AFRL-VA-WP-TR-2004-3105

HIERARCHICAL CONTROL OF SEMI-
AUTONOMOUS TEAMS UNDER
UNCERTAINTY (HICST)

Pravin Varaiya

University of California

Department of Electrical Engineering and Computer
Sciences

Berkeley, CA 94720

MAY 2004

Final Report for 28 September 2001 — 31 December 2003

Approved for public release; distribution is unlimited.

STINFO FINAL REPORT

AIR VEHICLES DIRECTORATE

AIR FORCE MATERIEL COMMAND

AIR FORCE RESEARCH LABORATORY
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED
IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT
PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE U.S. GOVERNMENT. THE
FACT THAT THE GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS,
SPECIFICATIONS, OR OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY
OTHER PERSON OR CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO
MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY RELATE
TO THEM.

THIS REPORT HAS BEEN REVIEWED BY THE AIR FORCE RESEARCH LABORATORY
WRIGHT SITE OFFICE OF PUBLIC AFFAIRS (AFRL/WS/PA) AND IS RELEASABLE TO
THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS). AT NTIS, IT WILL BE
AVAILABLE TO THE GENERAL PUBLIC, INCLUDING FOREIGN NATIONALS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

Is/ Is/

MARK J. MEARS HOWARD T. EMSLEY, Actg Chief
Project Engineer Control Design and Analysis Branch
Control Design and Analysis Branch Control Sciences Division

Is/

BRIAN W. VAN VLIET, Chief
Control Sciences Division
Air Vehicles Directorate

COPIES OF THIS REPORT SHOULD NOT BE RETURNED UNLESS RETURN IS
REQUIRED BY SECURITY CONSIDERATIONS, CONTRACTUAL OBLIGATIONS, OR
NOTICE ON A SPECIFIC DOCUMENT.

REPORT DOCUMENTATION PAGE N A Oved

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of

information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of

information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE
May 2004 Final

3. DATES COVERED (From - To)
09/28/2001 — 12/31/2003

4. TITLE AND SUBTITLE

HIERARCHICAL CONTROL OF SEMI-AUTONOMOUS TEAMS UNDER
UNCERTAINTY (HICST)

5a. CONTRACT NUMBER
F33615-01-C-3150

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
0602301

6. AUTHOR(S)
Pravin Varaiya

5d. PROJECT NUMBER
A055

5e. TASK NUMBER

5f. WORK UNIT NUMBER
0A

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of California
Department of Electrical Engineering and Computer Sciences
Berkeley, CA 94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research
Projects Agency (DARPA)
3701 N. Fairfax Avenue
Arlington, VA 22203

Air Vehicles Directorate

Air Force Research Laboratory

Air Force Materiel Command

Wright-Patterson Air Force Base, OH 45433-7542

10. SPONSORING/MONITORING
AGENCY ACRONYM(S)

AFRL/VACA

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER(S)

AFRL-VA-WP-TR-2004-3105

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
Report contains color.

14. ABSTRACT

This is the final report of work done under DARPA Contract F33615-01-C-3150, for the period of performance
September 2001 through December 2003. Algorithms and associated software were developed for the following modules:
1. Interactive task planner (ITP); 2. Configuration and schedule; 3. Task execution; 4. State estimator; 5. Java interface to
OEP; 6. Robust dynamic programming for path planning with uncertain information; 7. Flexible formation of teams
operating under large uncertainties; and 8. Path planning with two constraints. Modules 1-5 are integrated into a self-
contained package that can be used in an off-line or open loop planning phase followed by a closed-loop execution phase.
The package can be used in a fully automated fashion or in an interactive manner, in which the user can intervene at
several stages to modify the operation of the modules. Thus the package makes provision for ‘mixed initiative’. Modules
6-8 are ’stand alone’ algorithms. Software implementations for these algorithms were developed. The report describes
these modules and provides examples to illustrate their operation. The technology developed under HICST, and the
modules that embody this technology, represent a significant advance towards the objectives of the MICA program.

15. SUBJECT TERMS
Cooperative Control, Unmanned Air Vehicles

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER OF

a. REPORT | b. ABSTRACT | c. THIS PAGE OF ABSTRACT: PAGES
Unclassified | Unclassified | Unclassified SAR 152

19a. NAME OF RESPONSIBLE PERSON (Monitor)
Mark J. Mears

19b. TELEPHONE NUMBER (Include Area Code)
(937) 255-8685

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

CONTENTS

Contents

1 Introduction

2 Summary
2.1 Module 1: Interactive task planner. e
2.2 Module 2: Configuration and schedule
2.3 Module 3: Task €XeCution. o e e e
2.4 Module 4: Database.
25 Module5:Java.
2.6 Module 6: Robust pathplanning
2.7 Module 7: Dynamic team formation
2.8 Module 8: Path planning with two constraints.

3 Module 1: Interactive task planner
3.1 Threat. e
3.2 Plandesign space e e e e e e e
3.3 Riskalongapath.
3.4 Valuefunction calculation.
3.5 Risk of a plan with prespecified order ofattack.
3.6 The ITP procedure and optimal plan.
3.7 Refinement of the ITP procedure: mixed initiative

4 Module 2: Configuration and schedule
4.1 Taskschedulinginthe MICAcontext i
4.2 Scheduling model formulation and solutions
4.3 Team Ccomposition o o e e e
4.4 Linear programming formulation.
4.5 Goal programming formulation.
4.6 Implementations in executablecode.

10

10

13
17
21
21
23
24

26

CONTENTS 3

5 Module 3: Task execution 48
5.1 IntroduCtion. e e 48
5.2 AnasideorShift 49
5.3 ArchiteCture. 50
5.4 Mixed initiative interactions 53
5.5 UCAVIYPE o v v oo e e e e e e e 53
5.6 Platformtype. e 53
5.7 Maneuver specification e e e 55

5.7.1 Basetype 55
5.7.2 Typesofmaneuvers. e e e 55
5.7.3 Example: attackam 55
5.8 Maneuvercontroller e e 56
5.8.1 Basetype 56
5.8.2 Example: attaclkemtype e 57
5.9 Vehicle SUPEIVISOr o 57
5.10 Vehicle dispatcher e e e 58
5.10.1 Mission specification 58
5.10.2 Dispatchertype e 59
5.11 Task specification e e e e e e 59
5.11.1 CONCEPLS. . . . o v o o e 59
5.11.2 Legtype e 60
5.11.3 Subtasktype. 61
5.12 Teamcontroller. e 61
5.12.1 BaSEtYPe 61
5.12.2 Taskcontroller. 61
5.12.3 Sub-taskcontroller 62
5.12.4 Properties e e e e e e 66

5.13

COoNCIUSION e e 66

CONTENTS

6 Module 4: State estimator

6.1
6.2
6.3

Threat distribution after strike.
Threat distribution after search. e

Implementation. L

7 Module 5: Java interface to OEP

7.1
7.2

Java clienttothe OEP. e e,

RMI SErVICES. e e e e e e e

8 Module 6: Robust path planning

8.1
8.2

8.3
8.4

8.5
8.6

8.7
8.8
8.9

INtroduCtioN. e
Problem Setup e e e e
8.2.1 TheBellmanrecursion
8.2.2 Addressing uncertainty in the transition matrices,

8.2.3 Therobust Bellmanrecursion
8.24 Mainresult. e
Robust algorithm summary e e e
Likelihood Models
8.4.1 Modeldescription. e e e e e e e
8.4.2 Thedualproblem
8.4.3 Anbisectionalgorithm
Maximum a posteriorimodels.
Entropy Models. e
8.6.1 Modeldescription. e
8.6.2 Dualproblem. e e e e
8.6.3 Anbisection algorithm
Other Specific Models. e
Interval matrix model

Ellipsoidal models

72
72
74
75

76
76
76

79
80
81
81
82
82

84
85

88

CONTENTS 5

8.10 Example: Robust Aircraft Routing e 91
8.11 Thenominal problem 91
8.12 Therobust VErsion. e 92
8.13 Comparing robust and nominal strategies. e 92
8.14 Inaccuracy of uncertainty level 93
8.15 Concludingremarks. L e e e e 94
8.16 ApPeENdiX e e 95
8.16.1 Proof of the robust Bellmanrecursion. 95
8.16.2 Properties of functiopofsection8.4.3. L Lo 96
8.16.3 Properties of functiomof section 8.6.3. 97
8.16.4 Calculation of for a Desired Confidence Level 98
9 Module 7: Flexible team formation 103
9.1 Problem Statement e 103
9.2 Constraints and optimization objective. 104
9.3 Multiple resources allocation e e 106
9.4 Dealing with integer approximations. e 107
9.5 Resource Allocation under Uncertainty 108
9.6 Scenario-based optimization e 109
9.7 Approximate feasibility of scenario solutions 110
9.8 Aposteriori analysSiS. e e e e e e e e e 111
9.9 Interaction models. 112
9.10 Numerical examples. e e e e e e e 112
9.11 Thenominal problem e 113
9.12 The Robustcounterpart. e e e e 114
9.13 CoNCIUSION e 115
10 Module 8: Path planning with multiple constraints 118

10.1 IntrodUCtion. e e e e e 118

CONTENTS 6

11

12

10.1.1 Problemdefinition. 119
10.1.2 Relatedwork. 119
10.2 Value function solution. e e 120
10.2.1 Single objective shortestpath 120
10.2.2 Computing pathintegrals. e 121
10.2.3 Exploring potential paths. 122
10.2.4 Numerical algorithms. 123
10.3 EXamples. e e e 124
10.3.1 Two COoStsSintwo dimeNnSIONS. it e 125
10.3.2 Three costsintwo dimensions. e 126
10.3.3 Twocostsinthree dimensions. 127
10.3.4 The implementation and deExecutiontimes. 127
10.4 DISCUSSION o o ot e e e 129
10.5 Appendix: Update equations for any number of dimensions 130
Conclusions 137
11.1 Planning. o e e e e e e e e 137
11.2 EXECULION. . . . o o o o o e e e e e e e e 138
11.3 State estimation e 138
11.4 Re-planning. o o e 139
Open problems 140
12.1 Planning. o e e e e e 140
12.2 State estimation e 141
12.3 EXECULION. o o o e e e 141
12.4 Re-planning. o e 142

References 143

1 INTRODUCTION 7

1 Introduction

This is the final report of work done in the project, “Hierarchical control of semi-autonomous teams under uncertainty
(HICST),” under Darpa Contract F33615-01-C-3150. The period of performance was September, 2001 to December,
2003. The contract was awarded by the MICA (Mixed Initiative Control of Automa-teams) Program. MICA's
objectives are to:

e Develop theory, algorithms, software, and modeling/simulation capabilities for hierarchical bat-
tlespace management and distributed control of semi-autonomous entities

— Cultivate dynamic operational and mission planning for teamed entities

— Develop cooperative path/execution planning
— Address an active, intelligent adversary and threats in an uncertain environment

e Demonstrate multiple vehicle execution of team-based strategies

These objectives become clearer in the following settirhere is a set of Unmanned Air Vehicles (UAVS) with
different capabilities (sensors, weapons, decoys), collectively calleBltleeforce and a set of targets called the

Red force The Blue force is used to attack the Red force, which threatens the attacking Blue force. The HICST
project developed some of the theory, algorithms, and associated software for planning and executing Blue’s attack.

A plan organizes Blue’s attack into a set of independiasks® Each task is a list osub-tasks Each sub-task
comprises a list of targets to be attacked in a specific ordeteafof several UAVs is needed to carry out each
sub-task, so a plan must also assign a team of UAVs to each sub-task. The specification of a team includes the UAV
platforms (size, speed) and their configuration, including the weapons and sensors each UAV carries. The plan also
specifies thelependencieamong the sub-tasks: This is a partial ordeprmcedenceelation that says that certain

targets must be attacked before others. The plan may also impose timing constraints on sub-task completion. Lastly,
the plan determines a nominal path for the UAVs in each team. The nominal path for a team is later refined to specify
amissionfor each UAV in the team. In summary, a plan for a single task comprises:

1. The decomposition of Blue’s attack into tasks, each of which is a list of subtasks;
2. Ateam for each task comprising a set of configured UAVS;
3. A precedence relation among sub-tasks and timing constraints;

4. A nominal flight path for each team.

A plan is designed on the basis of prior information, called the Intelligent Preparation of the Battlefield (IPB). The
plan is sometimes called a Team Composition and Tasking (TCT) plan for ‘team composition and tasking’.

A concrete instance of this setting is the Open Experimental Platform or OEP, developed by Boeing under the MICA program. The
modules described below are intended for the OEP.
ZIndependent tasks can be executed without any timing or precedence order among them.

1 INTRODUCTION

The real-timeexecutiornof a plan is governed by a two-layer controller, whose upper layer determines team coordi-
nation, and whose lower layer determines the control of individual UAVs in a team. The control architecture is thus
organized in the three layers of figute The TCT Plan layer is ‘offline’ and precedes the online execution of the
attack.

TCT Planner .
off line
| planning
v) X
Team Team
Coordinator Coordinator
T I online
I 1. { l, execution
UAV UAV UAV uAv

Controller Controller Controller Controller !

Figure 1: The TCT Planner designs the plan, which is executed by a two-layer controller that coordinates team effort
and controls the individual UAVs.

Figurel suggests that once the TCT plan is designed it is ‘handed’ over for execution. However, this may not be the
case. It may happen that, during execution, new information is received that triggers a re-working of the plan. This
introduces the ‘feedback’ loop indicated in figute

The planning and execution phases may be fully automated. However, the control design permits human intervention
in both phases to guide or override the automated choices. Thus there is provision for ‘variable’ autonomy.

re-planning triggef
P g ™99 TCT Planner
State of the - Humar_l
. intervention
world estimate 4
L | Execution
online information

Figure 2: Information received during plan execution leads to a change in the estimate of the ‘state of the world’ and
may trigger a re-working the plan, creating a feedback loop.

The work conducted under the HICST project is conveniently summarized as algorithms and associated software,
organized in the following modules:

1. Interactive task planner (ITP);

2. Configuration and schedule;

1 INTRODUCTION

Txt file:

scenario

L 7

ITP

| Txt file:

paths

Database
Sow 4

L 7

.| Configuration

& schedule 2

Config
xml

OEP

» JAVA

Config &

Control:

SHIFT 4

A

Figure 3: Integration of modules 1-5. The modules make provision for human intervention, not indicated in the
figure. SoW is ‘state of the world’.

Task execution;

© N o g M w

Java interface to OEP;

Database for state estimation;

Path planning with two constraints.

Dynamic team formation operating under large uncertainties;

Robust dynamic programming for path planning with uncertain information;

Modules 1-5 are integrated into a self-contained package as indicated in fRjurewhich the five modules are
labeled and encapsulated in bold boxes. The package may be operated in an open-loop or ‘planning’ mode or in
a closed loop or ‘execution’ mode. Moduléss make provision for human intervention at well-defined junctures.

This is not indicated in figur8, but is discussed in later sections.

The remainder of the report is organized as follows. SeQidmiefly describes each of the eight modules. The
interested reader can learn about the underlying theory and algorithm for each module in the following eight sections.
Sectionll summarizes our main contribution, and sectl@ygives our perspective on the difficult open problems.

2 SUMMARY 10
2 Summary

We briefly describe each module; in each case we specify the input, output, and what the module does.

2.1 Module 1: Interactive task planner

The ITP module takes as input a txt file, which specifies the SW and NE corners of the scenario area, the location of
the blue base, and the location, type, and range of the red threats. Figuae excerpt of this input file.

$BASE -83.47249703 -244.9023235

$SW -445.0066235 -445.278318

$NE 445.010847 445 2816576

#name oepid oeptype location range
ewl ewl ew_radar_site_type 83.08835062 357.8026933 0
ew2 ew2 ew_radar_site_type 84.52129045 257.5534701 0
ew3 ew3 ew_radar_site_type 105.5589836 136.3371254 0
ewd ewd ew_radar_site_type 217.4891654 152.4172989 0
ewb ews ew_radar_site_type 313.5345099 140.1720993 0
ew6b ewb ew_radar_site_type 314.9126829 229.1353302 0
c2_1 c2 1 c2_facility_type 143.4283105 196.6354571 0

c2.2 c2.2 c2_facility_type 237.343399 196.6354571 0

long_saml long_saml long_sam _fire_control_platform_type -15.94678417 377.0053928 80
long_sam?2 long_sam?2 long_sam _fire_control_platform_type 83.87181924 309.8998433 80
long_sam3 long_sam3 long_sam _fire_control_platform_type 94.1244268 184.7984307 80
long_sam4 long_sam4 long_sam _fire_control_platform_type 176.454496 137.30932 80
long_sam5 long_sam5 long_sam _fire_control_platform_type 280.0729363 135.7397GR1L

Figure 4: Excerpt of ITP input file, specifying SW and NE corners of scenario area, location of blue base, and red
threats.

After receiving this input file irStep 1the ITP creates a scenario window that displays the location of the threats
and the blue base. Itep 2 the planner selects a subset of the threatgriasary. These are the threats that the
planner wants to attack. The ITP then calculates and displays addifmtehtialthreats. These are the threats that
‘protect’ the primary threats, i.e. one or more primary threats are included in the threat range of the potential threats.
The planner next choosesyanimumrisk level.

In Step 3 the ITP determines the subset of potential and primary threats that can be attacked along paths starting
at the blue base, for which the total risk is less than the chosen minimum risk level. This subset of targets is called
Wave 1 The ITP also determines the hominal risk-minimizing paths from the blue base to each of Wave 1 targets.

2 SUMMARY 11

These paths are displayed in the scenario window. They are called ‘nominal’ because the actual paths taken by the
UAV are somewhat different and are determined by the ‘task execution’ module.

In Step 4 the ITP determines the sub3&tve 20f additional targets that can be attacked along paths starting at
either the blue base or one of the Wave 1 target locations, for which the total risk is less than the minimum. The ITP
determines and displays the nominal risk-minimizing paths for Wave 2 targets. The ITP also displays the optimal
‘minimum risk’ contours of locations that can be reached for each level of total risk.

The procedure continues in this way, generating Wave 3, Wave 4, etc. until all the primary targets have been reached.

The elimination of a target. in Wave: reduces the risk for each target in Wave 1 by, say, the amour(m, n).
S is called the sensitivity matrix. The planner may remove targéfrom Wave: if the sensitiviesS(m*,n) are
small.

On the other hand, before the calculation of any wave, the planner may add new threats to a wave, and change the
minimum acceptable risk.

Figure5 is a snapshot of the ITP display window. ‘Wave threshold’ is the minimum risk level the planner selects;
‘value’ is the minimum risk incurred by the various paths. The ‘snapshot’ window in the top right allows the planner
to revisit earlier decisions and change them, if necessary.

The output of ITP thus consists of:
e A set of targets, organized in waves, and the minimum risk for each target, based on the assumption that targets
in Wavei + 1 are attacked after those in Wairbave been destroyed;

¢ A nominal risk-minimizing path for each target in Waise 1, starting at the blue base or at any target locations
in Wave 14;

e A ‘sensitivity’ matrix that gives the reduction in risk for each target in Wave 1 due to the elimination of
each target in Wave

2 SUMMARY 12

— Therm
| e Snapshok 0
L i Snageshiok | }
[e il Exploration
+* . .
.y history
| St HLLL R
: = SR
T el TR
- :
’ o
— _Sevesun |
Equal risk
Fesims Syt |
contours \
e
: Ma=n | OER 1D | CEP Typsi Lecation | Theal range [T Tar gt ['-I.ll_- ol v 3
AT _ A madus_, .. macham_gem_jba, ., &0,895, 302, 156 =i} Crsbross Pobariisl 195,49 i
LTy nadun_, rschum _sam_sihs, 123,751, 190,57) Dsbrosy Poberitisl 2283
bomig_sami long_samB ko _sann_ste_bvpes 192.353; 241.HE] Foberkisl 2371
i _ssimil 0 mischiin_. .. (el _san s, Led. 132, 106, 186 S0 Pobiriisl Z81.4 J
B wed awy rader_ske B, 178,852, 152418 i} Primary 30,4
rrascir_ssmil 4 nmsdym_, s _sami_sks, 202,265, 255, T) Pobsrkisl 3239
lonag_sam? lond_sam? bored s _site_ by 257.6832, 240.6%4 oo Poberkial 3557
o g hivE long_shinh N Sh_Gite Pypek 331.784, LBE.ATE 100 Pt sl 3546 ,"':J
|
Losd Dals | | ComoueysusFn | Comoute Path | Potentisl Theests
wiave Theeshold Orign Min risk after
350 N.A01 244,30
- - 1 waves 1,2
Log
Cohpathasphore Hesstdsls bl =

Figure 5: The ITP display window gives the paths, the Wave targets, the risk incurred along each path, and the equal
risk contours.

2 SUMMARY 13

2.2 Module 2: Configuration and schedule

This module takes the ITP output as its input and produces the two files indicated ini§Mesexplain how this is

done. The top diagram of figugrepresents in graphical form part of the information in the ITP output. There are
four final targets. The ITP organizes Blue’s attack in three waves, with four targets each. For reference, we index
the 12 targets by the pait,\Wavej) to mean theth target in Wave. The arrows in the diagram refer to the origin

and destination of the minimum risk paths generated by the ITP. Thus, for example, the minimum risk path to target
(4, Wave 2) starts at the blue base. Similarly, the minimum risk path to target (3, Wave 3) starts at (4, Wave 2). The
ITP output also includes the sensitivity matrix described at the end of s&:fi@bove.

The ‘configuration and schedule’ module produces information depicted in the middle and bottom diagrams. It
organizes some of the targets into sub-tasks. In this case, there are four sub-tasks. For example, sub-task 1 consists
of targets (2, Wave 1), (1, Wave 2) and (1, Wave 3). All final targets are included in the sub-tasks. However,
three targets, (1, Wave 1), (4, Wave 1), and (2, Wave 2) are not included in any sub-task. Presumably, the module
determined that, based on the sensitivity matrix, these targets do not contribute to a significant reduction in risk, so
they are excluded.

The solid lines in the middle diagram indicate the precedence relation. Thus target (1, Wave 2) can only be attacked
after targets (2, Wave 1) and (3, Wave 1) have been destroyed. Observe that this precedence retdimrtizan

that implicit in the ITP calculation, which suggests that all targets in Waweist be destroyed before any target in
Wavej + 1 is attacked. The weaker precedence relation takes into account the sensitivities, which are not considered
in the ITP’s automatic wave calculation. From a planning perspective, the weaker relation is desirable because
it imposes fewer dependencies among subtasks, reducing coordination among teams and increasing flexibility in
timing.

Having determined the task composition and the precedence relation, this module determines the team configuration
for each task. Consider task 1, which includes three subtasks, the targets (2, Wave 1), (1, Wave 2) and (1, Wave 3).
The ‘configuration and schedule’ module takes into account the threats at these targets (long range SAM, medium

range SAM, etc.), determines the weapons to be used to attack each target and their lethality, and specifies Team 1,
i.e. the platforms and their configuration (weapons, sensors). The table at the bottom of the figure gives an example

of a Team specification this module produces.

The two files output by this module indicated in figud@re textual representations of the information in figéire
The xml file describes the team configurations in a form that the OEP accepts and is used to instantiate the teams.
The ‘config & schedule’ txt file describes the sub-tasks for each team for the ‘Task execution’ module.

The final output of this module is the determination of the paths and precedence relationships to be followed by each
UAV. (This is the UAV's mission.) Recall that the ITP produces a nominal path feamfor each sub-task. The
module modifies this nominal path and specifies a path that each UAV in the team must follow during the execution
phase. We explain how this is done with the help of figtre

The figure shows two scenarios. The initial location of the three-UAV team is at A and the target is at B, in both
cases. In the upper scenario, there is only one threat, indicated by the circle around B. In the lower scenario, there an
additional threat, indicated by the circle around C. The ITP gives the nominal team path as the straight line starting
at A and ending at the target at B for both scenarios. Suppose that the module has determined that the target at B is

2 SUMMARY 14

final
targets

A

Wave 1 Wave 2 Wave 3

O Sub-task 1

O Sub-task 2
Q Sub-task 4
@ @ Sub-task 3

Task 2 - Team Bravo

Target Weapon Number of Probability of Release distance(km)

Scenario Name Selection Weapons on Target Destruction at 5 kft, and 153 knots Platform
ew3 GPS Bomb 2 2 drawings of 0.95 5km Wolf_1
ewsd GPS Bomb 2 2 drawings of 0.95 5km Coyote_1
ewb GPS Bomb 2 2 drawgs of 0.95 5km Cygote_2

Figure 6: The ITP output (top) is analyzed to produce sub-tasks and precdence relation (middle), and team compo-
sition (bottom).

2 SUMMARY 15

to be attacked by a single UAV (called the attack UAV in the figure); the two remaining UAVs are ‘reserve’ UAVS to
be used for later targets in the sub-task.

There is an operational constraint: to successfully attack its target, the UAV heading must be in the direction of the
target in order to minimize its signature; if the UAV is not headed in this direction, its signature is larger, increasing
the likelihood of its detection by radar and consequent destruction.

Consider now the upper scenario. If the attack UAV follows the nominal path it will meet the operational constraint.
The nominal path is decomposed into two ‘legs’: leg 1 which terminates at the threat region is safe; leg 2 is ‘unsafe’
but meets the operational constraint. So the attack UAV can proceed from leg 1 to leg 2 and destroy the target at B.
The reserve UAVs can advance along leg 1, go into a holding pattern at the end of leg 1, and proceed along leg 2
only after the target at B is destroyed.

Consider now the lower scenario. If the attack UAV follows the nominal path, it will exhibit a larger signature to the
radar at C and it will get destroyed. So the nominal path must be modified as indicated. If the attack UAV follows leg
2, it will minimize its signature to the radars at both B and C; it can then destroy the target at B, proceed to destroy
the target at C. The reserve UAVs can then proceed after these targets are destroyed.

This example shows how this module modifies the hominal path to minimize the signature of the attack UAV,
decomposes it into legs, and introduces precendence or dependency relations among the legs of the sub-tasks. This
precedence relation among legs is a refinement of the precendece relation among sub-tasks.

2 SUMMARY 16

reserve UAVS

l attack UAV
leg 1 l
= >
=
O i >
A !

nominal team path from ITP

reserve UAVs attack UAV
leg 2
l leg 1 l 9
-Y>
-— —¢
>
A !

nominal team path from ITP

Figure 7. Ateam’s nominal path from A to the target at B is modified into a sequence of two legs, the first of which
is ‘safe’, and the second of which is followed in the ‘attack’ phase. The UAVs that are not part of the attack are held
in ‘reserve’. When the target is ‘protected’ by another threat (at C), the path is modified to minimize the signature

of the attack UAV to both B and C.

2 SUMMARY 17

2.3 Module 3: Task execution

The ‘task execution’ module is a SHifprogram, which takes as an input a txt configuration and schedule file (the
specifications for the execution phase, which are output by module 2) and executes the specification in the OEP
simulation environment. The Shift program consists of a hierarchy of controllers for the teams and the individual
UAVS.

The execution module is coupled to the OEP through the JAVA module, indicated in 8gthrough which the
controllers receive sensor observations and send control commands for way-points, sensors, and weapons.

The input txt file specifies: sub-tasks; legs for each sub-task; precedence relations on sub-task legs; and teams
assigned to execute each sub-task. The txpilfis.hgs encoded in Shift. Figur@is an excerpt of this input file.

The user interactions take place within the Microsoft Visual C++ environmen$tdp 1 the user runs the OEP
batch files to start the OERamingservice, cdisinserver, loadscenario, openmap

In Step 2 the user starts Microsoft Visual C++ and loads the Shift workspace. The Shift workspace includes the
file shiftoep.hs as well as the Shift engine. Tishift oep.hsfile contains the Shift code for the controllers and the
simulation setup.

The controller is hierarchically structured. There is a team controller and a ‘vehicle controller’ for each UAV in the
team. The controllers are hybrid automata. The discrete or logical state of the team controller maintains (among
other things) the identity of the set of UAVs in the team, the status (functioning or not), role (reserve or attack) of each
UAV in the team; the satisfaction or not of the dependency conditions. The discrete state of the vehicle controller
maintains the status of component controllers (sensors, weapons)and dependency conditions; its continuous state
mirrors the position, speed etc. of the vehicle, obtained from the OEP.

A major advantage of the Shift design is that s@meteam and UAV controllers work for teams with different
number of UAVSs; moreover, the team controllers are instantiated ‘on the fly’ in case the team is reconfigured (see
section2.7). It is not possible to design such controllers in Simulink or Matlab.

In Step 3 the user presses tlexecute progranbutton! to compile the input filgpaths.hstogether with the file

shift oep.hsand to execute the Shift program. After initialization, the Shift program creates a control window that
enables the user to control the advance of simulation time, to inspect the state of all components, and to define
breakpoints. Figur8 displays this control window and the OEP map and figurdisplays the state of one sub-task
controller.

In Step 4 the user starts the simulation by pressing stet buttonin the Shift control window. From that point
onwards the user controls the advance of simulation time, monitors the state of all of the components in the simu-
lation as well as the estimate of state of the world provided by the database (module 4), which runs as a separate
program, and intervenes whenever he is prompted to do so by an exception window generated by the controllers
or when new information is received from the database. In both cases, it may happen that replanning is needed, as
indicated by the ‘feedback’ loop in figuée In this case, the user terminates the current simulation and goes through
the planning-execution cycle again.

3Shift is a modeling language and execution system to describe networks of hybrid autdm@tsff allows hybrid automata to interact
through dynamically reconfigurable input/output connections and synchronous composition.

2 SUMMARY

type task_simulation
{
output
ucav ul, u2, u3, u4;

leg legl, leg2, leg3, leg4, leg5, leg6, leg7, leg8;
subtask subtask1, subtask2;
task_controller ctarefal;
task tarefal;
set(ucav) team1:={}, team2:={};

state
number t; // time

flow default {t' =1;};

discrete
i0, i1, i2, i3, i4, normal,

transition
i0 ->i1 {} do /I create ucavs with a control structure
{
ul := create(ucav, p:= small_combo_1);
u2 := create(ucav, p:= small_combo_2);
u3 := create(ucav, p:= small_combo_3);
u4 := create(ucav, p:= small_combo_4);
h
i1->i2{}do /I create all legs
{

legl:= create(leg, path:= [[[93517.725, 111320.00],

[150000.00, 158235.2],

[151000.00, 158000.00]],

[[93517.725, 111320.00],

[150000.00, 158235.2],

[151000.00, 158000.00]]],

vehicles:=[ul,u2], p:=medium_sam12);
leg2:= create(leg, p_attack:= [], p:=long_sam5_trk);
leg3:= create(leg, p_attack:=[[230679.38, 135172.16],

[231679.38, 135172.16]], p:=medium_sam13);
leg4:= create(leg, p_attack:=[[246924.42 , 134016.28],
[246924.42, 151410.03]], p:=medium_sam15);

leg5:= create(leg, p_attack:= [], p:=long_sam6_trk);
leg6:= create(leg, path:= [[[93517.725, 111320.00],

[108000.00 , 240000.001]],

[[93517.725, 111320.00],

[108000.00 , 240000.001]]],

vehicles:=[u3,u4], p:=long_sam8_trk);
leg7:= create(leg, p_attack:= [], p:=long_sam7_trk);
leg8:= create(leg, p_attack:= [], p:= medium_sam14);
team1:={ul, u2}; /I create teams to execute subtasks
team2:={u3, u4};

h
i2 ->i3 {} when (t>1) do /I creates subtasks and leg dependencies

subtaskl:= create(subtask, p:=[legl, leg2, leg3, leg4, leg5], team:= team1);
requires(leg3):={leg6};
subtask2:= create(subtask, p:=[leg6, leg7, leg8], team:= team2);

i3 -> i4 {} do {tarefal:= create(task, s:=[subtaskl,subtask2]);}, /I creates task
i4 -> normal {} do {ctarefal:= create(task_controller, t:=tarefal);}; /I creates task controller

}

Figure 8: Excerpt of execution input file, sub-tasks, legs, leg precedences, and teams.

2 SUMMARY

Figure 9: Execution environment.

19

2 SUMMARY

LConirel

DisarEce-aTaALE
=

I=

Taalk o

ITEACIwE

accEpk
axwcuoed
tEizinlassTs
|preceeding legs
dependensy atage
THAMIVE_FTage
ATTECE FCAgE

() =
ALlIe_DErerve

x

E S

¥

a¥a

L

&_ATHR

T_AGEp
SUEPEAL_E LEg
suzrent_a_leg
TIT

-
rederee_mald
attacknrcy

ENETOLLOR

jmEpes 27T]

jaubcenk I7

{cank _oomzzaller O

[fnoew &k

1000000

N}

[{ucew 2, jucsw J}]

L}

FraruRiEisg

Ghelding pach

Facceck

juone ij

1. 000080

T, ODD0SS

3, 0000DD

3, 00D

[{vehisle supeswises), [veRicle seperwisas 1)}
{wmhicla_supasvimos 1)

L . OO De0sd

L 00RO

ileg o)

ileg T}

[{uvwhizle supscviscr O]
[{vehioke_supervaser 131
Ll

[fucey 1]}

Figure 10: Inspection window.

20

2 SUMMARY 21

2.4 Module 4: Database

This module calculates the probability distribution of the Red force conditioned on the observations made by Blue
sensors. The following model is used. The Red force is ground based, consisting of SAM launchers, SSM launchers,
etc. These launchers have associated radars with various ranges. We do not consider mobile launchers.

A Red force with/N targets is then described by a set of the form

Targets= {target; = (type,, (z1,41)),-- - ,targety = (typey, (xx, yn))}-

Here theith target is otype, one of a finite set ofargetTypesuch as SAM, SSM or radars of different kinds, and
(x4, ;) is the two-dimensional location ¢drget;.

Because the threat is described by a set of targets, knowledge about the threat is represented by a probability distribu-
tion of theset-valuedandom variabl@argets The prior knowledge ofargetsis given by the IPB. This knowledge

is updated when Blue sensor observations are made. Lithlsensor observation be (symbolically) denoted’by

and letY’® = (Y1, --- , Y},) denote the observation history.

The module recursively calculates the conditional probability distribution using Bayes rule:

P[Targets= 7 | Y*~1| P[Y; | Targets= 7]
P[T. =7|Y" = 1
[Targets=7 [1] >, PlYy | Targets= o] P[Targets= o | Y*—1] @

Above, o ranges over all possibléargets The recursion is initialized by the prior distribution Brgetsobtained
from the IPB. Equationi(is derived under the assumption thgtandY*~! are conditionally independent given
Targets

Although easy to write down, this recursion is extremely difficult to compute. Suppose there are 3 target types, 100
locations, and up to a total of 10 targets. THemgetsis a 3,000-dimensional random vector!

To make the computation tractable, several independence assumptions are made, which reduces the complexity of
the probability distribution in terms of both storage requirements and calculating the recursion. The module stores
the distribution in a database, which is updated when sensor measurements are made. Calculations of risk functions
(needed by the ITP) are then carried out by querying the database.

2.5 Module 5: Java

The java interface to the OEP implements two main functions: serving as the interface between the task execution
module (Shift) and the OEP, and making the necessary calls to update the database with new threat distribution
values and risk function values. The database layer access is made available through two RMI (Remote Method
Invocation) services—Probability Map Generator service and the Risk Function builder service. These services
have to be manually started by the user before initiating task execution. When the Shift initialization takes place,

it creates an internal mirror of the current state of the OEP by querying the OEP through the java client. The Java
Native Interface (JNI) is used for this purpose. During Shift initialization, the following actions are taken:

SUMMARY 22

e An instance of the JVM (Java Virtual Machine) is created and initialized. After the JVM is initialized, one
instance of the Java client is created corresponding to each platform in the OEP scenario;

e A static connection to the OEP is established through the naming service;
e Subsequently, connections to the database and the RMI services are established;

e The java client reads the initial state of the OEP, and the threat distribution for the IBP (Initial Battle Plan) is
loaded into the database. At this point, the initial value of the risk function is also calculated for the scenario
area (the probability map calculator service triggers this calculation in the risk function builder service);

e The java client publishes three methods: get(), set() and a static run() method, which the Shift controllers call
every time step (the value of the time step is determined by the argument to the Simulationinterface.runFor()
method call). In the get method, the current state of the OEP platform is read into Shift, and the OEP mirror
inside the Shift runtime is updated accordingly. The controllers within Shift determine the next step to be
taken for that particular platform. These values are then passed to the OEP by calling the set() method in the
java client. Once the set() method has been called for all instances of the java client in memory, the run()
method is called and execution proceeds in the OEP for one time step.

2 SUMMARY 23

Threat A
Path2b ___

Path 2a

N e
- -
- - -
~ -~

Path 2
ase Target
Threat 1 Threat 2
Decision
point
Threat B

Figure 11: The ITP produces the deterministic path, path 1. A robust path planner produces a policy: follow path 2a
if threat A is present, and follow path 2b if threat A is absent.

2.6 Module 6: Robust path planning

Figurelldisplays a scenario with one target, four threats, Threats 1, 2, A and B. The circles denote the threat range.
Suppose the presence of Threats 1 and 2 is known with certainty, but there is a chance that Threats A and B are not
present. Based on the prior information in the IPB, however, the ITP generates path 1 as the minimum risk path from
the base to the target. This path avoids all the threats.

Suppose that when a UAV comes close to the locations of Threats A and B, sensor information reveals whether those
threats are actually present, i.e. the prior uncertainty is eliminated. In that case there is a better ‘feedback policy’
than following the deterministic path 1. This policy would follow the dashed path up to the location ‘decision point’.

At that point, the UAV would follow path 2a if the sensor information reveals the presence of Threat A, and path 2b

if Threat A is absent.

If the resulting flight is along path 2a, it would be worse (more time and fuel consuming) that path 1; if it is along
path 2b, it would be better than path 1. However, the contingent path 2 (path 2a or 2b) would on average be better
than path 1. The ‘robust path planning’ module determines paths according to such feedback policies. The module
adopts the following model.

Space is discretized with locations denoted Time is discretized with index = 1,--- ,T, in which T is the
time horizon of interest. There is a set of contingent threats, modeled as a Markov chain with stétes-
(s1,---,sm)) € S, ands; € {0,1}, indicating absences(= 0) or presence of théth threat; the transition
probabilities areP[s;(t + 1) = 0| s;(t) = 0] = pandP[s;(t + 1) = 1| s;(t) = 1] = ¢. The threat processes

2 SUMMARY 24

s1,--- , 8y are all independent, so

Plst+1) | s(t)] = HP[Si(t +1) [si(D)]-

The information structure is that a UAV at locatierat timet knows the state; (¢ + 1) of all threatsi located within
its sensor rang® of . It is assumed that in one time step a UAV does not travel beyond distaremethat it always
knows whether it will encounter a threat in the next step.

The last element of the model is a ‘one-step’ cost functionx, y) which is of the form

oo, path fromz to iy goes through the range of threat
|z — y|, otherwise

ctss.) = { @
In (2), = is the current location, anglranges over locations that can be reached fidmone time step. Hence the
only relevant components ofare those within the sensor rangempidenoted by,..

Suppose the UAV at timeis atz, and the threat state is Consider the dynamic programming recursion

V(sg,z,t) = myin{c(sx,x,y) + Z V(sy,y,t +1)P[s" | s]}. (3)

S/

The minimization in 8) is over all locationg, that can be reached in one step frem

The module solves this recursive equation ‘backwards’ using the boundary coridition, t) = 0, at the target
locationz. Having solved this it obtains the next locatigmt timet + 1. Attimet + 1 the states, becomes known,

and a new recursion is created. Evidently, the path by this policy will depend on what information is obtained.
Figurell shows two possible path realizations, path 2a and path 2b.

To implement the recursiorB), the transition probabilitied” must be known, which may not be the case. The
‘robust’ path planner instead assumes some bounds on these probabilities, represefitedd By The robust
recursion replacingd) is

V(se,2,t) = maxmin{c(sz, ,y) + Z V(sy y:t +1)P[s" | s]}. (4)

S

2.7 Module 7: Dynamic team formation

Figurel2illustrates a simple example of an ITP output. The set of targets is divided into waves, wave 1, ... , wave
N. The ‘configuration and schedule’ module assigns the targets labeled 1ihwlees to sub-task 1, those labeled

2 to sub-task 2, and so on. The precedence relation is that all targets in Wiaxst be destroyed before any target

in Wave: + 1 is attacked. The final targets (in wadg are the primary targets.

Four teams are created, one for each sub-task, anditesaatiocated to sub-taski =1, --- ,4. We refer to this as
astaticallocation, because the composition of the team is determined before task execution.

2 SUMMARY 25

By contrast, adynamicallocation is one in which, after a team attacks a target, the UAVs in the team may be
reallocated to other teams. The static allocation is indicated by the solid arrows in the figure; the dynamic alloca-
tion is indicated by the dashed arrows. We explain why a dynamic allocation is superior when there is significant
uncertainty in the outcome of a sub-task execution.

When a team attacks a target, some resources of the team will be consumed; the resources may be weapons, fuel
or a UAV. The resource consumption is random. Suppose the objective is for each team to reach its primary or final
target with a specified level of resources. For example, team 1 must reach its final target with at least 2 UAVs with

a certain number of weapons, with probability at least 0.5. Given the resource consumption rates, we can then work
backwards to figure out the resources needed by team 1 at the beginning ofMwvave so that it can meet the
resource requirements for the primary target. Proceeding in this way, we arrive at the initial composition of team 1.

- @ sub-task 1

- 3 @ sub-task 4

Base Wave 1 Wave 2 Wave N

Figure 12: The ITP output groups targets into waves. A static allocation assigns a fixed teasnb-taski,
i=1,---,4. Aflexible allocation re-allocates teams after each target strike.

Consider a simple example with = 4, and suppose that in attacking a target there is a 0.25 probability that the
UAV is destroyed. We require that at least 2 UAVs reach the final target, with probability at least 0.5. Observe that
a UAV’s probability of survival after attacking 3 targets(i&.75)% ~ 0.4. An elementary calculation then shows

that in a static allocation, a team must begin with 6 UAVs to ensure that at least 2 UAVs reach the final target (with
probability at least 0.5). So for the four sub-tasks, a total of 24 UAVs is needed under a static allocation to achieve
the objective.

More generally, ifpg is the probability of destruction of a UAV in each stage, the probability that a UAV reaches the
final target isp = (1 — po)™. If n UAVs are launched, the probability that at leasif them reach their final targets
is

n _
SUMyp, (m>pm(1 —p)"m

2 SUMMARY 26

Onthe other hand, if at the end of each target strike, we can reallocate UAVs from teams that suffered a lower attrition

to teams that had heavier losses, only 12 UAVs would be needed—a resource savings of 50 percent. Evidently, the
more uncertain is the resource consumption, the greater are the potential savings from dynamic (re)allocation of
teams.

However, reallocation of UAVs may itself be costly. For example, if the teams are located far from each other, time
and fuel will be consumed by rellocation. Perhaps a greater cost may be the difficulty faced by the people who
ultimately control a team in dealing with dynamically reconfigured teams. Thus in dynamic allocation, a balance
must be reached between the savings from reallocation and its cost. The ‘dynamic team allocation’ module proposes
a mathematical model of this balance, together with an algorithm that determines, at the end of each target strike,
the team re-allocation.

The module takes as input: (1) the wave structure similar to that shown in figu @) the survival probability;
and (3) the cost of reallocating a UAV from one team to another. It produces as output an allocation ‘policy’, which
reallocates surviving UAVs at the end of each target strike.

2.8 Module 8: Path planning with two constraints

The ITP relies on a fast ‘path planner’, which determines for a given set of ‘origins’ R? and each ‘destination’
r € R? a pathy that
min p(7y) = f(v(o))do. (5)
ver o=0
HereT is the set of all paths that start at some origi®) € O* and end at the destinatioy(r) = z; f(2) is the
‘risk’ per unit distance incurred at location ando parametrizes the path length. The minimum fsf) incurred
in reachinge satisfies thesikonalequation]

VV(z)| = f(z), V(z)=0,2€O0.

The path planner calculates the ‘value’ functinwhose contour plots are displayed in the ITP window of figure
5. Also, given any destinatiom, the path planner calculates the minimum risk path fi@ro x; the ITP window
displays some of those paths.

It may be necessary or useful to find the minimum risk path subject to another path constraint. For example, one may
want to constrain the minimum risk path search to those paths that can be completed with say a specified amount of
fuel. Such a constrained optimal path is a solution of the problem

minp(y) = /(, :Of(v(ff))dff (6)
subject toc(y) = /0 g(y(o))do < C. (7)

In (7) g(x) is the rate of fuel consumption aiddis the constraint on total consumption.

“The set of origins at the end of each wave consists of the blue base and the locations of targets at preceding waves.

2 SUMMARY 27

The solution of §)-(7) is much more difficult than the unconstrained probldin Ve can convert the constrained
problem to a family of unconstrained problems parameterized by a Lagrange multiplier

win Ly() = | " F(x(0)) + Aglr(o))]do- ®)

’YGF =0
Observe that the larger > 0 the greater is the weight placed on greomponent of the cost ih () of path~.

The iteration works as follows. One selects a weight 0, obtains the path;} that minimizesL,(y) and checks
whether the constrainf) is satisfied at/}. If it is satisfied,)\ is reduced; if it is not satisfied is increased. The

best)\ is the smallest for which the constraint is satisfied. So we have an iterative method for solving a constrained
optimization problem using “soft” constraints, i.e. a Lagrange multiipler formulation. One iterates on the Lagrange
multiplier.

3 MODULE 1: INTERACTIVE TASK PLANNER 28

3 Module 1: Interactive task planner

This section discusses the interactive task planner or ITP, which was briefly described in gectidve recall

the setting. The Blue force comprises a set of UAVS, each of which can be configured with different capabilities
(sensors, weapons, etc). There is a set of targets called the Red force. The Blue force is used to attack the Red
force, which threatens the attacking Blue force. With the help of the ITP the planner organizes Blue’s attack into a
plan. The plan is further specified by the ‘configuration and schedule’ module, after which it is executed by the Shift
control module (module 3). The ITP module may be reinvoked during execution, as indicated irfigure

We will formally describe a plan ‘design space’, and performance measures to compare plans. The formalization
permits the development of an algorithm that automatically generates good—even ‘optimal’'—plans. The ITP soft-
ware implements this algorithm. Of course, considerations beyond those captured in the performance measures will
enter into the specification of the final plan. The planner introduces these considerations by interacting with the ITP
software to modify the automatically generated plan.

3.1 Threat

We now introduce some terminology for use in a mathematical description of the tiergetis a generic term
for Red force entities of different types such as SAM launchers, SSM launchers, radars, etc. There is a finite set of
types calledTargetTypesWe will not be concerned with mobile targets. So a target is completely characterized by
its type and its (two-dimensional) locatigm, y). A Red force with/N targets is thus fully described by a set of the
form

Targets= {target, = (type,, (z1,41)), - - , targety = (typey, (xn,yn))}- ©)

There may be uncertainty about the Red force. We adopt a Bayesian view, which summarizes prior knowledge about
the Red force as a probability distribution of thet-valuedandom variabldargets The prior knowledge ofargets

is given by the IPB. We denote this initial distribution (at tithe= 0) by Peat(0)-> Two examples will help
illustrate Pipreat(0)-

Example 1.The IPB indicates that the Red force consists of one SSM at a known logatighn four
SAM sites at unknown locations in argla, and six SAM sites at unknown locations in atéa In this
exampleN =11, so

Pinreat(0)(Targets = {(type,, (z1,91))," - , (typey, (11,¥11))})
11

i=1
in which

1, 5 - _7_
P (type = (SSM, (x,y))) = { 0 ((fthye)rwis(: Y ’

SThis probability distribution is updated during execution when Blue sensor observations are made; see2sédions

3 MODULE 1: INTERACTIVE TASK PLANNER 29

and the distributiong>, - - - , P;; have densities
|A1‘_17 (%?/)EAIJZZ 75
pl(typ% :SAM7 (x,y)) = ’AQ‘ilv (xvy) € AQvi:6v"' 11 (11)
0, otherwise

In (11), |A;| is the area ofd;. The ‘product’ form (L0) is obtained under the assumption that the 11
targets are independent random variables. To obtdipi(is assumed that the location of targeis
uniformly distributed over ared,.

Example 2. There is more uncertainty than in Example 1: The numBerof SAMs in A; and the
numberN,; of SAMs in A, are independent random variables. So

Ny

Pihreat(0)(Targety = P (target;) x Hpi(typq, (zi,9i)) PL(N1)
i=1

No
x [rityps, (zi,4:) Pa(N2);
i=1

P (target;) is the same as beforg; is the uniform density oved; (given by (1)), and P;(NN;) is the
probability distribution ofV;,i = 1, 2.

In principle, the distributionPipre41(0) can be quite complicated. We will suppose, however, that the IPB takes on
the following more restrictive form:

The Red force is distributed over areds,--- ,A;. In areaA; there areN;; targets of typet ¢
TargetTypesvhose locations are independently and uniformly distributed. The random number of tar-
getsV;; are all independent with distributiaR; (V).

This restriction implies that the IPB is represented as a distribution of the form

kDN
Ppreat(0)(Targets = [T [T I pes(type=t, (zi, 5:)) Py (V) (12)
t j=1li=1
in which ¢ ranges ovefargetTypesand
, oy AT (ww) € 4
DPtj (type_ t, (-Tz,yz)) = { 0, otherwise . (13)

Examples 1, 2 above are special cases of this model. The major restriction implied by G@R)edl3) is the
statistical independence of the threats in the different areas. This restriction seems re&sonable.

®The restriction can of course be removed and one may admit any distribution of the random Venigébte

3 MODULE 1: INTERACTIVE TASK PLANNER 30

The probability distribution12)-(13) is completely specified by the list of areds= {A;,--- , A;} and the random
vector N = {N;;;t € TargetTypesl < j < k}. Hence we will sometimes use the shorthand notaffany to
denote this distribution.

A target poses threat, over a specific region, which is a circle centered at the target location and radius that depends
on the target type. A UAV in this threat region will be destroyed with a certain probability that depends on the target
type and the heading of the UAV (which determines the signature that it exposes to the target), as well as the amount
of time that the UAV is in the region. We will assume that a humerical value can be assigned to the threat posed by a
target at any location. Sectiéh3gives examples of such numerical values and shows how they are used to calculate
therisk incurred by a UAV as it traverses a path that goes through threat regions.

For the OEP, figurd lists some targets, their OEPid, OEPtype, location, and range. For example, target ewl is an
early warning radar of type ewadarsite type, located at (83.1, 357.8); it poses no threat (range is 0), because it
contains no weapons. On the other hand, target kamgl has a threat range of 80 km.

3.2 Plan design space

With the help of the ITP, the planner produces a plan, which organizes Blue’s attack into &skttatkseach of

which is a list of targets to be destroyed. The plan must determine the set of objectives, hence the set of sub-tasks.
We assume that the planner is given a sgirohary targets, and so these must be included in the plan. The plan will
typically include additional targets.

A UAV dispatched to attack a target will fly overpath -, during which it will incur a certaimisk p(y), which can
be translated into the probability that the UAV will be destroyed along its flight path. We assume that the planner
selects (or is given) a maximum risk threshplgax’

An acceptable or feasible plan is a set of targ@ésgetList= {target,, - - - ,target, }, together with a set of paths
PathList= {~1,--- ,7.}, one for each target, such that the risk along all these pdth$ < pmax We tenatively
define the plan design space as the set of all feasible plans. However, this is incomplete for three reasons.

First, we require all primary targets to be includedrargetList Second, the plan must group the targets into a set
SubtaskLisbf sub-taskseach of which will be assigned to a team of UAVs. The third reason is more subtle. The
risk p(-y) of a path depends on which targets have already been destrblyesl .the risko(y) depends on the order
in which targets are destroye&o the plan must also specify this ordempoecedence relatigrdenoted by, with
the intepretation that

target; - target;

means thatarget; must be attacked (and destroyed) befarget;.
A feasible plaris a 4-tupleplan = (TargetList SubtaskListPathList >), in which

(1) TargetList= {target,, - - - ,target, } is a set of targets, arféathList= {1, --- ,7,} are their paths;
(2) SubtaskLists a partition ofTargetListinto of tasks, and

"In figure5, this is the entry in the window called ‘Wave Threshold'.

3 MODULE 1: INTERACTIVE TASK PLANNER 31

(3) = is a precedence relation or partial orderTamgetList so that foralk =1,--- ,n

p(7i) < pmax (14)
In (14), the riskp(7;) is calculated under the assumption that all tartetget; - target, have been destroyed.

The risk R associated with a plan is the maximum risk incurred along any path,
R(plan) = max p(7;). (15)
Theplan design spacis the space of all feasible plans. An optimal plan has minimum risk,

R(plan®) = min{ R(plan) | plan € plan design spade

The ITP implements a procedure that can find an optimal plan. Before we describe this procedure, we develop a

model to quantify the risk along a path.

3.3 Risk along a path

The risk incurred by a UAV flying along a patf{c),0 < o < 7, from a specific originy(0) = o to a destination
v(1) = d, depends on the threat distributi¢i, o451 We describe how we calculate this rigK;y). We begin with
an example.

Example 3P egtindicates SAM sites at known locatioqs;, y;),i = 1,--- ,n. A UAV flies from its

base at locatiofi0, 0) to (z,) at a fixed speed (normalized taw = 1) along the pathy(c), o € [0, 7],

as indicated in figurd3. At any point along its path, the threat posed by a SAM site depends on how
far the UAV is from the site. We suppose that the resulting risk atpiggquantified as

§j)~) (16)

In (16), |v(o) — (x4, v:)| is the (Euclidean) distance betweefw) and(z;,y;); f(d) > 0is any decreas-
ing function ofd that measures thmstantaneous’ riskando parametrizes the path.

One choice forf is
1, d<D

ro={ 5 4io an

whereD is the threat range of a SAM. A more complex choice is

f(d) = (1+d)72, or f(d) = e~*, for somea > 0. (18)

8For the ‘fast marching’ algorithm described latgmust be a smooth function.

3 MODULE 1: INTERACTIVE TASK PLANNER 32

(0,0)
threat varies with (> V)

SAM at distance to target
(xl) yl)

Figure 13: A UAV travels along the pathencountering threats from the SAM sites(at, y;),7 = 1,--- ,n. The
threat depends on the distance of the path from the SAM site.

Evidently, the risko(v) depends on the planned patii So the minimum risk i$/(z,) = min, p(7y),
where the minimization is over all pathsfrom (0,0) to (z,y). More formally, for this example, the
value functionV is

V(2,9) = minp(7). (19)

We will see below how to calculate the value function and the risk minimizing pattOin (

We now describe how to calculate the risk along a path for a general threat of th@fotywith A = {A;,- -, Ax}
andN = {/N;;;t € TargetTypesl < j < k}. (The detailed distribution is given by2)-(13).)

In the first step, we define the instantaneous risk function at any paig} as

oo Ny

r@wyiPan) = .3 >),

j=1 t N =0 n=1
[/A ft(|($,y) - (-Tmyn))|Aj|7ldxndyn P(th)' (20)

In (20) f(d) is the instantaneous risk posed by a target of tyfiea UAV at a distance from the target.f; may

be of the form {7), (18) or some other form. So the integral i) is the expected value of this instantaneous risk
posed by a target of typelocated at a random poirt:,,, y,,) that is uniformly distributed over ared;. The sum
overn is the total risk posed by;; such targets. The sum ova¥; accounts for the random distribution df;. The
sum overt accounts for different types of targets. Finally the sum gvaccounts for all the areas. The argument
P, n inr emphasizes the role of the threat. The next example extends example 3 to a general threat.

%If we interpret f(d)A as the probability that the UAV is destroyed in timewhen it is at a distancé from the SAM,e "7 is the
probability of survival along the pati.

3 MODULE 1: INTERACTIVE TASK PLANNER 33

Example 4The risk faced by a UAV flying at speedalong a pathy from (0, 0) to (z, y), facing threat

PA,N is
T do
p(7; Pan) = / . r(v(o); PA,N)T: (21)
in whichr is given by 0). Hence the value function for thre&l y is
V((Z,9); Pan) = min p(v; Pa,n). (22)

3.4 Value function calculation
The value functions1(9) and @2) are special cases of the following problem:

We are given a seb of possible origins, a target destinatign, y), and a nonnegative, instantaneous
risk or cost functionf. Find

View) = min p() = min [ely(o))dor (23)
el (z,y) vel(z,y) Jo

HereI'(x,y) is the set of all paths which begin at some permitted origifn(0) € O, and terminate at
(z,y), andp(~) is the risk alongy. Moreover, we must find the optimal path for any destination.

The value function satisfies tlegkonalequation

IVV(z,y)| = c(z,y), (24)
with boundary condition
V(z,y)=0, (z,y)€O0. (25)
In (24),
Moreover, the optimal pathg" can be obtained by following the negative of the gradierit of
dv*
(o) = ~VV(3(0)) (26)

The ITP repeatedly uses a very fast algorithm (called the ‘fast marching’ algorithfj)[to solve the eikonal
equation 24)-(25). Then, given any destination, it calculates the optimal path by ‘steepest deg&ént’ (

Figure5 displays the contour plots of the value function and several optimal paths for the threats listed in the scenario
window. Observe, as is to be expected, that the optimal paths are orthogonal to the contours.

Remark The cost functiore in (23) can be modified to include restrictions on the admissible path. For example,
there may be ‘no-fly’ zones over which a UAV may not fly for strategic considerations or because of geographic
obstacles. These restrictions can be easily incorporated in the formulation by settipgto a very large value for

(z,y) in these no-fly zones. In this way, ‘soft constraints’ can be included by appropriately modifying the function
C.

3 MODULE 1: INTERACTIVE TASK PLANNER 34

3.5 Risk of a plan with prespecified order of attack

Suppose the planner has selecté@aetListand a particular order of attack,
target, > --- > target,.

We can calculate the optimal paths as follows, assuming that the path to the first target must originate at the blue
base. Le{x;, y;) be the location ofarget.

Define, originating seté+, - - - , Oy,
01 = BlueBase Oir1 =0; U {(xl,yl)}, 1> 1.

Let

veli(xi,y:)

and lety” be the optimal path. HerE, is the threat aftetarget,, - - - , target,_, have been destroyed; afg(x;, v;)
consists of all paths originating if; and ending atz;, ;).

The optimal pathy; to target; starts from the blue base or at a location of a previously destroyed target. Th&risk,
incurred by this plan is the maximum or worst-case risk for any sub-task,

R =max{V(z1,y1; P1), - ,V(@n,yn; Pn)}.

3.6 The ITP procedure and optimal plan

We now describe the ITP procedure. Suppose that the IPB consists of a set of Tangetts, with known locations
and types. Also given is a subdetimaryTargetsthat must be destroyed. Lastly, the locations of the Blue base,
BlueBase, is known; this may be one or more locations from which UAVs may be dispatched.

Step 1Let P; be the threat corresponding to the targitgyets . The planner selects a Wave Threshold of acceptable
plan risk, R. The fast marching algorithm computes the value function

Vi(z,y) =V((z,y);P1) = min p(y; P1),
'\/GFl(x,y)

in whichT'y (z, y) is the set of all paths starting at origity = BlueBaseand ending atx, y); p(v; P1) is the risk
along~ under the threaf;, given by @3).

The value functiori/; is evaluated at the locations of all targetsTargets. Let
WaVQ = {targete Targetsi ‘ ‘/1((1'7 y)tm‘get) S R}

be the subset of targets at whose locationgy)target the value function is less thaR. This means that targets
in Wave can be detroyed with risk less thdh Let PathList be the optimal paths td/ave targets obtained by
steepest descent bf.

3 MODULE 1: INTERACTIVE TASK PLANNER 35

Step 2Let Targets = Targets \ Wave be the targets remaining after thosé/fave are destroyed, and lét, be
the threat corresponding Targets. Let O be the origins consisting of tiélueBasetogether with the locations of
Wave targets. The fast marching algorithm computes the value function

Va(z,y) =V((z,y); Ps) = min p(y; Pa),
’YGFQ(J},y)

in whichT'y(z, y) is the set of all paths starting at origi6ks and ending atz,).
The value functiori; is evaluated at the locations of all targetsTargets,. Let
Wave = {target € Targets | Va((z,y)target) < R}.

After Waveg targets have been destroyed, the targei&/awe can be destroyed with risk less th&n Let PathList
be the optimal paths td/ave targets obtained by steepest descenit,of

Stepk We continue in this way. In thith step, we set

Targets = Targets_; \ Wave_1,

Or = Og_1U{Locations ofWave,_ targets,
Vi(z,y) = min p(y; Pp),
’YGFk(%?J)

Wa.VQ; = {targete Target§_1 ‘ Vk:((xuy)target) S R}7
PathLis, = {optimal paths tdVave. targets,

in which Py is the threat posed byargets,, andI';(x, y) comprises all paths that start in some locatio®jnand
end at(z, y).

Stopping conditioThe process stops at the smallegor which one of two conditions holds:
Waveg_; #0 A Wave =) (27)
PrimaryTargets ¢ U*_,Wave. (28)

Theorem If condition (27) holds, there is no plan that can destroy all primary targets with risk at mdétondition
(28) holds, the plan with

TargetList = UF_,Wave, (29)
PathList = UY_ PathList, (30)
> = Waveg > --- > Wave, (31)

destroys all primary targets with risk at mdst Moreover, this plan is optimal iR is the smallest risk for which
(28) holds.

The top diagram in figur&4 gives a schematic representation of the results of the plan produced by this procedure.
There are four primary targets, indicated by the rightmost, shaded circleSafdegListcontains 12 targets, orga-

nized in three waves. The arrows denote the origin and destination of the minimum risk paths. The targets in the top
row are not in the sub-tasks because they were not reached in the first three waves.

3 MODULE 1: INTERACTIVE TASK PLANNER 36

The final element of the plan is the decompositioTafgetListinto sub-tasks. This can be done automatically or
visually. Observe that the targets and paths form a directed tree. The idea is to construct sub-tasks that form chains.
In the figure seven tasks are formed.

The ITP procedure provides one additional output, calleds#mssitivity tableswhich is used in the refinement of
the procedure, described in secti®n. A sensitivity table entry is defined for each pair of targerget, ¢ Wave
andtarget,; € Wave,; as the increased risk in the pathtésget,, , if target, is not destroyed. This is also the
reduction in risk resulting from the destructiontafget; ;.

3.7 Refinement of the ITP procedure: mixed initiative

The procedure just described is fully automated. The planner can intervene in several ways to improve the plan,
bringing into consideration other factors that are not part of the procedure.

First, at the end of each stdp the ITP window of figure5 displays the valued((z,y)target) for each target.
The planner can study these values together with the target locations, and deaditdogets towave,. These
additions of course will incur a risk larger tha®, so they must represent to the planner ‘targets of opportunity’
whose destruction is worth the extra risk.

Second, the planner maijeletea target fromWave,, perhaps because it does not significantly reduce the risk to
targets inWave,, ;. The risk reduction is known from the sensitivity table. The reason for deletion might be
to conserve blue forces, or to reduce ®gbtaskListso that the plan can be executed in less time. These two
interventions change tHeubtaskLis{29).

Third, the planner may weaken the precendence rela8a)) (vhich requires everyWave target to be destroyed
before anywWave_ ; target is attacked. This will reduce the level of coordination needed in sub-task execution at the
cost of greater risk, quantified by the sensitivity table.

Fourth, the planner may change the grouping of sub-tasks into tasks, based on considerations of team composition.
For example, targets of the same type may be grouped together because they are attacked by similar weapons.

Lastly, the planner may alter one or more pathRathList which gives the way points for every path.

The bottom diagram in figur&4 shows the plan resulting from modifications made by the planner: Three targets
have been deleted froubtaskListthe precedence relation is weakened; and sub-tasks have been regrouped into
four tasks.

3 MODULE 1: INTERACTIVE TASK PLANNER 37

primary
targets

Figure 14: Circles denote all targets. Top diagram: The ITP procedure gendfates\Wave, Wave; the arrows

denote origin and destination of optimal paths; the targets are grouped into seven sub-tasks. Bottom diagram: The
result of modifications by the planner.

4 MODULE 2: CONFIGURATION AND SCHEDULE 38

4 Module 2: Configuration and schedule

Semi- or fully automated team composition and tasking (TCT) is central to increasing the ratio of UAV to human
handlers (HH). Such automation transfers complex lower level decision functions to the automata (system level) and
enables the HH to concentrate on higher level operational decisions (tactical, long-term resource management, etc.).
It also makes possible autonomous task execution by enabling automated re planning during task execution. This
section outlines the principles and an algorithm that automates the process of TCT.

4.1 Task scheduling in the MICA context

In broad terms, scheduling is the process of selecting, organizing, and timing resource usage to carry out all the
activities required to produce some desired outcome at desired times. Tasks have clearly defined Primary Objectives
(PO) and additional Secondary Objectives (SO) that are added to enhance the probability for success of a task plan.
The tasks are made up of Subtasks, and each Subtask is assigned to a single Team. If a task is described as a groupin
of actions leading to a defined outcome, then the task’s objectives are the minimum set of purposeful actions whose
desired timely outcome renders the task’s successfully completed. As such, objectives in the MICA context may
be a search maneuver, a bomb run on a target, a refueling maneuver, a cooperative jamming maneuver (providing
jamming for other platforms), etc.

Task Categories

The difficulties in applying scheduling consistently and broadly when dealing with a set of tasks is in defining
common underlying principles that are sufficiently general to allow repeated application for all tasks in the set. Our
first goal then is to identify categories of tasks based on commonalities in planning and execution requirements. For
each such category, we can then develop a scheduling model that can be applied for any task within the category.

In the MICA context, tasks may be classified in three categories:

e Preplanned Strike on known targets (main objectives are known before mission start);

¢ Intelligence Gathering on known enemy assets or regions (an asset or a region is marked for gathering of
additional information);

¢ Loitering strike or intelligence gathering on time critical targets of opportunity (preemptive response in antic-
ipation of future enemy activity or in an attempt to deny the enemy the use of options).

The focus of our research has been on a SEAD task which fits into the "Preplanned strike” category. It should be
stated that similar formulations can be defined for other categories with little additional effort.

Scheduling in this context may involve the following four steps with iterations:

1. Establishing prosecution partial order chains and inter-chain dependencies; efficient allocation of limited re-
source;

(a) Appropriate weapons selection for each objective (target);

4 MODULE 2: CONFIGURATION AND SCHEDULE 39

(b) Appropriate sensors selection for each objective;

(c) Analysis of attrition and the addition of reserves;

(d) Efficient platforms selection to deliver all above resources (sensor or weapon) to assigned locations for
use in some scheduled action;

2. Timeline generation - Evaluation of all mission timeline for compliance with an overall timetable.

Premises and Underlying Planning Strategy
We state our premises or underlying strategy for adjustable system autonomy regarding the task planning and plan

execution because it shapes our approach and distinguishes our solutions from others’. The following is a summary
of some of the distinguishing elements in our approach to task planning and execution:

1.

Human handlers always have the responsibility for formulation of Commander’s intent in the form of gener-

ating tasks with defined primary objectives and scheduling goals (see more on scheduling goals bellow);

. Human handlers monitor re planning solutions and resolve planning exceptions (planning exceptions are plan-

ning solutions that do not meet all task objectives and/or planning goals);

The system responds to maintain a plan for prosecuting the primary objectives (at all levels of the control
hierarchy). It notifies the human handler when the plan is no longer executable and gives alternative plan

that can prosecute remaining objectives with the remaining assets or it gives the next best plan that requires

additional assets.

4. Re-planning is incremental:

(a) At platform level trajectories are recalculated to overcome delays, a target may be reengaged with a
second weapon, etc;

(b) Atthe team level assignments may be swapped to make up for delays and attrition or the Subtask may
be re planned;

(c) Atthe task level sub-tasks primary objectives may be reshuffled, task may be re planned, or the Com-
mander’s intent (primary objectives and scheduling goals) may be reformulated.

Reconfiguring Costs and Planning Complexity
Since task scheduling involves accomplishing a number of actions that either consume assets or ties them for some

periods of time both, scheduling complexity and re-planning cost vary greatly. Scheduling complexity depends on
such factors as:

1. Precedence constraint or objectives prosecution order—represented in our formulation by chains of partial or-

der sequences that establish not only the proper prosecution sequence for a Subtask but also the dependencies
across subtasks. When these partial order chains indicate a cross sub-task dependency, the dependency be
comes the basis for team coordination requirement. Typically, this will take the form of precedence and timing
requirements that require coordination between teams executing different Subtask plans that would otherwise
proceed without specific tactical awareness of each other. Factors such as delays and timing overlap must be

resolved where inter Subtask dependencies exist.

4 MODULE 2: CONFIGURATION AND SCHEDULE 40

2.

Interference - A sub-task may interfere with the execution of another sub-task even when there are no clear
inter-sub-task dependencies resulting from the partial order chains. There may some tactical disadvantage to
execute a sub-task that triggers heightened enemy alert in a sector where another sub-task relies on surprise
for example (overlap of a limited SEAD and a strike against near by TBMs to be more specific).

. Resources conflict - It may not be possible to use a certain combination of resources during a specific interval

or on the same sub-task.

. Resource blank periods - A resource may be unavailable due to planned maintenance or due to planned use in

another sub-task.

On the other hand, the cost for reconfiguring a platform and the planning complexity is based on the platform’s state:

1.

Note:

4.2

Bare platforms at bases (full capacity available for configuration) - no cost for reconfiguring, standard planning
complexity

. At base, pre-configured for another sub-task with:

(a) partial capacity available for configuration - small cost for reconfiguring, standard planning complexity;

(b) no capacity available for configuration - Moderate cost for reconfiguring, increased planning complexity
(planning must expand to include the other sub-task).

. Pre-configured platforms at position, y,) that are

(a) pre-configured, but not dedicated to an active task or sub-task - High cost for reconfiguring, moderate re
planning complexity;

(b) pre-configured for another active sub-task (resources are dedicated) - High cost for reconfiguring, highest
re planning complexity.

In most cases it is expected that it will be too costly to bring back to base a platform for reconfiguring.

Scheduling model formulation and solutions

At a minimum, the objectives for the scheduling process must be to maximize efficient use of resources while
meeting mission goals. Additional objectives may be a preference for specific assets, minimizing unused weapon
capacity or a deviation from some goal capacity, and minimizing overall time for task completion or deviation from
some goal duration, to name a few.

There are additional constraints to consider such as an inventory of numerous weapon platform types with sig-
nificantly different capabilities (endurance, range, weapon capacity/types, sensor capacity/types, etc.) and various
weapon types consuming different amounts of the platform’s weapon capacity.

Most scheduling problems can be formulated as a Linear Programming model and solved using classical methods.
There is, however, no guarantee that a solution be reached. One way to overcome this problem is to redefine the

4 MODULE 2: CONFIGURATION AND SCHEDULE 41

objectives or the constraints. This approach however, is not particularly suitable for automating the scheduling
process. Instead, reformulation in the form a Goal Programming model enables us to convert most constraints to
either an objective function or into a goal. The problem redefinition leads to a guaranteed solution that strives to
minimize the deviation from the goals while meeting the objectives in the objective function. The addition of weights

in the objective function further refines the model by prioritizing amongst objectives and leads to a better solution.
This approach does not guarantee an optimal or an acceptable solution but it does give better solutions over the LP
formulation by allowing better control through prioritization of the objectives and driving the solution in a desirable
direction. The resulting confidence increase in the algorithm’s solutions makes it suitable for use in automated
scheduling. In cases where a solution requires violations of the goals, the human handler/operator is prompted for
intervention and is expected to redefine the goals or change the list of task objectives.

Basic Assumptions Defining the Scheduling Problem
There are three basic assumptions related to the attempted scheduling process:

1. Resource are in limited supply;
2. tasks are composed of elementary parts called Operations and Delays;
3. Each task requires a certain amount of specified resources for a specific period of time called Process Time;
4. Resources are also made up of elementary parts: Machines, Cells, Transport, Delays.
The resources listed above are typical for the standard ‘job-shop’ scheduling problem. The scheduling objectives in
our context are rephrased as follows.

Scheduling objectives
The scheduling objectives incorporated in our model formulation are to:

e Maximize efficient use of resources;
e Satisfy mission objectives;
e Minimize scheduling costs

1. Positioning resources (transporting etc),
2. Reconfiguration of resources (armament, sensors, and fuel),
3. Delay costs resulting from timing considerations - holding cost additional resources (fuel and control).

Several methods can be used to find solutions to classical scheduling problems. Some of the most popular are
solving for one objective at a time, solving for trade-off curve between objectives, and using weights with the later
approach. In finding the solution to the Goal Programming model we combined objectives by assigning costs to
desired outcomes (sub-task objectives) and to lack of resource utilization.

4 MODULE 2: CONFIGURATION AND SCHEDULE 42

4.3 Team composition

Inventory

Limited resources require some efficient approach to allocation. In the context of the MICA project and other UAV
strike missions it is assumed that any resource combination is likely to be of limited supply: quantity on UAV
platforms of various types having significantly different capabilities (e.g. weapon and range), quantity of various
weapon types, sensor types, and fuel. In the presented scheduling model formulation we limit the scheduling scope
by considering only one limited resource, namely the quantity of three type of UAV weapon platforms and assume
unlimited supply of weapons, fuel, sensors, etc. Let

p1 = humber of smallweapon platforms
po = number of largewveapon platforms
p3 = number of smalcombo platforms

Stated Goal

The primary and most significant goal of the process is to deliver to each of the sub-task’s assigned targets a pre-
determined weapon load. This is expressed as input in the form of a list of weapon type and number. The weapon
association with each sub-task target is maintained externally and will be treated when it comes time to determine
platform assignments. For the first primary goal we have:

¢1 = number of GPS bombs

¢2 = number of Seeker Missiles
¢3 = number of Munitions
¢4 = number of Decoys

Selected Configuration
The solution that satisfies the sub-task constraints is a composition consisting of platform types,

/1 = number of smallweapon platforms
f#> = number of largeweapon platforms
f#s = number of smallcombo platforms

Capacitve — 10 for smallweapon
PaCy® =120 for large weapon

9

and weapon types,

o1, = nhumber of GPS bombs

o2, = number of Seeker Missiles
o3, = nhumber of Munitions

o4, = number of Decoys

fori=1,--- ,n, inwhichn is the number of platforms.

4 MODULE 2: CONFIGURATION AND SCHEDULE 43

4.4 Linear programming formulation

The task of allocating specific UAV platforms to specific targets can be formulated as a Linear Programming problem
with multiple constraints. We first consider the desired outcome or objectives and define the following desired
solution attributes.

The configuration (platform type and weapons) should:

1. Minimize need for additional inventory;
2. Maximize sub-task objective assignments;

3. Minimize unassigned capacity for each platform.

The decision variables are chosen to be:

X1 = 61, the number of smalveapon platforms

Xy = 65, the number of largaveapon platforms

X3 = #3, the number of smaltombo platforms
Xi—jxivs = 0j,7=1,--- 4i=1,-- nk=4,--- ,4n+ 3,

the number of seeker missiles, munitions, decoys for each platform

Constraints:
Available platforms:
elgpzu 1217273

Required weapons:

n

¢1 < Y o1, = GPSbombs
=1
n

¢y < Y o9, = Seeker missiles
-1
n

¢3 < > o3, = Munitions
-1
n

¢2 <) o4, =Decoys
=1

Available capacity: foi = 1,--- ,n

IN
2
.
|
\'}—‘
“.Jk

O'j,

k3

1
0-11' + 50-21' + 0-32' + 0-41' S Q; or

Capremaining = @ — iy — 592 ~ Tis ~ O

4 MODULE 2: CONFIGURATION AND SCHEDULE 44

Nonnegative constraints:
X; >0, i=1,---,4n+3.

The equations:
Unassigned capacity: far=1,---n

Xiva Q;
X4its 2 X oy

Xiite Q;

INIA INIA

Xaiyr oy

IN

1
Xgiva + §X4i+5 + Xgite + Xaiyr oy

Total number of platforms:
X1+ Xo+ X3 <p1+p2+p3

Platform inventory usage:
ngpzv 1217273

Sub-Task objectives assigment:

AV

n—1

Z X4ita o1
i—0

n—1

> Xuivs
i=0

n—1

> Xuiye
i—0

n—1
§ Xyt
i=0

Y

b2

AV

®3

v

®4

4.5 Goal programming formulation
Approach:

1. Use a weighting objective function model,
2. Reformulate constraints into Goals and place large weights on Goals that represent hard constraints (weapon
capacity, available inventory, cross-platform assignments, etc).

The goals:
It is undesirable to:

4 MODULE 2: CONFIGURATION AND SCHEDULE 45

Overachieve capacity for each platfo@apremajning—Goal,

. Underachieve capacity for each platfoMpyemajning—Goal;

. Overachieve the platform inventofy — §3—Goals; — Goals;

1.
2
3. Overachieve the total number of used platfofins- 6, + 3 < Goab—Goak
4
5. Underachieve the number of smaleapon platformg,—Goals

6

. Underachieve sub-task objective assignments ¢,—Goal — Goaly

In summary,
Goal, = o4
Goah — Prtdatd3+ s P11+ ¢2t Pzt s
large_weapongap 20
Goay = p;
Goaly = po
Goals = p3
Goak = ¢
Goal, = ¢
Goak = ¢3
Goah = ¢4

4.6 Implementations in executable code

Synopsis

1) Sample task

2) Processing steps

3) Coupling with previous and following modules

Output and usage—The task plan, or solution of the scheduling process, is in the form of a list of platforms with a
list of ordered assignments and a configuration appropriate for prosecution of all the assignments (weapons, sensors,
and other payload). In the iteration process cost is evaluated for a solution based on threat exposure to platforms,
efficient usage of resources, and on task completion (are all objectives assigned?).

Assembling the partial order sequences
assemble sub-task information cluster
1) Extract sequences

2) Get objective Info from “iad.xml” file
a. Add locations of entities

b. Identify objective type

4 MODULE 2: CONFIGURATION AND SCHEDULE 46

Assessing required arsenal for task prosecution

Do weapon selection

1) Load weapon performance data

2) Input Desired Prosecution Effect

3) Match objective type and desired effect with best weapon performer

Team Composition and taskifgerform scheduling for the sub-tasks (given objective list, partial order of execution,
weapons matching objectives) - Usage of Goal Programming to get platforms and configurations
1) Output team composition and tasking to a text file.

4 MODULE 2: CONFIGURATION AND SCHEDULE 47

9/22/2003

Input: Task Planner
Primary Objectives
Time constraints -
Resource Constraints *
Acceptablerisk Constraints Tagging of Primary
Objectives

Y

Identification of Secondary
Targets

ITP -Interactive Threat
assessment

\ 4
Wave Generation

A\ 4] 1
|
Partial ordering of | : Overlap of threat assessment
Objectives prosecution ! ‘—: and scheduling
| 1
Scheduling:
Sub Tasks formulation tput For each subtask: -
Team Compositions and Tasking Team composition (platforms type and configurations)
Formulation of mission legs 2Dassignmentlist [nx2]
- n objectives assigned to the team
P -ntime constraints attached to objectives (if any)
Ordered list of Objectives prosecution (partial order
includes inter-team coordination requirements)
List of mission "legs" for each platfrom (start and end
points followed by the path)
Scheduling

Ron Tal, UC Berkeley

Figure 15: Data flow for module 2

5 MODULE 3: TASK EXECUTION 48

5 Module 3: Task execution

5.1 Introduction

This section describes the control architecture and its implementation for task execution and teaming. The imple-
mentation is expressed Bhiftand, unless stated otherwise, it will be called the ‘execution environment'.

The execution environment allows the user to specify, execute, and supervise complex operations of multiple ve-
hicles. Examples of such operations are tasks—executed by teams of UCAVs; missions—executed by isolated
UCAVs; team formation and breakup; and vehicle-to-task or vehicle-to-mission re-allocation. This means that each
vehicle may switch between two types of interactions: 1) independent operation during mission execution; and 2)
team operation during task execution.

In this section we describe a specific implementation of the execution environment: it implements the control archi-
tecture, a library of vehicle maneuvers, and one specific task controller. The task controller implements the attack
specifications generated by the ITP and by the configuration and schedule modules.

The execution environment models a complex distributed system, in which information and commands are ex-
changed among multiple vehicles, and the roles, relative positions, and dependencies of those vehicles change during
operation. Therefore, dynamic reconfiguration is one of the key concepts in our execution control concept: we use a
link not as a fixed part of the system but as a datum that we can manipulate.

We model the execution environment in the framework of dynamic networks of hybrid automata (E'NH#&)-

mally, DNHA allow for interacting automata to create and destroy links among themselves, and for the creation and
destruction of automata. A hybrid automaton admits two types of interactions: 1) the differential inclusions, guards,
jump and reset relations may be functions of variables from other automata, 2) automata may exchange events.
The interactions are mediated by means of communication. The model for dynamic interactions includes a descrip-
tion of the mechanisms by which automata intefactVe adopt synchronous composition of hybrid automata, the
underlying model of th&hiftlanguage.

Henceforth, and unless otherwise stated, we us&hikterminology and notation to describe the execution envi-
ronment. The exception consists in our use of ‘messages’ to describe communication among components. There is
no message construct Bhift We model synchronous message passing with @&hét constructs. However, and

for the purpose of clarity, we use messages in our description of the execution environment. In this context messages

%A hybrid automaton consists of control locations or discrete states with edges or transitions between the control locations. The control
locations are the vertices in a graph. A location is labelled with a differential inclusion, and every edge is labelled with a guard, and a jump
and reset relation. Formally, a hybrid automatoiiis= (L, D, F) in which:

e [is a set of control locations.
e D : L — Inclusions in which D(1) is the differential inclusion at locatiah

e E C L x Guard x Jumpx L are the edges—an edge= (I, g,j,m) € E is an edge from locatiohto m with guardg and jump
relationj.

The state of a Hybrid Automaton is a p&éir z) wherel is the control location and € R™ is the continuous state.
HAt the level of software implementation the mechanisms by which software modules interact are called models of computation, or
semantic frameworks.

5 MODULE 3: TASK EXECUTION 49

are typed events. Commands are encoded as messages. For each component there are two types of events: input ar
output eventsif andour).

5.2 An aside onShift

Shiftis a specification language for describing networks of hybrid auton®itdt users define types (classes) with
continuous and discrete behavior as depicted in figéreA simulation starts with an initial set of components that

are instantiations of these types. A component is an input-output hybrid automaton. The world-evolution is derived
from the behavior of these components. A type consists of numerical variables, link variables, a set of discrete states,
and a set of event labels—together, these constitute a description of the data model. The variables are grouped into
input, state, and output variables.

type Vehicle {

i nput (what we feed to it)

out put (what we see on the outside)

state (whats internal)

discrete (discrete nodes of behavior)

export (event | abels seen fromthe outside)
flow (conti nuous evol ution)

transition (discrete evolution)

setup (actions executed at create tine)

The inputs and outputs of different components can be interconnected. Each discrete state has a set of differential
equations and algebraic definitions (flow equations) that govern the continuous evolution of numeric variables. These
equations are based on numeric variables of this type and outputs of other types accessible through link variables.

The transition structure of the hybrid automaton may involve synchronization of pairs or sets of components. The
system alternates between the continuous mode, during which the evolution is governed by the flow equations, and
the discrete mode, when simulation time is stopped and all possible transitions are taken, as determined by guards
and/or by event synchronizations among components. During a discrete step components can be created, intercon-
nected, and destroyed. The continuous mode is implemented by a fixed step Runge-Kutta integration algorithm and
the step size determines the accuracy of the simula8biftallows hybrid automata to interact through dynamically
reconfigurable input/output connections and synchronous composition. The first order predicate cons$hitits of

(e.g. existential and universal quantification) are used to provide compact representations of dynamic synchronous
composition.

Notation

In what follows, and for the purpose of clarity, we define input and output events in the transitions of a component.
Input events originate in a different component, and output events are generated by the component itself. An event
labellede originating from a component calledis denoted by: : e. Another component linked to access the

output variablev of ¢ asv(c).

5 MODULE 3: TASK EXECUTION 50

discrete S1 transition S2

input,
output,
state

a when {g(x» 0} do
{x=r(x)}

X’ :fl(x,u,..)
u=5

flow X' =f,(xu,.) —

setup, u(C)- w or b{C:a} orw =u(C)
synch, i/o

v

Figure 16: Shift — dynamic networks of hybrid automata.

5.3 Architecture

We adopted the following design principles:

e Separation of specification and controller implementation: each controller accepts specifications conforming
to a specification format. There are different controller implementations for the same specification. In this
case, it is up to the user to specify both the specification and the type of controller to execute it;

e Separation of controller implementation from their localization: each controller may reside onboard a vehicle
or on a remote location, and it can be moved from one location to another;

e Layers of control and abstraction: controllers are layered and described within a particular theory for each
layer;

5 MODULE 3: TASK EXECUTION 51

¢ Independence of the cardinality of teams of vehicles: the structure of multi-vehicle controllers is independent
of the number of vehicles controlled;

e Layers of user intervention: modes of user intervention are available at all layers of control for mixed initiative
operation;

e Extensibility: additional layers of control and abstraction can be installed on top of existing ones.

The design uses the following specification concepts:

Maneuver: a prototype of an action/motion description for a single UCAV and the atomic component of all speci-
fication concepts.

Mission: an array of maneuvers to be executed sequentially. Other mission structures are possible, but are not
implemented.

Task: a prototype of an action/motion description for a group of vehicles (team).

To each type of specification concept there corresponds one type of controller. There are two types of controllers: ve-
hicle controllers and team controllers. Vehicle controllers control mission and maneuver execution. Team controllers
control task execution.

The implementation of the control architecture, depicted in figurases these key concepts:

Platform. A ‘mirror’ of the OEP platform and the interface to the OEP. It mirrors the state of the platform on the
OEP and accepts commands for weapons, sensors, and ESM devices from maneuver controllers. It sends commands
to and receives data from the OEP.

Maneuver controller. Supervises the execution of a vehicle maneuver. It sends commandgptattbem and gets

the current status from it. It accepts abort and configuration commands froratitede supervisoand sends status
messages to it. It is created by thehicle supervisoand it deletes itself when done. There is always one active
maneuver controller in the platform.

Vehicle supervisor. Supervises all of the UCAV operations. It receives maneuver specifications through a link to
either thedispatcherduring a mission execution ,or tat@am controllerduring a team task execution, and launches

the corresponding maneuver controller and monitors its execution and the state of the vehicle, and accepts config-
uration commands from an external controller. For example, it is possible to change the link to a team controller.
This means that it is possible to move the vehicle among teams. The vehicle supervisor is the same throughout the
life span of the UCAV. If there is no link to a team controller and no mission to be executegliee supervisor
commands the execution of a default maneuver, typicglp base.

Vehicle dispatcher. Supervises the execution ofgission Basically repeats the following pattern of interactions:
Gets the next maneuver specification fromifission sends it to theehicle supervisofor execution, and waits for
its completion.

UCAV. The UCAV unit. It is composed of platform, thevehicle supervisgrand thedispatcher It interacts with
the OEP through thplatform component, and with external entities, such @saan controllerthrough thevehicle

5 MODULE 3: TASK EXECUTION 52

4 1l Control concepts

Team controller Task

UCA Missi
. 1SSI10ON
Dispatcher
Vehicle supervisor Link
Abort State
Configurations Messages | T m——————
Maneuver controller Vehicle maneuvers
3 —~
OEP Commands | e
viessages 000 | cessssee—— S
Platform OEP commands

Figure 17: Control architecture.

supervisor

Team controller. Supervises the execution of a task. Basically it commands and monitors the execution of vehicle
maneuvers to execute the task specification. It does this by exchanging messagesweitticteesupervisorm the

team: it uses the protocol that governs the interactions betweerethiele supervisoand thedispatcher It also
provides for a definition of a team—as a set of UCAVs under the control of a team controller. The team controller,
in turn, may be composed of several different controllers. The team controller also accepts configuration and task
execution and abort commands. This allows for interactions with higher layers in the architecture, not depicted in
figurel7.

The architecture allows for incremental development. There is a vehicle maneuver library and a task library. The
current implementation includes several vehicle maneuvers and one task.

Next, we describe the controllers and the main components in more detail. We used the inheritance constructs from
Shiftto define a hierarchy of maneuver specifications and of maneuver controllers. There is a base type for each
maneuver specificatiomaneuver controlleandteam controller

5 MODULE 3: TASK EXECUTION 53

5.4 Mixed initiative interactions

Themixed initiative interactions are described next:

e Specify and command the execution of tasks and missions.
¢ Interrupt task or mission execution for task or mission re-planning.

e Change current task and mission configurations. This includes: 1) the addition and/or removal of vehicles
from teams; 2) moving controller locations.

Figure 18 describes how an operator can command execution of manueuvers. The operator commands permit (1)
maneuver selection, including remotely piloted operation (manual control); (2) creation of a link; (3) aborting exe-
cution; and (4) configuration.

Figure 19 describes the architecture of a team controller. Here, too, a human operator (not shown) can take over
command of the team operation by issuing commands that create/delete or configure a team supervisor.

5.5 UCAV type

The UCAVtype describes the UCAV data model. It defines internal links — with respect to the UCAV — and external
links — with respect to team controllers. These are made available as output variables so that other components can
access them through a link to thECAV.

| Output variables |

variable type description
d dispatcher link to platform dispatcher
VS vehiclesupervisor| link to vehicle supervisor
p platform link to OEP platform
tc teamcontroller link to team controller

5.6 Platform type

The platform type basically interfaces the execution environment to the OEP. The interface consists of ‘read-only’
or ‘read-write’ variables and commands. The interactions with the OEP occur at each OEP time step: the OEP stops
execution, the ‘execution environment’ runs andpleformsends commands to the OEP and, finally, the execution
environment commands the OEP to advance another time step.

5 MODULE 3: TASK EXECUTION

| Output variables |

variable type description
X,Y,Z number platform position from the OEP
fuelRate number fuel consumption rate (read-write)
fuelRemaining number quantity of fuel on-board (read-only)
bombsRemaining | number| number of GPS bombs on-board (read-on
0 unknown
1 undamaged
damageStatus number status (read-only) 2 damaged
3 destroyed
speed number platform speed (read-write)
destx, desty, destz| number platform destination (read-write)
txty,tz number target location (read-write)
ex,ey,ez number emitter direction location (read-write)
sensorLocksDetected number counter of sensor locks (read-only)
t number timer (read-write)
| Exported events |
event description to/from
setDestination (out) set destination t¢destx, desty, destz) OEP
setEmitterOn (out) jam location(ex, ey, ez) OEP
setEmitterOff (out) set jammer off OEP
activateWeapon (out) launch weapon to target locatiftx, ty, tz) | OEP
ready (out)
destroyed (out)

| Discrete states

54

ly)

state description
init OEP initialization procedures
operational normal platform operation
engage waits one time step to launch one bomb
inoperational platform destroyed
error OEP error
exit state where the component is deleted
| Transition
from to condition input event| output event action
init operational OEP platform ready ready
operational| operational setEmitterOn jam locationex, ey, ez
operational| operational setEmitterOff stop jamming
operational| operational setDestination| set destination tdestx, desty, dest
operational engage bombsRemaining > 0 activateWeapor reset timer t:=0
engage operational t>0 activateWeapor
operational| inoperational damageStatus=3 destroyed

N

5 MODULE 3: TASK EXECUTION 55

5.7 Maneuver specification

A maneuver controlletakes as an input maneuver specificationThe maneuver specificatiotype is basically a
data model which encodes the parameters required by the controller to execute a maneuver.

5.7.1 Base type

The base type defines a data model shared by all maneuver specifications.

| Output variables |

variable | type description
speed | number platform speed
accuracy| number| way-point tracking accuracy
mintime | number| minimum execution time
maxtime | number| maximum execution time
typ symbol type of maneuver

5.7.2 Types of maneuvers
There are specializations for each type of maneuver specification. The types of maneuvers available in the current
implementation are:

holding — the UCAV flies a holding pattern. In the current implementation the holding pattern is a rectangle. The
parameters of the maneuver are : 1) length and height of the rectangle; 2) maximum duration.

attack_jam — jams and attacks a SAM site with 2 GPS bombs. The attack path presents the minimum radar signature
to a radar co-located with the SAM site. The jammer is activated when the vehicle is within jamming range of the
target. The bombs are released when the target is within weapons range.

goto— go from the current location to a given location.
jam_site — go from the current location to a given location and jam another location.

follow_path — follow a given path with a certain speed profile.

5.7.3 Example: attackjam

Theattack_jam maneuver specificatiomherits the data model from the base maneuver specification and adds the
following outputs.

5 MODULE 3: TASK EXECUTION 56

| Output variables |

variable type description
destx, desty, destz number final destination
ex, ey, ez number | location of emitter to be jammed
tx, ty, tz number target location
weaponsRange| number weapons release distance
weapon symbol type of weapon
jammingRange | number effective jamming radius
target platform platform to be attacked

A mission to attack a target may involve spatial coordination of two or more UAVS. If one UAV reaches its destination
earlier than another, the team controller specification may triggdrdltemaneuver.

5.8 Maneuver controller
5.8.1 Base type

The base maneuver controller type defines the data model shared by all maneuver controllers.

| Output variables |

variable type description
v platform link to platform
VS vehicle supervisor link to vehicle supervisot

| Exported events |

event description to/from

stop maneuver is done (out) VS
e_-nobombs| platform runs out of weapons (out) vs
init_not.ok initialization error (out) VS

| Discrete states |

state description
initialize maneuver initialization procedures$
execution normal execution state
error error state
done successful termination procedures
exit state where the component is deleted
| Transition |
from | to | condition | input event| output event action
all | exit v:destroyed remove self
all | exit vs:abort abort remove self

There are specializations for each type of maneuver controller, one per type of maneuver specification.

5 MODULE 3: TASK EXECUTION 57

5.8.2 Example: attackjam type

Theattack jammaneuver controller type adds discrete states and input messages to the base component, and defines
the discrete and continuous evolution.

| Input messages |
| execute(mspecification)|

| Output messages
| goto(x,y,z) |

| Discrete states |

state description
beginInfil transition state
lowProfilelnfil moves to the point where it starts jamming
jamminglInfil | jams and moves to the point where it releases a GPS bomb
engage waits one time step to release a second bomb
beginEXfil transition state

The controller basically sends commands toglaform Note that the column ‘action’ refers to actions in iaift
environment.

| Transition |
from to condition input event output event action
initialize begininfil true execute(nspecification)| v:goto(x,y,z)
beginlinfil lowProfilelnfil true v:goto(X,y,z)
lowProfilelnfil | jamminglInfil | within jamming range v:setEmitterOn
jamminglnfil engage within weapons range v.activateWeapory
engage beginEXxfil v:activateWeapor
beginEXxfil exit vs:stop remove self

5.9 Vehicle supervisor

Thevehicle supervisosupervises and controls the UCAV. It accepts commands from eitheligpatcheror from
ateam controllewhen the flagacceptis set to 1.

| Output variables |

variable type description
mc maneuvercontroller | link to current maneuver controller
ms vehiclemaneuver | link to current maneuver specificatign
accept number flag to accept abort commands
u UcAav link to the UCAV where it resides
\% platform link to platform

5 MODULE 3: TASK EXECUTION

Exported events

event description to/from
abort abort command (in) mc
destroyed vehicle destroyed (out) u
done maneuver terminated (ouf) u
e_.nobombs run out of bombs (out) u
e_maneuvelinit_fails | initialization failed (out) u

Input messages |

| execute(nspecification)|

Discrete states

58

state description
initialize maneuver initialization procedures
execution normal execution state
idle waiting for commands (transition state)
error error state
| Transition
from to condition input event output event action
initialize idle p(u):ready accept:=0
idle execution tc(u)=nil execute(mspecification) create(maneuverontroller)
idle execution tc(u)/=nil execute(nspecification) create(maneuveasontroller)
execution idle mc:stop done
execution idle mc:enobombs e_.nobombs
execution idle mc:init not.ok e_maneuvelinit_fails
execution idle accept=1 abort
idle execution| d(u)=nil and tc(u)=nil create(maneuveasontroller)
all exit p:destroyed destroyed remove self

5.10 Vehicle dispatcher

5.10.1 Mission specification

Thedispatchersupervises the execution ofaission In the current implementation the data model of a mission is
described by the typmissionwhich consists of an array of maneuver specificationg:= [mspecy, . .., mspecy).

Output variables

variable type description
step number number of maneuver specificatiof
mission | array(mspec) array of maneuver specifications

ns

5 MODULE 3: TASK EXECUTION 59

5.10.2 Dispatcher type

Thedispatchemaintains the state of the execution of thission- the index of the last maneuver executed success-
fully — and when it receives th#oneevent from thesehicle supervisoit increments the index by one and commands
the vehicle supervisoto execute the next maneuver specification. This is only possible whetteptflag is set

to 1.

| Input variables |

variable type description
mp mission mission plan
VS vehicle supervisor link to vehicle supervisor
m maneuver specification specification of current maneuver
accept number flag to accept commands

| Output variables |

variable | type description
c number index of last maneuver executed
n number| number of maneuvers in mission plan

| Out messages |
| execute(nspecification))

| Discrete states |

state description
initialize maneuver initialization procedures
execution normal execution state
idle waiting for commands (transition state)
error error state
| Transition |
from to condition | input event output event action
initialize idle accept=1 c:=0
idle execution| c<mn execute(nspecification)| c:=c+1
execution idle vs:abort
execution idle vs:done
all error vs:enobombs

5.11 Task specification
5.11.1 Concepts

Here, we describe the type of task specification generated by the ITP and the configuration and schedule modules.
First, some definitions.

5 MODULE 3: TASK EXECUTION 60

Leg: a specification for a sequence of two maneuvers with two alternative modes of execution. The goal of the first
mode consists of destroying a target by releasing 2 GPS bombs at the end of a sequence of two concatenated paths
The sequence is designed to minimize risk. The goal of the second mode consists of reaching the end point of the
two paths. The mode of execution of tleg depends on the state of the target. If the target has not been destroyed
then the leg consists offallow_path maneuver followed by attack jam maneuver. The first maneuver consists in
tracking a given path, which is assumed to be safe at the planning stage. The path may be empty. The final point
of this path is the starting point of the second maneuver, which consists of flying a minimum radar signature path
to release weapons at the prescribed target while jamming a radar location. Weapons release takes place when the
target is within a pre-specified range, typically, the weapons’ range. If the target has been destroyed the leg consists
of two consecutivdollow_path maneuvers. The second one replacesati&ck jam maneuver. For example, in

figure 20, the paths corresponding to the two parts (or maneuvers) of the leg consist of two straight lines. The first
one is the safe path and the second one is the attack path.

Task: a set of legs together with a partial order for their execution. The task specification encodes the wave structure
plus the configuration and schedule components from the planner specification. The task is organized as a set of
sub-tasks that are to be executed concurrently with execution dependencies.

Sub-task: a sequence of legs satisfying a total order induced by the task partial order.
Formally, aTask specificatiols a pair:

task = {(SubtaskList,), (TeamList,assign)} where:

e SubtaskList = {subtasky,...,subtask,} is a set of sub-tasks, each of which is an array of legsask; =
{legi,...,legiin}. There is a partial order on the legs composing a task. The legs composing a sub-task
satisfy a total order. However, there is a partial among legs on different sub-tasks.

e TeamlList = {teamy, ..., ,team,}, and{assign : TeamList — SubtaskList} is an assignment (or 1-1
function) of teams to sub-tasks.

5.11.2 Legtype

Theleg type describes the data model for leg specification. It consists basically of output variables.

| Output variables |

variable type description
p_attack | array(array(number)) safe path segment of the leg
aspeed number attack speed
hold maneuver specification specification for holding maneuver
t platform target for attack phase
r set(leg) preceding legs

5 MODULE 3: TASK EXECUTION 61

5.11.3 Subtask type

Figure 21 describes a task specification. It basically consistsut-task specificationand a partial order on the
execution of the constituent legs. The data model sfibtaskis described by the typsubtaskwhich consists
basically of output variables.

| Output variables |

variable type description
p array(leg)| sequence of legs composing the sub-task
steps number number of legs
team set(ucav)| team assigned to execute the sub-task

5.12 Team controller
5.12.1 Base type

The base type just outputs a timer and the next maneuver specification to be sent to a vehicle supervisor, and exports
the event ‘abort’.

5.12.2 Task controller

Thetask controllertype inherits from the typéeam controller It takes as an input &sk specificatiorand creates
onesubtask controllefor eachsub-taskin the specification. It maintains one link to easlib-task controllera list
of the legs executed so far and its own state of execution (normal or fail).

| Input variables |

variable type description
t task task specification
tasklegsdone| set(legs)| legs executed so far (coordination variable)
fail number fail flag (coordination variables)

| Input variables |

variable type description
st set(subtask controller) | links to all sub-task controllers

Thecoordination variables aretask legs doneandfail. Eachsubtask controllereads the first variable to conform
to the execution partial order. In the current implementation, when at least onesoitttiask controllefails, it sets
thefail variable of theask controllerto 1 (fail) and allsub-taskcontroller enter a fail mode where the corresponding
UCAVs are commanded to move to the closest safest point and enter a holding pattern when they arrive there.

5 MODULE 3: TASK EXECUTION 62

5.12.3 Sub-task controller

Thesub-task controlletakes as an input subtask specificatioand controls and coordinates the concurrent opera-
tions of two sets of vehiclesttackers reserve To do this, it maintains the state of execution of each set of vehicles,
the state of execution of the sub-task, and keeps two sets of vehicle supengsaedvsr, for the attackersand

for thereservesets respectively. In the current implementation, thetatkersconsists of just one vehicle, when it

is not empty. The transition structure of theb-task controllehybrid automaton is defined on the states of the two
sets of vehicles and on the state of execution ofstiietask This provides for a high level of abstraction and for a
more compact notation.

The state of each set of vehicles is described by the current leg, the index of the current leg, the constituent vehicles
of the set itself, and the execution state.

State ofattackers:

current_leg: current attack leg.

a step: index of thecurrentattacklegin the sub-task
attackers: set of attackers.

Execution state: (one of the following)

$attack — executingattack jam segment oturrent attack leg.

$path — executingollow_pathsegment oturrent attack leg.

$hold — executingholdingmaneuver waiting for some other leg in ttaskto be executed.
$nil —attackershas not been created yet.

State ofreserve

Currentleg: The current reserve leg is maintained by variahlerent reserveleg.
r_step: The index of thecurrentreservelegin the subtask

reserve: Set of reserve vehicles.

Execution state: (one of the following)

$hold_end — all of the reserve vehicles are executing holding maneuver at the endreft reserveleg.

$hold_path — all of the reserve vehicles are executing holding maneuver at the end of the first part of
rent.reserveleg.

$path — at least of one reserve vehicle is still executinfpllow_path — maneuver in the first part afur-
rentreserveleg. The others are already executing@ding maneuver.

5 MODULE 3: TASK EXECUTION 63

$path_attack — at least of one reserve vehicle is still executinfpliow_path maneuver in the final part of
currentreserveleg. The others are already executing@ding maneuver.

The actions on the transition system consist in one of the following: 1) command maneuver execution to vehicle
supervisors itvsaor/and invsr; 2) transfer vehicles from threserveto theattackersset when the second set becomes
empty; 3) remove a vehicle fronreserveand/orattackerwhen the vehicle is destroyed or it has to leave the team for
some other reason. The satackersis empty when thattackersvehicle is destroyed or runs out of bombs. In the

last case, the corresponding UCAV leaves the set and the team executiudptask

The control logic is briefly described next. Initially, th&ackersset is empty while theeserveset receives the team

of vehicles allocated to the sub-task controller. Execution starts with the first leg siilbteesk Thereservevehicles
execute dollow_pathmaneuver to follow the safe path that composes the first path of this leg. When the end of that
path is reached, one of the reserve vehicles is transferred aitdekersset and the two sets of vehicles start two
concurrent threads of execution until thebtaskerminates successfully or fails. Théackersandreserveexecute

each leg differently, as described before.

Theattackersvehicle leads the execution. It executesshb-task specificationntil successful termination, or until
it is destroyed or runs out of bombs. Theserveset stays behind thattackersin terms of the execution of the
subtask Basically, it advances to the farthest safe point in shbtasklegs executed so far. This points moves
forward as thettackersdestroy targets. Theserveteam just follows the paths defined for each leg.

The user may change the execution logic. For example, wheattdiekersvehicle is destroyed the user may require
the sub-task controlleto enter a fail mode. In this mode, tlsab-task controllethat failed sets théail flag in the
correspondingask controller Then, all thesub-task controllerenter the fail mode. In this mode, theserveteam

is required to hold in place and tlatackersare required to rendezvous with treserveset only after completion

of the risky parts of thesubtask In practice, this means that it will keep advancing until it reaches a safe region.
The current implementation accommodates both the case above described and the case afttaeckdtsyehicle

is destroyed and one of the reserve vehicles is allocated to replace it.

TheShiftencoding of this controller follows. We will skip some of the implementation details for the sake of clarity.

| Input variables |

variable type description
st subtask link to the sub-task specification
tc task controller link to the task controller

The output variables are used@mrdination variables betweenrattackersandreserve

5 MODULE 3: TASK EXECUTION

64

Output variables |

variable type description
reserve set(UCAV) set of reserve vehicles
reservehold set(UCAV) set of reserve vehicles in holding positions
attackers set(UCAV) set of attack vehicles (one)
currentreserveleg leg leg being executed by reserve vehicles
currentattackleg leg leg being executed by attack vehicles
r_step number index of currentreserveleg in thesub-task
astep number index of curreniattackleg in thesub-task
vsa set(supervisors(attackers)) set of vehicle supervisors of attackers
vsr set(supervisors(reserve) set of vehicle supervisors of reserve
attackstage symbol state ofattackersexecution ($attack, $path, $hold)
reservestage symbol state ofreserveexecution ($holcend, $holdpath, $path, $pathttack)
team set(UCAV) team executing this sub-task
| Exported events |
event description to/from
abort abort command (in tc
init_not.ok error event (out) tc

There is basically one staéxecutiorwhere the normal operation of the controller takes place. The other states are
either preparation statemitialize, enrouterendezvousor error or fail states.

| Discrete states |

state description
initialize transition state for initialization procedures
enrouterendezvous vehicles in the first path of the first leg
execution normal execution state
fail failing mode of execution
error error state
success (transition state to exit)
exit state where the component is deleted

There a partition of the transition structure. The majority of the transitions are self-loops for each discrete state, in
particular for theexecutiorstate. The other transitions concern transitions among the discrete states. The self-loops
have guards on the state of execution of each set of vehicles, and have in/out events and infout commands exchangec
with corresponding sets of vehicle supervismsg, vsr

Mathematically, this is equivalent to defining the transition structure on a larger set of discrete states. However, this

style is more convenient for programming since the behavicattatkersandreservecan be specified independently

(with some coupling resulting from precedence relations on attack and reserve legs) and transitions can be easily
added and deleted without additional changes on the remaining code. This style also allows for a more convenient
abstraction of the coordination structure and can be easily extended to more sets of vehicles, for example vehicles in
charge of battle damage assessment.

The transition structure involving transitions among the different discrete states is briefly described next.

5 MODULE 3: TASK EXECUTION

65

| Transition |
from to condition input event output event action
initialize error reserve$} or subtask=[] init_not.ok remove self
initialize enrouterendezvous reserve/4} and subtask=/[] vsr:execute(maneuver)(aff)
enrouterendezvous execution size(reservéhold)=size(reserve)-1 vsr:done(one:p}

execution fail fail(tc)=1
execution fail vsr:destroyed fail(tc):=1
execution success reserve£} and astep = size(p(st)) vsa:done(one:p) remove self

The self-loops concerning tlexecutiondiscrete state are briefly described next.

10.

. When reservsstage=$holdingoath andattackers{} allocate oneeservevehicle toattackersand start attack

phase of theurrenta_leg.

condition | input event | output event| action
1 1

. When reservsstage=$holdingend andattackers-{} is empty and there are no precedences for the next attack

leg allocate oneeservevehicle toattackersand start path phase of that leg.

. Whenattackersfinish executing thdollow_path maneuver ofcurrenta leg command it to execute that-

tack jam maneuver of that leg.

. Whenattackerdfinish executing thattack jam maneuver oturrent a_legcommand it to updateurrent a_leg

to the next leg in thsubtaskand to execute thillow_pathmaneuver of that leg if there are no precedences.

. Whenattackersfinish executing thattack jam maneuver oturrenta_leg command it to execute faolding

maneuver if there are leg precedences.

. When attackstage=$hold finish and leg precedences have been removed opdate a_leg to the next leg

in the subtaskand commanattackersto execute théollow_pathmaneuver of that leg.

. When reservstage=$movingend and one of theeservevehicles has finished the correspondfotjow_path

maneuver andize(reserve_hold/ = size(reserve)) command it to executelzolding maneuver to wait for
the othemeserve vehicles

. When reservstage=$movingend and the lasteservevehicle has finished the correspondifajlow_path

maneuver {ize(reserve_hold/ = size(reserve) — 1) command it to execute lzolding maneuver.

. When reservstage=$holdingend andu_stage > r_stage and there is one_pttack/=[] in the legs between

currentr_leg and currenta leg (it is safe to move forward) then updaterrentr_leg to the next leg in the
subtaskand command theeservevehicles to execute the correspondintiow_path maneuver.

When reservstage=$movingpath andsize(hold_reserve) < size(reserve) — 1 and there is oneeserve
vehicle that has just completed tfalow_path maneuver command it to executdalding maneuver to wait
for the other vehicles.

5 MODULE 3: TASK EXECUTION 66

11. When reservstage=$movingath andsize(hold_reserve) = size(reserve) — 1 and the lasteserveve-
hicle has just completed tHellow_path maneuver command it to executehalding maneuver and update
reservestage=$holdingath.

5.12.4 Properties

1. In the case of perfect information theserveteam always flies a safe path.

2. Theattackersfly a path that minimizes the maximum risk.

5.13 Conclusion

The control architecture and tighiftimplementation allow for additional layers on the top of the existing ones, and
also for the extension of the libraries of maneuver and team controllers. For example, the implementation of the
following control layers on the top of the existing ones is straightforward:

¢ Transfer of vehicles among tasks, and between base and tasks.

e Dynamic team re-allocation.

The structure of the task controller encodes a framework for multi-team coordination and control by defining a
transition structure on variables describing the state of each group of vehicles thus providing for a convenient state
aggregation.

The structure of the task specification allows for a compact representation that is interpreted differently according to
the state of execution and to the type of abstraction utilized. For example, the execution of a leg depends on the type
of vehicles engaged in executing it.

The task controller can be extended to accommodate other types of objective functions, for example, to minimize
the time to get to final target while maintaining the properties described above.

5 MODULE 3: TASK EXECUTION

g [

Link table

* Controllers

* Operators
 Service providers
« Vehicles

Maneuver
library

A

| Vehicle supervisor |

{

| Maneuver controller |

Dot £ e

A 4

r1acy oriir

A A v A 4

Sensor
manager

Weapons Waypoint Health Comms
manager manager manager manager

?

t t t t

OEP Mirror

Figure 18: Individual mission execution.

67

5 MODULE 3: TASK EXECUTION

| Team controller |

]

1 |
\

—

|
[— 1

— Link table

* Controllers
* Operators
L Service providers

‘|: _ « Vehicles
[{ ‘
Vehicl rvisor
| Maneuver | ehicle superviso
library t
L r

— | Maneuver controller |
[[s
riat ourin
y A 4 A 4 A A
o Sensor Weapons Waypoint Health Comms
L manager manager manager manager manager

4
L | OEP Mirror
Y

OEP

\

OEP

Figure 19: Team control.

5 MODULE 3: TASK EXECUTION

Figure 20: Leg example.

69

5 MODULE 3: TASK EXECUTION 70

type task_simulation
{
output

ucavul,u2,u3,u4;
leg legl, leg2, leg3, leg4, leg5, leg6, leg7, leg8,;
subtask subtaskl, subtask2;
task_controller c_taskl;
task t1;
set(ucav) teaml:={}, team2:={ };

discrete
il, 12, i3, i4, normal;

transition
il >12 {} do /I create all legs

{
leg1:= create(leg, p_attack:=[[93517.725, 111320.00],
[150000.00, 158235.2],
[151000.00, 158000.001],
p=medium_saml2);
leg2:= create(leg, p_attack:=[], p:=long_sam5_trk);
teaml:={ul, u2}; // create teams to execute subtasks
team2:={u3, ud};
5

2 -> 13 {} do // creates subtasks and leg dependencies

{
subtask] = create(subtask,

p=[legl, leg2, leg3, leg4, legd],
team:= teaml);
requires(leg3)={legb};
subtask2 = create(subtask,
p=[legb, leg7, leg8], team:=team2);

B}:> 4 {} do // creates task specification
{tl =create(task,s =[subtask1,subtask2]);
iﬁ-> normal {} do /Il creates task controller

{ c_task1 = create(task_controller, t:=tl);

s

}

Figure 21: An example task specification: the task comprises subtasks 1 and 2 to which are assigned teams 1 and 2;
each task consists of several legs.

5 MODULE 3: TASK EXECUTION

Task controllar
Sub-task ool s
Fail stata
|
] Fad *

Sub-task controlier 1 Sub-task controller n
Rasarsae |5 el
Anackans Aol

N L=]

Lt 13 Wil
Curert_r_leg Cuarent_r_ieg
Cument_a_leg Currenm_a_leg

I
.
Attacker Feserve

Figure 22: Task controller.

6 MODULE 4: STATE ESTIMATOR 72

6 Module 4: State estimator

From the viewpoint of the Blue forces, the ‘state-of-the-world’ has two components during task execution: the
state of the Blue forces themselves—which we assume is fully known, and the Red forces. The latter is only
partially known and, since we adopt a Bayesian viewpoint, this knowledge is fully described by the threat probability
distribution. This distribution changes as tasks are executed.

In this section we describe a procedure, cafedt, q4t that updates the threat probability distribution following
the destruction of some targets or the acquisition of sensor measurement.

Recall our assumption about the initial threat distribution in se®idnwhich is repeated here:

The Red force is distributed over areds,--- ,A;. In areaA; there areN;; targets of typet ¢
TargetTypesvhose locations are independently and uniformly distributed. The random number of tar-
getsV;; are all independent with distributiaR; (V).

This restriction implies that the initial threat distribution has the form

k Ny

Phreat(0)(Targety = [[[[pei(type=t, (wi,5:)) Py (V) (32)

t j=1i=1
in which ¢ ranges ovefargetTypesand

|Aj|_17 (x’“yz) € Aj

0, otherwise (33)

The procedur®ostp ot takes two arguments—the initial threat distributiBype5¢(0) and a task list—and calcu-
lates the resulting distribution. We will need to model what it means to execute a task.

We consider two kinds of taskstrike andsearch The former task results in the destruction of some targets with
success probability iy the latter results in sensor observations that reduce the uncertainty in the distribution. As
we will see, a useful feature of the mod8R}-(33) is that the threat distribution following the execution of a task
also has the same form.

Denote the initial distribution by
Pihreat(0) = Pan- (34)

6.1 Threat distribution after strike

There are two cases to consider.

6 MODULE 4: STATE ESTIMATOR 73

Smin =1

When the success probability is very highyin ~ 1, the procedure is straightforward. The strike task is completed
by the destruction of a certain number of targets of each type in each area. So this task is specified by a set of the
form

strike = {(t, A;,n;) | t € TargetTypesj =1,--- ,k}. (35)

The successful completion of task5] reduces the number of targets, so the posterior threat will have the same form
as @4), except that the random variablds; will be reduced:

PoStpreat(Pa,n; Strike) = Py (y_ny+, (36)
in which (N — n)* = {max{N;; — n;,0}}.

If TaskListcontainsm striketasks,
TaskList= {strikey, - - - , strike,, },

the posterior threat is evaluated by successively applying for38)ago

Postrhreat(Pa,v, TaskList = Py (v _p; —mny)+-

The conditionSmin = 1 is achieved either if there is a very high confidence in the success of a strike, or if a strike
is followed by an accurate damage assessment, which removes any uncertainty in the success of a strike.

Smin <1

The taskstrike = {(SAM A, 1)} calls for the destruction of one SAM site in arda If initially there areN SAM
sites inA and the task is successful, which happens with probalsiligy, it will reduce this number t¢N — 1)*.
If the task is unsuccessful, this number will remain So the posterior threat is

PoSthreat(Pa. v, Strike) = P, posg):
in which Pos{) is the random numbét
Pos{N) = (N — 1)*1(success+ N[1 — 1(succes§,
in which successs a{0, 1}-valued random variable, independentof with P(success= 1) = Syin-

More generally, if the strike task is given bg5), the posterior threat evaluates to

Posthreat(Pa,n, Strike) = Py posq) (37)

in which
Pos({N) = (N —n)*1(succesg+ N[1 — 1(succes§. (38)

4In the formula below] (success) = 1 if success = 1, and equals 0, otherwise.

6 MODULE 4: STATE ESTIMATOR 74

If TaskListcontains several strike tasks, the posterior threat is evaluated by successively applying fadfulas (
(38).1°

Equations 85)-(38) summarize the proceduR®Sty,,qt (P4, v, TaskLisy for the situations in whicllaskListconsists
of strike tasks.

6.2 Threat distribution after search

We calculatePostp eat(P4, v, Search) after the completion of a search task.

To simplify the notation we assume that the search is confined to one area in thedigtA;, - -- , A;}. Because
the threats in different areas are independent, the threat distribution will remain the same in all the areas that are not
searched. So we may assume that the list consists of a single area, also denéted by

Suppose now that the arekis divided into two disjoint subarea%; and A, and the search is confined to aéa

We assume that the search is able to distinguish between targets of different types. So the result of the search is a
list of ‘observations’Y” = {Y; | ¢ € TargetType, whereY; is the number of observed targets of typ8ecause the

targets of different types in an area are independent, we may calculate the effect of each obs¢rsapanately.

Thus suppose there is only a single type of target and the result of the search is the number af tabgetved in
areaA,. The observation need not be perfect, i.e., not all targets imay be observed. Rather, we assume that the
probability of detecting a target js;. Therefore if V5 is the (random) number of targetsi3, Y is related taV; by

(") (pa)? (1 = pa)™ ™Y, y <o (29)

P(Y =4 | Ny — —
(y N =mn2) {O, Yy > na.

Equation 89) is our model of the search process. Note that it may serve equally as a model of a sensor observation.

Our prior information is simply?4 y which, becaue we are considering a single area and a single target type, simply
reduces to the probability distributiaR(N = n) of the number of targets id. Let V; be the (random) number of
targets in area,;, i = 1, 2.

The prior marginal distribution aiV; is
P(N; =n;) =Y _ P(N; =n; | N =n)P(N =n), (40)
n=0

in which ")
")) (1 —)" ™, n;<n
P(N; =n; | N = & 41
(Ni =i | n){O, n; > n, (41)
in which o;; = |A;|/| Al is the fraction of the ared that is inA;.

After Y = y targets are observed iy, the threat distribution in ared; is given by P(N; = n; | Y = y), which
we want to calculate.

Note that if the planner believes that the success of the different ta3eskhistare correlated, the distribution Bbst(N)must take this
correlation into account.

6 MODULE 4: STATE ESTIMATOR 75

Example 5.The calculation is easy in the case of perfect detecjigns 1. We have

P(Na=y|Y =y) = 1, and
. P(N=ni1+y)
Yoy P(N =n)

In the general casgy < 1, the posterior distribution oWV, is given by Bayes' rule:
P(Y =Y ‘ NQ = ’I?,Q)P(NQ = TLQ)
P(Y =y)
P(Y =Y ‘ NQ = ’I?,Q)P(NQ = TLQ)

PNy =na |Y =y)

= -) 42
Yoo PY =y | No =m)P(Ny =m) (42)
The terms on the right hand side @i are given by 89), (40), 41).
The calculation ofP(N; = ny | Y = y) is a bit more complicated. We have
P(Ny=m |Y=y) = Y P(Ni=ni|Ny=nyY =y)P(Na=ng|Y =y)
no=0
= ZP(N1:n1|N2:n2)P(N2:n2|Y:y), (43)
no=0
becausegV; andY are conditionally independent givé,. Also,
P(N1 = nl,Ng = 77,2)
(N1 =mn1 | N2 =na) P(N: = na)) (44)
and
P(Ny =n1, N =n3) = Y P(Ni=n1,Ny=ny| N =n)P(N =n)
n=0
Ot110t22 f
] 79y 9 | -
P(Nl :nl,NQ = N9 |N:n) = { zn1+n2=na11a22 e " (45)
0, if ny +ngs #n

The distributionP(N; = ny | Y = y) is obtained by substituting fromd{), (42), (44), (45) into (43).

6.3 Implementation

The procedur®ostpeat(P4, v, task) is implemented in a database, as described in se2tiiThe database stores

the threat distribution, and updates it following acquisition of information. Crucial to the reduction in memory
requirements and computational complexity, is the representa88®)n If there arex areas,r target types, and at
mostv targets in each area of each type, the distributg®) ¢an be stored in an array of siaex 7 x v.

7 MODULE 5: JAVA INTERFACE TO OEP 76

7 Module 5: Java interface to OEP

A full planning cycle involves these steps:

1. The planner creates a set of paths for attack using the ITP;

2. The set of paths and the threat elimination matrix are used by the task assignment module to create a set of
assignments of teams to tasks and a partial ordering of the tasks;

3. The Shift controller set uses the information from the assignment module to execute the plan with the help of
the java RMI services and the java client to the OEP;

4. Feedback data from the OEP is placed in the database, and when the Shift controller concludes execution, this
data is read into the ITP to run another planning iteration using this updated information.

This section provides an explanation of the functionality of the java RMI services and the java client to the OEP.

7.1 Javaclient to the OEP

The java client functions as the ‘glue’ between the OEP and the Shift controllers, and also provides the mechanism
for updated sensor readings from the OEP to be stored in the database using the RMI services. During initialization of
the Shift controllers, one instance of the java client is created for each platform in the scenario. This is accomplished
using the Java Native Interface from the Shift runtime. Each instance of the java client is initialized with the current
state of the platform from the OEP. When the java client is initialized, each client object connects to the database
(through JDBC drivers for MySQL) and to the OEP using the CORBA naming service. It also obtains references
to the RMI services using the naming service. Initial values for variables in each client object are set in the Shift
controller, and then updated from the OEP using the OEP events mechanism. Each client object has a get() and set()
method, which is used by the Shift runtime to maintain a mirror of the OEP state within Shift. In the get() method

of each client are included calls to the RMI services to update the database tables.

In the scenario being run in the OEP, we initialize a wimsly isr that flies in a holding pattern while reading sensor

data into a queue. Each client object subscribes to events for the platform it corresponds to and for. Huslwide

platform. When the wide body platform receives a sensor reading, the sensor data is added to a queue in the client
object. When the queue reaches a predetermined size, the java client invokes the threat distribution RMI service to
read the updated values from the sensor readings into the database. When the queue is empty of new values, the
risk map update service is called to recalculate the risk map. Barring interruptions for database update, execution
continues for a time interval specified in the client object before new values from the OEP are read into the Shift
runtime.

7.2 RMI Services

The java RMI services provide two basic functions: one service is a database interface that enables the java client
to the OEP to add and remove threat information from the threat distribution table. The other service recalculates

7 MODULE 5: JAVA INTERFACE TO OEP 77

the values in each cell of the risk map by reading updated threat information from the database table and writes the
updated values in the risk map back to the database. The RMI services have to be started before starting execution of
the Shift controllers. Appropriate user interfaces are provided for the user to start the RMI services while specifying
the scenario area, grid size and other necessary parameters. The database tables are initialized according to the
values provided for each of the parameters. Typically, the scenario area is divided into B0girid {01) and the

database contains a threat distribution table and a risk map table that contain a value for each cell in the grid.

8 MODULE 6: ROBUST PATH PLANNING 78

8 Module 6: Robust path planning

Modules 1-5, described the previous sections provide an integrated but incomplete approach to the MICA problem.
Modules 6-8, discussed in this and the two subsequent sections, represent theoretical formulations and preliminary
algorithms that we had planned to integrate with the other modules.

Module 6 considers a formulation of Markov Decision Problems, when there is uncertainty about the various tran-
sition probabilities that model the underlying process. Module 7 is concerned with ‘flexible’ team formation, based
on information about force attritions that is obtained as task execution proceeds. Module 8 presents a path planning
algorithm that deals with multiple criteria.

Optimal solutions to Markov Decision Problems (MDPs) may be very sensitive with respect to the state transition
probabilities. In many practical problems, the estimation of these probabilities is far from accurate. Hence, estima-
tion errors are limiting factors in applying MDPs to real-world problems. We consider the problem of minimizing
the worst-case (maximum) expected cost, where the maximum is taken over all possible time-independent choices
of the transition matrices within prescribed convex sets. We derive a robust counterpart to the classical Bellman
recursion, based on approximating the original problem by one where the uncertain transition matrices are allowed
to be time-dependent. Our main result is that a particular choice of the convex sets used to represent uncertainty,
based on likelihood or entropy bounds, leads to both a statistically meaningful representation of uncertainty, and a
complexity of the robust recursion that is similar to that of the classical recursion. Hence, robustness can be added
at practically no extra computing co$t.

8.1 Introduction

Finite-state and finite-action Markov Decision Processes (MDPs) capture several attractive features that are im-
portant in decision-making under uncertainty: they handle risk in sequential decision-making via a state transition
probability matrix, while taking into account the possibility of information gathering and recourse corresponding to
this information during the multi-stage decision process B1, 32, 39.

Module 6 addresses the issue of uncertainty at a higher level: we consider a Markov decision problem in which
the transition matrix itself is uncertain, and seek a robust decision for it. Our work is motivated by the fact that in
most practical problems, the transition matrix has to be estimated from data, which is often a difficult task, see for
example {19, 39, 56, 58]. It turns out that estimation errors may have a huge impact on the solution, which is often
quite sensitive to changes in the transition probabilities. (We will provide an example of this phenomenon.)

A number of authors have addressed the issue of uncertainty in the transition matrix. A Bayesian approach such as
described by 1] requires a perfect knowledge of the whole prior distribution on the transition matrix, making it
difficult to apply in practice. Other authors have considered the transition matrix to lie in a given set, most typically

a polytope: seef7, 53, 60]. Although our approach allows one to describe the uncertainty on the transition matrix

by a polytope, we will argueagainstchoosing such a model for the uncertainty. First, a polytope is often not a
tractable way to address the robustness problem, as it incurs a significant additional computational effort to handle

18Research on module 6 was conducted by L. El Ghaoui and A. Nilim and was also supported in part by Eurocontrol-014692 and NSF-
ECS-9983874.

8 MODULE 6: ROBUST PATH PLANNING 79

uncertainty. As we will show, an exception is when the uncertainty is described by an interval matrix, intersected by
the constraint that probabilities sum to one, asiity [1]. Perhaps more importantly, polytopic models, especially
interval matrices, are very poor representations of statistical uncertainty and lead to very conservative robust policies.
In addition, in p1] the authors proposed relative entropy models and proved the existence of a polynomial time
solution. However, no specific algorithms were proposed.

We propose here an uncertainty model which results in an algorithm thathistatistically accurate and numerically
tractable. We develop a formulation in which the concern for robustness can be handled at virtually no additional
computational cost. This means that the method is directly applicable to those problems already amenable to exact
dynamic programming via Bellman recursions.

This section is organized as follows. The problem is set up in se8tidnin sections8.4, we describe the so-
called likelihood model and some variations. SecBaghiexamines the entropy models, while sect®rdeals with
ellipsoidal and “interval matrix” models. Our results are summarized in se8t®nNe describe numerical results
in the context of aircraft routing in sectid@10

Notation

P > 0or P > 0 refers to the strict or non-strict componentwise inequality for matrices or vectors. For a vector
p > 0, log p refers to the componentwise operation.

8.2 Problem Setup
8.2.1 The Bellman recursion

We consider a finite horizon Markov decision process with finite state and finite action sets. The decision horizon
is divided into a finite number of stag€s= {0,1,2,..., N}, for somel < N < oo. At each stage, the system
occupies a statee X; n = |X| is finite. At each stage and state, a decision maker is allowed to choose an action
a deterministically from a finite set of allowable actions in statdl;. Let A = U;.A; and letm = |.A|. We denote

by P = (P%),c.4 the collection of transition matrices, by = (a;, at+1,...,an—1) the policy starting from time

t € T, byIl, the strategy space at time= 7', by ¢ (i, a) the cost corresponding to state A and actiora € A

at timet € T, and bycy the cost function at the terminal stag¥, We assume that the cost function is finite
everywhere.

For a given state € X’ and actiorz € A, we denote by? the next-state distribution drawn frof¥* corresponding
to state; € X’; thuspf is thei-th row of matrix P*. We denote byP;' the projection of the seP“ onto the set of
pi-variables.

Ournominalproblem is to minimize the expected cost over a finite horizon

N-—1
e . .
min (Z ce(it, ar) + CN(’LN)) ;

t=0

8 MODULE 6: ROBUST PATH PLANNING 80

in which 7 := mg, andIl, := II. When the transition matrices are exactly known, the value function of the system
at statei € X and the stage € T' can be computed via the Bellman recursion,

Vi(i) = min | ci(i,a) +ZlPa<z‘,j>vt+1<j> , iE€X. (46)
]:

Each step of the Bellman recursion has worst-case compléXityn).

8.2.2 Addressing uncertainty in the transition matrices

Now consider the case when for each actiothe corresponding transition matrB is only known to lie in some
given convex and compact subget of 7, where7 is the set ofn x n transition matrices (componentwise non-
negative matrices with rows summing to one). Loosely speaking, we can think of thB“assets of confidence
for the transition matrices.

Two models for transition matrix uncertainty are possible, leading to two possible forms of robust control problems.
In a first model, referred to as thiene-invariantmodel, the transition matrix for any given action is chosen by nature
once and for all, and remain fixed thereafter. This means that the transition matrix depends only on the action taken
by the controller. In a second model, which we refer to adithe-varyingmodel, the transition matrices can vary
arbitrarily with time, within their prescribed bounds. In that case, the transition matrix depends not only on the
controller’s action, but also on time.

Let us define our two problems more formally. For a given poficg 11, we definenature’s policyasP(w) =
(Pg°,...,Py7"), which corresponds to the transition matrices chosen by nature in response to a given control
policy 7. Define the corresponding set of allowable policiestiyr) = P* @ ... ® P*~-1. Finally, define the set

of time-invariant policies by

‘C(ﬂ) = {(Pgoa---,Pﬁfﬁ}l) ETN :]Diai :P;»lj for a; :aj}.

The time-invariant model leads to the problem

N—-1
min e E <; celis, az) + cN(iN)> . (47)
In contrast, the time-varying model leads to a relaxed version of the above:
N—-1
min pHEX E (; cili, ar) + cN(iN)> . (48)

The first model is attractive for statistical reasons, as it is much easier to develop statistically accurate sets of con-
fidence when the underlying process is time-invariant. Unfortunately, the resulting ga@s=éms to be hard to
solve. The second model is attractive as one can solve the corresponding4frusir{g a variant of Bellman

8 MODULE 6: ROBUST PATH PLANNING 81

recursion seen below, but we are left with a difficult task, that of estimating a meaningful set of confidence for the
time-varying matriceg>®.

In this section, we use the first model of uncertainty, in which the transition matrix is fixed. This allows us to describe
uncertainty in a statistically accurate way using likelihood or entropy functions. To solve the corresponding control
problem @7), we use an approximation that is common in robust control, wherein the time-invariant uncertainty
is replaced by a time-varying one. This means that we solve the second prealideas @n approximation (upper
bound) to the first, using uncertainty s@té derived from a time-invariance assumption about the transition matrices.

8.2.3 The robust Bellman recursion

Problem 48) is a two-player stochastic game with non-negative, finite rewards. By standard arguments from stochas-
tic game theory 30, this game can be viewed as a zero sum game. General resultssfrpii] then imply that the
corresponding stochastic game can be solved via the following “robust counterpart” to the Bellman recursion,

Vi) = min max | 5,0) + leo')vtmﬁ LiEX, (49)
j:

in which V,(7) is the worst-case optimal value function in statg staget.. The above result is proved in Appendix
8.16.1

One step of the robust Bellman recursion thus involves the solution of a convex optimization problem. Obviously, the
complexity of the robust Bellman recursion depends solely on the complexity of the projeBfidos eachi € X

anda € A. Moreover, the seP should be an accurate (non-conservative) description of the statistical uncertainty
on the whole collection of transition matrices.

Note that the effect of uncertainty orgavenstrategyr, = (ay, ... ,an) can be evaluated by the following recursion
n
V;?Tt(i) = mag{t Ct(ivat) + Zp(j)‘/t:jfl(j) 9 (&S Xv (50)
peEP,™ -
7]:1

which provides the worst-case value function for a given strategy.

8.2.4 Main result

We address the problem of efficiently computing the value function via the above recursion. Once the uncertainty
model is chosen, the challenge is to solve the “inner problema®), vhich reduces to computing values of the
support function of a given convex dét
T
= ma, , 51

Pu(v) max v’ p (51)
in which the variablep corresponds to a particular row of a specific transition mattiis the set that describes the
uncertainty on this row, andis an appropriately defined vector, containing the elements of the value function.

8 MODULE 6: ROBUST PATH PLANNING 82

We consider various representations of uncertainty. All our models invotlependentlescriptions of the uncer-
tainty on each transition matrix; in other words, we postulate thé a direct product®),. , P¢, in which P*
describes uncertainty on the transition matfik This assumption is not formally needed, but simplifies the task of
forming the projectiong’ required in the robust Bellman recursiott).

Our main uncertainty model is based on a log-likelihood constraint on each transition matrix. This representation en-
ables one to solve for one step the robust dynamic programming recu#Sjan (vorst-case time of) (n log(1/¢))

via a simple bisection algorithm, whengis the size of the state space, argpecifies the accuracy of the worst-case

value function. This brings the total complexity of one step of the Bellman recursiofrto: log(1/¢)), wherem is

the cardinality of the action set. At the same time, our model allows an accurate description of statistical uncertainty
on the transition matrix. Hence, non-conservative robustness is obtained at a moderate ihgtebsg)(with

respect to the classical Bellman recursion. We also describe models based on relative entropy bounds, and obtain
similar results.

We will also consider perhaps more classical ways to describe uncertainty, among which an interval models based
on componentwise intervals of confidence, and ellipsoidal models that are based on quadratic approximations to the
log-likelihood. We will observe that some of these descriptions give rise to similar low complexity results. However,
these “approximate” models, as argued below, are statistically less accurate.

8.3 Robust algorithm summary

The robust Dynamic Programming algorithm is as follows.

1. Initialize the value functiom; to its terminal valueyy.
2. Repeat untit = 0:

(a) For all states and controls:, compute the solution to the inner problem

T
U — Imax Ut,
¢>(t) pepa D Ut

(b) Update the value function by
ve—1(9) = min (17, a) + ¢(ve)) ;

(c) Replace byt — 1 and go to2.

8.4 Likelihood Models

Our first model is based on a likelihood constraint to describe uncertainty on each transition matrix. Our uncertainty
model is derived from a controlled experiment starting from state 1, 2,...,n and the count of the number of
transitions to different states. We denote By the matrix of empirical frequencies of transition with contsoin

8 MODULE 6: ROBUST PATH PLANNING 83

the experiment; denote bff its ith row. We haveF® > (0 and F*1 = 1, wherel denotes the vector of ones. For
simplicity, we assume thdt® > 0 for everya.

To simplify the notation, we will drop the superscripin this section, and refer to a generic transition matrix’as
and to itsi*® row asp;. The same convention applies to the empirical frequency mattiand its rowsf?, as well
as to set* andP?. When the meaning is clear from context, we will further drop the subscript

8.4.1 Model description

The “plug-in” estimateP = F is the solution to the maximum likelihood problem

_ . N p> _
max L(P) ; F(i,j)log P(i,j) : P>0, P1=1
The optimal log-likelihood iShnax = 3_; ; F'(4, j) log F(i, j).

A classical description of uncertainty in a maximume-likelihood setting is via the likelihood regiQ3 {]

PeR™™: P>0, PL=1, » F(i,j)log P(i,j) = B ¢, (52)
2
in which 8 < Bnax is @ chosen number, which represents the designers preferred uncertainty level. In practice, the

designer chose an uncertainty level ghdan be estimated using resampling methods, or a large-sample Gaussian
approximation, so as to ensure that the set above achieves the desired level of confidence (see &fpehdix

The description above is classical in the sense that log likelihood regions are the starting point for developing ellip-
soidal or interval models of confidence, hence are statistically more acctigjtede sectior8.9for further details.

The set §2) tells us how informative the data is. If this set is elongated along a direction, then the likelihood function
does not vary much in that direction, and the the data is not very informative in that direction. This set has some
interesting features. First, it does not result from a (quadratic) approximation; it is a valid description of uncertainty,
even forg values that are far below,,... Second, this set might not be symmetric around the maximum-likelihood
point, reflecting the fact the statistical uncertainty depends on the direction. Finally, by construction, it excludes
matrices that are not transition matrices; the same cannot be said of the more classical ellipsoidal approximations.

In our problem, we only need to work with the uncertainty on eachgguhat is, withprojectionsof the set above.
Due to the separable nature of the maximum-likelihood problem, the projection of tHe2gett6¢ thep; variables
of matrix P can be given explicitly as

PiBi):={peR" : p>0, p'1=1, Y fi(j)logpi(j) = Bi ¢,
j
in which
Bii=B+> Y F(k,j)log F(k,j).

ki j

8 MODULE 6: ROBUST PATH PLANNING 84

8.4.2 The dual problem

We are now ready to attack proble®il under the premise that the transition matrix is only known to lie in some
likelihood region as defined above. The inner problem is to compute

¢ = max plv:p>0, pf1=1, Zf(j)logp(j) >0,
J

in which we have dropped the subscrigh the empirical frequencies vectgy and in the lower bound;. In this
sectiony.x denotes the maximal value of the likelihood function appearing in the set above, whigh.is=

Zj f(7)log f(j). We assume that < [nax, Which, together withf > 0, ensures that this set has non-empty
interior.

The LagrangiarC : R” x R" x R x R — R associated with the inner problem can be written as
Lv,v, M) =pTo+vTp+ p(l = p"1) + A(f logp — B),

in whichv, u, and are the Lagrange multipliers. The Lagrange dual funciiolR" x R x R — R is the maximum
value of the Lagrangian over, i.e., forv € R", u € R, and\ € R,

d(v, 1, A) = sup L(v, v, 1,) = sup(p’ v + v p + u(1 = p"1) + A(f" logp — 3)). (53)
p p

The optimalp* = argsup,, L(v, v, u, A) is readily obtained by soIvin%% = 0, which results in

. Af (i)
p\l)=————r—— -
e
Plugging the value op* in the equation fori(v, i, \) yields, with some simplification, the following dual problem:
Af(5)
p—v(j) = v(j)

¢ := min ,u—(1+ﬁ)/\+/\2f(j)log
J

Ak,

tA>0, v>0, v+uv < ul.

Since this problem is convex, and has a feasible set with non-empty interior, there is no duality gapgthatis,
Moreover, by a monotonicity argument, the optimal dual variabig zero, which reduces the number of variables
to two:

¢ = min h()\,/.l,),
A p
in which
p—(1+ B)A+
N ARG o
h(A, 1) == ¢ A, f(4)log o)) if A>0, 1> vmax = max;v(j), (54)
+oo otherwise.

For future reference, we note thais twice differentiable on its domain, and that its gradient is given by

. A ()
ij(])l()g N
_ —v(j)
Vh(A, p) = 1_@"‘) : (55)

n—v(j)

8 MODULE 6: ROBUST PATH PLANNING 85

8.4.3 A bisection algorithm

From the expression of the gradient obtained above, the optimal valuéoof fixedu, A(r), is given analytically
by

-1
f)
AMp) = —_ , (56)
(k) (ZJ: = v(j)
which further reduces the problem to a one-dimensional problem,

¢ = min @(u),
HZVmax
inwhichvpmax = max; v(j), andg(p) = h(A(p), 1). By construction, the new functian(y:) is convex in its (scalar)
argument, since the functidin defined in B4) is jointly convex in both its arguments (se&)] p.74]). Hence, we
may use bisection to minimize.

To initialize the bisection algorithm, we need upper and lower boyndsnd x on a minimizer of¢p. When
L — Umax, P(1) — vmax @and¢’'(u) — —oo (see Appendix8.16.9. Thus, we may set the lower bound to

H— = Umax-
The upper boung.; must be chosen such thalt(x.,) > 0. We have

(00 = g) + GE 0. .

The second term is zero by construction, andy)/dup > 0 for u > vnax. Hence, we only need a value pffor

which oh NP
— : H)JU
5(/\@),#) —;f(])logm—ﬁ>0- (57)

By convexity of the negative log function, and using the fact tffat = 1, f > 0, we obtain

%(A(M)vﬂ) = ﬁmax - ﬂ + Zj f(.]) log %
> fhax — 9 = log (Zj)" ;(Zgj))

A
Z ﬁmax - 5 + 1Og (H)77
n—v

in whicho = fTv denotes the average ofunderf.
The above, combined with the bound ®(u): A(1) > 1 — vmax, Yields a sufficient condition fors(7) to hold:

— ﬁ_ﬂmax M
v € v
u > HE)F = mix— eﬁfﬁmax : (58)

By construction, the intervdb,,. 1] is guaranteed to contain a global minimizerobver (vyax + 00).

The bisection algorithm goes as follows:

8 MODULE 6: ROBUST PATH PLANNING 86

1. Setu_ = vpmax anduy = pY asin 68). Lete > 0 be a small convergence parameter.
2. Whilepy — p— > e(1 4+ p— + pu—), repeat

() Sety = (g +p-)/2.

(b) Compute the gradient of at 1.

(c) If ¢'(p) > 0, setuy = u; otherwise, seti— = p.
(d) goto2a

Each iteration of the above algorithm has worst-case complexity (@f). The number of iterations grows as
log(1% — vmax)/€), Which is independent of problem size. Hence, the worst-case complexity of the algorithm
is O(n), which is the same order as one evaluation of the objective function. Therefore, the extra cost of adding
robustness under the likelihood uncertainty modéP{$), which means that robustness can be added at practically
no extra cost.

In practice, the function to minimize may be very “flat” near the minimum. This means that the bisection algorithm
above may take a long time to converge to the global minimizer. Since we are only interested in the value of the
minimum (and not of the minimizer), we may modify the stopping criterion to

prp = pi— < e(L+p+p)org'(uy) — ¢'(u-) <e.

This second criterion retains the same complexity as the original bisection algorithm. The second condition in the
criterion implies that¢'((u+ + 1—)/2)| < €, which is an approximate condition for global optimality.

8.5 Maximum a posteriori models

We now consider a variation on the likelihood model, the Maximum a posteriori (MAP) model. The MAP estimation
framework provides a way of incorporating prior information in the estimation process. This is particularly useful
for dealing with sparse training data, for which the maximum likelihood approach may provide inaccurate estimates.
The MAP estimator, denoted y/4”, maximizes the “MAP function’}2]

LMAP (p) = L(p) + log YGprior (p)7

in which L(p) is the log-likelihood function, angi. refers to thea priori density function of the parameter vector
p.

In our casep is a row of the transition matrix, so a prior distribution has support included imttienensional
simplex {p cp>0, pll= 1}. It is customary to choose the prior to be a Dirichlet distributidg, [34], the
density of which is of the form

gprior(p) =K- sz‘aiilv
7

in which the vectora. > 1 is given, andK is a normalizing constant. Choosing = 1 we recover the ‘non-
informative prior’, which is the uniform distribution on thedimensional simplex. In that case, the MAP estima-
tion converges to the Maximum Likelihood estimation. Hence, MAP estimation is a more general framework and
Maximum Likelihood estimation is a specialization of MAP when prior information is not available.

8 MODULE 6: ROBUST PATH PLANNING 87

The resulting MAP estimation problem takes the form

max (f +a—)T logp : pf1=1,p>0.
P

To this problem we can associate a “MAP” region which describes the uncertainty on the estimate, via a lower bound
B on the functionLyiap (p). The inner problem now takes the form

¢:=maxplv i p>0, pli=1, 3 (f(j)+a() - Dlogp(j) = 7,
j

in which v depends on the normalizing constdfitappearing in the prior density function and on the chosen lower
bound on the MAP function;. We observe that this problem has exactly the same form as in the case of likelihood
function, provided we replacg by f + a — 1. Therefore, the same results apply to the MAP case.

8.6 Entropy Models
8.6.1 Model description

Here, we describe the uncertainty on each row of the transition matrix via an entropy constraint. Specifically we
consider problem&1), with the uncertainty on theth row of the transition matri¥’® described via a lower bound
on the entropy function relative to a given distributi@fKullback-Leibler divergence)

UP)=<peR” : p'1=1,p>0, Zp(j)log%ﬁﬁ
j

Hereq > 0 is a given distribution, an@ > 0 is fixed. We can chose the maximum likelihood estimate as the value
of ¢q. Together withy > 0, the condition3 > 0 ensures th&dl has non-empty interior. (As before, we have dropped
the control and row indices andsi).

We now address the inner problesil), with &/ = U() given above. We note that the set above actually equals
the whole probability simplex if? is too large, specifically if > max;(—log ¢;), since the latter quantity is the
maximum of the relative entropy function over the simplex. Thug, i max;(— log¢;), the worst-case value of
pTvfor p € U(B) is equal tovyay.

8.6.2 Dual problem

By standard duality arguments ($ébeing strictly feasible), the inner problem is equivalent to its dual:

min ,u—i—ﬂ)\—i-)\Zq(j)exp (U(ﬁ% —1).
J

A>0,u

8 MODULE 6: ROBUST PATH PLANNING 88

Setting the derivative with respect toto zero, we obtain the optimality condition
. v(j) —
> a(j) exp (% - 1> =1,
J

from which we derive

pu = Alog (Z q(j) exp U&””) —\.

The optimal distribution is 4
. _al)exp =)
>, q(i) exp 42

As before, we reduce the problem to a one-dimensional problem:

p

R o0

in which ¢ is the convex function:

J

$(A) = Alog (Z q(j) exp &”) + BA. (59)

Perhaps not surprisingly, the above function is closely linked to the moment generating function of a random variable
v having the discrete distribution with magsatv;.

8.6.3 A bisection algorithm

As proved in AppendixB.16.3 the convex functior in (59) has the following properties:
VA0, ¢"v+BA< G(N) < vmax + BA, (60)
and
P(A) = Umax + (8 +1og Q(v))A + o(N), (61)
in which

Q)= > q(j) =Prob{v = vma}.

3 :v(J)=vmax

Hence,$(0) = vmax and¢’(0) = 8 + log Q(v). In addition, at infinity the expansion gfis
P(N) = ¢"v+ A+ o(1). (62)
The bisection algorithm can be started with the lower bound= 0. An upper bound can be computed by finding a

solution to the equations(0) = ¢ v + B, which yieldsA | = (vmax — ¢7v)/3. By convexity, a minimizer exists
in the intervall0 A].

8 MODULE 6: ROBUST PATH PLANNING 89

Note that if¢'(0) > 0, then\ = 0 is optimal and the optimal value @f is v,,x. This means that if} is too

high, that is, if3 > — log Q(v), enforcing robustness amounts to disregard any prior information on the probability
distribution p. We have observed i8.6.1a similar phenomenon brought about by too large values, afhich
resulted in a se/ equal to the probability simplex. Here, the limiting valddog Q(v) depends not only on but

also onw, since we are dealing with the optimization problesi)(and not only with its feasible sét.

8.7 Other Specific Models
8.8 Interval matrix model

Theinterval matrixmodel is

U={p :p<p<p p'1=1},
in which py are given componentwise non-negativesectors (whose elements do not necessarily sum to one),
with p, > p_. This model is motivated by statistical estimates of intervals of confidence aothponent®f the
transition matrix. Those intervals can be obtained by resampling methods, or by projecting an ellipsoidal uncertainty
model on each component axis (see sed@@ In what follows, we assume thatis not empty.

Since the inner problem
¢p:=maxvip:p>0, pl1=1, p<p<p
P p

is a linear, feasible program, it is equivalent to its Lagrange dual, which has the form
¢ =min (p—p)’ (ul —v)" +v'p+pu(l -p"1),

in which z* stands for the positive part of vecter The function to be minimized is a convex piecewise linear
function with break pointsiy = 0, v1,...,v,. Since the original problem is feasible, we havep < 1, which
implies that the function above goes to infinity wher- co. Thus, the minimum of the function is attained at one
of the break points; (i = 0, ..., n). The complexity of this enumerative approact©i&?), since each evaluation
costsO(n).

In fact one does not need to enumerate the function at all valyea bisection scheme over the discrete set
{vo, ..., v, } suffices. This scheme will bring the complexity down¢n log n).

8.9 Ellipsoidal models
Ellipsoidal models arise when second-order approximations are made to the log-likelihood function arising in the
likelihood model. Specifically, we work with the following set in lieu &2§:

PB)={PeR™" : P>0, P1=1, Q(P) >}, (63)

in which Q(P) is the second-order approximation to the log-likelihood funcfigaround the maximum-likelihood

estimaterl: . (Pl 5) — Fi.))?
Q(P) ::ﬁmax_§z ’]F(’i,j) J .

Z'hj

8 MODULE 6: ROBUST PATH PLANNING 90

This set is an ellipsoid intersected by the polytope of transition matrices. Again, the projection on the space of
row variables assumes a similar shape, that of an ellipsoid intersected with the probability simplex, specifically

(Y — £ ()2
fi(4)
in which x? := 2(Bmax — 3). We refer to this model as thenstrained ellipsoidal model
In the constrained likelihood case, the inner problem assumes the form
T T (pi(4) —fi(j))2 2
max v'p : p>0, p'1=1, — < K"
P Z fi(d)

According to [56], this problem has worst-case complexity@fn3->). This brings the complexity of one step of the
robust Bellman recursion t0 (n3->m).

In statistics, it is a standard practice to further simplify the description above, by relaxing the inequality constraints
P > 0in the definition of P(3). We thus obtain the (unconstrainesl)ipsoidal model, which leads to

(pi(j) = fi(4))? < 2
fi(7) -

Taking the dual of the above problem, we obtain the closed-form expression

qb::mgx olp pf1=1, Z

o= fTv+ “\/Z [@) — fTo)?,

which hasO(n) complexity. The robust recursion based on the unconstrained ellipsoidal model @(thwig, the
same as that of the classical Bellman recursion.

This economical computation comes at an expense, which is the possible conservatism of the worst-case value
function stemming from our neglect of the non-negativity constraints on the transition matrix. Another potential
problem is the fact that the ellipsoid model is symmetric around the maximume-likelihood point, which might not be
realistic . In the maximume-likelihood model, the non-negativity constraints are implicit in the likelihood bound, and
the model yields potentially non-symmetric (hence more realistic) estimates.

Uncertainty on the reference distribution ¢ in entropy models. We may generalize the relative entropy models
to the case when there is uncertainty on the reference distribgtion

If £ is a set of reference distributiogpswe can consider the inner problei), where the uncertainty sktreplaced
by one of the form

p(j)
q(j)

U={p:p>0, pP1=1, Y p(j)log < 3 for someg € &€
J

8 MODULE 6: ROBUST PATH PLANNING 91
Using the same steps as before, the inner problem reduces to

3 sy 2U)
Al —= A
e iy Al | 3_aliyexp 57 | 0

This problem is very easy & is a box (hyperrectangle) or an ellipsoid parallel to the coordinate axes. For example,
assume thaf assumes the form we encountered in the case of ellipsoidal models, spec#ically, whereP is
given by 63). Then we obtain

) — fTexp)\)2 + B

A bisection algorithm similar to the ones described earlier can be applied to this modified problem.

8.10 Example: Robust Aircraft Routing

We consider the problem of routing an aircraft whose path is obstructed by stochastic obstacles, representing storms.
In practice, the stochastic model must be estimated from past weather data. This makes this particular application a
good illustration of our method.

8.11 The nominal problem

In [48], we introduced an MDP representation of the problem, in which the evolution of the storms is modelled as a
perfectlyknown stationary Markov chain. The term nominal here refers to the fact that the transition matrix of the
weather Markov chain is not subject to uncertainty. The goal is to minimize the expected delay (flight time). The
weather process is a fully observable Markov chain: at each decision stage {Bvaigutes in our example), we

learn the actual state of the weather.

The airspace is represented as a rectangular grid. The state vector comprises the current position of the aircraft on
the grid, as well as the current states of each storm. The action in the MDP corresponds to the choice of nodes to
fly towards, from any given node. There d@r@bstacles, represented by a Markov chain witf a< 2 transition

matrix. The transition matrix for the routing problem is thus of ord&*, whereN is the number of nodes in the

grid.

We solved the MDP via the Bellman recursicte]. Our framework avoids the potential “curse of dimensionality”
inherent in generic Bellman recursions, by considerable pruning of the state-space and action sets. This makes the
method effective for up to a few storms, which corresponds to realistic situations. For more details on the nominal
problem and its implementation, we refer the reader&. [

In the example below, the problem is two-dimensional in the sense that the aircraft evolves at a fixed altitude. In a
coordinate system where each unit is equal fdautical Mile, the aircraft is initially positioned 0, 0) and the
destination point is at360, 0). The velocity of the aircraft is fixed @80 n.mi/hour. The airspace is described by a

8 MODULE 6: ROBUST PATH PLANNING 92

rectangular grid withV = 210 nodes, with edge length @ft n.mi. There is a possibility that a storm might obstruct
the flight path. The storm zone is a rectangular space with the corner poiiat92), (160, —192), (168, 192)
and(168, —192) (figure 23).

Since there is only one potential storm in the area, storm dynamics is describ@dd®/teansition matrixPyeatner-
Together withV = 210 nodes, this results in a state-space of total dimen&26n By limiting the angular changes

in the heading of the aircraft, we can prune out the action space and reduce its cardinality at eacimsteptto

This implies that the transition matrices are very sparse; in fact, they are sparse, affine functions of the transition
matrix Pyeather- Sparsity implies that the nominal Bellman recursion only involetates at each step.

8.12 The robust version

In practice, the transition matriR,..iner IS €Stimated from past weather data, and thus it is subject to estimation
errors.

We assume a likelihood model of uncertainty on this transition matrix. This results in a likelihood model of uncer-
tainty on the state transition matrix, which is as sparse as the nominal transition matrix. Thus, the effective state
pruning that takes place in the nominal model can also take place in the robust counterpart. In our example, we
chose the numerical value
0.9 0.1
Pweather = <)

0.1 0.9

for the maximum-likelihood estimate @,cather-

The likelihood model involves a lower bourition the likelihood function, which is a measure of the uncertainty
level. Its maximum valué’,,. corresponds to the case with no uncertainty, and decreasing valgesoafespond

to higher uncertainty level. T@, we may associate a measure of uncertainty that is perhaps more readable: the
uncertainty leveldenotedU;, is defined as a percentage and its complerientl/;, can be interpreted as a prob-
abilistic confidence level in the context of large samples. The one-to-one correspondéncaraf 5 is precisely
described in Appendi8.16.4

In figure 24, we plotU;, against decreasing values of the lower bound on the log-likelihood fungfipnfe see
thatU;, = 0, which refers to a complete certainty of the data, is attaingtl -at 3,,,..., the maximum value of the
likelihood function. The value di/;, decreases with and reaches the maximum value, which(8%, at3 = —oco
(not drawn in this plot). Point to be noted: the rate of increadd;ofs maximum at3 = (,,., and increases with.

8.13 Comparing robust and nominal strategies

In figure 25, we compare various strategies: we plot the relative delay , which is the relative increase (in percentage)
in flight time with respect to the flight time corresponding to the most direct route (straight line), against the negative
of the lower bound on the likelihood functigh

We compare three strategies. Tdmnservativestrategy is to avoid the storm zone altogether. If we téke 5,4,
the uncertainty set becomes a singletéh, (= 0) and hence we obtain the solution computed via the classical

8 MODULE 6: ROBUST PATH PLANNING 93

Bellman recursion; this is referred to as t@minalstrategy. Theobuststrategy corresponds to solving our robust
MDP with the corresponding value Gf

The plot in figure25 shows how the various strategies fare, as we decrease the bound on the likelihood function
(. For the nominal and the robust strategies, and a given bGume can compute the worst-case delay using the
recursion $0), which provides the worst-case value function.

The conservative strategy incur§ 5% delay with respect to the flight time corresponding to the most direct route.
This strategy is independent of the transition matrix, so it appears as a straight line in the plot. If we know the value
of the transition matrix exactly, then the nominal strategy is extremely efficient and results in a dgl@@/eonly.

As (3 deviates frons,,,..., the uncertainty set gets bigger. In the nominal strategy, the optimal value is very sensitive
in the range of values gf close toj,,..: the delay jumps fron8% to 25% when 3 changes by.71% with respect

to OGmax (the uncertainty levell;, changes frond% to 5%). In comparison, the relative delay jumps by ofifg with

the robust strategy. In both strategies, the slope of the optimal value with respect to the uncertainty is almost infinite
at 8 = (Gae, Which shows the high sensitivity of the value function with respect to the uncertainty.

We observe that the robust solution performs better than the nominal solution as the estimation error increases. The
plot shows an average @)% decrease in delay with respect to the nominal strategy when uncertainty is present.
Further, the nominal strategy very quickly reaches delay values comparable to those obtained with the conservative
strategy, as the uncertainty level increases. In fact, the conservative strategy even outperforms the nominal strategy
at 3 = —1.84, which corresponds t&';, = 69.59%. In this sense, even for moderate uncertainty levels, the nominal
strategy defeats its purpose. In contrast, the robust strategy outperforms the conservative stidt&gsven if the

data are very uncertait/, = 85%).

In summary, when there is no error in the estimation, both nominal and robust algorithms provide a strategy that
producest3.3% less delay than the conservative strategy,. However, with the presence of even a moderate estimation
error, the robust strategy performs much better than the conservative strategy, whereas the nominal MDP strategy
cannot produce a much better result.

Nominal and robust strategies have similar computational requirements. In our example, with a simple Matlab
implementation on a standard PC, the running time for the nominal algorithm was4beconds, and the robust
version took on averagémore seconds to solve.

8.14 Inaccuracy of uncertainty level

The previous comparison assumes that, in the robust case, we are able to estimate exactly the precise value of the
uncertainty levelU;, (or the bound on the likelihood functigs). In practice, this parameter also has to be estimated.
Hence the question: how sensitive is the robust approach with respect to inaccuracies in the uncertaiity level

To answer this question in our particular example, we assume that algfiessthe uncertainty level is available,
and examined how the corresponding robust solution would behave if it was subject to uncertainty with level above
or below the guess.

In figure 26, we compare various strategies. In each strategy, we guess a desired level of adéfiyacythe data
and calculate a corresponding likelihood bouttd We choose the optimal action using our robust MDP algorithm

8 MODULE 6: ROBUST PATH PLANNING 94

applied with this bound. Keeping the resulting policy fixed, we then compute the relative delay with the various
values ofg. In figure 26, we plot the relative delays againsys for the strategies where the uncertainty levels were
guessed as5% and55%.

Not surprisingly, the relative delay of a strategy attains its minimum value Wwhé&h,) is accurately predicted. For
values of3 above or below its guessed value, the delay increases. We note that it is only for very small uncertainty
levels (within .995% of Bn.x) that the nominal strategy performs better than the robust strategy with imperfect
prediction of 3 (Uy).

We defineR;, asthe range of the actudl, in percentage terms where the robust strategy (with imperfect prediction
of Uy) performs worse than nominal strategy. In fig@i we showR;;, against the guessed valug). The plot
clearly shows thaR;;, remains less that’% with varying predicted/?.

Our example shows that if we predict the uncertainty level inaccurately in order to obtain a robust strategy, the
nominal strategy will outperform the robust strategy only if the actual uncertainty18ved less than%. For any

higher value of the uncertainty level, the robust strategies outperform the nominal strategy, by an avésége of
Thus, even if the uncertainty level is not accurately predicted, the robust solution outperforms the nominal solution
significantly.

8.15 Concluding remarks

We have considered uncertainty models on the transition matrix that are statistically accurate and give rise to a very
moderate increase in computational cost. All the models, (except the interval matrix model), considered here give
rise to inner problems with worst-case complexity less thén). With these models, the total cost of one step of

the robust Bellman recursion is thGgmn) (m is the number of actions). This has the same same complexity as the
classical recursion, which has complexity@fmn). In the interval matrix model, the the worst-case complexity is
O(mnlogn) .

From the point of view of statistical accuracy, the likelihood or entropy models are certainly preferable to the ellip-
soid or interval models: these models take into account sign constraints, possibly asymmetric uncertainty around the
maximume-likelihood or minimum relative entropy point, in contrast to the ellipsoidal and box uncertainty models
that are possibly crude approximations to the above models.

We have shown in a practical path planning example the benefits of using a robust strategy instead of the classical
optimal strategy; even if the uncertainty level is only crudely guessed, the robust strategy yields a much better
expected flight delay.

Acknowledgments

The authors would like to thank Antar Bandyopadhyay, Giuseppe Calafiore, Ashwin Ganesan, Jianghai Hu, Mikael
Johansson, Rupak Majumdar, Andrew Ng, Stuart Russell, Shankar Sastry, and Pravin Varaiya for interesting discus-
sions and comments. The authors are specially grateful to Dimitri Bertsimas for pointing out an important mistake
in the earlier version of this work.

8 MODULE 6: ROBUST PATH PLANNING 95

8.16 Appendix
8.16.1 Proof of the robust Bellman recursion

In this section, we prove that the stochastic gad® ¢an be solved using the robust Bellman recursis).(Our
proof is based on transforming the original problem into a term-based zero-sum game, and applying a result by
Nowak [57] that applies to such games.

We begin by augmenting the state spacevith states of the fornti, a), wherei € X anda € A. The augmented
state-space is thu¥?'¢ .= X' [J(X x A). We now define a new two-player game on this augmented state-space,
where decisions are taken not only attimeec 7' = {0,1,..., N}, but also at intermediate times- 1/2,t € T.

In the first step, fromt to ¢ + 1/2, if the controller action isy;, states of the form make a transition to states of

the form (7, a;) with probability one, and all other states stay the same with probability one. Here, the opponent is
idle. The cost incurred by this step is the cost of the original problgefa,a;), if we start from state, and zero
otherwise.

In the second step, from+ 1/2 to ¢t + 1, the controller stands idle while the opponent acts as follows. The states
of the form (4, a) make a transition to states of the fognwith probabilities given by the vectqs?, in which p{ is
chosen freely by the opponent in the &% all the other states stay the same with probability one. There is no cost
incurred at this stage.

Clearly, starting at time in statei, and with a controller action;, we end up in the statg at time (¢ + 1) with
probability P (i, j). Since incurred costs are the same, our new game is equivalent to the original game. In addition,
the new game is a term-based zero-sum game, since the controller and the opponent act alternatively, in independent
fashion at each time step.

Nowak’s result provides a Bellman-type recursion to solve the problem of minimizing the worst-case (maximum)
expected cost of a term-based zero-sum game, when both players follow randomized policies that are restricted
to given state-dependent convex subsets of the probability simplex. In our new game, the opponent’s choice of a
vectorp within P at the second step, can be interpreted as a choice of a randomized policy over the convex, state-
dependent seB((i,a)) := P{. (Here, the deterministic actions of the opponent correspond to the vertices of the
probability simplex ofR™.) Hence, the results due to Nowai] apply.

In the case when one player (say, the first) acts deterministically, with state-independent, finite actothset
recursion for the optimal value functidn in states can be written as

Vi(s) = min max E La,b) + Y P%(s, 8\ (s)) |, 64
() = min max B, ((a,b) Z (5.8)Vir1 () (64)
in which the notatioru, b refers to actions of the minimizing and maximizing player respectivety, is the corre-

sponding transition matrix; is the cost functionb refers to a particular randomized action that is freely chosen by

the opponent within the state-dependent convex compa8t(sgtand g, is the corresponding expectation operator.

Let us detail how applying the above recursion to our game yields our result.

8 MODULE 6: ROBUST PATH PLANNING 96

Denote byV,(s) the value function of the game at timen states € A"¢. We first update this value function
from timet + 1 to ¢t + 1/2. The controller is idle, but the opponent is allowed to chose a randomized policy from
a state-dependent convex-compact set. If the statg dg, this set isB((,a)) = P?, and the value function is
updated as

Viy () = max (Zpumﬂm) : (65)
in which we make use of the fact that incurred costs are zero in this step. To update the value functio# frgen
to t, we use the fact that the opponent isidle. Fer 1, ..., n, the value function is updated as

Vi) = min (cli,a) +Viy1 ((i,a)) (66)

Combining 66) and 65) ends our proof.

8.16.2 Properties of function¢ of section8.4.3
Here, we prove two properties of the functigrinvolved in the bisection algorithm of secti@4.3 For simplicity
of notation, we assume that there is an unique indechieving the maximum iny,,y, that is,v(i*) = vyax.

We first show that)(i1) — vmax @S — vmax. We have

Ap) = = (i)

i) + o(p — v(7%)).

We then express(u) as

d(p) = p— A(p) (1 + B = Bumax +log A1) — Y _ f;log(u — vj))
i
— M) f (i) log(p — v(i")).

The second term (first line) vanishes;as— vy, sinceA(p) — 0 then. In view of the expression &f(.) above,
the last term (second line) behaveg as- v(i*)) log(x — v(i*)), which also vanishes.

Next we prove that () — —oo asp — vmax. We obtain easily

A ol

= § — 1 whenp — v(i*).

" (Zjui(io)y "

8 MODULE 6: ROBUST PATH PLANNING 97

We then have

8h f()
A Zlog J) -
_ loe M) log MW F()
Og z*) +]§; og (j) -
=log(1l+o(1)) + (n — 1) log A(u) + Z log -3

J#
— —oo asp — v(i*).

Also, by definition ofA\(x), we haveoh/0u(A(i), 1) = 0. The proof is achieved with

(1) = g—Z(A(u),u) + %(A(u),u)%(:)_

8.16.3 Properties of functiong of section8.6.3

In this section, we prove that the functigndefined in 69) obeys properties60), (61) and ©2).

First, we prove §1). If v(j) = vmax fOr everyj, the result holds, witli) (v) = Q(vmaxl) = 1. Assume now that
there existj such that(j) < vmax. We have

$(A)

in whicht = vpax

= Mog(oA ST a()eXp(LAvmax)) + BA

= Umax + 06X+ Alog (>oodi+ D>) eXP(W))
7:0(j)=vmax J:0(j) <Umax

= VUmax + BA + Aog (Q + O(e™¥/Y))

= Umax T (ﬁ + log Q))‘ + O()‘e_t/A)u

— vs > 0, in which vy is the largest(j) < vmax. This proves §1).

From the expression af given in the second line above, we immediately obtain the upper boug@)in (

The expansion o at infinity provides

o) = o+ aog (£, 0000+ 7+ o))
= q¢'v+ BA+0(1),

which proves 62). The lower bound inq0) is a direct consequence of the concavity oflisiefunction.

8 MODULE 6: ROBUST PATH PLANNING 98

8.16.4 Calculation ofs for a Desired Confidence Level

In this section, we describe the one-to-one correspondence between a lower bound on the likelihood function, as used
in section8.4, with a desired level of confidendgé — Uy,) on the transition matrix estimates. This correspondence
is valid for asymptotically large samples only but can serve as a guideline to choose

First, we define a vecta, = [P(i,1),..., P(i,n—1)]T,Vi=1,...,nandf = [q1,. .., ¢,]" € R™™ 1), in which
P is the transition matrix that we want to estimate. Heréi, j) = 6;; = 0((n — 1)% + j) V1 <i <n,1 <
j < (n—1). Provided some regularity conditions hold], it is possible to make Laplace approximation of the
Likelihood function and we can make the follqwing asymptotic statement about the distributioprefcisely, that
¢ is normally distributed with the mean given By := F(i,j), 1 <i <n,1 < j < (n— 1) and covariance matrix
1(9) (Fisher Information matrix) given by
82
10)p; = Eg | ————=-1(0 =1,... -1 67
O = B0 (= 531®) ¥4 =1oceosnlo - 1), 7)

in whichl(.) = log(L(.)) is the log-likelihood function.

We can approximaté(#) with the observed information matrix, which is meaningful in the neighborhoaﬁd ‘©he
equation of the observed information matrix is given by

82

I5(0)pq = —mlw) Vpg=1,...,n(n—1), (68)

in which %l(@) can be shown to be
52 —%, if p, ¢ correspond to the elements in a same rowiandp = ¢,
1(0)=<¢ —=——, i i i 69
96,06, 9) Foom)’ if p, ¢ correspond to the elements in a same rowiandp # q, (69)

0, if p andq correspond to the elements in different rowdin

This is true for large number of samples]. We further definef := 1,(#). Then the parametgt is chosen to be
the smallest such that, under the probability distributho®, ()~!), the set,

& =1{0:1(0) = 5}, (70)

in which[(6) is the quadratic approximation i) aroundd = 6, that is,

I(6) = e — 50— O H(O) (71)

has the probability larger than a threshéld— U}), where (say)/;, = 15% in order to obtain th&5% confidence
level.

It turns out that, we can solve for suclpaxplicitly,

(1-Ur)= in(nfl) (2(Bmaz — B)), (72)

8 MODULE 6: ROBUST PATH PLANNING 99

in which F) - (.) is the cumulativey? distribution with the degrees of freedamtn — 1), which can be approxi-

n(n—1

mated by the following equatiors[]

V2 2
B) @Ones = 5) = &(2) - o — (22 = 1)p(2) =~ Uy, (73)
. . —B)—n(n— _1, z _1 .
in which, » — 2(ﬁmr\72nﬂ(zhl() D #(z) = e “and®(z) = [* e 2"dp is the standard normal

cumulative density function.

8 MODULE 6: ROBUST PATH PLANNING 100

200
150
100 -

50 -

Nautical Miles

>

Origin Destination

Y

50

-100 -

Stochastic Obstacle
-150

-200 L L L - L L 1 1]
-50 0 50 100 150 200 250 300 350 400

Nautical Miles

Figure 23: Aircraft Path Planning Scenario.

920

80

701

50

uL

40t

30

20

0.6 0.8 1 12 14 16 18 2 22 2.4 2.6
-8

Figure 24:— 3 (negative lower bound on the log-likelihood function) &g (Uncertainty Level (irf%) of the Tran-
sition Matrices).

8 MODULE 6: ROBUST PATH PLANNING 101

Nominal Strageg‘y

60 - 1

50 - - 4

Relative Delay
B
o
T

w
=)
T

20+

10r

UL=0% UL=80% |
0.5 1 15 2 25

=
=
11
a
o
B

Figure 25: Optimal value vs. uncertainty level (negative lower bound on the log-likelihood function), for both the
classical Bellman recursion and its robust counterpart.

T
Nominal SlLalggy

o
=]
T
\

Relative Delay (%)
IS
S
T

w
S
T

20

Figure 26: Optimal value vs. uncertainty level (negative lower bound on the log-likelihood function), for the classical
Bellman recursion and its robust counterpart (with exact and inexact predictions of the uncertainty;level
15%,55%).

8 MODULE 6: ROBUST PATH PLANNING 102

0 I I I I I
0 10 20 30 40 50 60

Predicted Uncertainty Level, ULO

Figure 27: Predicted uncertainty levé} vs. Ry, , which is the range of the actual uncertainty le/glover which
the nominal strategy performs better than a robust strategy computed with the imperfect prédiction

9 MODULE 7: FLEXIBLE TEAM FORMATION 103

9 Module 7: Flexible team formation

We discuss a strategic planning problem of allocating resources to groups of tasks organized in successive stages.
Each stage is characterized by a set of survival rates whose value is imprecisely known. The goal is to allocate the
resources to the tasks (i.e. to form ‘teams’) by dynamically re-organizing the teams at each stage, while minimizing a
cost objective over the whole stage horizon. A modelling framework is proposed, based on linear programming with
adjustable variables. The resulting ‘uncertain linear program’ is subsequently solved using the sampled scenarios
randomized techniqué’

9.1 Problem Statement

We start by describing the basic model. Consider Fi@d&eand suppose that a total amounbf a single type of

resource is available at an initial stage. These resources should be committed to a series of tasks, which are organized
in successive stages,= 1,..., N. For instance, at the initial stage, a teafl) = [z1(1)--- 2,,(1)]" is formed,
wherez;(1) denotes the amount of resource allocated foritttetask in the first stag€ In general, we denote by

z(s) = [z1(s) -~z (s)]T the composition of the team that is allocated for il stage, and we assume that each

stage is composed of a fixed numbernf tasks.

O —0— @

LNl @

>
>

initial stage stage 1 stage 2 stage N
Figure 28: Multi-stage resource allocation model.

The composition of the team(s + 1) (i.e. the team that should go to stage 1) is decided just after the teants)

has engaged and completed thth stage. In our basic model, when a team engages a stage, it incurs some losses,
which are described by a matriR(s) = diag (r(s)) of survival ratesr(s) = [r1(s)---r,(s)]’. If we denote by

x(s4) the composition of the team(s) just after it completed the engagement with stagéen we have

z(sy) = R(s)x(s).

Based on the outcome of stageat ‘time’ s, we have the opportunity of re-adjusting the composition of team, i.e.
we can decide to re-allocate resources from one task to another, before attacking-sthgdhis means that the

The research reported here was conducted by G. Calafiore, L. El Ghaoui and A. Nilim.
8The “amount” of resource may be constrained to be an integer, as discussed later.

9 MODULE 7: FLEXIBLE TEAM FORMATION 104

composition of the team attacking stage- 1 is given by
z(s+1) = R(s)z(s) + u(s), (74)

in whichu(s) = [u1(s) - - - u(s)]T is the decision vector of resource re-allocation at staged), ..., N — 1, and
we setz(0) = 0. Notice thatu;(s) > 0 means that more resources are committed foi-tietask, whileu;(s) < 0
means that the resources are withdrawn from this task.

Our goal is to determine the allocationés), s = 0, ..., N — 1, such that a certain cost objective is minimized over
the entire stages horizon, and suitable constraints are satisfied. The problem constraints and objective are specified
in the next section.

9.2 Constraints and optimization objective

Assume first that the stage survival rat¢s), s = 1,..., N are exactly known in advance, and consider the dynam-
ics of the team compositiory4),

z(s+1) = R(s)z(s) + u(s), =z(0)=0 (75)
whereu(s) € R™, s =0,...,N — 1 are the decision variables. We must impose the following physical constraints
on the problem.

1. Total resources constraint.

17u(0) < C, (76)
in which1 denotes a vector of ones. The initial assignment should not exceed the total availability of resources,
C.
2. Conservation constraints.
1Tu(s) =0, s=1,...,N—1. (77)

At each stage (except for the initial ore= 0) the net sum of the exchanged resources must be zero.
3. Team composition constraints.
zr(s) <xz(s) <zy(s), s=1,...,N. (78)

At each stage, the resources assigned to each task should remain between a-priori fixed lowefs)ntfior
instancez,(s) = 0), and upper limitc7(s). Notice that {8) are linear constraints on the decision variable

U = [u(0),...,uT (N —1)]T, that can be explicitly expressed in the form
zr(s) < @(s)U < zy(s), s=1,...,N, (79)
in which we define, fos =1,..., N,
B(s) = |:R(s—1,1) RG-12) . Rls=Ls=1) [O = Om,m], (80)
RG=L) = R(s—1)R(s—2)---R(i), fori=1,...,s—1, (81)

(notice that, when formin@(s)U, the left part of®(s) multiplies the decision variableg0), ..., u(s — 1),
while the zero part of(s) multipliesu(s), ..., u(N — 1)).

9 MODULE 7: FLEXIBLE TEAM FORMATION 105

Optimization objective. When transferring resources from one task to another we incur a ‘transition cost,’ that
we assume to be proportional to the amount of the transferred resources, regardless of the sign. The optimization
objective is to minimize the total transition cost accumulated over the stages horizon.

We assume thdl/(s) € R™™ >0,s=0,..., N — 1, are given diagonal matrices that weight the transition costs
for the different tasks at the different stages, and therefore the total cost is expressed as

N-1
T =Y W(s)u(s)lh = WU, (82)
s=0

in which W = diag (W (0),..., W (N — 1)), and the above norm is the usdalvector norm,||z|[; = 3_ |z1].

Notice that minimizing/ subject to certain constraints is equivalent to minimizing a slack varigblgbject to the

original constraints, plus the constraiht< ~ (epigraphic form). In turn, this latter constraint can be expressed as a
set of linear inequalities in the decision variabigintroducing a vector € RV™ of additional slack variables:

—2<WU < z

Sz <. (83)

Remark 1. In the approach above, transitions are penalized irrespective of the source-destination task pair, meaning
that the cost is sensitive to the net resource reallocation toitasks), but does not take into account from which

of the other tasks these resources are drawn. It could instead be of interest to attribute different transition costs to
different source-destination pairs. This could be taken into account as follows. Dengj¢s)yhe resource amount
(positive or negative) to be transferred from tgdo taski, i # j = 1,...,m, before engaging stage Then, we

write u;(s) = >_,; dij(s), or in vector notation

WUl <v o {

u(s) = D(s)1, (84)

inwhich[D(s)];; = d;;(s) is a skew-symmetric matrix. Equatiod4) represents a breakdown of the total transferred
amountsu(s) into the individual components;;(s). We can therefore add the variablgs(s) to the problem, and
enforce the equality constraint84), for s = 1,..., N — 1. Subsequently, thé;;(s) variables are inserted in the
cost, by substituting to each term proportionaldg(s)| in (82), a term proportional to a positive linear combination
of |d;1(s)], ..., |dim(s)|.

From the discussion in this section, we conclude that the basic resource allocation problem is expressed as a standard
linear program in the variabldg, £, v which can be solved with great efficiency:

IUnZin ~ subject to:(76), (77), (79), (83). (85)

Remark 2 (Integer solutions). Although in some applications it can be reasonable to allocate fractional resources

to tasks (consider for instance money as a resource, and different assets as the tasks), in some other applications
the resources to be allocated must be integer multiples of a some type of unit. This is for instance the case when
the resources are mobile agents such as robots, UAVs, etc. In this situation, the correct problem formulation would
be in the form of an integer linear program. However, due to computational difficulties in dealing with integer
programs, in this report we do not use this formulation. Instead, when we know in advance that the resulting optimal
solution will need to be approximated by an integer one, we introduce an ‘immunization’ technique that guarantees
the satisfaction of constraints against all possible approximation errors. This technique is discussed i® ection

9 MODULE 7: FLEXIBLE TEAM FORMATION 106

9.3 Multiple resources allocation

We next briefly describe how the basic allocation model previously discussed can be extended to deal with multiple
types of resources. We hence assume hereafter that atsstagé we haven different types of resources that
should be allocated to the tasks at stage = 1, and subsequently re-organized dynamically. We denot€’hy

k = 1,...,n the total availability of thet-th resource at the initial stage, and we 1€t) € R™" be the vector
describing the composition of the team that is sent to stage= 1,..., N. In particular,z(s) is now divided into
m blocks)
z1(s)
x(s) = : ,
L T (8)
in which each block;(s) € R™, i = 1,...,m s of the form

.TZ(S) =)

L 2" (s)

in which x(k)(s) denotes the amount of resource of typthat is allocated to théth task of stage. The decision

7
vector of resource re-allocations is partitioned similarly as

uy(s)

U ()

where

u;i(s) = : :
u(s)

andugk)(s) denotes the amount of resource of typhat we decide (upon completion of stagdo add or subtract
to thei-th task. With this notation, the team dynamics retain the strucite (

z(s+1) = R(s)z(s) + u(s)

where the survival rate matrik(s) € R™"™" is block-partitioned conformably to(s), u(s). The total resources
constraint {6) now reads
(1% @ " (n, k)u(0) < Cp, k=1,....n,

in which eT(n, k) denotes a vector iR™ with all zeros, except for thie-th component, which is set to one. Similarly,
the conservation constraintgq) are now expressed as

1T @ eT(n,k))u(s) =0, k=1,...,n; s=1,...,N—1.

Basically, all the rest of the problem model and solution goes through in the same way as described for the basic
problem with a single resource.

9 MODULE 7: FLEXIBLE TEAM FORMATION 107

9.4 Dealing with integer approximations

As discussed in Remark in some applications we need to deal with integer quantities in pro®&jm (n this
situation, both the team compositiatis) and the re-allocations(s) must be integers. This, however, is in contrast
with the dynamic model75), since R(s) is real (its elements are in fact probabilities of survival), and therefore
x(s + 1) will result to be real, even if(s),u(s) are integer vectors. One idea is to take into account into the
dynamic model the presence of integer approximation errors. In particular, we assume that a firstserisor
introduced whenR(s)z(s) is replaced by its integer approximation, and a second eftoris due to the integer
approximation of(s). The dynamic model now becomes

z(s +1) = R(s)x(s) +C(s) + (u(s) + o(s)), (86)

in which ||¢(s)]|cc < 0.5, [|o(s)|lec < 0.5. We now review the problem constraints, considering the presence of
these errors.

The constraint{6) should now be ‘immunized’ against approximation errors, i.e. it becomes

17u(0) +170(0) < C, Y0(0) : [|0(0)]| < 0.5,

which, sincep(0) € R™, becomes
174(0) + % <C. (87)

The conservation constraintg?) are equality constraints, and therefore impose a restriction on the allowable ap-
proximation errors(s), s = 1,..., N — 1, which must hence be assumed to belong to thé&set {z € R™ :
|z]loe < 0.5, 172 = 0}. With this position, {7) remain unchanged.

For the team composition constrain%3), notice that setting
0=["(0),...,o" (N =), ¢ =[01m, ¢ (1), (TN =),

we have
z(s) = ®(s) (U+0+(),

and hence the constraints

21(s) < ®(s) (U~ o0+¢) <ap(s), VoeEM cezW™. fors=1,...,N, (88)
in which
M = T T 21]lee 05,20 € {EXE X -+ x B},

ZM) = [0y, 2h s anva)T 2 € R™ |zillee < 05,0 =1,..., N —1}.
In turn, the constraints8@) are equivalent to

O(s)U+ sup D(s)(e+¢) < auls),
0€EMN) cez(™)

) inf) > .
G+l ®E)etO) = a)

9 MODULE 7: FLEXIBLE TEAM FORMATION 108

The values ofo, { attaining the previous sup (s@s), ((s)), and inf (sayo(s), ((s)) are determined solving two
linear programs, and therefore the composition constraints finally write
D(s)(U + a(s) + ((s)) zy(s), (89)
B(s)(U + ols) + (s)) (90)

V1A
8

h

=

fors=1,...,N.

Finally, we notice that the constraints related to the objective can be treated similarly to the previous case. Specifi-
cally, the inequalities§3) now read

WU + sup W(g +() <z
0€E(N) ¢eZ((N)

WU + inf W(o+¢) > —2,
0€EWN) ceZz(N) (e+¢) = (91)

Nm
Z Zq < e
i=1

in which the values op, ¢ attaining the extrema can again be computed solving two linear programs.

9.5 Resource Allocation under Uncertainty

The formulation introduced in the previous section hinges on the very unrealistic hypothesis that the values of the
survival rates-(s) at the various stages are exactly known. In the following, we relax this assumption and consider
the problem of resource allocation under uncertainty. Specifically, we assume that the survival rate-yectoes
of the form

r(s) =7(s)+4d(s), s=1,...,N—1,

in which7(s) is the known nominal value of the rate, afd) € A(s) represent unknown ‘fluctuations’ or uncertain-
ties around the nominal value, with(s) C R™ representing the allowable range of variation of the uncertainties.

A first idea in this respect would be to apply a ‘robust optimization’ methodology (see?e,@2 1), and solve a

version of problem&5) where the constraints are enforced for all admissible values of the uncertainty. This approach

is however likely to be very conservative, since it neglects an important feature of the problem at hand, that is, there
exist a stage schedule according to which the decisions have to be taken. To clarify the concept, we observe that
not all the adjustments(s) need to be computed in advance (i.e. at the initial stage 0). Instead, only the
decisionu(0) need to be taken at= 0 (here-and-now decision), while before deciding €gt), we can wait and

see what happens to the teams as they complete stage. In other words, the decision at1) can benefit from

the knowledge of the realization of the ‘uncertainty’sat 1. More generally, we observe that each decisios),
s=1,...,N — 1 can benefit from a ‘basis of knowledge’ of what happened from the initial stagep to

To exploit this information in a manageable way, we suppose that each decision ¥ggtean be adjusted as a
function of the realization of(s), and we explicitly set up an affine dependence of the form

u(s) = u(s) + H(s)d(s), (92)

9 MODULE 7: FLEXIBLE TEAM FORMATION 109

inwhicha(s) €e R™ andH(s) € R™™, s =0,...,N — 1 (with H(0) = 0,,,,) are the new optimization variables.
In more compact matrix form, we have that

U=U+HS,
in whichU = [a”(0) - -- a” (N — 1)]" and H = diag (0,,m, H(1),..., H(s — 1)) contain optimization variables,
ands = [0y, 67 (1) --- 8T(N —1)]T € D contains the uncertainty terms, whéPe= {[01,,,] : ¢ € A(1) x - -+ X

A(N - 1)}.

We can now write the ‘adjustable robust’ version (see €.4) [of our optimal allocation problem as

min -~ subject to: (93)
~v,2,U,H
17a(0) < C (94)
1Tﬂ(s):O; s=1,...,N—1 (95)
17"H(s)=01; s=1,...,N—1 (96)
zr(s) < ®(s,6) (U + Hé) < zp(s), (97)
VoeD; s=1,...,N (98)
—2<W{U+H) <z Y5eD (99)
Nm
S u<o (100)
i=1

In this problem, we used the notatidr(s, §) to underline the fact that the matrix(s) defined in 80) depends on

the survival ratefR(s) = diag(r(s)), s = 1,..., N — 1, and hence on the uncertainty

Problem 03)—(100) is a robust linear program, i.e. a linear program having a continuous infinity of constraints,
see P4, 25]. In the mentioned papers, the authors show that in several ‘tractable’ cases the robust linear program
can be converteéxactlyinto a standard convex program having a finite humber of constraints, and hence solved
efficiently via interior point methods. Probler@3)—(100), however, does not fall among the tractable cases, since

the uncertainty is affecting the problem data in a nonlinear way, and the ‘recourse matrix’ (i.e. thed(a}rikat
multiplies the adjustable variables, se€]) is itself dependent on the uncertainty. Besides this technical difficulty,
another motivation for not pursuing the worst-case approach is that this approach places equal importance on all
possible uncertainty outcomes. In practical applications, one instead typically knows that some outcomes are ‘more
likely’ than others, and may wish to exploit this knowledge when computing a solution.

We next describe a recently developed methodology for solving a probabilistic relaxation of préB)eiq0).

9.6 Scenario-based optimization

The idea behind scenario-based solutions of robust linear programs is very simple: instead of considering the whole
infinity of constraints of the problem, we consider only a finite numkkof these constraints, selected at random
according to a given probability distribution. Specifically, the constraint93p(100) are parameterized by D.
Therefore, assuming a probability measilifeover D, we first extract) (we shall discuss later ‘how largel/

9 MODULE 7: FLEXIBLE TEAM FORMATION 110

should be) independent and identically distributed samples af®,...,6%) which constitute the uncertainty
scenarios upon which we base our design. We remark that the choice of the probability nhiEaeureeflects our
additional knowledge on which outcomes of the uncertainty are more likely than others. Subsequently, we solve the
‘scenario counterpart’ of the robust proble&8)—(100), which is defined below.

min_~ subject to: (101)
v,6,U,H
1Ta(0) < C (102)
1Ta(s)=0; s=1,...,N—1 (103)
1TH(s) =01n; s=1,...,N—1 (104)
21(5) < @(5,60) (0 + A5V) < 2 (s), (105)
i=1,...,M; s=1,...,N (106)
—E<WU+H)<¢, i=1,...,M (107)
Nm
da<n. (108)
=1

A first immediate consideration about(Q)—(108) is that it is a standard linear program (with a possibly large, but

finite number of constraints), which is easily solvable by LP numerical codes. A fundamental question is however
related to what kind of guarantees of robustness can be provided by a solution that a priori satisfies only a finite
numberM of selected constraints. The good news in this respect is that, if we sample a sufficiently large number
of constraints, then the scenario solution will be ‘approximately feasible’ for the robust pro®8nf100), i.e. the
probability measure of the set of uncertainties such that the corresponding constraints are violated by the scenario so-
lution goes to zero rapidly a¥/ increases. This result has been recently derivedtf fnd it is next contextualized

to the problem at hand.

9.7 Approximate feasibility of scenario solutions

Consider a generic robust LP in the form

min ¢! z subject toA(&)x < b, Ve X, (109)

whereinz € R™ andX C R’ is a closed set, and no restrictions are imposed on the dependence of the datalmatrix
on¢. Assume thatX09) is feasible, and suppose that a probability measUigimposed onY'. Then, the scenario
counterpart of 109) is the linear program

min ¢! 2 subject tOA(f(i))x <b, i=1,..., M, (110)

in which&®, i = 1..., M are iid samples of € X, extracted according to probabiliff. Assume further that
(110 has a unique optimal solutiari* (this unigueness assumption is technical and could be removed;@ge [
Clearly, the scenario solutiori* depends on the random sam@i@, i=1...,M,anditis therefore itself a random
variable. The following theorem highlights the ‘approximate feasibility’ property of this solution.

9 MODULE 7: FLEXIBLE TEAM FORMATION 111

Theorem 1. Fix a probabilistic risk levek € (0,1) and a confidence level € (0, 1), and letz* be the optimal
solution of the scenario problem 10), computed with

M>2 . (111)
e
Then, with probability at least — g,
Prob{(€ X : A(§)x™ £ b} <e. (112)

In other words, the probability of the set of uncertainties that violate the inequélgyz* < b can be made
arbitrarily small by sampling a sufficient number of scenarios, and therefore we say that the scenario solution is
(with high probabilityl — () approximately feasible for the robust probleb®9), i.e. it satisfies all but a small set

of the original constraints.

9.8 A posteriori analysis

It is worth noticing that a distinction should be made between the a priori and a posteriori assessments that one
can make regarding the probability of constraint violation for the scenario solution. Indefmie running the
optimization, it is guaranteed by Theoretrthat if M > n/eg — 1 samples are considered, the solution of the
scenario problem will be-approximately feasible, with probability no smaller thar- 5. However, the a priori
parameters, ¢ are generally chosen not too small, due to technological limitations on the number of constraints that
one specific optimization software can deal with.

On the other hand, once a scenario solution has been computed (andzhence is fixed), one can make an
a posteriori assessment of the level of feasibility using Monte-Carlo techniques. In this case, a new Bdtch of
independent random samples ofe X is generated, and thempirical probability of constraint violation, say

Vi (2*), is computed according to the formuigy (z*) = £ 32, 1(A(¢®)2* < b), wherel(-) is the indicator
function. If V(z*) = Prob{{ € X : A(§)xz* £ b} denotes the true violation probability, the classical Hoeffding’s
inequality 28] states that

Prob{|V,; (z*) — V(2*)| < &} > 1 — 2exp (—262M),

from which it follows that\f/M(x*) — V(2*)| < € holds with confidence greater than- 3, provided that

(113)

test samples are drawn. This latter a posteriori test can be easily performed using a very large safiflesizese
no optimization problem is involved in such an evaluation.

Returning to our resource allocation problem, the solution procedure that we propose is the following one.

1. Select the a priori probabilistic risk levehnd confidence, and compute the number of necessary scenarios
according to {11). We remark that experimental numerical experience showed that the actual probabilis-
tic levels achieved by the scenario solution are usuallychbetter than the ones established by means of
Theoreml. This fact suggest in practice not to insist on too small a priori levels.

9 MODULE 7: FLEXIBLE TEAM FORMATION 112

2. Solve the scenario LALQ1)—(108), obtaining the optimal variables’, z*, U*, H*.

3. Test a posteriori the obtained solution via Monte-Carlo, using a large sample size, to determine a very reliable
estimate of the actual probability of violation of the scenario solution. If this level of probability is acceptable
for the application at hand, we are finished, otherwise we may try another scenario design step, taking into
account a larger set of sampled scenarios, and iterate the procedure.

9.9 Interaction models

In this section, we propose an iterative heuristic for the solution of a modified allocation problem. Consider the
generic robust LP problem formulated ih0©). In deriving the scenario counterpart of this problem, we assumed
that afixed probability distribution was assigned on the uncertain parangetém terms of the actual resource al-
location problem, this assumption means that the survival rates are random variables, and that we know a priori
their probability distributions. However, a more realistic model of the problem should be able to take into account
interactioneffects between the decision variables and the uncertainties. By interaction we here mean that the prob-
ability distribution of the survival rates of a certain stage could be itself dependent on the amount of resources that
we commit for that stage. For instance, the overall chance of surviving a given stage may increase if we send more
resources to that stage.

A way of modeling this interaction in our generic framewotk9) is to assume that the probability distribution on

¢ € X depends om, that is, we assign eonditional distributionII(¢|z) on &. Clearly, if interaction is present,

we can no longer directly apply the scenario approach, since the correct distribution according to which we need
to sample the scenarios is unknown. We therefore propose the following iterative heuristic to solve the problem in
presence of interaction.

1. Let an initial solutionz(®), k = 0 be available;

2. Draw random scenarigg?), ..., (M) according to probabilityI(¢|z(*)), and solve the resulting scenario
problem. Let: — k + 1, and denote by:(*) the optimal scenario solution;

3. Repeat 2., until some suitable convergence condition is reached.

The effectiveness of this heuristic needs to be tested on numerical examples.

9.10 Numerical examples

In this section, we address the problem of allocating UAVs (Unmanned Aerial Vehicles) optimally and dynamically
in order to perform various sequential tasks where risk is present due to hostile opponents. In practice, it is often
required to allocate UAVs in teams in order to perform various sequential tasks in a hostile environment in which
their survival rates are uncertain. This makes this particular application a good illustration of our method.

9 MODULE 7: FLEXIBLE TEAM FORMATION 113

9.11 The nominal problem

In this problem, we consider that our opponent has 5 different types of equipment, namely small SAM (surface to
air missile), medium SAM, large SAM and the Early Warning Radars (EWRs). All kinds of SAMs have destructive
capability. However, the EWRs and the Long SAM-fcs(fire control sensor) work as tracking and sensing tools and
don't have any destructive capability. Their destructive ranges are given in Tallee enemy equipment with
higher destructive ranges are riskier to destroy than that with lower destructive ranges.

Small SAM | Medium SAM | Large SAM | Long Sam-fcs| EWR
Range (km) 25 50 100 0 0

Table 1:Ranges of opponent’s equipments

The controller needs to assign UAVs to teams in order to perform six main tasks, which are destroying 6 enemy
EWRs, namely EWR1, EWR2, EWR3, EWR4, EWR5 and EWR6. However, due to the presence of other enemy
SAMs, it is not possible to destroy all the 6 targets with an acceptable risk level, unless some other enemy SAMs are
destroyed. As a result, in order to perform the main tasks under an acceptable risk level, we need to destroy other
targets first. We define primary targets as the targets which are originally assigned to be destroyed and secondary
targets as the targets that need to be destroyed in order to reduce the risk inherent to the mission to the primary
targets. Hence, the assignment problem becomes a sequential and a dynamic one. We perform the assignment in
‘waves’ (stages): we start the assignment process by forming teams in the first wave in a way that they destroy some
assigned targets that are under a threshold risk level. Once the targets are destroyed at the first stage, the risk for
the targets to be destroyed in the second wave is reduced under the threshold level. At the end of the first wave,
we reassign the team composition among the survived UAVs in order to destroy the targets assigned for the second
wave. We keep reassigning till we destroy all the assigned targets in all the stages. In this experiment, the targets to
be destroyed in various stages are input data, as described inZTable

According to the input data, we define, = [7 6 4 6]T € RY, whereN denotes the total number of stages, and
mp(s) denotes the number of tasks at the stage order to be consistent with notations described earlier, we define
m := max;(m,(i)) and therefore we assign = 7 tasks at each stage. However, if the number of tasks<isn

in stages, we add extra slackm — [) tasks in that stage, such that< z;(s) < 0 foralll < ¢ < m. We also
assume that the cost for UAV allocation at the first wave isnit and the transaction cost in the later waveg'(s

units, wherel'C' is an experimental variable. The total number of available UAV is 40. The nominal survival rate of
an UAV assigned to destroy medium SAM, long SAM, and EWRs0a68, 0.5, and1 respectively. Moreover, an
additional constraint is imposed: at any stage, at least one UAV is required to be assigned to each target.

We ran the experiment with different transition co®ts' = 0,0.9, 1, 100,000 and the resulting team constitutions
are as shown in Tablg-6. Later, when we mentioi'C' = oo, we actually mean that the experimental run was
performed withtc = 100,000. Total cost and the total number of UAVs required for the various assignments are
summarized in Tabl&.

It is clear from Table7 that the total cost and the total number of UAVs required increase with the increase of
transition cost. Wheff'C' = ~o, the team assignment becomes static and produces higher total cost.

If the survival rates are certain and accurate, the assignments obtained by using our algorithms produce the minimum

9 MODULE 7: FLEXIBLE TEAM FORMATION 114

Threat Name Objective Classification wave
Medium SAM 27 Secondary 1
EWR3 Primary 1
EWR 1 Primary 1
Long SAM-fcs 3 Secondary 1
Medium SAM 5 Secondary 1
Medium SAM 3 Secondary 1
Medium SAM 28 Secondary 1
Long SAM 14 Secondary 2
EWR 2 Primary 2
Long SAM 2 Secondary 2
Medium SAM 9 Secondary 2
Medium SAM 2 Secondary 2
Medium SAM 30 Secondary 2
Long SAM-fcs 4 Secondary 2
Medium SAM 10 Secondary 3
Long SAM 8 Secondary 3
EWR 4 Primary 3
Medium SAM 12 Secondary 3
Long SAM 5 Secondary 4
Medium SAM 13 Secondary 4
Long SAM 7 Secondary 4
Medium SAM 14 Secondary 4
EWR 5 Primary 4
EWR 6 Primary 4

Table 2:Tasks

cost, while using the minimum number of UAVS.

9.12 The Robust counterpart

In the experiment, we assume that the survival rates of UAVs while encountering SAMs are not certain. Instead, the
survival rates are stochastic. We suppose for the purpose of this example that the survival rates while encountering
medium SAMs and long SAMs follow uniform distributio$[0.45 , 0.55] andUJ0.6 , 0.7] respectively. Using the
algorithm discussed in Secti@®6, we ran the experiment with variabléC. We randomly picke@5 sample points

by using these distributions in order to obtain the constraints. We ran each of the exp&intiemts. Although

the algorithm does not always guarantee a team assignment that satisfies all the constraints, it does it in most of the
tested cases. We ran each of the experirf@mimes. In each successful run with a fixed TC, our algorithms produce
assignments that yield a total cost and the total number of UAVs required to complete all the tasks. We compute the
averages of these two quantities over all the successful runs. The summary is shown B Table

We observe that even with the presence of uncertainty in the survival rate, our algorithm performs well. In most of
the runs, the stochastic algorithm is able to satisfy all the constraints.

9 MODULE 7: FLEXIBLE TEAM FORMATION 115

Stage 1 Stage 2 Stage 3 Stage 4
Team 1 | Medium SAM27 (1)| Long SAM14 (1) | Medium SAM10 (1)| Long SAM5(1)
Team 2 EWRS (3) EWR2 (4) Long SAMS8 (1) Medium SAM13(1)
Team 3 EWR1 (3) Long SAM2 (1) EWR4(4) Long SAM7(1)
Team 4 | Long SAM-fcs3 (1) | Medium SAM9(1) | Medium SAM12 (1)| Medium SAM14(1)
Team 5| Medium SAM5 (1) | Medium SAM30(1) 0) EWR5(1)
Team 6 | Medium SAM3 (1) | Long SAM-fcs4(1) 0) EWRG6(1)
Team 7 | Medium SAM29 (1)) (0)} 0)

Table 3:Task Assignment with’'C = 0

Stage 1 Stage 2 Stage 3 Stage 4
Team 1 | Medium SAM27 (1)| Long SAM14 (1) | Medium SAM10 (1) Long SAM5(1)
Team 2 EWRS (5) EWR2 (5) Long SAMS8 (1) Medium SAM13(1)
Team 3 EWR1 (2) Long SAM2 (1) EWR4(4) Long SAM7(1)
Team 4 | Long SAM-fcs3 (1) | Medium SAM9(1) | Medium SAM12 (1)| Medium SAM14(1)
Team 5| Medium SAM5 (1) | Medium SAM30(1) 0) EWR5(1)
Team 6 | Medium SAM3 (1) | Long SAM-fcs4(1) 0) EWRG6(1)
Team 7 | Medium SAM29 (1) 0) (0)} 0)

Table 4:Task Assignment with'C = 0.2

Moreover, we ran an experiment where the survival rate is stochastic but the nominal team assignments are used.
We record the percentage of time the nominal assignment produces successful run (satisfies all the constraints) and
compare the results with the robust counterpart. The comparison is shown in Efjuvie observe that robust
algorithm provides successful assignment significantly more often than the nominal counterpart under uncertainty.

We conclude that the robust assignment algorithm based on robust linear program performs very well even if the
survival rate is uncertain.

9.13 Conclusion

We have proposed a strategic planning scheme that allocates resources to groups of tasks organized in successive
stages. Our algorithms allocate the resources to the tasks (i.e. form ‘teams’) by dynamically re-organizing the teams
at each stage, while minimizing a cost objective over the whole stages horizon. Furthermore, we have proposed an
algorithm based on ‘linear programming with adjustable variables,” that can solve uncertain linear program by means
of the sampled scenarios randomized technique. We have applied our algorithm to a problem of UAVs allocation

in an uncertain and risky environment. We have shown that our model provides an optimal solution to the problem
while satisfying all the constraints in most of the runs.

In the specific context of UAV allocation, many further issues remain open for numerical investigation. First, we
have here considered a fixed statistical model for the survival rates. However, a model that takes into account
‘interactions’ (see Sectiof.9) or at least a saturation on the survival rates seems better suited for the application
at hand. Also, we would like to add origin-destination dependent transaction costs at each stage in our model, as

9 MODULE 7: FLEXIBLE TEAM FORMATION

Stage 1 Stage 2 Stage 3 Stage 4
Team 1 | Medium SAM27 (2)| Long SAM14 (1) | Medium SAM10 (1)| Long SAM5(1)
Team 2 EWRS (4) EWR2 (4) Long SAMS8 (4) Medium SAM13(1)
Team 3 EWR1 (5) Long SAM2 (5) EWRA4(3) Long SAM7(1)
Team 4 | Long SAM-fcs3 (1) | Medium SAM9(1) | Medium SAM12 (1)| Medium SAM14(1)
Team 5| Medium SAM5 (2) | Medium SAM30(1) 0) EWR5(1)
Team 6 | Medium SAM3 (2) | Long SAM-fcs4(1) 0) EWRG6(1)
Team 7 | Medium SAM29 (1)) (0)} 0)

Table 5:Task Assignment with'C' = 1

Stage 1 Stage 2 Stage 3 Stage 4
Team 1 | Medium SAM27 (8)| Long SAM14 (5) | Medium SAM10 (2) Long SAM5(1)
Team 2 EWRS (2) EWR2 (2) Long SAMS (2) Medium SAM13(1)
Team 3 EWR1 (2) Long SAM2 (2) EWR4(2) Long SAM7(1)
Team 4 | Long SAM-fcs3 (8) | Medium SAM9(4) | Medium SAM12 (2)| Medium SAM14(1)
Team 5| Medium SAMS5 (4) | Medium SAM30(2) 1) EWR5(1)
Team 6 | Medium SAM3 (4) | Long SAM-fcs4(2) (1) EWRG6(1)
Team 7 | Medium SAM29 (2) Q) Q) (1)

Table 6:Task Assignment with'C = oo

discussed in Remark as well as different types of UAVs.

116

9 MODULE 7: FLEXIBLE TEAM FORMATION

Total Cost| Total Number of UAVs
TC =0 11 11
TC =0.2 15.02 13
TC =1 23.98 17
TC =0 30 30

Table 7:Total cost incurred and total number of UAVs required

Average Total Cost

Average Total Number of UAVS

% Successful run

TC =0 12.06 12 85%
TC =0.2 15.56 13 90%
TC =1 26.20 17 80%
TC =0 37 37 85%

@ Nominal AlgorithmE Robust Algorith,

100

90

80

70

60

50

40

30
20 —
10 7

(%) of Successful Runs

0.2

TC

Table 8:Total cost incurred and total number of UAVs required

Figure 29:Percentage of the runs when all the constraints are satisfied.

117

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 118

10 Module 8: Path planning with multiple constraints

The fast marching algorithm is a very efficient technique for finding least cost paths, in the absence of any constraint.
This module extends the use of this algorithm when there are constfints.

10.1 Introduction

Few problems are as well studied as the path planning or routing problem; it appears in engineering disciplines that
vary from robotics to wireless communication to matrix factorization. A major challenge in developing solutions

to the problem are the many, sometime subtle, variations it can adopt: the topology of the state space and cost
metrics, the types of acceptable paths, the number of sources and destinations, the acceptable degree of optimality,
etc. While every variant has at least one solution method—enumerate all feasible paths until an acceptably optimal
one is found—the key to developing efficient solution algorithms is to take advantage of the particular properties of
the variant of interest.

In this section we examine the path planning problem in a continuous state space subject to constraints on additive
path integral cost metrics. The original motivation for this work was the planning of fuel constrained flight paths for
unmanned aerial vehicles through enviroments with varying levels of threat. Paths are generated by gradient descent
on a value function (with no local minima), which is the solution of an Eikonal partial differential equation @8DE).

Path integral costs are evaluated by solving an auxiliary PDE. Both PDEs can be solved quickly for low dimensional
systems, thus yielding a practical algorithm for path planning. Because both PDEs are solved over the entire state
space, paths to any possible destination can be rapidly evaluated.

To handle constraints, we sample the Pareto optimal surface looking for paths with feasible combinations of costs.
The sampling method only reaches the convex hull of the Pareto surface, so for nonconvex problems it may not
always find the optimal feasible path; however, in our experience the degree of nonconvexity has not been enough
to cause significant problems.

The asymptotic cost of the algorithm@(M dN<log N), whereM is the number of sampled points on the Pareto
optimal surfaced is the state space dimension, alNds the number of grid points in each state space dimension.

To adequately sample the Pareto surfadewill typically be exponential in the number of separate cost functions

k. While these two exponentials are daunting, in practice the algorithms described below are quite practical on the
desktop when the surh + d is less than around five or six; for example, secti@n3includes a problem in two
dimensions with three cost functions that is solved in less than one minute on the authors’ laptop computer.

Gradient descent on a value function solution of the Eikonal equation has been used previously for unconstrained,
single cost path planning problems. The innovative contribution of this section is the application of auxiliary PDEs
to calculate multiple path integral costs, and the use of those costs to find constrained optimal paths.

In the remainder of this section we formally outline our path planning problem and examine related work. Subse-

1%The research reported here was conducted by lan M. Mitchell and Shankar Sastry and supported by ONR under MURI contract NOOO14-
02-1-0720. A condensed version of this section appears in the CDC 2003 proceedings.

classical applications of the Eikonal PDE are in the fields of optics and seismology. Its solution can be interpreted as a first arrival time
or a cost to go, depending on whether the boundary conditions represent sources or sinks.

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 119

guent sections describe the algorithm, provide several examples, and discuss extensions to more general problems.

We work in a state spadg?. Unless otherwise specified, norms are Euclidgafi = | - ||2. LetR* = (0, o00) be
the set of strictly positive real numbers.

10.1.1 Problem definition

A pathp : RT x RY — R? is parameterized by an arclengthe R and a destination location € R?. Assume

that all paths have a singurce locationz, € R? (we will relax this assumption later). Thmath cost functions
{ci(z)}F_,, wherec; : RY — R*, are continuous, bounded and strictly positive. The cost along a path is additive,
so the total cost of a path can be evaluated pgta integral

Pi(z) = /OT ci(p(s, x))ds, where {p(O,x) — T (114)

p(T,x) ==

In words, P; : RY — R is the total cost, according to path cost functigf), of following the pathp(-, z) from the
source location:, to the pointz.

As an example, consider planning the flight path of an aircraft from its basetatvarious destinations. The most
obvious path cost function is fuel, which we approximate as a congtarit:) = crel- A second path cost function
might be the threat of inclement weathgamef{x). A third might be uncertainty about the enviroment, encoded
aScuncertaid). The latter two costs are inhomogenous, meaning that their value dependsExamples of cost
functions are shown in figurekl and 34.

There are two related problems that we might wish to solve starting from the paramegeis{c; (x)}%_, described

above. Given some set 0bst constraint{C’i}le, whereC; € RT, we might want to find feasible paths such that
Pi(z) < C;foralli =1... k. Alternatively, we might try to minimizé®; () subject to constraints on the remaining
costsP;(z) < C; foralli = 2...k. In either case, we will usually be interested in quantitative measures of the
tradeoffs between the various path cost functions; for example, in the second type of problem what relaxation of the
constraintCy would be required to cut the coB} (x) in half?

10.1.2 Related work

The significance of the most closely related algorithmic warkd, 4] is discussed in sectioh0.2.4 However,
similar problems have been investigated in several other fields.

Path planning is a central endeavor in robotics resedi;rsp we mention only the most closely related work.

The algorithm discussed in this section could be categorized as a potential field apgjpacithe sense that the

paths are determined by gradient descent on a scalar function defined over the state space. In particular, the value
function constructed in sectialD.2is an example of a navigation functiori{—a potential field free of the local

minima that hinder most potential field methods (although in general it will contain saddle points). The specific use
of the Eikonal equation for robot path planning in the single cost case was examiridand is equivalent to the
approach used ird].

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 120

Independently, the networking community has been solving constrained shortest path planning on discretelgraphs [

, 17], primarily for the purpose of network routing. While this research involves problems with multiple costs, it
makes the assumption that the number of distinct cost values possible at any node in the graph is finite and bounded.
The resulting algorithms are pseudo-polynomial time: polynomial in the size of the graph and in the value of any
constraints. If we seek a convergent approximation for the continuous path planning problem, we cannot assume
that the value function can be discretized and thus we cannot use pseudo-polynomial time algorithms. It should be
noted, however, that our method for exploring the Pareto optimal surface of possible path costs by sampling values
of \ (see sectiori0.2.3 is equivalent to the fastest algorithm proposed for finding constrained shortest patHis in [

The distinction between their algorithm and ours is the underlying shortest path problem: discrete in their case,
continuous in ours.

The related work that is closest mathematically is a tomographic applicatidnvwhich uses the Eikonal equa-
tion (115 to calculate travel time and a version of the path integral PDE)(to determine perturbations of a
linearized form of the Eikonal equation. To our knowledge, the usd bf)(for evaluating path integral costs is
original.

10.2 Value function solution

We discuss the value function method for finding the shortest path in the single cost case, and then how to compute
path integrals along value function generated paths. With these tools we can explore the range of paths that might
meet the constraints when multiple cost functions are involved. This section concludes with a discussion of an
efficient algorithm for solving the required differential equations.

10.2.1 Single objective shortest path

Consider the simplest cage= 1 with a single path cost functios(z) = ¢;(z) (because it will be used to generate
a value function, we call this cos{x) thevalue cost functioh It can be shown that the minimum cost to go from
the sourcer, to any pointz in the state space is the solution of the inhomogenous Eikonal equation

IVV(2)|| = c(x) forax e R,

. » (115)
with boundary conditior// (x) = 0.

The solutionV : R¢ — R of this PDE is called thealue function In practiceV is rarely differentiable and there-
fore (115 does not have a solution in the classical sense. The viscosity soliitipis fhe appropriate weak solution
for the shortest path problem. In sectibh@.2.4we shall discuss algorithms for computing accurate numerical ap-
proximations of the viscosity solution of{5), but for now the important fact is that efficient schemes exist for
problems of reasonably low dimension.

Given the viscosity solutio’, the optimal pathp*(-, =) can be determined by gradient descenv/ofrom a fixed
target locatione. In practical terms, lef(s, z) be a path that starts at a particutaand terminates at,. Thenp is

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 121

the solution to the ordinary differential equation (ODE)

dﬁ(svx) VV(ﬁ(S,.’IZ')) . d
= for s € R* and fixedr € R,
s VG (116)

with initial condition (0, z) = x.

We stop extending the solution at someuch thatp(s, z) = z,. Thens = T is the arclength of the shortest path

from z, to =, and that path is given by*(s,z) = p(T — s, x). Becausé/(z) is the cost to get ta from =5 along

pathp*, the path integral for this path B*(x) = V (x). The gradient descent16) cannot get stuck in local minima
becausd’ has noné&! In theory, (L16) can get stuck at saddle points16f but the stable manifolds of such points

are of measure zero in the state space, and are thus unlikely to be a problem in practical implementations subject to
floating point roundoff noise.

10.2.2 Computing path integrals

Throughout the remainder of this section, we consider only paths generat&dipyor some value functio’. In

this section we examine how to compute the path integral when the value cost function is not the same as the path
cost function. To differentiate the two cost functions, we denote the value cost functibtBrbfy () and the path

cost function in {14) by ¢;(x). Both must use the same source locatign

Starting from the differential form ofl(L4), we formally derive a PDE for the path integigl(x)

PR _ ¢ (p(s,).

OP.(p(s,) dp(s,)
Op(s,x) ds

C Wip(s@)
IVV (p(s,x))] i(p(s, 7)),

VFEi(p(s,z)) - VV(p(s, 2)) = ci(p(s, x))e(p(s, 2)),

where (16) is used in the second step arid p) is used in the third. Consequently, for all reachable points in the
state space,

= Ci(p(sv x))v

VFi(p(s,z))

VP(z)-VV(z) = ¢i(z)e(x) forz e RY,

. » (117)
with boundary conditiorP;(z,) = 0.

Because the cost structure is isotropic (independent of path direction) the system is small time controllable and for
our single source version all states will be reachable. The derivation above assumes that all the functions involved
are differentiable, but as was stated earlier this assumption will fail far) and therefore likely also faP;(z). We

are in the process of developing a robust proof that the viscosity solutidri @fi§ the path cost integral we seek.

When solving {17), P;(x) is the unknown whilé/(z), ¢;(z) andc(z) are all known. Not surprisingly1(L5) can be
recovered from17) for the single cost case of the previous section by substitating = c¢(z) andP;(z) = V(x).

ZEasily seen i is differentiable, since a local minimum would requWvé/ () = 0, bute(x) > 0. A more rigorous argument based on
the positivity ofc can be constructed whén is a viscosity solution.

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 122

J Dl << A <A<

\ x; testing many values :>

of A leads to

convex approximation
of Pareto curve

Figure 30: Pareto optimal curve for a particular destination stateeft: each value o\ samples a point on the
curve. Right: testing all values ofwould yield a convex approximation of the Pareto curve.

10.2.3 Exploring potential paths

As discussed in sectioh0.1.], one of our goals was an algorithm to generate feasible paths subject to a collection

of cost constraints. In the previous two sections we described PDEs whose solutions were a path generating value
functionV" in (115 and the path integralB; for those paths inl(17). The remaining missing ingredient is the value

cost functione(x) in (115). In this section we discuss the results of using convex combinations of the path cost
functions as the value cost function.

We start with the simplest multiobjective cages= 2. Let
AMNx) = Aey(z) + (1 — Nez(z) for somel e [0,1].

Then evaluatel(15) and (17) for V*(x), P{(z) and P;\(z). The first thing to notice is that = 1 calculates paths
optimal inc; and\ = 0 paths optimal irc,. Therefore, ifP}=!(x) > C; or P3=%(z) > C, for some pointr, there
cannot be any feasible paths fram to . Intermediate values of will generate paths lying somewhere between
these two extremes.

Testing all possible values of would effectively construct the convex hull of the Pareto optimal tradeoff curve
between the two cost functions. Figld@shows a possible Pareto curve for a single pejribe points on that curve
determined by several values bfand the convex hull of that curve. A point on the curve is a pBjt(z), Ps'(z))

and lies where a line of slopﬁ is tangent to the Pareto curve. Therefokds a quantitative measure of the
tradeoff between the two cost functions.

In general the Pareto curve is not convex, so this method may fail to detect a feasible path even if one exists.
Nonconvexity in the Pareto curve will manifest itself by jumps in the values of the path intdgtals and P;\(z)

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 123

for fixed x as A is varied continuously; for example, consider the jump in path integralsiavaried in the range

[A2 — €, A2 + €] for some smalk > 0 in figure 30. However, neighboring values afcan be used to bound the error

in the convex approximation and nonconvexity has not been a problem in our experience. It should be pointed out
that the Pareto curve characterised above is for a single pairthe state space. Becausge and P are calculated

over the entire state space, the technique actually approximates a separate Pareto curve forall points

To handle the cask > 2, we simply choose a sét\j}g‘?:l such that\; € [0, 1] for all 5 ande:1 Aj = 1. Then

cit(z) = Z§:1 Ajci(x), and we can solve for the corresponding value function and path cost integrals. In this
case it is the convex hull of the Pareto optimal surface that is explored as te; s varied.

10.2.4 Numerical algorithms

The discussion above would be nothing more than a mathematical diversion if it were not possible tbl&p)N&16)

and (L17) numerically for some practical problems. In this section we briefly outline an existing efficient algorithm
for solving (115, and modify that algorithm slightly to handl@X7) as well. We postpone implementation details
to section10.3.4

To treat (L16), we assume thatl{5 and (L17) can be computed for a variety afvalues to gengraté”(x) and
{PMx)}F_,. Then a particulad is chosen such that any path integral constraints are satighegr) < C)). A

path is determined by solvind.16) for value functionVX(x) with a standard ODE integration method, such as
Runge-Kutta.

Solving (115) efficiently relies on an algorithm first described ij,[although the explanation that follows is based

on an independently developed equivalent versiggnchmmonly known as thé&ast Marching MethodFMM).

This algorithm is basically the Dijkstra algorithm for computing shortest paths in a discrete ¢rgpkyitably

modified to deal with a continuous state space. For readers interested in alternatives, there are other algorithms for
solving (L15); for example, i].

LIS S]

The value functior// () is approximated on a Cartesian grid over the state spaceNvitbdes in each dimension,

for a total of N nodes. Direct application of Dijkstra’s algorithm on this discrete Cartesian graph remains a popular
approximation method for this problem; however, the paths generated by such an approximation measure their
cost metrics in a coordinate dependent masfemd are visibly segmented at the grid’s resolution. In contrast,
FMM approximations can generate paths with subgrid resolution (see sd€lidri); paths that are reasonably
smooth for practically sized grids. Furthermore, these approximations are theoretically convergent, meaning that the
approximation approaches the true value function solutiodldf)(as N — oo on all of the state space except a
subset of measure zero.

We initialize the FMM by settind/(zs) = 0 andV (z,,) = oo for all other nodes:,, (in practice we choose a
large floating point value foso). We also placer; into a list¢. At each iteration of the FMM we remove the node
Zy, IN £ with minimum valueV (z,,); this value is now fixed. We updaté(zx,,) for each neighbor,, of x,, with

22For example, Dijkstra on a square Cartesian grid measures distance with the Manhattan or 1-norm; in this norm the distance between two
points depends on the alignment of the coordinate axes. While this axis alignment bias can be reduced by adding more edges to the graph,
it will persist unless every possible path is enumerated by making the graph completely dense. The solution of the Eikonal Etfjyation (
measures distance in the Euclidean or 2-norm, which is independent of axis alignment.

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 124

V(zy) > V(zy,). If any of those neighbors were not fralready, we place them ih We then repeat, taking the
node of next smallest value frofmand updating its neighbors, until no more nodes remaif ifhis procedure is
the basis of Dijkstra’s algorithm. Each node is removed froomly once and has a constant number of neighbors.
As we will see, updating each neighbor takes a constant amount of time. If altidap §omething similar is used

to sort/, the smallest node can be determined in logarithmic time, for a totat®@sv? log N).

The only difference between Dijkstra’s method and an FMM lies in the update equation for a,npielnstead of
considering each neighbor of, separately, we form a first order upwind finite difference approximatioiofz,,)
using various combinations of the neighbars whose valued/(z,) are less than the current approximation of
V(x,). Plugging these finite difference approximations irita) yields an implicit quadratic equation for the new
approximation of’(x,,). Detailed update formulas are given in the appendix.

To solve (17), we use an approximation scheme outlined/j The “extension velocityFex:(z) described in that
paper is computed by solving
VFexi(z) - VV(z) =0,

which is just (17) with a zero right hand side. In practice, we integrate the computatidp (af) into the FMM

computation ofl/(xz). When each node,, is removed from¢, we computeP;(x,,) for eachi. The first order
upwind finite difference approximation &V (z,,) is already known from the last update6{z,,), while ¢;(x,,)

andc¢(z,,) can be directly evaluated. Forming a first order upwind finite difference approximati®Pgfr,,,)

using the same neighbor nodes that were used to build the approximatigiv @f,,,) yields an implicit linear
equation forP;(z,,). Note that the neighbors, of z,, involved with the approximation o’V (z,,) will all have

V(zp) < V(zm), so they will all have been removed frofrbeforez,,, and hence will have known valué$(z,,).

Again, detailed update formulas are given in the appendix.

10.3 Examples

For our example we consider planning a path for an aircraft flying across the idealized unit square country from
lower left to upper right. The first cost function will be fuel, which we assume is a constaiit:) = crel = 1.
Because these are toy examples, we provide no specific units for our cost functions.

The second cost function will represent the threat of weather related probjems(z). Note that the intuitive
quantification of weather threat would be the probability of encountering a storm along the flight path. This quantifi-
cation cannot be used as a cost because probabilities are not additive; however, under an independence assumptior
they can be transformed into an additive cost by a logarithmic transformation. The figures and tables below as-
sume that this transformation has been performed in genem@fiage(=) from meteorologically determined storm
probabilities.

Ideally, this weather forecast would be an accurate short term estimate of weather threat. When we examine a three
cost example in sectiof0.3.2 we will assume that part of our fictional country is well monitored and can thus
generate accurate short term weather threat estimates, while another part of the country is poorly monitored and in
this region we are forced to resort to long term climatological estimates. Because these long term estimates are less
accurate, we introduce a third cost functi@Rcertair(z) Which will penalize paths through the poorly instrumented
region of the country.

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 125

wanier cost
-1 Lo o= L-

[T ; aa
0e

! 04

0 [[aq E a T E [[- = a2

Figure 31: Weather threat cost functiofeathelz)

We focus on two dimensional examples primarily because three dimensional paths are very challenging to visualize
on paper. While three dimensions is noticeably more expensive, we demonstrate in 5@ @&idthat it can still be
done at interactive rates on the desktop.

The gradient descent procedure that generates the paths (explained in 5@&igrproduces a series of waypoints
leading from the source to the destination. In the plots that follow there is a small gap between the source location
and the start of the paths. This gap appears because the source location is not explicitly added to the waypoint list;
the gap is choosen small enough that the aircraft can fly a direct line between the source and the first waypoint (the
beginning of the plotted path).

10.3.1 Two costs in two dimensions

Figure31 shows a simple weather threat cost nagpathef). Notice that the lower high threat bar extending from
the left is slightly thinner than the upper high threat bar extending from the right.

Figure 32 shows four example paths plotted for various combinations,&finef) andecsyel from the sourcer; =

[0.1 O.I]T (marked by a star symbol) to the destinatiop = [0.9 O.Q]T (marked by a plus symbol). The
combinations are described in taldle In searching for paths that satisfy the fuel constraints, the rangewss
sampled uniformly. The\ values shown for the two constrained paths are the largest sathfidedvhich the fuel
constraint was satisfied. Notice in particular that the path under tight fuel constraints (the solid line) prefers to cross
the thinner lower bar of the weather cost function rather than the fuel symmetric path that exists crossing the thicker
upper bar.

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 126

line minimize fuel | fuel | weather

type what cost?| constraint| cost cost A
dotted | fuel none| 1.14 8.81| 0.00
solid weather 1.3]| 1.27 455 0.13
dashed | weather 16| 1.58 3.03| 0.62
dash dot| weather none| 2.69 2.71] 1.00

Table 9: Properties of paths in figuse.

line minimize fuel | weather| fuel | weather| uncertainty
type what cost? | constraint| constraint| cost cost cost
dotted | fuel none none| 1.14 8.83 1.52
dash dot| weather none none| 2.74 2.75 5.96
dashed | uncertainty none none| 1.18 8.42 1.19
solid uncertainty 1.3 6.0 1.25 5.85 1.25

Table 10: Properties of paths in figusé.

Figure 33 shows the points on the Pareto optimal curve of the destination locatiagenerated by a uniform
sampling of the spack € [0, 1]. Two explanations exist for those regions where the sample points are well spaced—
either the uniform sampling was too coarse, or the Pareto curve is nonconvex. In the former case, a more intelligent
sampling strategy could fill in the gaps inexpensively. Furthermore, even if the curve is nonconvex the existing

samples provide fairly tight bounds on the degree of possible nonconvexity.

10.3.2 Three costs in two dimensions

The first two cost functions are the same as in sectidB.1 constant fueksyel = 1 andeyeathef) from figure31.
For the third cost function, we assume that the upper left corner of our mythical country has few weather stations

and therefore we create the uncertainty cost functiggeaidz) shown in figure34.

The resulting paths from; to =, are shown in figur&5 and described in tablE0. Because they optimize the same

costs in the same manner, the dotted and dash dotted paths are basically the same as those shov@2.f3 fldnere

most interesting path is that denoted by the solid line. Notice that the constraints on this path were satisfied by the
tight fuel constrained path (also a solid line) in fig®2 In this case, however, we are penalizing paths that travel

in the upper left portion of the map with the uncertainty cQgterair{z). Therefore, a path that crosses the thick

high cost portion of the upper bar of the weather cost map is chosen; even though the weather cost is higher, it is still
within the specified constraint and the resulting path’s uncertainty cost is nearly as good as the minimum uncertainty
cost path (given by the dashed line).

ZThe slight differences between their tabulated costs in tabssl 10 is due to the coarser state space grid used in this three constraint
example.

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 127

line minimize fuel | fuel | weather
type what cost?| constraint| cost cost
dotted | fuel none| 1.41 3.54
dashed| weather none| 1.64 1.64
solid weather 1.55| 1.55 2.00

Table 11: Properties of paths in figusé.

10.3.3 Two costs in three dimensions

For a three dimensional problem, we plot a path from= [0.1 0.1 0.1]T tozg = [0.9 0.9 O.Q]T. The
fuel cost functioncrye remains a constant, while the weather eqghine(z) has five stormy regions centered at the
points:

0.1 0.5 0.9 0.9 0.1

0.9 0.5 0.1 0.5 0.5

0.9 0.5 0.1 0.5 0.5

Each stormy region adds a scaled and shifted gaussigd@e(z). In order to represent the general low level threat

of unforeseen weather disturbances, wecggfine{x) = 1 anywhere that the sum of the storm costs drops below
unity. In order to break the symmetry of the problem, the first stormy region is 50% larger than the remaining four.
A visualization of the weather cost function is shown in fig@6ealong with three paths from, to z,. The three
volumetric shells in the figure represent (from faintest to darkest).the2.0 and3.0 isosurfaces Oéyeathel); itS

peak value i$.5. The three demonstration paths are described in teble

10.3.4 The implementation and deExecution times

To compute approximations df (x) and P;(z), we have implemented a version of the FMM described in sec-
tion 10.2.4in C++ for Cartesian grids. While the code itself can handle any dimension, in practice the physical
memory limits of desktop machines restrict the dimension to at most five even with very coarse grids. Using a MEX
interface, these PDE solving routines can be called directly from Matlab.

To handle cost constrained paths, the sampling avisrperformed in Matlab. The speed of Matlab’s interpreted
language is not an issue in this case, because the inner loop d&trapling process is the compiled C++ but still
relatively time consuming FMM algorithm. In all of the examples shown, the rangei®sampled uniformly. If

a particular destination point were known in advance, a directed samplixgadild quickly yield more accurate
results; for example, bisection in the two cost case. In fact, if a particular destination point is specified, the FMM
can be run faster in some cases by applying a version of A* search on thergher than just selecting the node
with minimum value (1] discusses this technigue in the discrete graph setting).

We have so far been generating a relatively small number of paths, so this process is handled with Matlab’s extensive
ODE integration facilities. Once a has been chosen such that any path constraints are satigfied) is used
in (116) to determine the path. Becau§&/* may change direction significantly from one integration step to

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 128

section| d | k| N | AX | time (min)
10.3.1| 2| 2| 201 | 0.005 0.5
10.3.2| 2| 3| 101 | 0.020 1.0
10.3.3| 3| 2| 101 0.010 22.3

Table 12: Run parameters for the examplés=(dimension,k = number of constraintsN = grid size, A\ =
sample interval of convex combination cost). Time includes generation of the cost functions, PDE and ODE solves,
and plotting all the figures.

time (s)
N per\ | ratio
51 0.01

101 0.04| 3.24
201 0.13| 3.76
401 0.55| 4.20
801 244| 441

Table 13: Costs of refining the grid in two dimensions. Time p&rthe time to solve a single instance of the PDEs
for V(x) and two path integral costB, (z) and P»(x). The ratio column shows the roughly quadratic growth in
execution time agv is increased.

the next, {16) is a moderately stiff ODE. Consequently, we have found a variable stepsize, implicit trapezoidal
integrator to be effective (Matlabisde23t); however, other variable stepsize integrators—such as the high order
explicit 4-5 Runge-Kutta—could also be used.

We summarize the parameters for the examples of the previous sections ih2ablee grid sizes and number of

A samples were chosen large enough to give decent results and not so large as to overburden the authors’ desktop
computer. These timings and those below are for a 2 GHz, 1 GB Pentium 4 Dell Inspiron 8200 running Windows
XP Professional, Matlab version 6.5 (release 13) and Matlab’s Icc compiler.

Tables13 and 14 demonstrate the costs of refining the PDE grid. Both tables assume only two path integral cost
PDEs are solved; however, most of the time in the FMM algorithm is spent solving (foy, so the increase in

time per\ sample of an additional path integral PDE is only 10%—20%. As mentioned previously, the asymptotic
cost of the algorithm i€)(dNlog N) per A sample. The ratio columns of the two tables show the expected growth
in execution time—slightly above quadratic wilth for two dimension, slightly above cubic witN for three—in

all but the coarsest two dimensional grids (where the roughly constant overhead of initialization will be relatively
significant).

The time to solve 116) to generate a particular path is largely independent of the dimension or grid size, and is
completely independent of the number of constraints\ @ampling interval. It will depend on the destination
location (the closer to the source, the shorter the path). In our experience, most paths can be generated in less
than a second, and few take more than three seconds. Using a compiled integrator (rather than Matlab’s interpreted

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 129

time (s)
N per\ | ratio
51 1.27

101 12.66| 9.99
201 | 125.46| 9.91

Table 14: Costs of refining the grid in three dimensions. Time)p&rthe time to solve a single instance of the
PDEs forV (x) and two path integral cost3; (x) and P (z). The ratio column shows the slightly greater than cubic
growth in execution time a& is increased.

routines) would speed this process up even further.

To demonstrate the effects of refining or coarsening the grid on the quality of the resulting paths|3 Figlhuwevs the

paths from the example in sectid@f.3.1generated for three different grid resolutions. The paths shown in fgjure
correspond to thé&V = 201 case. While grid refinement does yield visibly better paths, even the coarsest grid gets a
gualitatively correct answer on even the most convoluted path.

10.4 Discussion

We have demonstrated an algorithm for constrained path planning in continuous state spaces for additive cost metrics
and isotropic but inhomogenous and nonconvex cost functions. In those cases with multiple cost functions, a convex
approximation of the Pareto optimal surface is explored; consequently, the algorithm may not find all feasible paths
although in practice this has rarely been a problem. While the asymptotic cost of the algorithm is exponential in the
dimension and in the number of cost functions (assuming uniform sampling of the Pareto optimal surface), it can be
run at interactive rates on the desktop if their sum is five or less, and overnight if their sum is six.

There are several straightforward extensions of this work to more general path planning problems. We can imme-
diately incorporate multiple source locations, by making each source a boundary condition with value zero of the
PDEs (15 and (L17). The resulting value function will generate paths from the nearest source to each destination
state. Hard obstacles in the state space can be treated by either making the cost function very large in their interior or
by making the obstacle’s boundary a part of the PDES’ boundaries with very large value. Creating boundary nodes
with intermediate values (neither zero nor very large) can be interpreted as penalizing those nodes as possible source
locations. We can also swap the meaning of source and destination, in which case the value function can be used to
generate a feedback control.

The basic FMM algorithm described in sectibd.2.4has been extended to unstructured meshes, and a more accurate
second order approximation scheme has been developed. For more details on FMM and its extensions, we refer the
reader to [9. We are in the process of developing a version of FMM that runs on an adaptively refined Cartesian
grid, so as to better represent problems with hard obstacles.

The current path planning formulation assumes that the cost of a path is a function only of its current state; this is
equivalent to claiming that the vehicle which will execute the path can travel equally well in any direction from any

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 130

location. This assumption is reasonable when the resolution of the grid is much coarser than the dynamics of the
vehicle; for example, planning aircraft paths across a country. But on shorter time and space scales, it is unrealistic to
assume that an airplane can make a sharp turn. Treating nontrivial vehicle dynamics requires that the cost functions
be anisotropic. Unfortunately, such anisotropy means that the value function will no longer be the viscosity solution
of the eikonal equation1(l5), but rather a more general static Hamilton-Jacobi PDE. The FMM will not work on
these PDEs; however, several algorithms have been proposed to solve them duickiy 21, 27].

The additive path integral cost model used in this section is very common, and includes multiplicative costs through
a logarithmic transformation. Another common cost metric is maximum cost along the path. While maximum cost
can currently be evaluated for a single path during the integratiohldj,(we are investigating methods capable of
evaluating this metric over the entire state space. We are also examining efficient methods of approximating all of
the Pareto optimal curve for each destination location, rather than just its convex hull.

Acknowledgements: We would like to thank Aniruddha Pant for suggesting the sweeping procedure over convex
combinations of the multiple cost functions, and Professor Pravin Varaiya for the interpretation of this procedure
as a convex approximation of the Pareto optimal surface and for several very useful discussions of value function
properties. Thanks are also due to the Berkeley MICA team for providing the examples which originally motivated
this work.

10.5 Appendix: Update equations for any number of dimensions

Sectionl10.2.4described the basic FMM algorithm used to soli/&5) for V' (z) and (L17) for P;(z). In this appendix

we give the update equations that form the heart of these algorithms: fiis{forand then forP;(x). These update
equations are independent of dimensifrbut work only on Cartesian grids. The update algorithm and equation
for V(x) given below is a version of those given in the appendixadf fnodified to treat grids with dimensionally
dependent spacing (whehg is the grid spacing in dimensiof).

When a noder,, is removed from the list, any neighborz,, with V(z,,) > V(z,,) may need to be updated.
Consider a specific neighbor node, which we lakel This node will have2? neighbors itself: one in each direction
(we will call these directions left and right) in each dimension. Choose a set of neighbor ihdiggscking the
neighbor (either left or right) with lowest value from each dimensionl (kasd elements). If the grid spacing is
equal in all dimensions, the nodegfor j € | and the node are the vertices of ddimensional simplex; otherwise
they form a distorted simplex. The formula derived below calcul&tés,) as if the characteristic ofL(L5) giving
V(x0) its value came from this simplex.

It is possible that the characteristic in question flows along a lower dimensional face of the simplex rather than
through its interior. Now we identify the subset of indicesom which the characteristic arises. First we define the

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 131

following terms, where all of the summations are over the index $excepting the indices explicitly excluded).

Ty=> (Z h?) Vi(zj),

J I#j

=7 (Z h?) ¢ (x0),

J I#]

=YY (> h%) [V(xj,) = Vi),

J1 JeFj1r \l#j1,J2

Ty=> Y hi

Jo1#j
To find the appropriatd, start withd = 1. While
Ty < 15, (118)

keep removing the node; with largest valué/(x;) in J. OnceT; > T3, use the remaining nodes Jrto form first
order upwind finite difference approximations of the partial derivative® @it =y, and plug these approximations

into the square ofl(15) to get ,
Z (V(@);V(x@) = c2(x0).
J

jed
We can then use the quadratic equation to solvé/far).
) T+ (S, h) VT — T
V(zo) = T . (119)

The reader can verify that conditioh(8) ensures that the resulting discriminant119) is positive. If the resulting
valueV (zy) is less than the existing valdé(zy), thenV (zy) is taken as the new approximationéfat z.

Now consider the update &f(z,,). Letzy = z,,, and remember the sétast used to updafeé(z,). Form first order
upwind finite difference approximations for the partial derivative®chndV atx, and plug these approximations

into (117) to get @) @) @) @)
Pi(x;) — B(x Viz,)) = V(x
Yo (= L2) = ci(wo)elo)-
> () (P
Rearranging the terms yields the update equation (the sums are agail) over
(%) [y 1] Pita) V() = V@o)]) = exlwo)e(wo) 32, 12
(5 [i3] V@) = Vo)) |

Because this equation is solved only once for eagtand eachP; when that noder; is removed from list,
computing the path integral cost functions is much cheaper per cost function than computing the value function.

P;(z0) =

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 132

0.9

i ——— o

08k L

0.7

0.6F

0.5F

i
i
i
[
[
3
§ grassssssmsss—-
aF
i
i
i
r
i
i
I
]
i
i
!

-
-

0.4:

T

0.2F

Figure 32: Some fuel and weather constrained paths. The properties of each path are explainef.in table

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 133

Far Destination =[0.8,09]

g T
: 7 100 samples
T + T samples
4 « 4 samples
B- i -
T i
Eﬂ ;
]
"i '
‘g t
g 5t '3.‘ .
4
+
al - _ i
= T O a
E 1 1 1 1 1 !
i 1.2 14 1.6 1.8 : 2T 24 B 22

IFIDETE Ry T
L L=

DA =
. .'\-.. ._.-"'.. o4

nz . -
—— w2

Figure 34: Uncertainty cost functiofyncertair(z)

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 134

08

08+ ’
0.7

0.6f

oy

0.5+

0.4

0.3r

0.2E

0.1 |- *

Figure 35: Some fuel, weather and uncertainty constrained paths. The properties of each path are explained in
table10.

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 135

Figure 36: Some fuel and weather constrained paths in three dimensions. The properties of each path are explained
in table11.

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 136

0.9

0.8

0.7

0.6

o 0.5

=
i
]
1
1
]
]
]
]
i
1
1
]
[]
1
\
'
“a

0.4

0.2

0.2

0.1 ¥

Figure 37: Comparing the path approximations generated by various grid resolutions. As the grid resolution im-
proves, for almost every destination point the approximation converges to the analytically optimal path.

11 CONCLUSIONS 137

11 Conclusions

We summarize our major contributions relative to the MICA program objectives, which are to

e Develop theory, algorithms, software, and modeling/simulation capabilities for hierarchical bat-
tlespace management and distributed control of semi-autonomous entities

— Cultivate dynamic operational and mission planning for teamed entities

— Develop cooperative path/execution planning

— Address an active, intelligent adversary and threats in an uncertain environment
e Demonstrate multiple vehicle execution of team-based strategies

Following the guidance of the program management, battlespace management comprises the two phases of ‘offline
planning’ and ‘online execution’. We organize the latter in a two-layer hierarchy of ‘team coordination’ and ‘UAV
control’, figurel. To deal with additional information that might arrive during the execution, we introduce a ‘state
estimation’ procedure, described in sect@&rwhich can trigger ‘re-planning’, figurg. Our work can be situated

within this structure and compared with the contribution of other contractors.

11.1 Planning

Our most signficant contribution is a formalization of the ‘planning process’. Se8til@scribes our mathematical
model: it defines the ‘plan design space’ and the risk associated with a plan as a measure of performance, and
presents an algorithm to find ‘optimal plans’.

Importantly, the algorithm (callebhteractive Task Plannesr ITP) allows for ‘variable autonomy’, that is, a plan can

be generated in a fully automatic manner, or it may be extensively modified by the planner in light of considerations
that are not reflected in our ‘risk’ performance measure. The ITP offers a visual tool for the planner’s intervention.
The tool may be used by the planner to rapidly evaluate the changes in risks and flight paths resulting from proposed
modifications in the plan. The tool produces a ‘sensitivity table’ that assists the planner in proposing changes.

The rapid evaluation of alternatives is made possible by a ‘fast marching method’ algorithm, which generates risk-
minimizing paths. This assumes that the UAV dyamics are well-modeled by an ‘isotropic’ velocity field, so that the
resulting value function satisfies the eikonal partial differential equaidh (

A very important implication of our model is that the risk in attacking a target depends on which targets have already
been destroyed. As a consequence, one major component of a plan is its precedence relatior8 (3eetinich

restricts the sequence in which targets must be attacked. In terms of the ITP, this leads to organizing Blue’s attack in
‘waves’, which the planner may modify.

A consequence of the precedence relation is that it leads in a reasonable way to the grouping of sub-tasks into tasks.
In an automatic mode, these tasks are simply precedence ‘chains’ or ‘sub-trees’, as illustrated in the top of figure
14. However, the planner may group sub-tasks differently, as illustrated in the bottom of f¢yusased perhaps

on similarity of target types or geographical location. This information is displayed in the ITP window (§gure
facilitating the planner’s exploration of the plan design space.

11 CONCLUSIONS 138

Once the tasks are defined, the ‘configuration and schedule’ module is invoked to determine the composition of the
teams, one per task, and to refine the nominal path and precedence relation obtained from the ITP.

The composition of a team specifies the number and type of UAVs, and their configuration in terms of sensors and
weapons. The calculation of a team composition relies on a table that gives the range of each weapon and its lethality
(probability of target destruction). We have limited ourselves to the use of GPS bombs. We assume that a 95 percent
probability of destruction is required, which in turn determines the number of weapons needed. Given the GPS
bomb-carrying capacity, this yields the number of UAVs that are needed to execute a task. This number is ‘inflated’
to take into account the possibility that UAVs may themselves be destroyed.

The ‘configuration and schedule’ module further decomposes each sub-task into ‘legs’, refines the sub-task prec-
dence relation to one on legs, and prescribes a path for each UAV in the team assigned to the sub-task. As each
nominal path ends at a target, the path is divided into two legs: a ‘safe’ leg in which UAVs not attacking the target
may stay, and an ‘attack’ leg in which the UAV is within the target’s threat range. The attack leg is designed in such

a way that the attack UAV flies with a heading directed at the target, thereby minimizing its signature.

11.2 Execution

There are two important contributions. The first is the two-level hierarchy of ‘team coordinator’ and ‘UAV con-
troller’. The latter in turn comprises several individual modules to manage way-point navigation, weapons, and
sensors. Controllers at both levels can be expanded, as was discussed inSseCtiorently teams only carry out

a strike task. But if other task types, such as search or jamming, are implemented, the team controller can be aug-
mented in a modular fashion to accommodate these. Similarly, the vehicle controller can be augmented to include
other maneuvers or tactics.

From a controller design viewpoint, the use of Shift as the design specificaiton language, in contrast to, say, Simulink,
Matlab, or ‘C’, brings an enormous benefit in terms of conceptual unity and implementation. Being object-oriented,
Shift permits controllers to be instantiated as needed. Shift offers high-level constructs, so thatnt#team
controller can work with teams with a variable number of UAVs, and the team of UAVs can be dynamically re-
allocated during the execution phase. In principle, this can be done in any other programming language, but at a
huge increase in complexity. Furthermore, although a Shift program can only be executed as a simulation, a very
similar program written in commercial Teja language (which provides the same functionality as Shift) can also
generate code for a variety of operating systems including Linux, VRTX, and QNX. Controllers designed in Teja
can be tested in simulation mode, and then used to control hardware.

Lastly, because Shift has a strict semantics in terms of networks of hybrid automata, Shift controllers can, in prin-
ciple, be verified. Although tools for verification cannot today work with general hybrid automata models, they can
verify restricted models. Such verification could be invaluable.

11.3 State estimation

Our most signficant contribution here is a Bayesian model of knowledge about the ‘battlespace’ in terms of the
probability distribution, Pinreat: Of the Red force. Since the threat depends on th@aegetsof Red targets, this

11 CONCLUSIONS 139

is the probability distribution of @et-valuedrandom variable. It is impossibly complex to deal in a quantitative
manner with a general distribution of this kind.

By making an independence assumptia3R){(33), we drastically reduce the memory needed to store the threat
distribution. Moreover, as shown in sectidhd and6.2, this assumption continues to hold after a strike or search task

is completed. This makes it computationally feasible to design an online and recursive state estimation procedure.
The mathematical proceduerstthreat, is described in sectio@ It is implemented in a Windows data base.

11.4 Re-planning

A major concern of MICA is to account for uncertainty. We have dealt with uncertainty in two ways. At the planning
level, uncertainty is manifested in lack of full knowledge of the disposition of Red forces, modeled as a probability
distribution,Pthreat. The measure of risk along a path takes this distribution into account, see se8tion

It is much more difficult to deal adequately with uncertainty that arises during execution. The design of the con-
trollers of teams and individual UAVs is predicated on certain assumptions: For example, an attack UAV expects its
target to be at a certain location, and it expects the ‘safe’ leg to be free of threat.

However, these expectations may be violated. In principle, one may model these ‘dis-expectations’ probabilistically.
Indeed, sectioR.6describes how uncertain threats might be treated probabilistically. But it is virtually impossible to
anticpate and take into account all possible contingencies in such a probabilistic manner, especially in the execution
phase, when UAVs are flying and time evolves. Moreover, such an approach quickly becomes computationally
intractable (recall the ‘curse of dimensionality’).

Our novel contribution is to buildxceptionsnto the controller structure. The controller declares an exception when
events occur which make it impossible to execute the task in which it is currently engaged. For example, a UAV is
unexpectedly destroyed so that the target which it was attacking now threatens the team. The controller ‘rolls back’
the team to what it considers a safe region, and calls the planner to intervene: in an automated mode the ITP is
re-invoked, based on the new (and unanticipated) event that was encountered.

Lastly, an implicit assumption in the MICA program has been that teamstatie—they are composed during

the planning phase, and maintain their identity throughout the execution phase. In gegtime show within a
simplified model that allowing teams to be re-formed at the end of each wave can reduce the resource requirement.
The resource savings will be larger the greater is the uncertainty in UAV attrition rates.

HICST's lasting contributions are: (1) a model for optimal plans and procedures to find them; (2) a model for the
‘state of the world’, and a state estimator; (3) a very concise and flexible structure for the team and UAV controllers,
with a provision to generate exceptions. The controller, specified in Shift, can be used to assist in generating real-time
code for hardware implementations. These contributions advance the attainment of MICA's objectives. Significant
problems remain unsolved. These are discussed next.

12 OPEN PROBLEMS 140

12 Open problems

We discuss open problems using the same structure as in the previous section.

12.1 Planning

The limitations in our approach to planning can be classified in terms of the threat model (discussed irL2edtion
the performance measures, the sub-task structure, the fast marching method, and the treatment of uncertainty.

Threat model

Three limitations of the threat model need to be overcome. First, there is a need to consider mobile targets. This will
require some models of mobility, which makes the state estimator computationally more complex.

Second, and conceptually more difficult, is the need to model ‘integrated’ defenses, in which the threat posed by
targets whose radars function in a coordinated manner, is not the sum of the threats posed by each ta@@t, as in (

Third, and even more difficult, is the need to consider the threat from an intelligent adversary. The most straight-
forward model relies on game theory, which quickly leads to computationally intractable problems, which could
be addressed by by resorting to approximations, either in terms of exploring Red moves or some higher-level ab-
stractions. The latter is more promising, especially if those abstractions have intuitive meaning in terms of possible
strategies that the adversary may be using.

Multiple performance measures

We have adopted a single measure, namely the risk along a path. However, other measures that reflect resource
consumption, such as fuel, time, and weapons, may need to be included in the definition of the plan design space
and the optimal plans. In principle, one can simply require that feasible plans defined in Se2tadso satisfy
constraints on resource consumed. However, this move complicates the search for an optimal plan, as indicated in
section2.8. Nonetheless, itis clear that the plan design space must explicitly include multiple performance measures.

Sub-task structure

We assumed that all sub-tasks have as their objective the destruction of a target. This is not enough. There are other
important tasks such as ‘search’ that cannot be specified simply in terms of a target. If the objective of a search
is to reduce the uncertainty about the Red force (see se@t®nthe consequence of executing a search may be

to re-design the plan. The more significant searches are, the less meaningful it will be to separate ‘planning’ and
‘execution’ as we have done. The MICA structure separating these two phases is reasonable only in the context of
very good prior information.

12 OPEN PROBLEMS 141

Fast marching method

The fast marching method is key to rapidly finding optimal paths. This speed makes it feasible for the planner to use
the ITP as arninteractivetool. However, the fast marching method assumes an isotropic velocity field. This means
that the position of a UAV is only constrained by the inclusion,

[;3 } € B(z,y),

in which B(z,y) is a circle of radius that can depend on location. (The ‘circle’ makes it isotropic.)

Extensions of the fast marching method can weaken the isotropic requirement. But taking full-fledged dynamics
into account, such as in the form,
T € Az + BU,

in which/ is the control set, will require rather different computational methods.

Treatment of uncertainty
12.2 State estimation

A procedure that estimates the disposition of Red forces is essential. The proBedgke.4t of section6 is
computationally feasible because of the independence assumption. It is easy to construct likely situations in which
the available information makes the independence assumption untenable. A simple example is where the total
number of targets in two areas is known, so that the number of targets in each area cannot be independent. Adding
target mobility obviously complicates state estimation.

However, there are radically different formulations of threat that may be appropriate.

12.3 Execution

The controller architecture and the specific team, task, sub-task, and vehicle controllers presented ifi iseation

great advance over current practice in the specification of controller design. The specification takes advantage of the

object-oriented nature @hiftand the abstract constructs availablé&hift In particular,

Specification of controllers is separated from their instantiation;

Controllers are hierarhically organized;

Structure of multi-vehicle mission controllers is independent of the number of vehicles (because of the set
construct inShif;

User intervention is explicitly made available at all levels of the hierarchy in terms of a well-defined interface
of command and response messages;

12 OPEN PROBLEMS 142

e Controllers can be extended through specialization (becahsgallows inheritance.

As indicated, the controller design has well-specified provision by which a human opertor can intervene in planning
and execution of the automated system. The outstanding open problem is to design rules according to which the
automated system will ‘ask’ for human intervention. In most automated systems this is done through a system of
‘alarms’. the operator is signaled whenever some variables exceed a threshold. In MICA automation is carried to
a much deeper level, and simple alarms are inappropriate. Rather, what is needed is a system of ‘exceptions’ that
indicate the inability of the automated system to continue to fulfil its current tasks. A theory of exceptions needs to
be developed.

12.4 Re-planning

Related to the last point above, is the open problem of designing automatic ‘triggers’ that call for re-planning.

REFERENCES 143

References

[1] SHIFT website: www.path.berkeley.edu/shift

[2] J. N. Tsitsiklis, “Efficient algorithms for globally optimal trajectorie$ZEE Transactions on Automatic Con-
trol, vol. AC-40, no. 9, pp. 1528-1538, 1995.

[3] J. A. Sethian, “A fast marching level set method for monotonically advancing froRteteedings of the
National Academy of Sciences, USAl. 93, no. 4, pp. 1591-1595, 1996.

[4] D. Adalsteinsson and J. A. Sethian, “The fast construction of extension velocities in level set metbodsl
of Computational Physi¢wol. 148, pp. 2—22, 1999.

[5] J.-C. LatombeRobot Motion PlanningBoston: Kluwer Academic Publishers, 1991.

[6] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robbitgtnational Journal of
Robotics Researghvol. 5, no. 1, pp. 90-98, 1986.

[7] J. Barraquand, B. Langlois, and J. Latombe, “Numerical potential field techniques for robot path planning,”
IEEE Transactions on Systems, Man and Cybernetiais 22, no. 2, pp. 224-241, 1992.

[8] R. Kimmel and J. A. Sethian, “Optimal algorithm for shape from shading and path plandiogrhal of
Mathematical Imaging and Visiowol. 14, no. 3, pp. 237-244, 2001.

[9] K. Konolige, “A gradient method for realtime robot control,” international Conference on Intelligent Robots
and Systems (IROS)ol. 1, (Takamatsu, Japan), pp. 639-646, 2000.

[10] A. Orda, “Routing with end-to-end QoS guarantees in broadband netwdEEE/ACM Transactions on Net-
working, vol. 7, pp. 365-374, June 1999.

[11] G. Liu and K. G. Ramakrishnan, “A*prune: An algorithm for finding k shortest paths subject to multiple
constraints,” INNFOCOM 2001 vol. 2, pp. 743—-749, 2001.

[12] A.Puriand S. Tripakis, “Algorithms for routing with multiple constraints,’AtPS 2002 Workshop on Planning
and Scheduling using Multiple CriteridToulouse, France), pp. 7-14, April 2002.

[13] A. Seiand W. W. Symes, “Convergent finite-difference traveltime gradient for tomograptBrbdaeedings of
65" Society of Exploration Geophysicists Annual Mesetiftpuston, TX), pp. 1258-1261, 1995.

[14] M. G. Crandall, L. C. Evans, and P.-L. Lions, “Some properties of viscosity solutions of Hamilton-Jacobi
equations, Transactions of the American Mathematical Sogigt). 282, no. 2, pp. 487-502, 1984.

[15] E. W. Dijkstra, “A note on two problems in connection with grapi¢iimerische Mathematik pp. 269-271,
1959.

[16] M. Falcone, “Numerical solution of dynamic programming equations@jaimal Control and Viscosity Solu-
tions of Hamilton-Jacobi-Bellman equatigridirkhauser, 1997. Appendix A oPf].

REFERENCES 144

[17] H.-K. Zhao, “Fast sweeping method for Eikonal equations I. Distance function,” tech. rep., UCI, Department
of Mathematics, University of California, Irvine, CA, 92697-3875, 2002. Under review, SINUM.

[18] T. H. Cormen, C. E. Leiserson, and R. L. Rivdstroduction to Algorithms San Franscisco: McGraw-Hill,
1990.

[19] J. A. Sethianlevel Set Methods and Fast Marching MethoNew York: Cambridge University Press, 1999.

[20] R. Kimmeland J. A. Sethian, “Computing geodesic paths on manifdRieceedings of the National Academy
of Sciences, USA0l. 95, no. 15, pp. 8431-8435, 1998.

[21] J. A. Sethian and A. Vladimirsky, “Ordered upwind methods for static Hamilton-Jacobi equations: Theory and
algorithms,”SIAM Journal on Numerical Analysisol. 41, no. 1, pp. 325-363, 2003.

[22] Y.-H. R. Tsai, L.-T. Cheng, S. Osher, and H.-K. Zhao, “Fast sweeping methods for a class of Hamilton-Jacobi
equations,"'SIAM Journal on Numerical Analysisol. 41, no. 2, pp. 673-694, 2003.

[23] M. Bardi and I. Capuzzo-Dolcett@ptimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman equa-
tions Boston: Birklauser, 1997.

[24] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Adjustable robust solutions of uncertain linear
programs.Minerva Report, http://iew3.technion.ac.il/Labs/Q2003.

[25] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear progradpgerations Research Letters
25(1):1-13, 1999.

[26] G. Calafiore and M.C. Campi. Uncertain convex programs: randomized solutions and confidenceltevels.
appear in Mathematical Programming004.

[27] L. El Ghaoui and H. Lebret. Robust solutions to uncertain semidefinite progis J. Optim,. 9(1):33-52,
1998.

[28] W. Hoeffding. Probability inequalities for sums of bounded random variabtmsinal of the American Statis-
tical Association58:13—-30, 1963.

[29] M. PuttermanMarkov Decision Processes: Discrete Stochastic Dynamic Programmniilegv York: Wiley-
Interscince, 1994.

[30] J. Filler and K. VriezeCompetitive Markov Decision Processésew York: Springer, 1996.

[31] D. Berstsekas and J. Tsitsiklideuro-Dynamic ProgrammingMassachusetts: Athena Scientific, 1996.
[32] H. Mine and S. Osakiviarkov Decision Processegmerican Elsevier Publishing Company Inc, 1970.
[33] G. Siouris,Optimal control and estimation thearfNew York, USA: Wiley-Interscience, 1995.

[34] S. Wilks, Mathematical StatisticsNew York, USA: Wiley-Interscience, 1962.

[35] E. Lehmann and G. Casell@heory of point estimatiorNew York, USA: Springer-Verlag, 1998.

REFERENCES 145

[36] E. LehmannTesting Statistical Hypothesi®dew York, USA: Wiley, 1986.
[37] J. PitmanProbability. New York, USA: Springer-Verlag, 1993.
[38] H. Poor,An introduction to signal detection and estimatidview York: Springer-Verlag, 1988.

[39] E. Feinberg and A. Shwartiandbook of Markov Decision Processes, Methods and ApplicatiBoston:
Kluwer’s Academic Publishers, 2002.

[40] S. Boyd and L. Vandenbergh€pnvex OptimizatianCambridge, U.K.: Cambridge University Press, January,
2004.

[41] H. R. Schwarz and J. Waldvog®lumerical Analysis: A Comprehensive Introductidtew York, USA: John
Wiley and Sons, 1989.

[42] D. D. Farias and B. V. Roy, “The Linear Programming Approach to Approximate Dynamic Programming.”
submitted to Operations Research, 2002.

[43] L. G. Epstein and M. Schneider, “Recursive multiple-priors.” to appear in Journal of Economic Theory, 2003.

[44] L.G. Epstein and M. Schneider, “Learning under ambiguity.” http://www.econ.rochster.edu/Faculty/Epstein.html,
2002.

[45] G. lyanger, “Robust dynamic programming.” personal communication, 2003.
[46] G. H. Golub and C. F. Van Loan, “An analysis of the total least squares problem,” vol. 17, pp. 883-893, 1980.

[47] A.Ng and M. Jordan, “Pegasus: A policy search method for large MDPs and POMDRB®"@noceedings of
the Sixteenth Conference in Uncertainty in Artificial Intelliggn2@00.

[48] A. Nilim, L. E. Ghaoui, M. Hansen, and V. Duong, “Trajectory-based Air Traffic Management (TB-ATM)
under weather uncertainty,” the proceeding of the 4th USA/EUROPE ATM R & D Semigaf1l.

[49] S. Kalyanasundaram, E.Chong, and N. Shroff, “Markov Decision Processes with uncertain Transition Rates:
Sensitivity and robust control,” tech. rep., Department of ECE, Purdue University, West Lafayette, Indiana,
USA, March 2001.

[50] L. EI-Ghaoui and A. Nilim, “Robust solution to the markov decision processes with uncertain transition ma-
trices,” Tech. Rep. UCB/ERL M02/31, Department of EECS, University of California, Berkeley, November
2002.

[51] A. Shapiro and A. J. Kleywegt, “Minimax analysis of stochastic probler@gtimization Methods and Soft-
ware, 2002. to appear.

[52] A.S. Nowak, “On zero sum stochastic games with general state spa@mbhability and Mathematical Statis-
tics, vol. 4, no. 1, pp. 13-32, 1984.

[53] C.C.White and H. K. Eldeib, “Markov Decision Processes with imprecise transition probabiliipsrations
Researchvol. 42, no. 4, pp. 739-749, 1994.

REFERENCES 146

[54] E. Altman and A. Hordijk, “Zero-sum markov games and worst-case optimal control of queueing systems,”
QUESTA , a special issue on optimization of queueing systeh1, pp. 415-447, 1994,

[55] Z. Chen and L. Epstein, “Markov Decision Processes with imprecise transition probabiltgsjbmetrica
vol. 70, pp. 1403-1443, 2002.

[56] M. Abbad and J. A. Filar, “Perturbation and stability theory for Markov control problefBEE Transactions
on Automatic Contrglvol. 37, pp. 1415-1420, 1992.

[57] J. K. Satia and R. L. Lave, “Markov Decision Processes with Uncertain Transition Probabiigsrations
Researchvol. 21, no. 3, pp. 728-740, 1973.

[58] M. Abbad, J. Filar, and T. Bielecki, “Algorithms for singularly perturbed limiting average Markov control
problems,”IEEE Transactions on Automatic Contrebl. 37, pp. 1421-1425, 1992.

[59] T. Ferguson, “Prior distributions on space of probability measureis¢ Annal of Statisticsvol. 2, no. 4,
pp. 615-629, 1974.

[60] R. Givan, S. Leach, and T. Dean, “Bounded parameter Markov Decision Process$esjttimEuropean Con-
ference on Planningpp. 234-246, 1997.

[61] J. Bagnell, A. Ng, and J. Schneider, “Solving uncertain Markov Decision Problems,” Tech. Rep. CMU-RI-TR-
01-25, Robotics Institute, Carnegie Mellon University, August 2001.

[62] A.Varma, “Case studies in joint estimation and optimization,” Master’s thesis, Department of Electrical Engi-
neering and Computer Sciences, University of California, Berkeley, 2001.

[63] J. K. SatiaMarkovian Decision Processes with Uncertain transition matrices or/and Probabilistic Observation
of states PhD thesis, Department of Industrial Engineering , Stanford University, 1968.

[64] S. Boyd, “Convex Optimization,” Tech. Rep. Course Reader, EECS 290N, Department of Electrical Engineer-
ing and Computer Sciences, University of California, Berkeley, Fall 2001.

[65] L. EI-Ghaoui, M. Oks, and A. Varma, “Constraint likelihood region of confidence of transition probability
matrices in credit risk analysis,” tech. rep., Department of EECS, University of California, Berkeley, USA,
2001.

[66] Y. Nesterov and A. Nemirovskinterior point polynomial methods in convex programming: Theory and ap-
plications Philadelphia, PA: SIAM, 1994,

	Introduction
	Summary
	Module 1: Interactive task planner
	Module 2: Configuration and schedule
	Module 3: Task execution
	Module 4: Database
	Module 5: Java
	Module 6: Robust path planning
	Module 7: Dynamic team formation
	Module 8: Path planning with two constraints

	Module 1: Interactive task planner
	Threat
	Plan design space
	Risk along a path
	Value function calculation
	Risk of a plan with prespecified order of attack
	The ITP procedure and optimal plan
	Refinement of the ITP procedure: mixed initiative

	Module 2: Configuration and schedule
	Task scheduling in the MICA context
	Scheduling model formulation and solutions
	Team composition
	Linear programming formulation
	Goal programming formulation
	Implementations in executable code

	Module 3: Task execution
	Introduction
	An aside on Shift
	Architecture
	Mixed initiative interactions
	UCAV type
	Platform type
	Maneuver specification
	Base type
	Types of maneuvers
	Example: attack_jam

	Maneuver controller
	Base type
	Example: attack_jam type

	Vehicle supervisor
	Vehicle dispatcher
	Mission specification
	Dispatcher type

	Task specification
	Concepts
	Leg type
	Subtask type

	Team controller
	Base type
	Task controller
	Sub-task controller
	Properties

	Conclusion

	Module 4: State estimator
	Threat distribution after strike
	Threat distribution after search
	Implementation

	Module 5: Java interface to OEP
	Java client to the OEP
	RMI Services

	Module 6: Robust path planning
	Introduction
	Problem Setup
	The Bellman recursion
	Addressing uncertainty in the transition matrices
	The robust Bellman recursion
	Main result

	Robust algorithm summary
	Likelihood Models
	Model description
	The dual problem
	A bisection algorithm

	Maximum a posteriori models
	Entropy Models
	Model description
	Dual problem
	A bisection algorithm

	Other Specific Models
	Interval matrix model
	Ellipsoidal models
	Example: Robust Aircraft Routing
	The nominal problem
	The robust version
	Comparing robust and nominal strategies
	Inaccuracy of uncertainty level
	Concluding remarks
	Appendix
	Proof of the robust Bellman recursion
	Properties of function of section 8.4.3
	Properties of function of section 8.6.3
	Calculation of for a Desired Confidence Level

	Module 7: Flexible team formation
	Problem Statement
	Constraints and optimization objective
	Multiple resources allocation
	Dealing with integer approximations
	Resource Allocation under Uncertainty
	Scenario-based optimization
	Approximate feasibility of scenario solutions
	A posteriori analysis
	Interaction models
	Numerical examples
	The nominal problem
	The Robust counterpart
	Conclusion

	Module 8: Path planning with multiple constraints
	Introduction
	Problem definition
	Related work

	Value function solution
	Single objective shortest path
	Computing path integrals
	Exploring potential paths
	Numerical algorithms

	Examples
	Two costs in two dimensions
	Three costs in two dimensions
	Two costs in three dimensions
	The implementation and deExecution times

	Discussion
	Appendix: Update equations for any number of dimensions

	Conclusions
	Planning
	Execution
	State estimation
	Re-planning

	Open problems
	Planning
	State estimation
	Execution
	Re-planning

	References

