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Abstract 
 
 

The remote sensing community continues to pursue advanced sensor designs and post-

processing techniques that improve upon the spatial quality of collected overhead imagery.  

Unfortunately, spaceborne applications frequently encounter launch vehicle fairing and 

weight constraints that limit the size of the primary aperture that can be utilized for a given 

application.   Sparse aperture telescopes provide a potential avenue for overcoming some of 

the size and weight issues associated with deploying a large monolithic mirror system.  These 

telescope systems are constructed of smaller subapertures which are phased to form a 

common image field and thereby synthesize a larger effective primary diameter to obtain 

higher spatial resolution than that achievable with a single subaperture. 

 

Much of the research conducted to date in this sparse aperture arena has focused on the 

panchromatic image quality performance of various optical configurations through 

approaches that make use of resampled, gray-scale imagery products.  The research effort 

performed in conjunction with this dissertation focused on laying the groundwork for 

synthetic model-based approaches for evaluating the optical performance of sparse aperture 

collection systems with enhanced spectral fidelity and a polychromatic object scene.  It 

entailed a fundamental investigation and demonstration of the first-principles physics 

required to model such imaging systems.  This theoretical development ultimately led to the 

generation of a modeling concept that more rigorously addresses the spectral characteristics 

of classic sparse aperture optical configurations used in remote sensing applications.  To 

demonstrate the proposed theoretical foundation, a proof-of-concept digital model was 



 ii

implemented that incorporates essential components of the fundamental physical processes 

involved with typical sparse aperture collection systems, including any potential spectral 

effects unique to these design configurations.   

 

In addition to modeling the detected imagery derived from the collection system, there was 

also an interest in exploring the quality implications of image restoration techniques typically 

required for sparse aperture imaging systems.  Several variations of the classic Wiener-

Helstrom filter were implemented and investigated in response to this research objective.  

The basic restoration methodologies pursued in this effort provide a foundation for research 

into more advanced techniques in the future.  Finally, a top-level sensitivity study of the 

image quality performance of various sparse aperture pupil configurations subjected to 

varying levels of subaperture dephasing and/or aberrations was performed.  This exploration 

of the trade space focused on a panchromatic detection scenario and attempted to bound the 

performance region where unique spectral quality issues are observed for the unconventional 

collection telescopes targeted through this research effort.  
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Chapter 1  

Introduction 

The remote sensing community is constantly searching for new sensor implementations and 

post-processing techniques that improve upon the spatial resolution of collected imagery.  In 

the last decade or so, the community has also witnessed a burgeoning interest in developing 

system designs for spectral applications.  In an attempt to pursue both high spatial and 

spectral resolution simultaneously, one often finds that significant design compromises are 

required in one mission area or the other, with system signal-to-noise ratio (SNR) 

constituting one of the principal design drivers.  This design tradeoff becomes particularly 

prominent in spaceborne applications, where launch vehicle fairing and general weight 

constraints often limit the size of the primary aperture that can be incorporated into the 

collection system design.  Sparse aperture telescopes provide one means for skirting some of 

the size and weight issues associated with deploying a large monolithic mirror system to 

achieve high spatial resolution in a space-based imagery collection application. 

 

In general, a sparse aperture system involves the synthesis of a larger effective primary 

aperture through the combination of separate, smaller optical systems (or subapertures) 

which are phased to form a common image field.  Obviously, the objective of phasing 

smaller individual optical systems is to achieve spatial resolution comparable to a single 

larger effective aperture while reducing size, weight, mirror complexity and cost.  Much of 

the research conducted to date in the sparse aperture arena has focused on the image quality 

of these optical configurations in panchromatic applications.  A significant portion of the 

latter has emphasized modeling diffraction effects and system noise for various sparse 

aperture pupil functions with resampled panchromatic imagery from an actual aerial sensor.  

The research effort proposed here focuses on laying the groundwork for synthetic model-

based evaluation of the optical performance of sparse aperture collection systems designed 

for both panchromatic and multispectral applications.  It will entail a fundamental 

investigation and demonstration of the physics required to model such a collection system, 

including the incorporation of appropriate spectral effects. 
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The theoretical development proposed for this research activity will ultimately lead to the 

generation of a modeling concept for some of the classic sparse aperture optical 

configurations, including the annulus, Golay-6, and tri-arm system designs.  The emphasis 

for the theoretical modeling effort will be placed on reasonably wide-field-of-view, extended 

scene remote sensing scenarios.  Issues associated with a polychromatic system Modulation 

Transfer Function (MTF), spectrally diverse noise spectrum, pupil phase errors introduced at 

the subaperture-level, and radiometrically accurate scene generation will be addressed.  To 

demonstrate the overall integrity of the proposed theoretical foundation for spectrally diverse 

sparse aperture system modeling, a strawman digital model will be implemented that 

incorporates key components of the fundamental physical processes explored above.  Where 

possible, the general results of this computer model will be verified through appropriate 

comparisons with open-literature theory, existing panchromatic simulations, and available 

experimental data. 

 

Although sparse aperture telescopes offer an opportunity to attack the problem of higher 

spatial resolution in spaceborne collection systems, spectral quality issues (especially those 

related to SNR) are likely to become even more problematic for these design configurations.  

The latter observation is based on the fact that sparse aperture systems generally manifest a 

lower inherent collection SNR than that exhibited by equivalent monolithic aperture systems, 

and attempts to recover MTF performance at comparable SNR tends to introduce correlated 

noise artifacts into the imagery.  In addition, although preliminary research efforts have 

addressed certain issues associated with optimal Wiener filtering techniques for sparse 

aperture panchromatic imagery reconstruction, there has not been a dedicated effort to 

explore optimal filtering techniques that address the spectral implications of sparse aperture 

derived imagery.  

 

The issues alluded to above drive the interest in investigating various post-processing and 

image restoration techniques for sparse aperture system collection data as a prominent goal 

of this research endeavor.  Study efforts of interest in this arena include optimal conventional 

and adaptive Wiener filter implementations based on scene content and pupil configuration 
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under investigation.  For this goal-level task, various image reconstruction methodologies 

will be evaluated on the basis of the strawman prediction implementation discussed above to 

address resulting data quality performance for both panchromatic and multispectral imagery.  

Completion of this research goal will help demonstrate the power of computer modeling for 

conducting system design trades and the development of post-processing algorithms for 

general sparse aperture configurations. 
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Chapter 2  

Objectives 

This chapter provides a general overview of the objectives associated with this research 

effort.  As alluded to previously, the overall objective of this scientific endeavor is to 

advance the current state of knowledge associated with sparse aperture telescope system 

quality, especially as it relates to potential spectral applications.  In pursuit of this 

overarching objective, there are certain requirements that must be satisfied and additional 

value-added tasks that can be categorized as goals which are not required.  Section 2.1 

outlines specific success criteria deemed necessary for completion of dissertation 

requirements.  General research goals that are being targeted above and beyond the stated 

requirements appear in Section 2.2. 

 

2.1  Success Criteria 
 
The specific objectives associated with this research effort are itemized below: 

• Develop a firm understanding of the underlying physics and first-principles 

phenomenology related to sparse aperture telescope configurations utilized for 

imaging applications involving extended scenes.  Specific technical areas of interest 

include the following: 

− System-level diffraction effects associated with specific pupil configurations 

and characterized in terms of the system Modulation Transfer Function (MTF) 

and Point Spread Function (PSF). 

− Photon, dark current, and read noise effects related to certain sparse aperture 

system designs and their contribution to image quality performance. 

− System-level telescope phase error measurement, evaluation, modeling and 

tolerancing relative to certain sparse aperture configurations. 

− Various image restoration techniques required to recover image quality 

performance commensurate with equivalent monolithic mirror systems. 
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− Specific spectral considerations related to the issues enumerated above and the 

overall quality of data collection for potential panchromatic and multispectral 

sparse aperture imaging system applications.  

• Develop the overarching theoretical and mathematical basis for computer modeling of 

the system performance associated with typical sparse aperture telescope designs 

emphasizing remotely sensed, extended scenes with appropriate spectral content.  

Specific items to be addressed in this theoretical development include the following: 

− Scene spectral radiance incident at the entrance pupil plane, including source 

spectral radiometry, atmospheric propagation, and imaging sensor 

interactions. 

− Wavefront propagation from the entrance pupil of the sparse aperture 

telescope to the detection sensor, including the accommodation of pupil phase 

errors.  

− Polychromatic system MTF characterization, including the effects of aperture 

configuration, system aberrations, and phase errors. 

− Spectrally diverse noise characterization, including the effects of photon, dark 

current, and read noise sources. 

• Implement a proof-of-concept digital model demonstrating application of the 

theoretical development proposed above for typical sparse aperture collection 

systems.  Specific objectives of this proof-of-concept digital implementation are 

enumerated below: 

− Derive synthetic extended scene radiance field images which exhibit high 

spatial resolution, radiometric accuracy, and appropriate spectral diversity for 

use as object imagery within a larger sparse aperture system simulation.  

Scenes of interest include a spectrally diverse United States Air Force (USAF) 

three-bar resolution chart displaying a variety of spatial frequencies, as well as 

a more complicated synthetically derived scene utilizing the DIRSIG and 

MODTRAN computer models. 

−  Develop polychromatic system MTF algorithms that appropriately model 

various sparse aperture configurations and their action on the pristine object 

radiance images discussed above.  Physical phenomena to be addressed in this 
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MTF evaluation include pupil function, focal plane, optical design aberrations, 

line of sight errors (jitter and smear), and system phase errors. 

− Develop spectrally diverse noise models that capture the principal photon 

(source and background), dark current and read noise source physics under the 

assumption individual contributors are statistically independent. 

− Demonstrate implementation of an approach for accommodating optical 

wavefront phase errors from individual sparse aperture telescope subapertures 

into the MTF analytical technique explored above.  

 
2.2  Goals 
 
The following goals have been identified for this research effort to help reinforce the value of 

the basic requirements established in the previous section: 

• Implement proof-of-concept post-processing and image restoration algorithms for 

general sparse aperture system configurations operating in panchromatic or 

multispectral collection modes.  Specific processing techniques and evaluations 

targeted in this research effort include: 

− Implementation of a basic Wiener-Helstrom filter for boosting MTF 

amplitudes at mid-range frequencies to recover image quality performance 

commensurate with equivalent monolithic apertures.  This Wiener filter is 

designed to provide a baseline for future processing development and 

associated design sensitivity analyses. 

− Evaluation of the optimum noise-to-signal power spectrum term to utilize 

within conventional Wiener-Helstrom filters applied to source data from 

certain sparse aperture system configurations.  This investigation will include 

various sensitivity analyses that address the tradeoffs between recovering 

MTF performance and the associated noise amplification penalty. 

− Development of advanced adaptive Wiener filter techniques that utilize 

combinations of scene content-derived power spectrum terms, localized 

statistical sampling, and spatially variant filtering operations.  Results of any 

advanced filtering techniques pursued in conjunction with this research effort 
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will be compared to the baseline Wiener-Helstrom filter output described 

above. 

− Investigation of spectral diversity considerations associated with the various 

image processing and reconstruction techniques under consideration for 

general sparse aperture system configurations.  Issues of interest include 

product radiometric integrity, noise amplification effects, correlated noise 

artifacts, MTF character implications, signal-to-noise impacts, etc.  This 

evaluation also maintains a goal of studying the potential utilization of 

spectral diversity to derive improved estimates of the signal and noise power 

spectra within any of the Wiener filter realizations explored in the discussion 

above. 

• Perform sensitivity analyses on critical sparse aperture system parameters and their 

impact on overall image and spectral quality performance.  Specific performance 

areas of interest in the sparse aperture design trade space include the following: 

− General sparse aperture configuration, sizing and positioning of subapertures, 

and the associated MTF character demonstrated by the system pupil function.  

This sensitivity study will address the image and spectral product quality 

associated with several of the classic sparse aperture configurations. 

− Effective signal-to-noise ratio (SNR) exhibited by the system before and after 

the application of various image post-processing techniques.  This 

performance study will look at the tradeoffs between SNR and correlated 

noise gain. 

− Residual rms wavefront error (WFE) and/or phase errors at the subaperture 

level contributing an asymmetric performance profile at the system level.  

This sensitivity study will effectively address the image quality impact of 

random errors exhibited at the subaperture level. 
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Chapter 3  

Theory 

This chapter highlights the essential theoretical foundation upon which this research effort is 

based.  The material of relevance to this investigation can essentially be categorized into five 

principal areas: (1) object scene radiance, (2) imaging system modulation, (3) detected image 

noise, (4) image restoration, and (5) miscellaneous sparse aperture system issues.  Before 

launching into the theory associated with these individual categories, this chapter provides a 

brief summary of pertinent linear systems theory in Sections 3.1 and 3.2, which establish the 

cornerstone for the proposed system performance modeling. Section 3.3 subsequently 

provides detailed development of the scene radiance and associated signal equation for a 

typical remote sensing imaging scenario, including the potential for sparse aperture imaging 

system collection.  The general concept of a sparse aperture system is developed and 

compared to conventional telescope aperture configurations in Section 3.4.  Overall imaging 

system performance is characterized in terms of system modulation transfer function (MTF) 

and point spread function (PSF) in Sections 3.5 through 3.13.  Section 3.14 provides 

background and fundamentals on system noise modeling for general overhead imaging 

systems, including a brief discussion on signal-to-noise ratio (SNR) as it relates to sparse 

aperture systems.  Image restoration techniques appropriate for the degraded raw imagery 

anticipated from sparse aperture systems are discussed in Section 3.15.  Finally, several 

specific performance issues unique to sparse aperture collection systems are summarized in 

Section 3.16. 

3.1  Imaging Linear Systems Theory 

Although most imaging systems are not both linear and space-invariant in the strictest 

mathematical sense, especially in the presence of optical aberrations, one can generally 

identify isoplanatic patches in the image field where they can be approximated as linear, 

shift-invariant for the purposes of modeling.  Such an approximation ultimately enables one 

to model the action of the imaging system on an input object scene through use of a system 

impulse response to a delta function, commonly referred to as the point spread function 
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(PSF).  Given the assumption of a linear, shift-invariant imaging system, the predicted output 

image in the absence of noise can be approximated through the following space domain 

expression: 

 
[ ] [ ] [ ]yxhyxfyxg ,,, ∗=  (1) 

 
where f[x,y] is representative of the object plane radiance, h[x,y] is the impulse response or 

PSF of the system, g[x,y] is the acquired output image, and “∗ ” is the mathematical symbol 

for convolution.  The PSF identified in the equation above essentially quantifies the amount 

of “blur” the imaging system introduces for a point within the object scene.  The system 

expressed in equation 1 can also be evaluated in the frequency domain by applying well-

known properties of the Fourier transform.  In general, the Fourier transform is 

mathematically described for continuous functions through the following operation: 

 

[ ] [ ]{ } [ ] dxdyeyxfyxfF yxi )(2,,, ηξπηξ +−
+∞

∞−
∫ ∫==F  (2) 

 
where f[x,y] is the function in the spatial domain, F[ξ,η] is its Fourier transform pair in the 

frequency domain, and F {⋅} is shorthand notation for the Fourier transform operand 

represented by the integral on the right hand side.  One can apply the mathematical 

expression contained in equation 2 to each of the spatial functions in equation 1 to determine 

the corresponding Fourier transform pairs.  This operation produces G[ξ,η], F[ξ,η] and 

H[ξ,η] for the frequency responses of the output image g[x,y], input object radiance f[x,y] 

and point spread function h[x,y], respectively.  In addition, it is well established in linear 

systems theory through the filter theorem that convolution in the spatial domain is equivalent 

to multiplication in the frequency domain.  Therefore, the linear, shift-invariant system 

described by equation 1 can be converted to the following equivalent expression in the 

frequency domain: 

 
[ ] [ ] [ ]ηξηξηξ ,,, HFG ⋅=  (3) 
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The Fourier transform H[ξ,η] of the PSF is commonly referred to as the complex system 

optical transfer function (OTF), whose normalized magnitude is the modulation transfer 

function (MTF).  The transfer function magnitude is typically normalized to be unity at zero 

spatial frequency, which will be highlighted more extensively in the mathematical 

development of the OTF and MTF to follow.  Frequently, system performance is easier to 

characterize in terms of the OTF or MTF, which has the added benefit of transforming two-

dimensional convolution into simpler array multiplication.  Thus, the frequency response of a 

noiseless imaging system is frequently characterized through equation 3, with the final 

spatial domain output image g[x,y] generated by performing the inverse Fourier transform of 

the output image frequency response G[ξ,η].  For continuous functions, the inverse transform 

is defined by the following mathematical operation:  

 

[ ] [ ]{ } [ ] ηξηξηξ ηξπ ddeGGyxg yxi )(21 ,,, ++
+∞

∞−

− ∫ ∫==F  (4) 

 
where F  -1{⋅} represents the inverse Fourier transform operator.  Accordingly, one can 

implement a simple model for a linear, shift-invariant imaging system by computing the 

Fourier transforms of the object radiance “image” and the system PSF, performing array 

multiplication, and subsequently computing the inverse transform of the system to generate 

the predicted output image.  Of course, the theoretical development discussed above assumed 

continuous functions, so one would have to implement discrete versions of equations 1-4 in 

order to deal with digitally sampled images and transfer functions.  This is a reasonably 

straightforward procedure to accomplish, involving a zero-padding operation to ensure the 

discrete arrays have the same size and the use of Fast Fourier Transform (FFT) algorithms 

for discrete implementation of the continuous Fourier transform expressions found above. 

 

Of course, the system model constructed in equations 1 and 3 is extremely oversimplified, 

lacking a fundamental attribute of any imaging system: noise.  To first order, the latter can be 

captured in the model by including a statistically independent, additive random noise 

contribution to the output image: 
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[ ] [ ] [ ] [ ]yxnyxhyxfyxg ,,,, +∗=  (5) 
 
where n[x,y] represents the spatially varying, total additive noise present in the system.  The 

system identified in equation 5 can be re-expressed in the frequency domain, which again 

takes advantage of the filter theorem and the linearity of the Fourier transform to produce:  

 
[ ] [ ] [ ] [ ]ηξηξηξηξ ,,,, NHFG +⋅=  (6) 

 
where N[ξ,η] is the frequency spectrum of the additive noise component. 

3.2  Incoherent Imaging System 

For remote sensing applications involving sparse aperture systems, we are generally 

interested in the characteristics of linear systems exposed to incoherent radiation.  Of course, 

given the unique attributes of a sparse aperture telescope, it is certainly possible that partial 

coherence or quasi-monochromatic conditions can arise even with an extended incoherent 

source, depending on the passband of the optical detector.  This topic will be raised in greater 

detail with the interferometric considerations discussed in Chapter 4.  For now the emphasis 

will remain with the principal physical phenomenon that will be encountered by a remote 

sensing collection system: that of incoherent light.  As traditional optical detectors are 

sensitive to image intensity rather than complex amplitude, incoherent imaging systems are 

actually linear in intensity.  Accordingly, if g[x,y] represents the output image amplitude, the 

detected output image on the left side of equation 5 for incoherent systems is actually 

represented by the detected image intensity I[x,y] or [ ]yxg ,incoh : 

 
[ ] [ ] [ ] [ ] [ ]yxgyxgyxgyxgyxI ,,,,, incoh

2 * ===  (7) 

 
where g*[x,y] is the complex conjugate of the complex image amplitude.  Since incoherent 

systems are linear with intensity, one also finds that the convolution of interest in equation 5 

involves the object source intensity I[x,y; z = 0] or [ ]yxf ,obj  with the incoherent PSF 

(h.[x,y;z1,z2]).  In this convention, z1 is the object distance to the entrance pupil and z2 is the 

image distance from the exit pupil to the detector plane.  As a consequence of these 
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considerations, equation 5 is rewritten for clarity by representing an incoherent imaging 

system as follows:  

 
[ ] [ ] [ ] [ ]

[ ] [ ] [ ]
[ ] [ ] [ ]yxnyxyxf
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(8) 

 
where f[x,y] is the object complex amplitude, h[x,y;z1,z2] is the coherent impulse response,  

h.[x,y;z1,z2] is the complementary incoherent impulse response or PSF of interest, and n[x,y] 

now represents noise intensity consistent with incoherent detection.  From equation 8, it is 

readily apparent that an incoherent detection system is assumed to be linear and shift-

invariant in object intensity and the incoherent PSF is the squared-magnitude of its coherent 

counterpart.  To gain insight into the character of the impulse response, one can model a 

typical imaging device through a simple lens system approximation, whereby light 

propagates a distance z1 from the object plane to the entrance pupil of the system in the 

Fresnel diffraction region, is “imaged” by a series of optics whose action on the incident field 

can be represented by a Gaussian lens law, and then experiences Fresnel propagation over a 

second distance z2 to the detection plane.  With such a model, Goodman (1968) derives the 

impulse response of the system assuming coherent illumination: 
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(9) 

 
where P[ξ,η] is the Fourier transform of the optical system pupil function p[x,y].  From the 

equation above, it is apparent that the dominant term of the coherent PSF of an imaging 

system is the scaled Fourier transform of the optical system pupil function, which (up to an 

additional scale and phase factor) is the predicted Fraunhofer diffraction pattern of the 

system pupil function.  The character of the coherent transfer function H[ξ,η] can be 

evaluated by taking the Fourier transform of equation 9: 
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where the final result is achieved through application of the Fourier transform-of-a-transform 

property.  From equation 10, one can see that the coherent transfer function essentially 

involves a scaled pupil function preceded by the system magnification (z2/z1).  Although this 

research effort will concentrate on incoherent applications, the coherent response and transfer 

functions are the basic building blocks for their incoherent counterparts.  This can be 

observed in the derivation of the incoherent PSF (h.[x,y;z1,z2]): 
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where it becomes apparent that the incoherent impulse response is proportional to the 

squared magnitude of the scaled Fourier transform of the pupil function.  Similarly, one finds 

that the incoherent transfer function or OTF (H [ξ,η]) involves the complex autocorrelation 

of the coherent transfer function, as observed by taking the Fourier transform of the 

incoherent PSF:  
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where “9” represents the mathematical symbol for correlation between two functions as 

defined by the expression above.  If one subsequently substitutes the expression for the 

coherent transfer function from equation 10 into equation 12, the following relation is 

acquired for the complex OTF of an incoherent collection aperture: 
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where the leading term is observed to be the magnification squared.  For diffraction-limited 

pupils that are real-valued, symmetric functions, one can simplify this expression even 

further to develop the general proportional relation: 

 
[ ] [ ] [ ] [ ]ηλξληλξληξηξ 2222 ,  ,,,OTF   zzpzzp 9∝= H  (14) 

 
The formulations contained in equations 13 and 14 identify the classic Fourier optical result 

that the OTF of an optical system in incoherent light is proportional to the autocorrelation of 

the scaled aperture or pupil function.  As a matter of clarification, one should note that all of 

the OTF and PSF expressions derived so far have not been normalized, a practice which is 

fairly common in the field today. The intention of this section was simply to introduce the 

concepts in the context of the appropriate linear systems theory.  Slightly more rigorous 

development of the normalized impulse response and transfer functions typically used in 

practice will appear in Sections 3.5 and 3.6.  

 

Given the space-domain expression for the detected image intensity in equation 8, one can 

derive a corresponding relationship in the frequency domain by taking the Fourier transform 

of both sides.  This leads to the equation for the frequency spectrum Gincoh[ξ,η] of the 

detected incoherent image:  
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where Fobj[ξ,η] represents the frequency spectrum of the original object intensity, i.e., the 

Fourier transform of [ ]2, yxf .  One can easily see the parallelism between the incoherent 

system represented by equation 15 and the system introduced in equation 6 for a generic 

linear, shift-invariant imaging device.  Clearly, equation 15 defines the need to characterize 

the system in terms of its OTF (H [ξ,η]) and noise spectrum (N[ξ,η]) to predict the acquired 

output image in the frequency domain.  With such a prediction, it is a simple matter of 

applying the inverse Fourier transform to arrive at the detected output image intensity: 
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[ ] [ ]{ } [ ]yxgGyxI - ,,, incohincoh
1 == ηξF  (16) 

 
Such an approach effectively solves the linear system defined in equation 8 making use of 

the power and implementation ease of the Fourier transform.  Equations 8 and 15 also 

provide the fundamental foundation for modeling incoherent systems, and one will 

consequently find much of the subsequent theoretical development to follow focuses on 

deriving appropriate expressions for the system components in each.  

3.3  Scene Radiance and Detected Signal 

In accordance with the linear systems theory just discussed, one of the first critical physical 

components that must be properly modeled is the radiance from the imaged object scene.  For 

the incoherent problem under consideration, it is the radiance incident at the entrance pupil of 

the collection aperture that is of immediate interest.  Schott (1997) has shown that the 

governing equation for the total source radiance Lsource(λ) reaching a sensor in a certain 

spectral passband can be approximated by the following relation: 
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(17) 

 
where Es,exo(λ) is the exoatmospheric direct solar irradiance, Lemis(λ,T) is the self-emitted 

radiance for a blackbody at temperature T, Eds(λ) is the reflected downwelled irradiance, 

Ede(λ) is the emissive downwelled irradiance, Lbs(λ) and Lbe(λ) are the reflected and emissive 

background radiance, and Lus(λ) and Lue(λ) are the reflected and emissive upwelled radiance.  

In addition to the radiation terms defined above, the governing equation also contains the 

following key expressions: atmospheric transmission (τ1) along the sun-target path, 

atmospheric transmission (τ2) along the target-sensor path, target reflectance (ρ), target 

reflectance (r) assuming it is diffuse, target emissivity (ε), solar declination angle (σ′) to the 

target, and the fraction (F) of the hemisphere above the target that is sky.  As written, this 

equation essentially captures all of the possible radiation transfer mechanisms that may 

contribute to any arbitrary collection scenario. 
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Frequently, it is possible to reduce the complicated expression contained in equation 17 for a 

particular spectral regime.  For instance, in the reflective part of the electromagnetic 

spectrum, many of the thermal and/or self-emission terms are negligibly small and can 

therefore be ignored.  Similarly, for collection in the emissive part of the spectrum, the 

reflective terms become negligible and can largely be eliminated.  Given these 

considerations, equation 17 generally reduces to the following form for collection in the 

reflective region: 

 

us2bsds1exos,totr, )1(cos LrLFrFEEL +⎥⎦
⎤

⎢⎣
⎡ −++′′= τ

ππ
ρ

τσ  (18) 

 
where Lr,tot is the reflective radiance reaching the sensor and the “λ” notation has been 

dropped for convenience.  Thus, for collection in the reflective (V/NIR) part of the spectrum, 

the governing equation has only direct reflected solar, downwelled radiance (skylight), 

reflected background radiance, and upwelled (path) radiance components.  By analogy to 

equation 18, a similar construct applies for the relevant radiation components in the emissive 

part of the spectrum.  In this case, where the reflective terms in equation 18 are negligibly 

small, the thermal radiance (Le,tot) reaching a sensor takes the form: 

 

( ) ue2bedeemistote, )1( LrLFrFETLL +⎥⎦
⎤

⎢⎣
⎡ −++= τ

π
ε  (19) 

 
where the “λ” notation has been dropped for clarity.  Thus for thermal (LWIR) collection, the 

governing equation reduces to thermal self-emission, emissive downwelled radiance, thermal 

background radiance, and the self-emitted component of upwelled radiance as the dominant 

contributions to the radiance reaching a sensor.  Obviously, if one designs a collection system 

that is sensitive between these two extremes, each radiation term contained in the full 

expression in equation 17 must be evaluated as a potential contributor to the final output 

image signal depending on the scenario (e.g., MWIR during daytime conditions).  Given the 

complicated nature of the expressions above, it is fairly common practice to rely on higher 

fidelity atmospheric transmission and radiometry models, such as MODTRAN, to compute 

the source radiance reaching a sensor.   
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As just discussed, equation 17 constitutes the governing relation for the total radiance 

incident at the entrance aperture of a collection system.  For the purposes of analysis, 

especially investigations of system signal-to-noise (SNR), it is a fairly common practice to 

segregate the signal from the actual target of interest and that due to non-target or 

background effects.  Such an approach essentially re-expresses the formulation in equation 

17 to the following alternative: 

 
( ) ( ) ( )λλλ bgndtargetsource LLL +=  (20) 

 
where Ltarget(λ) is the spectral radiance due to the target and Lbgnd(λ) is that due to the 

background.  Such a bookkeeping exercise ultimately results in the following terms being 

assigned to the expression for the target radiance: 
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(21) 

 
Given the target radiance terms identified above and ignoring potential stray light within the 

optical system, the remaining terms within the “big equation” are lumped together to form 

the following relation for background radiance: 

 
( ) ( ) ( )λλλ ueusbgnd LLL +=  (22) 

 
where the path radiance dominates.  Other potential lower-level background signal terms that 

could be added to the expression above include optical system stray-light and atmospheric 

adjacency effect radiance contributors. 

 

With the expressions for source radiance enumerated above, one now has the essential 

building blocks to address the mathematical description of the object signal required by 

equations 8 and 15 above.  To get the signal expression in the proper form, however, one 

must determine the integrated flux level at the detector from the computed radiance at the 
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entrance pupil of the imaging system.  Once again, Schott (1997) demonstrates this 

conversion takes the following straightforward form: 
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where Svolt is the detected signal in volts, Φ(λ) is the incident spectral flux in terms of W/µm, 

Einc(λ) is the incident spectral irradiance, Lsource(λ) is the source spectral radiance computed 

via equation 17, R(λ) is the detector spectral response in units of volts/W, Adet is the detector 

area, and G# is a classic camera equation expression that relates radiance to irradiance onto 

the detector.  Since remote sensing systems generally demonstrate negligible magnification 

(i.e., they are effectively focused at infinity), the factor G# in the equation above can be 

approximated to reasonable accuracy via: 
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where f# is the optical system F-number (the ratio of the effective focal length to the aperture 

diameter), τopt is the optical system transmittance, and Ffill is the effective fill factor for a 

sparse aperture system or unobscured aperture for a more conventional telescope.  

Substitution of equation 24 into 23 results in the following general expression for the 

detected signal in volts: 
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where the spectral response function limits the integration to wavelengths within the spectral 

passband of the sensor.  One should also note that this equation essentially computes the 

detected “object” signal for a single pixel and ignores the effects of any spatial frequency 

content.  The importance of this observation will become more apparent in the discussion of 

the final object radiance or intensity derivation to follow. 
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Although this theoretical development could be used as the basis for computing the object 

intensity or frequency spectrum in equations 8 and 15, an alternative approach is frequently 

cited in the literature.  One should consult the papers by Fiete (2001) and Lomheim (2002) 

for additional detail.  The objective of both approaches is the same: to quantify the object 

“image” intensity in terms of signal counts as a basis for modeling the final image intensity at 

the focal plane.  Instead of quantifying the detected signal in a pixel by integrating the 

spectral radiance over the sensor’s spectral response function, these approaches initially 

compute the detected signal in electrons per pixel through use of the detector’s spectral 

quantum efficiency η(λ): 
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where Ssig is the detected signal in electrons, Φ(λ) is again the incident spectral flux, q is the 

energy per photon, and Tint is the detector integration time.  If one subsequently substitutes 

the classic expression for the photon energy (q = hc/λ) and evaluates the spectral flux level 

via the system G#, the following general expression for the detected signal is obtained: 
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where h is Planck’s constant (6.6256⋅10-34 Joules·sec) and c is the speed of light (2.9979⋅108 

m/sec).  Finally, one can substitute the expression for G# in equation 24 into the relation 

above to arrive at the single-pixel signal for an electro-optical imaging system: 
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where the signal is quantified in terms of electron count through appropriate integration over 

the source spectral radiance Lsource(λ).  If one employed Time Delay Integration (TDI) with a 

scanning Focal Plane Array (FPA) to improve the signal-to-noise ratio (SNR), an additional 

term quantifying the number of TDI stages must be included in the numerator of equation 28.  

However, since most sparse aperture systems used in remote sensing are envisioned to 
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involve extended-duration access at high altitude, it is highly likely that some form of staring 

FPA would be utilized.  In this case, equation 28 is appropriate for modeling the system as 

written.  One should also note the high degree of parallelism between equations 25 and 28, 

indicating that either formulation would be appropriate for a particular set of sensor data.  For 

further theoretical development of the object intensity, we will rely upon equation 28, as it 

tends to be a favorite amongst detector designers.  

 

Ultimately, the computed signal in electrons is converted by the imaging sensor to a voltage 

equivalent to the signal derived in equation 25 and then quantized into digital counts by an 

A/D Converter.  Lomheim (2002) indicates that the voltage conversion can be modeled by 

introducing appropriate gain factors into the signal expression found in equation 28 as 

follows: 

 
sigelecconvvolt SGGS =  (29) 

 
where Svolt is again the detector output signal (measured in volts), including the effects of 

conversion gain (Gconv) and electronic gain (Gelec) in the signal chain from the FPA to the 

A/D Converter.  In this expression, the conversion gain is expressed in units of volts/electron 

and is a function of the integration capacitance and the overall efficiency of electron-to-

voltage conversion.  The electronic gain, on the other hand, is a dimensionless factor that 

quantifies the voltage efficiency of the analog signal chain to the A/D Converter.  The final 

object image output pix
countsS  in digital counts can subsequently be evaluated as the ratio of the 

detector output signal Svolt in volts to the voltage range SLSB of the least significant bit (LSB) 

of the A/D Converter:  
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where SADC is the A/D Converter input voltage range (consistent with the maximum 

unsaturated output voltage of the FPA) and n represents the number of binary digits 

associated with the A/D Converter.  Substitution of equations 28 and 29 into equation 30 

yields a relation for the object image in digital counts:  
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This expression essentially defines the object image “intensity” for a given detector pixel.  

An equivalent formulation can be derived for the entire object scene if one assumes the 

source spectral radiance consists of a spatially varying profile Lsource[x,y;λ].  This ultimately 

leads to an expression for the two-dimensional object image Scounts[x,y] in digital counts:   
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where Gconv and Gelec can exhibit some spatial variance due to sensor-unique design attributes 

but will be treated as constants in this discussion.  If one backtracked through the digital and 

analog signal chains, a comparable two-dimensional expression for the object image Se[x,y] 

in electrons could be derived: 
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This is the two-dimensional, spatially variant companion to the single-pixel signal expression 

in equation 28.  This form of the object image will come in handy when discussing photon 

noise signal, which typically can be modeled as the square root of the expression due to 

observed Poisson statistics. 

 

The detected signal relations derived above have consistently been referred to as the “object” 

image required for implementation of the space- and frequency-domain system models in 

equations 8 and 15.  The reason for this distinction is the fact that these signal expressions 

have been developed assuming no spatial frequency modulation due to the OTF of the 

imaging system.  As demonstrated previously, the spatial frequency content of the detected 

signal can be modeled in either domain depending on the availability of an impulse response 

(PSF) or transfer function (OTF) that properly characterizes the optical system.  In the space 



 23

domain, a new expression for the actual detected “output” signal out
spaceS  in the absence of 

noise can be computed by convolving the spatially varying detected signal profile from 

equation 32 with the system PSF: 

 
[ ] [ ] [ ] [ ] [ ]yxyxSyxyxfyxS obj ,PSF,,,, counts
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space ∗=∗= h  (34) 

 
where fobj[x,y] is the object image “intensity” I[x,y; z = 0].  This ultimately leads to a 

governing expression for the output signal in the space domain (in the absence of noise): 
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where it is observed that one must convolve the system PSF with the source spectral radiance 

at each wavelength prior to integrating over the passband of interest. 

 

A completely analogous and generally easier-to-implement system can be developed by 

evaluating equation 35 in the frequency domain consistent with equation 15.  This approach 

will yield an expression for the output image signal in the frequency domain (in the absence 

of noise): 
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where Fobj[ξ,η] is the frequency spectrum of the object image “intensity” and H [ξ,η] is the 

system OTF.   If one inserts the Fourier transform of equation 32  into the expression above, 

the expression for the frequency response of the detected “output” signal out
freqS  in the absence 

of noise can be derived: 
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(37) 

where Lsource,FT[ξ,η,λ] represents the Fourier transform of the source spectral radiance profile 

including appropriate scale factors.  This expression effectively becomes the governing 
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equation for the source signal in the frequency domain.  Since it involves the simpler 

mathematical operation of multiplication of the system OTF and source spectral radiance 

profile within the wavelength-dependent integration, this equation is used extensively and 

will be the backbone for the proposed proof-of-concept modeling activity proposed in this 

research effort.  

 

Fiete (2001) and Fienup (2000) suggest that the frequency-domain governing equation 

derived in equation 37 can be simplified for those optical systems that exhibit a real-valued 

system OTF.  In these cases, where the MTF is comparable to the OTF, the detected output 

signal in the frequency domain can be approximated by: 
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where pix

countsS  is representative of the mean count level for the final object image, Fobj[ξ,η] is 

again the source radiance spectrum, and Fobj[0,0] is the source spectrum evaluated at zero 

frequency (ξ = 0,η = 0).  For simplicity the spectral dependence notation has been dropped to 

focus on the physical effect on the spatial frequency character.  In effect, equation 38 

accounts for the spatial variability within the source spectral radiance profile by introducing 

the normalized scene Fourier transform into the spectrum calculation.  By convention, this 

normalized scene spectrum µ[ξ,η] is defined by: 
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and is routinely used as a means to resample high-resolution imagery for predictive image 

simulations.  The value of this formulation can be readily seen because the source radiance 

spectrum term Lsource,FT[ξ,η,λ] in equation 37 can essentially be evaluated as a separable 

function, consisting of a two-dimensional spatial frequency component µ[ξ,η] and a spectral 
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component Lsource(λ).  Under this construct, equation 37 can be converted to the following 

general approximation for the detected output signal in the frequency domain: 
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where the wavelength dependence of the normalized scene spectrum and MTF have been re-

introduced for clarity. 

 

Fiete (2002) and Boucher (2000) have defined a so-called “polychromatic” MTF that 

spectrally weights individual MTF realizations at a given wavelength and then derives an 

average MTF over the spectral passband of interest.  This treatment has been applied to many 

simulated systems, including those with sparse apertures.  The general nature of this 

polychromatic MTF formulation will be discussed in greater detail in Section 3.13.  

However, the objective of defining such a transfer function is really quite simple: to make the 

integrand in the governing expression found in equation 37 more tractable, especially when 

resampling existing object scenes over a given passband.  This is accomplished by effectively 

eliminating the spectral dependency of the MTF term in the expression and allowing it to be 

pulled outside the integral, as in the following approximation to the governing equation for 

the output signal spectrum: 
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Fiete (2002) and Boucher (2000) generally perform simulations that resample high-resolution 

panchromatic aerial imagery.  While such an approach generates good predictions of overall 

image quality, it also removes the true spectral character associated with the normalized 

scene spectrum in equation 37.  As a result of resampling a gray-scale object scene (the high-

resolution panchromatic image), the normalized scene spectrum ratio effectively loses its 

dependence on wavelength and can be pulled outside the integral for ease of computation: 

 



 26

[ ]
( )

[ ]
[ ] [ ] ( ) ( ) ( ) λλληλτληξ
ηξπ

ηξ dL
F
F

hcf

FTA
S
GG

S fill
n

opt
0

sourcepoly
grayobj,

grayobj,
2

intdet

ADC

elecconvout
freq ,MTF

0,0
,

#4
2

, ∫
∞

=  (42) 

 
In this expression, one will note that the normalized scene spectrum for a gray scene 

µgray[ξ,η] does not depend on wavelength and is accordingly defined as follows: 
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where Fobj,gray[ξ,η] is the source radiance spectrum for the gray panchromatic scene used as 

the basis for the simulation. The resampling approach that utilizes some form of equation 42 

has proven to be quite successful for conventional apertures, which generally produce a 

smoothly varying and circularly symmetric MTF.  However, such an approximate approach 

may not adequately capture the spectral character of a sparse aperture system MTF, which 

generally exhibits non-symmetric cutoff frequencies and irregular spatial frequency 

modulation.  This research will endeavor to investigate the potential spectral implications of 

a sparse aperture system by capturing more of the first-principles physics embodied by 

equations 35 and 37.  In fact, the enhanced spectral fidelity simulations presented in the 

results in Chapter 5 of this dissertation rely exclusively on a digital model implementation of 

equations 35 and  37, with the physics in equation 42 only captured when a gray-world 

model comparison is performed. 

 

With an assessment of the output signal in the frequency domain per the expressions derived 

thus far, we now have developed one of the key building blocks for evaluating the postulated 

linear system in equation 15.  The remaining critical components include detailed 

development of the system OTF in equation 37 and the total system noise spectrum N[ξ,η], 

which will occur in the following sections.  With the development of the spectral radiance 

terms pursued above, equation 15 can be reformulated via:   
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where Gincoh[ξ,η] again represents the final incoherent image spectrum in the frequency 

domain.  The final output image intensity is obtained by taking the inverse Fourier transform 

of the image spectrum expression in equation 44.  This produces the general-purpose 

equation for the output image prediction in the space domain: 
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This relationship is effectively a restatement of equation 8 with the detected scene output 

signal replaced by the inverse Fourier transform of the rigorous expression contained in 

equation 37 or the resampled approximation developed in equation 42.  

3.4  System Pupil Function 

From the discussion in Sections 3.1 and 3.2, it is clear that one fundamental characteristic of 

any imaging system is the function that describes the overall pupil geometry, commonly 

referred to as the pupil function.  This is generally a “zero-one” function that defines the 

region over which the optical system is sensitive to incident photons and is equivalent to the 

exit pupil or aperture stop.  From a geometric viewpoint, most conventional optical systems 

(e.g., Ritchey-Chrétien and Cassegrainian) with near-diffraction-limited performance can be 

approximated via real-valued pupil functions whose dominant character exhibits rotational 

symmetry.  Sparse aperture systems, on the other hand, generally do not exhibit such circular 

symmetry, although their geometric diffraction-limited pupil functions are typically 

composed of arrays of conventional apertures that can be represented as real-valued pupil 

functions.  

 

Of course, all real-world imaging devices have some aberrations inherent in their optical 

prescriptions, leading to a phase profile across the aperture that can be modeled by a complex 

pupil function.  For sparse aperture systems, this aberration issue becomes more problematic, 

as even diffraction-limited subapertures can introduce detrimental “aberration-like” effects if 

they are not properly phased on a relative basis.  As a consequence, subaperture phasing is 

one of the more significant technological challenges associated with sparse aperture 
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collection systems.  It also drives the paramount need to represent a sparse aperture system 

through a complex pupil function in order to properly capture the physics of the collection 

problem.  The following section will focus on the basic geometry considerations and the 

differences between conventional aperture and sparse aperture systems under investigation in 

this research effort.  This will require a discussion of various real-valued pupil functions in 

order to introduce the concept of sparse aperture systems.  The more fundamental problem of 

modeling the physics associated with subaperture aberrations and phasing physics will be 

captured in the complex pupil function discussion in Section 3.7.  

3.4.1 Conventional Apertures 

As alluded to previously, a conventional diffraction-limited aperture typically is described by 

a real-valued pupil function with some (frequently rotational) symmetry, although this is not 

a fundamental or necessary constraint.  By restricting the discussion to the most common 

configurations, one will find that imaging systems with monolithic primary mirrors tend to 

have circular or rectangular pupils that can be described through classic special functions 

discussed in length by Gaskill (1978) and Easton (2003).  As examples, some of the more 

common pupil functions for conventional optical system apertures are depicted in Figure 1. 

 
 

 
 (a) Cylinder (b) Obscured Cylinder (c) Rectangle 

Figure 1: Special function descriptions for common optical apertures and subapertures. 
 

Figure 1(a) shows the diffraction-limited pupil function for a filled circular aperture of 

diameter D, which mathematically can be represented by Gaskill’s cylinder (CYL) function: 
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where r is the radial spatial coordinate: 
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In a similar fashion, the classic Cassegrainian and Ritchey-Chrétien systems use folded 

optics.  The resulting obscuration from the secondary mirror can be modeled as the 

difference of two CYL functions.  Accordingly, the diffraction-limited pupil function for the 

Cassegrainian family of apertures can be described mathematically through: 
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where D is the diameter of the aperture stop or exit pupil and Dobs is the diameter associated 

with the secondary mirror linear obscuration.  An example of such a configuration is depicted 

in Figure 1(b).  Finally, a less common but still plausible optical aperture for remote sensing 

can be constructed using Gaskill’s two-dimensional rectangle (RECT) function, shown in 

Figure 1(c).  Systems with rectangular apertures tend to have better signal-to-noise ratios 

because of the larger aperture area, but at the expense of increased manufacturing difficulty.  

It is introduced here for completeness and as a potential subaperture building block for sparse 

aperture applications.  Using Gaskill’s convention, a square pupil function is described via: 
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where b is the width of the aperture in the x-dimension and d is the width in the y-dimension.  

By convention, the two-dimensional RECT profile is separable, being composed of several 

one-dimensional functions that are defined by the following relationship: 
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3.4.2 Sparse Aperture Configurations 

We have now arrived at the point where it is appropriate to describe the general nature of 

sparse aperture imaging systems.  In general, a sparse aperture system synthesizes a larger 

effective collection aperture diameter from an array of smaller subapertures.  This aperture 

synthesis is accomplished by optically phasing separate optical systems or subapertures to 

form a combined image field.  If phased properly, the spatial resolution of that system will 

exceed the performance of any individual element.  The obvious objective of such a system is 

to obtain optical resolution commensurate with the larger synthesized aperture through the 

use of smaller (and less expensive) telescopes or optical elements.  Such a configuration 

becomes especially attractive for high-altitude remote sensing applications, where the 

competing requirements of high spatial resolution and limited payload volume tend to 

severely restrict the design trade space.  In satellite platforms, for example, operationally 

deploying a large monolithic mirrored optical system required for extended-duration access 

over a region of interest becomes very problematic due to launch vehicle fairing and weight-

to-orbit constraints. 

 

A sparse aperture system has the potential to overcome some of the design constraints 

associated with a high-altitude mission, since the phased system of subapertures will 

ultimately be lighter and perhaps more compact.  Of course, alignment, integration, test and 

deployment are all likely to be more complicated compared to a monolithic optical system.  

In addition, the earlier discussion demonstrates that one of the most significant technological 

challenges associated with these systems is acquiring and maintaining the relative phasing 

between the subapertures, which in effect amounts to maintaining the optical path difference 

(OPD) between the various optical subsystems to within a small fraction of a wavelength 

(e.g., 1/10th of wave). Despite these technical hurdles, however, sparse aperture systems may 

be feasible for certain high-altitude imaging missions that otherwise would be impossible 

with a conventional aperture system. 
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In general, there are two distinct classes of sparse aperture configurations that appear 

regularly in the literature.  One is the class of fixed sparse aperture optical systems, whose 

OTF exhibits extensive, non-variable spatial-frequency coverage. The other is the family of 

telescopes or interferometers classified as synthetic sparse aperture configurations, which are 

distinguished from fixed systems in that they provide greatly reduced spatial-frequency 

coverage and rely upon imaging system motion to sweep out the remaining frequency plane 

in time.  This research is specifically focused on the family of fixed sparse aperture systems. 

 

Monolithic
Primary
Mirror

Focal
Plane

Secondary
Mirror

 
 (a) Conventional Telescope 

Multiple
Subaperture

Mirrors

Focal
Plane

Common
Secondary

Mirror

Beam Combiner

Delay Line

Focal
Plane

Multiple
Afocal

Telescopes

 
 (b) Multiple Telescope (c) Common Secondary 
 

Figure 2: Conventional versus sparse aperture telescope configurations. 
 

Within the fixed class of imaging systems, two traditional optical system configurations have 

been proposed: (1) multiple phased telescopes and (2) phased subapertures feeding a 

common secondary.  Figure 2 shows perspective views of these two standard sparse aperture 

optical configurations, along with a more conventional monolithic system.  The system in 
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Figure 2(a) depicts a traditional folded telescope configuration, with a monolithic primary 

mirror feeding a secondary (as in a Cassegrainian or Ritchey-Chretien optical system).  At 

the bottom left, Figure 2(b) shows a planform diagram of a multiple-telescope sparse aperture 

system design.  This system configuration typically consists of an array of afocal optical 

systems that transfer the incident radiance through individual delay lines into a combiner 

telescope to form the final image field.  Given a multiple-telescope configuration, it is 

essential that the trombone and folding mirrors in the delay line maintain the OPD to within 

the necessary tolerances.  At the bottom right, Figure 2(c) illustrates a standard method for 

packaging a phased array of optical subapertures with a common secondary mirror.  In 

practice, the common secondary approach is typically associated with arrays of fewer 

subapertures due to packaging considerations.  The smaller set of non-redundant array 

configurations originally proposed by Golay (1971) exemplifies the optical layouts for such 

an implementation.  

 

Meinel (1970) demonstrated that the key to maintaining acceptable image quality in a generic 

sparse aperture system is ensuring that the demagnified exit pupil is a scaled copy of the 

entrance pupil.  This effectively requires that the pupils be matched with no lateral, 

longitudinal, rotational, or tilt errors.  Traub (1986) restated this overriding sparse aperture 

system requirement with crystal clarity: “… beams from separated telescopes must be 

recombined so that they appear to be coming directly from a single large telescope which has 

been masked so as to reproduce exactly the ensemble of collecting telescopes.”  Such a 

design rule is tantamount to ensuring the individual fields from each collection subaperture 

add constructively to achieve the higher optical performance of the synthesized telescope 

aperture. 

 

As with conventional telescope apertures, the top-level optical character of sparse aperture 

systems can be quantified in terms of the system pupil function.  For diffraction-limited 

performance that satisfies the subaperture phasing and pupil matching requirement (i.e., no 

aberrations or pupil geometry errors), one can again generally characterize the pupil in terms 

of real-valued special functions similar to those discussed previously for conventional 



 33

apertures.  For the fixed sparse aperture optical configurations in Figure 2, the conventional 

apertures are summed to form the overall pupil function:  
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where pi[x,y] represents the pupil function for the ith subaperture and the coordinate [xi,yi] 

defines the displacement of each individual subaperture from the origin tied to the larger 

synthesized aperture.  Equation 51 indicates that the pupil function of a typical diffraction-

limited sparse aperture system is represented simply by the conventional aperture building 

blocks described in the previous section. 

 

The construct described above enables the diffraction-limited, incoherent aperture OTF to be 

evaluated through an appropriate mathematical autocorrelation operation of the system 

geometric pupil function.  This is shown in Figure 3 for several conventional and sparse 

aperture system configurations with the same physical encircled aperture at a given central 

wavelength.  The conventional collection apertures on the left side of the figure (epitomized 

by the filled circular and Cassegrainian systems) exhibit the classic circular triangle (CTRI) 

function character and cutoff frequencies discussed by Goodman (1968) and Easton (2003).  

On the other hand, the annular, tri-arm and Golay sparse aperture systems display a dramatic 

reduction in modulation at mid-range frequencies and a unique character of the cutoff 

frequency.  The ability to mathematically model various diffraction-limited pupil functions 

and their associated broadband, spectrally dependent, aberrated OTF constitutes a principal 

foundation for the proof-of-concept modeling discussed in Chapter 4.  As mentioned above, 

the preliminary OTF calculations contained in Figure 3 are simply single-wavelength 

autocorrelations of the unaberrated pupil function.  One must ultimately incorporate 

additional analysis to capture the physics associated with a real-world aperture, as will be 

discussed in further detail.  

 

In addition to the great reduction in modulation exhibited by all of the sparse aperture 

systems, one should also take note of the rapid spatial variations in the OTF envelope and the 

reduced cutoff frequency (ergo reduced resolution) exhibited in particular by the tri-arm and 
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Golay apertures.  The latter fact would imply that these systems need to be larger to achieve 

the same effective spatial resolution as their conventional counterparts.  It also raises the 

concern that these systems may exhibit spectral artifacts that will be exacerbated by any 

subsequent restoration.  This spectral issue is a principal concern of this research effort. 

 

         

         

         
 
 

Figure 3: Sample optical system configurations and associated 
diffraction-limited aperture modulation transfer functions (MTF). 

 

3.5  Optical Transfer Function 

This section provides further detail on computing the normalized form of the incoherent 

optical transfer function (OTF), whose general character was originally introduced in the 

linear systems theory developed in Sections 3.1and 3.2.  As discussed previously, the transfer 

function (OTF) and impulse response (PSF) of a given imaging device are Fourier transform 

pairs: 
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where each representation is a function of wavelength. Goodman (1968) and Gaskill (1978) 

have shown that the transfer function of a coherent imaging system is a scaled replica of its 

pupil function:  

 
[ ] [ ]ηλξληξ 22 ,, zzpH =  (53) 

 
where H[ξ,η] is the coherent OTF, λ is the monochromatic wavelength under investigation 

and z2 is the distance to the imaging plane.  Such an expression shows that the coherent OTF 

acts like a simple low-pass filter.  Through development similar to that contained in Section 

3.2, Goodman and Gaskill subsequently derived expressions for the normalized OTF of an 

incoherent imaging system consistent with the following formulation: 

 

[ ] [ ] [ ]

[ ] dxdyyxp

zzpzzp

∫ ∫
∞+

∞−

==
2

2222

,

,  ,,OTF   ηλξληλξλ
ηξ

9
H  

 
(54) 

 
Under this construct, it is readily apparent that the incoherent OTF of a system is effectively 

evaluated as the normalized autocorrelation of the coherent transfer function.  Of course, the 

latter is simply the scaled pupil function defined by the exit pupil of the imaging system.  

Accordingly, the OTF for a system used in incoherent radiation is evaluated through the 

normalized autocorrelation of the scaled pupil function as defined in equation 54.  As 

observed in the denominator of equation 54, the conventional normalization is the area of the 

squared magnitude of the pupil function.   

 

The basic formulation of equation 54 can be further clarified by introducing notation for the 

autocorrelation operation as well as noting that the diffraction-limited pupil function is 

typically a zero-one function.  The former clarification expands the notation to show that the 

autocorrelation is the convolution of the pupil function with the complex conjugate of a 

reversed replica.  The latter (and often more useful) observation replaces the normalization 

factor in the denominator by an equivalent expression for the area of the exit pupil.  In 

tandem, these two items allow equation 54 to be rewritten:  
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thereby providing a roadmap for computing the autocorrelation of the system pupil and 

simplifying the normalization process.  Gaskill has shown that the revised OTF relation can 

be further simplified by evaluating the convolution and area integrals in the expression, 

noting that the area of the pupil can be computed by applying the central ordinate theory.  

The latter allows one to replace the area integral in the denominator with an equivalent 

expression involving the Fourier transform of the pupil function evaluated at zero frequency 

(ξ = 0,η = 0).  Through these means, Gaskill ultimately derives a relation consistent with the 

following expression for the incoherent OTF given a zero-one pupil function: 
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Through a similar derivation for a real-valued, zero-one pupil function, Goodman ultimately 

revised equation 54 to the following integral form: 
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where it is apparent that the OTF calculation is a ratio: 

 

pupil  theof area total
pupils displaced  twoof overlap of areaOTF =  (58) 

 
Figure 4 depicts the general geometry associated with the real-valued, diffraction-limited 

aperture OTF calculation for a filled circular aperture.  In this scheme, one can visualize the 

numerator of equation 57, or the autocorrelation of the scaled pupil function, as the shaded 

area of overlap between two displaced pupils as seen in the center of the figure.  Since most 

diffraction-limited pupils can be represented by zero-one functions, the denominator or 

normalization factor in the OTF expressions found above is simply the total area of the pupil 

function on the left side of Figure 4.  For simple geometries, such as the filled circular 

cylinder, one can ultimately derive analytical expressions for the OTF, making use of the 

basic geometry on the right side of Figure 4.  The closed-form solution for this particular 

aperture will be discussed in greater detail shortly.  

 

 
Figure 4: Geometric view of the diffraction-limited OTF calculation 

of a filled circular aperture performed through the mathematical 
autocorrelation of the exit pupil. (image based on Goodman) 
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Although functionally similar, the diffraction-limited aperture OTF calculation performed as 

the autocorrelation of the scaled pupil function is unique for a sparse aperture system 

configuration.  This is a direct consequence of the fact that the exit pupil for a sparse aperture 

system contains multiple subaperture pupils which manifest both autocorrelations with 

themselves and cross-correlations with other paired subapertures within the array.  This 

unique attribute of sparse aperture systems results in individual subaperture correlations that 

are displaced throughout the [ξ,η]-plane, providing the desired spatial frequency coverage. 

 

To help clarify how the sparse aperture exit pupil supports the general OTF character 

identified previously (e.g., in Figure 3), it is instructive to expand some of the notation 

behind the pupil autocorrelation for these systems.  For a diffraction-limited sparse aperture 

with identical subapertures, the overall system exit pupil can be described as the summation 

of N displaced subaperture pupils s[x-xi,y-yi] centered about locations [xi,yi].  Of course, this 

summation can be represented as the convolution of the individual subaperture pupil s[x,y] 

with an array of N displaced delta functions: 
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This is essentially a re-expression of equation 51 with the individual subaperture pupils 

pi[x,y] all defined by s[x,y].  As established in equation 54, the aperture transfer function for 

any optical system is essentially driven by the complex autocorrelation of the appropriately 

scaled pupil function in accordance with the following proportionality: 
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If one substitutes the sparse aperture pupil function as defined in equation 59 into the OTF 

expression in equation 60 and simplifies the result, the following general proportionality is 

obtained for the OTF of a diffraction-limited sparse aperture with identical subapertures: 

 

[ ] [ ] [ ]( ) [ ]∑∑
= = =

=−+−+∗−−−−∝
N

j

N

k zy
zxkjkj yyyxxxyxsyxs

1 1

*

2
2,,,,
ηλ
ξλδηξ 9  H  (61) 

 



 39

Equation 61 provides a unique means for visualizing the implications of autocorrelating the 

pupil function for a distributed aperture in order to determine the system transfer function.  

From this expression, it becomes apparent that the fundamental building block of the sparse 

aperture transfer function is simply the complex autocorrelation of a pair of subapertures.  

The autocorrelation of a single subaperture is distributed throughout the spatial-frequency 

domain at points defined by the autocorrelation of the array of Dirac delta functions.  As a 

result, one of the principal objectives of the system designer is to position subapertures in the 

system pupil to ensure maximum coverage in the frequency plane for the system transfer 

function.  This makes non-redundant array designs very attractive, since cross-correlations of 

individual pairs generally are positioned in unique regions of support in the frequency 

domain if designed properly.  In fact, if a particular sparse aperture system design has N 

individual subapertures; there will be a total of N2 correlations within the subaperture group, 

of which N2-N+1 can possibly be unique.  The reduction by N-1 in frequency plane coverage 

is a direct result of the alignment of subaperture autocorrelations at the origin. 

 

The diagrams in Figure 5 illustrate the mathematical development of the sparse aperture OTF 

calculation for a simple Golay-4 non-redundant array.  Figure 5(a) shows the exit pupil 

configuration for this representative system.  In this diagram, the color-coded arrows 

represent the cross-correlations between individual subapertures.  These cross-correlations 

effectively give rise to displaced subaperture autocorrelations positioned throughout the 

frequency domain, as shown in Figure 5(b).  For instance, the subaperture cross-correlation 

represented by the green arrow in (a) results in the displaced green CTRI-function 

subaperture autocorrelation in the OTF depicted in (b).  A similar formulation applies to the 

other independently supported cross-correlation pairs, some of which are color-coded for 

additional clarity.  Figure 5(c) provides a three-dimensional surface plot of the derived 

aperture OTF, from which one can readily observe the independent CTRI-function 

subaperture autocorrelations resulting from cross-correlation pairs, as well as the “stacking” 

of N = 4 autocorrelations at the origin determined by the 4 independently supported 

subaperture pupils.  Thus, the non-redundant Golay-4 configuration explored in this example 

has N2 = 16 supported subaperture autocorrelations, of which N2-N+1 = 13 provide unique 

support within the [ξ,η]-plane.  With the character of this general transfer function, it is 
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essential to position and size the individual subapertures to provide maximum frequency 

domain coverage while avoiding the introduction of zeroes that eliminate spatial frequency 

content in the detected imagery. 

 

     
 (a) Exit Pupil Autocorrelation (b) Subaperture cross-correlations  (c) Transfer Function 

 

Figure 5: Geometric view of the diffraction-limited OTF calculation 
of a Golay-4 sparse aperture system performed through the 

mathematical autocorrelation of the exit pupil. 
 

Although much of the preceding development would appear to involve simple mathematical 

wizardry, there is certainly value in exploring the various historic OTF formulations from the 

standpoint of having different options for mathematically deriving an estimate of the transfer 

function depending on the investigator’s choice of numerical recipe.  Ultimately, however, 

all of the formulations essentially entail the same general construct: the OTF is the complex 

autocorrelation of the scaled pupil function normalized by the area of the exit pupil.  For 

more complicated pupil geometries, such as those encountered with sparse aperture systems, 

this mathematical operation can more effectively be modeled digitally, especially for 

aberrated pupils.  The technique utilized in this research effort for computing the complex, 

aberrated transfer functions associated with the sparse aperture configurations of interest will 

be discussed in greater detail in Chapter 4. 

 

The modulation transfer function (MTF) is simply defined as the modulus of the normalized 

OTF, and thus is a real-valued function that quantifies the degradation introduced by the 

optical system but maintains no information regarding the character of the system phase.  In 

addition, one should note that the development has focused strictly on computing one 

OTF 

OSO 
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component of the total system OTF and MTF: that due to the optical aperture or exit pupil.  

Other components of the overall system transfer function will be discussed in greater detail 

shortly.  By convention, therefore, the MTF computed as the magnitude of the OTF 

expression in equation 54 or any of its counterparts effectively constitutes the MTFap of the 

optical aperture as defined below: 
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For a conventional filled circular aperture with an exit pupil diameter D, central wavelength 

λ and focal length f, Goodman demonstrates that the closed-form solution for the aperture 

MTF is: 
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where ρ is the radial spatial frequency coordinate: 
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is the so-called cutoff frequency of the incoherent imaging system.  This spatial frequency 

cutoff is an essential figure of merit that defines the highest spatial resolution of the optical 

system.  As opposed to the rather simple filled aperture MTF discussed above, the sparse 

aperture MTF is generally not so amenable to a closed-form solution. As a result, the 

autocorrelation of the pupil function must typically be digitally modeled to derive the 

character of the MTF.  Such modeling was used to implement the mathematical construct 

conveyed in equations 54 through 57 and derive the aperture MTF profiles contained in the 

figures below.  For example, Figure 6 depicts the pupil function and associated aperture MTF 
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for a filled aperture system, which exhibits the classic circularly symmetric CTRI function 

character consistent with the closed-form solution identified above.   

   

   
 

Figure 6: Filled circular aperture pupil and associated modulation transfer function. 
 
 
For comparison, Figure 7 displays similar views of a tri-arm sparse aperture system pupil 

function and its MTF for the same encircled diameter.  As with the conventional aperture 

analysis, the MTF profile is entirely consistent with the results cited in the literature.  

Comparison of the MTF profiles in figures 6 and 7 is instructive to highlight the reduced 

modulation and varying cutoff frequencies of the sparse aperture design relative to its filled 

counterpart. The MTF profile in Figure 7 also demonstrates how the subapertures of a classic 

sparse aperture system are arranged in a configuration to obtain good spatial frequency 

coverage.  For these sparse aperture systems, it is highly desirable to exhibit an aperture MTF 

that avoids mid-frequency valleys and zeros, while maintaining expansive coverage over all 

those spatial frequencies that a comparable conventional aperture would image.  The obvious 

rationale for desiring this character in the sparse aperture MTF is the overall objective of 

achieving comparable optical performance to a monolithic system, with minimal loss in 

spatial frequency content due to the introduction of zeros. 

   

One is reminded that the development and examples cited above effectively skirt the issue of 

a complex-valued pupil function, which would represent aberrations and subaperture 

phasing.  This topic will be discussed in further detail in Section 3.7. 
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Figure 7: Tri-arm sparse aperture pupil and associated modulation transfer function. 
 

3.6  Point Spread Function 

Consistent with the discussion in Sections 3.1 and 3.2, the impulse response or point spread 

function (PSF) of an incoherent imaging system is defined to be the inverse Fourier transform 

of the OTF.  Since the OTF is typically normalized by convention, one would intuitively 

conclude that the PSF (as a Fourier transform pair) should also be normalized.  

Unfortunately, as opposed to the almost universal acceptance of the normalized convention 

for the OTF, one finds a wide range of different formulations employed for the description of 

the aperture PSF.  To maintain the integrity of the Fourier transform pair concept, Gaskill 

(1978) derives the following general expression for the aperture PSF: 
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where the normalization factor in the denominator is in effect the complex autocorrelation of 

the coherent transfer function evaluated at zero frequency.  This convention is entirely 

consistent with taking the Fourier transform of equation 54 in order to evaluate the 
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incoherent PSF.  Since the pupil function is typically a zero-one function (implying its value 

is comparable to its square) and the object to be imaged is typically at long range relative to 

the image distance for a remote sensing application (allowing z2 to be approximated by the 

focal length f), one can further simplify equation 66: 
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(67) 

 
which is the squared magnitude of the coherent impulse response normalized by the area of 

the exit pupil.  As with the preceding discussion on OTF, there is a reasonably 

straightforward means for computing the incoherent PSF.  To do so, one must compute the 

Fourier transform of the scaled pupil function, take the squared magnitude of the result, and 

normalize by the pupil area and a factor of (λf)2.  Alternatively, one could also compute the 

normalized OTF through means described in the previous section and subsequently take the 

inverse Fourier transform of that result. 

 

Some brief examples of the computational technique described above are provided in the 

following discussion.  For instance, if one wanted to apply equation 67 in order to evaluate 

the incoherent PSF of a conventional diffraction-limited filled aperture with diameter D, a 

key step would be the computation of the Fourier transform of the CYL pupil function.  The 

scaling property of Fourier transforms and the standard table of transform pairs leads to: 
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where Gaskill’s sombrero (SOMB) function is defined as: 
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and J1 is the first-order Bessel function of the first kind.  Based on this result, it is clear that a 

filled circular aperture with no central obscuration will produce the classic airy pattern PSF 

resulting from the squared magnitude of the SOMB function.  Continuing with the PSF 

convention identified in equation 67, one will ultimately arrive at the general equation for the 

normalized diffraction-limited PSF of a filled circular aperture illuminated by incoherent 

radiation: 
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With the normalization appropriately applied, the filled aperture MTF and PSF expressions 

contained in equations 63 and 70 effectively constitute Fourier transform pairs in accordance 

with the theoretical development explored above.  Unfortunately, one will frequently find the 

unnormalized version of the incoherent PSF actually cited in the literature.  This convention 

avoids the ratio of the squared magnitude of the coherent impulse response by the area of the 

exit pupil.  With such a formulation, the unnormalized diffraction-limited PSF for a filled 

circular aperture with no central obscuration is: 
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Although these two expressions differ only by a normalization factor, one must be careful in 

application if the total absolute scene power is of concern.  One should also note that the 

relations all express the PSF in focal plane coordinates, similar to the approach taken with the 

OTF calculations. 

 

Based on the closed-form analytical results, the circular filled aperture generates a classic 

Airy pattern PSF.  This is confirmed by a digital model that essentially performs the 

numerical calculation.  Figure 8 depicts the pupil function and associated normalized 

incoherent PSF for such a filled circular aperture modeled for a single central wavelength.  

One clearly observes the Airy pattern structure with the expected prominent central peak and 
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a first zero located in the wings at 1.22λf/D, consistent with theory and the Rayleigh 

resolution criteria. 

 

   
 

Figure 8: Filled circular aperture pupil and associated point spread function. 
 

The next example is the evaluation of the incoherent PSF of a sparse aperture system.  For 

this exercise, the same tri-arm configuration that was evaluated for the aperture MTF 

computation will be used.  As discussed previously, the aperture MTF generally does not 

lend itself to an analytical solution simplified beyond an expression involving the normalized 

complex autocorrelation of the pupil function.  Fortunately, in the spatial domain the 

diffraction-limited incoherent PSF of a sparse aperture is actually reducible to a closed-form 

solution of sorts.  Ignoring the normalization factor in equation 67 for the time being, one can 

apply equation 51 for the generic description of a sparse aperture pupil to derive the general 

expression for the unnormalized incoherent PSF for such a collection aperture: 
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where the subapertures are assumed to be identical functions and use of the shift theorem 

accounts for the summation of phase terms within the squared magnitude.  With this general 

formulation, one simply needs to perform the series of Fourier transform and scaling 
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operations for a single circular subaperture to arrive at the unnormalized relation for the 

diffraction-limited PSF of the sparse aperture system: 
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where N is the number of subapertures (nine in this case) within the sparse aperture system 

configuration.  Having derived expressions for the numerator in equation 67, one simply 

needs to normalize both equations by the area of the exit pupil to develop the strict 

mathematical interpretation of the PSF proposed by Gaskill.  To gain physical intuition of the 

general character of the closed-form expressions found above, a digital model was 

constructed to implement the same numerical technique used with the conventional aperture 

configuration.  The results of this analysis are displayed in Figure 9, with the modeled tri-arm 

pupil function on the left and the computed incoherent PSF on the right.  As anticipated by 

the results of the MTF evaluation for this system, the greatly reduced modulation exhibited 

by the sparse aperture system correlates with a degraded PSF having a reduced peak and 

increased energy within the wings.  Such a PSF will clearly result in a degraded image 

product over the comparable conventional aperture prior to any image restoration attempts.  

Fortunately, much of the lost quality can be recovered by appropriate filtering techniques if 

the MTF exhibits the appropriate spatial frequency content. 

 

   
 

Figure 9: Tri-arm sparse aperture pupil and associated point spread function. 
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3.7  Aberrated Aperture MTF 

The development of expressions for the pupil function, OTF and PSF have all relied upon the 

implicit assumption that the system is diffraction limited, i.e., that a point source object 

generates an ideal converging spherical wave at the exit pupil.  Of course, real-world systems 

generally exhibit some form of inherent aberration, or wavefront departure from the ideal 

spherical wave model.  In a sparse aperture system, the conceptual notion of an aberration 

takes on added meaning, as the individual subapertures could theoretically exhibit 

diffraction-limited performance and be inadequately phased so that the synthesized image 

field effectively displays an aberrant wavefront.  Such errors could manifest themselves in 

the context of relative piston and tilt errors between subapertures, for instance.  Accordingly, 

the development of phenomenology to deal with aberrations and phasing issues is essential to 

properly account for the overall physics associated with sparse aperture system imaging. 

 

Goodman (1968) has suggested that general aberration phenomenology can be captured in a 

Fourier optical sense by introducing a complex pupil function, where the effect of the 

aberration is modeled through a phase term consistent with the optical path difference (OPD) 

error.  Conceptually, in this formulation the pupil function can be envisioned as consisting of 

a real-valued term that accounts for the aperture geometry and an imaginary-valued term that 

effectively represents a phase screen over the aperture, thereby degrading the incident 

wavefront.  With this model, Goodman indicates that real apertures should be represented by 

a complex pupil function p[x,y] of the form: 
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where w[x,y] is a two-dimensional function that describes the effective OPD error in units 

consistent with the wavelength λ.  The general nature of this OPD error measure can be 

observed in Figure 10, which depicts the imaging geometry for an aberrated wavefront with 

tilt error.  As observed in the figure, the aberration function w[x,y] simply defines the amount 

of OPD error present in the system relative to a converging, perfectly spherical reference 

wavefront at the exit pupil.  It should also be noted that the measurement of path-length error 
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occurs for the two waves (reference and aberrated) which intersect the optical axis at the exit 

pupil or aperture stop. 

 

 
Figure 10: Geometry associated with an aberrated wavefront and the 
resulting aberration function w[x,y], demonstrating the Optical Path 

Difference (OPD) from the best-fit reference sphere in the exit pupil. 
 

For a realistic sparse aperture system with aberrations and/or phasing errors, the diffraction-

limited pupil function in equation 51 is similarly revised to account for the resulting OPD 

errors: 
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where wi[x,y] accounts for the individual path errors associated with the ith subaperture.  

Thus, the wavefront error associated with each subaperture can generally be addressed 

through similar geometric considerations as those depicted for conventional apertures in 

Figure 10.  As will become apparent in the discussion below, one simply needs to replace the 

pupil function in all expressions for the transfer and impulse response with the complex 

expressions found above to account for any realistic aperture system with resident aberrations 

or pupil phase errors. 

 

Prior to addressing the issue of an aberrated OTF or PSF, it would be useful to explore the 

general character of the OPD error function w[x,y].  Welford (1986) developed a general 

formulation for describing the difference between an aberrated wavefront emerging from the 
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exit pupil and the ideal spherical wave at the same point obtained by a power series 

expansion.  Assuming rotational symmetry in the optical system of interest, he identifies the 

following expression to describe the OPD error: 
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where [x,y] are exit pupil coordinates as previously defined, [x0,y0] are paraxial image plane 

coordinates, ai are second-order OPD coefficients, and bi are fourth-order OPD coefficients.  

When expressed as transverse ray departures, the bi terms are of third order and consequently 

are commonly referred to as third-order aberrations.  In addition, the first five third-order 

terms are widely known as the Seidel aberrations, with b1 corresponding to spherical error, b2 

representing coma, b3 indicating the presence of astigmatism, b4 identifying field curvature, 

and b5 consistent with distortion.  Similar to the third-order aberration terms, the second-

order OPD terms are actually first order when expressed as transverse ray aberrations.  In this 

context, the first (a1) term in equation 76 introduces a longitudinal shift in the center of the 

ideal spherical wave that is commonly referred to as defocus.  The a2 term, on the other hand, 

identifies a transverse shift in the center of the reference wavefront sphere, which is referred 

to as tilt in practice.  The final first-order aberration term does not effectively change the 

shape of the reference wavefront, but does introduce a constant phase shift across the exit 

pupil known as piston error. 
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 piston x-tilt y-tilt 

             
 defocus spherical 0° astigmatism + defocus 

             
 45° astigmatism + defocus coma + x-tilt coma + y-tilt 

 

Figure 11: Contour and three-dimensional surface plots of the phase profiles 
for various first-order Gaussian and third-order Seidel wavefront aberrations. 

 
 
Figure 11 provides contour and surface plots of the aberrated wavefront phase profiles that 

arise as a result of the first- and third-order aberrations described above.  These wavefront 

profiles are depicted in terms of either their aberration coefficient or Zernike polynomial fits, 

concepts which will be discussed in additional depth later.  The first-order paraxial or 

Gaussian properties of the optical wave (piston, tip/tilt, and focus) are represented by the first 

four plots in the diagram through the use of aberration coefficients.  These Gaussian 

properties will be shown to be essential parameters in the phasing of sparse aperture 

subapertures in later sections.  The key third-order Seidel aberrations investigated in this 

effort appear in the remaining five diagrams, all of which were captured through Zernike 

wavefront analysis except spherical error, whose quartic character seemed more intuitively 

represented through its aberration coefficient.  Naturally, the former is a matter of personal 

choice, and the proof-of-concept digital model developed for this research supports both 

Zernike and aberration coefficient definition for any number of ordered aberrations.  

Ultimately, one should recall that the desired wavefront would exhibit a perfectly spherical 
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contour.  With such a reference, the various phase profiles contained in Figure 11 allow one 

to gain some intuitive insight into the physical nature of the various aberrations that may be 

present in an optical system.  All of these aberrations ultimately become the nemesis of the 

optical designer and can have a dramatic impact on image quality depending on the severity 

of the error. 

 

Wyant (1993) identifies an alternative form of equation 76 that takes advantage of the 

assumption of circular symmetry to introduce polar coordinates.  With this approach, the 

pupil plane coordinates can be rewritten in polar format according to the following set of 

relations: 
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Introducing these polar coordinates, one will find that the expression for the OPD error found 

in equation 76 takes the following general form: 
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where the Wklm are the so-called wavefront aberration coefficients such that k corresponds to 

the power of the x0 term, l to the r coordinate term, and m to the trigonometric cosine term.  

Given such a convention, the relationship between the individual error terms in equation 78 

and the first- and third-order aberrations can be established as observed in Table 1 below.  In 

general, one finds that the wavefront OPD error expression found in equation 78 tends to see 

the most frequent use within the imaging community to address issues associated with optical 

aberrations. 
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Coefficient Form Aberration 
W020 r2 focus 
W111 x0rcosθ tilt 
W200 x0

2 piston 
W040 r4 spherical 
W131 x0r3cosθ coma 
W222 x0

2r2cos2θ astigmatism 
W220 x0

2r2 field curvature 
W311 x0

3rcosθ distortion 
 

Table 1: Wavefront aberration coefficients for first-order 
Gaussian and third-order Seidel aberrations. 

 

With a formulation in hand for addressing aberrations through a complex-valued pupil 

function driven by the wavefront OPD error expression, one can now investigate the effect of 

aberrations on the aperture OTF and PSF.  As alluded to previously, the same numerical 

mechanics apply for computing these functions.  One simply needs to replace the previous 

diffraction-limited geometric form of the pupil function with the complex function found in 

equations 74 and 75 in the expression of interest. For example, the functional form of the 

OTF for an aberrated pupil is computed by inserting the complex pupil function into equation 

55 to formulate the general relation:  
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where the OTF computation is seen to involve the complex autocorrelation of the aberrated 

pupil function normalized by the area of diffraction-limited exit pupil.  Goodman (1968) 

shows that this expression can be recast into the following general form for the evaluation of 

the OTF when aberrations are present: 
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which allows one to directly relate the effect of OPD errors to the resulting OTF.  In this 

expression, Goodman uses the Schwarz inequality to show that aberrations never boost the 

MTF and frequently lower the contrast (i.e., reduce the modulation) at certain spatial 

frequencies.  In fact, if aberrations are severe, the modulation can be reduced enough that the 

effective cutoff frequency is significantly below the diffraction-limited metric, resulting in the 

apparent loss of spatial resolution in the acquired imagery.  Aberrations can also reverse the 

phase of the OTF at certain spatial frequencies, causing the image content at those spatial 

frequencies to experience a reversal in perceived contrast.   

 

As with the OTF development discussed above, the evaluation of the PSF for an aberrated 

optical system introduces a complex-valued pupil function.  For example, the normalized 

PSF for an aberrated optical system can be computed through use of equation 67 and an 

expression for the complex pupil as follows: 
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This expression cannot be simplified much further without some knowledge of the OPD error 

functional form.  Clearly, for the first-order aberrations (i.e., piston, tilt and defocus), one can 

simplify the expression for the Fourier transform of the pupil phase function.  Any further 
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reduction is completely contingent upon the physical form of the geometric diffraction-

limited pupil function, which becomes quite complicated even for a simple CYL function.   

 

As a final point on the discussion of aberrated OTF and PSF evaluation, one should note that 

all of the expressions discussed in this section identify a general diffraction-limited system 

pupil function p[x,y].  The latter could easily involve the summation of individual 

subaperture pupils in accordance with equations 51 and 75 for sparse aperture system 

analysis, introducing the appropriate summation and pupil shifts into the equations for the 

OTF and PSF. As a result, the complex nature of the expressions detailed above generally 

drives the need to evaluate aberrations and phasing errors through use of a digital computer 

model. 

 

Due to the complexity of these expressions, Fiete (2002) suggests use of an approximation 

that attempts to capture the principal effects of the aberrations resident in precision optics due 

to manufacturing errors.  Leveraging the work originally accomplished by Holst (1995), he 

proposes use of the following aberrated optics transfer function (MTFaber) in conjunction with 

the diffraction-limited aperture MTF developed previously: 
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where ρco is the cutoff frequency of the optical system defined in equation 65 and WFErms is 

the total rms wavefront error of the optical system (typically budgeted on the order of 0.10 

waves at the operational wavelength λ).  Holst indicates that this formulation is valid for 

modeling precision optics with small aberrated wavefront errors (i.e., WFErms < 0.14).  With 

such an expression, one can theoretically compute the autocorrelation of the real-valued 

geometric pupil function to derive the diffraction-limited aperture MTF and subsequently 

multiply the result by the aberrated optics MTF to arrive at an appropriate approximation for 

the normalized autocorrelation of the complex pupil function defined in equations 79 and 80 

above.  As an example, this analysis has been accomplished for a filled circular aperture in 

Figure 12 below, where one can observe the impact of various levels of rms aberration on the 
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diffraction-limited MTF performance of the optical system.  In the context of this research 

effort, the development of such an aberrated optics MTF was accomplished only to verify the 

implementation of the more flexible wavefront polynomial approach discussed previously.  

In all of the results that follow in Chapter 5, a complex pupil function was constructed to 

capture the effect of subaperture aberrations and or dephasing. 

 

   
 (a) Diffraction-Limited (b) Aberrated (0.14 waves) (c) Comparison 

 
Figure 12: Comparison of diffraction-limited versus aberrated MTF 

performance for various levels of rms wavefront error 
using the formulation in Holst (1995). 

 

3.8  Detector Sampling 

The previously derived MTF expressions that essentially involve the complex autocorrelation 

of the pupil function capture the diffraction physics associated with the optical system 

aperture.  As will be discussed later in Section 3.12, other MTF components must also be 

accounted for in the total system analysis.  One deals with the fact that a detector has finite 

spatial extent rather than the infinitesimal area characteristic of a Dirac delta function.  As a 

consequence, the non-ideal, real-world detector behaves like an averaging mechanism to 

further blur the object scene.  Since most detectors exhibit rectangular planforms (and 

therefore by definition a rectangular PSF), they give rise in the frequency domain to a 

detector pixel aperture MTF with general character: 

 

WFErms = 0.14 waves 

WFErms = 0.1 waves 

Diffraction-Limited 
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where xp is the width of the light-sensitive detection area in the x-dimension and yp is the 

similar detector width in the y-dimension.  The MTF expression defined above assumes a 

rectangular detection area and uniform detector response across the pixel. 

 

 
 

Figure 13: Comparison of the detector pixel aperture MTF (in red) 
versus the MTF for a filled circular aperture given Nyquist sampling. 

 
 
For visualization, the detector MTF (in red) along the ξ-axis is plotted in Figure 13.  This 

figure illustrates that the effective detector cutoff or sampling frequency occurs at the first 

zero, at spatial frequency ξ = 1/p where p is the distance between detector centers, commonly 

referred to as the pixel pitch.  Any spatial frequency content in the imaged scene above one-

half the detector cutoff or sampling frequency, i.e., above ξ = 1/(2p), will be aliased back into 

the scene spectrum at lower frequency and therefore not be faithfully reproduced in the 

detected image.  For comparison, a filled circular aperture MTF that is assumed to be 

Nyquist sampled is included in the diagram as well.  One will observe that the optical cutoff 

frequency associated with such a system occurs at ξ = D/λf = 1/(2p), which establishes the 

highest spatial resolution that the imaging system can achieve (or highest spatial frequency 
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that can be imaged).  Since the optical cutoff frequency is equivalent to one-half the sampling 

frequency, no aliasing occurs for such a Nyquist-sampled imaging system. 

 
In addition to the MTF effect, the finite nature of imaging detectors also introduces 

quantization effects that manifest themselves in terms of pixilation in the final digital image.  

In the focal plane, the unit measure of sampling is again driven by the distance between 

detector centers or pixel pitch.  For equivalent ground units, the pixel pitch must be projected 

to the ground plane to acquire a measure of the ground sample distance (GSD).  A geometric 

mean evaluation of the ground sample distance (GSDGM) takes the form: 
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where R represents the range to the target scene, f is the system focal length, θel defines the 

target elevation angle along the imaging line-of-sight, and M and N identify the number of 

pixels aggregated in the x- and y-dimensions, respectively.  This expression essentially 

specifies in ground units how an object scene is sampled by the focal plane array (FPA), i.e. 

the spatial extent of each pixel on the ground.  Conversely, one could invert the expression to 

determine the scale factor s that relates a given distance in the ground plane (∆xGP) to that in 

detector plane units of distance (∆xFPA): 

 

[ ] GPGPFPA sin x
R
fxsx el ∆⋅=∆⋅=∆ θ  (85) 

 
With these equations, one is able to appropriately sample and scale a given object scene to 

ensure its frequency spectrum units are consistent with the system MTF to be applied. 
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3.9  Detector Carrier Diffusion 

The next physical effect that can be modeled as a component of the system MTF involves 

carrier diffusion.  Diffusion is a detector-level phenomenon that essentially involves 

photogenerated electrons which wander to an adjacent detector and are subsequently 

captured in its depletion region for read out. This results in a random number of electrons 

being detected in the “wrong” pixel, introducing a type of blurring effect.  An anecdotal 

illustration of this detector-level effect can be seen on the left side of Figure 14, where an 

electron is generated outside the depletion region of pixel #1 and subsequently diffuses over 

to pixel #2 for detection.  Of course, the ability of electrons to diffuse into adjacent pixels is 

principally driven by differences in the photon absorption length versus the depletion region 

depth of the detector.  As a consequence, diffusion tends to be a more dominant effect for 

detected wavelengths greater than 0.7 µm, with more significant impact in the infrared.  This 

can be observed on the right side of Figure 14, where the reduction in the diffusion MTF 

becomes substantial at wavelengths around 1000 nm.  The effects of carrier diffusion can be 

modeled through the following MTF expression: 
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where α is the wavelength-dependent absorption coefficient, Ldep is the detector depletion 

depth, Ldiff is the diffusion length associated with the photogenerated electron, and LK is 

defined by the equation below: 
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It should be noted that the carrier diffusion MTF described by the expressions above 

degrades considerably as the wavelength of the detected radiation increases.  Such a result 

occurs because longer wavelength photons have an increased probability of being absorbed 

outside the depletion region, thereby increasing their opportunity to diffuse into an adjacent 

detector element. 
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Figure 14: Depiction of the physical phenomenon involved in 

detector carrier diffusion and the spectral variation 
manifested by a typical carrier diffusion MTF. 

 

3.10  Image Motion 

Another image quality effect that must be captured in the modeling process entails the degree 

to which the image moves across the detector during the integration time Tint of the sensor.  

Experienced during a collection, this relative image displacement between the detector and 

the ground scene will introduce a blurring effect in the direction of the motion.  In general, 

image motion can be placed into two principal categories: linear smear and random jitter.  

These degradation effects will be characterized through individual MTF components as 

described in the sections that follow. 

3.10.1  Smear 

Image smear, one of the most prominent motion effects, tends to be linear in nature and 

involves line-of-sight (LOS) fluctuation at low frequencies compared to the integration time 

Tint.  Although one typically thinks about smear in the context of a scanning sensor, with 

along-scan and cross-scan components, it is certainly plausible to observe linear image 

motion or smear with a staring sensor utilized in a sparse aperture application as well.  In 

general, one will find the means for characterizing this motion for staring sensors is 

somewhat simpler than that typically encountered for scanning sensors, as one does not have 

to worry about stages of TDI or clock phases.  

 

Carrier Diffusion Diffusion MTF vs. Wavelength 
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For classic smear that follows the track of a ground point across the detector in a given 

integration period, the impulse response takes the functional form of a RECT with a base 

equivalent to the amount of smear or angular displacement traveled by the ground point.  The 

Fourier transform of this PSF results in the smear transfer function (MTFsmear) for simple 

linear LOS motion along a cardinal access defined by the velocity mismatch vector ∆V: 
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where ∆Vx is the velocity error in the x-direction appropriately scaled for focal plane 

coordinates and ∆Vy is the velocity error in the y-direction in similar units.  With the 

expression above, one finds that it is generally necessary to keep image smear to less than 

half- to quarter-pixel (0.50p-0.25p) for high-resolution remote sensing systems to avoid 

excessive image degradation.  This can be quite problematic for a sparse aperture system, as 

the long integration times required to achieve adequate signal due to the reduced fill factor of 

the pupil introduce very stressing stability requirements for the imaging platform. 

 

Figure 15 depicts how the ξ-axis MTF due to smear or linear motion (in red) varies as a 

function of the velocity error in the x-direction.  Obviously, smear only impacts the transfer 

function along the cardinal axis in the frequency plane corresponding with the direction of 

the linear motion in the space domain.  As observed in the figure, excessive linear motion 

ultimately results in negative amplitude in the transfer function, a phenomenon that induces 

phase reversal in detected imagery.  Once again, the figure includes a plot of a Nyquist-

sampled, filled circular aperture MTF for comparative purposes. 
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Figure 15: Variation of the smear MTF (in red) with target velocity mismatch 
relative to the imaging system over the integration period given Nyquist sampling. 

The MTF associated with a filled circular aperture is plotted for comparison. 
 

3.10.2  Jitter 

Another important physical motion parameter that must be considered in the modeling 

process entails imaging system jitter.  Jitter effectively consists of random, high frequency 

line-of-sight (LOS) fluctuations that, like linear smear, can be modeled through an 

appropriate MTF implementation.  It is typically induced by vibrations on the platform upon 

which the imaging sensor resides.  If one assumes that the platform jitter can be described by 

an isotropic random variable that abides by Gaussian statistics over the detector integration 

time Tint, the following jitter transfer function (MTFjitter) can be utilized to model the rapid 

LOS fluctuations: 
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(89) 

 
where σjit is the standard deviation of the observed random vibration profile in mrad.  It is 

fairly common practice to use an rms (1σ) value for modeling the jitter motion, which can be 

on the order of the angular displacement of linear motion or smear discussed in Section 
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3.10.1, depending on the quality of the platform stabilization approach and the nature of the 

collection (e.g, airborne versus spaceborne). 

 

Figure 16 illustrates the variation of the ξ-axis MTF due to jitter or random motion (in red) as 

a function of the standard deviation of the random displacement.  From this figure, it is 

apparent that random jitter constitutes a much more deleterious effect on image quality than 

linear motion for a given level of displacement over a detector subtense.  As a consequence, 

one ideally desires to keep jitter down to a level of a quarter- to a tenth-pixel (0.25p-0.10p) to 

avoid serious quality implications.  As before, a Nyquist-sampled, filled circular aperture 

MTF is also included in the diagram for comparison. 

 

 
 

Figure 16: Variation of the jitter MTF (in red) with the standard deviation of the 
random Gaussian distribution for high-frequency motion given Nyquist sampling. 

The MTF for a filled circular aperture is plotted for comparison. 
 

3.11  Atmospheric Turbulence 

The final MTF component investigated in this research effort involved characterizing 

atmospheric turbulence, which essentially entails random fluctuations in the refractive index 

of the atmosphere.  In general, turbulence arises as a result of random fluctuations in air 

pressure and temperature, causing small-scale modifications to the arrival angle of light 
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propagating through the medium.  These changes in the angle-of-arrival of the incident light 

ultimately manifest themselves in apparent image motion and blurring.  The impact of 

turbulence scales with altitude, with the most serious effect observed within a few meters of 

ground level.  In addition, turbulence tends to have a more dramatic effect on image quality 

when it resides closer to the entrance aperture of the imaging system.  Therefore, a down-

looking, remote sensing application from an overhead sensor tends to be less susceptible to 

atmospheric turbulence than an up-looking, imaging scenario with a ground-based observer.   

 

Obviously, the observed fluctuations due to turbulence are also highly dependent on 

atmospheric conditions, time of year, time of day, wind velocity, thermal convection, surface 

roughness, etc.  Given the highly dynamic, non-stationary, statistical nature of atmospheric 

turbulence, it is only reasonable to model this phenomenon on a macroscale level, utilizing a 

time-averaged approximation originally introduced by Fried (1966) and further developed by 

Goodman (1985).  Fortunately, for high-resolution remote sensing imaging system observing 

the earth under typical conditions, atmospheric turbulence tends to be a minor contributor to 

overall image quality so the top-level approximation and characterization through an average 

transfer function is entirely appropriate. 

 

For many remote sensing applications, the atmospheric turbulence can effectively be 

quantified through use of the refractive index structure constant 2
nC .  If one assumes 

turbulence can be modeled as a homogeneous random field obeying Kolmogorov statistics, 

its power spectral density can be shown to first order to be directly proportional to 2
nC .  

Accordingly, the refractive index structure constant is a good indicator of the relative 

strength of the fluctuations associated with the turbulence.  As a measure of turbulence, the 

structure constant scales with altitude above ground level, varies throughout the day/year, 

and tends to exhibit a slowly changing, near-maximum plateau around mid-day.  Although 

the structure constant is highly dynamic in accordance with the turbulent fluctuations it 

represents, several analytical expressions have been developed for vertical optical path 

lengths through a turbulent medium.  Goodman (1985) cites one such example of an 
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approximation proposed by Fried to model the refractive index structure constant [ ]hCn
2  as a 

function of height: 

 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛⋅= −

0

3
1

142 exp1
102.4

h
h

h
hCn  (90) 

 
where h is the altitude above ground level in meters and h0 = 3200 m.  For low altitude 

scenarios (e.g., less than 25 m), scientific measurements have indicated that the structure 

constant generally scales with 3
4−h  during the daytime, consistent with the following model 

attributed by Holst (1995) to Tatarski:  
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where 2

0nC  is the value of the refractive index structure constant at altitude h = 1m.  A variant 

of the Hufnagel-Valley model represents another analytical approximation for the refractive 

index structure constant that exhibits the 3
4−h  dependency alluded to above.  In this model, 

[ ]hCn
2  assumes the following analytical form: 
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where v is the rms wind speed in m/s across an altitude range of 5-20 km and h and 2

0nC have 

been previously defined. 

 

For comparative purposes, the three models introduced above are displayed in Figure 17, 

where 2
0nC  was arbitrarily selected to be 4.2⋅10-14 3

2

m−  and v defined as 20 m/s.  As 

anticipated, the relative strength of the turbulence, as reflected in the amplitude of 2
nC , 

decreases substantially as altitude increases.  This is a direct reflection of reduced 

temperature fluctuations at higher altitudes, a well established physical atmospheric 

phenomenon.  One will also observe that the Tatarski and Hufnagel-Valley models correlate 
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well at heights below 20 m, where the classic daytime 3
4−h  dependency has been observed in 

empirical measurements.  At higher altitudes of interest to airborne and spaceborne remote 

sensing scenarios, however, the Fried and Hufnagel-Valley expressions become more 

representative of measured 2
nC  values.  With respect to the latter, Fried’s formulation tends to 

be more conservative for a given initialization height, while the Hufnagel-Valley variant 

displays altitude variation structure consistent with time averages observed in empirical data.  

In the interest of completeness, both of these atmospheric models are supported in the proof-

of-concept digital model developed in conjunction with this research effort. 

 

 
 

Figure 17: Comparison of various models for the refractive index 
structure constant 2

nC  versus height for typical daytime conditions. 
 

In addition to the refractive index structure constant discussed above, another physical 

parameter used frequently to characterize atmospheric turbulence is the coherence diameter 

r0, originally introduced by Fried.  Fried and Goodman have shown numerically that r0 

provides a good measure of the coherence diameter of the atmosphere, whereby the 

resolution of a diffraction-limited imaging system under long exposure improves with 

aperture size until it roughly achieves r0, beyond which point the resolution is limited by the 

atmosphere and remains roughly constant.  For overhead remote sensing scenarios, one must 
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account for the spherical nature of propagated wavefronts, for which the coherence diameter 

assumes the following general form: 
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where R is the slant path to the target and vertical (nadir) viewing geometry has been 

assumed.  For oblique imaging scenarios, one must include several geometric terms to 

accommodate the target elevation angle (θ ).  For oblique path lengths, Holst defines the 

coherence diameter according to the following expression:    
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Given the r0 expressions identified above, one will observe that stronger turbulence (i.e., 

higher 2
nC ) generates a smaller coherence diameter.  In addition, since r0 is a dominant 

function of the refractive index structure constant, it also exhibits greater sensitivity to 

turbulence in close proximity to the entrance aperture. 

 

With the expressions for coherence diameter and refractive index structure constant 

developed above, Fried (1966) and Goodman (1985) identify closed-form, time-averaged 

expressions for an atmospheric turbulence transfer function.  Their development focuses on 

several different imaging conditions, including far-field versus near-field and long- versus 

short-exposure times.  Since this research effort emphasizes remote sensing applications, 

only far-field imaging conditions are of interest.  The appropriate expression for exposure is 

essentially driven by whether the integration times are long or short relative to the 

characteristic fluctuation time associated with the atmospheric turbulence.  Goodman 

suggests that integration times greater than ~10 msec correspond to long-exposure conditions 

while exposure times less than that enter the realm of short-exposure physics.  For far-field, 



 68

long-exposure imaging scenarios, Fried identifies the following expression for the 

atmospheric turbulence transfer function MTFatm: 
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where ρ is the radial spatial frequency component identified in equation 64.  For far-field, 

short-exposure conditions characterized by frame times considerably less than 10 msec, 

Goodman indicates that the atmospheric turbulence transfer function is given by the 

following expression: 
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where D is the diameter of the entrance pupil and α equals 0.5 for far-field imaging 

conditions.  From this expression, it is apparent that the long-exposure atmospheric MTF is 

simply a derivative of the short-exposure expression with α = 0. 

 

Figure 18 provides a comparison of the long- and short-exposure atmospheric transfer 

functions relative to a filled, circular MTF for the nominal collection scenario pursued in 

Chapter 4.  This figure clearly illustrates that the atmospheric turbulence transfer function is 

a minor contributor to overall image quality for the imaging conditions investigated in this 

effort.  Although many conventional remote sensing instruments capture frames in the short-

exposure regime, the longer integration period associated with the human eye effectively 

leads to observations that can be characterized as long-exposure in nature.  In addition, for 

the overhead imaging scenarios projected for this research, i.e., involving extended duration 

integration times with sparse aperture systems, the long-exposure equations for atmospheric 

turbulence are definitely relevant.  For completeness, however, both implementations are 

available within the digital model produced for this research effort.    
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Figure 18: Comparison of the average transfer functions for 
long- and short-exposure atmospheric turbulence 

versus the MTF of a filled circular aperture. 
 

3.12  System Transfer Function 

The component transfer function development detailed above highlights one advantage of 

evaluating the linear systems model described in Sections 3.1 and 3.2 in the frequency 

domain: individual system elements and physical effects generally have functional forms that 

lend themselves to analysis through appropriate modeling techniques.  The other unequivocal 

benefit to pursuing an MTF analysis approach is that the entire system can ultimately be 

characterized by simply multiplying the individual components together.  One should note 

that this is equally true for the parallel OTF evaluation, which will be considered equivalent 

to the MTF for the purposes of discussion, recognizing that it will in reality involve complex 

expressions.  In the spatial domain, one would tend to run into increased computational 

complexity, as individual system PSF components need to be convolved together.  Given the 

frequency domain approach, the final system transfer function (MTFsys) is formulated by 

cascading the individual MTF components per the following mathematical relation: 
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where N represents the total number of MTF components which characterize the imaging 

system.  From a strict mathematical sense, one should note that the multiplication of 

individual MTF components in such a manner is only appropriate for a truly linear imaging 

system and most sensors demonstrate some form of nonlinearity.  Fortunately, it has been 

demonstrated for most electronic imaging systems that such a cascading approach provides a 

reasonably accurate approximation to overall system performance.  Consequently, for the 

components developed previously, the total system MTF can essentially be expressed as: 
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where MTFap represents the modulus of the aberrated complex aperture OTF (or alternatively 

the diffraction-limited aperture MTF cascaded with the aberrated optics MTF) and the 

remaining terms have been previously defined.  Given the emphasis on spectral 

considerations for this research effort, one should take note that the aperture, carrier 

diffusion, and atmospheric turbulence MTFs are the principal components of the overall 

system MTF that actually exhibit a wavelength dependency.  In addition, for Nyquist-

sampled systems under typically benign imaging conditions (jitter, smear, atmosphere, etc.), 

the aperture transfer function tends to represent the dominant effect.  As a result, most 

attention will be placed on aberrated aperture transfer function since it alone will tend to have 

the sparse aperture-unique character of interest. 

3.13  Polychromatic MTF 

The discussion of the total system MTF appearing in Section 3.12 essentially focused on 

deriving a single wavelength-dependent realization that rigorously should be included within 

the integral of the governing equation 37, assuming an actual complex-valued aperture OTF 

is evaluated.  This would ensure that the spectral effects of a given collection scenario are 

properly captured in the signal equation during the integration process.  Since most 

evaluations of interest entail some broadband collection problem (e.g., panchromatic from 

0.4 to 0.8 µm), it is fairly common practice to derive a so-called “polychromatic MTF” that 

involves developing an average equivalent transfer function through an appropriate 
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weighting scheme.  The standard technique which is pursued involves computing the system 

MTF from equation 98 for many discrete wavelengths that span the collection passband and 

performing a weighted sum using some form of the incident source radiance Lsource(λ), the 

optics spectral transmittance τopt(λ), and the detector spectral quantum efficiency η(λ).  An 

analytical expression that captures the overall form of the polychromatic system MTF 

(MTFpoly[ξ,η]) as outlined above would be consistent with the following continuous relation: 
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where λmax and λmin represent the effective high and low cutoffs of the spectral passband.  By 

inspection of equation 17 for the source spectral radiance, it becomes immediately apparent 

that implementing this spectral weighting function over hundreds of wavelengths constitutes 

a rather significant computational burden.  To relieve some of the complexity, investigators 

tend to take advantage of the fact that the source radiance in the reflective regime of the 

electromagnetic spectrum is to first order principally driven by the direct reflected solar 

spectrum according to the following general proportionality: 

 
( ) ( ) ( ) ( ) ( )λρλτλτλλ 21exos,source EL ∝  (100) 

 

where Es,exo(λ) is the exoatmospheric solar irradiance, τ1(λ) is the atmospheric transmittance 

from the sun to the target, τ2(λ) is the transmittance from the target to the imaging sensor, 

and ρ(λ) is the target spectral reflectance.  If one approximates the scene radiance by the 

general proportionality established above, a greatly simplified expression for the 

polychromatic MTF can be utilized to capture some of the spectral character of the imaging 

system.  Given such an approximation, a discrete realization of the MTFpoly formulation in 

equation 99 can be performed to arrive at the following spectrally averaged system transfer 

function: 
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where M defines the number of discrete wavelengths that are spectrally averaged over the 

passband.  

 

The broadband MTF expression in equation 101 has seen routine use with some form of 

governing signal expression comparable to equation 42 to perform system-level simulations 

of various imaging platforms with resampled panchromatic (i.e., gray-body object) imagery.  

Fiete (2002) and Boucher (2000) have demonstrated that such an evaluation approach can be 

quite effective for evaluating the image quality associated with conventional apertures 

sensing broadband illumination.  The latter observation makes good intuitive sense since 

conventional apertures tend to exhibit radially smooth MTF structure at discrete wavelengths.  

In addition, for well designed and manufactured optics, conventional aperture systems tend to 

exhibit higher order aberrations due to polishing/figuring errors which lead to transfer 

functions with considerably less structure as a function of wavelength when compared to 

mis-phased sparse apertures with first-order piston, tip/tilt errors.  As a consequence of these 

considerations, the overall averaging effect of the broadband polychromatic MTF derived 

above typically represents a good approximation to the collection physics associated with 

conventional apertures.   

 

For this research effort, the principal question is whether the first-order imaging physics 

(e.g., gray-scale world assumption) previously verified for conventional panchromatic 

applications continue to hold for the highly structured, demodulated OTF and lower 

collection SNR associated with a typical sparse aperture imaging system.  For several visible 

wavelengths, Figure 19 illustrates the spectral variation of the diffraction-limited aperture 

MTFs for various sparse aperture configurations of interest.  As indicated in the figure, the 

MTF associated with a typical sparse aperture generally exhibits spatial frequency “ripples” 

whose positional location in the (ξ,η)-plane vary with wavelength.  This transfer function 

character, with alternating peaks and valleys located at different spatial frequencies as a 
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function of wavelength, becomes even more prominent when the sparse aperture pupil is 

dephased or aberrated.  This will ultimately lead to certain contrast accentuation and 

reduction for the spectral signal content at varying spatial frequencies.  Since the spectrally 

weighted broadband MTF approach tends to produce radially smeared versions of the single 

wavelength incoherent MTF, there is some concern that such an approach may not 

adequately capture the image quality implications of the actual spectral content one would 

expect in a real-world collection.  In addition, since the spatial frequency ripple is a real 

effect at individual wavelengths, one would anticipate that the traditional approach of image 

restoration through use of an averaged broadband OTF characterization would introduce 

spectral artifacts.  These issues have not been sufficiently addressed through past 

investigations and consequently form the principal thrust for this research effort. 

 

 

 
 (a) Annulus (b) Tri-arm (c) Golay-6 
 

Figure 19: Variation of the diffraction-limited aperture MTF with wavelength 
for several sparse aperture system configurations of interest. 
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3.14  System Noise 

Given the derivation of appropriate theoretical expressions for the object image intensity or 

signal (equation 37) and the associated system MTF or OTF (equation 98 with its unit 

components), the final key physical effect that must be addressed in the proposed linear 

systems model is image noise.  Clearly, one can develop a long laundry list of noise sources 

that can be contributors in a remote sensing application.  This theoretical development will 

focus on the more prominent system noise sources.  In general, one can quantify noise as the 

standard deviation (σ) of a random variable that quantifies the uncertainty associated with the 

signal level arising from a given scene.  If individual noise components are statistically 

independent, which will be assumed for the purposes of this model, they will effectively add 

in quadrature to form an expression for the total noise σtot according to the following 

formulation:  
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where the N independent noise components of interest have been identified as target photon 

noise (σphot), background photon noise (σbgnd), dark current shot noise (σdc), quantization 

noise (σquan), signal chain electronics noise (σelec), and traditional detector readout noise 

(σread).  One typically finds that the total standard deviation of the signal or system noise σtot 

is expressed in terms of rms electrons.  With this convention, one must apply the same series 

of conversion and gain factors utilized with the object signal in equation 30 to derive a final 

expression for the total noise ntot in digital image counts.  This ultimately results in the 

following spatial domain expression for quantized image noise: 
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where K is a proportionality factor that captures the conversion and gain process from the 

FPA through the A/D Converter, including any resident signal chain effects. 
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3.14.1  Photon Noise 

For imaging scenarios that are characterized by high signal count, one finds that photon (or 

shot) noise is the predominant noise effect.  In general, this so-called photon noise arises due 

to random fluctuations in the incident photon arrival rate.  In addition, it tends to exhibit a 

distribution consistent with Poisson statistics, whereby the variance of the signal is equal to 

its mean.  As a result of the Poisson distribution, one finds that the total photon noise total
photonσ  

can simply be computed by taking the square root of the total signal Ssig in electrons as 

observed in the following relation: 

 
( ) ( ) 2/12/1

sigbgndtarget
total
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where Ssig is broken up into target (Starget) and background (Sbgnd) signal components 

consistent with equation 20.  When the photon arrival rate is large enough, one finds that the 

Poisson distribution essentially takes on the familiar form of a Gaussian, allowing one to 

model the noise through appropriate zero-mean, unit variance normal distributions.  Given 

the list of noise contributors in equation 102 and the basic photon noise expression above, 

one can develop the following relation for the photon noise associated with only the target 

signal:   
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where the target signal is governed by a similar expression as the total signal found in 

equation 28.  Thus, the target signal in the photon noise expression above takes the following 

form: 
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where the source radiance term Ltarget is due to the target alone.  In a similar fashion, one can 

separately define the photon noise due to the background signal content according to the 

following expression: 
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( ) 2/1

bgndbgnd S=σ  (107) 

  
where the background source radiance is inserted into the signal equation integral found 

above.  The reason for introducing the two separate photon noise components will become 

apparent later during the discussion of SNR, where one needs to separately itemize the signal 

due to the target and the total signal contributing to the noise in order to effect an accurate 

calculation. 

3.14.2  Dark Current 

The next noise contributor of interest involves detector dark current, a so-called fixed pattern 

noise source that shows spatial variability from detector to detector.  Resulting from defects 

in the crystalline structure of a detector, dark current essentially manifests itself in the way of 

thermal generation of electrons which are subsequently captured in the detector depletion 

region and read out.  In general, one typically observes that the dark current offset increases 

with the detector integration time Tint and is characterized by Lomheim (2002) according to 

the following general expression for silicon-based, visible detectors: 
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where Rdc represents the effective dark current generation rate, Jdc[T] is the classic 

temperature-dependent dark current density (typically in nA/cm2), Tref is the dark current 

reference temperature, Td is the temperature increment over which the dark current doubles, 

Adet is the area of the detector, q is an electronic charge, and nTDI defines the number of TDI 

stages (unity for a staring sensor).  For photodiode-based, infrared detectors, Lomheim 

indicates the dark current can be modeled through a set of two noise components, one 

capturing the effects of thermal noise (σdc,therm) and the other one modeling the 1/f noise 

(σdc,1/f).  Given this convention, the following noise terms can be developed for the dark 

current offset associated with a typical infrared detection device: 
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where R0A is the photodiode resistance-area product, α is the Tobin coefficient, k is 

Boltzmann’s constant, T is the detector temperature, Vb is the detector voltage bias, and Trecal 

is the time period from the last dark current offset calibration effort. 

3.14.3  Read and Signal Chain Noise 

There are several system noise sources that become prominent in low signal collection 

regimes and are present even when no radiation is incident on the detector. These sources 

include detector readout noise and signal (processing) chain noise, which essentially are 

borne by electronic noise effects that are typically measured within the voltage domain (e.g., 

detector voltage swings).  Given such a test measurement, one can invert the noise factors 

into rms electrons by applying the appropriate conversion and gain factors introduced earlier.  

For instance, Lomheim (2002) formally expresses the read noise in rms electrons via the 

following relation: 
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where σvolt,read is the detector readout voltage noise and is generally driven by the dual effects 

of readout unit cell and amplifier noise components.  For the analog signal processing chain 

noise, Lomheim identifies the following general expression: 
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where σvolt,sc represents the signal chain output noise.  One should note that both of the noise 

sources identified above tend to be relatively constant over a given imaging scenario, 

essentially introducing a bias term in rms electrons to the total noise count. 

3.14.4  Quantization Noise 

The final source to be considered in this discussion involves quantization noise due to pixel 

digitization within the A/D Converter.  This noise effectively arises due to the fact that a 

continuous input signal from the scene is quantized into discrete digital bins, creating 

uncertainty in the target signal level actually detected.  In other words, quantization noise 

surfaces as a result of the A/D digitizing a range of different signal levels into the same 

binary digit value.  From information theory, it is known that the standard deviation of a 

uniform distribution is simply 121 .  Thus, if one assumes the quantization is uniformly 

distributed, Lomheim (2002) shows that quantization noise in rms electrons can be expressed 

through the following equation: 
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where SADC is the A/D Converter input voltage range, Gconv is the conversion gain, Gelec 

prescribes the electronic voltage gain in the analog signal chain, n represents the number of 

binary digits associated with the A/D Converter and QSE is the quantum step equivalence or 

effective bin size of the quantization scheme in rms electrons per count. 

3.14.5  Total Noise 

With all the prominent system noise sources identified above, one can now utilize equation 

102 to derive an appropriate expression for the total noise given a particular imaging 

scenario.  Of course, one would anticipate that the noise profile would vary spatially within 

the image according to the various random processes and physical phenomena present in the 

collection.  In addition, the total noise expressed in rms electrons must undergo the same 

conversion, gain and quantization processes that the target signal encountered, with proper 

adjustments for where in the image chain the noise is actually introduced.  As could probably 
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be detected during their individual development, this adjustment has already been effectively 

accomplished in the noise terms defined above.  Consequently, one needs to make use of 

statistical probability density functions to model the randomness associated with the various 

noise components cited above and combine the results with the appropriate scale factor to 

derive a two-dimensional functional profile of the total noise ntot[x,y] in digital image counts. 

 

Jain (1989) has suggested that it is appropriate to model the two-dimensional noise profile 

associated with image formation according to the following general expression given the 

nomenclature introduced in this dissertation: 
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where n[x,y] is the total noise in rms electrons, P{⋅} is an operator that represents a Poisson 

noise distribution consistent with total photon noise, and the ni[x,y] are statistically 

independent, additive Gaussian white noise sources with zero-mean and unit-variance.  

Again making appropriate modifications for the nomenclature used in this theory section, 

Fienup (2000) introduces a similar modeling approximation for the total noise associated 

with an imaging system:  
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whereby the photon noise is defined as the square root of the convolution of the total object 

signal fobj[x,y] with the system PSF h [x,y] and distributed according to Gaussian statistics.  

As in the previous equation, all of the noise sources are assumed to abide by a normal 

distribution ni[x,y] with zero mean and unit variance.  In the Fourier domain, the noise 

spectrum associated with equation 115 is simply: 
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where the Ni[ξ,η] represent the frequency spectra of the individual noise source Gaussian 

distributions.  Fienup indicates that all of the noise terms in the expression above are 

uniformly distributed in the frequency domain for extended remote sensed scenes, allowing 

one to develop the following analytical expression for the total noise spectrum including the 

gain, conversion, and quantization proportionality factor:  
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where the noise is seen to be independent of spatial frequency by this modeling convention. 

3.14.6  Signal-to-Noise Ratio 

With appropriate expressions now developed for the signal and noise components of any 

remote sensing problem, including the one addressed by sparse aperture collection platforms, 

one may now investigate the general character of system signal-to-noise ratio (SNR).  

Numerous papers appear in the literature and a number of different conventions have been 

proposed to address this fundamental topic area.  This section will only summarize the 

development presented by Fiete (2001), as it essentially captures the essence of critical 

features of system SNR for general remote sensing applications. 

 

At a top level, one can obviously define the output signal-to-noise associated with a pixel 

(SNRpix) to be the ratio of the mean detected electrons from the target (Starget) expressed in 

equation 106 to the standard deviation of the detected signal (i.e., total noise σtot) found in 

equation 102.  This results in the following general expression for the pixel-level output SNR 

in the image domain: 
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where all the quantities in the expression have been defined in previous sections.  Although 

conventionally used to determine system SNR, the expression above does have some 

shortcomings, as it fails to address the general spatial frequency content of the image and the 
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action of the imaging system (i.e., system OTF).  This introduces the concept of computing 

the output SNR as a function of spatial frequencies in order to account for these issues.  

Assuming one observes statistically independent, additive white noise and a real-valued OTF 

for the imaging system, the following expression for the detected signal spectrum in the 

frequency domain can be developed: 
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where the first term defines the conversion factor from electrons to counts, Starget is the target 

signal in electrons per equation 106, and Fobj[ξ,η] represents the target spectrum.  In this 

development, equation 117 can essentially be used to define the corresponding noise 

spectrum term N[ξ,η] required for the spatial-frequency SNR computation.  With the 

individual signal and noise spectra separately identified through the expressions explored 

above, Fiete (2001) derives an analytical expression for the output SNR in the frequency 

domain (SNRout[ξ,η]) that would take the following form given the nomenclature introduced 

in this dissertation: 
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This expression for the output SNR spectrum provides a functional form for evaluating how 

SNR varies as a function of spatial frequency under the assumption of uncorrelated, white 

noise.  Additional image-based SNR metrics utilized to evaluate the simulated imagery 

products generated for this research effort appear in Section 4.12. 
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3.15  Image Restoration 

With a foundation now established for the basic image formation theory and modeling 

process, the next significant area that needs to be addressed involves image restoration.  

Based on the discussion in Sections 3.5 and 3.6, it is readily apparent that sparse aperture 

systems will generally produce imagery that displays significantly reduced contrast or 

sharpness compared to the equivalent conventional aperture system due to OTF or PSF 

effects.  In order to recover some of this lost image quality, one typically applies an 

appropriate filtering technique to boost the reduced modulation in the MTF while 

accommodating the resulting system noise gain.  This is the classic task of image restoration, 

which at a top level attempts to reconstruct an estimate of the original object from degraded 

imagery through use of a-priori knowledge (e.g., system MTF).  Image restoration typically 

involves two separate mechanisms, one that deals with image sharpening (or deblurring) and 

one that targets system noise reduction.  This section will introduce the classic restoration 

methodology (Wiener-Helstrom filter) that appears to be the basis for most of the previous 

research effort investigating sparse aperture system quality.  It will then develop some of the 

theory associated with alternative restoration techniques that entail spatially varying (or 

adaptive) filtering techniques.  Addressing the potential image quality improvement one can 

acquire through the latter techniques is a major goal of this research effort. 

 
The conventional Wiener-Helstrom filter (commonly referred to as just the “Wiener filter”) 

represents a classic image restoration approach, since it simultaneously attempts to address 

image blurring mechanisms and the statistical nature of the system noise.  The fundamental 

method is founded on deriving an estimate [ ]yxf ,ˆ
obj  of the original spatial-domain object 

image fobj[x,y] by minimizing the mean-square error (MSE) between the two.  In this 

context, the filter can be developed from first principles via the following optimization 

system equation: 

 

[ ] [ ]( )
⎭
⎬
⎫

⎩
⎨
⎧ −==

2
objobj

2 ,ˆ,min min MSEmin yxfyxfEe  (121) 

 



 83

where “min” represents the mathematical operation of minimization and E{⋅} defines the 

expected value of the term in the brackets.  In order to perform the derivation, one must 

assume that the noise is an additive, statistically independent process with zero mean and that 

the reconstructed object image is linearly related to the degraded detected output image.  

These assumptions are consistent with the original linear systems model proposed in equation 

15, where the frequency spectrum of the degraded output image Gincoh[ξ,η] is expressed by:  

 
[ ] [ ] [ ] [ ]ηξηξηξηξ ,,,, objincoh NFG +⋅= H  (122) 

 
Such that Fobj[ξ,η] represents the frequency spectrum of the original object, H [ξ,η] is the 

system OTF, and N[ξ,η] constitutes the total noise spectrum.  In the general modeling 

process described previously, all of these terms have been described in order to develop an 

expression for the detected output image prediction.  Unfortunately, in a real-world imaging 

scenario, the object spectrum is generally not known a-priori and the noise spectrum is by its 

nature a random variable.  Therefore, one must assume the former quantities are effectively 

unknowns that must be accommodated in the overall restoration process.   In equation 122, 

one should note that the frequency spectrum of the output signal in the absence of noise can 

be separated from the general expression: 
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which essentially defines the blurring mechanism that is present during image formation and 

is assumed by definition to be uncorrelated with the additive noise process.  Given the 

imaging system convention defined above, one can show that the frequency-domain filter 

that minimizes MSE takes the following general form: 
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where the so-called Wiener filter W[ξ,η] has both an inverse filter deblurring component 

represented by the inverse system OTF (H [ξ,η]) term and a noise reduction component 
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consisting of terms for the output signal and noise power spectra.  If one substitutes equation 

123 into equation 124, the following alternative form of the Wiener filter implementation is 

obtained: 
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where terms are introduced for the power spectrum of the original undegraded object 

[ ]2
,ηξobjF and the power spectrum of the noise [ ]2,ηξN .  Finally, by rearranging the terms 

in equation 125, Gonzalez and Woods (2002) develop the following convention for the 

Wiener filter in the frequency domain: 
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where Sf[ξ,η] represents the object image power spectrum and  Sn[ξ,η] is the corresponding 

noise power spectrum.  One should take note that the ratio of noise power spectrum to object 

power spectrum provides the essential mechanism for the filter to avoid “blowing up” in the 

presence of noise, a common malady of the simple inverse filter which addresses image 

deblurring alone. 

 

Under the modeling theory developed above for the remote sensing problem, the noise 

spectrum was considered to be spectrally white in nature, so Sn[ξ,η] can be considered a 

constant for this application.  Unfortunately, the power spectrum of the original object image 

is seldom known a-priori, clearly will manifest some spatial frequency dependency, and is 

generally difficult to estimate from the degraded output image.  In order to deal with this 

dilemma, most investigators simply treat the ratio of noise-to-object power spectra as a 

constant σK
2.  With such an implementation, the reconstructed image estimate in the 
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frequency domain [ ]ηξ ,ˆobjF  is acquired through application of the Wiener filter according to 

the following general expression: 
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where σK

2 is treated as a knob that is tweaked through psychoanalytical sensitivity studies 

that attempt to ascertain when the human perception system determines the optimum image 

quality is achieved. 

 

Despite the obvious limitations associated with determining the individual constituents 

within the filter, the overall Wiener restoration technique has proven to be very effective in 

restoring the quality of highly degraded imagery products, properly balancing the need to 

boost the MTF for increased sharpness without unduly boosting the noise to an unacceptable 

level.  Figure 20 graphically illustrates why the Wiener filter tends to be the optimal 

restoration technique, at least from a mean-square error perspective across the entire image.  

In Figure 20(a), a typical real-valued optical transfer function is depicted, demonstrating the 

traditional modulation roll-off to the optical cutoff frequency ρco one will observe with any 

electro-optical imaging system.  Based on equations 1 and 3, one could in theory exactly 

recover the original object from the detected image spectrum in the absence of noise by 

applying such an inverse filter.  Of course, digitally one would have to apply a boost 

threshold to ensure the inverse filter did not become undefined as the result of zeros in the 

system transfer function used in the denominator to develop it.  This gives rise to the 

practical pseudo-inverse filter implementation (in green) illustrated in Figure 20(b), which 

avoids the infinite boosting associated with the functional inverse filter (in red) for spatial 

frequencies beyond the optical cutoff.  In the absence of noise, one can establish a reasonably 

high boost threshold with near-zero values from the system transfer function included in the 

restoration filter.  Therefore, in the absence of noise, one can almost exactly recover the 

original object if the system transfer function is precisely known.  Unfortunately, real-world 

imaging systems suffer degradation due to image noise power, which the inverse filter 

significantly over-boosts for any reasonable level of potential sharpening.  As observed in 
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Figure 20(c), the Wiener filter balances the competing requirements for sharpening and noise 

reduction through inclusion of the noise-to-object power spectrum term.  This filter enables a 

tailored reduction of the boost of high spatial-frequency content and thereby marginalizes on 

a mean-square error basis the amount of destructive, high-frequency noise boost that occurs 

through the restoration process relative to other filter implementations. 

 

 
 (a) Transfer Function (b) Inverse Filter (c) Wiener Filter 

 
Figure 20: Typical optical system transfer function and the frequency response 

characteristics of derived filters utilized in post-processing to restore image quality. 
 

3.16  Sparse Aperture System Issues 

The final theoretical section contained in this dissertation addresses some of the system 

issues that are unique to a sparse aperture imaging system and have not yet been covered in a 

previous discussion.  These miscellaneous topic areas include description of the effective 

collection aperture diameter (a hotly disputed topic), the determination of system fill factor, 

and finally the impact of fill factor on the system collection time required to achieve 

adequate SNR.  These general topics areas will receive summary attention in the 

development contained below.  One is encouraged to consult the references at the back of 

this dissertation if further detail is desired. 

 

3.16.1  Effective Collection Aperture 

One of the principal design issues associated with sparse aperture systems is how large to 

size the physical dimensions of the overall optical system in order to achieve image quality 

that is commensurate with comparable conventional apertures.  In effect, this amounts to 
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determining the effective aperture diameter of the sparse aperture system, which is 

comparable to identifying the equivalent filled aperture diameter that achieves similar image 

quality as the synthesized sparse aperture.  The reason this issue has been so hotly contested 

within the community is effectively highlighted by the sparse aperture OTF discussion in 

Section 3.5.  In this section, it was pointed out that the tri-arm system OTF exhibits a cutoff 

frequency that is considerably reduced from that anticipated by the physical encircled 

diameter of the overall exit pupil.  This can be readily observed in Figure 21, where the 

aperture MTF for a tri-arm system configuration is depicted along with various equivalent 

aperture diameter figures of merit.  This figure clearly illustrates that identifying the 

encircled diameter as the effective aperture size is overly optimistic.  As a consequence, one 

would be overstating the performance of the system if the encircled diameter were chosen, 

since it would imply the system could collect spatial frequencies beyond its inherent 

capabilities.  Similarly, if one identified the effective aperture to be consistent with that 

which supported the maximum cutoff frequency of the tri-arm sparse aperture system, the 

performance would again be overstated due to the radial reduction in the OTF cutoff 

frequency at various clocking angles around the spatial-frequency plane.  On the other hand, 

selecting the minimum spatial frequency to define the effective diameter greatly understates 

the available performance, as such a convention completely ignores higher spatial frequency 

content actually supported by the tri-arm system OTF.  These considerations have 

precipitated a fair amount of debate within the community as to the appropriate metric for 

identifying the effective diameter associated with a given sparse aperture configuration. 
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Figure 21: Representative tri-arm aperture MTF depicting various techniques for 
evaluating the effective diameter of a sparse aperture system. 

 

As a result of this dilemma, Boucher (2000) and Fiete (2002) have identified a means for 

evaluating the effective diameter (Deff) of a sparse aperture system that entails finding the 

equivalent filled aperture that manifests the same spatial frequency support (or area).  This 

Deff measure can be computed by evaluating the equivalent MTF area through use of a zero-

one function derived from the autocorrelation of the MTF as in the following expression: 
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where the operative function in parentheses assumes a value of one when the autocorrelation 

is nonzero and a value of zero otherwise.  From Figure 21, it is clear that such a figure of 

merit for the effective collection aperture size does represent a reasonable compromise 

between the minimum and maximum cutoff frequencies.  Acceptance of such a general 

formulation is certainly not universal, however, and even Fiete has used alternative 
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conventions (e.g., geometric mean of the minimum and maximum cutoff frequencies) due to 

the apparent lack of consensus amongst interested investigators. 

3.16.2  Fill Factor 

The degree of sparseness associated with a given optical system represents another classic 

design parameter for differentiating between sparse aperture configurations.  This figure of 

merit is typically quantified in terms of the system fill factor Ffill, which is defined according 

to the following relationship: 

 

area pupil aperture filled equivalent
area pupil aperture sparse

fill =F  (129) 

 
Some parties like to distinguish between what is occasionally referred to as dilute apertures 

(with fill factors greater than ~10% but considerably less than the conventional 80%) and 

sparse apertures (with fill factors below 10%).  For the purposes of analysis, this research 

effort will not differentiate between sparse and dilute apertures, as all systems that exhibit 

some form of reduced fill factor will be categorized as sparse aperture imaging systems of 

interest. 

 

The following discussion will summarize the general formulation for the fill factor associated 

with several standard sparse aperture system configurations of interest: the annulus, Golay-6 

and tri-arm.  For the annulus “ring aperture” design introduced in Figure 3, the fill factor 

(Fannul) is identified through the following expression: 
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where Dobs is the diameter of the central hole and D is the physical diameter of the exit pupil.  

One should note that even conventional apertures manifest a fill factor, and the expression 

above is consistent with the optical throughput factor typically associated with a 

Cassegrainian system given a linear central obscuration Dobs due to the secondary mirror.  

Accordingly, the classic Cassegrainian aperture is essentially an annulus with a high fill 
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factor, typically greater than ~80%.  Also introduced in Figure 3, the Golay-6 non-redundant 

array of subapertures is characterized by a fill factor (FGolay) of the following form: 
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where Dsub is the diameter of the subapertures, Dsub,obs is the central obscuration associated 

with the subapertures assuming a multiple-telescope configuration, and Denc is the diameter 

of an equivalent filled aperture that physically encircles the synthesized sparse aperture.  

Given such a formulation, the maximum fill factor that a Golay-6 configuration can exhibit is 

36.5%, which also assumes no central obscuration in the physically touching subapertures.  

The final sparse aperture system of interest in this study effort involves the tri-arm design, 

which essentially consists of an array of subapertures configured in a “Y” layout as depicted 

in Figure 3.  For this sparse aperture design, assuming no central telescope in the “Y”, the fill 

factor (Ftri-arm) assumes the following form: 
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where nsub identifies the number of circular subapertures in an individual arm of the “Y” 

configuration and the remaining terms have been previously defined.  For the tri-arm system 

depicted in Figure 3, there are three apertures on each arm (i.e., nsub =3) and no central 

subaperture, so the maximum fill factor that can be supported is ~18.4% assuming the 

subapertures are in physical contact and have no central obscuration.  Besides the obvious 

design tradeoffs in weight, volume and OTF performance, one of the primary reasons the fill 

factor is such a critical design parameter will be highlighted in the next section. 

3.16.3  Integration Time vs. Fill Factor 

Naturally, it is quite intuitive that one loses signal photons as the fill factor of a sparse 

aperture imaging system is reduced. This will ultimately lead to poorer image quality if one 

does not take appropriate action to counter the loss in output SNR.  For electro-optical 

systems, one can attempt to improve the overall collection efficiency of the imaging device 
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but the real lever for counteracting reduction in fill factor will be increased integration time 

Tint.  This can be seen in the following expression for the total number of detected photons 

Ptarget (or equivalent rms electrons) acquired from a target source of interest: 

 
inteffoptefffillphottarget

2
target TAFSMP ητΦ==  (133) 

 
where the target signal Starget is distributed across an M x M digital image and Φphot is the 

incident target photon arrival rate, Ffill is the fill factor, Aeff is the effective or equivalent 

filled aperture area, τopt is the optical transmittance, ηeff is the detector quantum efficiency, 

and Tint is the sensor integration time.  Although one would initially be inclined to think that 

the integration time should be increased by a factor of 1/Ffill to counter a reduction in the fill 

factor based on the expression above, Fienup (2000) has demonstrated that this is not the case 

for sparse aperture systems.  To demonstrate the relationship between fill factor and 

integration time, Fienup develops an appropriate expression for system output SNR that 

unfolds along the lines of the following discussion. 

 

First, one should recall that the target signal is accompanied by an appropriate background 

signal Sbgnd consistent with equation 20.  The form of this background signal, which is largely 

dominated by path radiance, is very similar to that expressed for the target signal, as seen in 

the following general relation: 

 
inteffoptefffillbgndphot,bgnd

2
bgnd TAFSMP ητΦ==  (134) 

 
where Φphot,bgnd is the incident background photon arrival rate that is detected in an M x M 

digital image.  In addition to the two signal terms identified above, Fienup also indicates that 

sparse aperture systems typically have an MTF structure that is directly proportional to the 

fill factor over an extensive, flat plateau region.  This MTF characteristic generally exists 

over the middle spatial frequencies (ξmid,ηmid), allowing one to write the following 

approximation to the MTF: 

 
[ ] fillapmidmid ,MTF FK≅ηξ  (135) 

 



 92

where Kap is a constant that varies with aperture type. 

 

Similar to the functional form of the output SNR spectrum developed by Fiete (2001) in 

equation 120, Fienup (2000) develops a form of the output SNR in the frequency domain by 

determining the ratio of the mean number of total target photons (or conversely rms 

electrons) in an M x M digital object image to the total image noise.  In this development, the 

following general relationship is established for the Fourier domain output SNR associated 

with a finite digital image: 
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where one should note that Fienup’s original expression has been modified to reflect the 

nomenclature and standard unit conventions present in this theory section.  Given the general 

scaling relationships established above, one can make the appropriate substitutions for Ptarget, 

Sbgnd and mid-frequency MTF in the expression for SNRout found in equation 136 to arrive at 

the following output SNR spectrum formulation for sparse aperture remote sensing 

applications: 
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which ultimately establishes the relationship between the fill factor and integration time as a 

principal function of the mid spatial-frequency output SNR, target object normalized 

frequency spectrum and incident photon arrival rates.  If a threshold SNR is established for 

the lowest acceptable image quality, one can subsequently solve this equation for the 

integration time, resulting in a rather complicated quadratic expression in Ffill and the 

remaining terms.  Instead of explicitly solving this quadratic expression, Fienup explores its 

general character in terms of its individual noise components, including photon noise, read 
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noise and dark current.  For the case of photon noise only, Fienup derives the following 

expression for the integration time: 
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where one observes that sparse aperture imaging scenarios that are photon-noise limited (e.g., 

high SNRout collections) will exhibit integration times that are proportional to the cube of the 

inverse fill factor.   

 

The so-called “fill factor cubed law” introduced by Fienup through equation 138 has 

significant system implications, as it implies that for a given SNRthresh acceptable for a filled 

aperture image, one must increase the integration time 1000x for the equivalent sized sparse 

aperture with a fill factor of 10%.  Such integration times put severe requirements on 

maintaining imaging platform stability and overall optical system phasing in order to ensure 

adequate image quality.  For the other noise constituents, Fienup determined that the read 

noise drives an inverse square relationship to the fill factor and the dark current abides by an 

inverse fourth power of the fill factor.  In this derivation, one should note that the fill factor 

relationships were driven by two essentially different phenomena: the loss of signal photons 

and the reduction in MTF.  These two factors ultimately combine to require increased 

integration time over what intuition alone would suggest.  Fiete (2002) subsequently 

demonstrated through a series of psycho-physical image quality studies that the integration 

time generally varied between 1/ Ffill
2 and 1/ Ffill

3 depending on the sparse aperture system 

and the particular simulation performed, essentially confirming the general integrity of 

Fienup’s analytical results as cited above.  As a result, it is clear that the sparse aperture 

system fill factor is a critical design parameter for remote sensing applications. 

 

As a final note on the output SNR discussion developed above, one should again remember 

that the traditional analyses have been performed assuming a gray world.  As mentioned 

previously, this has enabled high resolution aerial panchromatic imagery to be utilized in the 

past for the purposes of modeling and simulation, resulting in high fidelity predictions for 

conventional aperture types.  Given its heritage, pursuit of a similar approach in the sparse 
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aperture arena constituted a natural progression for the modeling community.  Unfortunately, 

sparse aperture configurations tend to manifest system characteristics that are relatively 

unique compared to more conventional optical systems.  For instance, the spectral-spatial 

structure inherent in a typical sparse aperture system OTF is likely to introduce color artifacts 

that typically are not encountered with traditional apertures and will ultimately diminish 

image quality.  The fundamental question at hand is whether these anticipated spectral 

artifacts are significant enough that some of the previously derived physical “rules of thumb” 

need to be revisited and/or alternative collection/processing techniques pursued to 

accommodate them.  It is the objective of this research endeavor to provide the initial hooks 

for evaluating the spectral implications associated with a sparse aperture system, thereby 

paving the way for future investigation if the spectral issues are significant enough to merit 

further attention.  
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Chapter 4  

Approach 

With the basic theoretical development introduced previously, this chapter lays out the 

fundamental approach that was pursued to accomplish the dissertation objectives enumerated 

in Chapter 2.  In that vein, Section 4.1 provides a brief summary of the satisfaction of 

phenomenological and theoretical requirements through the previously discussed imaging 

mathematics.  Section 4.2 subsequently provides a top-level overview of the proof-of-

concept modeling process developed in conjunction with this research effort, the critical 

piece needed to satisfy the remaining dissertation requirements.  The rest of this chapter is 

then dedicated to detailing specific aspects of the general modeling approach.  As part of that 

discussion, a nominal imagery collection scenario is defined for the exploration of unique 

sparse aperture spectral quality issues found later in Chapter 5.   Given this nominal scenario, 

Section 4.3 identifies how the actual imagery collection geometry was determined for the 

proof-of-concept modeling effort.  Sections 4.4 and 4.5 identify the general approach utilized 

to define the spectral radiance reaching the optical system entrance pupil, appropriately 

accounting for scene spectral radiometry as well as atmospheric propagation and losses.  

Following scene characterization, the specification of imagery collection system 

characteristics, including pupil configuration, system transfer function, impulse response, and 

optical aberrations, are discussed in Section 4.6.  Except for addressing the system noise 

implementation, which is introduced as a pre-cursor to the restoration process below, the 

approach for modeling key components of the collection process is accordingly captured in 

the initial sections of this chapter. 

 

With the foundation described above, the remaining part of the chapter is more or less 

dedicated to addressing various system-level evaluations pursued in this research effort, with 

emphasis on detected and restored imagery products.  Given the described collection 

phenomenology on a wavelength-by-wavelength basis, Section 4.7 discusses the nature of 

the quasi-monochromatic imagery evaluation that preceded the integrated signal 

implementation.  Following that discussion, the approach for evaluating the actual integrated 
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detected signal across the passband of the sensor is described in Section 4.8.  To this point, 

the discussed approach has only considered object signal content; no system noise 

component has yet been introduced.  Section 4.9 rectifies that situation by describing the 

noise model that is incorporated into the modeling process.  With a noisy, integrated signal in 

hand, Section 4.10 discusses the various Wiener restoration approaches pursued to restore the 

detected imagery predictions for the optical configurations under investigation.  This is 

followed in Section 4.11 by a summarization of the initial studies performed to compare the 

spectrally based imagery products developed through this dissertation effort with the more 

traditional approach based on resampling gray-scale imagery.  As a result, this section 

ultimately introduces the crux of the research effort in determining whether sparse aperture 

optical systems exhibit unique attributes that drive the need to address higher spectral fidelity 

in performing image simulations.  Finally, Section 4.12 develops the mathematical theory 

behind the various evaluative metrics utilized in this effort in an attempt to quantify the 

observed quality considerations. 

4.1  Theoretical Development 

As alluded to above, the discussion in the previous chapter effectively addresses the 

theoretical and phenomenological development requirements for modeling the key spectral 

issues associated with sparse aperture remote sensing collection systems.  As indicated in that 

chapter, the basic foundation for the developed theoretical approach is the general linear 

systems model for incoherent imaging platforms formulated through equations 8 and 15. 

Given these fundamental governing relations, analytical terms were developed to capture the 

major constituents of the detected imagery physics, including but not limited to the object 

spectral signature, optical system pupil function and associated phase errors, aberrated 

system optical transfer function, and spectrally diverse image noise.  In addition, the theory 

associated with standard image restoration techniques was also introduced, with heavy 

emphasis on the developed Wiener-Helstrom filtering methodology investigated through this 

research effort.  To support evaluation efforts, additional analytical development of certain 

imagery metrics will be provided in Section 4.12 of this chapter.  As a consequence of the 

overall theoretical effort outlined here, a basic end-to-end system construct has been 

introduced that captures the first-principles physics required to address fundamental spectral 
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considerations in generic sparse aperture system configurations.  Areas that will receive some 

additional attention in future discussion stemming from the acquired research results include 

implications of modeling spectrally variant pupil phase errors, polychromatic optical transfer 

functions, polychromatic versus gray-world object scene content, and system transfer 

knowledge in the restoration process.  With the basic theoretical building blocks established, 

the emphasis of the remaining approach section will be targeted on describing the various 

components of the proof-of-concept sparse aperture imaging model developed for this 

research effort  

4.2  Modeling Approach 

Given the end-to-end system modeling construct detailed in Chapter 3, this section will 

describe the proof-of-concept modeling effort that implemented the theoretical development 

in a first-principles approach.  As stated previously, the objective of this engineering 

simulation effort was to demonstrate the feasibility of the proposed approach and to pursue 

general modeling results in an attempt to gain physical insight into the spectral implications 

unique to sparse aperture collection systems.  The intent was not to develop an integrated, 

user friendly product for widespread use.  The overall approach and general modeling 

capabilities that were developed for this engineering model are discussed below. 

 

4.2.1 Modeling Overview 
 
As indicated in previous discussion, the principal underlying assumption for this research 

effort is that one can identify regions in the detected object scene, referred to as isoplanatic 

patches, at given field angles where the imaging physics can to first order be approximated as 

linear, shift-invariant.  This isoplanatic assumption is fundamental to the overall applicability 

of the general linear systems model developed in the previous chapter.  Given this 

assumption, the research model implementation entailed various simulation components, 

some of which existed in detailed physical models with years of heritage and others which 

required development of prototypical engineering code as part of this effort.  As anticipated, 

integration of the inputs and outputs from various modeling capabilities was not necessarily a 

trivial exercise, consuming a fair amount of time to ensure model compatibility and the 
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integrity of the physics.  To better appreciate the implemented approach for the proof-of-

concept engineering model, one should consult the general flowchart depicted in Figure 22.  

This figure provides an overview of the entire modeling effort, developed to be an end-to-end 

system model that captures the critical physical attributes of sparse aperture overhead system 

collection of a remotely sensed scene. 

 

 
 

Figure 22: Overview of the implemented modeling approach. 
 

As observed in the flowchart, the primary thrust of the approach is to create a first-principles 

model of each critical component specified in the governing linear systems equation on a 

spectral radiometric basis.  For general orientation, the flow essentially goes from the object 

radiance “spectral cube” in the top left of the flowchart to the restored, integrated image in 

the top right, with various key physical modeling chains feeding up from the bottom of the 

figure.  The gray boxes in the flowchart essentially delineate key mathematical operators 

utilized in the modeling process and black boxes represent significant modeling capabilities, 
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routines and/or outputs.  The spectral radiometric aspect of the model is captured through the 

arrow array emerging from the object radiance box, with λi capturing the concept of multiple 

spectral “images” passing through the physical modeling process.  Some exemplar outputs of 

this modeling implementation appear at the center of the diagram, where one will observe a 

representative sparse aperture pupil function, its associated MTF, the detected red-green-blue 

(RGB) quasi-monochromatic system prediction, and its Wiener filter restoration.  

Considerably more detail on the nature of these modeling products will be provided in future 

discussion. 

 

Within this modeling construct, the spectral object scene or radiance profile at the entrance 

pupil of the sparse aperture optical system can be derived through several different means.  

The two principal options pursued in this research endeavor use either a simulated 

hyperspectral radiance cube or actual airborne multi/hyperspectral imagery.  The 

synthetically-generated spectral object scenes were produced using the Digital Imaging and 

Remote Sensing Image Generation (DIRSIG) model developed at the Rochester Institute of 

Technology (RIT).  Alternatively, the Wildfire Airborne Sensor Program (WASP) Terrapix 

RGB digital framing camera and the airborne Hyperspectral Mapper (HyMap) scanning 

sensor provided real overhead spectral imagery for resampled polychromatic object scenes.  

The pros and cons associated with these scene generation approaches will be addressed in 

Section 4.5. 

 

As displayed in the flowchart in Figure 22, the collection geometry and timeframe for a given 

collection scenario are established through use of the commercially-available, orbital 

propagation Satellite Tool Kit (STK) v5.0 from Analytical Graphics, Inc.  Regardless of the 

technique for producing an object scene, the spectral radiance reaching the entrance pupil of 

the imaging system is essentially determined by the U.S. Air Force MODTRAN 4.0 

atmospheric propagation code using the temporal and geometric parameters from STK.  This 

radiation transfer code is widely accepted as an industry standard for computing atmospheric 

propagation and losses at moderate resolution.  The output from MODTRAN 4.0 is 

subsequently utilized in conjunction with DIRSIG to produce a synthetic spectral radiance 

cube as described previously or to provide a mean radiance level for a given collection 
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scenario to convert raw digital counts in real overhead imagery to units consistent with 

sensor-reaching spectral radiance.  This process effectively establishes the spectral radiance 

at the entrance pupil to the optical telescope at the spectral resolution associated with the 

source.  In accordance with the flowchart, this “spectral cube” is then transformed into the 

Fourier domain to allow application of various component transfer functions which model 

the action of the imaging system on the object scene. 

 

Per the previous theoretical development, a Fourier optical approach has been implemented 

to apply the various system transfer function components developed in Sections 3.7 through 

3.11 including dephased/aberrated optics, relative imaging platform motion, and focal plane 

detector characteristics.  Most of the optical simulation process detailed in Figure 22 uses 

engineering software developed in the IDLTM programming environment.  Within this 

simulation, the optical transfer function associated with the aperture is evaluated through a 

digital implementation of the complex autocorrelation of the aberrated, spectrally scaled 

pupil function.  Details of this implementation will be described in greater detail in sections 

to follow, but the flowchart in Figure 22 clearly indicates that spectrally scaled pupil function 

and phase error descriptions feed a set of Fourier transform operations to accomplish the 

appropriate autocorrelation.  At this juncture, the phase error and aberration implementation 

relies upon the application of traditional aberration coefficient or Zernike polynomials to 

describe the phase profile across the pupil in the context of an analytical sensitivity 

evaluation of a desired rms wavefront error.  This polynomial fit to the optical phase error is 

digitally sampled within the model to create a discrete, two-dimensional array representing 

the distributed phase profile.  Clearly, the aberrated phase or OPD error description could be 

acquired through use of a detailed optical design package, such as Code V or Optics Software 

for Layout and Optimization (OSLO).  If available, empirically measured OPD errors could 

also be easily captured within the current modeling construct with minimal code 

modifications.  Once individual transfer function terms have been developed for the imaging 

system components of interest, they are cascaded to form a system OTF and applied to the 

object scene spectrum as seen on the top leg of the flowchart.    
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The inverse transform of the degraded image spectrum for each spectral radiance “line” is 

subsequently computed to allow incorporation of the appropriate noise effects, consistent 

with the theoretical development in Section 3.14.  This implementation assumes that 

uncorrelated, statistically independent noise is added to the predicted degraded imagery 

acquired through the Fourier optics approach.  Of course, there is no fundamental limitation 

that would prevent addressing spectrally correlated noise in the overall simulation 

architecture described by Figure 22.  Following application of noise, the proof-of-concept 

model performs integration, resampling and quantization operations with the individual 

spectral radiance realizations to predict the expected detected imagery (prior to restoration) 

across the passband of interest.  The development of this integrated signal content is 

represented by the summation block in the flowchart above, producing the “raw” detected 

imagery output. 

 

As observed in the flowchart in Figure 22, the simulated “raw” imagery acquired through this 

process is designed to capture any spectral effects associated with a sparse aperture collection 

scenario, including appropriate wavelength-dependent scene radiance, aberrated system 

transfer function and noise effects.  As such, this spectral radiometric model implementation 

provides a capability to address an area of investigation that has not been previously pursued 

in the body of research conducted in the sparse aperture arena.  As will be demonstrated in a 

subsequent discussion, the proof-of-concept tool has enabled various systems to be compared 

in order to evaluate the spectral nature of remotely sensed collections acquired from different 

sparse aperture sensor types.  Although the demonstrated ability to model the raw, detected 

imagery from a generic sparse aperture system configuration on a spectral radiometric basis 

constituted the original final requirement for this research endeavor, the end-to-end system 

model would not be complete without the inclusion of an appropriate restoration technique.  

As a consequence, various conventional Wiener filter restoration routines were implemented 

in the proof-of-concept modeling process, as depicted by the final analysis chain on the right 

hand side of Figure 22.  Consistent with the discussion in Section 3.15, these Wiener 

restorations attempt to mitigate some of the effects of the blurring and additive noise 

operations incorporated into the strawman modeling process.  As observed in the flowchart, 

these Frequency-domain filter implementations make use of the unaberrated pupil function 



 102

description, presumed understanding of in-situ phase errors, and potentially any noise-to-

object power spectrum ratio knowledge to restore degraded detected imagery.  The output of 

this restoration process ultimately represents a prediction of the expected derived imagery 

from the sparse aperture system under investigation, including the spectrally dependent 

effects of the system OTF, phase errors, noise, and image restoration. 

 

Figures 23 and 24 provide additional sample output products from the proof-of-concept 

modeling process depicted in Figure 22.  On the left side of Figure 23, one will observe a 

typical tri-arm sparse aperture system pupil function, with a phase profile depicting randomly 

distributed piston/tip-tilt.  The right side of Figure 23 illustrates the nature of the aperture 

modulation transfer function (MTF) that is acquired by autocorrelating the aberrated pupil on 

the left.  This diagram provides a qualitative feel for the effects of dephased subapertures, as 

one will note that the MTF exhibits considerably reduced modulation relative to its 

diffraction-limited counterpart, to the point of introducing nulls in its spatial frequency 

coverage.  These nulls will ultimately give rise to lost spatial frequency content and reduced 

quality in the derived output imagery.  

 

   
 

Figure 23: Sample tri-arm pupil function and associated pupil autocorrelation. 
 

Figure 24 displays the quasi-monochromatic imagery predictions that can be acquired from 

the implemented spectral radiometric model.  On the left side of the figure, one will observe 

an airborne digital RGB image whose intensities have been rescaled through use of 
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MODTRAN 4.0 to represent the object spectral radiance at the entrance pupil.  The center of 

the figure depicts a prediction of the noisy, degraded RGB image acquired for the aberrated 

pupil in Figure 23.  As anticipated, the system transfer function of the sample tri-arm system 

produces imagery with significantly reduced sharpness.  Finally, the right side of the figure 

illustrates an “optimal” Wiener filter restoration one would acquire with perfect OTF and 

phase knowledge, as well as the ability to restore individual RGB “bands.”  Obviously, this 

set of examples typifies an optimal case, so more representative scenarios will be pursued in 

the sections that follow.  In addition, detailed parameters from individual model runs 

associated with specific scenarios conducted for this research effort will be provided in later 

discussion.  

 

     
 (a) Original Object (b) Detected Image (c) Wiener Filter Restoration 

 
Figure 24: Sample image predictions for the tri-arm system configuration in Figure 23. 

 

4.2.2 Nominal Collection Scenario 
 
Although many different imaging conditions have been modeled in the course of 

implementing and exercising the proof-of-concept model, the nominal collection scenario 

pursued in this research effort appears in Table 2.  As seen in the table, this research has 

principally focused on evaluating a panchromatic, visible/infrared (VNIR) scenario under 

conditions where the spectral integrity of a polychromatic object scene was preserved.  

Therefore, although a spectral application was not specifically considered, the required 

spectral radiometric physics were implemented and exercised for an imaging scenario that 

could manifest spectral quality issues.  The objective of this panchromatic simulation focus 

was to gain insight into whether increased spectral fidelity in a sparse aperture imagery 
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prediction led to detrimental quality effects not captured by traditional gray-world 

resampling approaches. 

 

Parameter Value 
Spectral Passband 0.4-0.8 µm 
System f-number (f#) 18.0 
Optical Sampling Nyquist (or better) 
Ground Sample Distance (GSD) Variable; 18 in (nominal) 
System Transmission (η⋅τopt) Profile; 0.3 (average) 
Secondary Obscuration (εsub) 0.24 
Focal Plane Array (FPA) Staring Frame CCD 
Read Noise 50 rms electrons 
Dynamic Range 11 bits 
Image Smear 0.5 pixel 
rms Wavefront Error Variable; 0.10 waves rms (nominal) 
Atmosphere MODTRAN 4.0 mil-latitude summer 
Visibility 17.0 km 
Simulation Time ~1700 GMT (~79° sun elevation angle) 
Target Location 43.2° N Lat, 77.6° W Lon 

Table 2: Nominal collection scenario 

 

As seen in Table 2, the simulations executed for this research effort assumed Nyquist 

sampling.  Although not necessarily common for conventional optical systems, Nyquist 

sampling has traditionally been pursued in most sparse aperture system studies.  This 

selection of optical sampling had the added benefit of avoiding aliasing artifacts that could be 

misconstrued as spectrally induced.  Since the collection scenario assumed extended access 

coverage from a space-based platform, the implemented sensor model is a staring frame 

charge-coupled device (CCD), thereby eliminating certain scanning sensor issues.  Of course, 

it would be rather trivial to modify the existing model if a scanning system were of interest.  

In addition, as complementary metal oxide semiconductor (CMOS) devices gain maturity 

and start competing with CCD design concepts, one may also consider implementing a 

CMOS detector MTF, including an appropriate carrier diffusion term. 

 

Table 2 also shows that a number of different system wavefront error values were 

investigated.  The objective of modeling different aberration levels was to bound the point at 
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which spectrally induced effects surface.  As part of this exercise, a nominal value of 0.10 

waves rms was assumed to probe the validity of that traditional “rule-of-thumb” for high-

quality imagery collection given the spectral radiometric model implemented for this 

research.  Most of the remaining optical system parameters were selected rather arbitrarily 

but deemed satisfactory for a typical remote sensing application.  Once again, any number of 

the modeling parameters could be modified at the discretion of the investigator without 

significantly altering the principal character of the spectral issues observed in this research. 

 

In addition to the optical system characteristics, Table 2 also defines some of the key spatial, 

temporal, and atmospheric conditions that were modeled in the nominal collection scenario.  

As observed in the table, one of the default MODTRAN atmospheres (mid-latitude summer) 

with good overall visibility was utilized in the model.  In addition, a geodetic location on the 

earth corresponding to Rochester, NY was selected for orbital analysis and related 

atmospheric propagation evaluation.  The principal rationale for this selection was the fact 

that detailed synthetically generated DIRSIG scenes of the Rochester metropolitan area were 

available to support the modeling effort.  As a consequence, all scenes (synthetically 

generated and resampled imagery approaches alike) were arbitrarily assumed to be located at 

the target position identified in Table 2.  This selection provided representative sensor-

reaching radiation transfer while minimizing the number of required MODTRAN 

atmospheric propagation runs.  In addition to the chosen standard atmosphere, an arbitrary 

time of day (approximately 1:00 pm EDT) was selected for the nominal collection scenario, 

ensuring a high solar elevation angle and good signal-to-noise ratio (SNR).  Early in the 

research, the investigation of different atmospheres and radiation conditions was determined 

to be a secondary objective relative to the demonstration of a general-purpose spectral 

radiometric sparse aperture model and exploration of sparse aperture-unique spectral quality 

issues.  Clearly, however, it would be a worthwhile exercise to perform sensitivity studies on 

sparse aperture image quality, with atmosphere, scene contrast, radiometry, collection 

geometry and SNR as parameters of interest in the overall trade space.  

  



 106

 

     
 

     
 

Figure 25: Baseline sparse aperture pupil configurations. 
 
Given the general imaging system and collection parameters in Table 2, several sparse 

aperture exit pupil configurations were selected for evaluation under the nominal collection 

scenario.  These sparse aperture pupil configurations appear in Figure 25.  The standard 

“annulus” configuration is shown on the left.  For this research effort, it was assumed that the 

annulus was designed to be a serious of adjoining optical petals or subaperture “wedges” 

used to form the annular configuration.  Under this construct, models for evaluating 

configurations consisting of nine (9), eleven (11), and fifteen (15) optical wedges were 

constructed for comparative purposes.  The center of the diagram depicts a typical tri-arm 

sparse aperture system consisting of nine (9) subapertures in the classic “Y” configuration.  

Representative of many sparse aperture systems, this configuration was selected for many of 

the initial trade studies performed for this research, and one will discover the preponderance 

of runs in the results section to follow involve this configuration.  Finally, a standard Golay-6 

sparse aperture pupil configuration is illustrated on the right side of Figure 25.  As its name 

implies, this configuration is one of the myriad non-redundant arrays originally proposed by 

Golay (1971) and entails the appropriate positioning of six (6) subapertures to provide good 

coverage in the spatial frequency domain.  Although these three pupil configurations were 

Pupils 

Annulus Tri-arm Golay-6 

petals 
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evaluated extensively in this research, numerous other geometries were also investigated over 

the course of the effort.  During these studies, it was determined that the three pupils in 

Figure 25 adequately captured the typical character of the image quality issues observed 

during the investigation.  One should also note that the model was designed to provide 

relative comparisons between two aperture types.  Therefore, conventional filled circular and 

obscured Cassegrainian configurations were also considered for comparison. 

4.3  Imagery Collection Geometry 

As discussed previously, MODTRAN and DIRSIG (if pursuing a synthetically-generated 

object simulation) both require information about collection geometry to predict the radiance 

profiles at the entrance pupil of the imaging system.  In addition, the DIRSIG model can 

simulate a flight trajectory over a given target scene.  Of course, this requires information on 

how the collection geometry changes with time.  Since the application envisioned for sparse 

aperture systems in this research involves remote sensing of the earth from relatively high 

altitude, a hypothetical space mission was designed with the help of Satellite Tool Kit (STK) 

v5.0.  With various baseline orbital propagators, including J4 Perturbation and SGP4, STK 

has become an industry-wide standard for calculating the position and attitude of satellite 

vehicles as a function of time.  The overall software package includes a suite of analytical 

tools that allow time-dependent flight profile information, such as position, orientation, 

range, line-of-sight, and general sensor coverage, to be computed.  In addition to essential 

analysis, STK also includes a toolbox of various visualization capabilities that allow an 

appropriate flight path to be designed for the desired collection scenario.  Therefore, the 

commercially available orbital evaluation software was used to develop the desired mission 

profile and imaging platform collection geometry for the space-based collection scenario 

pursued in this research effort.    

 

Since the proposed mission is genuinely hypothetical, an arbitrary orbital design was 

developed within STK to ensure an ascending pass over Rochester, NY, with a nadir viewing 

geometry. Once again, this orbital design was selected to support the nominal collection 

scenario described in Section 4.2.2 and enable the use of existing detailed synthetic object 

scenes for DIRSIG, which will be discussed in greater detail later.  Figure 26 provides a 
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three-dimensional illustration of the selected orbital design in a geocentric inertial frame.  

Both the orbital path and ground track for the imaging vehicle (identified by the yellow 

“dot”) are depicted in the diagram, with the region of the orbit within view of the Rochester 

object scene (identified by the yellow “x”) highlighted in yellow.  This geocentric inertial 

view shows that the designed mission profile provides a ground track that passes right over 

the desired target region, providing the desired nadir viewing conditions.  

 

 
 

Figure 26: Three-dimensional view of the arbitrary collection orbit 
from STK designed to support this research effort. 

 

For the chosen collection scenario, the imaging vehicle has access to Rochester in its field of 

regard for a little over 1.12 hours (~4064 sec) during a period of time around 1:00 pm EDT, 

in accordance with the nominal collection scenario discussed previously.  Details of the 

specific collection scenario appear in Table 3.  In addition to the time of day for the collect 

(which establishes detection SNR), the only other significant detail of interest is the range 

(~6337 km) to the target at nadir since it establishes how much atmosphere is present over 

the imaged path length for the performed simulation cases.  Although this parameter clearly 

impacts path radiance and the overall spectral radiance solution, one should not lose sight of 

the fact that it is not unique and any number of different orbital altitudes could have been 

investigated.  The one selected here was simply deemed to be “representative” of one that 

could theoretically be used for remote sensing applications. 

EOSAT LLA Position 
Time'(UTCG): 
Lat   (deg): 
Lon  (deg): 
Alt   (km):    . 
Lat  Rate  (deg/sec): 

g/sec): 
.    i/sec): 
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-77.595 
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2005   16:55:33.66 
2003   17:41:17.55 

Lat    1.519 / Lon -85.130    Alt  56574.99 km 

Earth  Inertial  Axes 
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Parameter Value 
Date of Collection 1 June 2003 
Access Start Time (GMT) 16:33:33.66 
Access Stop Time (GMT) 17:41:17.55 
Access Duration (sec) 4063.893 
Time of Collection (GMT) 16:56:59.00 
Collection Range (km) 6337.008 
Collection Azimuth (deg) 133.1 
Collection Elevation (deg) 89.9 

 

Table 3: Collection scenario details for the 
designed mission profile. 

 
 
Figure 27 provides additional two-dimensional visualization options available through STK 

that were used to help design the collection scenario for this research effort.  In this figure, 

the imaging vehicle’s ground track is displayed on a flat map projection of the earth.  Once 

again, the highlighted yellow region correlates with that part of the track that is within view 

of the Rochester targeted area.  The diagram on the left side of the figure provides the overall 

satellite ground track for the entire orbit.  The right side of the figure depicts a magnified 

region of the ascending pass over the Rochester area, with the satellite vehicle shown rapidly 

approaching the target.  Through use of the STK orbital propagation engine and associated 

visualization capabilities, the classical Keplerian orbital elements (principally focused on the 

right ascension of the ascending node) were slightly adjusted from the initial mission design 

until the desired nadir ground track geometry over Rochester was acquired.  This exercise 

resulted in a set of orbital elements that produced the mission profile illustrated in Figure 27 

and detailed in Table 3.    
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Figure 27: Orbital ground tracks for the nominal collection scenario designed in STK. 
 
 
Following the mission scenario development discussed above, the final output of this orbital 

propagation evaluation effort was a series of line-of-sight, sensor-to-target range, and 

associated collection geometry information (e.g., azimuth and elevation angles) at regular 

time intervals required to model an imaging system passing over a targeted scene.  Figure 28 

displays the unique capabilities for visualizing three-dimensional collection geometry 

through STK’s Visualization Option.  This viewing option was highly beneficial during 

mission design in evaluating the azimuth and elevation angles associated with the telescope 

of the imaging vehicle at each step of the imaging encounter.  

 
 

   
 

Figure 28: Three-dimensional visualization of the satellite collection geometry 
for the nominal mission profile designed in STK. 
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In addition to the unique collection geometry tools discussed above, STK also provided 

evaluation windows that enabled evaluation of the precise collection angles and range-to-

target, as depicted in Figure 29.  The image on the left shows how STK can place an inertial 

sphere around the imaging vehicle during the orbital propagation scenario, allowing one to 

evaluate vehicle attitude on a temporal basis.   Additionally, STK can also analyze key 

orbital parameters, such as the azimuth (in green), elevation (in red) and range (in blue) data 

that appear on the right side.  Of course, this collection geometry data could also be output in 

raw ASCII format for use as flight trajectory data in a larger simulation such as that afforded 

through DIRSIG.  With all of this visualization and analysis capability, it was possible to 

simultaneously view the satellite-to-target collection geometry (as observed in Figure 28) and 

the raw geometry numerical detail (as seen in Figure 29) at each time step.  As a result, STK 

was instrumental in performing the mission analysis needed to define the overall collection 

geometry for the hypothetical sparse aperture scenario modeled during this research effort.   

 
 

  
 

Figure 29: Visualization of the imaging satellite attitude and range-to-target 
for the nominal mission profile designed in STK. 

 

4.4  Atmospheric Modeling 

As discussed previously, a critical element needed to support the evaluation of the spectral 

radiance reaching the collection aperture is the characterization of the atmosphere.  For this 

requirement, it is standard practice to rely on the MODTRAN atmospheric propagation 

model for remote sensing applications.  This model is widely used within the community to 
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compute radiation transfer through the atmosphere at moderate spectral resolution (limited to 

the highest resolution of 2 cm-1).  The program will compute atmospheric transmission, 

scattering, absorption and emission phenomena given input characterization data or 

defaulting to one of the standard atmospheres in its internal database.  Atmospheric 

characterization data are input via a file called a “card deck” that contains detailed collection 

parameters and known atmospheric conditions.  Output is in the form of several “tape” files 

that contain details of the radiation transfer prediction. 

 

 
 

Figure 30: MODTRAN 4.0 output for the nominal collection scenario. 
 

Figure 30 plots the spectral irradiance and radiance profiles versus detection wavelength that 

were acquired for the nominal collection scenario through use of this radiation propagation 

model.  These data were generated as a result of running MODTRAN 4.0 with the previously 

defined geometry, a mid-latitude summer default standard atmosphere, relatively good 

visibility (17 km), and high sun angle (~79° elevation).  The spectral irradiance plots on the 

left side of the figure demonstrate the classic profiles for exoatmospheric (in blue) and 

transmitted (in red) direct solar components over the general passband of interest.  The 

diagram on the right contains sample plots of the direct solar (in blue) and sum total (in red) 

spectral radiance one would observe at the entrance pupil for the nominal scenario 

investigated in this research.  As anticipated, these plots indicate that direct solar represents 

the principal source of detected radiation and transmission losses are relatively benign for the 

collection scenario explored in this investigation. 
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By design, DIRSIG currently has embedded hooks in its radiometry submodel that rely upon 

MODTRAN outputs to compute the exoatmospheric irradiance, upwelled and downwelled 

path radiance, and path transmission characteristics.  This allows the radiometry calculations 

performed within DIRSIG to be based upon an industry standard radiation transfer code, 

ensuring its overall integrity for computing spectral radiance profiles reaching the entrance 

pupil of an imaging sensor.  When one performs spectral simulations utilizing resampled 

digital imagery, the spectral radiance calculations become slightly more cumbersome, 

requiring some manual manipulation of MODTRAN output to rescale raw digital counts.  

This was somewhat marginalized for this research effort by identifying a standard nominal 

collection scenario for all object scenes.  As a consequence of that assumed simulation 

approach, a single MODTRAN 4.0 run could be utilized with DIRSIG to provide the 

“representative” radiance amplitudes required to rescale raw imagery.  At this point, it is 

important to remember that the overall focus of this investigation was not to precisely model 

different imaging scenarios, but to accurately capture the general phenomenology of the 

imaging physics in a proof-of-concept model that enabled unique sparse aperture system 

characteristics to be addressed from a spectral radiometric perspective. 

 

There are several limitations within the overall MODTRAN modeling construct of which one 

should be cognizant.  In addition to the constraint in spectral resolution indicated above, 

MODTRAN also does not have the capacity to model background reflected radiance as 

identified in equation 17, so that radiation mechanism is not generally captured by the 

program.  In addition, the atmospheric propagation model does not compute downwelled 

radiance directly but can be manipulated to provide directional downwelled radiance.  By 

placing a sensor on the ground looking out to space and subsequently numerically integrating 

values across the encapsulating hemisphere, one can acquire reasonable estimates of 

downwelled radiance.  Fortunately, the DIRSIG model has been developed to capture these 

general radiation mechanisms through use of the basic industry-standard capabilities resident 

within MODTRAN.  This ultimately enables detailed, high-accuracy spectral radiance 

calculations to be performed consistent with the governing target signal expression found in 

equation 17.  
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4.5  Scene Spectral Radiometry 

As discussed previously, the fundamental object signal computation will be formulated 

through use of either a resampled, high-resolution airborne spectral image (e.g., from WASP 

or HyMap) or a synthetically-derived spectral radiance cube predicted by the Digital Imaging 

and Remote Sensing Image Generation (DIRSIG) model.  From a simulation perspective, the 

airborne spectral products have certain appeal since they provide real-world object scene 

content.  Unfortunately, the airborne products have fundamental constraints in the tradeoff 

between spatial and spectral resolution that tend to restrict their universal application.  For 

instance, one will typically find that a spectral system with superb spatial resolution has 

limitations in spectral resolution (e.g., WASP).  Conversely, a hyperspectral imaging system 

designed for good spectral resolution will frequently suffer constraints in spatial resolution 

(e.g., HyMap).  Therefore, although providing useful object scene data for certain 

investigations, current state-of-the-practice airborne spectral imagery exhibits inherent 

resolution limitations that impact the level of fidelity that can ultimately be addressed from a 

simulation perspective. 

 

Since synthetically-derived imagery products do not theoretically suffer from the same 

limitations (i.e., one can essentially “dial up” any spatial or spectral resolution desired), they 

provide a good bridge between the two extremes observed with real-world spectral imagery.  

Of course, synthetic products tend to suffer from a certain lack of realism, especially in the 

context of background clutter or texture, so they do not represent the panacea for all spectral 

modeling issues.  As a consequence of the dilemma introduced here, this research effort 

pursued simulations that made use of both object imagery types, recognizing the inherent 

imitations of both but figuring that all could provide insight into the fundamental issue of 

addressing potential spectral issues with sparse aperture collection systems.  Given its overall 

complexity, the DIRSIG simulation capability will be addressed in the initial discussion 

below, followed by a brief summary of the nature of the airborne imagery products utilized 

as object scene content in this research effort. 

 

The basic synthetic image generation software code utilized in this effort has evolved over 

the years through the dedicated efforts of graduate students and staff members at the Center 
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for Imaging Science (CIS) at RIT.  The top-level architecture associated with this detailed 

simulation code appears in the block diagram in Figure 31.  In general, the DIRSIG modeling 

capability represents a first-principles based evaluation of the distributed spectral radiance 

reaching a remote sensing collection platform.  It is designed to produce synthetic radiance 

field images with high spectral fidelity over the wavelength range covering 0.3 to 20.0 µm in 

the overall electromagnetic spectrum. The code accomplishes the required radiation transfer 

computations through use of a back-propagation ray trace methodology, which allows both 

direct and multiple-bounce radiation paths to be computed.  Pristine object scenes and targets 

are represented in a three-dimensional faceted construct with assigned material properties 

that enable accurate light-matter interaction physics (i.e., target reflectance or bi-directional 

reflectance distribution function BRDF) to be modeled. 

 

 
 

Figure 31: Top-level DIRSIG architecture. 
 

Given its reliance on MODTRAN for performing radiation propagation, DIRSIG has the 

inherent capability to perform accurate spectral radiometric predictions of various collection 

scenarios, including the effects of direct and scattered solar, upwelled and downwelled path 

radiance, background shadowing, thermal emission effects and the other general radiation 

mechanisms captured in equation 17.  With the collection geometry information provided by 

STK and the embedded use of MODTRAN for atmospheric propagation, numerous iterations 
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of the DIRSIG model were executed to provide the instantaneous spectral radiance field for a 

staring sensor configuration at a given collection time.  This approach for deriving the object 

scene radiance captures the required scene-induced spectral and geometric effects that are of 

interest to the research effort as input to the sensor transfer function, signal integration, 

sampling and noise modeling process outlined previously. 

 

For this research effort, the principal DIRSIG-generated target object involved a complex 

extended scene of the Rochester metropolitan area referred to as megascene.  During 

algorithm development and testing, simpler monochromatic target constructs were 

investigated to verify the integrity of the model implementation.  The results of these 

preliminary investigations will not be recounted here in the interest of space.  The objective 

of the more complicated extended source was to capture the expected spectral and spatial 

characteristics of a real-world remotely sensed scene to determine if the predicted spectral 

effects manifest themselves in elaborate scenes with high spatial detail and complicated light-

matter interactions.  As observed in Figure 32, the chosen Rochester megascene target 

exhibits complex spatial attributes that are ideal for evaluating the image quality associated 

with an overhead collection system.  As observed in this figure, the target consists of 

suburban scene content, with high-fidelity models of buildings, trees, swimming pools, tennis 

courts, roads, athletic fields, and other man-made objects.  Although advertised to 

demonstrate spatial fidelity on the order of 1 meter (~39 inches), the underlying texture map 

acquired from airborne visible spectral data is sampled at 6-in GSD and certain features on 

the modeled scene content (e.g., buildings, automobiles, etc.) are frequently better than the 

resolution associated with the background clutter.  The level of detail that ultimately can be 

supported by DIRSIG target objects is illustrated by the aircraft, vehicles and man-made 

structures appearing in Figure 33.  Accordingly, the Rochester-area megascene representation 

provides an excellent object for addressing complex scene interactions through a 

synthetically-driven model that has the added flexibility of allowing the investigator to 

effectively set any spatial or spectral resolution of interest. 
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Figure 32: Sample DIRSIG spectral radiance image of the Rochester 
megascene object generated with RGB spectral planes. 

 

     
 

Figure 33: Sample DIRSIG target objects demonstrating supported level of detail. 

I m     ~7M 
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As discussed previously, the baseline scenario that was modeled in this effort involved 

generation of spectral radiance image cubes in the reflected region of the electromagnetic 

spectrum, emphasizing the spectral implications associated with panchromatic collection 

applications.  Of course, there is nothing unique with that modeling focus and certainly 

narrower band multispectral scenarios could be investigated with the proof-of-concept model 

developed for this research.  With the flexibility provided by DIRSIG, the object scene was 

initially rendered at high spatial resolution and moderate spectral resolution to adequately 

capture the spatial and spectral effects of the structurally detailed object prior to resampling 

in the proof-of-concept sensor model.  For the DIRSIG megascene object described above, 

the scene was spatially oversampled by 2:1 to 3:1 relative to the desired collection ground 

sample distance (GSD) prior to the application of the system transfer function in the Fourier 

optics model implementation.  This implies that the megascene object was rendered at a 1:1 

spatial resolution of 6-9 inches to achieve the 18 inch resampled GSD prescribed in the 

nominal scenario.  As a result, the scene was essentially pushed to the limits of its spatial 

fidelity to acquire nominal 18-in GSD imagery simulations with appropriate oversampling.  

Within the proof-of-concept modeling tools, the spectral radiance field acquired from 

DIRSIG is optically sampled to be consistent with sensor characteristics and transformed to 

the Fourier domain for application of the various sparse aperture system OTF components 

addressed in Chapter 3.  Following the addition of image noise, the spatial domain result of 

this image simulation process is subsequently integrated across the passband of interest 

including spectrally variant detector effects, converted to detected electrons via the governing 

expressions in the previous chapter, and quantized to digital counts to produce a prediction of 

detected image quality. 

 

With the synthetically-derived object discussion complete, the following discussion provides 

insight into the real-world airborne spectral imagery that was also utilized to address the 

requirements of this research endeavor.  The principal sources of this spectral digital imagery 

were the Terrapix digital frame camera from the Wildfire Airborne Sensor Program (WASP) 

and the Hyperspectral Mapper (HyMap) scanning sensor from Integrated Spectronics.  The 

WASP sensor for VNIR collection entails a commercially available aerial mapping camera 

with an Eastman Kodak 4080x4080 pixel mosaic CCD array.  Its spectral coverage spans the 
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reflective spectrum from 0.4-0.9 µm with three detection bands (red/NIR, green and blue).  

The individual spectral bands in the WASP CCD are created through use of a color filter 

array configured in a Bayer pattern.  The source imagery used in this investigation had 

already been interpolated to create three fully populated spectral arrays of data prior to 

conversion to object scene radiance values in the digital sparse aperture model.  Any artifacts 

induced by this interpolation scheme were assumed to represent true object radiometry and 

were therefore ignored in subsequent evaluation of the spectrally induced effects acquired in 

the sparse aperture simulations.  As a consequence of this approach, color filter array 

interpolation issues were eliminated as a potential source of chromatic artifacting in this 

research effort, which was focused on isolating the inherent spectral implications of a 

distributed aperture. The optical configuration of the WASP camera exhibits an instantaneous 

field-of-view (IFOV) of 0.164 mrad, enabling a GSD of 7.85 inches at a 4000-ft collection 

altitude.  Figure 34 provides RGB color composite examples of WASP imagery at the latter 

GSD that were utilized in this simulation effort.  From this description, it is clear that the 

WASP instrument provides an excellent source of high-spatial resolution data but suffers 

limitations in spectral diversity that ultimately must be explored.  Despite this spectral 

resolution concern, it was decided the WASP data would still be useful in providing insight 

into the spectral character of a high-resolution, panchromatic overhead collection system. 

 

     

Figure 34: Sample ortho-rectified WASP airborne multispectral imagery. 
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Figure 35: Sample HyMap airborne hyperspectral scanner imagery. 
 

The HyMap airborne hyperspectral sensor, on the other hand, is a commercially available 

scanning monochromator with 126 bands spanning the VNIR/SWIR part of the 

electromagnetic spectrum from 0.44-2.5 µm.  The IFOV of the instrument is 2.0 mrad cross-

track and 2.5 mrad in the along-track direction, providing a geometric mean GSD of 11.2 feet 

(3.4 meters) at a nominal 5000-ft operating altitude.  The HyMap sensor consists of 512 

pixels in the cross-track direction, resulting in a swath width of ~1.5 km at a 3-m IFOV.  For 

this simulation activity, an existing HyMap aerial collection of an extensive area around 

Mobile, AL area at 10-15 ft GSD was utilized as a source for the spectral object data required 

by the proof-of-concept modeling capability.  Although all 126 hyperspectral bands were 

available, only 33 bands spanning the spectral range from 0.4-0.9 µm were actually used to 

perform the panchromatic simulations in this investigation.  Samples of the scene content 

resident in this data collection appear Figure 35, where an RGB image was formed from 

three of the visible hyperspectral bands for the purposes of display.  Based on the discussion 

above, it is apparent that the HyMap sensor exhibits good spectral resolution (with 

bandwidths on the order of 15-20 nm) but suffers from less than nominal spatial resolution 

for the high-resolution applications of interest.  Once again, however, the data was deemed 

worthy enough to provide some insight into spectral phenomenology for the collection 

systems of interest and was consequently included in subsequent investigation.  It is 

interesting to note that the two real-world sensors that were discussed here suffer from 
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exactly the trade-off dilemma between spatial and spectral resolution that was introduced in a 

previous section, clearly demonstrating the overall utility in pursuing synthetic-based 

simulations as well to help bridge the limitations. 

4.6  Imaging System Characterization 

As alluded to in previous discussion, the principal means for characterizing an imaging 

system is through its impulse response or associated system transfer function.  Those 

fundamental parameters represent the basic building blocks for the governing linear imaging 

expressions found in equations 8 and 15.  For the imaging configurations under investigation, 

the dominant contributor to the system transfer function will be shown to be the complex 

autocorrelation of the exit pupil or aperture stop of the optical system.  Accordingly, the 

unique aperture configurations pursued in this study must be adequately characterized, 

including their complex-valued nature in the presence of subaperture dephasing or optical 

aberrations.  From a geometry perspective alone, one should recall that the individual 

aperture configurations are defined through a real-valued, one-zero pupil function as 

described in Chapter 3 and demonstrated for nominal sparse aperture configurations in Figure 

25.  Of course, since spectral attributes represent a primary thrust for this dissertation, the 

spectral character of the complex pupil configurations must also be appropriately captured.  

This section introduces the principal means pursued in this research effort for characterizing 

the various optical configurations under investigation, including the characterization of the 

aberrated phase profile across the aperture (Section 4.6.1), the aperture optical transfer 

function (Section 4.6.2), the aperture point spread function or impulse response (Section 

4.6.3), and the total system transfer function definition (Section 4.6.4).    

 

4.6.1 Pupil Phase Profile 
 
As introduced in the theoretical development found in Chapter 3, one of the principal 

distinctions that set sparse aperture systems apart from conventional telescope configurations 

is the problem of phasing an array of smaller subapertures to achieve a common image field 

at the detector with the increased optical resolution of an effectively larger synthesized 

aperture.  As conveyed in Section 3.7, this research effort addressed system aberrations and 
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phasing issues in the same general context: through use of a complex aperture function with a 

phase term that captures the nature of the error in terms of the optical path difference (OPD).  

The principal component of this phase term is traditionally referred to as the aberration 

function w[x,y] and can be described through the use of many different polynomial fit 

options.  The two most common approaches for capturing the pupil phase profile involve 

either standard aberration coefficients Wklm used in conjunction with a polynomial expression 

of the form of equation 78 or normalized Zernike polynomial coefficients Zi which will be 

described in greater detail in the discussion below.  This research effort developed modeling 

tools that enabled one to pursue either option as a matter of investigator choice. 

 

Regardless of how the OPD or aberration function is prescribed, the ultimate objective of the 

modeling is to physically describe the character of the aberrated phase profile (and by 

extension wavefront) across the exit pupil.  Figure 36 illustrates the geometric one-zero pupil 

functions (“white” is 1.0 and “black” is 0.0) for the nominal sparse aperture configurations 

investigated in this dissertation, along with single realizations of a randomly distributed 

piston/tip-tilt error phase profile contributing 0.20 waves rms of total wavefront error across 

each pupil.  In the phase profiles, the background grayscale intensity correlates with zero 

phase, lighter than background intensity implies positive phase, and darker than background 

defines negative phase.  Accordingly, one can observe that the individual subapertures have 

random amounts and orientations of constant piston and linear tip/tilt applied to each 

subaperture.  As with all the phase profiles created during this effort, a random zero-mean, 

unit-variance Gaussian distribution was utilized to define the spatially variant nature of the 

aberrations in Figure 36.  Therefore, the objective of the polynomial descriptions discussed 

above and in subsequent pages is to develop a functional form that mathematically describes 

aberrated phase profiles similar to those appearing in the figure.    
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Figure 36: Baseline sparse aperture pupil configurations 
(rms wavefront error: 0.20 waves). 

 

In order to streamline the evaluation of wavefront errors in an optical system, one typically 

relies upon an analytical expression utilizing standard aberration or Zernike polynomial 

coefficients, whereby the functional forms are subsequently digitally sampled for use in a 

computer model for the purposes of analysis.  This is exactly the approach that was pursued 

and implemented in this dissertation.  Since the background associated with aberration 

coefficients was introduced in the previous chapter, the concept of representing the aberrated 

subaperture phase profile via Zernike polynomials will be introduced here.  In general, 

Zernike polynomials see frequent use in similar optical wavefront analyses as they have 

unique orthogonality and symmetry properties that make them convenient to implement.  

From a top-level perspective, Zernike polynomials simply consist of three basic constituents: 

a normalization factor, a radial polynomial term, and a trigonometric function.  These three 

terms can be observed in the following formulation for the ith Zernike polynomial Zi: 
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where m

mnN −2  is the appropriate normalization factor, ( ) mm
n rrQ ⋅   is the radial component 

of the polynomial, Ai is the trigonometric function (cos mθ or sin mθ) associated with the 

polynomial, ρ is the radial exit pupil coordinate, and m and n jointly define specific 

characteristics of the polynomial as defined in the discussion below.  Given this convention, 

the normalization constant typically assumes the form: 
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where δm0 is the Kronecker delta function and (m,n) are positive integers that are separately 

defined for each numbered Zernike polynomial.  Similarly, the radial component in the 

Zernike polynomial expression identified above can be expressed according to the (m,n)-

convention as follows: 
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Given this general formulation, Wyant and Creath (1992) provide a good tabulated summary 

of the first 36 Zernike polynomials for use in various wavefront analyses.  These basic 

Zernike polynomial building blocks can subsequently be utilized to re-express the wavefront 

aberration function appearing in equation 78:  
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where the Zk represent aberrated wavefront coefficients for the individual Zernike 

polynomials that have been explicitly stated after them.  In order to isolate specific first- and 
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third-order aberration effects as described previously, one simply needs to reorder the 

individual terms in the equation above consistent with the following general construct: 
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where key terms required for the analysis of aberrations and pupil phasing errors have been 

specifically identified in the margin. 

 

To quantify the extent of optical aberrations in an imaging system, one typically specifies the 

number of root-mean-square (rms) waves of aberration present. With the developed OPD 

error terms expressed in waves, one can compute the rms wavefront error WFEσ  associated 

with an optical system via the following continuous and discrete formulations: 
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where [ ]θ,rw  is the mean wavefront optical path difference in waves.  By convention, the 

rms wavefront error is typically cited for a particular wavelength to convert it to waves, with 

the central or mean wavelength of the collection passband a common choice.  Since this 

research effort focused on modeling the polychromatic signal content for an imaging system, 

aberrations and optical phase were characterized across multiple wavelengths.  Therefore, 

rms wavefront error could conveniently be computed utilizing any wavelength of the 

spectrally variant optical phase data available through the modeling process.  During this 

research effort, an alternative convention for the rms wavefront error was also explored, 
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computed as the standard deviation of the OPD error (in waves) across all discretely modeled 

wavelengths.  An investigation of how this convention compared with a more traditional 

mean wavelength designation of rms wavefront error seemed to show they were within 2-5% 

of each other for the collection scenarios under review.  For the purposes of this dissertation, 

a conventional definition was ultimately adopted and one should consequently note that all of 

the rms wavefront error metrics cited in the sections to follow have been computed at the 

mean wavelength of the spectral passband. It should also be reinforced that the cited rms 

wavefront errors are specifically relevant to the nominal collection scenario described in 

Section 4.2.2 (i.e., for a panchromatic passband from 0.4-0.8 µm). 

 

With the fundamental aberration coefficient and Zernike conventions to quantify the overall 

nature of system OPD errors, one can subsequently apply the methods formulated in Section 

3.7 to describe the effects of the aberrated or improperly phased wavefront on overall image 

quality.  From this development, it is clear that the key then becomes how to specify the 

wavefront error associated with the optical system under investigation.  There are several 

potential avenues one could explore to address this modeling issue.  The first simply explores 

the impact of a fixed acceptable rms wavefront error that is adjusted in the context of a 

sensitivity study.  Such an approach provides valuable insight into the range of potential 

effects that could be observed with various wavefront errors.  Alternatively, a more rigorous 

approach uses a detailed optical ray trace design capability such as that available through 

Code V or OSLO.  Both of these optical design packages have the necessary analytical and 

visualization capabilities for evaluating the optical performance of radially symmetric optics 

and can be manipulated to address optical arrays similar to the sparse aperture configurations 

described in this dissertation.  They also can provide detailed wavefront reports for a given 

optical layout in a transverse aberration or OPD Zernike polynomial format that could be 

imported directly into the engineering modeling tool developed for this effort.  As with other 

codes proposed for use in this research endeavor, the Code V and OSLO design tools 

constitute industry standards that could provide high-fidelity metrics for use in a phase error 

study. 
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The significant drawback in the use of optical design software is the detailed optical 

prescription data required to support analysis.  A considerable amount of time generally must 

be dedicated to developing the optical design before any wavefront analysis.  Because of this 

issue, use of detailed optical design tools are much more amenable to developing and 

evaluating a specific design solution, not necessarily performing the sensitivity investigations 

envisioned for this dissertation.  As a consequence, this research utilized an approach where 

the rms wavefront error was mathematically prescribed by the conventions introduced above 

and varied according to the scenarios of interest.  Consistent with the desired end-point rms 

wavefront error, polynomial coefficients for individual aberration terms were adjusted for the 

mean wavelength of the collection passband to explore the contributions of individual error 

sources (e.g., piston, tip/tilt) from a sensitivity perspective.  The amplitudes of these 

polynomial coefficients were then scaled appropriately for each discrete wavelength modeled 

within the simulation.  Assuming the subapertures exhibit uncorrelated phase profiles, a 

random number generator was subsequently utilized to distribute the defined phase error 

amplitude across the full aperture according to a zero-mean, unit-variance Gaussian and 

consistent with the multiple subaperture pupil geometry.  Given the digital nature of the 

model, these profiles are actually discrete, two-dimensional arrays formed by sampling the 

appropriate phase error polynomial. 

 

Due to the random variable involved in the process, the approach pursued in this dissertation 

implicitly entails running a number of iterations to ultimately acquire a given wavefront error 

(e.g., 0.10 waves rms) with a statistically normal phase distribution.  Such a modeling 

process is conceptually not inconsistent with what one might expect to encounter 

operationally with a phased sparse aperture telescope array.  Of course, the implemented 

approach is flexible enough that a system designer could perform the detailed optical design 

analysis described above and simply insert the evaluated Zernike coefficients into the 

appropriate routines.  As an example of the implemented approach, Figure 37 depicts the 

pupil function for a conventional filled circular aperture (on the left) and the phase profile 

associated with a 0.10 wave rms tip/tilt error (on the right) prescribed through the appropriate 

Zernike polynomial coefficient.  For comparative purposes, Figure 38 displays similar 

information for a nine-subaperture tri-arm sparse aperture system with 0.10 waves rms of 
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randomly distributed piston, tip/tilt.  These figures provide examples of the standard products 

available for characterizing the aberrated complex pupil function through techniques 

described above with the developed proof-of-concept simulation model.   

 

   
 

Figure 37: Filled aperture with 0.10 waves rms tilt error. 
 

   
 

Figure 38: Sparse aperture with 0.10 waves rms random piston, tip/tilt error. 
 

 

4.6.2 Aperture OTF Evaluation 
 
With the spectrally scaled complex pupil function described in the previous section, the key 

imaging system components required by the governing linear equations in Chapter 3 are the 

impulse response and associated optical transfer function.  Both of these critical optical 
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system characteristics essentially capture the action of the imaging system on the pristine 

radiance image, inducing a reduction in modulation or contrast that ultimately degrades 

image sharpness.  Since the proof-of-concept simulation model developed for this research 

effort employs a Fourier optical approach in the frequency domain, the optical transfer 

function (OTF) will be addressed first.  The impulse response or point spread function that 

correlates with the assessed transfer function will be discussed in the next section.  As 

indicated earlier, one of the principal components of the system transfer function is the 

aperture optical transfer function, physically acquired through the complex autocorrelation of 

the aberrated pupil function addressed in Section 4.6.1.  With the phase profile 

characterization described in the previous section, the complex-valued aperture OTF 

ultimately captures system aberrations as well as the effects of subaperture phasing errors in 

the proposed modeling approach. 

 

As indicated in the previous chapter, the aperture OTF is ultimately derived by taking the 

complex autocorrelation of the scaled pupil function and normalizing by the area of the exit 

pupil.  For more complicated pupil geometries, such as those encountered with sparse 

aperture systems, this mathematical operation can effectively be performed with a digital 

computer.  In such a case, the approach for computing the OTF simply involves the squared 

magnitude of the Fourier transform of the scaled pupil function (thereby computing the 

unnormalized incoherent PSF), the inverse Fourier transform, and normalization by the area 

of the pupil (or its Fourier transform evaluated at zero frequency).  The sequence of 

mathematical operations required to compute the aperture OTF appears in Figure 39.  As 

observed in the figure, there are two principal routes that can be pursued to derive the OTF 

expression of interest.  Depending on the complexity of the problem, one can either evaluate 

a closed-form autocorrelation of the scaled pupil function or use the Fourier transform to 

initially derive an expression for the point spread function (PSF).  As indicated above, the 

latter tends to facilitate analyses of complicated aperture geometries, as observed in the 

sparse aperture arena.  Consequently, the proof-of-concept simulation capability pursued in 

this research involves the Fourier transform path depicted in Figure 39, with the point spread 

function acquired as an interim step.  
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Figure 39: Computation of the aperture OTF for complex pupils. 
 

Given the methodology described above, aperture transfer functions can be developed for 

both diffraction-limited and aberrated cases on a wavelength-by-wavelength basis.  Based on 

output from the proof-of-concept model, Figure 40 depicts the normalized MTF associated 

with filled circular and tri-arm sparse aperture configurations.  In Figure 40(a), one will 

observe a surface plot of the classic CTRI-function MTF supported by a diffraction-limited 

circular aperture.  In Figure 40(b), the well-established star-like character of the MTF 

associated with a diffraction-limited nine-aperture tri-arm system is apparent.  Finally, one 

can see the destructive nature of 0.20 waves rms of piston, tip/tilt error in the aberrated MTF 

profile for the tri-arm sparse aperture system in Figure 40(a).  

 

     
 (a) Filled (b) Tri-arm (c) Tri-arm (aberrated) 

 
Figure 40: Comparison of filled versus tri-arm sparse aperture MTF  

(Aberrated MTF: 0.20 waves rms of piston, tip/tilt error). 
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In addition to the two-dimensional images and three-dimensional surface plots demonstrated 

above, one can also plot slices of the individual transfer functions for evaluative purposes.  

To that end, Figure 41 plots the cardinal ξ– and η–plane axes for the transfer functions 

depicted above.  From this figure, it is apparent that the sparse aperture system (in blue and 

black) has significantly reduced modulation relative to its filled circular counterpart (in red), 

an attribute manifested by most sparse aperture configurations.  In addition, the very 

deleterious effect of aberrations at the level of 0.20 waves rms is also readily apparent, as the 

aberrated tri-arm MTF (in black) shows even greater loss of modulation, as well as 

significant new peaks and valleys, relative to a diffraction-limited case (in blue).  In fact, 

0.20 waves rms tends to reduce the modulation to the point that serious nulls are introduced 

in the spatial frequency coverage of the MTF.  This unique nature of the sparse aperture 

transfer function introduces interesting image quality effects, especially when the spectral 

scaling of the complex pupil involved in the aperture autocorrelation is considered. 

 

     
 

Figure 41: Comparison of filled versus tri-arm sparse aperture MTF  
(Aberrated MTF: 0.20 waves rms of piston, tip/tilt error). 

 

From a spectral perspective, the wavelength associated with the detected radiation has two 

principal means for influencing the overall character of the complex aperture OTF.  First, the 

wavelength essentially scales the pupil function diameter associated with the aperture 

autocorrelation.  As a result of this spectral consideration, the OTF region of support as 
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defined by the optical cutoff (D/λf) exhibits a size dependency that is inversely proportional 

to wavelength, with the result that shorter wavelengths produce larger regions of support in 

the spatial frequency plane (i.e., produce higher optical cutoff frequencies and better overall 

resolution).  The second primary mechanism of influence for the wavelength of the incident 

photons involves the phase term associated with an aberrated complex-valued aperture.  The 

impact of spectral diversity on this aspect of the complex pupil autocorrelation is far less 

intuitive than the previously described region of support influence.  As seen in equations 74 

and 75, the phase associated with a complex pupil is also inversely proportional to 

wavelength, implying the amplitude of the phase will exhibit a spectrally dependent scaling 

prior to undergoing the complex autocorrelation operation required to derive the aperture 

OTF.  Therefore, the aperture transfer function will exhibit two primary spectral 

dependencies, with the phase amplitude consideration having dramatic implications for a 

sparse aperture configuration due to subaperture phasing issues. 

 

When the complex, randomly distributed phase profile associated with an aberrated sparse 

aperture is additionally considered, the overall implication of the spectrally weighted phase 

amplitude becomes difficult to ascertain without use of a digital model.  Figure 42 displays 

empirically the impact of wavelength on the pupil phase profile and associated modulation 

transfer function for a nine-aperture tri-arm system with 0.25 waves rms of piston, tip/tilt 

error.  As described previously, this rms wavefront error was derived by computing the 

standard deviation of the OPD errors and converting to waves at the mean wavelength 

considered in this example.  On the top row of this figure, one will observe that the 

amplitudes of individual normalized subaperture phase profiles become reduced as the 

wavelength changes from 0.44 to 0.80 µm.  This reduction in phase amplitude correlates with 

reduced aberration strength at longer wavelengths, which can be seen in the MTF images on 

the bottom row of the figure where there are fewer nulls and generally higher modulation 

amplitude at longer wavelengths (compare, for instance the two plots at 0.44 to 0.80 µm).  In 

addition to this not-so-subtle aberration effect on the transfer function, one can also observe 

the obvious alteration in the overall region of support as the wavelength is varied.  From that 

perspective, the shorter wavelengths support higher spatial frequency coverage (i.e., better 

resolution) than that associated with longer wavelengths, which of course is highly intuitive.  
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In addition to providing insight into phenomenology, these sample products from the proof-

of-concept code demonstrate some of the utility of the model in evaluating the spectral issues 

associated with optical systems in a context that has not been sufficiently explored in the 

past. 

 

     
 

     
 (a) 0.435 µm (b) 0.619 µm (c) 0.801 µm 

 
Figure 42: Variation of phase profile and aperture MTF with wavelength 

with 0.25 waves rms of piston, tip/tilt error. 
 

4.6.3 Aperture PSF Evaluation 
 
As indicated earlier, a natural by-product of the aperture transfer function calculation 

illustrated in Figure 39 is the generation of the point spread function (PSF) or impulse 

response associated with the aperture.  Although not specifically used with the engineering 

model to develop image predictions, the computed point spread functions are output for 

insight and evaluative purposes.  As discussed at length previously, the actual image 

simulations are performed through a Fourier optics approach utilizing the optical transfer 

function instead.  The aperture PSF can be instructive, however, as it provides a spatial 
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domain characterization of the action of the imaging system on the incident object radiance 

field.  As a consequence, one can generally acquire greater intuitive feel for the nature of an 

imaging system by exploring the PSF as an indication of how a point source in the object will 

be degraded in the image plane. 

 

     
 (a) Filled (b) Tri-arm (c) Tri-arm (aberrated) 

 
Figure 43: Comparison of filled versus tri-arm sparse aperture PSF  

(Aberrated MTF: 0.20 waves rms of piston, tip/tilt error). 
 

To that end, Figure 43 provides surface plots of the aperture PSF that correlate with each 

aperture MTF in Figure 40.  Accordingly, in Figure 43(a) the filled circular aperture exhibits 

the classic Airy pattern or squared SOMB-function PSF that correlates with the CTRI-

function MTF in Figure 40(a).  For the diffraction-limited tri-arm sparse aperture 

configuration, the star-like MTF structure in Figure 40(b) corresponds to a PSF in Figure 

43(b) that has considerable reduction in the central lobe peak amplitude and increased energy 

in the “wings” relative to the circular filled impulse response.  This PSF character naturally 

leads to object points that are considerably blurred from the baseline image sharpness 

established by the filled aperture.  Finally, the impact of 0.20 waves rms of piston, tip/tilt 

error is displayed in Figure 43(c) for the tri-arm configuration, where multiple peak lobes and 

significantly increased “wing” power now arise in the observed PSF.  This will ultimately 

produce detected imagery that exhibits even poorer image sharpness.  Based on these 

exemplar diagrams, it is clear that the nature of the PSF provides good intuition into how the 

correlated OTF will impact overall detected image quality. 
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4.6.4 System OTF Evaluation 
 
Given a “pristine” object spectral radiance field that is appropriately sampled optically 

(including focal plane scale), the next step in the modeling approach outlined in Figure 22 is 

incorporation of system OTF effects.  The system transfer function captures the physical 

imaging processes that result in reduced modulation, contrast or sharpness in the radiance 

image.  Previous sections have detailed how the complex pupil function is developed and 

used to formulate the aperture OTF, including the appropriate spectral scaling rules.  The 

final system transfer function must then be generated to include effects beyond the optical 

configuration, including those due to atmosphere, image motion and the focal plane detector.  

To ultimately include these effects in the proof-of-concept simulation model, standard 

Fourier optical techniques were utilized to apply the cascaded system OTF to the frequency 

spectrum of the detected object radiance image acquired through DIRSIG or the resampled 

airborne imagery.  For the engineering model, expressions for the following system OTF 

components detailed in Chapter 3 were ultimately incorporated:  complex aperture OTF (i.e. 

complex autocorrelation of the exit pupil), detector aperture MTF, smear (linear motion) 

MTF, jitter (random motion) MTF and atmospheric turbulence MTF.  Obviously, the 

complex-valued aperture OTF captures the deleterious effect of system aberrations and/or 

subaperture phasing errors as described previously.  Therefore, the approach pursued in this 

research effort effectively captures most of the principal imaging system attributes that 

ultimately impact final image quality. 

 

Although all the transfer function components enumerated above certainly contribute to the 

overall detected image quality, the effects of the various mechanisms on the image quality 

are different.  The stratification in impact can be observed in figures 44 and 45, where slices 

of the individual system transfer function components have been plotted for sample filled 

circular and tri-arm sparse aperture configurations.  The imaging parameters that were 

investigated in these two figures are consistent with the nominal scenario appearing in Table 

2, including aberrations on the order of 0.10 waves rms, 0.5-pixel linear smear, 0.25-pixel 

random jitter, and Nyquist or better optical sampling.  Both figures clearly indicate that the 

dominant contributor to the total system transfer function (in black) entails the aperture OTF 

or complex autocorrelation of the pupil (in dashed blue).  In previous discussion, it has been 
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shown that the aperture OTF also exhibits the prominent spectral character associated with 

the total system transfer function.  As a consequence, although all the OTF components 

mentioned above are available in the proof-of-concept modeling capability, it is possible to 

perform a more focused investigation on the impact of the aperture OTF alone on restored 

image quality.  This observation provides most of the rationale behind the attention given to 

the nature of the aperture OTF in earlier sections. 

 

The baseline approach pursued in this research effort also entailed a more direct 

implementation of the physics associated with equation 37, thereby avoiding the spectrally 

averaged, polychromatic MTF implementation in equation 99 that marginalizes potential 

spectral effects.  For comparative purposes, the spectrally averaged OTF approach was 

implemented as well, providing the opportunity to explore the value and/or impact of the 

increased spectral fidelity associated with the more rigorous baseline implementation.  

Additional discussion, sample simulations and final results comparing these two system OTF 

options will be provided in the sections to follow.  With an object scene representing the 

spectral radiance reaching the entrance pupil of the imaging system, the developed model 

implementation involves direct application of the computed, spectrally variant system OTF to 

each wavelength-specific object scene in the spectral “data cube.”  After the application of 

noise, these detected signal spectral planes (including the effects of OTF) are numerically 

integrated across the modeled passband of interest, with appropriate scaling factors to acquire 

an estimate of the detected electrons count for each pixel in the scene.  Consistent with the 

governing equations in the previous chapter, this detected signal is subsequently quantized 

into digital counts to provide the final estimate of the detected image for the optical 

configuration under investigation.  Some additional discussion will be provided on the 

approach associated with the post-OTF system model in the sections that follow. 
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Figure 44: System MTF for a filled aperture 
with 0.10 waves rms of defocus error. 

 

 

     
 

Figure 45: System MTF for a tri-arm sparse aperture 
with 0.10 waves rms of piston, tip/tilt error. 

 

 

Simulation parameters in figures 44 and 45: 

Optical Sampling: 0.2==
pD

fQ λ ; Wavelength: 0.65 µm; F#: 18.0; Smear: 0.5p; Jitter: 0.25p 

 



 138

4.7    Quasi-Monochromatic Signal 

As an interim product of the simulation process, one acquires a quasi-monochromatic 

prediction of the detected “image” at each wavelength. The spectral interval between these 

quasi-monochromatic realizations is essentially driven by the spectral resolution associated 

with the airborne or synthetically derived object data utilized within the simulation.  

Ultimately, these monochromatic radiance maps undergo numerical integration to develop an 

estimate of the total signal across the passband.  However, they also can be instructive in 

highlighting the spectral character of the collection on a wavelength-by-wavelength basis, 

enabling one to perform comparative analyses between spectral content.  For instance, the 

degraded image scene (including the effects of system OTF and noise) for one 

monochromatic wavelength (perhaps 0.4 µm) can be quantitatively compared to another 

(0.45 µm for example) with all the correct spectrally diverse differences in the collection 

physics captured between them. 

 

Given quasi-monochromatic predictions that span the spectral passband under investigation, 

one can evaluate the quality associated with each spectral plane as an approximation to what 

features may be observed in the broadband polychromatic quality.  Of course, one must be 

cautious with any absolute conclusions drawn based on the monochromatic predictions alone, 

as the integration process across a detector passband tends to have an averaging effect over 

any observed monochromatic signal content.  As a consequence, the spectral effects that are 

observed in the monochromatic predictions have a tendency to be over-accentuated relative 

to the spectrally averaged signal content that is ultimately detected and restored across a 

broadband region of the electromagnetic spectrum.  Nonetheless, it must be recognized that 

the monochromatic spectral features are physically present in the integrated signal at some 

level and therefore provide excellent guideposts for identifying the source of observed 

spectral quality issues in the captured imagery. 

 

This pre-cursor quasi-monochromatic analyses becomes particularly powerful when one 

begins to study the post-processed Wiener filter restorations, as physical insight can be 

gained into the implications of “mis-boosting” the spatial frequency content at certain 

frequencies on a spectrally variant basis.  Obviously, if one could individually restore each 
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spectral plane, this mismatch between the level of restoration “boost” and the actual detected 

degradation in the spatial frequency content would be minimized.  However, such an exercise 

would not be a realistic reflection of the collection physics, as ultimately each quasi-

monochromatic spectral plane is boosted with a single transfer function constituent in a 

broadband application.  There are many options for identifying the transfer function within 

the Wiener filter, but the two most obvious choices involve (1) the system OTF associated 

with the central collection wavelength and (2) a spectrally averaged system OTF generated 

through a weighted sum of monochromatic transfer functions across the detector passband.  

Regardless of the selected choice, however, individual monochromatic spectral planes will 

exhibit various levels of mis-boost, since the single system OTF actually utilized in the 

restoration will inevitably not be identical to the one responsible for degrading the original 

spectral object in the first place.  As a consequence, initial investigations into the 

monochromatic nature of the sparse aperture imagery were conducted with the proof-of-

concept simulation tool to gain insight into the implications of this restoration mis-boost 

captured through the additional spectral fidelity in the modeling process.  In response to this 

objective, restorations that entailed both central-wavelength and spectrally averaged system 

transfer function constituents were explored. 

 

As examples of the types of quasi-monochromatic products that were investigated, Figure 46 

illustrates the degradation of an RGB spectral object through the Fourier optics approach to 

acquire monochromatic predictions for (b) filled circular and (c-d) tri-arm sparse aperture 

systems.  As anticipated, the figure demonstrates the remarkable loss in sharpness that occurs 

due to the reduced modulation exhibited by a sparse aperture system OTF relative to its filled 

aperture counterpart.  In addition, the presence of considerable wavefront error (0.20 waves 

rms in this case) leads to further loss in image detail, as observed by comparing the 

unaberrated and aberrated imagery predictions in Figure 46(c) and (d), respectively.  Closer 

investigation of scene content will also uncover the spectral physics, where quality clearly 

scales with wavelength but also manifests an interesting balance for the aberrated case, where 

the loss of resolution as wavelength increases is partially offset by differences in aberration 

strength.  In the end, it is the restored imagery that provides the ultimate indication of the 

impact of spectral artifacts, and monochromatic predictions certainly provide no exception to 
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this observation.  The general nature of the image restorations pursued in this research effort 

will be described in additional detail in Section 4.10.  In the interest of keeping the results as 

an integrated whole, specific examples acquired from this quasi-monochromatic simulation 

process (including a variety of restoration implementations) are reserved for future 

discussion in the chapter to follow.  

 

   
 (a) Original Object (b) Unaberrated Filled Aperture 
 

   
 (c) Unaberrated Tri-arm Aperture (d) Aberrated Tri-arm (0.20 waves rms) 

 

Figure 46: Quasi-monochromatic detected imagery predictions 
(prior to restoration). 
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4.8    Integrated Detected Signal 

As indicated in Figure 22, the proof-of-concept simulation predicts the integrated detected 

signal across the passband of interest.  To accomplish this objective, a unique numerical 

integration methodology utilizing matrix math operations within IDLTM was developed to 

avoid the implementation of software loops.  This integration process ultimately performs the 

numerical calculation captured in equations 35 and 37.  In addition to the object scene 

spectral radiance and system OTF or PSF, other key spectrally dependent system parameters 

captured in the integration process include the quantum efficiency and optical transmittance.  

With these fundamental imaging system and object scene characteristics, one can derive an 

appropriate estimate of the detected image scene at the focal plane for the optical 

configuration under investigation. 

 

The simulation code developed for this dissertation allows one to introduce any spectrally 

variant function for the detector quantum efficiency and optical system transmittance through 

an ASCII lookup table.  Based on the user-generated file, an interpolation occurs within the 

code to align the functional form of the expressions associated with each constituent of the 

numerical integration at common wavelengths.  For the purposes of this investigation, which 

entails a nominal visible panchromatic scenario, a spectral response curve consistent with a 

silicon detector and Indium Tin-Oxide (ITO) gates was selected to represent the quantum 

efficiency.  In addition, an arbitrarily-selected optical transmittance curve founded in 

principal on data acquired from the Hubble Optical Telescope Assembly (OTA) was 

developed for the research investigations documented in this dissertation.  See Figure 47 for 

representative plots of these system parameters as a function of wavelength.  As indicated, 

the choice of quantum efficiency and optical transmittance curves was somewhat arbitrary 

but certainly representative of a potential remote sensing platform implementation.  One, of 

course, could pursue any system representation for these values and not significantly change 

the conclusions that will be drawn in a subsequent chapter regarding the results acquired 

from this research effort.   
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Figure 47: Sample variation of system response and 
optical transmittance with wavelength. 

  

Given a radiometrically accurate object scene and the imaging system characteristics detailed 

previously, the numerical methodology described above produces predictions of the 

integrated signal that will be detected by the prescribed imaging system.  These simulations 

can be accomplished for both the spectral radiometric, polychromatic physics 

implementation as well as the spectrally averaged approach that utilizes a resampled, gray-

scale object image.  Providing samples of potential simulation products, Figure 48 compares 

the detected panchromatic imagery acquired from circular filled and tri-arm sparse aperture 

system configurations given a polychromatic input object.  For comparative purposes, the 

color object image was converted in Figure 48(a) to a gray-scale equivalent object through an 

appropriate spectral-weighting process. 

 

As with the quasi-monochromatic RGB simulations in Figure 46, the integrated 

panchromatic imagery exhibits the anticipated quality trends.  In Figure 48(b), for instance, 

the Nyquist-sampled filled aperture demonstrates only a slight degradation in image quality 

from the original object scene.  In addition, the unaberrated sparse aperture system in Figure 

48(c) exhibits significant reduction in image sharpness due to the differences in OTF 

modulation observed in diagrams such as Figure 41.  This image blurring effect due to 

system OTF modulation is further exacerbated in Figure 48(d) for the aberrated sparse 

aperture system with 0.20 waves rms of piston, tip/tilt error.  Clearly, optical aberrations 
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and/or subaperture dephasing (as is modeled in this scenario) can have a dramatic impact on 

the detected image quality.  As a result, these diagrams clearly highlight the need to restore 

sparse aperture detected imagery in order to recover image quality commensurate with the 

filled aperture case.  One should also note that these simulations involve the integrated 

spectral signal across the detector passband without the inclusion of system noise, which will 

be addressed in the subsequent section. 

 

   
 (a) Gray-Scale Object (b) Unaberrated Filled Aperture 
 

   
 (c) Unaberrated Tri-arm Aperture (d) Aberrated Tri-arm (0.20 waves rms) 

 

Figure 48: Integrated panchromatic detected signal predictions 
(noiseless and prior to restoration). 
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4.9   System Noise Evaluation 

With an appropriate modeling estimate acquired for the detected broadband signal (including 

the effects of system OTF and phase errors), the next step in the linear systems model 

outlined in Figure 22 is the inclusion of system noise.  In general, the noise implementation 

will be consistent with the theoretical development pursued in Section 3.14, assuming that it 

can be appropriately modeled as a statistically independent white noise source with zero 

mean and whose variance is driven by the characteristics of the system and collection under 

review.  With detailed system design information, one could address all noise sources 

considered in the theory section, including photon, quantization, dark current, signal chain 

and readout constituents.  However, since this research was focused principally on overall 

phenomenology and system sensitivity, the major noise contributors were emphasized, 

especially those with significant spectral impact.  

 

As a consequence, the detailed model for total system noise specified in equation 102 was 

simplified to include three principal components: total photon (shot) noise, dark current 

offset, and total read noise (including all noise effects that tend to be characterized through a 

constant bias in rms electrons).  In addition, for modest to high signal-to-noise ratios, it is 

reasonable to model physical Poisson processes (such as those typically observed with shot 

and dark current noise) by Gaussian distributions.  These simplifying simulation assumptions 

ultimately lead to the total system noise equation:   

 
[ ] [ ] [ ] [ ] ( ) [ ] [ ]yxnyxnTyxnyxyxfyxn ,,,,,,,,, 3read2intdc1obj σσλλλ ++∗≅ h  (145) 

 
where the shot, dark current and read noise terms appear consecutively and ni[x,y] represent 

zero-mean, unit-variance Gaussian noise distributions.  Of course, this assumption begins to 

break down as the SNR deteriorates under low spectral radiance imaging conditions.  For this 

reason, an alternative Poisson model has also been included in the proof-of-concept 

simulation tool if the investigator chooses to enable it for the appropriate noise terms.  In the 

expression above, the effects of read, electronics and quantization noise are effectively 

captured through a single constant “read” noise term.  In addition, the identified system noise 

model clearly indicates that shot noise exhibits the primary source of spectral dependence 
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amongst the individual noise terms.  Finally, one should note that equation 145 provides a 

simplified analytical expression for the total system noise intended to illustrate the 

underlying physical nature of the principal noise constituents.  In implementation, the noise 

model is actually developed in electron space, with the radiance component contributing to 

shot noise converted to detected electrons to allow summation with the other noise terms. 

 

The noise model implementation is accomplished in the spatial domain after the original 

spectral radiance image has been optically sampled by the imaging system, blurred by the 

total system OTF, and integrated to form a composite target signal image.  To support this 

modeling capability, IDLTM engineering software was developed to incorporate these system 

noise effects into the detected imagery prediction (i.e., prior to any digital post-processing or 

restoration).  Since the airborne spectral imagery should exhibit a degree of radiometric 

accuracy and DIRSIG has the inherent capability to perform high fidelity spectral radiometric 

calculations for the synthetically derived object scenes, the proposed modeling effort can 

accommodate spectrally structured noise (e.g., spectral variation in shot noise due to 

differences in the number of collected photons at various wavelengths).  For the baseline 

visible panchromatic scenarios pursued in this research activity, spectrally structured noise is 

not necessarily an important phenomenon to address given the integrated nature of the 

detected signal.  However, the implementation is clearly founded on the ability to address 

this noise effect, and it would be warranted for future multispectral application studies to 

explore its implications on overall spectral quality.   

 

One should note that the current implementation does not specifically address spectrally 

correlated noise, although inclusion of such a noise component is not strictly prohibited.  For 

instance, one could pursue a fairly standard technique utilizing principal component (PC) 

analysis in conjunction with routine statistical approaches to identify correlated noise 

distributions external to the modeling capability.  Exhibiting the correct statistical correlation 

properties desired on a wavelength-by-wavelength basis, these distributions could then be 

treated as an additive source in accordance with the current noise implementation.  Spectrally 

correlated noise is certainly a visible effect in most multi/hyperspectral imagery data sets and 

consequently represents a research thrust that would be of interest in the future.  For the 
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nominal panchromatic scenarios emphasized here, this level of detail was deemed 

unnecessary to address the general sparse aperture phenomenology issues of interest. 

 

Figures 49 and 50 provide samples of the noise model implementation and compare the total 

system noise associated with a typical sparse aperture system collection versus that for a 

filled circular aperture with commensurate image quality.  To achieve the latter, the 

integration time for the sparse aperture system was increased by an inverse factor of 3
fillF  in 

accordance with the theoretical development.  Given that scenario and 11-bit quantization, 

Figure 49 displays plots of the string of random noise counts applied to a 512x512 detected 

image scene for (a) a sparse aperture system with detection SNR of 273.7 and (b) a circular 

filled aperture with SNR equal to 33.7.  From these data, it is readily apparent that the sparse 

aperture system must significantly overcollect photons in order to achieve comparable image 

quality, resulting in higher total noise count, better SNR (recall more photons are being 

collected), and significantly longer integration times.  For the same scenario, Figure 50 

provides histograms of the total system noise associated with each system, clearly indicating 

the zero-mean Gaussian nature of the noise at these SNR levels.  In addition to illustrating 

the overall nature of the system noise for this scenario, these plots also provide confidence 

the noise model specified in equation 145 was implemented properly. 

 

For further illustration of the noise model approach, Figure 51 provides a series of 

predictions of sparse aperture imagery with various levels of noise.  As expected, increased 

noise leads to perceptible reduction in the detected image quality.  Obviously, one would 

expect this to be the case for the restored set of imagery derived from these samples, a 

concept which will be introduced in the next section and pursued in further depth in the final 

results discussed in the chapter to follow. 
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 (a) Sparse Aperture (SNR = 273.7) (b) Filled Aperture (SNR = 33.7) 

 

Figure 49: Sample white, Gaussian noise profiles. 
 

 

 

   
 (a) Sparse Aperture (SNR = 273.7) (b) Filled Aperture (SNR = 33.7) 

 

Figure 50: Sample white, Gaussian noise histograms. 
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 (a) No Noise (b) SNR = 273.7 
 

   
 (c) SNR = 70.9 (d) SNR = 37.8 

 

Figure 51: Variation of sparse aperture integrated panchromatic detected 
imagery predictions with signal-to-noise ratio (prior to restoration). 

 

4.10  Image Restoration 

Although originally characterized as goal-oriented research effort, the last step (image 

restoration) was deemed to be critical for understanding the end-to-end image quality 

associated with sparse aperture systems, including implications of the spectral fidelity 

introduced into the modeling process.  Based on the degraded output imagery that is 

ultimately acquired from these imaging platforms (e.g., Figure 51), it is essential that high-
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quality post-processing techniques are implemented to reconstruct the imagery without 

excessively boosting the noise.  To meet this objective, several different Wiener filter 

restoration variants consistent with the general algorithmic development contained in Section 

3.15 were implemented in the model.  Similar to the detected image prediction, all image 

restoration algorithms were implemented within the IDLTM software environment. 

 

The restoration algorithms pursued in this research were based on the standard approach of a 

conventional frequency-domain Wiener filter.  Slight variations in the general 

implementation approach were essentially based on assumptions of system transfer function, 

noise power spectrum, and object power spectrum knowledge.  These three parameters 

provided various levers for performing sensitivity studies within the overall Wiener filter 

construct.  Given the a priori knowledge available through the simulation process, the 

baseline Wiener filter approach relied upon complete knowledge of the optical transfer 

function and noise-to-object power spectrum ratio.  As such, this filter implementation 

theoretically represents a near-optimal restoration solution, as the degrading effects of the 

imaging system (including aberrations), the noise power spectrum, and object signal 

spectrum are assumed to be perfectly known. 

 

A number of different variants of the baseline restoration approach were pursued.  The 

primary alternative version assumed that the noise-to-object power spectrum ratio was 

unknown, which is much more consistent with a real-world collection scenario. In the latter 

implementation, one must manually select the power spectrum ratio and rerun the restoration 

until acceptable image quality is achieved.  Although time consuming, this approach has 

been frequently pursued by the photo-interpretation community for similar image quality 

exercises.  Since the author has no access to that level of expertise, results of this 

implementation likely depart considerably from the optimal but are instructive from the 

perspective of providing insight into the impacts of collection unknowns.  The key realism 

issue for this Wiener filter variant is the remaining assumption that the complex system 

transfer function and system aberrations (by extension) are perfectly known.  To address this 

problem, additional restorations were performed based on top-level variations in the 

knowledge of the exit pupil phase, thereby modeling the impact of lack of knowledge of 
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OPD or wavefront errors during a given collection scenario.  There are an infinite number of 

possible departures in wavefront knowledge that one could explore, so this exercise only 

represented an initial incursion into the general area. 

 

Obviously, the trade space associated with a given modeling scenario is fairly wide open 

even for the few identified restoration filter variables, not to mention the possible imaging 

system parameters that can be adjusted.  As a result, a limited number of restorations were 

actually performed during this investigation to place bounds on the nature of the quality 

performance envelope.  To that end, one must remember that the objective of this research 

effort was not to perform an exhaustive sensitivity study of various sparse aperture collection 

parameters.  It was specifically focused on developing a feasible proof-of-concept model and 

exploring the trade space to determine if such a sensitivity investigation was worthy of 

additional study.  In its basic form, the conventional Wiener filter implementation provided a 

key mechanism for addressing the overall system quality expected from various sparse 

aperture system configurations. As such, this relatively simple but mathematically elegant 

restoration filter enabled the critical assessment of quality implications arising from the 

enhanced spectral fidelity included in the proof-of-concept model developed for this 

dissertation.  Without this goal-level research pursuit, that evaluation would not have been 

remotely possible.  

 

With the baseline Wiener filter restoration methodology described above, one is able to 

compare different aperture configurations, as shown in figures 52 and 53 for filled circular 

and tri-arm sparse aperture systems.  These two figures contain simulation products from the 

implemented proof-of-concept model, including (a) the original spectral radiance object 

image, (b) a spectrally weighted panchromatic depiction of the object, (c) the detected image 

for the prescribed aperture configuration, and (d) the restored image acquired through Wiener 

filtering.  The scenario pursued in both figures was consistent with the details enumerated in 

Table 2, with the sparse aperture configuration experiencing a 0.20 waves rms piston, tip/tilt 

error at the mean wavelength of 0.55 µm.  The exit pupil associated with the sparse aperture 

was a nine-subaperture tri-arm configuration with abutting optics (i.e., fill factor of 0.173).  

For comparison, the filled circular aperture in this example was diffraction limited and 
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Nyquist sampled.  The system noise associated with these simulations was previously plotted 

in Figure 50.  In the development of the noise profiles, the integration time for the sparse 

aperture system was increased relative to the filled aperture dwell time by the cube of the 

inverse fill factor.  As a result, the detected imagery examples in figures 52 and 53 are 

representative of the type of predictions studied at length in this research. 

 

The restorations in these figures were performed assuming perfect phase error and system 

OTF knowledge, as well as utilizing the exact noise-to-object power spectrum ratio that 

degraded the original object in the first place.  Since the noise and object power spectra are 

known a priori through the modeling process, one can develop a single ratio expression 

(based on the integrated signal and noise content) that varies with spatial frequency to form 

the ideal Wiener filter.  As a consequence, the restorations that appear in figures 52(d) and 

53(d) are near-optimal, especially given the excellent detection SNR associated with them.  

Despite this fact, one sees that the sparse aperture prediction (although exhibiting very good 

quality) is not quite equivalent to its filled aperture counterpart.  There are a number of 

contributing factors for this physical phenomenon, not the least of which is the need to 

physically oversize the encircled diameter of the sparse aperture to achieve commensurate 

resolution.  Upon careful examination, one will also observe that noise is boosted and 

correlated through application of the Wiener filter restoration, an artifact that is particularly 

noticeable for the sparse aperture case.  This is a direct result of the increased boost required 

for the Wiener filter to restore the significantly demodulated system OTF associated with that 

collection system.  Accordingly, figures 52 and 53 provide excellent examples of the nature 

of the products that can be acquired and evaluated through use of the engineering model 

developed for this effort.  Considerably more detail for individual scenarios and collection 

apertures will appear in the discussion on results in the chapter to follow.   
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 (a) Original Object (b) Gray-scale Object 
 

   
 (c) Detected Imagery  (d) Restored Imagery 

 

Figure 52: Restored panchromatic imagery predictions (filled aperture). 
Fill Factor: 1.000; Wavefront Error: 0.0 waves rms; SNR: 33.7 
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 (a) Original Object (b) Gray-scale Object 
 

   
 (c) Detected Imagery  (d) Restored Imagery 

 

Figure 53: Restored panchromatic imagery predictions (tri-arm sparse aperture). 
Fill Factor: 0.173; Wavefront Error: 0.20 waves rms; SNR: 273.3 
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4.11   Gray-World Comparison 

The simulations appearing in figures 52 and 53 were developed with the enhanced spectral 

modeling fidelity targeted by this research effort (i.e., assuming a polychromatic world with a 

spectrally diverse object radiance field as input).  In an attempt to quantify the value of this 

enhanced modeling effort, a software routine was developed to implement the traditional 

gray-world modeling approach, where a resampled panchromatic gray-scale image is utilized 

as input into the simulation process.  In past investigations, the latter approach has almost 

exclusively been used to quantify the predicted image quality that can be achieved from 

conventional and sparse aperture systems alike.  As alluded to in previous discussion, there is 

some concern whether such a modeling approach is entirely appropriate for sparse aperture 

systems given their unique aperture transfer function character.  Consequently, the 

implementation of the gray-world modeling assumption should provide a comparative 

yardstick by which to measure the spectral implications of the enhanced model, the primary 

thrust of this research endeavor. 

 

The gray-world implementation closely parallels the more rigorous polychromatic model, 

with the principal differences associated with the spectral fidelity of the latter’s object scene, 

optical phase/path difference errors, system optical transfer function, image noise, and 

rigorous formulation of the signal integration represented by equation 8.  Correctly capturing 

the spectral physics for these imaging components in the higher fidelity implementation was 

not a trivial exercise, and considerable modeling effort was expended to implement a spectral 

radiometric model that satisfactorily incorporated them.  Fortunately, the implementation of 

the gray-world approximation was greatly facilitated by the basic foundation laid by the more 

complex polychromatic simulation capability.  Given a spectral radiance “data cube” for the 

object scene, a reasonably straight-forward implementation of the numerical integration 

discussed in Section 4.8 was developed without use of a degrading transfer function to form a 

gray-scale object image.  In addition, the means to compute a spectrally averaged system 

OTF from the individual quasi-monochromatic transfer functions with wavelengths spanning 

the detector passband of interest were put in place in accordance with equation 101.  The 

single realization of the system transfer function generated through this technique can be 

directly applied in a Fourier optics schema to the spectrally integrated object scene to acquire 
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a prediction of the spatially-variant detected image.  Through this process, one effectively 

arrives at a reasonable implementation of the traditional gray-world model consistent with 

equation 42. 

 

With the methodologies described above, several exemplar runs were performed to 

demonstrate the type of comparative analyses enabled by this modeling capability, as well as 

introduce the nature of the quality effects observed during restoration with the two model 

types.  Once again, considerably more simulation results, analysis and discussion will be 

provided in the next chapter.  For the purpose of illustration, figures 54 and 55 provide side-

by-side comparisons of the restored imagery acquired from the two simulation models for a 

tri-arm sparse aperture system configuration with 0.20 waves and 0.25 waves rms of 

wavefront error, respectively.  In (a) and (c) of these figures, one observes the restored image 

quality associated with the higher spectral fidelity, polychromatic-world model 

implementation.  Conversely, the restored imagery products acquired through use of the 

gray-world model approximation appear in (b) and (d) of these figures.  In a given figure, 

both model examples entail simulation of aperture configurations with the same overall 

aberrated phase profile and very good detection SNR (on the order of 273).  In addition, the 

depicted restorations rely upon the “optimal” Wiener filter description pursued in previous 

exercises in the discussion above.  With those considerations, the principal differences 

observed between the restorations should be attributable to the level of spectral fidelity 

incorporated into the individual models.  Accordingly, these figures provide some initial 

evidence of the implications associated with addressing the spectral effects in a sparse 

aperture system investigation with additional rigor than is typically pursued. 
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 (a) Restored Imagery (b) Restored Imagery 
 Polychromatic World Gray World 
 

   
 (c) Magnified Region of (a) (d) Magnified Region of (b) 
 Polychromatic World Gray World 

 
Figure 54: Comparison of restored panchromatic imagery predictions  

(Wavefront Error: 0.20 waves rms, SNR: 273.7).  
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 (a) Restored Imagery (b) Restored Imagery 
 Polychromatic World Gray World 
 

   
 (c) Magnified Region of (a) (d) Magnified Region of (b) 
 Polychromatic World Gray World 

 
Figure 55: Comparison of restored panchromatic imagery predictions  

(Wavefront Error: 0.25 waves rms, SNR: 273.2).  
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In figures 54 and 55, one generally observes a noticeable difference in the image quality 

associated with the polychromatic-world simulations on the left side relative to the gray-

world predictions on the right.  For instance, the polychromatic overview images on the top 

row of the figures appear to exhibit image structure, artifacts and rippling on a level of 

magnitude that detectably exceeds their gray-world counterparts.  Many of these enhanced 

artifacts in the polychromatic simulations coincide with image structure and edges that 

manifest some spectral character in the original spectral radiance object.  As a primary 

example of this observation, the edge of the terminal building seen in Figure 54(a) and (c) 

exhibits an inadvertent spectral signature in the object scene, a yellow-blue striping artifact 

due to interpolation errors in the original WASP airborne collection (see the RGB object 

image in Figure 53).  Interestingly, this clearly defined spectral content in the object 

introduced an artifact site in the restored imagery where increased, nonuniform edge ripple 

can be observed for the 0.20 waves rms wavefront error case.  The magnitude of this edge 

ripple effect in Figure 54(c) considerably outweighs the more benign adjacency effect due to 

edge overshoot apparent in Figure 54(d).  As a result, the inclusion of enhanced spectral 

fidelity has clearly resulted in quality implications that were not physically captured by the 

gray-world model for the sparse aperture system with 0.20 waves rms of wavefront error.  

Upon closer inspection, similar degraded quality effects can also be observed between the 

different colored automobiles in the parking lot.  Obviously, these vehicles represent rich 

diversity in spatial frequency and spectral scene content.  This combination of scene 

attributes is ripe for the introduction of spectral artifacts, as will be seen in the detailed 

results that appear in the next chapter. 

 

The observed artifact effects discussed above become even more apparent and destructive for 

the 0.25 waves rms wavefront error scenario depicted in Figure 55.  The spectral and 

frequency content of the parked automobiles in this simulation give rise to significant 

artifacting and rippling for the polychromatic model, as witnessed in Figure 55(a) and (c) of 

that figure.  The degrading effect of these artifacts is not, however, replicated in the gray-

world model results in Figure 55(b) and (d).  In addition, the overall level of deleterious 

quality effects arising in the enhanced spectral simulation has increased across the entire 

image plane at large for this scenario.  From these figures, it is apparent that the higher 
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spectral fidelity model captures a quality effect for these optical configurations that has not 

been adequately accommodated by the traditional gray-world model.  The physical 

phenomenon that gives rise to this spectral artifacting effect will be discussed at greater 

length in the next chapter.  One should note the appearance of spectral artifacts observed in 

these examples has occurred for dephased or aberrated sparse aperture configurations with 

relatively high rms wavefront error.  There is, of course, interest in attempting to bound the 

onset of occurrence for this unique spectral artifacting, with some fundamental understanding 

of the interplay between rms wavefront error, fill factor and signal-to-noise.  In addition, 

although the artifacts are clearly visible in the imagery, some sort of numerical quantification 

in the context of meaningful quality metrics is also of immense interest to this research effort.  

To that end, certain image quality metrics have been proposed for use in this research effort 

and will be described in the next section.   

4.12  Data Analysis Metrics 

Precision measurement of image quality through quantifiable metrics has effectively eluded 

the imagery community for many decades.  This can in large part be attributed to the 

psychophysical nature of the human observer responsible for assessing the overall quality of 

an imagery product.  To address this age-old problem, the photo-interpretation community 

introduced the concept of image interpretability and developed a quality yardstick referred to 

as the National Imagery Interpretability Rating Scale (NIIRS).  This 0-to-9 scale essentially 

categorizes images into certain “quality bins” based on the level of interpretable detail 

present in them (higher NIIRS corresponds to improved interpretability).  Significant time 

and effort has been dedicated to conducting so-called NIIRS studies of image quality given 

various samples of imagery products under different scenarios (e.g., ground sample distance, 

illumination conditions, signal-to-noise, scene content, post-processing, etc.).  The 

assessment of NIIRS to imagery products typically involves a statistical, psychophysical 

evaluation performed by trained photo-interpreters.  Such an exercise was clearly beyond the 

scope and capability of the resources available to this research effort. 

 

Over the years, however, an analytical formulation for NIIRS prediction has emerged in what 

is affectionately called an image quality equation (IQE).  In response to general IQE 
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development, it has been shown through numerous investigations and reported by 

Leachtenauer (1997) that interpretability (or NIIRS) typically varies with specific operational 

parameters, as observed in the following general-purpose expression: 

 
( )SNR/RERlogGSDlogNIIRS GMGM10GM10 rmsGedHcba −−+−=  (146) 

 
where GSDGM is the geometric mean ground sample distance, RERGM is the geometric mean 

relative edge response, HGM is the geometric mean overshoot due to post-processed edge 

sharpening, Grms is the noise gain due to sharpening, SNR is the signal-to-noise ratio, and a-e 

are appropriate constants for the imaging system and scene content under investigation.  

From this IQE expression, it is apparent that interpretability entails the complex interaction 

of a number of parameters. This is further complicated by the fact that the NIIRS dependency 

expressed above generally varies with both scene content and imaging system configuration.  

However, based on the general form of equation 146, it seems reasonable to explore the 

individual constituents of the overall interpretability expression as a means for quantifying 

the image quality associated with a given collection scenario.  With that premise, the relative 

edge response (RER), noise gain (Grms), and signal-to-noise ratio (SNR) parameters 

constituted the principal metrics for assessing the quality associated with a particular 

simulation product in this research effort.  The general nature of these physical quantities will 

be discussed in additional detail in the following sections. 

 

4.12.1  Signal-to-Noise Ratio 
 
Many different expressions have been proposed in the literature for quantifying the signal-to-

noise ratio (SNR) for a given collection scenario.  Of course, all of the SNR conventions 

have entailed an appropriate ratio of signal amplitude to noise level.  The principal difference 

between them has generally been associated with their definition of the individual 

constituents in the ratio (i.e., how to define target signal and image noise).  Relying upon a 

relatively standard convention frequently cited in the literature, this research effort essentially 

defined SNR as consisting of the ratio of mean target signal to the standard deviation in the 

image noise level: 
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noise

signalm
σ

=SNR  (147) 

 
where msignal is the mean signal level and σnoise is the standard deviation of the noise.  This 

SNR metric is derived from the detected imagery products acquired through the proof-of-

concept simulation model, from which the mean signal level from the original object spectral 

radiance field and the standard deviation in the applied statistically independent noise profile 

are known a-priori.  For comparative purposes, the engineering code also computes an 

alternative image-based SNR metric founded on the ratio of the variance in the detected 

image signal counts to the variance in the additive noise counts.  As discussed by Lim (1990) 

and Schowengerdt (1997), these parameters lead to another fairly common variance-based 

expression that assumes the following form: 
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The general relation identified above provides some additional insight over the standard 

expression in equation 147, since it represents a relative measure of signal-to-noise “power.”  

As is common practice with power expressions, the image-based SNR formulation 

introduced above can be re-expressed in decibels (dB) as follows: 
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to form a more traditional power ratio figure of merit.  As a matter of choice, all the SNR 

metrics developed in the above expressions are available to the investigator within the proof-

of-concept simulation capability.  For consistency, one will find that this dissertation relies 

almost exclusively upon equation 147 to specify the SNR associated with a given simulation 

product or scenario. 
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4.12.2  Relative Edge Response 
 
As documented by Leachtenauer (1997), the next quality metric used in this research was 

normalized relative edge response (RER), which is directly related to the perceived sharpness 

of an image.  As such, RER is a very fundamental quantifier of overall image quality or 

interpretability.  Support for this observation is provided by the NIIRS expression in equation 

146, where a combination of the leading coefficient amplitudes and the logarithmic nature of 

the terms lead to the GSD and RER as the dominant drivers in determining image 

interpretability.  Most metrics that quantify optical resolution typically capture the nature of 

the system impulse response or transfer function in some manner.  Consistent with this 

statement, the RER parameter is based upon the total system optical transfer function, 

including the effects of image post-processing.  Since the RER is ultimately derived from the 

post-restoration system optical transfer function, it is useful to explicitly state the form of the 

equivalent system transfer function [ ]ηξ ,restoreH  of the restored imagery: 
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where [ ]ηξ ,wienerW  is the frequency-domain Wiener filter, [ ]ηξ ,H  is the imaging system 

optical transfer function (prior to restoration), [ ]ηξ ,nS  is the noise power spectrum, and 

[ ]ηξ ,fS  is the power spectrum associated with the object scene.  This post-processed transfer 

function is the primary component of the derived relative edge response. 

 
To first order, the RER essentially represents the slope of the normalized edge response of 

the optical system, which measures the degradation of the system on a STEP-function input.  

In one dimension, the edge response along a cardinal axis is: 
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where [x,y] are the relative positions of the response from the actual horizontal edge of a 

detector pixel and [ξ,η] are the spatial frequencies measured in cycles per unit length 

sampled by the detector.  Similar quantities can be computed for each cardinal axis along 

which the system OTF exhibits unique symmetry.  This could be important in the case of 

sparse aperture systems that are not symmetric.  For convenience, one can rearrange the 

terms in these expressions to introduce a SINC function and develop general-purpose 

expressions for the system edge response along the x- and y-axes: 
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where the metric has been computed along those axes for the purposes of illustration.  These 

axial metrics also are used as figures of merit for conventional aperture systems, which tend 

to exhibit some symmetry that enables use of a geometric mean RER.  

 

Samples of the imaging system edge response for two different aperture configurations 

appear in figures 56 and 57.  For instance, Figure 56 illustrates the character of the system 

edge response for a Nyquist-sampled filled circular aperture under the nominal imaging 

scenario specified in Table 2.  Similarly, Figure 57 provides examples of edge response 

curves for an aberrated tri-arm sparse aperture configuration under similar imaging 

conditions.  In these figures, the red plot indicates the edge response that would be observed 

prior to any applied restoration (i.e., it represents the detected edge response).  On the other 

hand, the blue plot identifies the post-restoration edge response that is utilized in a typical 

RER calculation.  In both figures, it is readily apparent that the applied Wiener filter 

restoration significantly improves the sharpness of the edge, thereby resulting in better 

overall image quality for these particular scenarios.  Conversely, one will also note that the 

Wiener filter introduces some overshoot (manifested by the peaks and valleys on either side 

of the restored edge) that ultimately induces a small amount of ripple that tends to reduce 

perceived quality.  Past psychophysical studies have shown, however, that the human 



 164

observer can tolerate a certain level of this deleterious effect if it is accompanied by an 

appropriate amount of image sharpening.  In addition, the human visual system actually 

prefers a certain amount of this so-called adjacency effect over no overshoot whatsoever.  

With this background, the sample edge response curves provided below certainly appeared to 

the untrained observer to fall into the category of improved image quality.  In a separate 

verification exercise, several processed edge images were empirically measured to confirm 

the accuracy of the theoretical implementation of the edge response metric depicted in the 

figures.  Within the interpolation error associated with physically measuring 0.5-pixel with 

sampled image data, the results acquired with theory and measurement appeared to be 

statistically comparable.    

 

Another interesting observation that surfaces with regard to the sparse aperture case in Figure 

57 is the seriously blurred nature of the edge, clearly defining the need to apply a restoration 

technique that sharpens the edge to a level commensurate with the filled aperture product.  

As observed in the restored edge response curve (in blue), the selected Wiener filter succeeds 

in accomplishing that objective, although the asymmetry associated with the sparse aperture 

system transfer function is clearly evident in the differences in the restored edges along the 

two cardinal axes.  These data provide a clear indication that the RER derived for a sparse 

aperture system must consider the implications of different edge response characteristics 

along various angular cuts of the spatial plane.  Based on the general discussion above, it is 

also clear that the quantitative RER metric (which is based on the edge response 

characteristics displayed below) captures the qualitative character of the simulations shown 

previously, providing evidence that it represents an appropriate metric for the task at hand.  

Although by no means exhaustive, this metric will certainly help quantify the overall image 

quality observed in given image simulation products. 
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 (a) x-axis (b) y-axis 

 

Figure 56: Sample edge responses before and after restoration (filled aperture). 
 
 

   
 (a) x-axis (b) y-axis 

 

Figure 57: Sample edge responses before and after restoration (sparse aperture). 
 

 

The desired RER metric is determined to be the slope of the edge response measured 

between two points located 0.5 pixel on either side of a physical edge.  With this convention, 

the RER in the x-dimension would assume the general form: 
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which is acquired through the appropriate substitution from equation 152 and subsequent 

reduction of the resulting expression.  In a similar fashion, one can derive the following 

equation for the RER in the y-dimension:  
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As alluded to previously, the two RER expressions are functions of the post-restoration 

system transfer function.  Therefore, the relative edge response clearly represents a good 

indictor of the restored optical resolution associated with a particular image.  Given the RER 

expressions along the cardinal axes of the spatial plane (i.e., along the horizontal and vertical 

orientations), one would traditionally compute the geometric mean according to the 

relationship: 

 
[ ] 2/1

yxGM RERRERRER =  (155) 

 
and use this average RER metric to help quantify the optical quality for most conventional 

imaging systems.  As discussed above, one must be cautious in blindly applying the derived 

geometric mean RER to sparse aperture systems due to the unique cutoff frequency structure 

exhibited by these systems.  Given the transfer function asymmetry that frequently arises 

with sparse aperture systems (especially in the presence of aberrations), one may have to rely 

upon an effective RER computed over the OTF area of support for these unique imaging 

systems, depending upon the conditions of the collection.  

 

Recognizing the unique asymmetry present in sparse aperture systems, Fienup (2004) 

proposed an area-based effective RERarea which averages the RER calculation over all 

angular cuts through the system transfer function.  The rationale given for reporting an 

arithmetic mean RER metric was that it could jointly handle the unique structure associated 

with sparse aperture transfer functions (both diffraction-limited and aberrated), as well as 

converge reasonably closely to the traditional geometric mean when the optical resolution 

along the x- and y-cardinal axes was similar.  Based on this thought process, Fienup 
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developed the following analytical expression for an area-weighted RER representing the 

arithmetic mean of individual RER calculations: 
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where Re{⋅} represents  the real part of the operand and N is the number of samples in the 

digital Fourier transform in the ξ- and η-directions, respectively.  Fienup indicates that this 

expression is valid when the imaging system is Nyquist sampled or better, which is generally 

the case for the exercises pursued in this dissertation. 

 

During the course of this research, several different RER implementations were investigated 

on an anecdotal basis.  The latter included the simple geometric mean RERGM, the arithmetic 

mean RERarea analytical expression proposed by Fienup, and a discrete arithmetic mean 

REReff generated through the average of ~100 angular cuts through the optical transfer 

function.  This exercise consistently appeared to show that all three potential RER metrics 

provided similar results to within an accuracy of ≤5% of each other for the range of optical 

configurations studied in this research effort, even under aberrated/dephased subaperture 

conditions.  Based on these investigations, it is likely that the multiple effects of the spectral 

averaging that occurs during signal integration, the serious demodulation that occurs when a 

sparse aperture system experience aberrations, and the area weighting that occurs through the 

arithmetic mean RER calculation specified in equation 156 results in an effective cutoff 

frequency that does not manifest as much asymmetry as one might surmise.  As a 

consequence, one could potentially contend that the arithmetic and geometric mean RER 

metrics both have some merit for quantifying this key optical parameter, even for aberrated 

sparse aperture systems.  For comparative purposes, both the geometric mean and Fienup’s 

arithmetic mean formulation are output by the proof-of-concept simulation model for the 

investigator’s use.  
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4.12.3  Noise Gain 
 
As stated previously, sparse aperture systems typically exhibit a demodulated optical transfer 

function that requires some post-processing technique to restore image quality.  That 

characteristic of these unique imaging systems was certainly highlighted by the simulated 

imagery in Figure 53(c) and (d), as well as many other exemplar model products that appear 

throughout this chapter.  In the process of sharpening edge feature structure within degraded 

imagery, these restoration filters tend to amplify the image noise σnoise as well, producing an 

effect referred to as noise gain.  This noise amplification can be captured in the measured 

signal-to-noise ratio by multiplying the standard deviation of the noise by the noise gain Grms.  

Given an MxN spatial domain sharpening kernel, which for purposes of this research was a 

Wiener filter, the noise gain is traditionally computed via the following general relation: 
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where [ ]yxwwiener ,  is a spatial domain representation of the Fourier domain Wiener filter 

[ ]ηξ ,wienerW  actually implemented in the engineering model.  Accordingly, the sharpening 

filter identified in this noise gain expression is essentially the inverse Fourier transform of the 

applied Wiener filter: 

 
[ ]{ }ηξ ,1

wienerwiener Ww −=F  (158) 

 
Through the application of linear mathematics, one can recast the general noise gain 

expression stated in equation 157 into a form that entails the explicitly known Fourier 

domain filter utilized in the modeling algorithms.  Accordingly, after some manipulation one 

can demonstrate that the noise gain may also be represented by the following formulation: 
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This expression was ultimately utilized in the proof-of-concept modeling capability to 

quantify the noise gain term.  To first order, its implementation was separately verified 

through empirical measurement of the apparent noise gain in a uniform shadow region of a 

processed image.  As indicated in the discussion regarding figures 52 and 53, the Wiener 

restoration process pursued in this dissertation has a tendency to correlate the image noise in 

addition to amplifying it.  As observed in figures 54 and 55, this noise correlation can have a 

dramatic negative impact on the overall quality or interpretability of the imaged scene.  

Unfortunately, although the noise gain expression developed above captures the effect of 

noise amplification apparent in a restored image, the simultaneously occurring noise 

correlation is a phenomenon that will not be adequately quantified by the metric.  Equally 

unfortunate, there is no other known metric that appears to be available to address this 

correlation effect, short of a full-fledged NIIRS evaluation by trained observers. 

 

4.12.4  Normalized rms Error 
 
The final evaluation metric that will be introduced for use in quantifying observed image 

quality effects is the normalized root-mean-square error (nrmse).  This is a very straight-

forward metric that can be useful when a-priori knowledge is available on a “truth” image, or 

the pristine object scene in this case.  Since the simulation developed for this dissertation 

requires the object scene as input in order to produce the final simulated image product, truth 

data is readily available to determine exactly how the restored image varies from the original 

object from the perspective of image-wide statistics (i.e., on an rms basis).  With the 

supported foundation to compute this metric, the nrmse is evaluated according to the 

following expression: 
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where [ ]yxf ,obj  is a spectrally weighted average of the original object scene scaled to focal 

plane counts and [ ]yxf ,ˆ
obj  typically represents the restored digital imagery in counts.  Of 

course, one can also replace the restored image array term in the expression above with the 

focal plane digital image array to acquire a quantitative figure of merit on how the detected 

image (prior to restoration) varies from the original object scene.  Obviously, the principal 

drawback in utilizing a statistical measure like nrmse is that it captures quality differences 

globally across the image.  As a result, some of the local quality effects observed in the 

figures above, including artifacting, may be glossed over in the image-wide statistics 

(especially from an absolute amplitude perspective).  Accordingly, it will be important for 

one to draw conclusions about the quality implications of certain model scenarios based on 

use of all the quantitative metrics introduced above in conjunction with critical visual 

inspection of the results. 
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Chapter 5  

Results 

Given the general approach introduced previously, this chapter details specific results 

acquired from the proof-of-concept sparse aperture system modeling capability developed in 

support of this research effort.  It also provides summaries of the top-level system trade 

studies that were performed in an attempt to characterize unique quality issues associated 

with sparse aperture configurations.  In general, the emphasis of the following discussion is 

to demonstrate application of the basic modeling theory in an attempt to deduce whether 

sparse aperture systems have inherent spectral issues that must be addressed in order to make 

them practical alternatives for future collection systems.  To that end, Section 5.1 below 

provides a discussion on the general nature of the optical transfer function for the principal 

configuration explored in this dissertation, the nine-subaperture tri-arm sparse aperture 

system.  As a precursor to the final panchromatic model discussion, Section 5.2 discusses 

interim quasi-monochromatic simulation results that were acquired early in the research.  

This is followed up in Section 5.3 with the actual integrated panchromatic signal analyses 

performed with the full-fidelity polychromatic model implementation discussed in Chapter 3.  

The model results summarized in this section effectively demonstrate satisfaction of the one 

remaining dissertation requirement enumerated in Chapter 2, implementation of a proof-of-

concept modeling construct to evaluate spectral issues in general sparse aperture systems.   

 

With that foundation established, Section 5.4 subsequently compares and contrasts the 

dissertation results from the polychromatic model with those acquired from a more 

traditional gray-world model.  The latter was developed in response to the need to better 

address the value of the enhanced spectral fidelity in the modeling process in terms of the 

quality implications.  Section 5.5 discusses use of different constituent terms in the Wiener 

filter implementation, an offshoot of the investigations that were performed in the image 

restoration arena to confirm that observed effects were induced by the spectral physics and 

not the specific nature of the filter design.  Finally, Section 5.6 briefly describes some 

analysis excursions that were performed over the course of this research effort to demonstrate 
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the integrity and/or utility of the overall computer model.  In this final section, bullet 

summaries are provided for such analyses as filtering under different noise conditions, 

changing the integration time associated with a given collection, varying system optical 

phase knowledge in the restoration process, and comparing the quality effects of subaperture 

dephasing versus the existence of classic optical aberrations.  As a final note, one is referred 

to the Appendix for summaries of alternative panchromatic simulation results acquired from 

optical pupils other than the nominal tri-arm system, including the Golay-6, annulus, and 

phased-petal aperture configurations.    

5.1  Transfer Function Character 

As discussed in Chapter 3, the general linear systems model implemented in this research 

effort has several key components for predicting the nature of the imagery detected by a 

given optical configuration.  From an imaging system perspective, one of the principal 

components that influence the character of detected imagery is obviously the complex-valued 

system transfer function.  This critical piece in the overall imaging process has unique 

character for sparse aperture systems due to the interaction between subapertures that arise 

from the auto-correlation of the pupil function.  This phenomenon has been discussed at 

some length previously.  However, it becomes an even more dramatic effect when individual 

subapertures are dephased or aberrated, as a distinct structured character is induced on the 

aperture transfer function.  This can be observed in the various transfer function diagrams in 

figures 58 through 60, which depict the aperture MTF for a tri-arm sparse aperture 

configuration with a fill factor of 0.173 subjected to various levels of aberration.  In all three 

figures, a random phase profile has been applied across the exit pupil to simulate piston, 

tip/tilt in the regime from 0.10 to 0.25 waves rms of wavefront error.  For comparative 

purposes, the diffraction-limited character of the aperture MTF appears in (a) of each figure.   

 

The following series of diagrams provide excellent insight into the overall character of a 

sparse aperture transfer function in the presence of aberrations.  In Figure 58, for instance, 

top-view “images” of the minimum wavelength MTF are depicted as a function of aberration 

strength.  In reviewing these diagrams, one will note that the most prominent effect of 

increased wavefront error is the introduction of more zeroes (represented by the black region 
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in the interior of the MTF) in the spatial frequency coverage.  Closer observation will 

additionally highlight the fact that the amplitude associated with individual spatial 

frequencies has also diminished.  This character in the MTF obviously translates into more 

degradation in the detected imagery as the wavefront error increase across the collection 

aperture.  The question that remains outstanding and will be addressed in subsequent sections 

is whether the restored imagery associated with these wavefront errors is deemed of 

acceptable quality.  A final remark that should be made with regard to the figure below is that 

it depicts the MTF character for a single wavelength.  Longer wavelengths in the detection 

passband will exhibit shorter optical cutoff frequencies (i.e., have reduced coverage in the 

spatial frequency plane) and reduced amplitude in the observed rms wavefront error (due to 

wavelength scaling of the optical path differences).  As a consequence, the aperture MTF for 

alternative collection wavelengths will support image modulation that is fundamentally 

different as a function of spatial frequency than that observed in Figure 58.  This mismatch in 

image modulation will be the source of a spectrally induced quality effect that will receive 

extensive coverage in the discussion to follow. 

 

As an alternate illustration of the unique character of aberrated sparse aperture transfer 

functions, Figure 59 displays three-dimensional topographic views of the same functions 

depicted in Figure 58.  This particular view provides considerably more insight into the 

destructive nature of aberrations since the reduced modulation as a function of increased 

wavefront error is readily apparent.  This figure also highlights the extremely oscillatory 

nature of the aberrated sparse aperture transfer function, as significant structure in the context 

of peaks and valleys within the mid- to high-frequency range.  Once again, one is reminded 

that these transfer function plots represent a single wavelength, and alterative spectra within 

the collection passband will exhibit vastly different structure as a function of spatial 

frequency.  This phenomenon can be observed in the two-dimensional MTF plots in Figure 

60, which depict slices through the spatial-frequency surface plots appearing in Figure 59 and 

incorporate transfer function data for two additional collection wavelengths.  As indicated 

previously, one can again observe that increased wavefront error has the tendency to reduce 

the modulation and ultimately introduce more nulls in the spatial-frequency plane.  This will 

unquestionably have a deleterious effect on the detected image quality. 
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 (a) diffraction limited (b) 0.10 waves rms piston, tip/tilt 

 

   
 (c) 0.20 waves rms piston, tip/tilt (d) 0.25 waves rms piston, tip/tilt 

 
Figure 58: Effect of various levels of rms wavefront error on a 

tri-arm sparse aperture modulation transfer function. 
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 (a) diffraction limited (b) 0.10 waves rms piston, tip/tilt 

 

   
 (c) 0.20 waves rms piston, tip/tilt (d) 0.25 waves rms piston, tip/tilt 

 
Figure 59: Effect of various levels of rms wavefront error on a 

tri-arm sparse aperture modulation transfer function. 
 

In addition to the relatively intuitive effect of reduced modulation, one will observe that 

increased wavefront error in sparse aperture systems also creates a rapidly varying oscillation 

in the modulation that changes significantly with wavelength.  This attribute of sparse 

aperture transfer functions tends to be unique among optical systems and ultimately gives 

rise to a mismatch between the system modulation manifested by individual wavelengths.  In 

Figure 60, one can readily see this relative mismatch between the imaging system modulation 
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for different wavelengths at given spatial frequencies.  In addition, the so-called mismatch is 

exacerbated as the rms wavefront error increases from zero in the diffraction-limited case to 

0.25 waves rms in the most aberrated scenario depicted in the figure.  As alluded to above, 

there are regions in the spatial frequency plane where the minimum collection wavelength 

exhibits a valley in the transfer function at a location where the maximum supports a peak in 

modulation, and vice versa.  One can easily anticipate that this relative mismatch between 

wavelength-dependent transfer functions is present throughout the spectrum of possible 

collection wavelengths.  The reason this relative mismatch is deemed to be so problematic is 

that the final integrated signal composed of this spectral content must be restored through use 

of a single filter.  Accordingly, one cannot possibly design a restoration filter that properly 

boosts the frequency spectra of the object scene associated with each wavelength in a near-

optimal manner.  Inevitably, at certain spatial frequencies the selected filter will overboost 

the modulation associated with given object spectral content and underboost that associated 

with others.  As a consequence, an object scene that exhibits strong spectral and spatial-

frequency content is highly likely to suffer the effects of this mis-boost, thereby resulting in a 

spectrally induced quality effect.  The nature of this quality effects will be explored in more 

detail in the sections which follow. 

 

To demonstrate the relative uniqueness of the conjectured effect, Figure 61 provides a 

comparison of the spectral character of the transfer function for (a) an aberrated tri-arm 

sparse aperture and (b) a diffraction-limited filled circular aperture configuration.  As 

observed in this figure, the sparse aperture exhibits the classic oscillatory, spectral mismatch 

described previously, while its filled counterpart displays a smoothly varying, monotonically 

decreasing transfer function.  As a result of the latter, a restoration filter that is applied in the 

filled aperture case will produce a smoothly varying mismatch that largely becomes 

undetectable in the final reconstruction.  There are no sharp discontinuities in the spatial-

frequency coverage that could give rise to rapid, oscillatory mis-boost at certain frequencies 

that the human eye can readily detect.  In addition, the relatively high modulation exhibited 

by the original imaging system implies that the actual magnitude of the boost required for 

restoration is not significant, ensuring that any existent mis-boost is not excessively 

amplified.  As will be seen later, however, even highly aberrated filled aperture systems will 
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not manifest the spectrally induced quality effects that will become apparent in the sparse 

aperture case.  In this aberrated case, even though the filled transfer function becomes highly 

demodulated and exhibits some oscillatory character, it still remains relatively smoothly 

varying relative to its sparse aperture counterpart.  Therefore, the rapidly varying, oscillatory 

nature of sparse aperture transfer functions must be the principle contributor for inducing the 

effect which will be introduced in the next two sections. 

   

   
 (a) diffraction limited (b) 0.10 waves rms piston, tip/tilt 

 

   
 (c) 0.20 waves rms piston, tip/tilt (d) 0.25 waves rms piston, tip/tilt 

 

Figure 60: Effect of various levels of rms wavefront error on 
tri-arm sparse aperture spectral transfer functions. 

 



 178

 

 

 

   
 (a) Tri-arm Sparse Aperture (b) Filled Circular Aperture 
 0.24 waves rms piston, tip/tilt diffraction limited 

 
Figure 61: Comparison between the spectral transfer functions 

of an aberrated tri-arm sparse aperture and a 
diffraction-limited filled circular aperture. 

 

All of the plots described above entail incoherent but quasi-monochromatic realizations of 

the aperture transfer function.  Ultimately, these monochromatic transfer functions modulate 

a polychromatic object scene at given wavelengths and the resulting signal photons are 

subsequently “integrated” through the action of the detection device.  This integrated signal 

represents what is actually detected by the imaging system and essentially constitutes a 

spectral averaging of the monochromatic effects described above.  This process is rigorously 

performed within the enhanced spectral fidelity model generated for this research effort, so 

the true polychromatic character of the detected signal is adequately captured.  The 

conventional gray-world model, on the other hand, develops a so-called spectrally averaged 

“polychromatic” OTF from the individual monochromatic transfer functions prior to their 

application to a resampled gray-scale object scene.  In this manner, the gray-world model 

does capture some of the spectral averaging character that ultimately occurs with the transfer 

function through the integration process in the detector.  As an example of what the detection 
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process does to the “effective” transfer function over the collection passband, one should 

observe the series of diagrams in figures 62 through 65.  In Figure 62, a typical tri-arm sparse 

aperture system has been configured with a random piston, tip/tilt phase profile that 

represents a wavefront error of 0.24 waves rms.  Given this aperture configuration, figures 63 

and 64 provide illustrations of the monochromatic MTF at the minimum collection 

wavelength as well as the spectrally averaged, effective MTF across the detection passband.  

As observed in these figures, the spectrally averaged MTF represents a “radially-smoothed” 

version of the individual monochromatic transfer functions, with reduced overall modulation 

relative to shorter wavelengths and less overall nulling across the spatial frequency domain 

(alternate wavelengths effectively “fill in” the zeroes associated with other wavelengths).  

This averaging process does represent a real-world effect due to the photon integration that 

occurs in the detection sensor.  Consequently, the spectrally averaged transfer functions do 

have a physical basis in actual imaging conditions and represent a good single approximation 

of the action of imaging system on the incident spectral radiance profile or object scene.  

 
 

 
 (a) Two-Dimensional Distribution (b) Three-Dimensional Surface 

 
Figure 62: Random phase profile for the central wavelength of an aberrated 

tri-arm sparse aperture (0.24 waves rms piston, tip/tilt error). 
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 (a) Monochromatic (0.45 µm) (b) Spectrally Averaged 

 
Figure 63: Comparison between quasi-monochromatic and spectrally weighted 

“polychromatic” transfer functions for an aberrated tri-arm 
sparse aperture system (0.24 waves rms piston, tip/tilt error). 

 
 

   
 (a) Monochromatic (0.45 µm) (b) Spectrally Averaged 

 
Figure 64: Comparison between quasi-monochromatic and spectrally weighted 

“polychromatic” transfer functions for an aberrated tri-arm 
sparse aperture system (0.24 waves rms piston, tip/tilt error). 
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 (a) Tri-arm Sparse Aperture (b) Filled Circular Aperture 
 0.24 waves rms piston, tip/tilt diffraction limited 

 
Figure 65: Comparison between quasi-monochromatic and spectrally weighted 

system transfer functions for an aberrated tri-arm sparse aperture 
and a diffraction-limited filled circular aperture. 

 

Figure 65 provides an illustration of how the spectrally averaged MTF compares with 

individual transfer functions at discrete wavelengths.  In both diagrams, the spectrally 

averaged MTF appears as a black dotted line and is plotted relative to red (0.65 µm), green 

(0.55 µm) and blue (0.45 µm) monochromatic transfer functions.  In Figure 65(a), one 

observes that the radial smoothing in the spectrally averaged transfer function mitigates some 

of the oscillatory character associated with the aberrated tri-arm system MTF at discrete 

wavelengths.  As this is a real-world effect, one would anticipate that a quasi-monochromatic 

prediction of sparse aperture system quality would typically result in more significant image 

structure in restored products and generally overstate the nature of any spectrally induced 

quality effects. The single realization of the spectrally averaged MTF also highlights the fact 

that use of it alone in a polychromatic simulation fails to adequately capture the true spectral 

modulation one would anticipate with aberrated sparse aperture systems.  In Figure 65(b), 

one sees that the spectrally averaged MTF for the filled circular aperture case is once again 

smoothly varying and monotonically decreasing.  Such character is entirely consistent with 

the previous quasi-monochromatic discussion, so the real-world averaging effect of the 
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detector only confirms the contention that conventional apertures exhibit transfer functions 

that are conducive to restoration of spectrally variant scene content.  In addition, it is 

interesting to note that the spectrally averaged MTF for the filled aperture is more or less 

consistent with the central wavelength monochromatic transfer function.  That is certainly 

not the case for the sparse aperture system.  As a result, this diagram highlights why use of 

the central wavelength monochromatic OTF represents a good approximation for 

conventional aperture systems but is likely to be highly suspect for sparse aperture 

configurations.  To that end, one should avoid using monochromatic predictions of sparse 

aperture image quality as an absolute measure of restored quality.  One will observe that such 

predictions have been included in the next section of this dissertation to gain insight into the 

physical processes that ultimately feed the final integrated signal products, not as an absolute 

quantification of the derived image quality one should expect for these systems. 

 

Although a gray-world model should provide reasonable approximations of the image quality 

prior to restoration, the figures above indicate there may be issues with such an approach in 

the restored imagery under certain combinations of polychromatic scene content and 

wavefront error amplitude. The problem with the gray-world implementation resides with the 

fact that spectral content is not modulated prior to the integration process.  With conventional 

systems that do not exhibit serious oscillatory character as a function of spatial frequency, 

this drawback has not been of significant consequence in the past.  With the unique, rapidly 

oscillating character of sparse aperture systems under certain levels of aberration, however, 

this approximation does not adequately capture the nature of the collection physics.  As a 

result, any strong spectral content in the object will not be appropriately modulated prior to 

its contribution to the integrated signal content.  For instance, the edge of a red automobile 

will not be blurred according to the appropriate red system transfer function but by some 

spectrally averaged OTF instead.  As a consequence of this effect, the red automobile signal 

content will not exhibit the modulation mismatch highlighted in the discussion above and the 

applied restoration filter will not have the occasion to amplify it.  The bottom line of this 

discussion is that the gray-world model would ultimately fail to account for any spectrally 

induced artifacting or structured rippling in the restored imagery due to the afore-mentioned 

spectral modulation mismatch.  The enhanced spectral fidelity model, on the other hand, 
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should capture the nature of this quality effect.  Of course, if the object is spectrally flat (i.e., 

more or less “gray” from a spectral perspective), no spectral artifacting would be induced by 

the optical transfer function character described above and the gray-world model 

approximation should more than adequately capture the detected image quality.  On the other 

hand, if the object scene does manifest rich spectral and spatial frequency content, one would 

expect under aberrated conditions on the levels introduced above that the gray-world model 

will break down and not sufficiently represent the final restored imagery product.  This 

premise will be tested in the results presented in subsequent sections. 

5.2  Quasi-Monochromatic Simulation 

Prior to the development of a full-fledged broadband simulation model, an interim capability 

was developed to evaluate the quasi-monochromatic optical performance of sparse aperture 

systems.  This interim capability was enabled as a direct result of the implemented modeling 

approach, since each monochromatic spectral plane must be derived before an integrated 

signal can be estimated.  It turned out to be fortuitous that the quasi-monochromatic analysis 

also lends insight into the physical nature of the final detected signal, as it provides evidence 

of how each spectral line is impacted by the detection and restoration process.  As stated 

earlier, however, one must be cautious in using the monochromatic results as an absolute 

measure of the final predicted quality from sparse aperture imaging systems.  

 

To support the quasi-monochromatic analysis, a WASP-derived polychromatic object scene 

containing a parking lot filled with various colored automobiles at different separations and 

orientations was selected.  As such, the chosen scene demonstrates excellent spectral and 

spatial frequency content to explore the effects of the unique transfer function character 

discussed above.  The ground sample distance (GSD) associated with this object is 

approximately 7-inches, and the airborne collection obviously entails three spectral bands 

with ~100 nm bandwidth.  Accordingly, the selected object exhibits good spatial resolution 

and relatively poor spectral resolution.  At this juncture, the latter was much less a concern 

than the former as this interim monochromatic analysis effort was focused on isolated 

wavelengths in any event.  As a consequence, the WASP scene afforded excellent RGB 

digital imagery that could be formed into illustrative color composites during the simulation 
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process to highlight the sparse aperture effects on individual spectra.  This can be observed in 

the quasi-monochromatic imagery simulation products contained in the series of figures 

which follow. 

 

One should also recall that the Bayer pattern color filter array associated with the WASP 

source imagery had been interpolated to form individual RGB arrays prior to resampling 

within the sparse aperture simulation model.  Therefore, any source imagery artifacts that 

surfaced as a result of the interpolation process were considered to represent spectral-

radiometric truth for the purposes of this study.  With this experimental design, any 

additional color artifacting observed in the restored imagery relative to the source “truth” 

data could be attributed directly to the inherent nature of the sparse aperture configuration 

vice a filter array interpolation phenomenon.  On the other hand, this approach also 

eliminated the opportunity to address potential color filter array implications that may be 

unique to a sparse aperture collection system.  If such an implementation were ultimately 

envisioned for a sparse aperture imaging system, that area would be worthy of additional 

investigation in the future. 

 

For the quasi-monochromatic analysis, the baseline nine-subaperture tri-arm sparse aperture 

system with obscured optics was evaluated.  The ratio (s/d) of the separation distance 

between individual subapertures to the subaperture diameter was unity (i.e., the subapertures 

were abutting).  A Gaussian-distributed zero-mean, unit-variance phase profile was applied 

across the array of subapertures to simulate random piston, tip/tilt.  This was accomplished 

for a number of different wavefront errors, spanning from 0.10 waves to 0.25 waves rms at 

the mean wavelength.  The objective of the selected range of subaperture dephasing was to 

capture (or at least bound) the point at which the anticipated spectral artifacting due to the 

transfer function character described above demonstrated initial incidence and ultimately 

became destructive to the information content in the imagery.  The next series of diagrams 

will step through the results acquired through this quasi-monochromatic analysis for 

wavefront errors of 0.10, 0.20 and 0.25 waves rms of piston, tip/tilt for the baseline sparse 

aperture configuration.  For comparison, results acquired from a filled circular aperture with 

0.20 waves rms of defocus will subsequently follow. 
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The first quasi-monochromatic simulation to be addressed in this dissertation entails 0.10 

waves rms of piston, tip/tilt wavefront error.  Numerous iterations have been performed over 

the course of this research effort at this nominal wavefront error value.  For the purposes of 

illustration, results from one of these simulation runs have been included in the figures 

below.  In Figure 66, for instance, one will observe a typical random phase profile applied to 

a tri-arm sparse aperture system to simulate 0.10 waves rms of piston, tip/tilt.  As indicated in 

the previous chapter, the diagram on the left side of the figure depicts a two-dimensional 

“image” of the phase distribution, with greater than background intensity correlating with 

positive phase and lesser corresponding to negative phase amplitude.  An intensity bar has 

been included in Figure 66(a) to earmark the specific amplitudes represented in the diagram.  

To aid in its interpretation, Figure 66(b) provides a three-dimensional surface plot of the 

same phase profile.  As one would surmise, these data show that the random phase profile 

associated with 0.10 waves rms error does not generally exhibit significant overall amplitude 

(generally less than π/2) but the relative variation across the pupil can be fairly considerable.  

One would anticipate that such a profile would have some effect on the optical transfer 

function and degrade the quality associated with the detected imagery. 

 

One should also note that the phase profile depicted in Figure 66 is specifically for the central 

wavelength of the collection passband.  In the monochromatic simulations, as with the 

integrated signal predictions to follow, the physical path length differences are assumed to be 

the same as a function of wavelength while the optical phase errors associated with these 

path lengths vary appropriately with wavelength.  In the model implementation, this is 

accomplished by adjusting the polynomial (e.g., Zernike) coefficients associated with the 

central wavelength to target a certain level of rms wavefront error with given aberration 

constituents.  This forms the basis for a phase profile at the central wavelength that can 

subsequently be scaled to form phase error profiles at other wavelengths.  As a consequence, 

the phase profiles at alternative wavelengths exhibit similar overall form but are scaled 

spatially and in amplitude to accommodate the desired spectral physics.  The principal 

difference between the monochromatic and integrated signal predictions is that the single 

wavelength results tend to accentuate the effect of spectral structure in the transfer function 
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while the integrated band simulations exhibit a natural spectral-weighting effect.  In both 

cases, however, the optical phase errors demonstrate the appropriate variance (amplitude and 

region of support) due to wavelength considerations. 

 

     
 (a) Two-Dimensional Distribution (b) Three-Dimensional Surface 

 
Figure 66: Random phase profile for the central wavelength of an aberrated 

tri-arm sparse aperture (0.10 waves rms piston, tip/tilt error). 
 

Based on this phase profile, the aperture transfer function derived from the autocorrelation of 

the exit pupil manifests the character observed in Figure 67(a).  From this diagram, it is 

apparent that even 0.10 waves rms of wavefront error is noticeably destructive to the 

modulation transfer function, as the modulation has been reduced to the point of introducing 

nulls at certain spatial frequencies.  The implications of this transfer function on the imaged 

scene can be witnessed through comparison of Figure 67(b) and (c), which contain the 

original object scene derived from the WASP imagery and the quasi-monochromatic 

simulation of the detected image at the three central wavelengths associated with the original 

WASP sensor spectral bands, respectively.  Finally, Figure 67(d) displays the Wiener filter 

restoration of the individual monochromatic detected image planes in an RGB color 

composite image.  In order to “simulate” the effect of restoration filter mis-boost due to the 

spectrally dependent modulation mismatch described in the previous section for a broadband 

detection scenario, a single Wiener filter implementation was applied to each individual 

monochromatic simulation.  In other words, the exact same Wiener filter gains were utilized 

for each quasi-monochromatic restoration.  To some degree, this is precisely what occurs to 
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each “spectral line” when a broadband detected signal is boosted by a selected restoration 

filter.  The signal spectrum associated with individual wavelengths experiences a boost that 

inevitably will be mismatched from the optimal gains, as only a single filter realization can 

be applied to the integrated broadband signal. 

 

   
 (a) Aberrated MTF (b) Original Object 

 

   
 (c) Detected RGB Image (d) Restored RGB Image 

 
Figure 67: Quasi-monochromatic simulation of an aberrated tri-arm sparse aperture 

with central wavelength OTF restoration (0.10 waves rms piston, tip/tilt error). 
 

1 s 
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In this particular exercise, the optical transfer function associated with the central wavelength 

was actually utilized to develop the required Wiener filter.  In addition, the exact system 

transfer function responsible for the original degradation in the detected imagery was also 

used to derive the Wiener filter.  Accordingly, one is essentially assuming in this example 

that the in-situ phase errors are precisely known at the central wavelength during the 

collection, so they may be utilized to construct the “perfect” transfer function for use in the 

applied post-detection reconstruction filter.  Of course, this constitutes a reasonably 

significant assumption and future investigation on phase knowledge sensitivity will clearly 

illustrate that any lack of knowledge of the OPD errors that exist in sparse aperture systems 

rapidly leads to unacceptable image quality (see Section 5.6.3).  Therefore, it is essential that 

techniques are explored to ensure highly accurate measurements of the phase errors present 

during a collection can be acquired for use in post-processing. 

 

With the restoration assumptions stated above, one can clearly identify regions in Figure 

67(d) where the mis-boost of spectral content leads to prominent red and blue color artifacts 

in the restored RGB image (recall that the green plane experiences near-optimal restoration 

through the central wavelength OTF).  This occurs in the quasi-monochromatic imagery 

predictions for what is generally considered a benign level of 0.10 waves rms of wavefront 

error.  Of course, these monochromatic simulations are likely to represent the extreme level 

of the anticipated spectral artifacts, as the integration process that occurs in  real-world 

sensors tends to average out individual effects at given wavelengths.  Despite this detection 

averaging phenomenon, there is clearly a spectral effect that is induced by the unique 

character of the sparse aperture system OTF which will ultimately be captured in the 

broadband signal.  The question remains as to what level the induced spectral effect actually 

manifests itself in the panchromatic imagery.  This will be explored in further detail through 

the integrated panchromatic signal results summarized in Section 5.3.     

 

Based on Figure 65, one may conjecture that use of a spectrally averaged transfer function in 

the Wiener filter construction may ultimately produce superior restorations, as on the average 

the magnitude of the modulation mismatch between various spectra tends to be greatly 

reduced relative to that which occurs through selection of a single monochromatic OTF for 
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the restoration filter.  In other words, use of the spectrally weighted OTF in the restoration 

filter tends to average out the relative mismatch across all wavelengths in the detection 

passband, while the monochromatic OTF precisely captures one wavelength and 

demonstrates the full modulation mismatch with all other colors.  To explore this possibility, 

the quasi-monochromatic restoration process was accomplished again through use of a 

spectrally weighted OTF in the Wiener filter, enabling the comparison between the two 

approaches that appears in Figure 68.  This side-by-side comparison would seem on the 

surface to confirm that the conjecture was correct for this particular case, as the spectrally 

averaged OTF resulted in a monochromatic restoration in Figure 68(b) that exhibits far fewer 

artifacts than the central-wavelength OTF restoration displayed in Figure 68(a).  It should be 

noted, however, that this comparison only represents a single case and the observed rippling 

artifact due to spectrally variant modulation mismatch is still apparent in the imagery.   

 

   
 (a) Central OTF Restoration (b) Weighted OTF Restoration 

 
Figure 68: Comparison of two different restorations of quasi-monochromatic imagery 
products for an aberrated tri-arm sparse aperture (0.10 waves rms piston, tip/tilt error). 

 

To investigate the effect of alternative levels of aberration, numerous model iterations were 

performed at different rms wavefront errors.  Figure 69 displays a representative random 

phase profile for the nominal tri-arm system with 0.20 waves rms of piston, tip/tilt error.  

Relative to the previous example, one will observe that the amplitude of the phase errors is 
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considerably higher (greater than π in some circumstances) for this level of wavefront error.  

Given these phase errors, one acquires the aperture MTF displayed in Figure 70(a) through 

the autocorrelation of the complex pupil function.  As seen in the previous section, the 

modulation has been significantly reduced at this rms wavefront error, ultimately giving rise 

to more zeroes in the spatial frequency coverage of the transfer function.  Clearly, this 

reduction in modulation leads to significantly degraded imagery at the focal plane, as 

evidenced by the monochromatic color composite in Figure 70(c).  As before, the central 

wavelength OTF was utilized in the Wiener filter to simulate the restoration process across a 

broad detection band.  For this wavefront error case (0.20 waves rms), Figure 70(d) shows 

that the quasi-monochromatic restoration again results in the generation of deleterious image 

structure or artifacts, but on a much more significant level.  Clearly, the modulation 

mismatch between the various spectra is considerably amplified by the selected Wiener filter 

design at this level of aberration.  For comparison, the original object scene is included in 

Figure 70(b), from which one acquires a sense for the potential loss in interpretability due to 

this spectrally induced effect. 

 

     
 (a) Two-Dimensional Distribution (b) Three-Dimensional Surface 

 
Figure 69: Random phase profile for the central wavelength of an aberrated 

tri-arm sparse aperture (0.20 waves rms piston, tip/tilt error). 
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 (a) Aberrated MTF (b) Original Object 

 

   
 (c) Detected RGB Image (d) Restored RGB Image 

 
Figure 70: Quasi-monochromatic simulation of an aberrated tri-arm sparse aperture 

with central wavelength OTF restoration (0.20 waves rms piston, tip/tilt error). 
 

As with the previous example, the Wiener restoration was performed a second time with a 

filter design that included a spectrally averaged system transfer function.  The result of this 

spectrally averaged OTF restoration process appears in Figure 71(b), which is compared to 

the original central wavelength OTF restoration in Figure 71(a).  Unlike the preceding 0.10 

waves rms wavefront error case, this particular example appears to suggest that the spectrally 
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averaged OTF actually generates more objectionable artifacting than its counterpart.  

Obviously, the spatial frequency content of the original scene is of such a nature that this 

particular weighted OTF realization actually amplifies the modulation mismatch in the 

restoration filter to a greater degree than the central wavelength OTF.  Numerous other 

iterations with the quasi-monochromatic simulation seemed to indicate there was a fair 

amount of variability in the results, depending on the overall character of the system transfer 

function.  Accordingly, it is unclear on the basis of the monochromatic analysis alone which 

filter type tends to be more optimal from the standpoint of minimizing the spectrally variant 

modulation mismatch.  That notwithstanding, however, it is reasonably clear from Figure 71 

that once aberrations reach levels on the order of 0.20 waves rms error, significant artifacting 

arises to a degree that will inevitably manifest itself in the integrated signal content, 

regardless of the restoration filter design applied. 

 

   
 (a) Central OTF Restoration (b) Weighted OTF Restoration 

 
Figure 71: Comparison of two different restorations of quasi-monochromatic imagery 
products for an aberrated tri-arm sparse aperture (0.20 waves rms piston, tip/tilt error). 

 

As a final example of the quasi-monochromatic simulations performed for sparse aperture 

systems, a quarter-wave (i.e., 0.25 waves rms) error was induced on the tri-arm system 

configuration explored in the previous results.  A typical random phase profile for 0.25 

waves rms of piston, tip/tilt error is displayed in Figure 72, which intuitively shows a phase 
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distribution with higher amplitude and greater variability than its predecessors.  This phase 

profile subsequently results in the amplitude MTF depicted in Figure 73(a).  In this diagram, 

one observes once again the reduced modulation and increased nulling that have been 

described previously for the moderately aberrated quarter-wave case.  As expected, this 

degraded transfer function character results in a detected image in Figure 73(c) that has 

significantly less sharpness than the preceding scenarios.  Naturally, the loss of spatial 

frequency content due to the amplitude of the wavefront errors ultimately leads to a degraded 

restoration as well.  This can be observed in the central OTF Wiener restoration depicted in 

Figure 73(d), which also displays significantly more artifacting due to the modulation 

mismatch phenomenon discussed previously.  At 0.25 waves rms of wavefront error, the 

nature of the modulation mismatch across the various wavelengths in the detection passband 

is of a magnitude that dramatically impacts the interpretability of the image.  This becomes 

readily apparent when one compares the restored sparse aperture image with the original 

polychromatic object in Figure 73(b).  One should again be reminded that these 

monochromatic simulations tend to accentuate the nature of the observed effect, as the 

averaging process involved in signal detection will partially mitigate some of its character.  

Despite that fact, it is reasonably clear that the spectrally induced artifacts in Figure 73(d) are 

of such a magnitude that they will appear in the integrated panchromatic signal as well. 

 

     
 (a) Two-Dimensional Distribution (b) Three-Dimensional Surface 

 
Figure 72: Random phase profile for the central wavelength of an aberrated 

tri-arm sparse aperture (0.25 waves rms piston, tip/tilt error). 
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 (a) Aberrated MTF (b) Original Object 

 

   
 (c) Detected RGB Image (d) Restored RGB Image 

 
Figure 73: Quasi-monochromatic simulation of an aberrated tri-arm sparse aperture 

with central wavelength OTF restoration (0.25 waves rms piston, tip/tilt error). 
 

As with previous monochromatic exercises, the initial Weiner restoration which appears in 

Figure 73 utilized the central wavelength system OTF in the filter design.  Once again, a 

single restoration filter was applied to each monochromatic image to simulate a broadband 

application.  To test the theory that an averaged OTF may marginalize the modulation 

mismatch that stimulates artifacting, the spectrally weighted transfer function was also 
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included in a subsequent restoration of the sparse aperture imagery.  For this particular 

monochromatic wavefront error case, all the attempted Wiener filter restoration designs 

induced a considerable amount of spectral artifacts.  This observation can be confirmed by 

comparing Figure 74(a), which contains the restoration achieved with the central wavelength 

OTF, with Figure 74(b), which displays the result from the spectrally weighted OTF.  

Clearly, both quasi-monochromatic restoration products entail significant artifacting on 

levels that dramatically impact overall image quality.  

  

   
 (a) Central OTF Restoration (b) Weighted OTF Restoration 

 
Figure 74: Comparison of two different restorations of quasi-monochromatic imagery 
products for an aberrated tri-arm sparse aperture (0.25 waves rms piston, tip/tilt error). 

 

To gain a better appreciation of the nature of the spectral artifacts induced by the modulation 

mismatch identified in the previous section, one should compare the series of images in 

Figure 75.  Within this figure, a small image chip has been removed from the previous 

monochromatic restorations and magnified to a level where individual automobile features 

can be ascertained.  All of the original rms wavefront error cases are represented in the 

figure, along with the original object for comparison.  As observed in the figure, the 

incidence of the spectrally induced quality effect described previously appears to occur for 

wavefront errors as low as 0.10 waves rms for the monochromatic simulation case.  It 

remains to be seen if the averaging effect of real-world sensors over the detection passband 
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will largely mitigate the artifacts observed at that level.  In any event, it should be noted that 

at least the constituent signal content at discrete wavelengths will manifest some structured 

character due to the modulation mismatch.  Obviously, as the rms wavefront error increases 

in magnitude, the nature of the spectral artifacting becomes more deleterious.  Eventually, the 

spectral artifacts reach a point where information content is effectively destroyed, which 

appears to be somewhere between 0.20 and 0.25 waves rms for the monochromatic case. 

  

   
 (a) Original Object (b) 0.10 waves rms piston, tip/tilt error 

 

   
 (c) 0.20 waves rms piston, tip/tilt error (d) 0.25 waves rms piston, tip/tilt error 

 
Figure 75: Quasi-monochromatic simulation of an aberrated tri-arm sparse aperture 

with central wavelength OTF restoration (magnified region of previous images). 
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To ensure that the spectrally induced quality effects observed in the previous examples for an 

aberrated sparse aperture system were not the result of the digital model implementation, a 

similar exercise was performed for an aberrated filled circular aperture.  Based on the 

character of the transfer function, one would not anticipate the kind of quality implications 

with the filled aperture that surfaced with its sparse aperture counterpart.  In addition, plenty 

of actual imagery data is available from real-world sensors to indicate that such spectral 

artifacting is not a typical feature of the collection obtained from conventional imaging 

systems.  Once again, this contention is based strictly from an inherent optical configuration 

perspective, ignoring the effects of interpolation artifacts due to the potential use of a color 

filter array.  Obviously, with the latter implementation to collect spectral data, most of the 

optical systems under consideration would exhibit various degrees of artifacting, a 

phenomenon not specifically addressed by this research effort as a unique sparse aperture 

issue.  In light of this discussion, one should expect that the physics-based model developed 

for this research effort provides an adequate enough representation of the imaging process 

that any observed effects are not manufactured by the digital implementation.  To 

demonstrate that fact, a large defocus error (0.20 waves rms) was applied to a filled circular 

aperture to determine whether the spectrally induced effect could be generated for 

conventional apertures in the quasi-monochromatic case.  Figure 76 displays the nature of the 

quadratic phase error that leads to 0.20 waves rms of defocus.  As observed in the figure, this 

constitutes a fairly severe level of aberration for the filled circular aperture. 

 

     
 (a) Two-Dimensional Distribution (b) Three-Dimensional Surface 

 
Figure 76: Phase profile for the central wavelength of an aberrated 

filled circular aperture (0.20 waves rms defocus).
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 (a) Aberrated MTF (b) Original Object 

 

   
 (c) Detected RGB Image (d) Restored RGB Image 

 
Figure 77: Quasi-monochromatic simulation of an aberrated filled circular aperture 

with central wavelength OTF restoration (0.20 waves rms defocus). 
 

Based on the phase profile identified in Figure 76, the filled circular aperture exhibits an 

aperture MTF as depicted in Figure 77(a).  From this diagram, it is apparent that the filled 

transfer function has undergone a considerable amount of demodulation due to the system 

defocus, ultimately leading to the introduction of several null regions in its spatial frequency 

coverage.  The degraded nature of this defocused aperture MTF subsequently results in a 
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seriously blurred image at the focal plane, as observed in Figure 77(c).  As hoped for in this 

exercise, the detected image is modulated to a level that is comparable with the degraded 

image predictions for the sparse aperture case.  When an appropriate Wiener filter is applied 

to the detected image, the restored product in Figure 77(d) exhibits none of the spectral 

artifacting observed in the previous sparse aperture examples.  There is certainly a fair 

amount of color noise amplification and correlation due to the application of the restoration 

filter, but there is no image structure or rippling effect from scene edges that was so readily 

apparent in the sparse aperture case entailing 0.20 waves rms of wavefront error.  This result 

is entirely consistent with the theoretical discussion provided in the previous section on 

transfer function character and is certainly borne out in real-world imagery data.  Therefore, 

one should have some confidence that the quality effect observed with sparse aperture 

systems in this quasi-monochromatic analysis is likely a physically viable effect and not a 

digital artifact of the proof-of-concept model.  Obviously, the next essential step is to 

evaluate the character of the integrated signal to determine if the artifacts observed in the 

monochromatic cases are still present following the averaging effect of a broadband sensor. 

5.3  Integrated Panchromatic Simulation 

This section addresses the results acquired from the proof-of-concept model for the nominal 

broadband panchromatic detection scenario introduced in Chapter 4.  Once again, the runs 

involve the WASP-derived polychromatic object scene containing the parked automobiles 

explored in the previous section.  In fact, for comparative purposes, the first series of 

simulations following the restoration filter design discussion contain integrated, broadband 

simulations of the same scenarios that were depicted in the quasi-monochromatic analysis 

presented above.  As before, a random piston, tip/tilt phase error profile that varied with 

wavelength was derived for the nominal tri-arm sparse aperture system configuration 

introduced in the previous section.  For the comparative runs, these phase distributions were 

identical to those displayed in Section 5.2.  In subsequent model iterations provided later in 

this section, alternative phase profiles were explored to demonstrate the variability in quality 

that can be achieved for a given rms wavefront error value.  From this discussion, it will 

become apparent that specifying rms wavefront error is not necessarily a clear indicator of 

derived image quality. 
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Based on the quasi-monochromatic results, it was somewhat ambiguous whether the optical 

transfer function associated with the central wavelength provided better or worse restoration 

capability compared to a spectrally averaged realization.  Obviously, the key to this general 

question lies in its ability to restore the broadband signal, so a quick sensitivity study was 

performed to explore differences between the two options.  Within this trade study, the noise-

to-object power spectrum ratio within the Wiener filter was precisely known, eliminating it 

as a potential source of uncertainty between the two restoration options.  In addition, all 

phase errors were assumed to be perfectly known in the construction of the individual 

restoration filters.  Figures 78 and 79 provide several exemplar Wiener restorations of the 

two filter techniques for 0.10 and 0.25 waves rms of wavefront error, respectively.  As 

discussed previously, these wavefront error metrics constitute rms values at the mean 

wavelength of the spectral passband.  The diagrams in (a) provide examples of the restoration 

utilizing the central wavelength OTF, while those in (b) display reconstructions acquired 

through use of a spectrally averaged transfer function.  The restorations contained in these 

figures are very representative of the general set acquired during this trade study. 

 

Visually, it is obvious from looking at these figures that the spectrally averaged OTF results 

in superior image restorations.  This observation is also borne out in the metric data as well, 

as the nrmse values reported under the figure captions indicate a demonstrable improvement 

for the spectrally averaged case over the central wavelength option, given similar values of 

relative edge response (RER) and rms noise gain (Grms).  Unlike the simulation results 

acquired through the monochromatic analyses, the vast majority of broadband simulation 

runs indicated better restoration was achievable when a spectrally averaged OTF was utilized 

to construct the Wiener filter.  Accordingly, unless otherwise stated, the majority of the 

remaining restorations contained in this dissertation involve use of a spectrally averaged 

system OTF in the Wiener filter.  It is also interesting to note that the spectrally weighted 

OTF filter implementation effectively mitigates most of the artifacting or ringing observed 

previously for the case of 0.10 waves rms of wavefront error but only marginally does so for 

the scenario involving 0.25 waves rms of error.  The general nature and magnitude of these 

quality effects will be explored in greater detail in the discussion to follow.   
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 (a) Central Wavelength OTF Restoration (b) Spectrally Weighted OTF Restoration 
 nrmse: 0.1130;  RER: 0.849;  Grms: 13.5 nrmse: 0.0742;  RER: 0.842;  Grms: 17.3 

 
Figure 78: Restored panchromatic images for an aberrated tri-arm sparse aperture 

with two different reconstructions (0.10 waves rms piston, tip/tilt error). 
 

 

   
 (a) Central Wavelength OTF Restoration (b) Spectrally Weighted OTF Restoration 
 nrmse: 0.1532;  RER: 0.804;  Grms: 18.2 nrmse: 0.1125;  RER: 0.777;  Grms: 23.0 

 
Figure 79: Restored panchromatic images for an aberrated tri-arm sparse aperture 

with two different reconstructions (0.25 waves rms piston, tip/tilt error). 
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With the spectrally averaged OTF utilized as a baseline within the Wiener filter restoration, 

figures 80 through 82 provide the broadband panchromatic simulations that parallel the 

quasi-monochromatic analyses for the tri-arm sparse aperture system explored in Section 5.2.  

These simulation products are followed by the broadband integrated signal prediction for the 

defocused filled circular aperture in Figure 83.  Finally, diffraction-limited filled circular 

aperture simulation results appear in Figure 84 for the purposes of comparison.  In all of 

these figures, (a) contains a spectrally weighted panchromatic-equivalent object image 

formed from the original polychromatic object scene through use of the scenario collection 

parameters.  In (b), the figures display the integrated panchromatic signal that is predicted at 

the focal plane prior to any post-detection restoration.  The restoration that is subsequently 

acquired through use of the spectrally averaged system OTF (assuming perfect phase 

knowledge) and the known noise-to-object power spectrum ratio in the Wiener filter appears 

in (c).  Finally, the original result acquired from the quasi-monochromatic simulation with a 

spectrally averaged OTF restoration is shown in an RGB composite image in (d).  This series 

of figures provides ample material for comparative analyses on the various physical attributes 

observed in the imagery for different system conditions.   

 

In comparing the broadband panchromatic simulations with their monochromatic 

equivalents, one will note that the integrated signal tends to average out some of the 

spectrally induced ringing that was observed in Section 5.2.  This was an entirely anticipated 

result based on the theoretical development discussed earlier.  Despite the fact that some of 

the artifacting is mitigated, however, one cannot dispute that fundamental image structure 

due to the modulation mismatch phenomenon is still present in all of the sparse aperture 

system restorations.  In fact, close examination of the restoration in Figure 80(c) relative to 

the original object in Figure 80(a) and the monochromatic results in Figure 80(d) indicates 

that some of the spectrally induced artifacts are present even at 0.10 waves rms of wavefront 

error.  Obviously, once the wavefront error deteriorates to the level of 0.20 to 0.25 waves 

rms, the spectral artifacting reaches a level at which image interpretability is extensively 

impacted.  This can be observed visually in the restored imagery as well as in the reduction 

of key quality metrics (e.g., nrmse and RER).  The spectrally induced ringing seen in this 

series of imagery examples represents an image feature that has not been observed previously 
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with the more traditional gray-world model approximation.  As will become clearer in the 

gray-world model comparisons in the next section, it is a direct reflection of modeling the 

spectral character of the optical phase, exit pupil, system transfer function and object scene 

that induces the artifacting in aberrated sparse aperture restorations.  Therefore, it is apparent 

that enhanced spectral fidelity model can be essential for the evaluation of sparse aperture 

systems that experience some level of dephasing or aberration. 

 

For comparison, figures 83 and 84 provide panchromatic imagery predictions for two 

different filled circular aperture systems, one that exhibits a wavefront error of 0.20 waves 

rms of defocus and one that is diffraction limited (i.e., unaberrated).  These simulations are 

instructive in that they both do not manifest any of the unique artifacting or rippling that 

appears in the sparse aperture examples.  This is consistent with what one encounters in the 

real world with conventional imaging systems and makes good physical sense based on the 

smoothly varying character of their system transfer functions.  In essence, the degraded OTF 

associated with a filled circular aperture, even under conditions of severe defocus, does not 

support the type of sharp discontinuities that lead to modulation mismatch and subsequent 

mis-boost on the part of the restoration filter. 

 

One will note that the defocused filled aperture produces imagery with significant noise 

amplification and correlation due to the application of the Wiener filter, ultimately resulting 

in worse overall image quality from a mean-square error perspective.  However, one is 

reminded that the nature of the exercise performed here was to test under stressing conditions 

whether the conventional aperture system would “manufacture” artifacts that physically 

should not be present based on first principles.  As a result, the filled system was severely 

aberrated to the point of introducing spatial-frequency zeroes in the transfer function, but the 

detector integration time was not increased to account for the loss in modulation.  This 

resulted in a detection SNR that was significantly lower than that encountered with the sparse 

aperture cases (approximately 33 versus 270) and certainly not enough to offset the loss in 

modulation in the system OTF due to the induced wavefront errors.  As a consequence, the 

standard noise amplification due to restoration was encountered in a significant way, an 

effect that could have been marginalized somewhat through improved collection SNR.  The 
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bottom line, however, was that the defocused case did not produce spectrally induced 

artifacts, demonstrating such a feature to be a unique attribute of moderately aberrated sparse 

aperture systems. 

 

   
 (a) Spectrally Weighted Object (b) Detected Panchromatic Image 

 

   
 (c) Restored Panchromatic Image (d) Restored Monochromatic RGB Image 

 
Restored Image nrmse: 0.0716;  RER: 0.846;  Grms: 17.5;  SNR: 270.6 

 
Figure 80: Integrated panchromatic simulation of an aberrated tri-arm sparse aperture 

with spectrally weighted OTF restoration (0.10 waves rms piston, tip/tilt error). 
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 (a) Spectrally Weighted Object (b) Detected Panchromatic Image 

 

   
 (c) Restored Panchromatic Image (d) Restored Monochromatic RGB Image 

 
Restored Image nrmse: 0.1079;  RER: 0.782;  Grms: 22.0;  SNR: 269.6 

 
Figure 81: Integrated panchromatic simulation of an aberrated tri-arm sparse aperture 

with spectrally weighted OTF restoration (0.20 waves rms piston, tip/tilt error). 
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 (a) Spectrally Weighted Object (b) Detected Panchromatic Image 

 

   
 (c) Restored Panchromatic Image (d) Restored Monochromatic RGB Image 

 
Restored Image nrmse: 0.1125;  RER: 0.777;  Grms: 23.0;  SNR: 270.5 

 
Figure 82: Integrated panchromatic simulation of an aberrated tri-arm sparse aperture 

with spectrally weighted OTF restoration (0.25 waves rms piston, tip/tilt error). 
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 (a) Spectrally Weighted Object (b) Detected Panchromatic Image 

 

   
 (c) Restored Panchromatic Image (d) Restored Monochromatic RGB Image 

 
Restored Image nrmse: 0.1363;  RER: 0.540;  Grms: 4.97;  SNR: 33.2 

 
Figure 83: Integrated panchromatic simulation of an aberrated filled circular aperture 

with spectrally weighted OTF restoration (0.20 waves rms defocus). 
 

 

 



 208

 

 

   
 (a) Spectrally Weighted Object (b) Detected Panchromatic Image 

 

   
 (c) Restored Panchromatic Image (d) Restored Monochromatic RGB Image 

 
Restored Image nrmse: 0.0606;  RER: 0.926;  Grms: 1.99;  SNR: 33.1 

 
Figure 84: Integrated panchromatic simulation of a diffraction-limited filled 

circular aperture with spectrally weighted OTF restoration. 
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5.4  Polychromatic versus Gray-World Model 

As indicated previously, one of the primary objectives of this research effort was to 

determine the utility of including spectral fidelity in the modeling of sparse aperture imaging 

systems.  To help accomplish that objective, some additional modeling effort was pursued to 

implement the traditional gray-world approach into the overall simulation architecture.  In 

addition, the original polychromatic object scenes investigated in this dissertation were 

converted to gray-scale equivalents through an appropriate spectral weighting scheme.  These 

additions subsequently enabled side-by-side comparisons of the imagery products derived 

from the enhanced spectral model and those from the gray-world approximation.  This 

section details results of various comparison iterations performed to address the value of the 

full-fledged polychromatic imaging model and ascertain that the previously introduced 

quality effect was truly the result of the enhanced fidelity spectral physics.  To illustrate the 

nature of the results, several different object scenes exhibiting various spatial and spectral 

resolutions were selected.  As a consequence, this section also provides numerous results to 

address other modeling issues as well as develop a composite view of the unique sparse 

aperture image quality issues identified in this research effort. 

5.4.1 WASP-Based Object Description 

In keeping with previous trends, the first scene to be addressed with the gray-world model 

will be the WASP-derived scene involving the parked automobiles.  Once again, the applied 

restoration filter makes use of the spectrally averaged OTF (with perfect phase error 

knowledge) and the known noise-to-object power spectrum ratio.  This provides a near-

optimal restoration for understanding the “best-achievable” image quality that can potentially 

be derived under the explored imaging conditions.  Obviously, one would anticipate that a 

reduction in knowledge of the precise imaging conditions will degrade the restored image 

quality from that presented here.  Figure 85 provides a side-by-side comparison of the 

restored broadband panchromatic imagery from the two models acquired for the tri-arm 

sparse aperture system with 0.10 waves rms of wavefront error.  Specifically, Figure 85(a) 

depicts the restored imagery acquired through use of the gray-world model and Figure 85(b) 

displays that produced with the enhanced spectral fidelity model.  For this high SNR 
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scenario, it is apparent that the gray-world and polychromatic-world models produce 

relatively comparable imagery restorations at 0.10 waves rms of wavefront error. 

 

   
 (a) Gray-World Simulation (b) Polychromatic-World Simulation 
 nrmse: 0.0676 nrmse: 0.0716 

 

RER: 0.846;  Grms: 17.5;  SNR: 270.6 
 

Figure 85: Restored imagery comparison between the polychromatic and gray-world models 
for an aberrated tri-arm sparse aperture (0.10 waves rms piston, tip/tilt error). 

 

There are some detectable differences between the results acquired from these models, which 

become apparent if one examines the products in softcopy and flickers back and forth 

between them.  Figure 86 displays a magnified region of the two restorations to provide a 

closer look at differences in perceived small features.  As suspected, the differences between 

the two are subtle but can certainly be detected in the softcopy (of course the hardcopy does 

not do them justice).  For instance, the automobile on the far left side of the three-vehicle 

image chip seems to have artifacts in the enhanced spectral model restoration in Figure 86(b) 

that are not apparent in the equivalent gray-world model image in Figure 86(a).  It is 

interesting to note that this particular vehicle is a maroon color in the original object scene, 

lending credence to the hypothesis that a spectrally induced modulation mismatch is 

responsible for the artifacting.  Similar subtle image structure is visible in the softcopy for 

other scene content that exhibits some non-gray spectral information.  Naturally, the small 
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variations discussed above result in a difference in the overall mean-level statistics, as 

evidenced by the 6% difference in nrmse computed for this particular case.  Therefore, there 

is a minor quality effect that is just noticeable for sparse aperture systems that are aberrated 

to the degree studied in this example (0.10 waves rms of wavefront error), one that may be 

qualitatively insignificant depending on the application under investigation. 

   

   
 

   
 

 (a) Gray-World Simulation (b) Polychromatic-World Simulation 
 nrmse: 0.0676 nrmse: 0.0716 

 
Figure 86: (Magnified) Restored imagery comparison between the polychromatic and gray-
world models for an aberrated tri-arm sparse aperture (0.10 waves rms piston, tip/tilt error). 
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Regardless of the implications of model selection, both simulation approaches appear to 

substantiate the contention that sparse aperture imaging systems with aberrations on the order 

of 0.10 waves rms of wavefront error or less have the potential to produce acceptable quality 

imagery, assuming similar collection conditions and phase knowledge.  One is again 

reminded that this conclusion applies strictly for the broadband VNIR collection application 

under investigation given the rms wavefront error convention described in Section 4.6.1. 

Deviations away from collection knowledge assumptions have been cursorily explored in this 

effort and seem to imply there is some margin for error as real-world effects are included in 

the analysis.  At this juncture, however, these expanded results are very anecdotal in nature 

and additional sensitivity trades are certainly warranted in the area.  Another interesting 

observation can be made as a result of the restoration quality achieved with the sparse 

aperture system with 0.10 waves rms of piston, tip/tilt error at the mean wavelength of the 

spectral passband.  Since this level of rms wavefront error typically correlates with a certain 

amount of frequency-domain nulling, this conclusion also seems to indicate that a certain 

level of nulls (or zeroes) in the spatial frequency plane may be tolerable. 

 

To demonstrate that the results acquired in this original example were statistically 

representative of the image quality one should expect for an aberrated system with 

approximately 0.10 waves rms of wavefront error, a series of simulations were performed 

with comparable aberration levels.  As before, both the gray-world model approximation and 

the enhanced spectral fidelity model were exercised in this investigation.  Figures 87 through 

90 provide some examples of the variation observed for the family of aberration cases run at 

0.10 waves rms of wavefront error.  In these figures, the gray-world model restorations 

appear in (a) and the polychromatic-world imagery are displayed in (b).  Once again, just 

noticeable differences can be observed between the two model approaches when a flicker test 

is applied to the softcopy products.  In general, the nature of the observed differences is 

subtle enough that one may choose to ignore them for this particular level of aberrations.  

From a statistical perspective, however, it would be difficult to refute that an effect is 

definitely present, as the nrmse data for this set of restoration examples exhibit a 6-9% 

difference between the two models.  In all cases, the enhanced model demonstrates slightly 

worse image quality, highlighting the presence of the spectrally induced artifacting effect.  
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Clearly, moderately aberrated sparse aperture imaging systems manifest a unique spectral 

character that is not adequately captured in the traditional gray-world modeling approach. 

 

   
 (a) Gray-World Simulation (b) Polychromatic-World Simulation 
 nrmse: 0.0678;  RER: 0.848;  Grms: 17.1 nrmse: 0.0732;  RER: 0.848;  Grms: 17.1 

 

Figure 87: Iteration #1: Restored imagery comparison between the polychromatic and gray-
world models for an aberrated tri-arm sparse aperture (0.101 waves rms piston, tip/tilt error). 
 

   
 (a) Gray-World Simulation (b) Polychromatic-World Simulation 
 nrmse: 0.0671;  RER: 0.853;  Grms: 17.4 nrmse: 0.0713;  RER: 0.853;  Grms: 17.4 

 

Figure 88: Iteration #2: Restored imagery comparison between the polychromatic and gray-
world models for an aberrated tri-arm sparse aperture (0.105 waves rms piston, tip/tilt error). 
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 (a) Gray-World Simulation (b) Polychromatic-World Simulation 
 nrmse: 0.0702;  RER: 0.842;  Grms: 17.8 nrmse: 0.0763;  RER: 0.842;  Grms: 17.8 

 
Figure 89: Iteration #3: Restored imagery comparison between the polychromatic and gray-
world models for an aberrated tri-arm sparse aperture (0.107 waves rms piston, tip/tilt error). 
 
 

   
 (a) Gray-World Simulation (b) Polychromatic-World Simulation 
 nrmse: 0.0683;  RER: 0.844;  Grms: 19.3 nrmse: 0.0738;  RER: 0.844;  Grms: 19.3 

 
Figure 90: Iteration #4: Restored imagery comparison between the polychromatic and gray-
world models for an aberrated tri-arm sparse aperture (0.109 waves rms piston, tip/tilt error). 
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To explore how the observed artifacting effect scales with aberration level, a series of 

simulations were performed with the tri-arm sparse aperture system under the influence of 

0.25 waves rms of piston, tip/tilt error.  One will recall that this level of aberrations induced a 

considerable amount of image structure in the integrated panchromatic restoration acquired 

through the enhanced spectral fidelity model.  The restoration result acquired for the same 

tri-arm system through use of the equivalent gray-world modeling approximation appears in 

Figure 91(a).  Comparison of that restoration with the original polychromatic-world model 

result in Figure 91(b) clearly shows that the observed artifacting is indeed the result of the 

enhanced spectral fidelity.  As seen in the figure, the level of artifacting within the gray-

world restoration is nowhere near commensurate with the deleterious level observed in the 

polychromatic-world case.  In fact, the nrmse associated with the enhanced spectral fidelity 

model is ~33% greater than that observed with the gray-world model for this particular case.  

Obviously, failing to capture the spectral physics in the modeling process has a dramatic 

impact on the perceived image quality associated with this aberrated sparse aperture system. 

 

   
 (a) Gray-World Simulation (b) Polychromatic-World Simulation 
 nrmse: 0.0847 nrmse: 0.1125 

 

RER: 0.777;  Grms: 23.0;  SNR: 270.5 
 

Figure 91: Restored imagery comparison between the polychromatic and gray-world models 
for an aberrated tri-arm sparse aperture (0.25 waves rms piston, tip/tilt error). 
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With perfect phase and noise-to-object power spectrum knowledge, the gray-world model 

predicts one can achieve fairly good image restoration, even under 0.25 waves rms of 

wavefront error.  In fact, the nrmse associated with the gray-world model restoration is only 

~18% greater than the polychromatic case involving 0.10 waves rms of phase error.  By 

comparison, the enhanced spectral model restoration for quarter-wave aberrations exhibits an 

nrmse that is ~57% worse than the same model predicts for 0.10 waves rms of wavefront 

error.  These differences clearly highlight the importance of including some of the enhanced 

spectral capability pursued in this research effort when modeling sparse aperture imaging 

systems with moderate-to-high optical aberrations and/or subaperture dephasing. 

 

This observation is further confirmed through examination of the magnified regions of the 

two restorations appearing in Figure 92.  For example, Figure 92(b) displays the destructive 

nature of the spectrally induced artifacts that appear in the polychromatic-world simulation.  

As observed in the final restoration product, the artifacting and ringing that occur in the 

enhanced spectral model result in considerable loss of information content.  As a typical 

example of this phenomenon, the maroon-colored automobile highlighted previously on the 

far left side of the three-vehicle image chip has almost been completely obliterated by the 

artifacts.  In contrast to the polychromatic model, the restoration acquired through the gray-

world model in Figure 92(a) is relatively free of the type of artifacting observed in its 

counterpart.  Obviously, one does see the standard correlated noise amplification and edge 

ringing that naturally occur as a result of the unique general character of the sparse aperture 

system OTF and its restoration through use of a conventional Wiener filter.  Completely 

absent, however, from this restoration is the excessive artifacting and ringing that appear to 

be the direct result of spectrally variant modulation mismatch in the system transfer function 

captured in the enhanced system model.  Accordingly, the gray-world model appears to break 

down for sparse aperture imaging systems with aberrations on the order of quarter-wave rms. 
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 (a) Gray-World Simulation (b) Polychromatic-World Simulation 
 nrmse: 0.0847 nrmse: 0.1125 

 
Figure 92: (Magnified) Restored imagery comparison between the polychromatic and gray-
world models for an aberrated tri-arm sparse aperture (0.25 waves rms piston, tip/tilt error). 

 

As with the scenario entailing 0.10 waves rms of wavefront error, numerous iterations of the 

proof-of-concept model were performed to ensure these results were statistically 

representative of the restoration quality one should expect for 0.25 waves rms of wavefront 

error.  Once again, both the gray-world and enhanced spectral fidelity models were 

investigated in this study.  Figures 93 through 95 provide samples of the variation observed 

for the family of aberration cases run in this exercise (i.e., for 0.25 waves rms of wavefront 

error).  Within these figures, the gray-world model restorations again appear in (a) and the 
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restored polychromatic-world imagery are shown in (b).  Much like the preceding example, 

all of the polychromatic restorations exhibit more image structure or degradation.  In fact, the 

spectrally induced artifacting and ringing in the enhanced model is so significant that overall 

image interpretability is visually impacted for these restorations.  By comparison, the 

structured image quality effect noted in the polychromatic case does not appear to be evident 

in any of the gray-world equivalents found in this series of figures.  In general, one does not 

even require a softcopy flicker test to ascertain the significant differences that exist between 

the two models (even in hardcopy).  Naturally, these differences are confirmed quantitatively 

by the nrmse statistics reported below restorations, as the difference in this quality metric 

between the two models appears to be in the range of 24-32%.  As a result, this exercise 

again confirms that aberrated sparse aperture systems exhibit a unique spectral character that 

induces deleterious quality artifacts which are not adequately captured by the gray-world 

modeling approach.  In fact, for the case of a system aberrated by up to 0.25 waves rms of 

wavefront error, the missed spectral physics can ultimately lead to a completely different 

prediction of perceived image quality. 

 

   
 (a) Gray-World Simulation (b) Polychromatic-World Simulation 
 nrmse: 0.0901;  RER: 0.730;  Grms: 24.3 nrmse: 0.1116;  RER: 0.730;  Grms: 24.3 

 
Figure 93: Iteration #1: Restored imagery comparison between the polychromatic and gray-
world models for an aberrated tri-arm sparse aperture (0.245 waves rms piston, tip/tilt error). 
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 (a) Gray-World Simulation (b) Polychromatic-World Simulation 
 nrmse: 0.0862;  RER: 0.757;  Grms: 24.7 nrmse: 0.1110;  RER: 0.757;  Grms: 24.7 

 
Figure 94: Iteration #2: Restored imagery comparison between the polychromatic and gray-
world models for an aberrated tri-arm sparse aperture (0.246 waves rms piston, tip/tilt error). 
 

 

   
 (a) Gray-World Simulation (b) Polychromatic-World Simulation 
 nrmse: 0.0916;  RER: 0.733;  Grms: 26.1 nrmse: 0.1209;  RER: 0.733;  Grms: 26.1 

 
Figure 95: Iteration #3: Restored imagery comparison between the polychromatic and gray-
world models for an aberrated tri-arm sparse aperture (0.252 waves rms piston, tip/tilt error). 
 



 220

5.4.2 HyMap-Based Object Description 

The restoration results in the previous examples highlighted a unique spectrally induced 

quality effect that appeared to become more problematic as the imaging system exhibited 

increased levels of aberration.  One will recall that these simulations entailed a polychromatic 

object scene derived from the three-band WASP digital airborne camera.  As such, the 

original object displayed superb spatial sampling but less than optimal spectral resolution.  

To investigate how enhanced spectral resolution in the derivation of the integrated broadband 

signal impacts the nature of the spectral artifacts that surfaced for the moderately aberrated 

sparse aperture case, several polychromatic scenes from HyMap digital airborne data were 

captured in the simulation process. 

 

For the panchromatic scenarios of interest to this dissertation, the HyMap sensor provides 33 

reflective hyperspectral bands from 435-905 nm with ~15 nm bandwidths.  This provides 

reasonably good spectral fidelity for the type of modeling performed in conjunction with this 

research effort.  Unfortunately, the ground sample distance (GSD) associated with this data is 

relatively poor, with the observed ~10-ft GSD far below the 1.5 ft sampling desired in the 

nominal collection scenario.  As a consequence, the following series of modeling iterations 

exhibits good spectral resolution but less than desirable spatial sampling.  To avoid any 

uncertainty introduced into the modeling process by aliasing, the imaging system design was 

modified to ensure Nyquist sampling or better for these particular simulation cases.  Despite 

the spatial resolution limitations described above, it is still a worthwhile exercise to evaluate 

other spectrally diverse object scenes to confirm the general nature of the spectrally induced 

quality effect conjectured through the system OTF character and observed in the WASP-

derived simulation data. 

 

An overhead view of the port of Mobile, AL was selected for the initial HyMap-based series 

of sparse aperture system predictions.  Figure 96(a) displays the original polychromatic 

object scene, which clearly demonstrates excellent spatial frequency content and nominal 

spectral content from a remote sensing perspective.  It should be noted that the scene is far 

less challenging from the standpoint of the spectral and spatial-frequency content observed in 

the WASP-derived scene.  As before, the Wiener filter applied in these restorations uses the 
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spectrally averaged OTF (with perfect phase error knowledge) and the known noise-to-object 

power spectrum ratio.  The rationale behind this selection has been discussed previously.  In 

Figure 96(b), a spectrally weighted panchromatic version of the original polychromatic 

object scene has been developed for the purposes of comparison.  As was done in the 

previous series of examples, individual restorations were accomplished through use of both 

the gray-world approximation and the enhanced spectral fidelity model.  The bottom row of 

the figure provides a comparison of the restored broadband panchromatic imagery from the 

two models acquired for the tri-arm sparse aperture system with 0.10 waves rms of wavefront 

error.  In specific, Figure 96(c) contains the restoration acquired with the gray-world model, 

and Figure 96(d) depicts the restored imagery generated by the polychromatic model.  For 

this high SNR scenario, the gray-world and polychromatic-world models appear to produce 

similar restorations for aberrations on the order of 0.10 waves rms of wavefront error. 

 

Once again, there are some differences between the restoration results acquired from the two 

simulation models, but a softcopy flicker test is required to observe the subtle variations.  In 

this example, the mean-level statistics are a clear indicator of how minor those differences 

truly are, as only a ~4% difference in nrmse exists between them.  Of course, the slightly 

poorer quality is exhibited by the enhanced spectral fidelity restoration, seemingly pointing 

to the likely possibility that the conjectured modulation mismatch observed with previous 

simulations is again being manifested for this particular example, albeit at an extremely low 

level.  Closer examination of the two restorations in Figure 97 does little to highlight any 

detectable changes in the perceived quality.  Therefore, although there is a minor but 

statistically significant difference between the two restorations, one has to conclude that the 

gray-world model provides a reasonable approximation of the anticipated restored image 

quality for this sparse aperture imaging scenario involving 0.10 waves rms of wavefront 

error.  As was the case before, both simulation approaches also support the conclusion that a 

sparse aperture system can theoretically suffer up to 0.10 waves rms of piston, tip/tilt error 

and still produce good quality imagery under the collection assumptions pursued in this 

research investigation. 
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 (a) Original Object (b) Spectrally Weighted Object 

 

   
 (c) Gray-World Simulation (d) Polychromatic-World Simulation 
 nrmse: 0.0634 nrmse: 0.0662 

 

RER: 0.662;  Grms: 17.9;  SNR: 276.2 
 

Figure 96: Integrated panchromatic simulation of an aberrated tri-arm sparse aperture 
with spectrally weighted OTF restoration (0.10 waves rms piston, tip/tilt error). 
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 (a) Gray-World Simulation (b) Polychromatic-World Simulation 
 nrmse: 0.0634 nrmse: 0.0662 

 
Figure 97: (Magnified) Integrated panchromatic simulation of an aberrated tri-arm sparse 
aperture with spectrally weighted OTF restoration (0.10 waves rms piston, tip/tilt error). 

 

To explore whether increased rms wavefront error promotes the kind of spectral artifacting 

observed in the WASP-derived scenes, a series of HyMap-based investigations were 

performed with an aberrated tri-arm sparse aperture system exhibiting 0.25 waves rms of 

wavefront error.  The restoration results acquired through this study for the HyMap-based 

harbor scene can be found in figures 98 through 101.  Within this set of diagrams, Figure 99 

depicts a magnified region of the restoration found in Figure 98, and similarly Figure 101 

displays an enlarged image chip from Figure 100.  For comparison within individual figures, 

the restorations from the gray-world model are depicted in (a) and those acquired through use 

of the spectral model appear in (b). 

 

At this level of aberration, it becomes apparent both visually and in the metric data that the 

spectrally induced artifacts again surface for the polychromatic-world model.  Although 

noise amplification and some ringing are also apparent in the gray-world model restoration, 

the perceived level of that image structure is significantly below that witnessed in the 

polychromatic model products.  It is clear that the majority of the latter is the product of the 

Wiener filter restoration in conjunction with the general character of the aberrated sparse 
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aperture system transfer function, not the result of any spectral modulation mismatch that the 

gray-world model is technically unable to support.  The level of artifacting or ringing in the 

restored imagery from the enhanced model is significant enough to be observed in the 

hardcopy and is only accentuated through a softcopy flicker test between the two model 

results.  For these examples, the statistical metrics also capture the significant variation 

between the two model results, as the computed nrmse difference is in the range of 25-28%.  

Such a difference is a clear indicator that there are physical processes captured in the 

polychromatic-world simulation that are not adequately addressed through the equivalent 

gray-world approximation. 

 

As with the previously derived results, these HyMap-based restorations with increased 

spectral resolution seem to confirm that a spectrally induced artifact mechanism is supported 

by the unique structure of sparse aperture imaging system transfer functions.  This is an 

encouraging result as it appears that the addition of spectral planes in the derivation of the 

integrated broadband signal does not average out the effect.  In other words, the spectral 

content of the remotely sensed scenes investigated in this effort does not appear to exhibit 

features that would be accentuated to the point of inducing artifacts as a result of insufficient 

spectral sampling.  To test this theory, an additional Hymap-derived scene and a higher 

spectral-resolution DIRSIG object will be explored in the discussion to follow.  Based on the 

results acquired through this series of investigations and those conducted earlier, it appears 

that the artifacting mechanism is not triggered extensively until the wavefront error is 

considerably worse than 0.10 waves rms.  At 0.25 waves rms of wavefront error, the 

spectrally induced quality effect is severe enough that image interpretability is considerably 

impacted.  To capture the nature of this phenomenon, however, one must implement an 

enhanced spectral fidelity model, as the traditional gray-world approach does not address the 

spectral mechanism that is responsible for inducing the deleterious image artifacts observed 

in this dissertation. 
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 (a) Gray-World Simulation (b) Polychromatic-World Simulation 
 nrmse: 0.0850 nrmse: 0.1063 

 

RER: 0.549;  Grms: 23.0;  SNR: 270.7 
 

Figure 98: Iteration #1: Panchromatic simulation of an aberrated tri-arm sparse aperture 
with spectrally weighted OTF restoration (0.25 waves rms piston, tip/tilt error). 

 
 

   
 (a) Gray-World Simulation (b) Polychromatic-World Simulation 
 nrmse: 0.0850 nrmse: 0.1063 

 
Figure 99: Iteration #1 (Magnified): Panchromatic simulation of an aberrated tri-arm sparse 

aperture with spectrally weighted OTF restoration (0.25 waves rms piston, tip/tilt error). 
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 (a) Gray-World Simulation (b) Polychromatic-World Simulation 
 nrmse: 0.0841 nrmse: 0.1074 

 

RER: 0.553;  Grms: 24.3;  SNR: 275.8 
 

Figure 100: Iteration #2: Panchromatic simulation of an aberrated tri-arm sparse aperture 
with spectrally weighted OTF restoration (0.25 waves rms piston, tip/tilt error). 

 
 

   
 (a) Gray-World Simulation (b) Polychromatic-World Simulation 
 nrmse: 0.0841 nrmse: 0.1074 

 
Figure 101: Iteration #2 (Magnified):  Panchromatic simulation of an aberrated tri-arm sparse 

aperture with spectrally weighted OTF restoration (0.25 waves rms piston, tip/tilt error). 
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As alluded to above, numerous iterations have been performed with various object scenes 

and optical phase distributions to ensure the nature of the reported results are consistent with 

the norm.  To that end, the restoration results from a different HyMap-based polychromatic 

object scene will be discussed next.  As before, the new polychromatic object scene exhibits 

spatial sampling of ~10-ft GSD and spectral resolution on the order of ~15 nm.  Figure 102 

contains a series of imagery products acquired for the tri-arm sparse aperture system with 

0.10 waves rms of piston, tip/tilt error at the mean wavelength.  Figure 102(a) displays the 

original color object, which clearly contains urban/suburban scene content including a 

highway interchange as a prominent central feature.  In Figure 102(b), a spectrally weighted 

panchromatic object has been formed from the original hyperspectral data cube to provide a 

means for comparison between the two imaging models under investigation.  Finally, Figure 

102(c) depicts the restoration results from the gray-world model, and Figure 102(d) displays 

the restored imagery from the polychromatic model. 

 

Figure 103 shows a magnified region of the restored imagery in Figure 102 to allow a closer 

examination of their quality.  Based on these figures, it is clear that only marginal visual 

differences exist between the predictions acquired through the gray-world model and those 

from the enhanced spectral capability for this level of aberration.  As previously observed for 

0.10 waves rms of wavefront error, one can perform a softcopy flicker test between the two 

different imagery restorations and detect noticeable differences.  However, given the GSD 

associated with the scene, it is difficult to ascertain whether the quality effects observed in 

the softcopy imagery impact feature interpretability for the untrained observer.  Despite the 

apparent minor nature of the difference in overall visual appearance, the statistical data 

portrays a slightly different story, with an nrmse difference of ~21% exhibited between the 

gray-world and polychromatic models.  Based on this metric data, it is apparent there are 

some spectral effects captured in the enhanced model on a level not observed previously for 

0.10 waves rms of wavefront error.  This particular scene clearly exhibits significant mid-

spatial frequency content as a function of wavelength that accentuates the effect of the 

spectral mis-boost in the Wiener filter restoration.  One will see shortly that this effect 

becomes very prominent in the restoration quality associated with this particular overhead 

scene as the aberration levels increase. 
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 (a) Original Object (b) Spectrally Weighted Object 

 

   
 (c) Gray-World Simulation (d) Polychromatic-World Simulation 
 nrmse: 0.0557 nrmse: 0.0674 

 

RER: 0.629;  Grms: 12.8;  SNR: 269.0 
 

Figure 102: Integrated panchromatic simulation of an aberrated tri-arm sparse aperture 
with spectrally weighted OTF restoration (0.10 waves rms piston, tip/tilt error). 
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 (a) Gray-World Simulation (b) Polychromatic-World Simulation 
 nrmse: 0.0557 nrmse: 0.0674 

 
Figure 103: (Magnified) Integrated panchromatic simulation of an aberrated tri-arm sparse 
aperture with spectrally weighted OTF restoration (0.10 waves rms piston, tip/tilt error). 

 

As in previous exercises, the polychromatic object scene identified in Figure 102 was utilized 

in additional simulations involving a tri-arm sparse aperture system with 0.25 waves rms of 

wavefront error and fill factor of 0.173.  A sample of the restoration results acquired through 

this investigation for the two modeling capabilities of interest appear in figures 104 and 105.  

As forecasted by the nrmse data from the previous example, the enhanced spectral fidelity 

model provides a restoration that is beset by significant artifacting for this level of aberration.  

In fact, the ringing within the restored imagery associated with this model is so extensive that 

information content is visibly lost, leading to a serious reduction in image interpretability 

even at ~10-ft GSD.  Once again, the comparable gray-world model does not manifest any of 

this image structure, pointing to the hypothesis that they must be spectrally induced.  

Multiple iterations were performed at the level of 0.25 waves rms of piston, tip/tilt for this 

HyMap-derived object scene, and all appeared to generate similar results that were in family 

with those presented in figures 104 and 105.  For this particular case, the two scenes exhibit 

an approximate 89% difference in computed nrmse from the original gray-scale object, 

confirming quantitatively the nature of the destructive artifacting that arises in the spectral 

model.  Based on these results, one can conclude that inclusion of spectral physics in the 

simulation process is clearly essential for particular collection conditions. 



 230

   

   
 (a) Gray-World Simulation (b) Polychromatic-World Simulation 
 nrmse: 0.0743 nrmse: 0.1402 

 

RER: 0.515;  Grms: 24.1;  SNR: 265.1 
 

Figure 104: Integrated panchromatic simulation of an aberrated tri-arm sparse aperture 
with spectrally weighted OTF restoration (0.25 waves rms piston, tip/tilt error). 

 
 

   
 (a) Gray-World Simulation (b) Polychromatic-World Simulation 
 nrmse: 0.0743 nrmse: 0.1402 

 
Figure 105: (Magnified) Integrated panchromatic simulation of an aberrated tri-arm sparse 
aperture with spectrally weighted OTF restoration (0.25 waves rms piston, tip/tilt error). 
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Based on these examples, it is clear that capturing some of the spectral character of the 

collection can be extremely important in certain sparse aperture imaging scenarios, especially 

those entailing moderate-to-high aberration levels and significant mid-spatial frequency 

content that varies as a function of wavelength.  The HyMap-derived exercises provide key 

insight into how dependent the observed quality effect is on scene content, as well as the 

relative distribution of phase error across the exit pupil.  As a consequence, one must be very 

cautious in simply specifying rms wavefront error to quantify sparse aperture system 

performance, as enormous variability in restored image quality can be observed for a given 

level of aberration. 

5.4.3 DIRSIG-Based Object Description 

With the reporting of the airborne-derived scene results now complete, the final 

polychromatic object to receive attention in this dissertation is a scene that was synthetically 

generated through use of DIRSIG.  As discussed previously, DIRSIG affords the unique 

opportunity to systematically adjust the spatial and spectral resolution for a given scenario 

according to the principal investigator’s objectives.  With a complex scene of the Rochester, 

NY metropolitan area already constructed, there was considerable leverage available for 

performing a high-resolution, spectrally accurate simulation with a realistic synthetic scene.  

Additionally, through the flexibility of the DIRSIG model, the spatially variant spectral 

radiance at the entrance pupil could be computed at the desired 18-in GSD at spectral 

intervals of 5 nm with considerable radiometric accuracy.  Unfortunately, due to constraints 

in the spectral content of the underlying texture map (the digital airborne data responsible for 

creating it only provided reflectance data in the visible part of the spectrum), realistic 

imagery could only be acquired across a detection bandwidth of 400-700 nm.  Therefore, the 

simulations in the following examples exhibit excellent spatial and spectral resolution, but 

suffer some limitations in detection bandwidth and unique model-based attributes.  As a 

consequence, the DIRSIG-based simulations which follow provide another essential piece of 

the composite picture on the value of the enhanced spectral modeling of sparse aperture 

systems but should not be considered exclusively without regard to the previously derived 

results.  
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As with the previous analyses, the first scenario to be addressed with the DIRSIG scene 

entails an aberrated tri-arm sparse aperture system with 0.10 waves rms of piston, tip/tilt 

error at the mean wavelength and a fill factor of 0.173.  The original polychromatic object 

scene (composed of 61 bands at 5 nm spectral resolution) appears in Figure 106(a).  From 

this diagram, it is apparent that the selected suburban scene is relatively “flat” from a spectral 

perspective, with many neutral earth tones, foliage and field spectra represented in the scene 

content.  In addition, all the reflectance data associated with the scene are essentially 

Lambertian diffuse, so there is no physical specularity apparent in the simulated scene 

addressed through this investigation.  Finally and perhaps most importantly, the detection 

bandwidth associated with the scene is considerably reduced (by a 3:5 ratio) from that 

utilized in previous examples.  As a consequence of these features, the scene constitutes a far 

less severe case than explored previously since the observed spectral variation is relatively 

narrow.  With these caveats in mind, Figure 106(c) and (d) provide the image restorations for 

the gray-world and polychromatic models, respectively.  For comparison, a spectrally 

weighted equivalent panchromatic object image has been included in Figure 106(b). 

 

As was encountered in the previous exercises, the restorations associated with 0.10 waves 

rms of wavefront error show very subtle differences between the two simulation models.  

Even in the magnified region of the restorations depicted in Figure 107, the nature of these 

differences cannot be easily discerned in the hardcopy.  Interestingly, the nrmse data do 

indicate there is a statistical difference of ~4% between the two restorations, comparable to 

the level of degradation observed in the previous examples.  Once again, the enhanced 

spectral fidelity model appears to capture a deleterious effect that is not present in the gray-

world model restoration.  These results are entirely consistent with what was observed in 

previous simulations of the tri-arm sparse aperture system aberrated at 0.10 waves rms error.  

Therefore, with increased spectral resolution, the DIRSIG restoration results again seem to 

confirm that the conjectured spectrally induced quality effect is present in aberrated sparse 

aperture systems, but at a low enough level that interpretability is not impacted at 0.10 waves 

rms of wavefront error.  As a consequence of the relatively low amplitude of the effect at this 

aberration level, both models produce visually similar restoration products that imply 
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acceptable quality can be acquired with a sparse aperture system under the conditions and 

assumptions pursued in this investigation. 

 

   
 (a) Original Object (b) Spectrally Weighted Object 

 

   
 (c) Gray-World Simulation (d) Polychromatic-World Simulation 
 nrmse: 0.0634 nrmse: 0.0659 

 

RER: 0.740;  Grms: 13.7;  SNR: 279.2 
 

Figure 106: Integrated panchromatic simulation of an aberrated tri-arm sparse aperture 
with spectrally weighted OTF restoration (0.10 waves rms piston, tip/tilt error). 
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 (a) Gray-World Simulation (b) Polychromatic-World Simulation 
 nrmse: 0.0634 nrmse: 0.0659 

 
Figure 107: (Magnified) Integrated panchromatic simulation of an aberrated tri-arm sparse 
aperture with spectrally weighted OTF restoration (0.10 waves rms piston, tip/tilt error). 

 

In parallel structure with previous investigations, the obvious next step is to evaluate a 

DIRSIG-derived object scene with a sparse aperture system that is aberrated by 0.25 waves 

rms of piston, tip/tilt error.  With the object scene content provided through DIRSIG, 

numerous iterations were performed with this level of aberration applied to the nominal 

0.173 fill factor tri-arm imaging system.  The principal difference between the various 

iterations was the random seed used to distribute the optical phase across subapertures.  The 

results depicted in figures 108 through 115 are representative of the set of runs that were 

executed for this particular evaluation.  In this series of diagrams, a leader-follower 

relationship exists whereby the full restoration is sequentially followed by a magnified region 

of that image.  From these results, it is readily apparent that the spectral model again captures 

an artifacting or ringing effect that is not present in the equivalent gray-world model 

restorations.  Despite the reduced detection bandwidth associated with these predictions, the 

spectrally induced effect is very prominent and has a serious deleterious impact on the visual 

quality of the restored imagery.  In addition, the unique effect appears to be statistically 

significant in the mean-level image quality metrics, as the difference in the computed nrmse 
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between the two model approaches is generally on the order of ~13-21%, with outliers as 

large as 42% also observed. 

 

   
 (a) Gray-World Simulation (b) Polychromatic-World Simulation 
 nrmse: 0.0780 nrmse: 0.0915 

 

RER: 0.582;  Grms: 18.1;  SNR: 279.4 
 

Figure 108: Iteration #1: Panchromatic simulation of an aberrated tri-arm sparse aperture 
with spectrally weighted OTF restoration (0.25 waves rms piston, tip/tilt error). 

 

   
 (a) Gray-World Simulation (b) Polychromatic Simulation 
 nrmse: 0.0780 nrmse: 0.0915 

 
Figure 109: Iteration #1 (Magnified): Panchromatic simulation of an aberrated tri-arm sparse 

aperture with spectrally weighted OTF restoration (0.25 waves rms piston, tip/tilt error). 
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 (a) Gray-World Simulation (b) Polychromatic-World Simulation 
 nrmse: 0.0961 nrmse: 0.1089 

 

RER: 0.614;  Grms: 20.1;  SNR: 240.4 
 

Figure 110: Iteration #2: Panchromatic simulation of an aberrated tri-arm sparse aperture 
with spectrally weighted OTF restoration (0.25 waves rms piston, tip/tilt error). 

 
 

   
 (a) Gray-World Simulation (b) Polychromatic Simulation 
 nrmse: 0.0961 nrmse: 0.1089 

 
Figure 111: Iteration #2 (Magnified): Panchromatic simulation of an aberrated tri-arm sparse 

aperture with spectrally weighted OTF restoration (0.25 waves rms piston, tip/tilt error). 
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 (a) Gray-World Simulation (b) Polychromatic-World Simulation 
 nrmse: 0.0877 nrmse: 0.1057 

 

RER: 0.676;  Grms: 20.6;  SNR: 273.2 
 

Figure 112: Iteration #3: Panchromatic simulation of an aberrated tri-arm sparse aperture 
with spectrally weighted OTF restoration (0.25 waves rms piston, tip/tilt error). 

 
 

   
 (a) Gray-World Simulation (b) Polychromatic Simulation 
 nrmse: 0.0877 nrmse: 0.1057 

 
Figure 113: Iteration #3 (Magnified): Panchromatic simulation of an aberrated tri-arm sparse 

aperture with spectrally weighted OTF restoration (0.25 waves rms piston, tip/tilt error). 
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 (a) Gray-World Simulation (b) Polychromatic-World Simulation 
 nrmse: 0.0933 nrmse: 0.1324 

 

RER: 0.621;  Grms: 24.5;  SNR: 274.0 
 

Figure 114: Iteration #4: Panchromatic simulation of an aberrated tri-arm sparse aperture 
with spectrally weighted OTF restoration (0.25 waves rms piston, tip/tilt error). 

 
 

   
 (a) Gray-World Simulation (b) Polychromatic Simulation 
 nrmse: 0.0933 nrmse: 0.1324 

 
Figure 115: Iteration #4 (Magnified): Panchromatic simulation of an aberrated tri-arm sparse 

aperture with spectrally weighted OTF restoration (0.25 waves rms piston, tip/tilt error). 
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Although certainly within family, the restorations achieved with the spectral model appear to 

exhibit a minor reduction in the relative magnitude of the observed artifacting effect relative 

to some of the previous results.  The most obvious contributor to this reduction is the 

relatively neutral spectral character of the object scene.  As observed above, the scene 

consists of a fair amount of natural content that does not show significant spectral variation 

across the investigated passband.  Future sensitivity studies should be performed with a scene 

that demonstrates greater diversity in spectral and spatial-frequency content to explore this 

premise.  Another significant issue that undoubtedly contributes to the reduced nature of the 

effect is the narrower detection bandwidth (300 nm versus 500 nm) associated with these 

particular simulations.  As introduced previously, the observed artifacting effect is largely the 

result of modulation mismatch across the detection passband.  As the passband becomes 

narrower, the opportunity for spatial frequency mismatch that can be accentuated through 

application of the Wiener filter is significantly reduced, ultimately leading to much less mis-

boost and associated artifact generation.  Despite the apparent reduction in the impact of the 

observed artifacting effect, it is still a primary attribute of the image quality at this aberration 

level (0.25 waves rms) and is not adequately captured by the gray-world model.  The fact that 

the quality effect still exists despite the mitigating factors introduced above demonstrates it is 

an issue with which one must deal when analyzing moderately aberrated sparse aperture 

systems with low fill factors.  Thus, the results acquired with higher spectral resolution (5 nm 

intervals) again confirm the existence of unique quality issues for aberrated sparse aperture 

imaging systems, demonstrating once again the need to incorporate enhanced spectral fidelity 

into the modeling process when addressing this kind of optical system.  

5.5  Alternative Wiener Filter Options 

Even within the context of a traditional Wiener-Helstrom filter, there are a multitude of 

possible restoration filter options that could be pursued to reconstruct degraded imagery 

acquired from sparse aperture imaging systems.  Some of the potential filter alternatives have 

been previously introduced in this dissertation.  Since the implemented model approach 

derives the degrading system transfer function, the physical image noise spectrum, and the 

exact spatial object description; all of the essential components are available to develop an 

optimal filter design.  This “optimal” filter with perfect system transfer function knowledge 
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and a priori knowledge of the noise-to-object power spectrum has been used extensively 

within the various system trades as the baseline restoration methodology.  Obviously, one 

could perform sensitivity trades on the relative collection uncertainty to gain insight into the 

effect of real-world conditions on restored image quality.  Although some trades on system 

uncertainty were performed in concert with this research, they were rather preliminary in 

nature so the bulk of this problem is left for future investigation.  This section will, however, 

document some of the more extensive comparative work that was accomplished for selection 

of the individual components within the classic Wiener filter construct. 

 

To that end, Figure 116 illustrates integrated panchromatic restoration products acquired for 

a moderately aberrated tri-arm sparse aperture system with fill factor of 0.173.  All of these 

restorations were developed through use of the enhanced spectral model and various options 

for the individual Wiener filter constituents (i.e., system transfer function and noise-to-object 

power spectrum ratio).  For the purposes of comparison, a spectrally weighted panchromatic 

object image formed from the original polychromatic scene appears in Figure 116(a).  As 

seen in this diagram, the object scene utilized in this investigation is derived from the WASP 

airborne imagery.  In Figure 116(b), one observes the image restoration generated with the 

perfect central wavelength OTF and exact noise-to-object power spectrum present in the 

modeled panchromatic signal.  As noted in Section 5.3, this selection of Wiener filter design 

leads to considerable amplification of the modulation mismatch in the spectral transfer 

function, inducing a significant amount of artifacting and ringing in the derived imagery.  In 

agreement with this visual quality assessment, one will also note that this restoration option 

correlates with the worst statistical errors of the filters represented in the figure, as 

manifested by the relatively poor nrmse of 0.1532. 

 

As observed in Figure 116(c), one finds that slightly better restoration quality can be 

achieved for the central wavelength OTF restoration if some uncertainty is prescribed in the 

noise-to-object power spectrum ratio.  In this part of the exercise, that key ratio was assumed 

to be unknown and treated as a constant to be adjusted for derivation of “optimal” quality.  

Such a process is not unlike what is accomplished for real-world imagery restorations, 

although the latter are usually performed by trained photo-analysis professionals.  For the 
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central wavelength OTF restoration, use of a constant for the power spectrum ratio seems to 

result in imagery with reduced sharpness but also reduced amplitude in the perceived level of 

artifacting.  In effect, the uncertainty in the power spectrum ratio induces an averaging 

mechanism in the restoration that helps to mitigate some of the artifacts observed in the 

imagery.  Statistically, this smoothing effect in the image restoration results in ~8% 

improvement in the computed nrmse for this particular example.  Although this phenomenon 

is consistently observed in central wavelength OTF restorations, it is not the case that is 

typically experienced with restorations utilizing spectrally weighted transfer functions.  In the 

latter case, uncertainty in the power spectrum ratio generally results in poorer restoration 

quality than use of the exact ratio in the Wiener filter construction.  This will be observed in 

the subsequent comparative analysis on alternative filter options, where a priori knowledge 

of the power spectrum ratio will clearly be shown to be beneficial for spectrally averaged 

OTF restorations. 

 

On the other end of the spectrum, one finds in Figure 116(d) the “optimal” restoration filter 

design with a perfect spectrally averaged system OTF and known noise-to-object power 

spectrum ratio generates the lowest statistical measure of error, with an observed nrmse of 

0.1125.  Of course, the quality associated with the latter restoration is still very suspect when 

the wavefront error is on the order of 0.25 waves rms, as one observes the destructive 

spectral artifacting and overall loss of information content noted previously.  The principal 

point of this trade study, however, is that the spectrally averaged OTF restoration is 

consistently better than the central wavelength OTF reconstruction, resulting in significantly 

reduced image quality impact.  As noted in earlier sections, it appears use of the spectrally 

weighted transfer function within the Wiener filter generally minimizes the amplification in 

modulation mismatch that gives rise to the whole spectral artifacting phenomenon.  

Consequently, it appears that the spectrally weighted system OTF is the optimal constituent 

to use within the Wiener filter for this kind of imaging system.  The impact of the smoothing 

effect of unknown noise-to-object power spectrum in conjunction with this “optimal” transfer 

function will be addressed in the discussion on the next series of restoration examples. 
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 (a) Spectrally Weighted Object (b) Central OTF Restoration 
 (formed from original color object) (a priori power spectrum knowledge) 
  nrmse: 0.1532;  RER: 0.804;  Grms: 18.2 

 

   
 (c) Central OTF Restoration (d) Spectrally Averaged OTF Restoration 
 (no power spectrum knowledge) (a priori power spectrum knowledge) 
 nrmse: 0.1411;  RER: 0.836;  Grms: 16.9 nrmse: 0.1125;  RER: 0.777;  Grms: 23.0 

 
Figure 116: Integrated panchromatic simulation of an aberrated tri-arm sparse aperture 

with various restoration filters (0.25 waves rms piston, tip/tilt error). 
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Continuing with the discussion on alternative restoration filter realizations, Figure 117 

provides some comparisons between different gray-world and polychromatic model 

reconstructions for the aberrated tri-arm sparse aperture system with wavefront error on the 

order of 0.25 waves rms.  All of the restorations in this particular case make use of the 

“optimal” spectrally averaged system transfer function deduced in the previous study.  The 

comparison that is achieved in this example is the impact of uncertainty in the noise-to-object 

power spectrum ratio when the “perfect” spectrally weighted OTF is captured in the Wiener 

filter design.  For this exercise, a panchromatic equivalent image of the original HyMap-

derived polychromatic scene used to perform the simulations appears in Figure 117(a).  For 

purposes of comparison, the gray-world model restoration result assuming exact system OTF 

and power spectrum knowledge has been provided in Figure 117(b).  One should recall that 

this simulation fails to adequately capture the spectral character of the scene and system 

OTF, so the deleterious effect of the spectrally induced ringing is not present in this 

restoration.   The latter quality effect is captured by the restoration displayed in Figure 

117(d), the prediction achieved with the enhanced spectral fidelity model assuming perfect 

OTF and power spectrum ratio knowledge.  As observed previously, this restoration exhibits 

all of the artifacting character introduced in previous sections, seriously degrading the quality 

of the collected imagery. 

 

To address the impact of noise-to-object power spectrum uncertainty, the restoration in 

Figure 117(c) again involves the enhanced polychromatic model and perfect phase (i.e., 

system OTF) knowledge, but treats the power spectrum ratio as a constant that must be 

tweaked to acquire near-optimal image quality.  Such a Wiener filter implementation is fairly 

common practice within the larger remote sensing community.  As observed in this 

restoration, the difference between the estimated and exact power spectrum ratio introduces a 

“smoothing” effect that blurs edges within the scene content and reduces the perceived level 

of the artifacting.  Closer examination of this restoration still indicates the existence of the 

artifacting phenomenon (especially when a softcopy flicker test with the gray-world model 

result is conducted), so the natural averaging effect of collection uncertainty does not entirely 

mitigate the effect.  In addition, with the reduction in edge response (as manifested by the 

lower RER for this case), the overall image quality is actually reduced as a consequence of 
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this unknown system parameter.  This result is certainly consistent with one’s intuition on the 

impact of unknowns in the collection and restoration process. 

 

   
 (a) Spectrally Weighted Object (b) Gray-World Model Restoration 
 (formed from original color object) (a priori power spectrum knowledge) 
  nrmse: 0.0692;  RER: 0.619;  Grms: 30.6 

 

   
 (c) Spectrally Averaged OTF Restoration (d) Spectrally Averaged OTF Restoration 
 (no power spectrum knowledge) (a priori power spectrum knowledge) 
 nrmse: 0.1035;  RER: 0.546;  Grms: 14.7 nrmse: 0.0985;  RER: 0.619;  Grms: 30.6 

 
Figure 117: Integrated panchromatic simulation of an aberrated tri-arm sparse aperture 

with various restoration filters (0.25 waves rms piston, tip/tilt error). 
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The apparent visual degradation in the restoration involving collection uncertainty is 

confirmed by the metric data, as the computed nrmse for this scenario is ~5% worse than the 

equivalent spectral model restoration with perfect knowledge and ~50% worse than the gray-

world model approximation with no unknowns.  As this is a real-world effect, the dual 

impact of spectral artifacting due to amplification of the modulation mismatch in the Wiener 

filter and reduced sharpness resulting from imperfect restoration due to collection uncertainty 

can be a significant issue for moderately aberrated sparse aperture imaging systems.  

Unfortunately, this general character of the collection process for these unique systems has 

not been adequately addressed by the traditional gray-world model approach in the past.  

Clearly, depending on the nature of the collection scenario and imaging system 

characteristics anticipated, one needs to carefully consider the use of enhanced spectral 

fidelity when evaluating these advanced optical configurations. 

5.6  Analysis Excursions 

The final section in this chapter documents the results acquired from several analysis 

excursions performed with the proof-of-concept modeling capability developed for this 

research effort.  These modeling trades are far from exhaustive in nature, but they do provide 

initial insight into some fundamental principles of the imaging problem as well as unique 

aspects of sparse aperture imaging systems.  The excursions that will be detailed in the 

discussion below include preliminary analyses of noise level impact on restoration quality, 

detector integration time versus optical fill factor, impact of no optical phase knowledge on 

Wiener filtered products, and comparison of various aberration types on overall restored 

image quality.  All of the results presented in this section represent cursory analysis that 

deserves more attention in future research.  They have been included in this dissertation for 

illustrative purposes to demonstrate some of the capability available within the spectral 

model developed for this effort. 

5.6.1 Filtering Under Different Noise Levels 

The first system analysis to be captured in this section illustrates qualitatively through use of 

derived imagery products the impact of noise on the restoration process.  This particular 

study was performed using the interim quasi-monochromatic capability resident within the 
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proof-of-concept simulation model.  Although the monochromatic results are not necessarily 

reflective of the final integrated signal for a given collection scenario, the emphasis of this 

investigation was placed on characterizing the qualitative nature of system noise on 

restoration quality.  As such, the color composites available through the monochromatic 

analysis provide a unique aid in visualizing spectrally diverse noise and its consequence on 

sparse aperture image restoration.  Consequently, in all the imagery products included in this 

section, individual monochromatic spectral planes have been combined to form an RGB 

color composite image for purposes of illustration. 

 

Figure 118 provides a series of diagrams that introduce the nature of the analysis excursion 

that was performed through this effort.  Figure 118(a) displays the two optical configurations 

that were evaluated in this study, an aberrated tri-arm sparse aperture system with 0.20 waves 

rms of wavefront error at the mean wavelength and a diffraction-limited filled circular 

aperture of commensurate physical encircled size.  There is absolutely no significance to the 

arbitrarily selected physical diameter pursued in this exercise.  The critical aspect of the 

evaluation is that the two apertures involve the same encircled diameter.  As with previous 

investigations, the fill factor Ffill associated with the sparse aperture imaging system is 0.173.  

Figure 118(b) depicts the WASP-derived polychromatic object scene that was utilized in the 

evaluation.  This color image provides an excellent benchmark for comparing the quality of 

restored imagery products under the different image noise conditions pursued in this study.  

In Figure 118(c) and (e), one observes the degraded tri-arm sparse aperture monochromatic 

imagery predictions for noiseless (i.e., infinite SNR) and high-SNR scenarios prior to 

restoration.  Based on those detected imagery examples, one acquires the pseudo-inverse and 

Wiener filter restorations that appear in Figure 118(d) and (f), respectively.  In all of these 

examples, an “optimal” filter has been developed through use of the known system OTF and 

noise-to-object power spectrum ratio, as appropriate.   
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 (a) Pupil Configuration (b) Original Object 

   
 (c) Detected Image (No Noise) (d) Inverse-Filtered Image 

   
 (e) Detected Image (SNR = 337.4) (f) Wiener-Filtered Image 

 
Figure 118: Comparison of inverse and Wiener filtering results for an 

aberrated tri-arm sparse aperture (0.20 waves rms piston, tip/tilt). 
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In these examples, the individual monochromatic planes were restored with the exact system 

OTF that was responsible for the original degradation.  As a result, the exercise pursued in 

this section is fundamentally different from the previous quasi-monochromatic analyses, 

which utilized the central wavelength OTF to “simulate” the broadband detection scenario.  

In this case, the quasi-monochromatic model results are utilized to highlight the character of 

the restoration process under optimal conditions.  Given these evaluation conditions, one can 

subsequently draw conclusions on the optimal nature of the overall restoration process under 

different noise conditions. 

 

In the noiseless case, for instance, one can theoretically reproduce the exact object through 

use of an inverse filter given perfect knowledge of the system transfer function.  With real-

world digital imagery, one can almost accomplish the same result with implementation of a 

pseudo-inverse filter, as demonstrated by the restoration appearing in Figure 118(d) for the 

noiseless detection case.  Comparison of the imagery in Figure 118(b) and (d) confirms that 

the original object can effectively be recovered in the absence of any noise and with perfect 

system OTF knowledge.  In a similar manner, the example in Figure 118(f) involving 

restoration in the presence of low noise demonstrates that the Wiener filter provides near-

optimal recovery of the original object when the detection SNR is high (~337 in this case).  

Certainly, one can detect the presence of a small level of correlated noise in the softcopy 

representation of Figure 118(f), but the overall quality of the restoration is remarkably close 

to the original object quality. 

 

To address other noise levels, Figure 119 provides additional examples of the performance of 

the Wiener filter under “optimal” conditions (i.e., known system OTF and power spectrum 

ratio).  In these simulations, considerable noise has been incorporated into the detection 

scenario to capture monochromatic predictions in Figure 119(c) and (e) that are more 

representative of remote sensing applications.  Based on these predictions, Figure 119(d) and 

(f) provide near-optimal Wiener filter restorations of the individual monochromatic image 

planes for the conditions under evaluation.  Similar prediction products for the noiseless case 

have been provided in Figure 119(a) and (b) to highlight the extent of the degradation that 

occurs as the result of increased noise power in the detected imagery.  As observed in this 
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imagery, the addition of noise obviously degrades the quality of the final restored product, 

resulting in the introduction of ringing or artifacting once the noise level begins to compete 

with the signal at certain spatial frequencies.  Although the restored imagery appears to be 

very good quality, these examples highlight how the introduction of noise impacts quality for 

the optimal case.  One must recall that they are not very representative of potential real-world 

applications, since each color plane is restored individually through absolute knowledge of 

the collection scenario (including system OTF and noise-to-object power spectrum ratio).  It 

is not difficult to imagine how real-world collection uncertainty can amplify the degradation 

mechanism introduced here to produce unacceptable image restorations from a quality 

perspective.  Certainly, the results reported in previous sections have provided a good 

indication of how detrimental the inclusion of real-world collection effects can be on overall 

image quality. 

 

The final phase of this particular analysis excursion provides a precursor to the investigation 

that appears in the next section.  For the mid-level SNR case, a comparative evaluation was 

performed with a diffraction-limited filled circular aperture, providing the detected imagery 

and associated restoration depicted in Figure 120(c) and (d), respectively.  For purposes of 

illustration, the aberrated tri-arm sparse aperture imagery prediction and restoration appear in 

Figure 120(a) and (b).  As noted through comparison of this imagery, the filled circular 

aperture can achieve restoration quality commensurate with that acquired from the sparse 

aperture imaging system under considerably less favorable noise conditions.  In this 

particular contrived example, the aberrated sparse aperture system with a fill factor of 0.173 

requires ~18 times better detection SNR to achieve image quality on par with the filled 

aperture.  This is obviously a direct reflection of the highly demodulated system transfer 

function and the low aperture fill factor associated with the sparse aperture configuration 

explored in this study, consistent with the theoretical development from Fienup (2000) 

described at length in Chapter 3.  Clearly, the proof-of-concept model provides a testament to 

the relative integrity of the previously derived sparse aperture theory.  This point will receive 

additional attention in the section to follow. 
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 (a) Detected Image (No Noise) (b) Inverse-Filtered Image 

   
 (c) Detected Image (SNR = 70.9) (d) Wiener-Filtered Image (SNR = 70.9) 

   
 (e) Detected Image (SNR = 37.8) (f) Wiener-Filtered Image (SNR = 37.8) 

 
Figure 119: Comparison of inverse and Wiener filtering results for an 

aberrated tri-arm sparse aperture (0.20 waves rms piston, tip/tilt). 
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Tri-arm sparse aperture system with 0.20 waves rms piston, tip/tilt 
 

   
 (a) Detected Image (SNR = 70.9) (b) Wiener-Filtered Image (SNR = 70.9) 
 

Diffraction-limited filled circular aperture system  
 

   
 (c) Detected Image (SNR = 3.94) (d) Wiener-Filtered Image (SNR = 3.94) 

 
Figure 120: Comparison of the Wiener filtering results for an aberrated tri-arm 

sparse aperture and diffraction-limited circular filled aperture. 
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5.6.2 Integration Time vs. Fill Factor 

As indicted in Section 5.6.1, the proof-of-concept model developed for this research effort 

can provide evidence to verify the relative accuracy of sparse aperture theory on collection 

SNR or detector integration time.  As discussed in Chapter 3, Fienup (2000) has shown 

through appropriate analysis that the integration time Tint must be increased by a factor larger 

than that required to just accommodate the loss of photons resulting from the reduced fill 

factor.  At a top-level, his analysis predicts that a general sparse aperture system with a 

relative plateau in the mid-spatial frequency regime should require an increase in the 

integration time by the cube of the inverse fill factor, or in other words 3
fillint
−∝ FT .  Fiete 

(2002) subsequently showed through detailed system modeling and psychophysical analysis 

that the integration time typically must increase in proportion to somewhere between 2
fill
−F  

and 3
fill
−F , depending on the specific aperture configuration under consideration.  During this 

research effort, those figures of merit were qualitatively studied through use of the modeling 

capability developed for this dissertation. 

 

To highlight the character of the sparse aperture integration time (or equivalent detection 

SNR) required to achieve comparable quality to a filled aperture system, the quasi-

monochromatic capability resident within the model will again be exercised.  As before, the 

rationale behind use of the monochromatic analysis is the fact that RGB color composite 

images can be generated to highlight the visual effects of interest.  Of course, there is nothing 

fundamental about that choice, and one could easily have accomplished this same exercise 

utilizing the full-fledged, integrated signal model.  Through use of the appropriate 

monochromatic prediction products, Figure 121 provides color samples of the restorations 

achieved for (a) a diffraction-limited filled circular aperture and (b) an aberrated tri-arm 

sparse aperture system when the detector integration time for the latter is only increased by 

the inverse fill factor (i.e., -1
fillint FT ∝ ).  For this investigation, the sparse aperture system is 

aberrated by 0.10 waves rms of piston, tip/tilt (PTT) at the mean wavelength.  Under the first 

scenario, one effectively increases the dwell time associated with the sparse aperture by an 

amount that only accommodates the reduction in incident photons through the optical pupil.  

As observed in Figure 121, this increase in integration time is not sufficient to achieve a 
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restoration product that rivals the quality of the equivalent filled aperture image.  The 

differences between the two restorations become very apparent if one performs a softcopy 

flicker test. 

 

The fact that commensurate quality is not achieved through an integration time proportional 

to -1
fillF  is obviously a direct result of the demodulated character of the sparse aperture system 

transfer function.  As a result of the latter, one must effectively over-dwell in order to 

increase detection SNR and achieve the desired product quality.  As a demonstration of 

Fienup’s derived proportionality, Figure 122 depicts the quasi-monochromatic restoration 

products one acquires when the sparse aperture system integration time abides by the 

relationship 3
fillint
−∝ FT .  As witnessed in this figure, one does actually achieve a very 

comparable restoration product when the integration time is increased by the cube of the 

inverse fill factor, confirming to first order the obvious need to over-dwell in this manner.  

Based on the work of Fiete, there is little doubt that one could reduce the integration time 

slightly and still achieve very comparable image quality with the filled aperture.  The key 

point that was emphasized in this investigation, however, is that the integration time 

associated with a sparse aperture system must be increased considerably longer than that 

simply required to make up for lost photons.  In addition, that increase in dwell time is 

generally on the order of an inverse fill factor power relationship like 3
fill
−F , entirely consistent 

with the original first-principles analysis performed by Fienup.  The final reinforcement of 

that point is provided by the sparse aperture image restorations displayed in Figure 123, 

which clearly highlight the need to over-dwell in order to reduce the level of noise 

amplification one naturally encounters through the Wiener filtering process and ultimately 

acquire near-optimal product quality for the collection conditions studied in this exercise. 
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(a) Filled Circular Aperture Restored Image 

σWFE: diffraction limited; RER: 0.840; Grms: 1.82; SNR: 33.6 
 

 
(b) Tri-arm Sparse Aperture Restored Image 

σWFE: 0.10 waves rms PTT; RER: 0.501; Grms: 3.75; SNR: 33.3 
 

Figure 121: Comparison between tri-arm and filled aperture images 
with the sparse aperture integration time increased to accommodate 

lost photons only ( 1
fillint
−∝ FT ). 
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(a) Filled Circular Aperture Restored Image 

σWFE: diffraction limited; RER: 0.840; Grms: 1.82; SNR: 33.6 
 

 
(b) Sparse Aperture Restored Image 

σWFE: 0.10 waves rms PTT; RER: 0.824; Grms: 12.2; SNR: 273.4 
 

Figure 122: Comparison between tri-arm and filled aperture images 
with the sparse aperture integration time increased to accommodate 

lost photons and degraded OTF ( 3
fillint
−∝ FT ). 
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(a) Integration time: 1

fillint
−∝ FT  

σWFE: 0.10 waves rms PTT; RER: 0.501; Grms: 3.75; SNR: 33.3 
 

 
(b) Integration time: 3

fillint
−∝ FT  

σWFE: 0.10 waves rms PTT; RER: 0.824; Grms: 12.2; SNR: 273.4 
 

Figure 123: Comparison between tri-arm sparse aperture images with varied dwell time 
to illustrate the need to accommodate both lost photons and degraded OTF. 
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5.6.3 Phase Knowledge Sensitivity 

Many of the modeling scenarios documented in this dissertation used the exact system 

optical transfer function responsible for the original degradation in construction of the 

appropriate restoration filter.  In this context, one in effect assumes perfect knowledge of the 

optical phase distribution or character of the associated wavefront error across the exit pupil 

during the collection period.  While certain techniques have been investigated as options for 

providing information on the nature of the wavefront error present during a given collection, 

these methodologies are certainly not flawless and one would consequently anticipate some 

uncertainty in the knowledge of in-situ phase error.  To address this concern, several 

preliminary sensitivity runs were performed with the enhanced spectral fidelity model under 

various levels of phase uncertainty. 

 

This section highlights the criticality of incorporating knowledge of transfer function phase 

into the development of the restoration filter.  On the opposite end of the spectrum from 

perfect knowledge, it demonstrates the quality implications of having no knowledge of the 

wavefront errors during the detection scenario.  To that end, several exercises were 

performed with the tri-arm sparse aperture imaging system at different levels of aberration, 

assuming both perfect and no knowledge of the optical phase errors across the pupil.  One 

will find examples of these model iterations for 0.10 and 0.25 waves rms of wavefront error 

in the figures provided in this section.  As with previous exercises, the tri-arm sparse aperture 

imaging system has a fill factor of 0.173.  Consistent with the previous discussion on the 

“optimal” filter, a spectrally averaged system OTF has been developed for all the restorations 

in this analysis.  In addition, for the case of no phase knowledge, the a priori diffraction-

limited transfer function is used within the Wiener filter design.  Finally, to eliminate 

uncertainty in the noise-to-object power spectrum ratio as a complicating factor, the exact 

ratio derived from the detected imagery is used in the restoration filter construction.  As a 

result of the latter, the differences that are observed in the restorations will principally be a 

function of the knowledge in optical phase.  Although representative of the extreme cases, 

the restorations associated with perfect and no phase knowledge are instructive as they bound 

the range of potential optical performance one may actually encounter operationally. 
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Figure 124 depicts a typical random piston, tip/tilt phase profile one may experience with an 

aberration level of 0.10 waves rms at the mean wavelength.  Given that distribution of phase, 

one can derive through the complex autocorrelation of the pupil the aperture MTF that 

appears in Figure 125.  As observed in this figure, the MTF associated with a slightly 

aberrated sparse aperture imaging system exhibits some demodulation and introduction of 

minor nulling across the spatial frequency plane.  These diagrams illustrate that the case 

explored in this analysis excursion is completely consistent with the phase profile and 

transfer function character explored previously for this level of aberration.  For the 

restoration involving perfect knowledge, this exact phase distribution and transfer function 

are used within the restoration process.  For the case involving unknown phase, however, no 

phase distribution is assumed and the classic diffraction-limited tri-arm transfer function is 

prescribed within the Wiener filter. 

 

With this problem definition, Figure 126 provides the range of simulation products that were 

acquired for this particular sensitivity study.  For comparative purposes, a panchromatic 

equivalent object image and the detected imagery prediction (prior to restoration) are 

displayed in Figure 126(a) and (b), respectively.  Figure 126(c) shows the restoration 

achieved when the optical phase is perfectly accounted for in the Wiener filter, and Figure 

126(d) depicts the post-processed imagery when no phase knowledge is incorporated into the 

reconstruction.  Visually, it is readily apparent how critical it is to capture phase in the 

overall restoration process, as the case involving no phase knowledge manifests significant 

blurring and loss of image sharpness.  This loss in image quality is further emphasized by the 

metric data, as the computed nrmse increases by ~110% as a consequence of not knowing the 

phase errors contributing to the original degraded imagery.  Despite the relatively low level 

of 0.10 waves rms of wavefront error, the overall interpretability of the restored imagery is 

dramatically impacted by the failure to accommodate phase in the Wiener filter.  As a result, 

this exercise has definitely highlighted the criticality of including optical phase in the 

restoration process for even modest levels of aberration and/or subaperture dephasing. 
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 (a) Two-Dimensional Distribution (b) Three-Dimensional Surface 

 
Figure 124: Random phase profile for the central wavelength of an aberrated 

tri-arm sparse aperture (0.10 waves rms piston, tip/tilt error). 
 

 

  
 (a) Two-Dimensional Image (b) Three-Dimensional Surface 

 
Figure 125: Modulation transfer function for an aberrated tri-arm 

sparse aperture (0.10 waves rms piston, tip/tilt error). 
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 (a) Spectrally Weighted Object (b) Detected Panchromatic Image 

 

   
 (c) Restored Panchromatic Image (d) Restored Panchromatic Image 
 (perfect phase knowledge) (no phase knowledge) 
 nrmse: 0.0715 nrmse: 0.1504 

 
Figure 126: Integrated panchromatic simulation of an aberrated tri-arm sparse aperture 

with spectrally weighted OTF restoration (0.10 waves rms piston, tip/tilt error). 
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To explore this issue further, additional iterations were performed with the tri-arm sparse 

aperture imaging system aberrated by 0.25 waves rms of piston, tip/tilt error at the mean 

wavelength.  Given this level of aberration, a representative optical phase distribution and 

associated aperture MTF appear in figures 127 and 128, respectively.  The character of these 

key system parameters is entirely consistent with that observed in previous exercises.  Once 

again, the objective of this analysis excursion was to explore the criticality of phase 

knowledge by performing simulations that capture the phase knowledge and OTF structure 

perfectly, followed by complete failure to accommodate any phase knowledge whatsoever. 

 

Figure 129 illustrates the different simulation products that were derived for this particular 

sensitivity study.  In this case, the observed implications of not including optical phase in the 

Wiener filter restoration are severe.  As attested to by the restoration depicted in Figure 

129(d) for the scenario involving no phase inclusion, complete lack of knowledge in the in-

situ wavefront errors is catastrophic when aberrations approach levels of 0.25 waves rms.  In 

this restoration, the failure to accommodate the optical phase has produced a seriously 

defocused image, illustrating a significant loss of interpretability based on comparison with 

the panchromatic object in Figure 129(a).  In fact, the restored image quality associated with 

the case entailing no phase knowledge is only marginally better than the original detected 

imagery depicted in Figure 129(b).  In addition, despite the fact that the perfect knowledge 

scenario in Figure 129(c) exhibits the spectrally induced artifacting effect discussed earlier, it 

demonstrates considerably better quality than that associated with its counterpart involving 

no phase knowledge in Figure 129(d).  This observation is confirmed by comparison both 

visually and through use of the mean-level image statistics.  With regard to the latter, the 

nrmse metric really highlights the deleterious nature of the lack of phase knowledge in the 

restoration process as it increases by an impressive 184% (almost a factor of 3)! 

 

Once again, this analysis excursion provides convincing evidence that some level of phase 

knowledge is absolutely essential in reconstructing highly degraded sparse aperture system 

imagery.  Of course, this cursory analysis only touched upon the extremes of the potential 

performance envelope.  Future research effort should focus on the sensitivity of image 

quality to a range of optical phase uncertainty that falls in between these extremes, as it is 
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highly likely that any potential future application in the sparse aperture arena will have some 

means, albeit imperfect, of ascertaining the levels of wavefront error degradation during the 

collection.  This exercise has certainly demonstrated the criticality of such techniques.  

 

     
 (a) Two-Dimensional Distribution (b) Three-Dimensional Surface 

 
Figure 127: Random phase profile for the central wavelength of an aberrated 

tri-arm sparse aperture (0.25 waves rms piston, tip/tilt error). 
 
 

   
 (a) Two-Dimensional Image (b) Three-Dimensional Surface 

 
Figure 128: Modulation transfer function for an aberrated tri-arm 

sparse aperture (0.25 waves rms piston, tip/tilt error). 
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 (a) Spectrally Weighted Object (b) Detected Panchromatic Image 

 

   
 (c) Restored Panchromatic Image (d) Restored Panchromatic Image 
 (perfect phase knowledge) (no phase knowledge) 
 nrmse: 0.1064 nrmse: 0.3025 

 
Figure 129: Integrated panchromatic simulation of an aberrated tri-arm sparse aperture 

with spectrally weighted OTF restoration (0.25 waves rms piston, tip/tilt error). 
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5.6.4 Subaperture Dephasing vs. Optical Aberrations 

The final analysis excursion that was pursued in the course of this research effort involved an 

initial investigation of the impact of different types of aberration on the quality of sparse 

aperture imagery.  The objective of this particular trade study was to investigate the character 

of a typical sparse aperture imaging system under different aberration conditions, comparing 

the impact of pure piston, tip/tilt errors to a random combination of system focus, third-order 

Seidel and higher-order aberrations.  The general concept behind this analysis focus was to 

address the sensitivity of restored image quality to typical manufacturing errors (represented 

by the random distribution of various aberrations) as compared to aberrations experienced 

due to classic subaperture dephasing issues (i.e., piston, tip/tilt error). The results reproduced 

in this dissertation for this area have been included to demonstrate the capabilities resident 

within the proof-of-concept system model.  They tend to be anecdotal in nature and 

consequently deserve considerably more attention in future research endeavor.  As a 

consequence, the output from a representative run will be documented in the discussion to 

follow but only conclusions of a general overall nature will be drawn.  Further detailed 

development of this potential sensitivity study area is left to a future investigator.   

 

For this exercise, figures 130 through 132 provide different views of typical optical phase 

distributions for the two scenarios under investigation.  In (a), these figures depict a random 

phase profile consisting of system defocus, spherical, astigmatism, coma, and various higher 

order errors applied to the nominal tri-arm sparse aperture pupil configuration to simulate the 

effect of manufacturing error.  Conversely, these diagrams display the traditional dephasing 

mechanisms of piston and tip/tilt in (b).  By design, both of these phase profiles represent 

wavefront errors on the order of 0.10 waves rms at the mean wavelength to enable side-by-

side comparison.  Based on these phase distributions, one acquires the aperture transfer 

functions that are displayed in figures 133 and 134.  It is interesting to note that for this 

particular example, the random distribution of manufacturing errors tends to reduce the 

overall level of the modulation on a relatively uniform basis.  On the other hand, the random 

piston, tip/tilt dephasing error has a greater tendency to lead to focused reduction of the 

modulation in localized regions, thereby inducing nulls in the spatial frequency coverage.  

Whether this observed behavior is statistically normal for this exercise is unknown at this 
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time, although several iterations of the random seed responsible for generating the wavefront 

error profile produced similar results.  Based on this anecdotal evidence, this sensitivity area 

is obviously ripe for additional investigation in the future.   

 

   
 (a) Random Manufacturing Aberrations (b) Random Piston, Tip/Tilt 

 
Figure 130: Random phase profile for the central wavelength of an aberrated 

tri-arm sparse aperture (wavefront error of 0.10 waves rms). 
 

 

  
 (a) Random Manufacturing Aberrations (b) Random Piston, Tip/Tilt 

 
Figure 131: Random phase profile for the central wavelength of an aberrated 

tri-arm sparse aperture (wavefront error of 0.10 waves rms). 
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 (a) Random Manufacturing Aberrations (b) Random Piston, Tip/Tilt 

 
Figure 132: Random phase profile for the central wavelength of an aberrated 

tri-arm sparse aperture (wavefront error of 0.10 waves rms). 
 

 

   
 (a) Random Manufacturing Aberrations (b) Random Piston, Tip/Tilt 

 
Figure 133: Modulation transfer function for an aberrated tri-arm 

sparse aperture (wavefront error of 0.10 waves rms). 
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 (a) Random Manufacturing Aberrations (b) Random Piston, Tip/Tilt 

 
Figure 134: Modulation transfer function for an aberrated tri-arm 

sparse aperture (wavefront error of 0.10 waves rms). 
 

Given the phase distributions and associated transfer functions depicted here, the enhanced 

spectral fidelity model produces restorations of the quality exhibited in Figure 135.  At a top 

level, it appears that the predictions for both phase profiles result in reasonably comparable 

quality at this level of aberration (i.e., wavefront error of 0.10 waves rms).  Even through a 

softcopy flicker test, the differences between the two restorations appear marginal at best to 

the untrained observer.  Figure 136 provides a magnified region of the full image restorations 

for the two cases investigated in this study.  Although some minor image structure 

differences can be noted in the softcopy, it would appear to be debatable if there is any 

detectable difference in interpretability between the two images.  Although the quality 

metrics (nrmse and RER) highlight a small variation in quality between the two simulations, 

one really needs to question whether the observed ~1% difference is truly statistically 

significant.  Based on the anecdotal results presented here, one would have to conclude that 

the two aberration cases essentially produce imagery of comparable quality.  As stated 

before, however, these preliminary iterations are definitely worthy of further study in the 

context of a rigorously defined sensitivity trade study.  In that vein, the exercise has at least 

demonstrated that the proof-of-concept modeling capability developed for this research effort 

has the potential to support such a trade. 
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 (a) Restored Panchromatic Image (b) Restored Panchromatic Image 
 (manufacturing errors) (piston, tip/tilt) 
 nrmse: 0.0733;  RER: 0.838;  Grms: 17.6 nrmse: 0.0722;  RER: 0.853;  Grms: 16.8 

 
Figure 135: Integrated panchromatic simulation of an aberrated tri-arm sparse aperture 

with spectrally weighted OTF restoration (wavefront error of 0.10 waves rms). 
 

   
 (a) Restored Panchromatic Image (b) Restored Panchromatic Image 
 (manufacturing errors) (piston, tip/tilt) 
 nrmse: 0.0733 nrmse: 0.0722 

 

Figure 136: (Magnified) Integrated panchromatic simulation of an aberrated tri-arm sparse 
aperture with spectrally weighted OTF restoration (wavefront error of 0.10 waves rms). 
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Chapter 6  

Conclusions 

The remote sensing community continues to show growing interest in fielding imaging 

platforms that strike a balance between extended-duration access, high spatial resolution and 

spectral diversity.  Previous research has indicated that sparse aperture systems may hold the 

key for enabling missions that exhibit the required optical performance and the desired 

access time.  These systems typically consist of an array of smaller subapertures or optical 

systems that are phased to synthesize a larger effective collection aperture.  Of course, 

critical technological challenges such as subaperture pupil matching, subaperture phasing 

over a fraction of a wavelength, and imaging platform stability over the longer integration 

times associated with these systems must be overcome.  If demonstrated as technically 

viable, however, sparse aperture systems may be able to achieve imaging performance from 

high-altitude sensor platforms which would otherwise be impractical with monolithic mirror 

designs due to payload launch and deployment constraints. 

 

Much of the previous research in the sparse aperture arena has focused on trying to quantify 

the panchromatic optical performance of these configurations, with emphasis on modeling 

diffraction effects, field effects, aberrations, pupil matching and subaperture phasing.  In 

addition, the systems have typically been modeled assuming a gray-world object scene and 

utilizing a spectrally weighted system optical transfer function (OTF) to resample airborne 

overhead gray-scale imagery.  This dissertation effort attempted to add to the existing body 

of knowledge by investigating some of the spectral implications of typical sparse aperture 

optical configurations through an enhanced spectral fidelity model of the imaging process.  

To that end, it specifically focused on laying the groundwork for synthetic model-based 

evaluation of the optical performance of these imaging systems, including the incorporation 

of spectrally unique effects. 

 

Starting with the basic assumption of a linear systems model, the research effort developed 

appropriate expressions to depict the first-principles spectral character of the object scene to 
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be imaged, exit pupil aberrations, the system OTF, and overall image noise in order to derive 

a prediction of the detected output image from various sparse aperture collection systems.  In 

addition, traditional Wiener-Helstrom filter techniques were explored in this research to 

restore quality to the highly demodulated imagery predicted for these sparse aperture 

systems.  Given the theoretical development, a proof-of-concept digital model for the end-to-

end imaging system was developed to demonstrate application of the theoretical approach 

and provide a basis for evaluating the unique spectral character of sparse aperture systems.  

With this modeling capability in place, some cursory system trade studies were performed for 

nominal sparse aperture collection scenarios of interest.  From an overall perspective, this 

thesis activity entailed a fundamental investigation and demonstration of the first-principles 

physics required to model the potential spectral implications associated with the sparse 

aperture system collection of an extended, remotely sensed scene.  Specific research findings, 

limitations and recommendations for future work appear in the sections that follow. 

6.1  Findings 

Upon review of the primary objectives enumerated in Chapter 2, one will note that the 

research effort conducted for this dissertation generally exceeded the stated requirements and 

peripherally addressed a number of the research goals.  The requirement to gain an 

understanding of the unique physical processes involved in imaging scenarios with sparse 

aperture telescopes was effectively satisfied through integration of the key theoretical 

concepts in Chapter 3.  Establishment of this theoretical foundation then led to the 

development of the modeling concept described in Chapter 4, satisfying the need to construct 

a theoretical approach for assessing the optical performance of sparse aperture systems on a 

spectral basis.  Finally, the fundamental requirement for developing and implementing a 

proof-of-concept imaging model to capture the essential spectral physics associated with 

overhead sparse aperture collection systems was demonstrated through the results 

summarized in Chapter 5.  From a goal perspective, Chapter 5 also introduced the additional 

image restoration techniques, gray-world imaging model development, and some of the 

cursory sensitivity analyses that were explored in concert with this research effort.  The latter 

effort was originally deemed to be goal-oriented but ultimately became desirable as the 

modeling capability came together and demonstrated its initial utility.  



 271

 

Given the imaging system model created for this research effort, several interesting 

observations can be made on the nature of sparse aperture imaging systems and their 

predicted image products.  First and foremost, the model results seem to indicate that 

including spectral fidelity introduces a unique quality effect for sparse aperture systems not 

observed in the past with the traditional gray-world modeling approach.  In addition, the 

spectral artifacts that were observed in the sparse aperture system scenarios were not 

apparent in the results acquired with conventional filled apertures under similar conditions.  

Clearly, the distinct spectral character of sparse aperture optical transfer functions, especially 

in the presence of subaperture dephasing or aberrations, provides a catalyst for introducing 

spatial structure in the restored imagery.  One must, however, physically model the spectral 

character of the system transfer function and sample a polychromatic object scene in order to 

induce the observed artifacting effect.  As a consequence, the traditional gray-world approach 

of resampling existing panchromatic imagery and applying a spectrally weighted optical 

transfer function does not adequately capture the effect.  Depending on the severity of 

existing optical aberrations and the nature of the overall collection scenario under 

investigation, this can certainly lead to some degree of concern when utilizing a gray-world 

approximation for moderately aberrated, low fill factor sparse apertures, as attested to by the 

dramatic differences in the derived results between the polychromatic and gray-world model 

seen in Chapter 5. 

 

Based on the results acquired through this research, it should be noted that the magnitude of 

the spectrally induced effect is highly dependent upon a number of system variables, 

including the amplitude of aberrations in the pupil, the relative distribution of those errors, 

the overall encircled fill factor of the optical configuration under investigation, and the 

spectral/spatial frequency content of the imaged scene.  The complex interactions between all 

of these system parameters make it difficult to unequivocally state absolute bounds, but an 

attempt to generically qualify certain performance regions can be attempted based on the 

derived results.  For instance, one finds that the nature of the spectral effect observed in 

restored sparse aperture imagery products with the spectral model typically does not 

constitute a significant impact for 0.10 waves rms of wavefront error at the mean wavelength 
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of the spectral passband although it was certainly statistically significant in the nrmse data.  

Given the collection and restoration assumptions pursued in this research effort, this was 

even the case for sparse aperture fill factors that would be considered reasonably low (e.g., 

0.173) by most standards.  As the optical system becomes more aberrated, however, the 

observed spectrally induced artifacts or image structure becomes dramatic, with a major 

deleterious effect noted when the system is aberrated by up to 0.25 waves rms of wavefront 

error at the mean wavelength of the spectral passband.  It is interesting to note that the 

equivalent gray-world model frequently predicts acceptable quality can be achieved for this 

level of aberrations if the optical phase error is precisely known.  Based on these 

observations, it may be necessary for future sparse aperture imagery studies to incorporate 

enhanced spectral fidelity depending on the nature of the scenario under investigation. 

 

It should be noted that the conclusions drawn above on the impact of various levels of rms 

wavefront error apply specifically for the range of collection parameters investigated through 

the nominal scenario introduced in Chapter 4.  To that end, the findings cited above tend to 

be relevant for relatively high-SNR detection scenarios involving an extended object scene, a 

VNIR panchromatic passband (0.4-0.8 µm), and a low fill factor sparse aperture collection 

system.  One would anticipate that the conclusions drawn about rms wavefront error and the 

observed spectrally induced quality effect are highly sensitive to the nature of the collection 

scenario under investigation.  As an example, there is preliminary evidence that suggests the 

spectrally induced phenomenon observed in this research becomes less dramatic as detection 

SNR is lowered.  Intuitively, one can envision that the relative impact of the spatial 

frequency boost mismatch that occurs in the Wiener filter restoration at various wavelengths 

is attenuated as the noise begins to compete with the signal for highly demodulated transfer 

functions (i.e., for moderately high rms wavefront errors and relatively low detection SNR).  

One would expect there to be similar sensitivity with the overall width of the detection 

passband as well as the relative sparseness of the distributed aperture entrance pupil.  

Therefore, this research effort has identified a specific quality effect related to sparse aperture 

imaging systems that has not been previously published, but the quantification of the region 

over which it is potentially problematic has only been preliminarily addressed.  This area 
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definitely deserves more attention in follow-on research and sensitivity studies, which will be 

highlighted in the recommendations that appear later in this chapter. 

 

Clearly, lack of phase knowledge (i.e., transfer function errors in the restoration process) as 

well as limited knowledge of the noise-to-object power spectrum ratio will also have an 

impact on derived image quality and the nature of the observed spectrally induced quality 

effect.  Unfortunately, this lack of knowledge can potentially work positively or negatively 

from the standpoint of observed image artifacts, as the frequency mismatch that promotes the 

effect can either be accentuated or averaged out in the process.  Certainly from an overall 

quality perspective, lack of knowledge will inevitably introduce image blurring so the 

relative sharpness of the restored imagery will undoubtedly diminish.  Based on the 

unknowns, additional study is certainly warranted in the area of trying to characterize the 

impact of collection uncertainty on overall image quality.  As demonstrated previously, the 

digital modeling capability is effectively in place to conduct these kinds of system studies in 

the future. 

 

There are other interesting findings that have surfaced as a consequence of the preliminary 

modeling results acquired through this research.  For instance, it has been suggested in the 

past that the introduction of nulls (or zeroes) in the spatial frequency coverage of the sparse 

aperture system transfer function induces unacceptable quality degradations.  As evidenced 

in the results in Chapter 5, however, there are many occasions when a moderately dephased 

or aberrated sparse aperture pupil manifests nulls in the system OTF yet generates perfectly 

acceptable restored imagery.  Of course, this statement assumes phase errors are well 

characterized and the detection SNR is high enough to prevent the effective area associated 

with spatial frequency zeroes from becoming too large.  Consequently, assuming aberrations 

are known to some degree and the detection SNR is adequate, it appears that a certain level 

of spatial frequency nulling within the transfer function is actually tolerable.  Obviously, 

spatial frequency content will have been lost as a result of this transfer function phenomenon, 

but the effect appears to be marginalized over an integrated passband if the level of nulling is 

not too excessive. 
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With regard to transfer function zeros, it has also been stated that those sites are solely 

responsible for any spectral artifacting that may appear in restored imagery.  Although nulls 

certainly constitute legitimate sites where artifacts may be induced, it appears reasonably 

clear from the data results that another physical effect is at play.  This becomes apparent in 

exploring the nature of a severely aberrated filled, circular aperture.  In Chapter 5, results 

were presented for a filled aperture with 0.20 waves rms of defocus error, where the 

introduction of zeroes in the spatial frequency plane as well as regions of contrast reversal 

certainly led to degraded imagery product but did not introduce the type of artifacting 

observed in the sparse aperture cases.  Accordingly, it appears that the principal contributor 

to the structural effects observed in the sparse aperture restorations is actually the mismatch 

that inevitably occurs between the rapidly oscillatory, spectrally varying character of an 

aberrated sparse aperture system transfer function and the selected filter design.  The latter 

physical characteristics of the system transfer function result in certain spatial frequencies 

exhibiting a peak at a given wavelength where another wavelength actually supports a valley.  

This situation creates regions of mis-boost when a restoration filter is applied, introducing 

spectral artifacting or rippling in the reconstructed image.  Of course, nulls in the spatial 

frequency plane provide ideal locations where individual spectral lines may exhibit this 

modulation mismatch with other wavelengths, but they certainly do not appear to constitute 

the exclusive source of the problem. 

 

The final observation that will be summarized here regards the impact of fill factor on overall 

restored image quality.  Previous studies have shown that image quality generally reduces in 

relationship to sparse aperture fill factor if the integration time is not increased to 

accommodate it.  These studies have also demonstrated through use of the gray-model 

approximation that one can typically restore imagery to comparable quality with a filled 

aperture by increasing the dwell time according to the proportionality 3
fillint
−∝ FT .  Of course, 

eventually the fill factor will drop to the point where significant zeroes are introduced into 

the spatial frequency coverage of the optical transfer function, and restoration to the filled 

equivalent quality will no longer be feasible regardless of the amount of integration time.  

Through use of the higher spectral fidelity model, this research effort demonstrated the 

relative merit of increasing integration time proportional to 3
fill
−F  but also identified issues 
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with achieving comparable quality to a filled aperture in the presence of aberrations.  As 

indicated previously, the spectral character of the sparse aperture system transfer function 

provides a mechanism for introducing spectral artifacts into restored imagery products that 

also prevents the achievement of image quality commensurate with a filled aperture.  

Although statistically apparent in the nrmse results, the nature of this spectrally induced 

quality effect appeared to be mitigated as the fill factor approaches values of 0.50 and largely 

disappears for fill factors consistent with more conventional apertures.  Of course, it would 

be difficult to classify apertures exhibiting fill factors greater than 0.50 as truly “sparse.”  For 

moderately aberrated imaging systems with fill factors below 0.35, however, the effect 

appeared to be a prominent feature of the restored imagery for the optical configurations 

explored in this dissertation.  Obviously, this research effort did not entail a significant 

exploration of the overall trade space and further investigation of the dependency of the 

quality effect on fill factor and optical configuration is certainly merited. 

6.2  Limitations 

There are certain limitations associated with the imaging system model and derived study 

results that deserve attention in future research effort.  These generally fall into the category 

of potential model enhancements but also include a final word of caution regarding the 

conclusions drawn from the trade studies performed for this research.  The latter should 

probably be the first to be addressed.  Since the original objective of this research effort was 

to demonstrate a proof-of-concept modeling capability, the performance studies included in 

this dissertation were by their very nature somewhat limited in scope.  Although numerous 

iterations were performed and exemplar results representative of the total set of runs were 

selected to demonstrate certain effects, one still needs to be aware that the wide-open trade 

space has only truly received cursory exploration through this research.  There are many 

different combinations of object scene content, optical aberrations, signal-to-noise, system 

fill factor, etc., which should be investigated more thoroughly in a rigorously defined 

sensitivity study.  In addition, although not quite anecdotal in nature, the limited set of runs 

performed in this effort also warrant additional iterations to confirm they statistically 

represent the typical performance one would expect for the system parameters identified in 

the nominal scenario. As a consequence, although the utility of the modeling capability has 
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been demonstrated and a unique physical attribute identified for moderately aberrated sparse 

aperture systems, considerably more effort should be expended to characterize the overall 

quality implications of the observed spectrally induced effect.  It should also be noted that all 

the results in this research dissertation were acquired based on first-principles modeling 

effort.  In the future, one should perform some small-scale experiments with actual imaging 

hardware involving a distributed, aberrated pupil to confirm the spectrally induced effect can 

be recreated in real-world imaging instruments. 

 

In the area of model enhancements, there are several attributes of the proof-of-concept 

imaging model which should be targeted for improvement.  The principal limitation 

associated with the entire modeling effort resides with the implemented governing signal 

equation and the assumption that these imaging systems can be treated as linear, shift-

invariant.  Clearly, as soon as one starts to contemplate the possibility of aberrations, the 

shift-invariance assumption begins to become suspect depending on the nature and 

magnitude of the errors.  For high-resolution systems with low level aberrations, it has been 

demonstrated in the past that the linear, shift-invariant modeling assumption represents a 

fairly good approximation to what physically is captured in the imaging process.  That is 

certainly not the case for a highly aberrated optical system however.  To handle this situation, 

the current model should be enhanced to separate the imaged object scene into isolated 

isoplanatic regions based on incident field angle and apply the linear, shift-invariant 

approximation across the field on a moving window basis.  Through such a construct, the 

strength and character of aberrations off the optical axis could be adjusted in the designated 

isoplanatic regions to reflect what actually occurs in real-world imaging scenarios.  Some 

criteria such as rms wavefront error or Strehl ratio could be utilized to ascertain the 

boundaries of the region over which the imaging system can be approximated as shift-

invariant.  Obviously, it will be critical that such an implementation enables enough samples 

to be included in the isoplanatic patches that the discrete Fourier transform produces credible 

results in the imaging model. 

 

Another significant improvement area that should be targeted in the current modeling 

capability lies in the software engineering arena.  The proof-of-concept imaging model 
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development pursued in this dissertation was never intended to be a robust capability that 

could be exported to external users in a turn-key operation.  The software was developed on a 

personal computer (PC) utilizing the IDLTM development environment and is truly 

engineering code by its very nature.  As engineering code, the software algorithms were 

designed to achieve the desired research objectives, not necessarily be the most elegant 

software implementation.  One could certainly accomplish significant enhancements in the 

area of code optimization, modularity and memory usage.  The latter is especially 

problematic in the current implementation, as the number of large arrays required to handle 

the incident object radiance hypercube, a spectrally varying complex pupil function, a 

complex optical transfer function data cube of similar size, a spectrally diverse noise field, 

interim restoration imagery products, etc., lead to significant memory usage.  The memory 

issues in the current implementation have a tendency to either limit the size of the image that 

can be investigated or reduce the spectral resolution associated with the integrated signal 

prediction.  Fortunately, the use of IDLTM software has resulted in reasonably good 

portability across computer platforms, so the digital model can be executed on PC and UNIX 

machines alike, providing an opportunity to use more capable computing resources to work 

around some of the optimization and memory limitations.  This software portability was in 

fact demonstrated during the course of this research effort as numerous runs were performed 

on both IBM PC and Sun UNIX platforms.  

 

In addition to the software issues identified above, the engineering code design currently 

requires a highly iterative process for investigating certain aberration levels of interest.  It 

would be very useful to explore a more flexible architecture that supported batch file runs 

and ultimately aimed at incorporating a Monte Carlo implementation for performing a 

significant number of iterations for a given set of inputs.  Since a single rms wavefront error 

figure of merit can be achieved by a significant number of possible pupil phase profiles and 

lead to a wide distribution of possible image predictions, a Monte Carlo approach would be 

very useful for exploring and quantifying the distribution of potential end-products 

achievable through a given collection scenario.  The current implementation also requires 

some human interaction to execute the imaging scenario of interest.  In general, a 

knowledgeable user is required to turn on/off functionality to perform the desired simulation 
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and acquire certain modeling results.  Some of these limitations could be resolved through 

better software design practice and some could be handled through introduction of an 

appropriate Graphical User Interface (GUI).  With regard to the latter, a preliminary GUI was 

constructed early in the course of this research effort and abandoned to focus on the critical 

algorithm development.  It is possible that GUI could be resurrected and enhanced to 

accommodate some of the human interaction issues described above.  Finally, documentation 

and internal commenting are fairly sparse for the current system model, once again 

highlighting the need for a trained operator to get the simulation to produce desired results.  

It would be worthwhile to expend some effort in this area as well if it is envisioned the 

modeling capability will be used to support future research endeavors. 

6.3  Recommendations 

One should note that a number of recommendations for model enhancement and system 

model verification appeared in the previous section.  Although only briefly touched upon, a 

significant requirement in the view of this author is the need to verify the potential existence 

of the spectrally induced quality effect through experimental evidence acquired with actual 

imaging hardware.  Software models can only capture real-world physical effects to a certain 

degree and past experience has shown that unanticipated results frequently surface with 

actual hardware implementation, necessitating revisions to modeling approximations in order 

to describe what is empirically observed.  In addition to those recommendations, there are 

three prominent areas that deserve further attention based on this research effort and the 

implemented modeling capability now available for future studies.  These include future 

research pursuit in the areas of sparse aperture system quality trade studies, enhanced image 

restoration methodologies, and interferometric performance considerations with these unique 

optical systems.  The three general areas enumerated above will be briefly summarized in the 

following discussion. 

 

6.3.1 Sensitivity Studies 

As alluded to in the discussion above, there is a fairly significant need to more thoroughly 

explore the performance trade space associated with sparse aperture systems to better 

quantify the nature of the quality effects highlighted in this research effort.  To that end, one 
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should consider utilizing the existing modeling capability to perform a series of sensitivity 

studies that vary key imaging system parameters to determine their impact on restored image 

quality.  Although there are a considerable number of different trades that could be 

performed, the obvious candidates for initial exploration should include detection signal-to-

noise ratio, aberration type and level, scene content (spatial and spectral), scene contrast, 

system fill factor, and in-situ exit pupil phase profile knowledge. These parameters received 

some cursory attention in the limited trade studies performed in conjunction with this 

dissertation.  Based on those results, it appeared the enhanced spectral fidelity model 

identified certain quality issues that had not been detected in the past through use of a 

conventional gray-world modeling approximation.  As a consequence, there is merit in 

attempting to better quantify the incidence of those effects to determine when the gray-world 

model is appropriate for use with sparse aperture systems and when an enhanced spectral 

model must be exercised to capture the anticipated collection physics. 

 

Based on this research effort, it would appear reasonable to pursue a similar set of sparse 

aperture optical configurations in future sensitivity studies, as the tri-arm, Golay-6 and 

annulus represent fairly standard apertures in the literature and provide a good range of 

possible restoration quality effects.  With these sparse aperture systems, the results achieved 

in this dissertation also indicate the need to further explore subaperture aberrations in the 

regime between 0.10 and 0.20 waves rms of wavefront error at the mean wavelength.  At the 

former level (0.10 waves rms), it appeared that the spectrally induced quality phenomenon is 

just initiated for the imaging conditions investigated in this work, with likely not enough 

impact to cause great concern for most applications of interest.  On the other hand, once a 

sparse aperture system exhibits a wavefront error of 0.20 waves rms, most scenarios seem to 

lead to artifacting on a level that ultimately impacts the interpretability of the restored 

imagery.  Consequently, the range of possible wavefront error realizations between those two 

extremes should receive additional attention to ascertain the point at which quality effects 

become objectionable to the typical observer. 

 

Another system parameter that deserves further study in the context of the proposed 

sensitivity study is the sparse aperture effective fill factor.  In effect, this research effort only 
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sampled the fill factor parameter space from 0.173 to 1.000 in a preliminary manner.  For 

illustrative purposes, one will find that the dissertation tends to emphasize documenting the 

single case of 0.173, as all three sparse aperture configurations pursued in this research can 

support that value.  There were additional simulation runs that were performed at alternate 

fill factors of 0.349 (Golay-6, annulus), 0.500 (annulus), 0.942 (Cassegrain, phased petal), 

and 1.000 (filled circular).  As discussed above, the unique quality effect displayed by 

aberrated sparse aperture systems was apparent for moderate-to-low fill factors below 0.500.  

At that point, the nature of the effect became less remarkable and eventually dwindled away 

for fill factors associated with conventional apertures.  Given the apparent sensitivity of the 

observed spectrally induced effect, it would be a useful exercise to rigorously evaluate 

different fill factors in the overall trade space. 

 

From the perspective of detected signal level, one should note that the majority of computer 

runs performed for this research effort involved high signal-to-noise conditions (e.g., an SNR 

of ~270 in most cases).  Although this level provided a good benchmark for evaluating the 

nature of the observed quality effect and largely eliminated noise as a potential contributor to 

its generation, many remote sensing scenarios involve SNR conditions that are considerably 

less favorable.  As a consequence, it would be a very worthwhile exercise to perform 

additional runs under much lower SNR conditions to gain some understanding of how the 

effect scales with detected signal level.  As part of the latter exercise, one should definitely 

attempt to address low-contrast, low-light imaging conditions to ascertain whether sparse 

aperture systems exhibit any kind of unique character relative to their conventional 

counterparts.  In this context, it would be extremely useful to pursue some studies that 

investigated sparse aperture image quality for solar illumination angles less than 15 degrees 

of elevation.  As the conventional MODTRAN atmospheric propagation physics tend to 

break down below this illumination level, one would have to support this low-light study 

with empirical measurements utilizing radiometric instruments available within the Center 

for Imaging Science at RIT.  With such measurements, one could perform an appropriate 

extrapolation of MODTRAN results achieved with given scenarios for illumination angles 

less than 15 degrees elevation.  The resulting low-light spectral radiance levels could 

subsequently be utilized to ascertain whether sparse aperture systems exhibit unique 
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character under low detection SNR conditions and perhaps even low contrast target signal 

with selection of an appropriate object scene. 

 

Finally, it would be of considerable interest to further explore the effects of unknown phase 

and system transfer function character on the quality of restored imagery products for the 

trade space proposed above.  As stated earlier, most of the simulation performed for this 

dissertation entailed perfect knowledge of the exit pupil phase profile and the associated 

optical transfer function acquired through the autocorrelation of the aperture.  The rationale 

for implementing such knowledge in the Wiener filter was interest in achieving an optimum 

restoration as a baseline.  The more unknowns that could be eliminated in the restoration 

process helped to isolate the potential sources of any observed quality effects.  With such a 

baseline established, it would be useful to investigate how adding certain realism back into 

the modeling process affects image quality.  In that vein, some preliminary studies on phase 

knowledge were performed with the proof-of-concept system model developed for this 

dissertation.  The results of those study excursions seem to indicate that the spectrally 

induced effect is still present under condition of phase uncertainty (i.e., it is not averaged out) 

and can be exacerbated if the transfer function mismatch with the resulting restoration filter 

boost is increased.  As one can obviously detect through the discussion provided here, there 

are a considerable number of different potential sensitivity studies that could be pursued in 

greater depth and contribute more expansively to the body of knowledge on sparse aperture 

systems.  From that perspective, the initial modeling capability developed through this 

research effort has the potential to be a real enabler for future investigations.  

 
6.3.2 Advanced Filter Techniques 

Although the general Wiener filtering technique implemented in this dissertation has proven 

to be very effective in restoring degraded image products, including those predicted from 

sparse aperture systems, the implementation is only optimum in the sense of image-wide 

statistics.  This is due to the fact that the Wiener filter is derived based on minimizing the 

mean square error between the reconstructed estimate and the original object.  As a result, the 

conventional Wiener filter essentially characterizes an image field as homogeneous, whereby 

the mean-level characteristics of the signal and noise are assumed not to vary from one part 
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of the image to the other.  Of course, real-world imagery typically does exhibit some 

variation from one local region to the other, from either space-variant imaging system 

degradation effects such as optical aberrations or scene content-related effects like rapid 

variations in source intensity.  Given the unique OTF structure of aberrated sparse aperture 

systems, one may also find localized regions in imagery derived from these collectors where 

objectionable spectral artifacts surface, as observed in a number of the simulations found in 

Chapter 5.  This discussion gives rise to the notion of an adaptive filter, where the restoration 

is adaptively adjusted on a pixel-by-pixel basis according to the local statistics associated 

with the degraded image under investigation.  

 

 
 

Figure 137: General adaptive filtering image restoration methodology 
 

The concept of locally varying the amount of restoration applied to various regions of an 

image is generalized by the flowchart in Figure 137.  Most adaptive filtering systems follow 

the basic formulation depicted in this figure, with either a single combined filtering step or a 

two-step implementation of noise reduction and deblurring procedures.  Regardless of the 

particular implementation of choice, the basic premise behind the filtering operation is 

essentially the same: to spatially vary the amount of noise reduction and image restoration 

according to localized statistics within the detected imagery.  To accomplish this objective, 

the adaptive filter typically assumes a different posture depending on the nature of the image 
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content in the local region.  If the local neighborhood contains high detail in the scene 

content, for instance, the signal variance will be much greater than the noise variance (i.e., 

σobj
2 >> σn

2) and the adaptive filter will attempt to boost the spatial frequency content and 

preserve the local contrast.  As a consequence, detailed localized regions will typically 

experience a fair amount of sharpening in a good adaptive filter design.  On the other hand, 

in low detail regions of the image such as those exhibiting uniform intensity, the noise will 

represent the dominant image content (i.e., σn
2 >> σobj

2) and the adaptive filter will 

significantly attenuate the contrast in an attempt to reduce the objectionable noise resident in 

the area.  In other words, the relative filter gains in low signal content regions will be 

established in good filter designs at levels that attempt to minimize the amount of noise 

boost.  Once again, one can envision that such filter behavior could be beneficial in scenes 

that manifest spectral artifacts or anomalies, in addition to variation in noise-to-signal power. 

 

Most adaptive filtering operations rely on what is commonly referred to as a Finite Impulse 

Response (FIR) filter, which by convention is implemented in the spatial domain through use 

of the impulse response of the filter.  The value of FIR filters tends to be in their reduced 

computational complexity, as the finite nature of the impulse response allows these filters to 

be reduced considerably in size and typically be implemented through a block Toeplitz 

matrix equation for the required convolution operation.  Lee (1980), Lim (1990) and Jain 

(1989) have all proposed various FIR implementations for an adaptive Wiener filter 

application for conventional imagery products.  As their investigations all concluded that 

image quality could generally be improved through use of such a filter, it seems reasonable to 

explore a similar implementation for application in the sparse aperture arena. 

 

6.3.3 Interferometric Investigation 

Obviously, this dissertation principally focused on modeling and simulation of remote 

sensing applications, which fundamentally involve imagery collection physics.  In the future, 

however, it would be instructive to address some of the interferometric considerations 

associated with the sparse aperture optical systems investigated in this effort.  In fact, 

Goodman (1985) has suggested that even evaluating imaging as an interferometric process 

can be enlightening.  Since sparse aperture systems can obviously be operated in both modes, 
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imaging and interferometry, it makes sense to put some of the theoretical development that 

appears in Chapter 3 into an interferometric framework and implement an appropriate model 

to handle system interferometry.  To the author’s knowledge, such an analytical approach has 

not been physically explored before in the context of a sparse aperture system imaging 

application.  

 
In order to address imaging as an interferometric process, it would be necessary to introduce 

some analytical scaffolding to set up the problem definition.  The latter include the concepts 

of a mutual coherence function, mutual intensity, and complex degree of coherence.  These 

interferometric concepts are described in detail by Goodman (1985) in his general statistical 

optics development.  One of the most widely used constructs in interferometry is the mutual 

coherence function, which in its normalized form is frequently utilized as a relative measure 

of the spatial and temporal coherence of incident radiation.  For instance, if the normalized 

mutual coherence function is near unity, one finds that the detected radiation is effectively 

coherent in nature.  On the other hand, a normalized mutual coherence function that is very 

small correlates with an incoherent imaging scenario.  In between these two extremes, one 

finds a virtual “no-man’s land” where partial coherence exists on short time scales that may 

or may not have detectable image quality implications.  As such, this fundamental 

interferometric figure of merit can become a basic building block, in conjunction with the 

mutual intensity, for analyzing constructive and destructive interference effects in the overall 

image formation process. 

 

Even in the context of general incoherent remote sensing imaging applications, the coherent 

phasing issues introduced by sparse aperture systems can potentially introduce short-time 

scale conditions where quasi-monochromatic conditions of partial coherence actually exist, 

especially if the collection passband is narrow enough.  To address this problem, one must 

explore the fundamental nature of the coherence time or length of the incident light.  For 

instance, it has been demonstrated that interference fringes may form in white light if the 

optical path difference between sources is considerably less than the coherence length.  This 

could become especially troublesome as one begins to consider sparse aperture multi- or 

hyperspectral applications which naturally involve narrower bandwidths.  In such a situation, 
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where one attempts to maintain the phasing of separate subapertures to tolerances on the 

order of 0.10 waves rms error, one may find the inevitable random misalignments of 

telescopes through standard tip/tilt or piston mechanisms results in optical path differences 

that are substantially less than the coherence length.  In such a scenario, one can envision an 

inadvertent interferometry physical effect that effectively degrades the overall image quality.  

It would be the intent of the proposed research effort to pursue the theory behind such a 

potential inadvertent interferometry scenario and put it into an appropriate mathematical 

context that enabled comparison with traditional Fourier optical analytical techniques. 

 

In addition to the inadvertent interferometry problem conjectured above, one can also 

envision taking advantage of partial coherence or interferometric fringes if they could be 

detected on the focal plane.  Although currently only an academic exercise, this concept 

would entail intentional or advertent interferometry, whereby a sparse aperture imaging 

system could conceivably be intentionally misaligned in order to aid the subaperture phasing 

process.  In this construct, one would make use of detected fringe patterns to draw 

conclusions on the relative misalignment of individual apertures and eventually provide an 

aid to realignment efforts.  The ultimate objective of this recommended future research effort 

would be to ring out the conjectured inadvertent and advertent interferometry concepts in 

additional mathematical detail and actually model the effects with adequate rigor to 

determine if they represent physically viable constructs. 
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Appendix 

Alternative Optical Configuration Predictions 

As alluded to in the main body of this dissertation, numerous simulation iterations were 

performed during the course of this research effort.  For these software runs, various system 

parameters were varied in an attempt to gain physical insight into the overall character of 

sparse aperture image quality.  Such fundamental parameters as optical configuration, fill 

factor, aberration level, optical phase distribution, and detection signal-to-noise ratio (SNR) 

were varied in these system trade studies.  For the most part, the restoration results acquired 

from these alterative simulations were consistent with the conclusions drawn previously with 

the baseline tri-arm sparse aperture imaging system.  In the interest of completeness, the 

figures in this appendix provide the raw results acquired for some of these alternative 

configuration simulations.  These results should provide the genesis for a more rigorous 

system trade study of key sparse aperture imaging system parameters in the future.  

A.1  Golay-6 Sparse Aperture 

This section provides results for the Golay-6 non-redundant array of subapertures with a fill 

factor Ffill of 0.173 and wavefront errors of 0.10 and 0.25 waves rms at the mean wavelength.  

As with previous tri-arm sparse aperture simulations, the gray-world and polychromatic 

restorations were accomplished with a traditional Wiener filter, assuming perfect system 

OTF and noise-to-object power spectrum ratio knowledge.  The following figures provide the 

optical phase profile, the aberrated aperture MTF, and the final restoration products for the 

specified conditions.  One will observe that the results are in family with those acquired for 

the tri-arm sparse aperture imaging system, with subtle differences appearing in the two 

simulation models for aberrations on the order of 0.10 waves rms and extensive variation due 

to spectrally induced artifacting at wavefront errors approaching 0.25 waves rms. 
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 (a) Two-Dimensional Distribution (b) Three-Dimensional Surface 

 
Figure 138: Random phase profile for the central wavelength of an aberrated 

Golay-6 sparse aperture (0.10 waves rms piston, tip/tilt error). 
 
 
 

   
 (a) Two-Dimensional Image (b) Three-Dimensional Surface 

 
Figure 139: Modulation transfer function for an aberrated Golay-6 

sparse aperture (0.10 waves rms piston, tip/tilt error). 
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 (a) Original Object (b) Spectrally Weighted Object 

 

   
 (c) Gray-World Simulation (d) Polychromatic-World Simulation 
 nrmse: 0.0617 nrmse: 0.0674 

 

RER: 0.878;  Grms: 17.3;  SNR: 271.4 
 

Figure 140: Integrated panchromatic simulation of an aberrated Golay-6 sparse aperture 
with spectrally weighted OTF restoration (0.10 waves rms piston, tip/tilt error). 

 
 

 

 



 294

 

     
 (a) Two-Dimensional Distribution (b) Three-Dimensional Surface 

 
Figure 141: Random phase profile for the central wavelength of an aberrated 

Golay-6 sparse aperture (0.25 waves rms piston, tip/tilt error). 
 

 

 

   
 (a) Two-Dimensional Image (b) Three-Dimensional Surface 

 
Figure 142: Modulation transfer function for an aberrated Golay-6 

sparse aperture (0.25 waves rms piston, tip/tilt error). 
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 (a) Original Object (b) Spectrally Weighted Object 

 

   
 (c) Gray-World Simulation (d) Polychromatic-World Simulation 
 nrmse: 0.0885 nrmse: 0.1121 

 

RER: 0.770;  Grms: 24.8;  SNR: 270.2 
 

Figure 143: Integrated panchromatic simulation of an aberrated Golay-6 sparse aperture 
with spectrally weighted OTF restoration (0.25 waves rms piston, tip/tilt error). 
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A.2  Annulus Sparse Aperture 

This section provides simulation results for a 15-subaperture annulus imaging system design 

with a fill factor Ffill of 0.173 and wavefront errors of 0.10 and 0.25 waves rms at the mean 

wavelength.  As with previous sparse aperture predictions, the gray-world and enhanced 

spectral model restorations were accomplished with a traditional Wiener filter, assuming 

perfect system OTF and noise-to-object power spectrum ratio knowledge.  The figures in this 

section provide the optical phase profile, the aberrated aperture MTF, and the final 

restoration products for the specified conditions.  Once again, the results appear to be in 

family with those acquired for the tri-arm sparse aperture imaging system, with subtle model 

variation exhibited for wavefront errors on the order of 0.10 waves rms and extensive 

differences manifested in the polychromatic model at 0.25 waves rms of wavefront error due 

to the spectral artifacting phenomenon. 

 

 

     
 (a) Two-Dimensional Distribution (b) Three-Dimensional Surface 

 
Figure 144: Random phase profile for the central wavelength of an aberrated 

annulus sparse aperture (0.10 waves rms piston, tip/tilt error). 
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 (a) Two-Dimensional Image (b) Three-Dimensional Surface 

 
Figure 145: Modulation transfer function for an aberrated annulus 

sparse aperture (0.10 waves rms piston, tip/tilt error). 
 

 

   
 (a) Gray-World Simulation (b) Polychromatic-World Simulation 
 nrmse: 0.0646 nrmse: 0.0658 

 

RER: 0.859;  Grms: 18.7;  SNR: 268.5 
 

Figure 146: Integrated panchromatic simulation of an aberrated annulus sparse aperture 
with spectrally weighted OTF restoration (0.10 waves rms piston, tip/tilt error). 
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 (a) Two-Dimensional Distribution (b) Three-Dimensional Surface 

 
Figure 147: Random phase profile for the central wavelength of an aberrated 

annulus sparse aperture (0.25 waves rms piston, tip/tilt error). 
 

 

   
 (a) Two-Dimensional Image (b) Three-Dimensional Surface 

 
Figure 148: Modulation transfer function for an aberrated annulus 

sparse aperture (0.25 waves rms piston, tip/tilt error). 
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 (a) Original Object (b) Spectrally Weighted Object 

 

   
 (c) Gray-World Simulation (d) Polychromatic-World Simulation 
 nrmse: 0.0971 nrmse: 0.1185 

 

RER: 0.712;  Grms: 28.7;  SNR: 268.6 
 

Figure 149: Integrated panchromatic simulation of an aberrated annulus sparse aperture 
with spectrally weighted OTF restoration (0.25 waves rms piston, tip/tilt error). 
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A.3  Phased Petal Aperture 

Although technically not a sparse aperture system in the classic sense, formation of a filled 

aperture through phasing of smaller petals or subapertures certainly lends itself to similar 

physical processes that were explored in this research effort.  As a consequence, an arbitrary 

phased petal design was developed to explore whether such an optical configuration exhibits 

any of the unique quality implications manifested by the lower fill factor sparse aperture 

imaging systems explored in this research.  To that end, this section provides simulation 

results for a phased 36-subaperture filled imaging system configuration with a fill factor Ffill 

of 0.942 and wavefront errors of 0.10 and 0.25 waves rms at the mean wavelength.  As with 

previous predictions, the gray-world and spectral model restorations were accomplished with 

a traditional Wiener filter, assuming perfect system OTF and noise-to-object power spectrum 

ratio knowledge. 

 

The following figures provide the optical phase profile, the aberrated aperture MTF, and the 

final restoration products for the conditions specified above.  For this high-fill factor case, 

there does not appear to be a statistically significant difference between the two model types, 

seemingly pointing to the conclusion made previously that the spectrally induced quality 

effect explored in this dissertation is a unique characteristic of low-to-modest fill factor 

imaging systems.  As a final note, one must be cautious in making direct quality comparisons 

between the aberrated filled aperture results and those acquired for sparse aperture systems 

under similar conditions, since the scenario depicted here did not adjust the integration time 

appropriately to accommodate the reduced modulation in the system transfer function.  As a 

consequence, the aberrated phased petal restorations for 0.25 waves rms of wavefront error 

exhibit detection SNR that is considerably lower than nominal for such levels of aberration.  

This relatively poor detection SNR was an intentional characteristic of this particular 

modeling iteration, as a stressing imaging case was desired to ascertain whether spectral 

artifacts could indeed be generated with a phased petal design. 
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 (a) Intensity Distribution (b) Contour Plot 

 
Figure 150: Random phase profile for the central wavelength of an aberrated 

phased petal filled aperture (0.10 waves rms piston, tip/tilt error). 
 

 

   
 (a) Two-Dimensional Image (b) Three-Dimensional Surface 

 
Figure 151: Modulation transfer function for an aberrated phased petal 

filled aperture (0.10 waves rms piston, tip/tilt error). 
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 (a) Original Object (b) Spectrally Weighted Object 

 

   
 (c) Gray-World Simulation (d) Polychromatic-World Simulation 
 nrmse: 0.0667 nrmse: 0.0670 

 

RER: 0.833;  Grms: 2.46;  SNR: 36.2 
 

Figure 152: Integrated panchromatic simulation of an aberrated phased petal filled aperture 
with spectrally weighted OTF restoration (0.10 waves rms piston, tip/tilt error). 
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 (a) Two-Dimensional Distribution (b) Three-Dimensional Surface 

 
Figure 153: Random phase profile for the central wavelength of an aberrated 

phased petal filled aperture (0.25 waves rms piston, tip/tilt error). 
 

 

   
 (a) Two-Dimensional Image (b) Three-Dimensional Surface 

 
Figure 154: Modulation transfer function for an aberrated phased petal 

filled aperture (0.25 waves rms piston, tip/tilt error). 
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 (a) Original Object (b) Spectrally Weighted Object 

 

   
 (c) Gray-World Simulation (d) Polychromatic-World Simulation 
 nrmse: 0.1343 nrmse: 0.1354 

 

RER: 0.552;  Grms: 5.17;  SNR: 36.2 
 

Figure 155: Integrated panchromatic simulation of an aberrated phased petal filled aperture 
with spectrally weighted OTF restoration (0.25 waves rms piston, tip/tilt error). 
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