evaluate some aspects of a system’s

behavior or performance. Once the simulation models are built, the next logical step is to

collect the required statistics and view the results in order to gain insight into the dynamic

operation of the models. A statistic is a numerical variable representing a particular type

of data related to the behavior of a node, link, or an entire system. Some statistics

available in OPNET include:

• Inter-arrival times and packet sizes.

• Throughput, utilization, error rates and collisions.

• Application-specific statistics defined by a model developer.

After running the simulation and collecting the statistics, the results can be

viewed in a graphical format in OPNET, as shown in Figure 19. Two different output

files can be plotted – output vector files and output scalar files. Output vector files are

usually generated by the simulation to store time-series data that are statistics which vary

24

(pi of lie) Attributes IÖ1B

profile

Type: U*ies

Attrfcute

i-name

Value

1-nxxW
0 Profite Conhguabon

Profile Config
(...)

C (Profile Configuration) Table D

Profite Name Applications Operation Mode Start Time (seconds): Duration (seconds) Repeatability

MuHLTier Custom (...) Seiial (Ordered) constant (250) constant (500) (...)

J
Rows '■'--'•'-'<-■ I I•'!-■--[' | I rii-.->- | Move Up | Move Down |

(Applications) Table □
Name Start Time Offset (se.. Duration (seconds) Repeatability J
Custom Multi Tier constant (0.0) constant (100) (...)

^u
LU ► |

1 Rows

De1 Promote

Duplicate I Move Up Move Down

Cancel

as a function of simulation time. In this case, the plotted graph describes one statistic, and

how it changes within a specified simulation period. The horizontal (x) axis represents

the simulation time, while the vertical (y) axis represents the measured value, as

illustrated by the graph in Figure 19. OPNET also supports collection of results over

multiple simulations under different configurations or operating conditions of the system,

and these results are accumulated in the output scalar files. These scalar statistics are then

plotted again one another – plotting scalar Y against scalar X shows the possible values

of scalar Y for individual values of scalar X.

Figure 19. Statistic viewed in graphical format

B. OMNET++
OMNeT++ is a public-source, object-oriented modular discrete event simulator

[Varga, 2003]. The name stands for Objective Modular Network Testbed in C++. The

principal author of the simulator is Andras Varga, from the Technical University of

Budapest, Department of Telecommunications (BME-HIT). The simulator can be used

for a variety of applications, including:

25
• Traffic modeling of telecommunications networks.

View Results yya
Discrete Event Graphs Displayed Panel Graphs

lalllU niUHVlU UMUMUE/MJ ILUVIUIIIIVIUHLI AI
L Tiei—I -M Tialhc Received (bytes/sec) <CusIom Multi_T

—B Task Processing Time (sec} <Cuslom Mulli_Tier;
ÖM Proxy_Server

3l^ Requesting Server Custom Appkcaiion

HB Traffic Sen! fr«htfs/s«hMufti Tiei Custom f"
I Traffic Sent

W Show Preview

20

Traffic Rec<
Traffic Rec<
Response S
Request Siz
Request Ge

I Request Ge
l+UH Rftsnnnrlinn S

Resuls Generated: 14:26:25 Sep

Ptoxy_Servei of Enteipiise Network ©S
e_average (in Requesting Serve* Custom Application.Traffic Sen! (byte.

15.0

125

10.0

60m

■ ■ - -r i. in. ■

4000
time (sec)

Zl
zi
Add Show

Cbse

26

• Protocol modeling.

• Modeling queuing networks.

• Modeling multiprocessors and other distributed hardware systems.

• Validating hardware architectures.

• Evaluating performance aspects of complex software systems.

1. Modeling Architecture
An OMNeT++ model is made up of hierarchically nested modules. The depth of

the modules is not limited so that it can allow users to reflect the logical structure of

actual system. Communication between modules is achieved through message passing.

Messages can contain arbitrarily complex data structure. Modules send messages to their

destinations either directly, or along a predefined path, through logical constructs known

as gates and links. Modules are programmed in C++, which are assembled into higher-

level modules, and then modeled using high-level language called NED (Network

Description).

a. Hierarchical Modules
Figure 20(a) shows the modular nature of OMNeT++. The top level is the

system module. The system module contains submodules, which can also contain other

submodules. Modules that contain submodules are called compound modules, while the

lowest level modules in the hierarchy are called simple modules. The simple module

contains the algorithm in the model, programmed using C++ language.

b. Communication using Messages, Gates, and Links

Modules communicate by exchanging messages. Messages are

communicated through input and output interfaces of the modules. These interfaces are

known as gates. Links are used to connect the gates on modules. Each link is created

within a single level of module hierarchy: within a compound module, one can connect

the corresponding gates of two submodules, or a gate of one submodule and a gate of the

compound module (Figure 20(b)).

(a) Simple and compound modules

(b) Link connections
Figure 20. Hierarchical modules and link connections in OMNeT++ (From Ref

[Varga, 2003])

Links can be assigned three parameters to facilitate the modeling of

communications networks. These three parameters are propagation delay, bit error rate

and data rate, all three being optional. Propagation delay is defined as the amount of time

the message is delayed when traveling along a link. Bit error rate is defined as the

probability that a bit is transmitted incorrectly, which is typical in a noisy communication

channel. Data rate, which is specified in bits per second, is used in the calculation of

transmission time of a packet.

c. Topology Description Language
The topology of a model is specified using the NED language, which

supports modular description of a network. This means that a network description

consists of a number of component descriptions such as simple and compound modules,

gates and links. The design of a network topology in NED language can be achieved

graphically through GNED (Graphical NED Editor).

27

Submodules connected to each other Siibmodules connected to üie parent module

2. Running the Simulation
The simulation is run from a standalone executable program. When the program

is executed, it reads in settings from a configuration file called omnetpp.ini. The

configuration file defines how the simulation is run and the model parameter values.

OMNeT++ features various user interfaces for different simulation tasks, such as

debugging, demonstration and batch execution. Such advanced user interfaces allow the

user to visualize the inside of a model, to start/stop simulation execution, and possibly

allow changing of variables/objects inside the model. These interfaces are illustrated in

Figure 21.

Demonstration interface

Debugging interface

Figure 21. Demonstration and Debugging user interfaces in OMNeT++

3. Analyzing the Results
The output of the simulation is written into output files in the form of vector files,

scalar files, or user’s own defined file types. These vector and scalar files are similar to

those described for OPNET above. OMNeT++ provides a Graphical User Interface (GUI)

tool named Plove to view and plot the contents of output vector files (see Figure 22). The

output files are text files in a format that can also be imported into external programs

such as Excel for statistical analysis and visualization.

28

7i (ClientServer) theD»N_piotocol - Hi
r-= ►I ►>! © * iv - theDAN_piotocol

] lheDAN_pro(ocol Od=1] Trace Inspect View Options Help

► 1JMJ»| JH ®| A»iatH[te -I <*l
col Event «247 T =20.367557 (20.36s) Running...

Msgs created: 94 Msgs present: 25

Simsec/sec: 0.025966

tol (Clie-^J
its (cM

Ev/simsec: 46.3441

- Event 8240. T =20.218666 (20.21s) Module «7
"Event»241. T=20 302948 (20 30s). Module 83
Relaying msg to addr*3
"Event 8242. T-20.312948 (20.31s). Module 87
"Event 8243. T=20.314401 (20.31s). Module 86
Client client sending request and device profile
Client client waiting lor Reply
"Event 8244. T=20 324401 (20.32s). Module83
"Event 8245. T =20.357557 (20.35s) Module83
Relaying msg to addr=3
"Event 8246. T =20.387557 (20.36s). Module87
"Event 8247. T-20.415667 (20.41s). Module83
Relaying msg to addr=5

theDAN_protocol. client[3)'
theDAN_protocol. router'

theDAN_protocol.client[3J'
theDAN_protocol. client[2 j'

theDAN_protocol. router'
theDAN_protocol. router'

theDAN_protocol.client[3]'
theDAN_protocol. router'

client(0] cfenHI] ctent[2]

'

■QUB

-

Figure 22. Plove view of output vector file

29

graph 00a
5.5

5

4 5

4

3.5

3

2 5

2

! 5

mean responsejime in theDAN_protocol.client[0] (DAN_protocol.vec)
mean responsejime in lheDAN_protocol.client[1] (DAN_protocol.vec)
mean responsejime in lheDAN_prolocol.client[3] (DAN_protocol.vec)
mean responsejime in lheDAN_protocol.client[4] (DAN_protocol.vec)
mean responsejime in lheDAN_protocol.client[2) (DAN_protocol.vec)

100 200 300 400 500 600

Simulation Time (s)

700 900 1000

30

THIS PAGE INTENTIONALLY LEFT BLANK

31

IV. PROPOSED DEVICE-AWARE NETWORK ARCHITECTURE

Several content repurposing and device profile delivery techniques are discussed

in Chapter II. For repurposing, the techniques discussed in Chapter II provided content

adaptation either at client, server or an intermediate proxy. Such techniques result in extra

computational processing load at the already resource-limited client and at the server.

They are also not optimizing the usage of network bandwidth as bandwidth-hungry

content has to traverse across the network to be adapted at the client end, or at the

intermediate proxy, especially when the content server is located a long distance away.

These limitations will be illustrated through simulation modeling in Chapter V. In the

case of device profile delivery, UAProf requires that the content server connects to a

device profile repository to download the profiles as XML documents, which introduces

additional undesirable network latency.

In this chapter, an architecture is proposed for DAN from an integrated systems

approach, whereby the concept of a DAN processing unit (DPU) is introduced. The

architecture consists of three functional components – encapsulating device profile

information in the transmitting packet in binary-encoded format for small footprint and to

avoid unnecessary network latency communicating with another device profile

repository; adding content repurposing functionality into existing intermediate network

entities, such as routers closest to content sources, which are called DAN processing unit

(DPU), to optimize network bandwidth usage; capability-content compatibility policies to

determine the need and extend of content repurposing to perform.

The next section describes the encapsulation of device profile within data packets.

It is followed by Section B, which discusses the flexibility offered by DAN by

incorporating content repurposing functionality into intermediate network entities.

Section C provides an overview of capability-content compatibility policy engine. And

finally, Section D discusses the advantages of the proposed architecture. Putting these

functional components together, the proposed architecture provides an integrated systems

approach to enable device-aware networking. The schematic of the proposed architecture

is shown in Figure 23.

Client
Content
Server

InternetInternet
DAN

Processing
Unit

DAN
Processing

Unit

InternetInternet

payloadoption payloadoption

Incoming packets
with device profile

encapsulated

D
ev

ic
e

Pr
of

ile
 In

fo
rm

at
io

n

For analysis
of content

Outgoing
packets with

formatted
content to suit
capabilities of

clients

Repurposing Modules
(reducing image sizes,

speech to text, etc)

Policies: for capability
compatibility decisions

IP Layer: de-
encapsulate device
profile information

Figure 23. Schematic diagram of proposed architecture for DAN system

A. DEVICE CAPABILITY DISCOVERY
Several techniques are currently available to describe and communicate device

capabilities, such as CC/PP [CC/PP, 2004] and UAProf [WAG, 2001] which are

discussed in Chapter II. In particular, the device capability discovery mechanism

supported by UAProf includes storage of descriptions as substantially large and

comprehensive XML documents in networked databases, and retrieval of these

documents over the network. These methods are not ideal. To avoid overhead of

transmitting large documents and excessive information which may not be relevant to a

device’s ability to handle content, DAN architecture proposes encoding of device

capability information in binary format, and encapsulation of the information within

transmitting packets. In addition, only capability information crucial to determining

content compatibility should be included in the description. IP Option field in IP header

is considered as the encapsulation option for DAN architecture.

32

-

The structure of the IP Option format is shown in Figure 24 [Tcpipguide, 2004].

Of interest is the Option Type subfield, which is an 8-bit field divided into three “sub-

subfields”. Option Class sub-subfield is 2-bit long and specifies one of four potential

values that indicate the general category into which the option belongs. Currently, only

two of the values are defined: ‘0’ for Control options, and ‘2’ for Debugging and

Measurement options. Option Number sub-subfield is 5-bit long and specifies the kind of

option (32 different values) from each of the option classes. A few of the commonly

employed are ‘0’ used in military to indicate security classifications; ‘3’ for loose source

route; ‘7’ for record route; ‘9’ for strict source route; ‘4’ for timestamp; ‘18’ for

traceroute; and so on.

Figure 24. Structure of IP Option format (From Ref [Tcpipguide, 2004])

In the case of DAN, another Option Class and Option Number can be defined to

indicate that the subsequent option data contains device capability information. The

format of the option data can be a fix-sized field to represent the various types of

capabilities, followed by blocks of variable-length fields to represent the attributes for the

capability types. Common capability types may include CPU processing power, display

screen size, sound output capability, type of multimedia encoders the device supports,

and so on. Take for example; an 8-bit field is used to represent the various types of

capabilities and the 2nd bit indicates the hardware display screen size. The bit is set and

another variable-length field indicates the attribute which represents size of the device’s

33

0 4
 I
Option Type

12
 I
•Option Length

16 20 24

Option Data

28

• 0

Cop-
ied

Option
Class Option Number

screen in units of pixels, composed of the screen width and the screen height dimension

that can take values of “240x320”, “640x480”, etc. This example is depicted in Figure 25.

0 1 0 1 1 1 1 0

Bit-pattern encoded to
represent attributes, e.g.

“240x320” pixels

“Screen-Size” capability
type bit is set

8-bit field to represent
different types of

capabilities

Figure 25. Example of DAN format to represent device capability information

In order to enable DAN, end host systems need to allow encapsulation of device

capability information in the IP Option field in IP header. A DAN-enabled host can then

easily transmit device capability information together with any request packet to the

content server, without much impact on response time, as compared with the additional

network latency incurred by UAProf. Chapter V documents the minimal impact on

response time when IP Option field is used, through simulation modeling.

B. CONTENT REPURPOSING FUNCTIONALITY IN DAN PROCESSING
UNIT (DPU)
The proposed DPU in the architecture can reside in either end hosts (clients and

servers) or in existing nodes, e.g. routers, along the data path in the network. In this way,

DAN offers a much more flexible architecture compared to current content repurposing

frameworks presented in Chapter II. This flexibility is particular useful in mobile ad-hoc

network environment, whereby both the clients and servers may be mobile devices with

limited processing resources. These devices will not be able to perform the

computationally intensive content repurposing operations. A more capable DPU along

the data path can perform these operations so that only usable content is delivered to the

client devices.

34

Preferably, the DPU should be located closest to the content sources, so that

maximum network bandwidth conservation can be achieved. Canali et al proposed an

enhanced proxy server prototype that integrates content adaptation functionality and

caching of Web resources using Squid server [Canali et al, 2003]. Traditionally, proxy

caching servers are located closest to the clients so that content can be cached to avoid re-

fetching the content from the network if similar content is requested, thus conserving

bandwidth. However, from DAN perspective, this approach is not optimal as unusable or

huge content has to traverse across the network in its original size all the way from the

content server to the proxy, only to have parts or all of the information discarded or

reduced, utilizing network bandwidth unnecessarily. DAN proposes DPU functionalities

to be incorporated into existing network entities such as routers closest to the content

servers. Integrating with the existing caching service provided by the proxies at the client

ends, network bandwidth conservation is maximal as size and frequency of information

traversing majority of the network is reduced to minimal. Comparison between the two

approaches is illustrated pictorially in Figure 26. Also, Chapter V will provide an insight

numerically, through simulation modeling, on the improvement in network bandwidth

utilization when DAN architecture is used compared to proxy approach.

InternetInternet

Client
Content
Server

DAN-enabled
router

InternetInternet

Client Proxy
Content
Server

(a) Proxy-approach: higher network utilization over the network

(b) DAN-approach: lower network utilization over the network
Figure 26. Comparison between proxy-based and DAN-based approach

35

36

With reference to Figure 23, DAN-enabled router performs three operations.

Firstly, it will extract the device profile information encapsulated in the transmitted

packets. Using this device profile information and the payload content, it will determine

whether the content is compatible with the device’s capabilities, making use of pre-

defined policies. After determining capability-content compatibility, if the content is

deemed compatible, it will pass through without additional processing. Otherwise, the

content will be repurposed before forwarding the “usable” content to the client devices.

C. CAPABILITY-CONTENT COMPATIBILITY POLICY ENGINE
As illustrated in Figure 23, DAN architecture is modular in nature, with a separate

policy engine for determination of compatibility between device capability and content.

Besides using device capability information encapsulated within the transmitting packets

as a factor for consideration, Han et al also proposed to use DPU-server bandwidth, DPU-

client bandwidth and user preferences as factors to determine the need and the extend of

content repurposing to perform [Han et al, 1998]. The modularity nature of DAN

architecture offers the flexibility of feeding any number of parameters into the policy

engine for decision-making.

There is continuing research on decision-making criteria for content repurposing,

such as Hu’s and Bugga’s study on the functional categorization of web images [Hu and

Bagga, 2004]. Identifying the functional categories is an important consideration for

content repurposing. In this study, images are categorized as story, preview, host,

commercial, icon logo and heading. Images that belong to categories such as commercial

and icon logo can be safely removed without losing the meaning that content is bringing

across, instead of going through image re-scaling process. Such decision-making criteria

will continue to emerge as research on content repurposing progresses. Having a flexible

and modular architecture that DAN proposed will facilitate new decision-making criteria

to be easily included in the capability-content compatibility policy engine. Inevitably,

analysis and processing delay will increase with new arguments added into the decision-

making process. Chapter V will investigate the influence of such delay in overall DAN

performance.

37

D. ADVANTAGES OF PROPOSED DAN ARCHITECTURE
Evident from the discussion above, the proposed architecture has several benefits

over existing techniques presented in Chapter II. Firstly, it conserves network bandwidth

and resources through having DAN processing unit located closest to the content sources

so that the content can be repurposed at the earliest opportunity before traversing across

the network, eventually reaching the client devices. Network bandwidth and resources are

also conserved by encoding device profile information in binary format as compared to

large XML documents, as practiced by UAProf; and encapsulating the information within

the transmitting packets instead of incurring network latency and utilizing network

resources by performing additional lookup process to retrieve the XML documents from

networked repositories.

Secondly, DAN architecture is modular in nature and offers flexibility in

deployment. The operations performed by DAN processing unit are divided into three

modules – extraction of encapsulated device profile information; content repurposing

operations; and the capability-content compatibility decision-making process through

pre-defined policy engine. Modifications to the different modules can be easily

incorporated if new and refined techniques are discovered as research in these areas

continue to progress. In addition, DAN processing unit has the flexibility to reside in any

existing entities along the data path in the network. This is particularly important in

mobile ad-hoc network environment. In such environment, end hosts may be less capable

to handle any content repurposing and more capable intermediate nodes can assist to

perform the tasks. Data paths change frequently in a highly mobile environment, and the

flexibility in the location of DPU can provide at least an intermediate node to perform the

necessary content repurposing.

38

THIS PAGE INTENTIONALLY LEFT BLANK

V. SIMULATION MODELING AND PERFORMANCE
EVALUATION

This chapter describes the design, development and implementation of simulation

models used to study some of the performance limitations of existing content repurposing

frameworks and device capability discovery techniques, and to compare them with the

proposed DAN architecture. The various parameters used for the simulation and analysis

of the simulation results are also presented.

A. SIMULATION MODEL A: CLIENT-BASED AND SERVER-BASED
REPURPOSING
This model is a client-server architecture with the nodes communicating over the

Internet, as shown in Figure 27 below. The model is developed using OPNET Modeler

simulation software.

Figure 27. Simulation model for client-server communication

39

S3 Project: KJH_Thesis_Content_Repurposing Scenario: Client_side_format [Subnet: top.Campus Hetwoik] - GL
File Edit View Scenarios Topology Traffic Protocols DES Windows Help

.^ ß P n

Task Conligmalion Application Configuration ProMe. Conliguration

Mobile_subnet

Customer_E dge_R outer /jdaArea Nen ork Providei_R outer

710.00.300.00

40

The server node represents a content server serving content requested by clients.

The point of attachment to the Internet is a DS0 – 64 kbps connection via a router. The

client node represents either a normal PC or a PDA with limited display and processing

capabilities, with 802.11b wireless connection at 1 Mbps data-rate to an access point. The

client network is also connected to the Internet through a DS0 – 64 kbps connection via a

router. The client node will periodically request for content from the content server.

1. Scenario Description
Three different scenarios are built using the model. The detailed descriptions of

the scenarios are presented in Table 2.

Scenario Description

Scenario 1: Baseline

configuration

In this scenario, the client node is a normal PC with

capabilities to handle the requested content. The content

does not need to undergo any form of repurposing. The

communications between the PC and content server

follows a normal request-reply transaction flow using

TCP (Transmission Control Protocol). Normal CPU

processing delay is incurred at both the PC and content

server. The values for the parameters used will be given

in the next sub-section.

Scenario 2: Repurposing

performed at client side

In this scenario, the client node is a resource-limited

PDA. The content must be repurposed in order to be

“usable” for the PDA to handle, and the system employs

a client-based repurposing approach. The

communications between the PDA and content server

follows a transaction flow and processing delay depicted

in Figure 28. This communication is configured as

custom application using task specification in OPNET,

with TCP as the transport protocol. The values of the

parameters used are given in the next sub-section.

41

Scenario Description

Scenario 3: Repurposing

performed at server side

In this scenario, the client node is also a resource-limited

PDA. The content must be repurposed in order to be

“usable” for the PDA to handle, and the system employs

a server-based repurposing approach. The

communications between the PDA and content server

follows a transaction flow and processing delay depicted

in Figure 29. This communication is also configured as

custom application using task specification in OPNET,

with TCP as the transport protocol. The values of the

parameters used will be given in the next sub-section.

Table 2. Descriptions of scenarios using client-server communication model

Time Time

PDA

CPU
processing
delay

Formatted
content is
displayed

CPU + Content
Repurposing
processing delay
at client

Request
Message

Reply with
original content

Figure 28. Transaction flow for Scenario 2: client-based repurposing

a

Time Time

PDA Content Server

CPU processing
delay

Formatted
content is
displayed

CPU + Content
Repurposing
processing delay
at server

Request
Message

Reply with
formatted content

Figure 29. Transaction flow for Scenario 3: server-based repurposing

2. Task Definition and Parameters Used
The communications between the client node and server node for the scenarios

are configured as custom applications. The entire process of requesting for content by the

client node is described as a task. Each scenario has its own specified task as described in

Table 2 above. Phases of message passing and processing delay for the various request

and reply transactions are defined in Task Definition object in OPNET. Their definitions

and the parameters used are provided in Tables 3, 4, and 5, respectively for the three

different scenarios. Other delays such as propagation and transmission latency are

inherently computed and taken into account by OPNET when running the simulation.

Scenario 1

Phase Source Destination Traffic Description

Transaction #1 PC Content

Server

Request message size is a uniform

distribution over the range (1024, 2048)

in bytes.

Transaction #2 Content

Server

PC CPU processing delay incurred at server

node to generate reply is a uniform

42

43

Scenario 1

Phase Source Destination Traffic Description

distribution over the range (0.05, 0.1) in

seconds. Reply message size is a uniform

distribution over the range (200000,

400000) in bytes.

Transaction #3 PC Not

Applicable

Internal processing delay incurred at PC

to display content – uniform distribution

over the range (0.05, 0.1) in seconds.

Table 3. Definition of phases in Scenario 1

Scenario 2

Phase Source Destination Traffic Description

Transaction #1 PDA Content

Server

Request message size is a uniform

distribution over the range (1024, 2048)

in bytes.

Transaction #2 Content

Server

PDA CPU processing delay incurred at server

node to generate reply is a uniform

distribution over the range (0.05, 0.1) in

seconds. Reply message size is a uniform

distribution over the range (200000,

400000) in bytes.

Transaction #3 PDA Not

Applicable

Delay incurred is a combination of CPU

processing and extra processing for

content repurposing in order to display

formatted content – uniform distribution

over the range (0.1, 0.3) in seconds.

Table 4. Definition of phases in Scenario 2

44

Scenario 3

Phase Source Destination Traffic Description

Transaction #1 PDA Content

Server

Request message size is a uniform

distribution over the range (1024, 2048)

in bytes.

Transaction #2 Content

Server

Not

Applicable

Delay incurred at server node is a

combination of CPU processing and

extra processing for content repurposing

so that only formatted content is

delivered to the client – uniform

distribution over the range (0.1, 0.3) in

seconds.

Transaction #3 Content

Server

PDA Formatted reply message size is a

uniform distribution over the range

(150000, 200000) in bytes.

Transaction #4 PDA Not

Applicable

Internal processing delay incurred at

PDA to display content – uniform

distribution over the range (0.05, 0.1) in

seconds.

Table 5. Definition of phases in Scenario 3

In a study conducted by IBM T.J. Watson Research Center, image transcoding

delay was found to be dependent on input size, image dimensions, image content,

transcoding parameters, and compression and de-compression algorithms [Han et al,

1998]. Delay due only to image transcoding process was also predicted to be in the range

of 50 – 200 ms for JPEG-to-JPEG conversion, and exhibited a linear correlation with the

area of the input image (number of pixels). The results from the study are reproduced in

Figure 30, for the cases of quality factor = 5, correlation coefficient = 0.98, and quality

factor = 50, correlation coefficient = 0.98. These results are assumed for processing delay

parameter values due to content repurposing in the simulations for this thesis report. The

selection of values for pre-formatted and formatted message size parameters will be

elaborated in Section B.

Figure 30. Prediction of image transcoding time (in ms) for a transcoded image

(From Ref [Han et al, 1998])

A sample configuration, in OPNET of the phases described in Table 5 for

Scenario 3 is shown in Figure 31. Also shown is the detailed configuration of the traffic

parameters for one of the phases.

Figure 31. Sample configuration of phases and traffic description in OPNET for

Scenario 3

45

GS (Manual Configuration) Table ö
Start Phase After | Soutce Destination Source->Des* Ti... Dest->Soutce T radio REQ/RESP Patte _J

Application Starts Originating Source Content Seivei (...) No Response REQ->REQ->....R.

Previous Phase Ends Content Server NotAppkcable () NoResponse REQ->REQ->....R.

Pievious Phase Ends Content Server Mobilel | | NoResponse REQ->REQ->....R.

Previous Phase Ends Mobilel Not Applicable (...) NoResponse REQ->REQ->....R.

Phase Name

Content Request
Content Repwposng al Server

Content Repfc>

Processing

hi
|4 Rows ß<*** Insert

Dfitali £romote
1

(Source->Dest Traffic) Table

Attribute

Initialization Time (seconds)

Request Count

Intenequest Time (seconds)

Request Packet Size (bytes)

Packets Per Request

Intelpacket Time (seconds)

Server Job Name

Value

inform (0.05.0.
constant (1)

constant (0)
inform (150000.200000)
constant (1)

constant (0)

NotAppkcable

:■ Cancel

3. Profile Definition and Running the Simulation
The profile used by the client node in the scenarios is configured using the Profile

Definition object. The client node is configured to initiate a request to the content server

periodically with inter-request time following an exponential distribution with mean time

of 180 s.

The simulations are set to run over a simulation period of 120 min. Enhanced

Interior Gateway Routing Protocol (EIGRP) is used as the routing protocol running in the

network, so that packets in the network can be routed correctly to their destinations.

B. COMPARING SIMULATION RESULTS FOR SIMULATION MODEL A
Several significant statistics are collected from the simulation. The graphical

results of the simulation model for CPU utilization of the content server, CPU utilization

of the client, and network utilization over the Internet between the two nodes are shown

in Figure 32, 33, and 34, respectively. Time average values are plotted for the statistics.

Time average value is represented by the expressions (sum+=x; x=sum/++n), where x is

the instantaneous value, and n is the number of statistics collected over the simulation

period.

Figure 32. Comparing CPU utilization of content server for 3 different scenarios

46

0.30

Baseline
Client_sideJormat
Servet_side_(ormat

time.avetage (in CPU.CPU [1] • Utilization

2X100 4,000 6,000 8,000

time (seel

Figure 33. Comparing CPU utilization of client node for 3 different scenarios

Figure 34. Comparing network utilization for client-based and server-based

repurposing approaches

47

025

0.20

0.15

010

0.05

II 00

Baseline
Client_side_forma
Seivet_sideJoimat

lime_avetage (in C

2,000 4 000 6,000 8,000

lime (sec)

50

Qienl_side_loimat
Seivei.sidejoimal

lime_aveiage (in point-to-point, utilization [%\\

: ooo 4,000 6,000 8.000

time (sec)

48

The CPU utilization diagram for content server (Figure 32) shows that when

content repurposing is performed at the server, the extra computational load increases

CPU utilization by a factor of 3.25, from an average value of 0.04% to 0.13%. This

significant increase in CPU loading will affect the server’s ability to serve more clients.

Similarly, if content repurposing is performed at the client, the additional computational

load increases the CPU utilization of client by a factor of 2, from an average value of

0.04% to 0.08% (Figure 33). Furthermore, client-based repurposing approach is not an

efficient technique from the network bandwidth perspective as it consumes more

bandwidth as compared to the server-based repurposing approach (Figure 34). Network

utilization for client-based approach is 17%, while that for server-based approach is 10%.

The simulation results demonstrated and reinforced some of the significant limitations of

the two approaches to content repurposing.

C. SIMULATION MODEL B: PROXY-BASED REPURPOSING AND DAN
ARCHITECTURE

This model is designed based closely on the setup of AvantGo service [AvantGo,

2004], which is an excellent example of proxy-based repurposing system, described in

Chapter II. Six randomly selected channels (websites), as listed in Table 6, are used in

building this model. These channels fall into categories such as news, entertainment,

sports, technology and travel. They cover a broad range of interests, which form a typical

profile of a user of AvantGo service.

Internet traceroute to the various websites was conducted, and from the results,

the locations of the web servers (from network connectivity perspective) are gathered and

recorded in Table 6. A sample traceroute result to AccuWeather website is shown in

Figure 35, indicating that the network path ended in a router located in San Francisco,

CA. Based on these locations, the simulation model is developed as shown in Figure 36,

using OPNET Modeler simulation software.

Central to AvantGo service is the AvantGo Sync server, which is the proxy

performing all content repurposing operations before serving out the formatted content to

users. It is situated in San Jose, CA (network connectivity sense). This proxy server is

also included in the simulation model.

49

Channel Description URL of Website Location

New York Post http://www.nypost.com New York City, NY

Computer World http://www.computerworld.com Boston, MA

TV Guide http://www.tvguide.com Denver, CO

AccuWeather http://www.accuweather.com San Francisco, CA

Sporting News http://www.sportingnews.com Washington, WA

Hollywood Movies http://www.hollywood.com Miami, FL

Table 6. List of AvantGo channels selected for simulation model

Figure 35. Sample traceroute result to AccuWeather website

In the simulation model, each channel subnet is made up of the website server

connected to the Internet via a router through a DS0 - 64 kbps connection, as shown in

the blown-up diagram (Figure 36) for “tvguide.com” channel. In reality, the content

provider will subscribe to a larger bandwidth connection. A DS0 connection is chosen for

the simulation so that the impact on network bandwidth usage is visually more significant

and observable. The relative results for proxy-based approach and DAN approach are

similar even when higher bandwidths are chosen. The client subnet is made up of 5

mobile PDAs with 1 Mbps 802.11b wireless connections to an access point (shown in

blown-up diagram for client subnet in Figure 36). The client subnet is connected to the

Internet through a DS1 – 1.544 Mbps connection, located at Monterey, CA. Likewise,

AvantGo Sync server is also connected to the Internet through a DS1 – 1.544 Mbps

connection. The various subnets are positioned approximately at their respective

locations on an USA map so that propagation delay can be estimated and taken into

account based on distance.

Figure 36. Simulation model used for proxy-based repurposing approach and DAN

architecture

1. Scenario Description and Parameters Used
Two scenarios are built using the model. The first scenario models the AvantGo

service – a proxy-based repurposing approach, and the second scenario models DAN

architecture. Descriptions of the scenarios are provided in Table 7.

50

51

Scenario Description

Scenario 1: Proxy-

based repurposing

In this scenario, the PDAs will request for content from the various

channel websites through the AvantGo Sync proxy server. The

proxy server will fetch the necessary content in their original sizes

from the respective websites, format the content, and subsequently

sent the formatted content to the requesting client. The

communications between the client, proxy server and website

server follow a transaction flow and processing delay depicted in

Figure 37. The communication is configured as a custom

application in OPNET.

Scenario 2: DAN

architecture

In this scenario, the router connecting the website server in each

channel subnet is DAN-enabled, with the capability to perform

content repurposing, as shown in the blown-up diagram in Figure

36 for “computerworld.com” channel. A client will request content

directly from the website server. As the content traverse the

network from the website server to the client, it will be intercepted

by the DAN-enabled router, formatted before forwarding to the

client. The communications between the client, website server and

DAN-enabled router follow a transaction flow and processing

delay depicted in Figure 38. The communication is also configured

as a custom application in OPNET.

Table 7. Descriptions of scenarios for simulation model B

To get an estimate of the size of the original HTTP message returned from the

respective websites, packet captures are conducted using Ethereal packet analyzer

software. Only the message size of the homepage of the respective websites are captured

and tabulated in Table 8. Figure 39 shows an example of the packet analysis for New

York Post Homepage. Also, from AvantGo website (http://my.avantgo.com), information

on the estimated and maximum size of data a user is expected to download when

requesting content from a specific channel, can be obtained, and they are tabulated in

Table 8. This information is used as the assumed parameter values for original content

size and formatted content size, respectively when accessing the different websites, in the

simulation.

Time Time

PDA Website Server

Formatted
content is
displayed

CPU + Content
Repurposing
processing delay
at proxy – uniform
(0.1,0.3) s

Request Message –
uniform (1024,2048) bytes

Forward Request
Message

AvantGo Proxy Server

Time

Processing
delay *

Processing
delay *

Processing
delay *

Reply content in
original size

Forward
formatted

content after
repurposing

* Processing delay is
at uniform distribution
(0.05,0.1) s

Figure 37. Transaction flow for Scenario 1: proxy-based repurposing

Time Time

PDA Website Server

Formatted
content is
displayed

CPU + Content
Repurposing
processing delay
at router – uniform
(0.1,0.3) s

Request Message –
uniform (1024,2048) bytes

DAN-enabled router

Time

Processing
delay *

Processing
delay *

Reply content in
original size

Forward
formatted

content after
repurposing

* Processing delay is
at uniform distribution
(0.05,0.1) s

Figure 38. Transaction flow for Scenario 2: DAN architecture

52

53

Channel Estimated

size

provided

by

AvantGo

Maximum

size

provided

by

AvantGo

Homepage

size

(captured

through

Ethereal)

Formatted

size range

(used in

simulation)

Original

size range

(used in

simulation)

Nypost 150 KB 200 KB 336760 B 150-200 KB 300-350 KB

Computerworld 25 KB 75 KB 353246 B 25-75 KB 350-400 KB

Tvguide 20 KB 100 KB 396080 B 20-100 KB 350-450 KB

Accuweather 150 KB 200 KB 272693 B 150-200 KB 250-300 KB

Sportingnews 100 KB 1500 KB 439481 B 100-350 KB 400-450 KB

Hollywood 25 KB 100 KB 402128 B 25-100 KB 400-450 KB

Table 8. Message sizes of different channels used in simulation (Homepage size is

captured through Ethereal on 6 October 2004)

Figure 39. Packet analysis of New York Post homepage in Ethereal

<& ethei«Ml test - Etheieal

File Edit View Capture Analyze Statistics Help

E3 ® * * «54 (5.0.^ i» iß

m

1 0.000000 172.16.1.34
2 0.007303
3 0.007595
4 0.011384
5 0.013398
6 0.013679
7 0.015934
8 0.019697
9 0.019726

10 0.019820
11 0.033957
12 0.180100
13 0.183457
14 0.380743
15 1.184853
16 1.184886
17 1.1924 52
18 1.193217
19 4.057726
20 4.115587
21 4.116128
22 4.215818
23 4.215867
24 4.216019
2 5 4.216904
26 4.217010

172.
.1 72,
172
172.
17:.
172,
172
17=
i:
i:
i:
i:
i:
i:
l
l
i
:l
1
1
21
1
1
i:
i:

16.0.1
16.1.34
16.0.1
16.1.34
16.1.34
16.0.1
16.0.1

172.16.1.34
172.16.0.1
172.16.1.34
172.16.0.1
172.16.0.1
172.16.1.34
172.16.1.34

ICMP Echo Col na) request
ICMP
DNS
I'M:",
TCP
TCP
TCP
TCP

standard query A gateway.2w1re.net
Standard query response A 172.16.0.1
3586 > http [FIN, ACK] seq-0 Ack-0 wln-63203 Len-0
3587 > http [SYN] seq-0 Ack-0 wln-64512 Len-0 MSS-14
http > 3586 [ACK] seq-0 Ack-1 win-32768 Len-0
http > 3 587 [SYN, ACK] Seq-0 Ack-1 Win-32768 Len-0 M

r«4 512 Len-0
Ethereal: Protocol Hierarchy Statistics QGHT

El Frame 1 (78 bytes on
El Ethernet II, src: 0(j
El internet Protocol,
S internet control Me

Protocol * Packets| Packetsj Bytes| End Packets| End Bytes|

B Frame 100, OCR 495 351015 0 0
B Elhernet 100.00* 495 351015 0 0

B Internet Protocol 99.60* 433 350895 0 0
Internet Control Message Protocol 2.02* 111 1044 10 1044

B User Datagram Protocol 3.64* 18 2985 0 0
Domain Name Service i 25V 16 2636 16 2636
Hypertext Transler Protocol 0.40* 2 349 2 349

B Transmission Control Protocol 93.94* .11V 346866 Oil 10106
B Hypertext Transfer Protocol 57.37* .in 336760 2 e 274670

Line-based text data 0.61* 3 4518 > 4518
B CompuServe GIF 6.06* 30 40118 7 5480

Unreassembled Fragmented Packet 4.65* 23 34638 23 34638
B JPEG File Interchange Format 2 63V 13 17454 12 15948

Unreassembled Fragmented Packet 0.20* 1 1506 1 1506
Address Resolution Protocol 0.40* 2 120 2 120

OK

rin-64000 Len-0

Win-63203 Len-0

1.162
)4 512 Len-0 MSS-14
wln-5840 Len-0 MS
4 512 Len-0

seq-0 Ack-0 win-0
sea-0 Ack-0 win-0

I
0000 00 Od 72 2a 16 c9 00 04
0010 00 40 e3 d7 00 00 80 01
0020 00 01 08 00 80 63 40 02
0030 43 44 45 46 47 48 49 4a
0040 53 54 55 56 57 58 59 5a

23 4e 8c 59 08 00 4 5 00
fd al ac 10 01 22 ac 10
9b 00 58 d2 8d 00 41 42
4b 4c 4d 4e 4f 50 51 52
41 42 43 44 45 46

 CO. ..X. ..AB
CDEFGHIJJ KLMNOPQR
STUVWXYZ ABCDEF

/Add Expression... Clear Apply File: etherealjest 350 KB 00:00:16 Drops: 0

54

2. Profile Definition and Running the Simulation
Two profiles are created for the clients using Profile Definition object. One

profile (Profile A) has the clients accessing to Accuweather, Computerworld and

Hollywood website servers periodically at an interval following an exponential

distribution with mean time of 300 s. The other profile (Profile B) has the clients

accessing to Sportingnews, Tvguide and Nypost website servers periodically at an

interval following an exponential distribution with mean time of 300s. For the simulation,

three clients are assumed to be assigned Profile A, and two clients are assigned Profile B.

The simulations are set to run over a simulation period of 120 min. Enhanced

Interior Gateway Routing Protocol (EIGRP) is used as the routing protocol running in the

network, so that packets in the network can be routed correctly to their destinations.

D. COMPARING SIMULATION RESULTS FOR SIMULATION MODEL B
Network bandwidth usage and application response time are two important

statistics that measure and compare the performance of proxy-based repurposing

approach and the proposed DAN architecture approach. These statistics are collected

from the simulations. Figure 40 shows an example of the graphical simulation results for

(a) the network utilization on the connection between Tvguide server and the Internet,

and (b) the response time experienced by the clients accessing Tvguide server. Response

time is the total round-trip time taken for the clients to complete the transaction flow

depicted in Figure 37 or Figure 38, depending on the approach used.

(a) Network Utilization (%) (b) Response Time (s)
Figure 40. Sample simulation results of network utilization and response time

The average network utilizations and response times for the six different channel

(website) servers using different repurposing approaches (proxy-based and DAN) are

compared graphically in Figures 41 and 42, respectively.

0
5

10
15
20
25
30
35
40
45
50

A
ve

ra
ge

 N
et

w
or

k
U

til
iz

at
io

n
(%

)

ny
po

st.
co

m

co
mpute

rw
orld

.co
m

tvg
uid

e.c
om

ac
cu

weath
er.

co
m

sp
ort

ing
new

s.c
om

ho
llyw

oo
d.co

m

Channel

Network Utilization of the link connecting the Website
Server to the Internet

Proxy-based repurposing DAN approach

Figure 41. Comparing network utilization between proxy-based repurposing and
DAN approach
55

i tvguide_com <-> Internet [0] of Network -->

point-to-point utilization

T-jya Q Custom Application Application Response Time (sec) I- Jin.IE

I Proxy_approach
I DAN_approach

Custom AppfcabcnApplication Response Time (sec)

As observed in Figure 41, network utilizations of the various links are reduced

substantially when DAN approach is utilized, in comparison with proxy-based

repurposing approach. The maximum reduction is experienced in the case of Hollywood

channel (38.5%) and the minimum reduction for Nypost channel is 10%. This is the result

of DAN approach incorporating repurposing functionalities in routers closest to content

sources, so that only formatted content will traverse the network.

0
10
20
30
40
50
60
70
80

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(s
)

ny
po

st.
co

m

co
mpute

rw
orld

.co
m

tvg
uid

e.c
om

ac
cu

weath
er.

co
m

sp
ort

ing
ne

ws.c
om

ho
llyw

oo
d.co

m

Channel

Response Time accessing Website Server

Proxy-based repurposing DAN approach

Figure 42. Comparing response time between proxy-based repurposing and DAN
approach

As a result of network bandwidth conservation, the response times experienced by

clients accessing a typical webpage from the website servers using DAN approach are

also significantly better than that for proxy-based approach (Figure 42). The highest

improvement occurs at Hollywood channel with a reduction of 65 s in response time, and

the minimum improvement occurs at Accuweather channel with reduction of only 17 s in

response time. These results illustrated the advantages of DAN approach in optimizing

network bandwidth usage, and thus leading to better overall user experience.

56

In addition, the content repurposing processing delay at the DAN-enabled router

is varied from 0.2 s to 2.0 s for Computerworld channel using DAN approach, and the

effect on the performance of response time is simulated and shown in the figure below:

Client Response Time for Computerworld channel

6

7

8

9

10

11

12

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Estimated Content Repurposing Delay (s)

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(s
)

DAN approach

Client Response Time for Computerworld channel

6

16

26

36

46

56

66

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Estimated Content Repurposing Delay (s)

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(s
)

DAN approach

Proxy-based approach at content
repurposing delay = 0.2 sec

(a) For DAN approach only

(b) Comparing DAN with proxy-based approach
Figure 43. Effect on response time with varying content repurposing delay

57

58

As observed in Figure 43(a), the average response time has a linear relationship

with content repurposing processing delay that occurs at DAN-enable router, in the DAN

approach. Comparing with proxy-based approach at content repurposing delay of 0.2 s

(Figure 43(b)), DAN approach is still significantly better in performance even when the

content repurposing delay is increased to 2.0 s.

E. SIMULATION MODEL C: DEVICE PROFILE ENCAPSULATION
This model is developed using OMNeT++ simulation software, to analyze the

impact of utilizing IP Option field in IP header to encapsulate device profile information.

Response times of clients accessing a content server are recorded to study the impact.

1. Network Description (NED) File

In OMNeT++, the Network Description (NED) language describes the network

environment. The NED description file will enable the simulation model to automatically

build the network environment based on the parameters supplied by the designer. For this

model, the parameters used in defining the environment are shown in the following table:

Parameter Description

num_clients The number of clients deployed in the simulated environment.

The number will affect the number of connections created on the

Router module to support router-client network connections. In

the simulation, the number of clients is assumed to be five.

error_rate Bit error rate of the network connections. It is the probability that

a bit is incorrectly transmitted. The message has an error flag

which is set in case of transmission errors. In the simulation, the

bit error rate is assumed to be 0.00001, typical of a wireless LAN

environment.

data_rates The data rate specified for the network connections. It is used to

calculate transmission latency. In the simulation, the data rate is

assumed to be 1 Mbps.

59

Parameter Description

reply_size The size of the message replied by the server when a request is

sent from the client. In the simulation, the message size is

assumed to be 5 KB, based on worst-case scenario since

additional header overhead is likely to have more significant

effect on smaller message size.

frame_size The size of the frame used in the medium access control layer.

1518 and 2346 bytes are used for separate scenarios in the

simulation, which are the typical frame sizes used in wireless

LAN environment.

ip_option The assumed overhead in bytes used to encapsulate device profile

information. Maximum IP Option overhead is 40 bytes.

Table 9. Parameters used in NED description file

The NED description file also defines the simple modules used in the simulation

model - client, server and router modules. Each simple module definition includes

information on gates and connections used to inter-connect each of the simple modules.

For the simulation model developed, the communication channels between the simple

modules are defined with a propagation delay of 10 ms, data-rate specified by the

parameter “data_rates”, and bit error rate specified by the parameter “error_rate”. A

diagram showing how the different modules are connected in the network environment is

shown in Figure 44. The NED description file is provided in Appendix B.

2. Implementation Details

The client will request for content from the server periodically by sending a

request message of 1 KB in size. A timestamp is recorded in the client node when the

request message is sent. Upon receipt of a request message, the server replies with a reply

message equal to the size specified in parameter “reply_size”. The packet undergoes a

fragmentation process into smaller frames of size specified in parameter “frame_size”,

before transmitting in a continuous stream on the connection towards the router. The

connection is prone to errors with a bit error rate specified in parameter “error_rate”.

Figure 44. OMNeT++ simulation model

As the frames arrive separately in the client, they are re-assembled into the entire

message before the next request is sent. When one (or more) of the frames belonging to

the same message is detected with errors, an “NACK” message is sent to the server to

request for re-transmission of the entire message. Likewise, when a request is detected

with error by the server, an “NACK” message is sent to request for re-transmission from

the client. When the message is successfully re-assembled at the client, a second

timestamp is recorded, and the difference is the response time. The response time is

dependent on the following:

• Network transmission time. It is the round-trip transmission time, which is
dependent on the message size and bandwidth (specified in parameter
“data_rates”).

60

74 (ClientSeivei) theDAN_piotocol □BIB
->=? ►I ►►! © t

| (Clients erver) theDAN_protocol (id=1) (p(t018B96C8)

J

theDAN_protocol

41
se wi

sejgJRrver

se^wver

ni-iT-p"ij
1 1

/ Aon MV\

r7 i f

i r xr
client[0) client[1] client[2] client[3] clients

d

61

• Network propagation delay specified in NED description file when defining
the communication channels.

• Processing delay in the client, server and router.

• Probability of bit error specified in parameter “error_rate”, which leads to re-
transmission of the message.

The C++ source codes for the client, server and router modules are provided in

Appendix B.

3. Running the Simulation
Four scenarios are run using the simulation model, and the differences in

parameter values used in “frame_size” and “ip_option” are shown in Table 10. The

simulations are run over a period of 1000 s specified in the omnetpp.ini file.

Scenario Frame size (in bytes) IP Option overhead (in bytes)

Scenario 1 1518 0

Scenario 2 1518 40

Scenario 3 2346 0

Scenario 4 2346 40

Table 10. Description of scenarios used in OMNeT++ model

F. COMPARING SIMULATION RESULTS FOR SIMULATION MODEL C
Over the simulation runs, response times for the different scenarios are

consolidated, and different statistical results of the response times are computed and

tabulated, as shown in Table 11, and also shown graphically in Figure 45.

62

Response Time

(in seconds)

1518-byte

frame size

with No IP

Option

1518-byte

frame size

with 40-byte

IP Option

2346-byte

frame size

with No IP

Option

2346-byte

frame size

with 40-byte

IP Option

Average 2.717269753 2.931723878 2.091063087 2.08237693

Maximum 12.539366 13.0125248 8.303797482 8.91024156

Minimum 0.889150697 0.865455601 0.728720525 0.732544353

Standard

Deviation

2.070111846 2.367644508 1.516164458 1.544336776

Table 11. Computation of client response times

Client Response Time Performance

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

1518-byte frame
size with No IP

Option

1518-byte frame
size with 40-byte IP

Option

2346-byte frame
size with No IP

Option

2346-byte frame
size with 40-byte IP

Option

R
es

po
ns

e
Ti

m
e

(s
ec

)

Average Maximum Minimum Standard Deviation

MAX

MAX
MAX

MIN MIN MIN MIN

MAX

Figure 45. Graphical results of client response times

63

At both 1518 and 2346-byte frame sizes, even with the addition of maximum IP

Option at 40 bytes, the performance in response time is not affected significantly. Thus,

the proposed encapsulation of device profile information using IP Option field in the IP

header for DAN network will not affect the overall performance of the system. The large

variations in the maximum and minimum values for the response times are due to the re-

transmission of messages when a bit error is detected in the transmission. The bit error

rate set for this case is 0.00001. The variation will reduce as the bit error rate is

decreased.

64

THIS PAGE INTENTIONALLY LEFT BLANK

65

VI. CONCLUSION

As the popularity of Internet soars, the content on the Internet is increasingly

accessed by wireless and mobile access devices that are usually small in form factor and

limited in resources, such as smaller display screen; lesser processing power, memory

and battery power; and connected to the Internet with limited bandwidth. Because content

in the Internet varies in types and serves many different purposes, the need to repurpose

the content to fit the device capabilities becomes an important task in the development of

Internet. By enabling device-awareness in the network, unnecessary wastage of network

and device resources can be avoided, and only “usable” content is delivered to the end

device.

This report has presented a review of existing content repurposing frameworks

and their limitations. In contrast to these limitations, a more efficient approach to enable

device-aware networking has been proposed in this report, which encapsulates necessary

device profile information in transmitting packets and incorporating content repurposing

functionality in existing network entities along the data path, preferably closest to the

content sources.

Simulation models are developed to statistically evaluate the performance of the

proposed DAN architecture in comparison to existing content repurposing frameworks.

The simulation results showed that the proposed DAN approach provides a faster

framework than typical proxy-based approach. This is the result of intercepting the large

content early in transition, and formatting the content into a format suitable for the

resource-limited wireless and mobile devices, so that network bandwidth usage is

optimized and response time is substantially reduced.

The simulation results also showed that using IP Option field in IP header for

encapsulation of device profile information will not have any significant impact in the

performance of the system. The simulations were conducted assuming a worst-case

scenario of a wireless environment, subjected to transmission errors, and a small reply

message size.

66

Although the simulation models demonstrated the feasibility and suitability of

DAN architecture in providing the infrastructure necessary for device capability and

content compatibility matching, much work remains to be done for realization of DAN.

For example, modifications need to be made to end systems to encapsulate device profile

information, and also to extract the information for compatibility analysis. Also, other

relevant parameters and algorithms need to be explored and investigated to improve the

efficiency of the compatibility policy in decision-making on the need and extend of

content repurposing. These future works in DAN will prove important and improve the

overall user experience as people adopt the idea of accessing the Internet on the move

with wireless and mobile devices.

67

APPENDIX A – USER AGENT PROFILE FOR NOKIA 6650

The profile can be accessed at http://nds1.nds.nokia.com/uaprof/N6650r300.xml

[Accessed October, 2004].

<?xml version="1.0" ?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:prf="http://www.openmobilealliance.org/tech/profiles/UAPROF/ccppschema-
20021212#" xmlns:mms="http://www.wapforum.org/profiles/MMS/ccppschema-
20010111#">
 <rdf:Description rdf:ID="Nokia6650">
 <prf:component>
 <rdf:Description rdf:ID="HardwarePlatform">
 <rdf:type
rdf:resource="http://www.openmobilealliance.org/tech/profiles/UAPROF/ccppschema-
20021212#HardwarePlatform" />
 <prf:ScreenSize>128x115</prf:ScreenSize>
 <prf:Model>6650</prf:Model>
 <prf:InputCharSet>
 <rdf:Bag>
 <rdf:li>US-ASCII</rdf:li>
 <rdf:li>UTF-8</rdf:li>
 <rdf:li>ISO-8859-1</rdf:li>
 <rdf:li>ISO-10646-UCS-2</rdf:li>
 </rdf:Bag>
 </prf:InputCharSet>
 <prf:ScreenSizeChar>25x7</prf:ScreenSizeChar>
 <prf:BitsPerPixel>12</prf:BitsPerPixel>
 <prf:ColorCapable>Yes</prf:ColorCapable>
 <prf:TextInputCapable>Yes</prf:TextInputCapable>
 <prf:ImageCapable>Yes</prf:ImageCapable>
 <prf:Keyboard>PhoneKeypad</prf:Keyboard>
 <prf:NumberOfSoftKeys>3</prf:NumberOfSoftKeys>
 <prf:Vendor>Nokia</prf:Vendor>
 <prf:OutputCharSet>
 <rdf:Bag>
 <rdf:li>ISO-8859-1</rdf:li>
 <rdf:li>US-ASCII</rdf:li>
 <rdf:li>UTF-8</rdf:li>
 <rdf:li>ISO-10646-UCS-2</rdf:li>
 </rdf:Bag>
 </prf:OutputCharSet>
 <prf:SoundOutputCapable>Yes</prf:SoundOutputCapable>
 <prf:StandardFontProportional>Yes</prf:StandardFontProportional>

68

 <prf:PixelAspectRatio>1x1</prf:PixelAspectRatio>
 <prf:VoiceInputCapable>Yes</prf:VoiceInputCapable>
 </rdf:Description>
 </prf:component>
 <prf:component>
 <rdf:Description rdf:ID="SoftwarePlatform">
 <rdf:type
rdf:resource="http://www.openmobilealliance.org/tech/profiles/UAPROF/ccppschema-
20021212#SoftwarePlatform" />
 <prf:AcceptDownloadableSoftware>Yes</prf:AcceptDownloadableSoftware>
 <prf:AudioInputEncoder>
 <rdf:Bag>
 <rdf:li>amr</rdf:li>
 </rdf:Bag>
 </prf:AudioInputEncoder>
 <prf:JavaEnabled>Yes</prf:JavaEnabled>
 <prf:JavaPlatform>
 <rdf:Bag>
 <rdf:li>MIDP/1.0</rdf:li>
 <rdf:li>CLDC/1.0</rdf:li>
 </rdf:Bag>
 </prf:JavaPlatform>
 <prf:JavaProtocol>
 <rdf:Bag>
 <rdf:li>http</rdf:li>
 <rdf:li>sms</rdf:li>
 <rdf:li>socket</rdf:li>
 </rdf:Bag>
 </prf:JavaProtocol>
 <prf:DownloadableSoftwareSupport>
 <rdf:Bag>
 <rdf:li>application/vnd.sun.java</rdf:li>
 <rdf:li>text/vnd.sun.j2me.app-descriptor</rdf:li>
 <rdf:li>application/java-archive</rdf:li>
 </rdf:Bag>
 </prf:DownloadableSoftwareSupport>
 <prf:CcppAccept>
 <rdf:Bag>
 <rdf:li>application/vnd.wap.wmlscriptc</rdf:li>
 <rdf:li>application/vnd.wap.wmlc</rdf:li>
 <rdf:li>application/vnd.wap.xhtml+xml</rdf:li>
 <rdf:li>application/vnd.wap.sic</rdf:li>
 <rdf:li>application/vnd.wap.slc</rdf:li>
 <rdf:li>application/vnd.wap.hashed-certificate</rdf:li>
 <rdf:li>application/vnd.wap.signed-certificate</rdf:li>
 <rdf:li>application/vnd.wap.connectivity-wbxml</rdf:li>

69

 <rdf:li>application/vnd.oma.drm.message</rdf:li>
 <rdf:li>application/vnd.oma.drm.rights+xml</rdf:li>
 <rdf:li>application/vnd.oma.drm.rights+wbxml</rdf:li>
 <rdf:li>application/vnd.oma.drm.content</rdf:li>
 <rdf:li>application/vnd.oma.dd+xml</rdf:li>
 <rdf:li>application/vnd.nokia.ringing-tone</rdf:li>
 <rdf:li>application/java</rdf:li>
 <rdf:li>application/java-archive</rdf:li>
 <rdf:li>application/x-java-archive</rdf:li>
 <rdf:li>application/x-wap-prov.browser-bookmarks</rdf:li>
 <rdf:li>application/vnd.wap.cert-response</rdf:li>
 <rdf:li>application/xhtml+xml</rdf:li>
 <rdf:li>application/x-wallet-appl.user-data-provision</rdf:li>
 <rdf:li>application/vnd.met.receipt</rdf:li>
 <rdf:li>audio/amr</rdf:li>
 <rdf:li>audio/mid</rdf:li>
 <rdf:li>audio/midi</rdf:li>
 <rdf:li>audio/x-mid</rdf:li>
 <rdf:li>audio/x-midi</rdf:li>
 <rdf:li>audio/sp-midi</rdf:li>
 <rdf:li>audio/3gpp</rdf:li>
 <rdf:li>audio/mp4</rdf:li>
 <rdf:li>video/3gpp</rdf:li>
 <rdf:li>video/mp4</rdf:li>
 <rdf:li>text/x-vCard</rdf:li>
 <rdf:li>text/x-vCalendar</rdf:li>
 <rdf:li>text/vnd.wap.wml</rdf:li>
 <rdf:li>text/vnd.wap.wmlscript</rdf:li>
 <rdf:li>text/x-co-desc</rdf:li>
 <rdf:li>text/css</rdf:li>
 <rdf:li>text/html</rdf:li>
 <rdf:li>text/vnd.wap.sl</rdf:li>
 <rdf:li>text/vnd.wap.si</rdf:li>
 <rdf:li>text/vnd.sun.j2me.app-descriptor</rdf:li>
 <rdf:li>image/vnd.wap.wbmp</rdf:li>
 <rdf:li>image/jpeg</rdf:li>
 <rdf:li>image/jpg</rdf:li>
 <rdf:li>image/bmp</rdf:li>
 <rdf:li>image/gif</rdf:li>
 <rdf:li>image/png</rdf:li>
 <rdf:li>image/vnd.nok-oplogo-color</rdf:li>
 <rdf:li>image/vnd.nok-wallpaper</rdf:li>
 </rdf:Bag>
 </prf:CcppAccept>
 <prf:CcppAccept-Charset>
 <rdf:Bag>

70

 <rdf:li>US-ASCII</rdf:li>
 <rdf:li>ISO-8859-1</rdf:li>
 <rdf:li>UTF-8</rdf:li>
 <rdf:li>ISO-10646-UCS-2</rdf:li>
 </rdf:Bag>
 </prf:CcppAccept-Charset>
 <prf:CcppAccept-Encoding>
 <rdf:Bag>
 <rdf:li>base64</rdf:li>
 </rdf:Bag>
 </prf:CcppAccept-Encoding>
 </rdf:Description>
 </prf:component>
 <prf:component>
 <rdf:Description rdf:ID="NetworkCharacteristics">
 <rdf:type
rdf:resource="http://www.openmobilealliance.org/tech/profiles/UAPROF/ccppschema-
20021212#NetworkCharacteristics" />
 <prf:SecuritySupport>
 <rdf:Bag>
 <rdf:li>signText</rdf:li>
 <rdf:li>TLS</rdf:li>
 <rdf:li>SSL</rdf:li>
 </rdf:Bag>
 </prf:SecuritySupport>
 <prf:SupportedBearers>
 <rdf:Bag>
 <rdf:li>GPRS</rdf:li>
 </rdf:Bag>
 </prf:SupportedBearers>
 </rdf:Description>
 </prf:component>
 <prf:component>
 <rdf:Description rdf:ID="BrowserUA">
 <rdf:type
rdf:resource="http://www.openmobilealliance.org/tech/profiles/UAPROF/ccppschema-
20021212#BrowserUA" />
 <prf:BrowserName>Nokia</prf:BrowserName>
 <prf:DownloadableBrowserApps>
 <rdf:Bag>
 <rdf:li>application/vnd.nokia.ringing-tone</rdf:li>
 </rdf:Bag>
 </prf:DownloadableBrowserApps>
 <prf:JavaScriptEnabled>No</prf:JavaScriptEnabled>
 <prf:FramesCapable>No</prf:FramesCapable>
 <prf:TablesCapable>Yes</prf:TablesCapable>

71

 <prf:XhtmlVersion>1.0</prf:XhtmlVersion>
 <prf:XhtmlModules>
 <rdf:Bag>
 <rdf:li>xhtml-basic10</rdf:li>
 </rdf:Bag>
 </prf:XhtmlModules>
 </rdf:Description>
 </prf:component>
 <prf:component>
 <rdf:Description rdf:ID="WapCharacteristics">
 <rdf:type
rdf:resource="http://www.openmobilealliance.org/tech/profiles/UAPROF/ccppschema-
20021212#WapCharacteristics" />
 <prf:WapDeviceClass>C</prf:WapDeviceClass>
 <prf:WapVersion>2.0</prf:WapVersion>
 <prf:WmlVersion>
 <rdf:Bag>
 <rdf:li>1.3</rdf:li>
 </rdf:Bag>
 </prf:WmlVersion>
 <prf:WmlDeckSize>51200</prf:WmlDeckSize>
 <prf:WmlScriptVersion>
 <rdf:Bag>
 <rdf:li>1.2</rdf:li>
 </rdf:Bag>
 </prf:WmlScriptVersion>
 <prf:WmlScriptLibraries>
 <rdf:Bag>
 <rdf:li>Lang</rdf:li>
 <rdf:li>Float</rdf:li>
 <rdf:li>String</rdf:li>
 <rdf:li>URL</rdf:li>
 <rdf:li>WMLBrowser</rdf:li>
 <rdf:li>Dialogs</rdf:li>
 </rdf:Bag>
 </prf:WmlScriptLibraries>
 <prf:WtaiLibraries>
 <rdf:Bag>
 <rdf:li>WTA.Public.makeCall</rdf:li>
 <rdf:li>WTA.Public.sendDTMF</rdf:li>
 <rdf:li>WTA.Public.addPBEntry</rdf:li>
 </rdf:Bag>
 </prf:WtaiLibraries>
 <prf:DrmClass>
 <rdf:Bag>
 <rdf:li>ForwardLock</rdf:li>

72

 <rdf:li>CombinedDelivery</rdf:li>
 <rdf:li>SeparateDelivery</rdf:li>
 </rdf:Bag>
 </prf:DrmClass>
 <prf:OmaDownload>Yes</prf:OmaDownload>
 </rdf:Description>
 </prf:component>
 <prf:component>
 <rdf:Description rdf:ID="PushCharacteristics">
 <rdf:type
rdf:resource="http://www.openmobilealliance.org/tech/profiles/UAPROF/ccppschema-
20021212#PushCharacteristics" />
 <prf:Push-Accept>
 <rdf:Bag>
 <rdf:li>application/wml+xml</rdf:li>
 <rdf:li>text/html</rdf:li>
 </rdf:Bag>
 </prf:Push-Accept>
 <prf:Push-Accept-Charset>
 <rdf:Bag>
 <rdf:li>US-ASCII</rdf:li>
 <rdf:li>ISO-8859-1</rdf:li>
 <rdf:li>UTF-8</rdf:li>
 <rdf:li>ISO-10646-UCS-2</rdf:li>
 </rdf:Bag>
 </prf:Push-Accept-Charset>
 <prf:Push-Accept-Encoding>
 <rdf:Bag>
 <rdf:li>base64</rdf:li>
 <rdf:li>quoted-printable</rdf:li>
 </rdf:Bag>
 </prf:Push-Accept-Encoding>
 <prf:Push-Accept-AppID>
 <rdf:Bag>
 <rdf:li>x-wap-application:wml.ua</rdf:li>
 <rdf:li>*</rdf:li>
 </rdf:Bag>
 </prf:Push-Accept-AppID>
 <prf:Push-MsgSize>1400</prf:Push-MsgSize>
 </rdf:Description>
 </prf:component>
 <prf:component>
 <rdf:Description rdf:ID="MmsCharacteristics">
 <rdf:type rdf:resource="http://www.wapforum.org/profiles/MMS/ccppschema-
20010111#MmsCharacteristics" />
 <mms:MmsMaxMessageSize>102400</mms:MmsMaxMessageSize>

73

 <mms:MmsMaxImageResolution>640x480</mms:MmsMaxImageResolution>
 <mms:MmsCcppAccept>
 <rdf:Bag>
 <rdf:li>application/vnd.nokia.ringing-tone</rdf:li>
 <rdf:li>application/vnd.oma.drm.message</rdf:li>
 <rdf:li>audio/mid</rdf:li>
 <rdf:li>audio/midi</rdf:li>
 <rdf:li>audio/x-mid</rdf:li>
 <rdf:li>audio/x-midi</rdf:li>
 <rdf:li>audio/sp-midi</rdf:li>
 <rdf:li>audio/amr</rdf:li>
 <rdf:li>audio/amr-wb</rdf:li>
 <rdf:li>image/jpg</rdf:li>
 <rdf:li>image/jpeg</rdf:li>
 <rdf:li>image/gif</rdf:li>
 <rdf:li>image/png</rdf:li>
 <rdf:li>image/bmp</rdf:li>
 <rdf:li>image/vnd.wap.wbmp</rdf:li>
 <rdf:li>text/x-vCard</rdf:li>
 <rdf:li>text/x-vCalendar</rdf:li>
 <rdf:li>text/plain</rdf:li>
 <rdf:li>video/3gpp</rdf:li>
 </rdf:Bag>
 </mms:MmsCcppAccept>
 <mms:MmsCcppAcceptCharSet>
 <rdf:Bag>
 <rdf:li>UTF-8</rdf:li>
 <rdf:li>ISO-8859-1</rdf:li>
 <rdf:li>US-ASCII</rdf:li>
 <rdf:li>ISO-10646-UCS-2</rdf:li>
 </rdf:Bag>
 </mms:MmsCcppAcceptCharSet>
 <mms:MmsVersion>
 <rdf:Bag>
 <rdf:li>1.0</rdf:li>
 </rdf:Bag>
 </mms:MmsVersion>
 </rdf:Description>
 </prf:component>
 </rdf:Description>
</rdf:RDF>

74

THIS PAGE INTENTIONALLY LEFT BLANK

75

APPENDIX B – SOURCE CODES FOR OMNET++ MODEL

A. DAN_PROTOCOL.NED
//---
// file: DAN_protocol.ned
//---

// Client --
//
// A client PDA which periodically connects to the server for data exchange.
//
simple Client
 gates:
 out: out;
 in: in;
endsimple

// Router --
//
// A very simple module which models the network component (DAN router) between
// the server and the clients, which has the capability to perform compatibility processing
// and content repurposing.
//
simple Router
 gates:
 out: out[];
 in: in[];
endsimple

// Server --
//
// Models a simple server which accepts connections from the client PDAs. It serves
// multiple connections at a time; each connection is handled by a ServerProcess module,
// created on demand.
//
simple Server
 gates:
 out: out;
 in: in;
endsimple

// ClientServer --
//
// Model of the network, consisting of serveral clients, a server and a router.
//

76

module ClientServer
 parameters:
 num_clients : numeric,
 error_rate : numeric,
 data_rates : numeric,
 req_size : numeric,
 reply_size : numeric,
 frame_size : numeric,
 ip_option : numeric;
 submodules:
 server: Server;
 display: "p=263,67;i=server1;b=30,34";
 router: Router;
 gatesizes:
 in[num_clients+1],
 out[num_clients+1];
 display: "p=267,212;i=router3;b=38,50";
 client: Client[num_clients];
 display: "p=131,349,r,70;i=pda3;b=23,39";
 connections:
 for i=0..num_clients-1 do
 client[i].out --> delay 10ms --> router.in[i];
 client[i].in <-- delay 10ms <-- router.out[i];
 endfor;
 server.out --> delay 10ms datarate data_rates error error_rate -->
router.in[num_clients];
 server.in <-- delay 10ms datarate data_rates error error_rate <--
router.out[num_clients];
 display: "p=10,10;b=529,397";
endmodule

// theDAN_protocol --
//
// Instantiates a ClientServer network.
//
network theDAN_protocol : ClientServer
 parameters:
 num_clients = input(5,"Number of clients:"),
 error_rate = input(0.00001, "Network Error Rate:"),
 frame_size = input(1518, "Size of Frame (bytes):"),
 req_size = 1024*8, // 1KB
 reply_size = input(5, "Reply Size (KB):"),
 ip_option = input(0, "IP Option Field (bytes):"),
 data_rates = input(1000000,"Data Rate (bps):");
endnetwork

77

B. CLIENT.CPP
//---
// File: client.cc
// Modified from part of DYNA - an OMNeT++ demo simulation
//---

#include "omnetpp.h"

class Client : public cSimpleModule
{
 Module_Class_Members(Client,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(Client);

void Client::activity()
{
 // variable declaration
 int own_addr = gate("out")->toGate()->index();
 int server_addr = gate("out")->toGate()->size()-1;
 int req_size = parentModule()->par("req_size");
 int reply_size = parentModule()->par("reply_size");
 int frame_size = parentModule()->par("frame_size");
 int ip_option = parentModule()->par("ip_option");
 reply_size = reply_size*1024*8 + 160 + (ip_option*8); // include encapsulation of
device profile
 int num_packet = reply_size/(frame_size*8);
 int remain_size = reply_size - (frame_size*8)*num_packet;
 int counter, flag, count;
 double response_time;
 bool req_retransmit;
 cOutVector resp_v("response_time");
 cMessage *done;

 // to determine the number of frames expected to receive from server
 if (remain_size != 0)
 counter = num_packet+1;
 else
 counter = num_packet;

 for(;;)
 {
 // keep an interval between subsequent connections
 wait(uniform(3.0,15.0));

78

 // connection setup. Generating and sending request including device
profile to server
 ev << "Client " << name() << " sending request and device profile\n";
 cMessage *work = new cMessage(name());
 work->addPar("src") = own_addr;
 work->addPar("dest") = server_addr;
 work->setLength(req_size+160+ip_option*8); // include encapsulation of
device profile
 work->setKind(0);
 response_time = simTime();
 send(work, "out");

 // receive reply from server
 ev << "Client " << name() << " waiting for Reply\n";
 done = receive();
 flag = done->par("flag");

 count = 0;
 req_retransmit = false;

 // to handle the case when a negative acknowledgement is received,

// indicating the client has send a request with error, or the case whereby it
// is still not the last frame received from server

 while ((done->length() == 10) || count < counter)
 {
 if (done->length() == 10) // NACK received, whether error or not
 {
 ev << "Client " << name() << " sent a bad message!!!\n";
 ev << "Re-send request\n";
 cMessage *work1 = new cMessage(name());
 work1->addPar("src") = own_addr;
 work1->addPar("dest") = server_addr;
 work1->setLength(req_size+160+ip_option*8); // include
encapsulation of device profile
 work1->setKind(1);
 send(work1, "out");
 count = 0; // reset count
 ev << "Client " << name() << " waiting for Reply (E)\n";
 delete done;
 done = receive();
 flag = done->par("flag");
 }

 else if (flag == 0 && done->hasBitError()) // to differentiate from
NACK with error
 {

79

 req_retransmit = true;
 count ++;
 delete done;
 done = receive();
 flag = done->par("flag");
 }

 else if ((flag == 1 && done->hasBitError()) || (flag == 1 &&
req_retransmit == true)) // send NACK
 {
 ev << "Client " << name() << " got a bad message!!!\n";
 cMessage *work2 = new cMessage("NACK");
 work2->addPar("src") = own_addr;
 work2->addPar("dest") = server_addr;
 work2->setLength(10); // Nack size
 work2->setKind(2);
 send(work2, "out");
 count = 0; // reset count
 ev << "Client " << name() << " waiting for Reply (E)\n";
 delete done;
 req_retransmit = false;
 done = receive();
 flag = done->par("flag");
 }

 else if (flag == 1) // last frame received
 count ++;

 else
 { count ++;
 delete done;
 done = receive();
 flag = done->par("flag");
 }
 }
 // to compute client response time
 response_time = simTime() - response_time;
 resp_v.record(response_time);
 delete done;
 }
}

C. SERVER.CPP
//---
// File: server.cc
// Modified from part of DYNA - an OMNeT++ demo simulation

80

//---

#include "omnetpp.h"

class Server : public cSimpleModule
{
 Module_Class_Members(Server,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(Server);

void Server::activity()
{
 // variable declaration
 double avg_utilization = 0.0;
 double total_process_time, process_time;
 int reply_size = parentModule()->par("reply_size");
 int frame_size = parentModule()->par("frame_size");
 int ip_option = parentModule()->par("ip_option");
 reply_size = reply_size*1024*8 + 160 + (ip_option*8); // include encapsulation
of device profile
 int num_packet = reply_size/(frame_size*8);
 int remain_size = reply_size - (frame_size*8)*num_packet;
 cOutVector resp_v("CPU utilization");
 cMessage *msg;

 for(;;)
 {
 total_process_time = 0.0;
 msg = receive();

 // to handle the case when the request received from client has error, or the
 // case whereby negative acknowledgement is received from client,

// indicating that the server has sent frames with error
 while (msg->hasBitError() || (msg->length() == 10))
 {
 // server processing delay
 process_time = uniform(0.05,0.1);
 wait(process_time);
 total_process_time = total_process_time + process_time;

 // generating reply message
 cMessage *packetr = new cMessage("seg_server");
 packetr->addPar("src") = msg->par("dest");
 packetr->addPar("dest")= msg->par("src");

81

 packetr->addPar("flag") = 0; // to represent "NOT" the last packet

 cMessage *last_packetr = new cMessage ("seg_server");
 last_packetr->addPar("src") = msg->par("dest");
 last_packetr->addPar("dest")= msg->par("src");
 last_packetr->addPar("flag") = 1; // to represent last packet

 if (msg->length() == 10) // Nack message received
 {
 packetr->setLength(frame_size*8);
 packetr->setKind(6);
 last_packetr->setKind(7);
 if (remain_size != 0)
 last_packetr->setLength(remain_size);
 else
 last_packetr->setLength(frame_size*8);

 // packetize the message for sending
 for (int i = 0; i < num_packet-1; i++)
 {
 cMessage *copy = (cMessage *) packetr -> dup();
 send(copy, "out");
 }
 if (remain_size != 0)
 {
 cMessage *copy = (cMessage *) packetr -> dup();
 send(copy, "out");
 send (last_packetr, "out");
 }
 else
 {
 send (last_packetr, "out");
 }

 }
 else // Send Nack
 {
 cMessage *send_nack = new cMessage("NACK");
 send_nack->addPar("src") = msg->par("dest");
 send_nack->addPar("dest")= msg->par("src");
 send_nack->addPar("flag") = 2; // to represent other packet
 send_nack->setLength(10);
 send_nack->setKind(8);
 send(send_nack, "out");
 }

82

 delete msg;
 msg = receive();
 }

 // server processing delay
 process_time = uniform(0.05,0.1);
 wait(process_time);
 total_process_time = total_process_time + process_time;

 // generating and sending reply to client
 cMessage *packet = new cMessage("seg_server");
 packet->addPar("src") = msg->par("dest");
 packet->addPar("dest")= msg->par("src");
 packet->addPar("flag") = 0; // to represent "NOT" the last packet
 packet->setLength(frame_size*8);
 packet->setKind(4);

 cMessage *last_packet = new cMessage ("seg_server");
 last_packet->addPar("src") = msg->par("dest");
 last_packet->addPar("dest")= msg->par("src");
 last_packet->addPar("flag") = 1; // to represent last packet
 last_packet->setKind(5);

 if (remain_size != 0)
 last_packet->setLength(remain_size);
 else
 last_packet->setLength(frame_size*8);

 delete msg;

 // to compute CPU utilization
 avg_utilization = avg_utilization + total_process_time;
 resp_v.record(avg_utilization/simTime());

 // packetize the message for sending
 for (int i = 0; i < num_packet-1; i++)
 {
 cMessage *copy = (cMessage *) packet -> dup();
 send(copy, "out");
 }
 if (remain_size != 0)
 {
 cMessage *copy = (cMessage *) packet -> dup();
 send(copy, "out");
 send (last_packet, "out");
 }

83

 else
 {
 send (last_packet, "out");
 }
 }
}

D. ROUTER.CPP
//---
// File: router.cc
// Modified from part of DYNA - an OMNeT++ demo simulation
//---

#include "omnetpp.h"

class Router : public cSimpleModule
{
 Module_Class_Members(Router,cSimpleModule,16384)
 virtual void activity();
};

Define_Module(Router);

void Router::activity()
{ // variable declaration
 double avg_utilization = 0.0;
 double process_time;
 double network_util;
 int data_rates = parentModule()->par("data_rates");
 int req_size = parentModule()->par("req_size");
 int reply_size = parentModule()->par("reply_size");
 int server_add = parentModule()->par("num_clients");
 long total_bits = 0;
 cOutVector resp_v("Router utilization");
 cOutVector resp_n("Network utilization");

 for(;;)
 {
 // receive msg (implicit queueing!)
 cMessage *msg = receive();
 int source = msg->par("src");

 // to compute network utilization
 if (source == server_add)
 {
 int size = msg->length();

84

 total_bits = total_bits + size;
 network_util = total_bits / (simTime() * data_rates);
 if (network_util > 1.0) network_util = 1.0;
 resp_n.record(network_util);
 }

 // capability compatibility processing delay &
 // content repurposing processing delay experienced at DAN router
 process_time = uniform(0.1,0.3);
 wait(process_time);

 // to compute router utilization
 avg_utilization = avg_utilization + process_time;
 resp_v.record(avg_utilization/simTime());

 // forward msg to destination
 // assuming that content is compatible with client
 int dest = msg->par("dest");
 ev << "Relaying msg to addr=" << dest << '\n';
 send(msg, "out", dest);
 }
}

85

LIST OF REFERENCES

[AvantGo, 2004] AvantGo, “AvantGo Channel Developer Guide: Version 2.0”.
Available from:
http://www.ianywhere.com/avantgo/developer/channel_developer/index.html.
Accessed October 2004.

[Canali et al, 2003] Claudia Canali, Valeria Cardellini and Riccardo Lancellotti, “Squid-

based proxy server for content adaptation”, Department of Computer Engineering,
University of Roma, January 2003. Available from:
http://weblab.ing.unimo.it/papers/tr-2003-03.pdf. Accessed October 2004.

[CC/PP, 2004] W3C Recommendation, “Composite Capability / Preference Profiles

(CC/PP): Structure and Vocabularies 1.0”, January 2004. Available from:
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115. Accessed
October 2004.

[Han et al, 1998] Richard Han, Pravin Bhagwat, Richard Lamaire, Todd Mummert,

Veronique Perret and Jim Rubas, “Dynamic Adaptation in an Image Transcoding
Proxy for Mobile Web Browsing”, IBM T.J. Watson Research Center, IEEE
Personal Communications, December 1998. Available from:
http://ieeexplore.ieee.org/iel4/98/15881/00736473.pdf. Accessed October 2004.

[Hu and Bagga, 2004] Jianying Hu and Amit Bagga, “Categorizing Images in Web

Documents”, IBM T.J. Watson Research Center and Avaya Labs Research, IEEE
Computer Society, 2004. Available from: http://
ieeexplore.ieee.org/iel5/93/28183/01261103.pdf. Accessed October 2004.

[Kurose, 2003] James F. Kurose and Keith W. Ross, “Computer Networking: A Top-

Down Approach Featuring the Internet”, pages 558-563, 2nd edition, Addison
Wesley, 2003

[MediaLab, 2004] MediaLab, “Web Content Adaptation White Paper”, August 2004.

Available from:
http://www.medialab.sonera.fi/workspace/WebContentAdaptationWP.pdf.
Accessed October 2004.

[Nokia, 2003] Nokia Forum, “Introduction to User Agent Profile”, August 2003.

Available from:
http://nds1.forum.nokia.com/nnds/ForumDownloadServlet?id=3498&name=Intro
duction_to_User_Agent_Profile_v1_1_en.pdf. Accessed October 2004.

[Opera, 2004] Opera press releases, “#1 for full mobile Web browsing: Opera Mobile

Reaches One Million Downloads”, September 2004. Available from:
http://www.opera.com/pressreleases/en/2004/09/20. Accessed October 2004.

86

[OPNET, 2004] OPNET Technologies, “OPNET Software Product Documentation”.

[RFC791, 1981] Information Sciences Institute, “RFC 791: Internet Protocol”, September

1981. Available from: http://www.ietf.org/rfc/rfc0791.txt. Accessed October
2004.

[RFC2327, 1998] Network Working Group, “Session Description Protocol”, April 1998.

Available from: http://www.ietf.org/rfc/rfc2327.txt. Accessed October 2004.

[RFC2543, 1999] Network Working Group, “Session Initiation Protocol”, March 1999.

Available from: http://www.ietf.org/rfc/rfc2543.txt. Accessed October 2004.

[SDPng, 2004] MMUSIC Internet-draft, “Session Description and Capability

Negotiation”, April 2004. Available from:
http://community.roxen.com/developers/idocs/drafts/draft-ietf-mmusic-sdpng-
07.txt. Accessed October 2004.

[Singh, 2004] Gurminder Singh, “Content Repurposing”, IEEE Multimedia, 11(1), pages

20-21, January-March 2004

[Tcpipguide, 2004] The TCP/IP Guide, “IP Datagram Options and Option Format”.

Available from:
http://www.tcpipguide.com/free/t_IPDatagramOptionsandOptionFormat.htm.
Accessed October 2004.

[W3C, 2004] W3C Development, “UAProf Profile Repository”. Available from:

http://www.w3development.de/rdf/uaprof_repository. Accessed October 2004.

[Varga, 2003] Andras Varga, “OMNeT++ Version 2.3 User Manual”, June 2003.

Available from: http://www.omnetpp.org/external/doc/html/usman.php. Accessed
October 2004.

[WAG, 2001] Wireless Application Group User Agent Profile Specifications, “Wireless

Application Protocol: WAP-248-UAPROF-20011020-a”, October 2001.
Available from:
http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html. Accessed
October 2004.

[WASP, 2004] Web Standards Project, “Introduction to Composite Capabilities /

Preferences Profile (CC/PP)”. Available from:
http://www.webstandards.org/learn/askw3c/feb2004.html. Accessed October
2004.

[WebSphere, 2004] IBM WebSphere Software, “WebSphere Transcoding Publisher

Overview”. Available from: http://www-
306.ibm.com/software/pervasive/transcoding_publisher. Accessed October 2004.

87

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Gurminder Singh
Naval Postgraduate School
Monterey, California

4. Su Wen
Naval Postgraduate School
Monterey, California

5. Tan Lai Poh
Temasek Defense Systems Institute
Singapore

6. Sim Siew See, Human Resource Department
Singapore Defence Science and Technology Agency
Singapore

	I. INTRODUCTION
	A. ORGANIZATION

	II. REVIEW OF RELATED WORK
	A. CONTENT REPURPOSING
	1. Client-based Repurposing
	2. Server-based Repurposing
	3. Proxy-based Repurposing

	B. DEVICE PROFILING
	1. Composite Capability / Preference Profiles (CC/PP)
	2. User Agent Profile (UAProf)

	C. CAPABILITY NEGOTIATION
	1. Session Initiation Protocol (SIP) and Session Description

	III. OVERVIEW OF NETWORK SIMULATION TOOLS – OPNET AND OMNET+
	A. OPNET
	1. Modeling Architecture
	2. Modeling Application Traffic
	a. Terminology in Custom Application
	b. Configuring Tasks and Phases
	c. Configuring Applications and Profiles

	3. Collecting Statistics and Viewing Results

	B. OMNET++
	1. Modeling Architecture
	a. Hierarchical Modules
	b. Communication using Messages, Gates, and Links
	c. Topology Description Language

	2. Running the Simulation
	3. Analyzing the Results

	IV. PROPOSED DEVICE-AWARE NETWORK ARCHITECTURE
	A. DEVICE CAPABILITY DISCOVERY
	B. CONTENT REPURPOSING FUNCTIONALITY IN DAN PROCESSING UNIT
	C. CAPABILITY-CONTENT COMPATIBILITY POLICY ENGINE
	D. ADVANTAGES OF PROPOSED DAN ARCHITECTURE

	V. SIMULATION MODELING AND PERFORMANCE EVALUATION
	A. SIMULATION MODEL A: CLIENT-BASED AND SERVER-BASED REPURPO
	1. Scenario Description
	2. Task Definition and Parameters Used
	3. Profile Definition and Running the Simulation

	B. COMPARING SIMULATION RESULTS FOR SIMULATION MODEL A
	C. SIMULATION MODEL B: PROXY-BASED REPURPOSING AND DAN ARCHI
	1. Scenario Description and Parameters Used
	2. Profile Definition and Running the Simulation

	D. COMPARING SIMULATION RESULTS FOR SIMULATION MODEL B
	E. SIMULATION MODEL C: DEVICE PROFILE ENCAPSULATION
	1. Network Description (NED) File
	2. Implementation Details
	3. Running the Simulation

	F. COMPARING SIMULATION RESULTS FOR SIMULATION MODEL C

	VI. CONCLUSION
	APPENDIX A – USER AGENT PROFILE FOR NOKIA 6650
	APPENDIX B – SOURCE CODES FOR OMNET++ MODEL
	A. DAN_PROTOCOL.NED
	B. CLIENT.CPP
	C. SERVER.CPP
	D. ROUTER.CPP

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

