
AFRL-VA-WP-TR-2004-3105

HIERARCHICAL CONTROL OF SEMI-
AUTONOMOUS TEAMS UNDER
UNCERTAINTY (HICST)

Pravin Varaiya
University of California
Department of Electrical Engineering and Computer
 Sciences
Berkeley, CA 94720

MAY 2004

Final Report for 28 September 2001 – 31 December 2003

Approved for public release; distribution is unlimited.

STINFO FINAL REPORT

AIR VEHICLES DIRECTORATE
AIR FORCE MATERIEL COMMAND
AIR FORCE RESEARCH LABORATORY
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542

x5S\

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED
IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT
PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE U.S. GOVERNMENT. THE
FACT THAT THE GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS,
SPECIFICATIONS, OR OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY
OTHER PERSON OR CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO
MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY RELATE
TO THEM.

THIS REPORT HAS BEEN REVIEWED BY THE AIR FORCE RESEARCH LABORATORY
WRIGHT SITE OFFICE OF PUBLIC AFFAIRS (AFRL/WS/PA) AND IS RELEASABLE TO
THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS). AT NTIS, IT WILL BE
AVAILABLE TO THE GENERAL PUBLIC, INCLUDING FOREIGN NATIONALS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

/s/ /s/
__ __
MARK J. MEARS HOWARD T. EMSLEY, Actg Chief
Project Engineer Control Design and Analysis Branch
Control Design and Analysis Branch Control Sciences Division

/s/
__
BRIAN W. VAN VLIET, Chief
Control Sciences Division
Air Vehicles Directorate

COPIES OF THIS REPORT SHOULD NOT BE RETURNED UNLESS RETURN IS
REQUIRED BY SECURITY CONSIDERATIONS, CONTRACTUAL OBLIGATIONS, OR
NOTICE ON A SPECIFIC DOCUMENT.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

May 2004 Final 09/28/2001 – 12/31/2003
5a. CONTRACT NUMBER

F33615-01-C-3150
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

HIERARCHICAL CONTROL OF SEMI-AUTONOMOUS TEAMS UNDER
UNCERTAINTY (HICST)

5c. PROGRAM ELEMENT NUMBER
0602301

5d. PROJECT NUMBER

A055
5e. TASK NUMBER

6. AUTHOR(S)

Pravin Varaiya

5f. WORK UNIT NUMBER

 0A
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER

University of California
Department of Electrical Engineering and Computer Sciences
Berkeley, CA 94720

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY ACRONYM(S)

AFRL/VACA Air Vehicles Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson Air Force Base, OH 45433-7542

Defense Advanced Research
Projects Agency (DARPA)
3701 N. Fairfax Avenue
Arlington, VA 22203

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER(S)

 AFRL-VA-WP-TR-2004-3105
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

Report contains color.
14. ABSTRACT

This is the final report of work done under DARPA Contract F33615-01-C-3150, for the period of performance
September 2001 through December 2003. Algorithms and associated software were developed for the following modules:
1. Interactive task planner (ITP); 2. Configuration and schedule; 3. Task execution; 4. State estimator; 5. Java interface to
OEP; 6. Robust dynamic programming for path planning with uncertain information; 7. Flexible formation of teams
operating under large uncertainties; and 8. Path planning with two constraints. Modules 1-5 are integrated into a self-
contained package that can be used in an off-line or open loop planning phase followed by a closed-loop execution phase.
The package can be used in a fully automated fashion or in an interactive manner, in which the user can intervene at
several stages to modify the operation of the modules. Thus the package makes provision for ‘mixed initiative’. Modules
6-8 are ’stand alone’ algorithms. Software implementations for these algorithms were developed. The report describes
these modules and provides examples to illustrate their operation. The technology developed under HICST, and the
modules that embody this technology, represent a significant advance towards the objectives of the MICA program.

15. SUBJECT TERMS
Cooperative Control, Unmanned Air Vehicles

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER OF
PAGES

 152
 Mark J. Mears
19b. TELEPHONE NUMBER (Include Area Code)

(937) 255-8685

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

CONTENTS 2

Contents

1 Introduction 7

2 Summary 10

2.1 Module 1: Interactive task planner. 10

2.2 Module 2: Configuration and schedule. 13

2.3 Module 3: Task execution. 17

2.4 Module 4: Database. 21

2.5 Module 5: Java. 21

2.6 Module 6: Robust path planning. 23

2.7 Module 7: Dynamic team formation. 24

2.8 Module 8: Path planning with two constraints. 26

3 Module 1: Interactive task planner 28

3.1 Threat . 28

3.2 Plan design space. 30

3.3 Risk along a path. 31

3.4 Value function calculation . 33

3.5 Risk of a plan with prespecified order of attack. 34

3.6 The ITP procedure and optimal plan. 34

3.7 Refinement of the ITP procedure: mixed initiative. 36

4 Module 2: Configuration and schedule 38

4.1 Task scheduling in the MICA context. 38

4.2 Scheduling model formulation and solutions. 40

4.3 Team composition. 42

4.4 Linear programming formulation. 43

4.5 Goal programming formulation. 44

4.6 Implementations in executable code. 45

CONTENTS 3

5 Module 3: Task execution 48

5.1 Introduction . 48

5.2 An aside onShift . 49

5.3 Architecture. 50

5.4 Mixed initiative interactions . 53

5.5 UCAV type . 53

5.6 Platform type . 53

5.7 Maneuver specification. 55

5.7.1 Base type. 55

5.7.2 Types of maneuvers. 55

5.7.3 Example: attackjam . 55

5.8 Maneuver controller. 56

5.8.1 Base type. 56

5.8.2 Example: attackjam type . 57

5.9 Vehicle supervisor. 57

5.10 Vehicle dispatcher. 58

5.10.1 Mission specification. 58

5.10.2 Dispatcher type. 59

5.11 Task specification. 59

5.11.1 Concepts. 59

5.11.2 Leg type . 60

5.11.3 Subtask type. 61

5.12 Team controller. 61

5.12.1 Base type. 61

5.12.2 Task controller. 61

5.12.3 Sub-task controller. 62

5.12.4 Properties. 66

5.13 Conclusion . 66

CONTENTS 4

6 Module 4: State estimator 72

6.1 Threat distribution after strike. 72

6.2 Threat distribution after search. 74

6.3 Implementation. 75

7 Module 5: Java interface to OEP 76

7.1 Java client to the OEP. 76

7.2 RMI Services . 76

8 Module 6: Robust path planning 78

8.1 Introduction . 78

8.2 Problem Setup. 79

8.2.1 The Bellman recursion. 79

8.2.2 Addressing uncertainty in the transition matrices. 80

8.2.3 The robust Bellman recursion. 81

8.2.4 Main result . 81

8.3 Robust algorithm summary. 82

8.4 Likelihood Models . 82

8.4.1 Model description . 83

8.4.2 The dual problem. 84

8.4.3 A bisection algorithm. 85

8.5 Maximum a posteriori models. 86

8.6 Entropy Models. 87

8.6.1 Model description . 87

8.6.2 Dual problem. 87

8.6.3 A bisection algorithm. 88

8.7 Other Specific Models. 89

8.8 Interval matrix model. 89

8.9 Ellipsoidal models . 89

CONTENTS 5

8.10 Example: Robust Aircraft Routing. 91

8.11 The nominal problem. 91

8.12 The robust version. 92

8.13 Comparing robust and nominal strategies. 92

8.14 Inaccuracy of uncertainty level. 93

8.15 Concluding remarks. 94

8.16 Appendix . 95

8.16.1 Proof of the robust Bellman recursion. 95

8.16.2 Properties of functionφ of section 8.4.3. 96

8.16.3 Properties of functionφ of section 8.6.3. 97

8.16.4 Calculation ofβ for a Desired Confidence Level. 98

9 Module 7: Flexible team formation 103

9.1 Problem Statement. 103

9.2 Constraints and optimization objective. 104

9.3 Multiple resources allocation. 106

9.4 Dealing with integer approximations. 107

9.5 Resource Allocation under Uncertainty. 108

9.6 Scenario-based optimization. 109

9.7 Approximate feasibility of scenario solutions. 110

9.8 A posteriori analysis . 111

9.9 Interaction models . 112

9.10 Numerical examples. 112

9.11 The nominal problem. 113

9.12 The Robust counterpart. 114

9.13 Conclusion . 115

10 Module 8: Path planning with multiple constraints 118

10.1 Introduction. 118

CONTENTS 6

10.1.1 Problem definition. 119

10.1.2 Related work. 119

10.2 Value function solution. 120

10.2.1 Single objective shortest path. 120

10.2.2 Computing path integrals. 121

10.2.3 Exploring potential paths. 122

10.2.4 Numerical algorithms. 123

10.3 Examples . 124

10.3.1 Two costs in two dimensions. 125

10.3.2 Three costs in two dimensions. 126

10.3.3 Two costs in three dimensions. 127

10.3.4 The implementation and deExecution times. 127

10.4 Discussion. 129

10.5 Appendix: Update equations for any number of dimensions. 130

11 Conclusions 137

11.1 Planning. 137

11.2 Execution . 138

11.3 State estimation. 138

11.4 Re-planning. 139

12 Open problems 140

12.1 Planning. 140

12.2 State estimation. 141

12.3 Execution . 141

12.4 Re-planning. 142

References 143

1 INTRODUCTION 7

1 Introduction

This is the final report of work done in the project, “Hierarchical control of semi-autonomous teams under uncertainty
(HICST),” under Darpa Contract F33615-01-C-3150. The period of performance was September, 2001 to December,
2003. The contract was awarded by the MICA (Mixed Initiative Control of Automa-teams) Program. MICA’s
objectives are to:

• Develop theory, algorithms, software, and modeling/simulation capabilities for hierarchical bat-
tlespace management and distributed control of semi-autonomous entities

– Cultivate dynamic operational and mission planning for teamed entities

– Develop cooperative path/execution planning

– Address an active, intelligent adversary and threats in an uncertain environment

• Demonstrate multiple vehicle execution of team-based strategies

These objectives become clearer in the following setting.1 There is a set of Unmanned Air Vehicles (UAVs) with
different capabilities (sensors, weapons, decoys), collectively called theBlue force, and a set of targets called the
Red force. The Blue force is used to attack the Red force, which threatens the attacking Blue force. The HICST
project developed some of the theory, algorithms, and associated software for planning and executing Blue’s attack.

A plan organizes Blue’s attack into a set of independenttasks.2 Each task is a list ofsub-tasks. Each sub-task
comprises a list of targets to be attacked in a specific order. Ateamof several UAVs is needed to carry out each
sub-task, so a plan must also assign a team of UAVs to each sub-task. The specification of a team includes the UAV
platforms (size, speed) and their configuration, including the weapons and sensors each UAV carries. The plan also
specifies thedependenciesamong the sub-tasks: This is a partial order orprecedencerelation that says that certain
targets must be attacked before others. The plan may also impose timing constraints on sub-task completion. Lastly,
the plan determines a nominal path for the UAVs in each team. The nominal path for a team is later refined to specify
amissionfor each UAV in the team. In summary, a plan for a single task comprises:

1. The decomposition of Blue’s attack into tasks, each of which is a list of subtasks;

2. A team for each task comprising a set of configured UAVs;

3. A precedence relation among sub-tasks and timing constraints;

4. A nominal flight path for each team.

A plan is designed on the basis of prior information, called the Intelligent Preparation of the Battlefield (IPB). The
plan is sometimes called a Team Composition and Tasking (TCT) plan for ‘team composition and tasking’.

1A concrete instance of this setting is the Open Experimental Platform or OEP, developed by Boeing under the MICA program. The
modules described below are intended for the OEP.

2‘Independent’ tasks can be executed without any timing or precedence order among them.

1 INTRODUCTION 8

The real-timeexecutionof a plan is governed by a two-layer controller, whose upper layer determines team coordi-
nation, and whose lower layer determines the control of individual UAVs in a team. The control architecture is thus
organized in the three layers of figure1. The TCT Plan layer is ‘offline’ and precedes the online execution of the
attack.

TCT Planner

Team
Coordinator

UAV
Controller

Team
Coordinator

UAV
Controller

UAV
Controller

UAV
Controller

off line
planning

online
execution

Figure 1: The TCT Planner designs the plan, which is executed by a two-layer controller that coordinates team effort
and controls the individual UAVs.

Figure1 suggests that once the TCT plan is designed it is ‘handed’ over for execution. However, this may not be the
case. It may happen that, during execution, new information is received that triggers a re-working of the plan. This
introduces the ‘feedback’ loop indicated in figure2.

The planning and execution phases may be fully automated. However, the control design permits human intervention
in both phases to guide or override the automated choices. Thus there is provision for ‘variable’ autonomy.

TCT Planner

Execution

State of the
world estimate

Human
intervention

online information

re-planning trigger

Figure 2: Information received during plan execution leads to a change in the estimate of the ‘state of the world’ and
may trigger a re-working the plan, creating a feedback loop.

The work conducted under the HICST project is conveniently summarized as algorithms and associated software,
organized in the following modules:

1. Interactive task planner (ITP);

2. Configuration and schedule;

1 INTRODUCTION 9

ITP
Configuration
& schedule

Txt file:
scenario

Config
xml

Config&
schedule
txt

OEP Control:
SHIFT

JAVA

Database
SoW

1 2

34

5

Txt file:
paths

Figure 3: Integration of modules 1-5. The modules make provision for human intervention, not indicated in the
figure. SoW is ‘state of the world’.

3. Task execution;

4. Database for state estimation;

5. Java interface to OEP;

6. Robust dynamic programming for path planning with uncertain information;

7. Dynamic team formation operating under large uncertainties;

8. Path planning with two constraints.

Modules1-5 are integrated into a self-contained package as indicated in figure3, in which the five modules are
labeled and encapsulated in bold boxes. The package may be operated in an open-loop or ‘planning’ mode or in
a closed loop or ‘execution’ mode. Modules1-5 make provision for human intervention at well-defined junctures.
This is not indicated in figure3, but is discussed in later sections.

The remainder of the report is organized as follows. Section2 briefly describes each of the eight modules. The
interested reader can learn about the underlying theory and algorithm for each module in the following eight sections.
Section11 summarizes our main contribution, and section12 gives our perspective on the difficult open problems.

2 SUMMARY 10

2 Summary

We briefly describe each module; in each case we specify the input, output, and what the module does.

2.1 Module 1: Interactive task planner

The ITP module takes as input a txt file, which specifies the SW and NE corners of the scenario area, the location of
the blue base, and the location, type, and range of the red threats. Figure4 is an excerpt of this input file.

$BASE -83.47249703 -244.9023235

$SW -445.0066235 -445.278318

$NE 445.010847 445.2816576

#name oepid oeptype location range

ew1 ew1 ew_radar_site_type 83.08835062 357.8026933 0

ew2 ew2 ew_radar_site_type 84.52129045 257.5534701 0

ew3 ew3 ew_radar_site_type 105.5589836 136.3371254 0

ew4 ew4 ew_radar_site_type 217.4891654 152.4172989 0

ew5 ew5 ew_radar_site_type 313.5345099 140.1720993 0

ew6 ew6 ew_radar_site_type 314.9126829 229.1353302 0

c2_1 c2_1 c2_facility_type 143.4283105 196.6354571 0

c2_2 c2_2 c2_facility_type 237.343399 196.6354571 0

long_sam1 long_sam1 long_sam _fire_control_platform_type -15.94678417 377.0053928 80

long_sam2 long_sam2 long_sam _fire_control_platform_type 83.87181924 309.8998433 80

long_sam3 long_sam3 long_sam _fire_control_platform_type 94.1244268 184.7984307 80

long_sam4 long_sam4 long_sam _fire_control_platform_type 176.454496 137.30932 80

long_sam5 long_sam5 long_sam _fire_control_platform_type 280.0729363 135.739708180

Figure 4: Excerpt of ITP input file, specifying SW and NE corners of scenario area, location of blue base, and red
threats.

After receiving this input file inStep 1, the ITP creates a scenario window that displays the location of the threats
and the blue base. InStep 2, the planner selects a subset of the threats asprimary. These are the threats that the
planner wants to attack. The ITP then calculates and displays additional,potentialthreats. These are the threats that
‘protect’ the primary threats, i.e. one or more primary threats are included in the threat range of the potential threats.
The planner next chooses aminimumrisk level.

In Step 3, the ITP determines the subset of potential and primary threats that can be attacked along paths starting
at the blue base, for which the total risk is less than the chosen minimum risk level. This subset of targets is called
Wave 1. The ITP also determines the nominal risk-minimizing paths from the blue base to each of Wave 1 targets.

2 SUMMARY 11

These paths are displayed in the scenario window. They are called ‘nominal’ because the actual paths taken by the
UAV are somewhat different and are determined by the ‘task execution’ module.

In Step 4, the ITP determines the subsetWave 2of additional targets that can be attacked along paths starting at
either the blue base or one of the Wave 1 target locations, for which the total risk is less than the minimum. The ITP
determines and displays the nominal risk-minimizing paths for Wave 2 targets. The ITP also displays the optimal
‘minimum risk’ contours of locations that can be reached for each level of total risk.

The procedure continues in this way, generating Wave 3, Wave 4, etc. until all the primary targets have been reached.

The elimination of a targetm in Wavei reduces the risk for each target in Wavei+ 1 by, say, the amountS(m,n).
S is called the sensitivity matrix. The planner may remove targetm∗ from Wavei if the sensitiviesS(m∗, n) are
small.

On the other hand, before the calculation of any wave, the planner may add new threats to a wave, and change the
minimum acceptable risk.

Figure5 is a snapshot of the ITP display window. ‘Wave threshold’ is the minimum risk level the planner selects;
‘value’ is the minimum risk incurred by the various paths. The ‘snapshot’ window in the top right allows the planner
to revisit earlier decisions and change them, if necessary.

The output of ITP thus consists of:

• A set of targets, organized in waves, and the minimum risk for each target, based on the assumption that targets
in Wavei+ 1 are attacked after those in Wavei have been destroyed;

• A nominal risk-minimizing path for each target in Wavei+1, starting at the blue base or at any target locations
in Wave 1-i;

• A ‘sensitivity’ matrix that gives the reduction in risk for each target in Wavei + 1 due to the elimination of
each target in Wavei.

2 SUMMARY 12

Min risk after
waves 1,2

Equal risk
contours

Exploration
history

Figure 5: The ITP display window gives the paths, the Wave targets, the risk incurred along each path, and the equal
risk contours.

2 SUMMARY 13

2.2 Module 2: Configuration and schedule

This module takes the ITP output as its input and produces the two files indicated in figure3. We explain how this is
done. The top diagram of figure6 represents in graphical form part of the information in the ITP output. There are
four final targets. The ITP organizes Blue’s attack in three waves, with four targets each. For reference, we index
the 12 targets by the pair (i, Wavej) to mean theith target in Wavej. The arrows in the diagram refer to the origin
and destination of the minimum risk paths generated by the ITP. Thus, for example, the minimum risk path to target
(4, Wave 2) starts at the blue base. Similarly, the minimum risk path to target (3, Wave 3) starts at (4, Wave 2). The
ITP output also includes the sensitivity matrix described at the end of section2.1above.

The ‘configuration and schedule’ module produces information depicted in the middle and bottom diagrams. It
organizes some of the targets into sub-tasks. In this case, there are four sub-tasks. For example, sub-task 1 consists
of targets (2, Wave 1), (1, Wave 2) and (1, Wave 3). All final targets are included in the sub-tasks. However,
three targets, (1, Wave 1), (4, Wave 1), and (2, Wave 2) are not included in any sub-task. Presumably, the module
determined that, based on the sensitivity matrix, these targets do not contribute to a significant reduction in risk, so
they are excluded.

The solid lines in the middle diagram indicate the precedence relation. Thus target (1, Wave 2) can only be attacked
after targets (2, Wave 1) and (3, Wave 1) have been destroyed. Observe that this precedence relation isweakerthan
that implicit in the ITP calculation, which suggests that all targets in Wavej must be destroyed before any target in
Wavej+1 is attacked. The weaker precedence relation takes into account the sensitivities, which are not considered
in the ITP’s automatic wave calculation. From a planning perspective, the weaker relation is desirable because
it imposes fewer dependencies among subtasks, reducing coordination among teams and increasing flexibility in
timing.

Having determined the task composition and the precedence relation, this module determines the team configuration
for each task. Consider task 1, which includes three subtasks, the targets (2, Wave 1), (1, Wave 2) and (1, Wave 3).
The ‘configuration and schedule’ module takes into account the threats at these targets (long range SAM, medium
range SAM, etc.), determines the weapons to be used to attack each target and their lethality, and specifies Team 1,
i.e. the platforms and their configuration (weapons, sensors). The table at the bottom of the figure gives an example
of a Team specification this module produces.

The two files output by this module indicated in figure3 are textual representations of the information in figure6.
The xml file describes the team configurations in a form that the OEP accepts and is used to instantiate the teams.
The ‘config & schedule’ txt file describes the sub-tasks for each team for the ‘Task execution’ module.

The final output of this module is the determination of the paths and precedence relationships to be followed by each
UAV. (This is the UAV’s mission.) Recall that the ITP produces a nominal path for ateamfor each sub-task. The
module modifies this nominal path and specifies a path that each UAV in the team must follow during the execution
phase. We explain how this is done with the help of figure7.

The figure shows two scenarios. The initial location of the three-UAV team is at A and the target is at B, in both
cases. In the upper scenario, there is only one threat, indicated by the circle around B. In the lower scenario, there an
additional threat, indicated by the circle around C. The ITP gives the nominal team path as the straight line starting
at A and ending at the target at B for both scenarios. Suppose that the module has determined that the target at B is

2 SUMMARY 14

Target
Scenario Name

Weapon
Selection

Number of
Weapons on Target

Probability of
Destruction

Release distance(km)
at 5 kft, and 153 knots Platform

ew3 GPS Bomb 2 2 drawings of 0.95 5km Wolf_1
ew4 GPS Bomb 2 2 drawings of 0.95 5km Coyote_1
ew5 GPS Bomb 2 2 drawings of 0.95 5km Coyote_2

Task 2 - Team Bravo

blue
base final

targets

Wave 1 Wave 2 Wave 3

1

2

3

4

Sub-task 1

Sub-task 2

Sub-task 4

Sub-task 3

Figure 6: The ITP output (top) is analyzed to produce sub-tasks and precdence relation (middle), and team compo-
sition (bottom).

2 SUMMARY 15

to be attacked by a single UAV (called the attack UAV in the figure); the two remaining UAVs are ‘reserve’ UAVs to
be used for later targets in the sub-task.

There is an operational constraint: to successfully attack its target, the UAV heading must be in the direction of the
target in order to minimize its signature; if the UAV is not headed in this direction, its signature is larger, increasing
the likelihood of its detection by radar and consequent destruction.

Consider now the upper scenario. If the attack UAV follows the nominal path it will meet the operational constraint.
The nominal path is decomposed into two ‘legs’: leg 1 which terminates at the threat region is safe; leg 2 is ‘unsafe’
but meets the operational constraint. So the attack UAV can proceed from leg 1 to leg 2 and destroy the target at B.
The reserve UAVs can advance along leg 1, go into a holding pattern at the end of leg 1, and proceed along leg 2
only after the target at B is destroyed.

Consider now the lower scenario. If the attack UAV follows the nominal path, it will exhibit a larger signature to the
radar at C and it will get destroyed. So the nominal path must be modified as indicated. If the attack UAV follows leg
2, it will minimize its signature to the radars at both B and C; it can then destroy the target at B, proceed to destroy
the target at C. The reserve UAVs can then proceed after these targets are destroyed.

This example shows how this module modifies the nominal path to minimize the signature of the attack UAV,
decomposes it into legs, and introduces precendence or dependency relations among the legs of the sub-tasks. This
precedence relation among legs is a refinement of the precendece relation among sub-tasks.

2 SUMMARY 16

leg 1 leg 2

A
B

nominal team path from ITP

A
B

C

leg 1
leg 2

nominal team path from ITP

attack UAV

attack UAV

reserve UAVs

reserve UAVs

Figure 7: A team’s nominal path from A to the target at B is modified into a sequence of two legs, the first of which
is ‘safe’, and the second of which is followed in the ‘attack’ phase. The UAVs that are not part of the attack are held
in ‘reserve’. When the target is ‘protected’ by another threat (at C), the path is modified to minimize the signature
of the attack UAV to both B and C.

2 SUMMARY 17

2.3 Module 3: Task execution

The ‘task execution’ module is a Shift3 program, which takes as an input a txt configuration and schedule file (the
specifications for the execution phase, which are output by module 2) and executes the specification in the OEP
simulation environment. The Shift program consists of a hierarchy of controllers for the teams and the individual
UAVs.

The execution module is coupled to the OEP through the JAVA module, indicated in figure3, through which the
controllers receive sensor observations and send control commands for way-points, sensors, and weapons.

The input txt file specifies: sub-tasks; legs for each sub-task; precedence relations on sub-task legs; and teams
assigned to execute each sub-task. The txt filepaths.hsis encoded in Shift. Figure8 is an excerpt of this input file.

The user interactions take place within the Microsoft Visual C++ environment. InStep 1, the user runs the OEP
batch files to start the OEP:namingservice, c4isimserver, loadscenario, openmap.

In Step 2, the user starts Microsoft Visual C++ and loads the Shift workspace. The Shift workspace includes the
file shift oep.hs, as well as the Shift engine. Theshift oep.hsfile contains the Shift code for the controllers and the
simulation setup.

The controller is hierarchically structured. There is a team controller and a ‘vehicle controller’ for each UAV in the
team. The controllers are hybrid automata. The discrete or logical state of the team controller maintains (among
other things) the identity of the set of UAVs in the team, the status (functioning or not), role (reserve or attack) of each
UAV in the team; the satisfaction or not of the dependency conditions. The discrete state of the vehicle controller
maintains the status of component controllers (sensors, weapons)and dependency conditions; its continuous state
mirrors the position, speed etc. of the vehicle, obtained from the OEP.

A major advantage of the Shift design is that thesameteam and UAV controllers work for teams with different
number of UAVs; moreover, the team controllers are instantiated ‘on the fly’ in case the team is reconfigured (see
section2.7). It is not possible to design such controllers in Simulink or Matlab.

In Step 3, the user presses theexecute programbutton ! to compile the input filepaths.hstogether with the file
shift oep.hsand to execute the Shift program. After initialization, the Shift program creates a control window that
enables the user to control the advance of simulation time, to inspect the state of all components, and to define
breakpoints. Figure9 displays this control window and the OEP map and figure10displays the state of one sub-task
controller.

In Step 4, the user starts the simulation by pressing thestart buttonin the Shift control window. From that point
onwards the user controls the advance of simulation time, monitors the state of all of the components in the simu-
lation as well as the estimate of state of the world provided by the database (module 4), which runs as a separate
program, and intervenes whenever he is prompted to do so by an exception window generated by the controllers
or when new information is received from the database. In both cases, it may happen that replanning is needed, as
indicated by the ‘feedback’ loop in figure2. In this case, the user terminates the current simulation and goes through
the planning-execution cycle again.

3Shift is a modeling language and execution system to describe networks of hybrid automata [1]. Shift allows hybrid automata to interact
through dynamically reconfigurable input/output connections and synchronous composition.

2 SUMMARY 18

type task_simulation
{

output
ucav u1, u2, u3, u4;

leg leg1, leg2, leg3, leg4, leg5, leg6, leg7, leg8;
subtask subtask1, subtask2;
task_controller ctarefa1;
task tarefa1;
set(ucav) team1:={}, team2:={};

state
number t; // time

flow default {t' =1;};

discrete
i0, i1, i2, i3, i4, normal;

transition
i0 -> i1 {} do // create ucavs with a control structure

{
u1 := create(ucav, p:= small_combo_1);
u2 := create(ucav, p:= small_combo_2);
u3 := create(ucav, p:= small_combo_3);
u4 := create(ucav, p:= small_combo_4);

},
i1 -> i2 {} do // create all legs

{
leg1:= create(leg, path:= [[[93517.725, 111320.00],

[150000.00, 158235.2],
[151000.00, 158000.00]],
[[93517.725, 111320.00],
[150000.00, 158235.2],
[151000.00, 158000.00]]],
vehicles:=[u1,u2], p:=medium_sam12);

leg2:= create(leg, p_attack:= [], p:=long_sam5_trk);
leg3:= create(leg, p_attack:= [[230679.38, 135172.16],

[231679.38, 135172.16]], p:=medium_sam13);
leg4:= create(leg, p_attack:= [[246924.42 , 134016.28],

[246924.42, 151410.03]], p:=medium_sam15);
leg5:= create(leg, p_attack:= [], p:=long_sam6_trk);
leg6:= create(leg, path:= [[[93517.725, 111320.00],

[108000.00 , 240000.00]],
[[93517.725, 111320.00],
[108000.00 , 240000.00]]],
vehicles:=[u3,u4], p:=long_sam8_trk);

leg7:= create(leg, p_attack:= [], p:=long_sam7_trk);
leg8:= create(leg, p_attack:= [], p:= medium_sam14);
team1:={u1, u2}; // create teams to execute subtasks
team2:={u3, u4};

},
i2 -> i3 {} when (t>1) do // creates subtasks and leg dependencies

{
subtask1:= create(subtask, p:=[leg1, leg2, leg3, leg4, leg5], team:= team1);
requires(leg3):={leg6};
subtask2:= create(subtask, p:=[leg6, leg7, leg8], team:= team2);

},
i3 -> i4 {} do {tarefa1:= create(task, s:=[subtask1,subtask2]);}, // creates task
i4 -> normal {} do {ctarefa1:= create(task_controller, t:=tarefa1);}; // creates task controller

}

Figure 8: Excerpt of execution input file, sub-tasks, legs, leg precedences, and teams.

2 SUMMARY 19

basebasebasebase

sm s12sm s12sm s12sm s12

sls5sls5sls5sls5sm s13sm s13sm s13sm s13

sm s15sm s15sm s15sm s15

sm s17sm s17sm s17sm s17
sls6sls6sls6sls6

sls8sls8sls8sls8 sls7sls7sls7sls7

sm s14sm s14sm s14sm s14

sm ssm ssm ssm s
11111111

Leg 6 Leg 7 Leg 8

Leg 1

Leg 2

Leg 3

Leg 4
Leg 5

SAM site
UAV

radar

AAA

Headquarters

long SAM site

medium SAM
site

Figure 9: Execution environment.

2 SUMMARY 20

Figure 10: Inspection window.

2 SUMMARY 21

2.4 Module 4: Database

This module calculates the probability distribution of the Red force conditioned on the observations made by Blue
sensors. The following model is used. The Red force is ground based, consisting of SAM launchers, SSM launchers,
etc. These launchers have associated radars with various ranges. We do not consider mobile launchers.

A Red force withN targets is then described by a set of the form

Targets= {target1 = (type1, (x1, y1)), · · · , targetN = (typeN , (xN , yN))}.

Here theith target is oftypei, one of a finite set ofTargetTypessuch as SAM, SSM or radars of different kinds, and
(xi, yi) is the two-dimensional location oftargeti.

Because the threat is described by a set of targets, knowledge about the threat is represented by a probability distribu-
tion of theset-valuedrandom variableTargets. The prior knowledge ofTargetsis given by the IPB. This knowledge
is updated when Blue sensor observations are made. Let thekth sensor observation be (symbolically) denoted byYk
and letY k = (Y1, · · · , Yk) denote the observation history.

The module recursively calculates the conditional probability distribution using Bayes rule:

P [Targets= τ | Y k] =
P [Targets= τ | Y k−1]P [Yk | Targets= τ]∑
σ P [Yk | Targets= σ]P [Targets= σ | Y k−1]

(1)

Above,σ ranges over all possibleTargets. The recursion is initialized by the prior distribution ofTargetsobtained
from the IPB. Equation (1) is derived under the assumption thatYk andY k−1 are conditionally independent given
Targets.

Although easy to write down, this recursion is extremely difficult to compute. Suppose there are 3 target types, 100
locations, and up to a total of 10 targets. ThenTargetsis a 3,000-dimensional random vector!

To make the computation tractable, several independence assumptions are made, which reduces the complexity of
the probability distribution in terms of both storage requirements and calculating the recursion. The module stores
the distribution in a database, which is updated when sensor measurements are made. Calculations of risk functions
(needed by the ITP) are then carried out by querying the database.

2.5 Module 5: Java

The java interface to the OEP implements two main functions: serving as the interface between the task execution
module (Shift) and the OEP, and making the necessary calls to update the database with new threat distribution
values and risk function values. The database layer access is made available through two RMI (Remote Method
Invocation) services—Probability Map Generator service and the Risk Function builder service. These services
have to be manually started by the user before initiating task execution. When the Shift initialization takes place,
it creates an internal mirror of the current state of the OEP by querying the OEP through the java client. The Java
Native Interface (JNI) is used for this purpose. During Shift initialization, the following actions are taken:

2 SUMMARY 22

• An instance of the JVM (Java Virtual Machine) is created and initialized. After the JVM is initialized, one
instance of the Java client is created corresponding to each platform in the OEP scenario;

• A static connection to the OEP is established through the naming service;

• Subsequently, connections to the database and the RMI services are established;

• The java client reads the initial state of the OEP, and the threat distribution for the IBP (Initial Battle Plan) is
loaded into the database. At this point, the initial value of the risk function is also calculated for the scenario
area (the probability map calculator service triggers this calculation in the risk function builder service);

• The java client publishes three methods: get(), set() and a static run() method, which the Shift controllers call
every time step (the value of the time step is determined by the argument to the SimulationInterface.runFor()
method call). In the get method, the current state of the OEP platform is read into Shift, and the OEP mirror
inside the Shift runtime is updated accordingly. The controllers within Shift determine the next step to be
taken for that particular platform. These values are then passed to the OEP by calling the set() method in the
java client. Once the set() method has been called for all instances of the java client in memory, the run()
method is called and execution proceeds in the OEP for one time step.

2 SUMMARY 23

ase Target
Threat 1 Threat 2

Threat B

Threat A

Path 1

Path 2b

Path 2a

Decision
point

Path 2

Figure 11: The ITP produces the deterministic path, path 1. A robust path planner produces a policy: follow path 2a
if threat A is present, and follow path 2b if threat A is absent.

2.6 Module 6: Robust path planning

Figure11displays a scenario with one target, four threats, Threats 1, 2, A and B. The circles denote the threat range.
Suppose the presence of Threats 1 and 2 is known with certainty, but there is a chance that Threats A and B are not
present. Based on the prior information in the IPB, however, the ITP generates path 1 as the minimum risk path from
the base to the target. This path avoids all the threats.

Suppose that when a UAV comes close to the locations of Threats A and B, sensor information reveals whether those
threats are actually present, i.e. the prior uncertainty is eliminated. In that case there is a better ‘feedback policy’
than following the deterministic path 1. This policy would follow the dashed path up to the location ‘decision point’.
At that point, the UAV would follow path 2a if the sensor information reveals the presence of Threat A, and path 2b
if Threat A is absent.

If the resulting flight is along path 2a, it would be worse (more time and fuel consuming) that path 1; if it is along
path 2b, it would be better than path 1. However, the contingent path 2 (path 2a or 2b) would on average be better
than path 1. The ‘robust path planning’ module determines paths according to such feedback policies. The module
adopts the following model.

Space is discretized with locations denotedx. Time is discretized with indext = 1, · · · , T , in which T is the
time horizon of interest. There is a set ofm contingent threats, modeled as a Markov chain with states(s =
(s1, · · · , sm)) ∈ S, and si ∈ {0, 1}, indicating absence (si = 0) or presence of theith threat; the transition
probabilities areP [si(t + 1) = 0 | si(t) = 0] = p andP [si(t + 1) = 1 | si(t) = 1] = q. The threat processes

2 SUMMARY 24

s1, · · · , sm are all independent, so

P [(s(t + 1) | s(t)] =
∏
i

P [si(t + 1) | si(t)].

The information structure is that a UAV at locationx at timet knows the statesi(t+1) of all threatsi located within
its sensor rangeR of x. It is assumed that in one time step a UAV does not travel beyond distanceR, so that it always
knows whether it will encounter a threat in the next step.

The last element of the model is a ‘one-step’ cost functionc(s, x, y) which is of the form

c(sx, x, y) =
{

∞, path fromx to y goes through the range of threatsx
|x− y|, otherwise

(2)

In (2), x is the current location, andy ranges over locations that can be reached fromx in one time step. Hence the
only relevant components ofs are those within the sensor range ofx, denoted bysx.

Suppose the UAV at timet is atx, and the threat state iss. Consider the dynamic programming recursion

V (sx, x, t) = min
y
{c(sx, x, y) +

∑
s′

V (s′y, y, t + 1)P [s′ | s]}. (3)

The minimization in (3) is over all locationsy that can be reached in one step fromx.

The module solves this recursive equation ‘backwards’ using the boundary conditionV (s, z, t) ≡ 0, at the target
locationz. Having solved this it obtains the next locationy at timet+1. At time t+1 the statesy becomes known,
and a new recursion is created. Evidently, the path by this policy will depend on what information is obtained.
Figure11 shows two possible path realizations, path 2a and path 2b.

To implement the recursion (3), the transition probabilitiesP must be known, which may not be the case. The
‘robust’ path planner instead assumes some bounds on these probabilities, represented byP ∈ P. The robust
recursion replacing (3) is

V (sx, x, t) = max
P∈P

min
y
{c(sx, x, y) +

∑
s′

V (s′y, y, t+ 1)P [s′ | s]}. (4)

2.7 Module 7: Dynamic team formation

Figure12 illustrates a simple example of an ITP output. The set of targets is divided into waves, wave 1, ... , wave
N . The ‘configuration and schedule’ module assigns the targets labeled 1 in theN waves to sub-task 1, those labeled
2 to sub-task 2, and so on. The precedence relation is that all targets in Wavei must be destroyed before any target
in Wavei+ 1 is attacked. The final targets (in waveN) are the primary targets.

Four teams are created, one for each sub-task, and teami is allocated to sub-taski, i = 1, · · · , 4. We refer to this as
astaticallocation, because the composition of the team is determined before task execution.

2 SUMMARY 25

By contrast, adynamicallocation is one in which, after a team attacks a target, the UAVs in the team may be
reallocated to other teams. The static allocation is indicated by the solid arrows in the figure; the dynamic alloca-
tion is indicated by the dashed arrows. We explain why a dynamic allocation is superior when there is significant
uncertainty in the outcome of a sub-task execution.

When a team attacks a target, some resources of the team will be consumed; the resources may be weapons, fuel,
or a UAV. The resource consumption is random. Suppose the objective is for each team to reach its primary or final
target with a specified level of resources. For example, team 1 must reach its final target with at least 2 UAVs with
a certain number of weapons, with probability at least 0.5. Given the resource consumption rates, we can then work
backwards to figure out the resources needed by team 1 at the beginning of waveN − 1 so that it can meet the
resource requirements for the primary target. Proceeding in this way, we arrive at the initial composition of team 1.

1

2

3

4

1

2

3

4

1

2

3

4

Base Wave 1 Wave 2 Wave N

sub-task 1

sub-task 4

Figure 12: The ITP output groups targets into waves. A static allocation assigns a fixed teami to sub-taski,
i = 1, · · · , 4. A flexible allocation re-allocates teams after each target strike.

Consider a simple example withN = 4, and suppose that in attacking a target there is a 0.25 probability that the
UAV is destroyed. We require that at least 2 UAVs reach the final target, with probability at least 0.5. Observe that
a UAV’s probability of survival after attacking 3 targets is(0.75)3 ≈ 0.4. An elementary calculation then shows
that in a static allocation, a team must begin with 6 UAVs to ensure that at least 2 UAVs reach the final target (with
probability at least 0.5). So for the four sub-tasks, a total of 24 UAVs is needed under a static allocation to achieve
the objective.

More generally, ifp0 is the probability of destruction of a UAV in each stage, the probability that a UAV reaches the
final target isp = (1− p0)N . If n UAVs are launched, the probability that at leastk of them reach their final targets
is

sumn
m=k

(
n

m

)
pm(1− p)n−m.

2 SUMMARY 26

On the other hand, if at the end of each target strike, we can reallocate UAVs from teams that suffered a lower attrition
to teams that had heavier losses, only 12 UAVs would be needed—a resource savings of 50 percent. Evidently, the
more uncertain is the resource consumption, the greater are the potential savings from dynamic (re)allocation of
teams.

However, reallocation of UAVs may itself be costly. For example, if the teams are located far from each other, time
and fuel will be consumed by rellocation. Perhaps a greater cost may be the difficulty faced by the people who
ultimately control a team in dealing with dynamically reconfigured teams. Thus in dynamic allocation, a balance
must be reached between the savings from reallocation and its cost. The ‘dynamic team allocation’ module proposes
a mathematical model of this balance, together with an algorithm that determines, at the end of each target strike,
the team re-allocation.

The module takes as input: (1) the wave structure similar to that shown in figure12; (2) the survival probability;
and (3) the cost of reallocating a UAV from one team to another. It produces as output an allocation ‘policy’, which
reallocates surviving UAVs at the end of each target strike.

2.8 Module 8: Path planning with two constraints

The ITP relies on a fast ‘path planner’, which determines for a given set of ‘origins’O ⊂ R2 and each ‘destination’
x ∈ R2 a pathγ that

min
γ∈Γ

ρ(γ) =
∫ τ

σ=0
f(γ(σ))dσ. (5)

HereΓ is the set of all paths that start at some originγ(0) ∈ O4 and end at the destinationγ(τ) = x; f(z) is the
‘risk’ per unit distance incurred at locationz; andσ parametrizes the path length. The minimum riskV (x) incurred
in reachingx satisfies theeikonalequation [3]

|∇V (x)| = f(x), V (x) = 0, x ∈ O.

The path planner calculates the ‘value’ functionV , whose contour plots are displayed in the ITP window of figure
5. Also, given any destinationx, the path planner calculates the minimum risk path fromO to x; the ITP window
displays some of those paths.

It may be necessary or useful to find the minimum risk path subject to another path constraint. For example, one may
want to constrain the minimum risk path search to those paths that can be completed with say a specified amount of
fuel. Such a constrained optimal path is a solution of the problem

min
γ∈Γ

ρ(γ) =
∫ τ

σ=0
f(γ(σ))dσ (6)

subject toc(γ) =
∫ τ

σ=0
g(γ(σ))dσ ≤ C. (7)

In (7) g(x) is the rate of fuel consumption andC is the constraint on total consumption.

4The set of origins at the end of each wave consists of the blue base and the locations of targets at preceding waves.

2 SUMMARY 27

The solution of (6)-(7) is much more difficult than the unconstrained problem (5). We can convert the constrained
problem to a family of unconstrained problems parameterized by a Lagrange multiplierλ,

min
γ∈Γ

Lλ(γ) =
∫ τ

σ=0
[f(γ(σ)) + λg(γ(σ))]dσ. (8)

Observe that the larger isλ > 0 the greater is the weight placed on theg-component of the cost inLλ(γ) of pathγ.

The iteration works as follows. One selects a weightλ > 0, obtains the pathγ∗λ that minimizesLλ(γ) and checks
whether the constraint (7) is satisfied atγ∗λ. If it is satisfied,λ is reduced; if it is not satisfied,λ is increased. The
bestλ is the smallest for which the constraint is satisfied. So we have an iterative method for solving a constrained
optimization problem using “soft” constraints, i.e. a Lagrange multiipler formulation. One iterates on the Lagrange
multiplier.

3 MODULE 1: INTERACTIVE TASK PLANNER 28

3 Module 1: Interactive task planner

This section discusses the interactive task planner or ITP, which was briefly described in section2.1. We recall
the setting. The Blue force comprises a set of UAVs, each of which can be configured with different capabilities
(sensors, weapons, etc). There is a set of targets called the Red force. The Blue force is used to attack the Red
force, which threatens the attacking Blue force. With the help of the ITP the planner organizes Blue’s attack into a
plan. The plan is further specified by the ‘configuration and schedule’ module, after which it is executed by the Shift
control module (module 3). The ITP module may be reinvoked during execution, as indicated in figure2.

We will formally describe a plan ‘design space’, and performance measures to compare plans. The formalization
permits the development of an algorithm that automatically generates good—even ‘optimal’—plans. The ITP soft-
ware implements this algorithm. Of course, considerations beyond those captured in the performance measures will
enter into the specification of the final plan. The planner introduces these considerations by interacting with the ITP
software to modify the automatically generated plan.

3.1 Threat

We now introduce some terminology for use in a mathematical description of the threat.Target is a generic term
for Red force entities of different types such as SAM launchers, SSM launchers, radars, etc. There is a finite set of
types, calledTargetTypes. We will not be concerned with mobile targets. So a target is completely characterized by
its type and its (two-dimensional) location(x, y). A Red force withN targets is thus fully described by a set of the
form

Targets= {target1 = (type1, (x1, y1)), · · · , targetN = (typeN , (xN , yN))}. (9)

There may be uncertainty about the Red force. We adopt a Bayesian view, which summarizes prior knowledge about
the Red force as a probability distribution of theset-valuedrandom variableTargets. The prior knowledge ofTargets
is given by the IPB. We denote this initial distribution (at timet = 0) by Pthreat(0).

5 Two examples will help
illustratePthreat(0).

Example 1.The IPB indicates that the Red force consists of one SSM at a known location(x̄, ȳ), four
SAM sites at unknown locations in areaA1, and six SAM sites at unknown locations in areaA2. In this
exampleN = 11, so

Pthreat(0)(Targets = {(type1, (x1, y1)), · · · , (type11, (x11, y11))})

=
11∏
i=1

Pi(typei, (xi, yi)), (10)

in which

P1(type1 = (SSM, (x, y))) =
{

1, (x, y) = (x̄, ȳ)
0, otherwise

,

5This probability distribution is updated during execution when Blue sensor observations are made; see sections2.4, 6.

3 MODULE 1: INTERACTIVE TASK PLANNER 29

and the distributionsP2, · · · , P11 have densities

pi(typei = SAM, (x, y)) =




|A1|−1, (x, y) ∈ A1, i = 2, · · · , 5
|A2|−1, (x, y) ∈ A2, i = 6, · · · , 11
0, otherwise

. (11)

In (11), |Ai| is the area ofAi. The ‘product’ form (10) is obtained under the assumption that the 11
targets are independent random variables. To obtain (11) it is assumed that the location of targeti is
uniformly distributed over areaAi.

Example 2.There is more uncertainty than in Example 1: The numberN1 of SAMs in A1 and the
numberN2 of SAMs inA2 are independent random variables. So

Pthreat(0)(Targets) = P1(target1) ×
N1∏
i=1

pi(typei, (xi, yi))P1(N1)

×
N2∏
i=1

pi(typei, (xi, yi))P2(N2);

P1(target1) is the same as before,pi is the uniform density overAi (given by (11)), andPi(Ni) is the
probability distribution ofNi, i = 1, 2.

In principle, the distributionPthreat(0) can be quite complicated. We will suppose, however, that the IPB takes on
the following more restrictive form:

The Red force is distributed over areasA1, · · · , Ak. In areaAj there areNtj targets of typet ∈
TargetTypeswhose locations are independently and uniformly distributed. The random number of tar-
getsNtj are all independent with distributionPtj(N).

This restriction implies that the IPB is represented as a distribution of the form

Pthreat(0)(Targets) =
∏
t

k∏
j=1

Ntj∏
i=1

ptj(type= t, (xi, yi))Ptj(Ntj), (12)

in which t ranges overTargetTypes, and

ptj(type= t, (xi, yi)) =
{

|Aj |−1, (xi, yi) ∈ Aj

0, otherwise
. (13)

Examples 1, 2 above are special cases of this model. The major restriction implied by model (12)-(13) is the
statistical independence of the threats in the different areas. This restriction seems reasonable.6

6The restriction can of course be removed and one may admit any distribution of the random variableTargets.

3 MODULE 1: INTERACTIVE TASK PLANNER 30

The probability distribution (12)-(13) is completely specified by the list of areasA = {A1, · · · , Ak} and the random
vectorN = {Ntj ; t ∈ TargetTypes, 1 ≤ j ≤ k}. Hence we will sometimes use the shorthand notationPA,N to
denote this distribution.

A target poses athreat, over a specific region, which is a circle centered at the target location and radius that depends
on the target type. A UAV in this threat region will be destroyed with a certain probability that depends on the target
type and the heading of the UAV (which determines the signature that it exposes to the target), as well as the amount
of time that the UAV is in the region. We will assume that a numerical value can be assigned to the threat posed by a
target at any location. Section3.3gives examples of such numerical values and shows how they are used to calculate
therisk incurred by a UAV as it traverses a path that goes through threat regions.

For the OEP, figure4 lists some targets, their OEPid, OEPtype, location, and range. For example, target ew1 is an
early warning radar of type ewradarsite type, located at (83.1, 357.8); it poses no threat (range is 0), because it
contains no weapons. On the other hand, target longsam1 has a threat range of 80 km.

3.2 Plan design space

With the help of the ITP, the planner produces a plan, which organizes Blue’s attack into a set ofsub-tasks, each of
which is a list of targets to be destroyed. The plan must determine the set of objectives, hence the set of sub-tasks.
We assume that the planner is given a set ofprimary targets, and so these must be included in the plan. The plan will
typically include additional targets.

A UAV dispatched to attack a target will fly over apathγ, during which it will incur a certainrisk ρ(γ), which can
be translated into the probability that the UAV will be destroyed along its flight path. We assume that the planner
selects (or is given) a maximum risk thresholdρmax.7

An acceptable or feasible plan is a set of targets,TargetList= {target1, · · · , targetn}, together with a set of paths
PathList= {γ1, · · · , γn}, one for each target, such that the risk along all these pathsρ(γi) ≤ ρmax. We tenatively
define the plan design space as the set of all feasible plans. However, this is incomplete for three reasons.

First, we require all primary targets to be included inTargetList. Second, the plan must group the targets into a set
SubtaskListof sub-tasks, each of which will be assigned to a team of UAVs. The third reason is more subtle. The
risk ρ(γ) of a path depends on which targets have already been destroyed.Thus the riskρ(γ) depends on the order
in which targets are destroyed.So the plan must also specify this order orprecedence relation, denoted by�, with
the intepretation that

targeti � targetj

means thattargeti must be attacked (and destroyed) beforetargetj.

A feasible planis a 4-tupleplan= (TargetList,SubtaskList,PathList,�), in which

(1) TargetList= {target1, · · · , targetn} is a set of targets, andPathList= {γ1, · · · , γn} are their paths;
(2) SubtaskListis a partition ofTargetListinto of tasks, and

7In figure5, this is the entry in the window called ‘Wave Threshold’.

3 MODULE 1: INTERACTIVE TASK PLANNER 31

(3) � is a precedence relation or partial order onTargetList, so that for alli = 1, · · · , n

ρ(γi) ≤ ρmax. (14)

In (14), the riskρ(γi) is calculated under the assumption that all targetstargetj � targeti have been destroyed.

The riskR associated with a plan is the maximum risk incurred along any path,

R(plan) = max
i

ρ(γi). (15)

Theplan design spaceis the space of all feasible plans. An optimal plan has minimum risk,

R(plan∗) = min{R(plan) | plan∈ plan design space}.

The ITP implements a procedure that can find an optimal plan. Before we describe this procedure, we develop a
model to quantify the risk along a path.

3.3 Risk along a path

The risk incurred by a UAV flying along a pathγ(σ), 0 ≤ σ ≤ τ , from a specific originγ(0) = o to a destination
γ(τ) = d, depends on the threat distributionPthreat. We describe how we calculate this risk,ρ(γ). We begin with
an example.

Example 3.Pthreat indicates SAM sites at known locations(xi, yi), i = 1, · · · , n. A UAV flies from its
base at location(0, 0) to (x̄, ȳ) at a fixed speedv (normalized tov = 1) along the pathγ(σ), σ ∈ [0, τ],
as indicated in figure13. At any point along its path, the threat posed by a SAM site depends on how
far the UAV is from the site. We suppose that the resulting risk alongγ is quantified as

ρ(γ) =
n∑

i=1

∫ τ

σ=0
f(|γ(σ)− (xi, yi)|)

dσ

v
. (16)

In (16), |γ(σ)− (xi, yi)| is the (Euclidean) distance betweenγ(σ) and(xi, yi); f(d) ≥ 0 is any decreas-
ing function ofd that measures the‘instantaneous’ risk; andσ parametrizes the path.8

One choice forf is

f(d) =
{

1, d ≤ D
0, d > D

(17)

whereD is the threat range of a SAM. A more complex choice is

f(d) = (1 + d)−2, or f(d) = e−αd, for someα > 0. (18)

8For the ‘fast marching’ algorithm described later,f must be a smooth function.

3 MODULE 1: INTERACTIVE TASK PLANNER 32

planned flight
path

SAM at
(x1, y1)

threat varies with
distance to target

SAM at
(xn, yn)

(0,0)

(x, y)

()

Figure 13: A UAV travels along the pathγ encountering threats from the SAM sites at(xi, yi), i = 1, · · · , n. The
threat depends on the distance of the path from the SAM site.

Evidently, the riskρ(γ) depends on the planned pathγ.9 So the minimum risk isV (x̄, ȳ) = minγ ρ(γ),
where the minimization is over all pathsγ from (0, 0) to (x̄, ȳ). More formally, for this example, the
value functionV is

V (x̄, ȳ) = min
γ

ρ(γ). (19)

We will see below how to calculate the value function and the risk minimizing path in (19).

We now describe how to calculate the risk along a path for a general threat of the formPA,N , withA = {A1, · · · , Ak}
andN = {Ntj ; t ∈ TargetTypes, 1 ≤ j ≤ k}. (The detailed distribution is given by (12)-(13).)

In the first step, we define the instantaneous risk function at any point(x, y) as

r(x, y;PA,N) =
k∑

j=1

∑
t

∞∑
Ntj=0

Ntj∑
n=1[∫

Aj

ft(|(x, y) − (xn, yn))|Aj |−1dxndyn

]
P (Ntj). (20)

In (20) ft(d) is the instantaneous risk posed by a target of typet to a UAV at a distanced from the target.ft may
be of the form (17), (18) or some other form. So the integral in (20) is the expected value of this instantaneous risk
posed by a target of typet located at a random point(xn, yn) that is uniformly distributed over areaAj . The sum
overn is the total risk posed byNtj such targets. The sum overNtj accounts for the random distribution ofNtj . The
sum overt accounts for different types of targets. Finally the sum overj accounts for all the areas. The argument
PA,N in r emphasizes the role of the threat. The next example extends example 3 to a general threat.

9If we interpretf(d)∆ as the probability that the UAV is destroyed in time∆ when it is at a distanced from the SAM,e−ρ(γ) is the
probability of survival along the pathγ.

3 MODULE 1: INTERACTIVE TASK PLANNER 33

Example 4.The risk faced by a UAV flying at speedv along a pathγ from (0, 0) to (x̄, ȳ), facing threat
PA,N is

ρ(γ;PA,N) =
∫ τ

σ=0
r(γ(σ);PA,N)

dσ

v
, (21)

in which r is given by (20). Hence the value function for threatPA,N is

V ((x̄, ȳ);PA,N) = min
γ

ρ(γ;PA,N). (22)

3.4 Value function calculation

The value functions (19) and (22) are special cases of the following problem:

We are given a setO of possible origins, a target destination(x, y), and a nonnegative, instantaneous
risk or cost functionf . Find

V (x, y) = min
γ∈Γ(x,y)

ρ(γ) = min
γ∈Γ(x,y)

∫ τ

0
c(γ(σ))dσ. (23)

HereΓ(x, y) is the set of all pathsγ which begin at some permitted origin,γ(0) ∈ O, and terminate at
(x, y), andρ(γ) is the risk alongγ. Moreover, we must find the optimal path for any destination.

The value function satisfies theeikonalequation

|∇V (x, y)| = c(x, y), (24)

with boundary condition
V (x, y) = 0, (x, y) ∈ O. (25)

In (24),

|∇V (x, y)| = [(
∂V

∂x
)2 + (

∂V

∂y
)2]1/2,

Moreover, the optimal pathsγ∗ can be obtained by following the negative of the gradient ofV :

dγ∗

dσ
(σ) = −∇V (γ(σ)) (26)

The ITP repeatedly uses a very fast algorithm (called the ‘fast marching’ algorithm [2, 3]) to solve the eikonal
equation (24)-(25). Then, given any destination, it calculates the optimal path by ‘steepest descent’ (26).

Figure5 displays the contour plots of the value function and several optimal paths for the threats listed in the scenario
window. Observe, as is to be expected, that the optimal paths are orthogonal to the contours.

Remark The cost functionc in (23) can be modified to include restrictions on the admissible path. For example,
there may be ‘no-fly’ zones over which a UAV may not fly for strategic considerations or because of geographic
obstacles. These restrictions can be easily incorporated in the formulation by settingc(x, y) to a very large value for
(x, y) in these no-fly zones. In this way, ‘soft constraints’ can be included by appropriately modifying the function
c.

3 MODULE 1: INTERACTIVE TASK PLANNER 34

3.5 Risk of a plan with prespecified order of attack

Suppose the planner has selected aTargetListand a particular order of attack,

target1 � · · · � targetn.

We can calculate the optimal paths as follows, assuming that the path to the first target must originate at the blue
base. Let(xi, yi) be the location oftargeti.

Define, originating setsO1, · · · , On,

O1 = BlueBase, Oi+1 = Oi ∪ {(xi, yi)}, i ≥ 1.

Let
V (xi, yi;Pi) = min

γ∈Γi(xi,yi)
ρ(γ;Pi),

and letγ∗i be the optimal path. HerePi is the threat aftertarget1, · · · , targeti−1 have been destroyed; andΓi(xi, yi)
consists of all paths originating inOi and ending at(xi, yi).

The optimal pathγ∗i to targeti starts from the blue base or at a location of a previously destroyed target. The risk,R,
incurred by this plan is the maximum or worst-case risk for any sub-task,

R = max{V (x1, y1;P1), · · · , V (xn, yn;Pn)}.

3.6 The ITP procedure and optimal plan

We now describe the ITP procedure. Suppose that the IPB consists of a set of targets,Targets1, with known locations
and types. Also given is a subsetPrimaryTargetsthat must be destroyed. Lastly, the locations of the Blue base,
BlueBase, is known; this may be one or more locations from which UAVs may be dispatched.

Step 1LetP1 be the threat corresponding to the targetsTargets1. The planner selects a Wave Threshold of acceptable
plan risk,R. The fast marching algorithm computes the value function

V1(x, y) = V ((x, y);P1) = min
γ∈Γ1(x,y)

ρ(γ;P1),

in which Γ1(x, y) is the set of all paths starting at originsO1 = BlueBaseand ending at(x, y); ρ(γ;P1) is the risk
alongγ under the threatP1, given by (23).

The value functionV1 is evaluated at the locations of all targets inTargets1. Let

Wave1 = {target∈ Targets1 | V1((x, y)target) ≤ R}

be the subset of targets at whose locations(x, y)target the value function is less thanR. This means that targets
in Wave1 can be detroyed with risk less thanR. Let PathList1 be the optimal paths toWave1 targets obtained by
steepest descent ofV1.

3 MODULE 1: INTERACTIVE TASK PLANNER 35

Step 2Let Targets2 = Targets1 \Wave1 be the targets remaining after those inWave1 are destroyed, and letP2 be
the threat corresponding toTargets2. LetO2 be the origins consisting of theBlueBase, together with the locations of
Wave1 targets. The fast marching algorithm computes the value function

V2(x, y) = V ((x, y);Ps) = min
γ∈Γ2(x,y)

ρ(γ;P2),

in whichΓ2(x, y) is the set of all paths starting at originsO2 and ending at(x, y).

The value functionV2 is evaluated at the locations of all targets inTargets2. Let

Wave2 = {target∈ Targets2 | V2((x, y)target) ≤ R}.

After Wave1 targets have been destroyed, the targets inWave2 can be destroyed with risk less thanR. LetPathList2
be the optimal paths toWave2 targets obtained by steepest descent ofV2.

Stepk We continue in this way. In thekth step, we set

Targetsk = Targetsk−1 \Wavek−1,
Ok = Ok−1 ∪ {Locations ofWavek−1 targets},

Vk(x, y) = min
γ∈Γk(x,y)

ρ(γ;Pk),

Wavek = {target∈ Targetsk−1 | Vk((x, y)target) ≤ R},
PathListk = {optimal paths toWavek targets},

in whichPk is the threat posed byTargetsk, andΓk(x, y) comprises all paths that start in some location inOk and
end at(x, y).

Stopping conditionThe process stops at the smallestk for which one of two conditions holds:

Wavek−1 �= ∅ ∧ Wavek = ∅ (27)

PrimaryTargets ⊂ ∪k
i=1Wavei. (28)

Theorem If condition (27) holds, there is no plan that can destroy all primary targets with risk at mostR. If condition
(28) holds, the plan with

TargetList = ∪k
i=1Wavei, (29)

PathList = ∪k
i=1PathListi, (30)

� := Wave1 � · · · �Wavek, (31)

destroys all primary targets with risk at mostR. Moreover, this plan is optimal ifR is the smallest risk for which
(28) holds.

The top diagram in figure14 gives a schematic representation of the results of the plan produced by this procedure.
There are four primary targets, indicated by the rightmost, shaded circles. TheTargetListcontains 12 targets, orga-
nized in three waves. The arrows denote the origin and destination of the minimum risk paths. The targets in the top
row are not in the sub-tasks because they were not reached in the first three waves.

3 MODULE 1: INTERACTIVE TASK PLANNER 36

The final element of the plan is the decomposition ofTargetListinto sub-tasks. This can be done automatically or
visually. Observe that the targets and paths form a directed tree. The idea is to construct sub-tasks that form chains.
In the figure seven tasks are formed.

The ITP procedure provides one additional output, called thesensitivity tables, which is used in the refinement of
the procedure, described in section3.7. A sensitivity table entry is defined for each pair of targetstargeti ∈ Wavei
and targeti+1 ∈ Wavei+1 as the increased risk in the path totargeti+1 if targeti is not destroyed. This is also the
reduction in risk resulting from the destruction oftargeti+1.

3.7 Refinement of the ITP procedure: mixed initiative

The procedure just described is fully automated. The planner can intervene in several ways to improve the plan,
bringing into consideration other factors that are not part of the procedure.

First, at the end of each stepk, the ITP window of figure5 displays the valuesVk((x, y)target) for each target.
The planner can study these values together with the target locations, and decide toadd targets toWavek. These
additions of course will incur a risk larger thanR, so they must represent to the planner ‘targets of opportunity’
whose destruction is worth the extra risk.

Second, the planner maydeletea target fromWavek, perhaps because it does not significantly reduce the risk to
targets inWavek+1. The risk reduction is known from the sensitivity table. The reason for deletion might be
to conserve blue forces, or to reduce theSubtaskListso that the plan can be executed in less time. These two
interventions change theSubtaskList(29).

Third, the planner may weaken the precendence relation (31), which requires everyWavei target to be destroyed
before anyWavei+1 target is attacked. This will reduce the level of coordination needed in sub-task execution at the
cost of greater risk, quantified by the sensitivity table.

Fourth, the planner may change the grouping of sub-tasks into tasks, based on considerations of team composition.
For example, targets of the same type may be grouped together because they are attacked by similar weapons.

Lastly, the planner may alter one or more paths inPathList, which gives the way points for every path.

The bottom diagram in figure14 shows the plan resulting from modifications made by the planner: Three targets
have been deleted fromSubtaskList; the precedence relation is weakened; and sub-tasks have been regrouped into
four tasks.

3 MODULE 1: INTERACTIVE TASK PLANNER 37

blue
base primary

targets

Wave 1 Wave 2 Wave 3

2

3

4

sub-task

Figure 14: Circles denote all targets. Top diagram: The ITP procedure generatesWave1,Wave2,Wave3; the arrows
denote origin and destination of optimal paths; the targets are grouped into seven sub-tasks. Bottom diagram: The
result of modifications by the planner.

4 MODULE 2: CONFIGURATION AND SCHEDULE 38

4 Module 2: Configuration and schedule

Semi- or fully automated team composition and tasking (TCT) is central to increasing the ratio of UAV to human
handlers (HH). Such automation transfers complex lower level decision functions to the automata (system level) and
enables the HH to concentrate on higher level operational decisions (tactical, long-term resource management, etc.).
It also makes possible autonomous task execution by enabling automated re planning during task execution. This
section outlines the principles and an algorithm that automates the process of TCT.

4.1 Task scheduling in the MICA context

In broad terms, scheduling is the process of selecting, organizing, and timing resource usage to carry out all the
activities required to produce some desired outcome at desired times. Tasks have clearly defined Primary Objectives
(PO) and additional Secondary Objectives (SO) that are added to enhance the probability for success of a task plan.
The tasks are made up of Subtasks, and each Subtask is assigned to a single Team. If a task is described as a grouping
of actions leading to a defined outcome, then the task’s objectives are the minimum set of purposeful actions whose
desired timely outcome renders the task’s successfully completed. As such, objectives in the MICA context may
be a search maneuver, a bomb run on a target, a refueling maneuver, a cooperative jamming maneuver (providing
jamming for other platforms), etc.

Task Categories
The difficulties in applying scheduling consistently and broadly when dealing with a set of tasks is in defining
common underlying principles that are sufficiently general to allow repeated application for all tasks in the set. Our
first goal then is to identify categories of tasks based on commonalities in planning and execution requirements. For
each such category, we can then develop a scheduling model that can be applied for any task within the category.

In the MICA context, tasks may be classified in three categories:

• Preplanned Strike on known targets (main objectives are known before mission start);

• Intelligence Gathering on known enemy assets or regions (an asset or a region is marked for gathering of
additional information);

• Loitering strike or intelligence gathering on time critical targets of opportunity (preemptive response in antic-
ipation of future enemy activity or in an attempt to deny the enemy the use of options).

The focus of our research has been on a SEAD task which fits into the ”Preplanned strike” category. It should be
stated that similar formulations can be defined for other categories with little additional effort.

Scheduling in this context may involve the following four steps with iterations:

1. Establishing prosecution partial order chains and inter-chain dependencies; efficient allocation of limited re-
source;

(a) Appropriate weapons selection for each objective (target);

4 MODULE 2: CONFIGURATION AND SCHEDULE 39

(b) Appropriate sensors selection for each objective;

(c) Analysis of attrition and the addition of reserves;

(d) Efficient platforms selection to deliver all above resources (sensor or weapon) to assigned locations for
use in some scheduled action;

2. Timeline generation - Evaluation of all mission timeline for compliance with an overall timetable.

Premises and Underlying Planning Strategy
We state our premises or underlying strategy for adjustable system autonomy regarding the task planning and plan
execution because it shapes our approach and distinguishes our solutions from others’. The following is a summary
of some of the distinguishing elements in our approach to task planning and execution:

1. Human handlers always have the responsibility for formulation of Commander’s intent in the form of gener-
ating tasks with defined primary objectives and scheduling goals (see more on scheduling goals bellow);

2. Human handlers monitor re planning solutions and resolve planning exceptions (planning exceptions are plan-
ning solutions that do not meet all task objectives and/or planning goals);

3. The system responds to maintain a plan for prosecuting the primary objectives (at all levels of the control
hierarchy). It notifies the human handler when the plan is no longer executable and gives alternative plan
that can prosecute remaining objectives with the remaining assets or it gives the next best plan that requires
additional assets.

4. Re-planning is incremental:

(a) At platform level trajectories are recalculated to overcome delays, a target may be reengaged with a
second weapon, etc;

(b) At the team level assignments may be swapped to make up for delays and attrition or the Subtask may
be re planned;

(c) At the task level sub-tasks primary objectives may be reshuffled, task may be re planned, or the Com-
mander’s intent (primary objectives and scheduling goals) may be reformulated.

Reconfiguring Costs and Planning Complexity
Since task scheduling involves accomplishing a number of actions that either consume assets or ties them for some
periods of time both, scheduling complexity and re-planning cost vary greatly. Scheduling complexity depends on
such factors as:

1. Precedence constraint or objectives prosecution order—represented in our formulation by chains of partial or-
der sequences that establish not only the proper prosecution sequence for a Subtask but also the dependencies
across subtasks. When these partial order chains indicate a cross sub-task dependency, the dependency be-
comes the basis for team coordination requirement. Typically, this will take the form of precedence and timing
requirements that require coordination between teams executing different Subtask plans that would otherwise
proceed without specific tactical awareness of each other. Factors such as delays and timing overlap must be
resolved where inter Subtask dependencies exist.

4 MODULE 2: CONFIGURATION AND SCHEDULE 40

2. Interference - A sub-task may interfere with the execution of another sub-task even when there are no clear
inter-sub-task dependencies resulting from the partial order chains. There may some tactical disadvantage to
execute a sub-task that triggers heightened enemy alert in a sector where another sub-task relies on surprise
for example (overlap of a limited SEAD and a strike against near by TBMs to be more specific).

3. Resources conflict - It may not be possible to use a certain combination of resources during a specific interval
or on the same sub-task.

4. Resource blank periods - A resource may be unavailable due to planned maintenance or due to planned use in
another sub-task.

On the other hand, the cost for reconfiguring a platform and the planning complexity is based on the platform’s state:

1. Bare platforms at bases (full capacity available for configuration) - no cost for reconfiguring, standard planning
complexity

2. At base, pre-configured for another sub-task with:

(a) partial capacity available for configuration - small cost for reconfiguring, standard planning complexity;

(b) no capacity available for configuration - Moderate cost for reconfiguring, increased planning complexity
(planning must expand to include the other sub-task).

3. Pre-configured platforms at position(x, y, z) that are

(a) pre-configured, but not dedicated to an active task or sub-task - High cost for reconfiguring, moderate re
planning complexity;

(b) pre-configured for another active sub-task (resources are dedicated) - High cost for reconfiguring, highest
re planning complexity.

Note: In most cases it is expected that it will be too costly to bring back to base a platform for reconfiguring.

4.2 Scheduling model formulation and solutions

At a minimum, the objectives for the scheduling process must be to maximize efficient use of resources while
meeting mission goals. Additional objectives may be a preference for specific assets, minimizing unused weapon
capacity or a deviation from some goal capacity, and minimizing overall time for task completion or deviation from
some goal duration, to name a few.

There are additional constraints to consider such as an inventory of numerous weapon platform types with sig-
nificantly different capabilities (endurance, range, weapon capacity/types, sensor capacity/types, etc.) and various
weapon types consuming different amounts of the platform’s weapon capacity.

Most scheduling problems can be formulated as a Linear Programming model and solved using classical methods.
There is, however, no guarantee that a solution be reached. One way to overcome this problem is to redefine the

4 MODULE 2: CONFIGURATION AND SCHEDULE 41

objectives or the constraints. This approach however, is not particularly suitable for automating the scheduling
process. Instead, reformulation in the form a Goal Programming model enables us to convert most constraints to
either an objective function or into a goal. The problem redefinition leads to a guaranteed solution that strives to
minimize the deviation from the goals while meeting the objectives in the objective function. The addition of weights
in the objective function further refines the model by prioritizing amongst objectives and leads to a better solution.
This approach does not guarantee an optimal or an acceptable solution but it does give better solutions over the LP
formulation by allowing better control through prioritization of the objectives and driving the solution in a desirable
direction. The resulting confidence increase in the algorithm’s solutions makes it suitable for use in automated
scheduling. In cases where a solution requires violations of the goals, the human handler/operator is prompted for
intervention and is expected to redefine the goals or change the list of task objectives.

Basic Assumptions Defining the Scheduling Problem
There are three basic assumptions related to the attempted scheduling process:

1. Resource are in limited supply;

2. tasks are composed of elementary parts called Operations and Delays;

3. Each task requires a certain amount of specified resources for a specific period of time called Process Time;

4. Resources are also made up of elementary parts: Machines, Cells, Transport, Delays.

The resources listed above are typical for the standard ‘job-shop’ scheduling problem. The scheduling objectives in
our context are rephrased as follows.

Scheduling objectives
The scheduling objectives incorporated in our model formulation are to:

• Maximize efficient use of resources;

• Satisfy mission objectives;

• Minimize scheduling costs

1. Positioning resources (transporting etc),

2. Reconfiguration of resources (armament, sensors, and fuel),

3. Delay costs resulting from timing considerations - holding cost additional resources (fuel and control).

Several methods can be used to find solutions to classical scheduling problems. Some of the most popular are
solving for one objective at a time, solving for trade-off curve between objectives, and using weights with the later
approach. In finding the solution to the Goal Programming model we combined objectives by assigning costs to
desired outcomes (sub-task objectives) and to lack of resource utilization.

4 MODULE 2: CONFIGURATION AND SCHEDULE 42

4.3 Team composition

Inventory
Limited resources require some efficient approach to allocation. In the context of the MICA project and other UAV
strike missions it is assumed that any resource combination is likely to be of limited supply: quantity on UAV
platforms of various types having significantly different capabilities (e.g. weapon and range), quantity of various
weapon types, sensor types, and fuel. In the presented scheduling model formulation we limit the scheduling scope
by considering only one limited resource, namely the quantity of three type of UAV weapon platforms and assume
unlimited supply of weapons, fuel, sensors, etc. Let

p1 = number of smallweapon platforms

p2 = number of largeweapon platforms

p3 = number of smallcombo platforms

Stated Goal
The primary and most significant goal of the process is to deliver to each of the sub-task’s assigned targets a pre-
determined weapon load. This is expressed as input in the form of a list of weapon type and number. The weapon
association with each sub-task target is maintained externally and will be treated when it comes time to determine
platform assignments. For the first primary goal we have:

φ1 = number of GPS bombs

φ2 = number of Seeker Missiles

φ3 = number of Munitions

φ4 = number of Decoys

Selected Configuration
The solution that satisfies the sub-task constraints is a composition consisting of platform types,

θ1 = number of smallweapon platforms

θ2 = number of largeweapon platforms

θ3 = number of smallcombo platforms,

Capacityα =
{

10 for small weapon
20 for large weapon

,

and weapon types,

σ1i = number of GPS bombs

σ2i = number of Seeker Missiles

σ3i = number of Munitions

σ4i = number of Decoys

for i = 1, · · · , n, in whichn is the number of platforms.

4 MODULE 2: CONFIGURATION AND SCHEDULE 43

4.4 Linear programming formulation

The task of allocating specific UAV platforms to specific targets can be formulated as a Linear Programming problem
with multiple constraints. We first consider the desired outcome or objectives and define the following desired
solution attributes.

The configuration (platform type and weapons) should:

1. Minimize need for additional inventory;

2. Maximize sub-task objective assignments;

3. Minimize unassigned capacity for each platform.

The decision variables are chosen to be:

X1 = θ1, the number of smallweapon platforms

X2 = θ2, the number of largeweapon platforms

X3 = θ3, the number of smallcombo platforms

Xk=j×i+3 = σji , j = 1, · · · , 4; i = 1, · · · , n; k = 4, · · · , 4n+ 3,
the number of seeker missiles, munitions, decoys for each platform

Constraints:
Available platforms:

θi ≤ pi, i = 1, 2, 3

Required weapons:

φ1 ≤
n∑

i=1

σ1i = GPS bombs

φ2 ≤
n∑

i=1

σ2i = Seeker missiles

φ3 ≤
n∑

i=1

σ3i = Munitions

φ4 ≤
n∑

i=1

σ4i = Decoys

Available capacity: fori = 1, · · · , n

σji ≤ αi, j = 1, · · · , 4

σ1i +
1
2
σ2i + σ3i + σ4i ≤ αi or

Capremainingi
= αi − σi1 −

1
2
σ2i − σi3 − σi4

4 MODULE 2: CONFIGURATION AND SCHEDULE 44

Nonnegative constraints:
Xi ≥ 0, i = 1, · · · , 4n + 3.

The equations:
Unassigned capacity: fori = 1, · · · n

X4i+4 ≤ αi

X4i+5 ≤ 2× αi

X4i+6 ≤ αi

X4i+7 ≤ αi

X4i+4 +
1
2
X4i+5 +X4i+6 +X4i+7 ≤ αi

Total number of platforms:
X1 +X2 +X3 ≤ p1 + p2 + p3

Platform inventory usage:
Xi ≤ pi, i = 1, 2, 3

Sub-Task objectives assigment:

n−1∑
i=0

X4i+4 ≥ φ1

n−1∑
i=0

X4i+5 ≥ φ2

n−1∑
i=0

X4i+6 ≥ φ3

n−1∑
i=0

X4i+7 ≥ φ4

4.5 Goal programming formulation

Approach:

1. Use a weighting objective function model;

2. Reformulate constraints into Goals and place large weights on Goals that represent hard constraints (weapon
capacity, available inventory, cross-platform assignments, etc).

The goals:
It is undesirable to:

4 MODULE 2: CONFIGURATION AND SCHEDULE 45

1. Overachieve capacity for each platformCapremaining—Goalli

2. Underachieve capacity for each platformCapremaining—Goalli

3. Overachieve the total number of used platformsθ1 + θ2 + θ3 ≤ Goal2—Goal2

4. Overachieve the platform inventoryθ1 − θ3—Goals3 −Goals5

5. Underachieve the number of smallweapon platformsθ1—Goal3

6. Underachieve sub-task objective assignmentsφ1 − φ4—Goal6 −Goal9

In summary,

Goalli = αi

Goal2 =
φ1 + φ2 + φ3 + φ4
large weaponscap

=
φ1 + φ2 + φ3 + φ4

20
Goal3 = p1

Goal4 = p2

Goal5 = p3

Goal6 = φ1

Goal7 = φ2

Goal8 = φ3

Goal9 = φ4

4.6 Implementations in executable code

Synopsis
1) Sample task
2) Processing steps
3) Coupling with previous and following modules
Output and usage—The task plan, or solution of the scheduling process, is in the form of a list of platforms with a
list of ordered assignments and a configuration appropriate for prosecution of all the assignments (weapons, sensors,
and other payload). In the iteration process cost is evaluated for a solution based on threat exposure to platforms,
efficient usage of resources, and on task completion (are all objectives assigned?).

Assembling the partial order sequences
assemble sub-task information cluster
1) Extract sequences
2) Get objective Info from “iad.xml” file
a. Add locations of entities
b. Identify objective type

4 MODULE 2: CONFIGURATION AND SCHEDULE 46

Assessing required arsenal for task prosecution
Do weapon selection
1) Load weapon performance data
2) Input Desired Prosecution Effect
3) Match objective type and desired effect with best weapon performer

Team Composition and taskingPerform scheduling for the sub-tasks (given objective list, partial order of execution,
weapons matching objectives) - Usage of Goal Programming to get platforms and configurations
1) Output team composition and tasking to a text file.

4 MODULE 2: CONFIGURATION AND SCHEDULE 47

9/22/2003

Input:
Primary Objectives
Time constraints
Resource Constraints
Acceptable risk Constraints

Output For each subtask:
Team composition (platforms type and configurations)
2D assignment list [nx2]

 - n objectives assigned to the team
 - n time constraints attached to objectives (if any)

Ordered list of Objectives prosecution (partial order
includes inter-team coordination requirements)
List of mission "legs" for each platfrom (start and end
points followed by the path)

Tagging of Primary
Objectives

Identification of Secondary
Targets

Wave Generation

Partial ordering of
Objectives prosecution

Scheduling:
Sub Tasks formulation
Team Compositions and Tasking
Formulation of mission legs

Task Planner

ITP - Interactive Threat
assessment

Scheduling

Overlap of threat assessment
and scheduling

Ron Tal, UC Berkeley

Figure 15: Data flow for module 2

5 MODULE 3: TASK EXECUTION 48

5 Module 3: Task execution

5.1 Introduction

This section describes the control architecture and its implementation for task execution and teaming. The imple-
mentation is expressed inShiftand, unless stated otherwise, it will be called the ‘execution environment’.

The execution environment allows the user to specify, execute, and supervise complex operations of multiple ve-
hicles. Examples of such operations are tasks—executed by teams of UCAVs; missions—executed by isolated
UCAVs; team formation and breakup; and vehicle-to-task or vehicle-to-mission re-allocation. This means that each
vehicle may switch between two types of interactions: 1) independent operation during mission execution; and 2)
team operation during task execution.

In this section we describe a specific implementation of the execution environment: it implements the control archi-
tecture, a library of vehicle maneuvers, and one specific task controller. The task controller implements the attack
specifications generated by the ITP and by the configuration and schedule modules.

The execution environment models a complex distributed system, in which information and commands are ex-
changed among multiple vehicles, and the roles, relative positions, and dependencies of those vehicles change during
operation. Therefore, dynamic reconfiguration is one of the key concepts in our execution control concept: we use a
link not as a fixed part of the system but as a datum that we can manipulate.

We model the execution environment in the framework of dynamic networks of hybrid automata (DNHA)10 Infor-
mally, DNHA allow for interacting automata to create and destroy links among themselves, and for the creation and
destruction of automata. A hybrid automaton admits two types of interactions: 1) the differential inclusions, guards,
jump and reset relations may be functions of variables from other automata, 2) automata may exchange events.
The interactions are mediated by means of communication. The model for dynamic interactions includes a descrip-
tion of the mechanisms by which automata interact.11 We adopt synchronous composition of hybrid automata, the
underlying model of theShift language.

Henceforth, and unless otherwise stated, we use theShift terminology and notation to describe the execution envi-
ronment. The exception consists in our use of ‘messages’ to describe communication among components. There is
no message construct inShift. We model synchronous message passing with otherShiftconstructs. However, and
for the purpose of clarity, we use messages in our description of the execution environment. In this context messages

10A hybrid automaton consists of control locations or discrete states with edges or transitions between the control locations. The control
locations are the vertices in a graph. A location is labelled with a differential inclusion, and every edge is labelled with a guard, and a jump
and reset relation. Formally, a hybrid automaton isH = (L, D, E) in which:

• L is a set of control locations.

• D : L → Inclusions, in whichD(l) is the differential inclusion at locationl.

• E ⊆ L × Guard× Jump× L are the edges—an edgee = (l, g, j, m) ∈ E is an edge from locationl to m with guardg and jump
relationj.

The state of a Hybrid Automaton is a pair(l, x) wherel is the control location andx ∈ Rn is the continuous state.
11At the level of software implementation the mechanisms by which software modules interact are called models of computation, or

semantic frameworks.

5 MODULE 3: TASK EXECUTION 49

are typed events. Commands are encoded as messages. For each component there are two types of events: input and
output events (in andout).

5.2 An aside onShift

Shift is a specification language for describing networks of hybrid automata.Shiftusers define types (classes) with
continuous and discrete behavior as depicted in figure16. A simulation starts with an initial set of components that
are instantiations of these types. A component is an input-output hybrid automaton. The world-evolution is derived
from the behavior of these components. A type consists of numerical variables, link variables, a set of discrete states,
and a set of event labels—together, these constitute a description of the data model. The variables are grouped into
input, state, and output variables.

type Vehicle {
input (what we feed to it)
output (what we see on the outside)
state (whats internal)
discrete (discrete modes of behavior)
export (event labels seen from the outside)
flow (continuous evolution)
transition (discrete evolution)
setup (actions executed at create time)

}

The inputs and outputs of different components can be interconnected. Each discrete state has a set of differential
equations and algebraic definitions (flow equations) that govern the continuous evolution of numeric variables. These
equations are based on numeric variables of this type and outputs of other types accessible through link variables.

The transition structure of the hybrid automaton may involve synchronization of pairs or sets of components. The
system alternates between the continuous mode, during which the evolution is governed by the flow equations, and
the discrete mode, when simulation time is stopped and all possible transitions are taken, as determined by guards
and/or by event synchronizations among components. During a discrete step components can be created, intercon-
nected, and destroyed. The continuous mode is implemented by a fixed step Runge-Kutta integration algorithm and
the step size determines the accuracy of the simulation.Shiftallows hybrid automata to interact through dynamically
reconfigurable input/output connections and synchronous composition. The first order predicate constructs ofShift
(e.g. existential and universal quantification) are used to provide compact representations of dynamic synchronous
composition.

Notation

In what follows, and for the purpose of clarity, we define input and output events in the transitions of a component.
Input events originate in a different component, and output events are generated by the component itself. An event
labellede originating from a component calledc is denoted byc : e. Another component linked toc access the
output variablev of c asv(c).

5 MODULE 3: TASK EXECUTION 50

s1 s2discrete

x, u, .. x, , u, ...

input,
output,
state

a when {g(x) > 0} do
{x:= r(x)}

transition

x’ = f1(x,u, …)

u = 5
x’ = f2 (x,u, …)

z, w, ...
b

u(C) ¬ w or b{C:a} or w = u(C) setup,
synch, i/o

C

flow

Figure 16: Shift – dynamic networks of hybrid automata.

5.3 Architecture

We adopted the following design principles:

• Separation of specification and controller implementation: each controller accepts specifications conforming
to a specification format. There are different controller implementations for the same specification. In this
case, it is up to the user to specify both the specification and the type of controller to execute it;

• Separation of controller implementation from their localization: each controller may reside onboard a vehicle
or on a remote location, and it can be moved from one location to another;

• Layers of control and abstraction: controllers are layered and described within a particular theory for each
layer;

5 MODULE 3: TASK EXECUTION 51

• Independence of the cardinality of teams of vehicles: the structure of multi-vehicle controllers is independent
of the number of vehicles controlled;

• Layers of user intervention: modes of user intervention are available at all layers of control for mixed initiative
operation;

• Extensibility: additional layers of control and abstraction can be installed on top of existing ones.

The design uses the following specification concepts:

Maneuver: a prototype of an action/motion description for a single UCAV and the atomic component of all speci-
fication concepts.

Mission: an array of maneuvers to be executed sequentially. Other mission structures are possible, but are not
implemented.

Task: a prototype of an action/motion description for a group of vehicles (team).

To each type of specification concept there corresponds one type of controller. There are two types of controllers: ve-
hicle controllers and team controllers. Vehicle controllers control mission and maneuver execution. Team controllers
control task execution.

The implementation of the control architecture, depicted in figure17uses these key concepts:

Platform. A ‘mirror’ of the OEP platform and the interface to the OEP. It mirrors the state of the platform on the
OEP and accepts commands for weapons, sensors, and ESM devices from maneuver controllers. It sends commands
to and receives data from the OEP.

Maneuver controller. Supervises the execution of a vehicle maneuver. It sends commands to theplatformand gets
the current status from it. It accepts abort and configuration commands from thevehicle supervisorand sends status
messages to it. It is created by thevehicle supervisorand it deletes itself when done. There is always one active
maneuver controller in the platform.

Vehicle supervisor. Supervises all of the UCAV operations. It receives maneuver specifications through a link to
either thedispatcherduring a mission execution ,or to ateam controllerduring a team task execution, and launches
the corresponding maneuver controller and monitors its execution and the state of the vehicle, and accepts config-
uration commands from an external controller. For example, it is possible to change the link to a team controller.
This means that it is possible to move the vehicle among teams. The vehicle supervisor is the same throughout the
life span of the UCAV. If there is no link to a team controller and no mission to be executed thevehicle supervisor
commands the execution of a default maneuver, typicallygotobase.

Vehicle dispatcher.Supervises the execution of amission. Basically repeats the following pattern of interactions:
Gets the next maneuver specification from themission, sends it to thevehicle supervisorfor execution, and waits for
its completion.

UCAV. The UCAV unit. It is composed of aplatform, thevehicle supervisor, and thedispatcher. It interacts with
the OEP through theplatformcomponent, and with external entities, such as ateam controllerthrough thevehicle

5 MODULE 3: TASK EXECUTION 52

Figure 17: Control architecture.

supervisor

Team controller. Supervises the execution of a task. Basically it commands and monitors the execution of vehicle
maneuvers to execute the task specification. It does this by exchanging messages with thevehicle supervisorsin the
team: it uses the protocol that governs the interactions between thevehicle supervisorand thedispatcher. It also
provides for a definition of a team—as a set of UCAVs under the control of a team controller. The team controller,
in turn, may be composed of several different controllers. The team controller also accepts configuration and task
execution and abort commands. This allows for interactions with higher layers in the architecture, not depicted in
figure17.

The architecture allows for incremental development. There is a vehicle maneuver library and a task library. The
current implementation includes several vehicle maneuvers and one task.

Next, we describe the controllers and the main components in more detail. We used the inheritance constructs from
Shift to define a hierarchy of maneuver specifications and of maneuver controllers. There is a base type for each
maneuver specification, maneuver controllerandteam controller.

5 MODULE 3: TASK EXECUTION 53

5.4 Mixed initiative interactions

Themixed initiative interactions are described next:

• Specify and command the execution of tasks and missions.

• Interrupt task or mission execution for task or mission re-planning.

• Change current task and mission configurations. This includes: 1) the addition and/or removal of vehicles
from teams; 2) moving controller locations.

Figure18 describes how an operator can command execution of manueuvers. The operator commands permit (1)
maneuver selection, including remotely piloted operation (manual control); (2) creation of a link; (3) aborting exe-
cution; and (4) configuration.

Figure19 describes the architecture of a team controller. Here, too, a human operator (not shown) can take over
command of the team operation by issuing commands that create/delete or configure a team supervisor.

5.5 UCAV type

TheUCAVtype describes the UCAV data model. It defines internal links – with respect to the UCAV – and external
links – with respect to team controllers. These are made available as output variables so that other components can
access them through a link to theUCAV.

Output variables

variable type description
d dispatcher link to platform dispatcher
vs vehiclesupervisor link to vehicle supervisor
p platform link to OEP platform
tc teamcontroller link to team controller

5.6 Platform type

The platform type basically interfaces the execution environment to the OEP. The interface consists of ‘read-only’
or ‘read-write’ variables and commands. The interactions with the OEP occur at each OEP time step: the OEP stops
execution, the ‘execution environment’ runs and theplatformsends commands to the OEP and, finally, the execution
environment commands the OEP to advance another time step.

5 MODULE 3: TASK EXECUTION 54

Output variables

variable type description
x,y,z number platform position from the OEP

fuelRate number fuel consumption rate (read-write)
fuelRemaining number quantity of fuel on-board (read-only)

bombsRemaining number number of GPS bombs on-board (read-only)

damageStatus number status (read-only)

0 unknown
1 undamaged
2 damaged
3 destroyed

speed number platform speed (read-write)
destx, desty, destz number platform destination (read-write)

tx,ty,tz number target location (read-write)
ex,ey,ez number emitter direction location (read-write)

sensorLocksDetectednumber counter of sensor locks (read-only)
t number timer (read-write)

Exported events

event description to/from
setDestination (out) set destination to(destx, desty, destz) OEP
setEmitterOn (out) jam location(ex, ey, ez) OEP
setEmitterOff (out) set jammer off OEP

activateWeapon (out) launch weapon to target location(tx, ty, tz) OEP
ready (out)

destroyed (out)

Discrete states

state description
init OEP initialization procedures

operational normal platform operation
engage waits one time step to launch one bomb

inoperational platform destroyed
error OEP error
exit state where the component is deleted

Transition

from to condition input event output event action
init operational OEP platform ready ready

operational operational setEmitterOn jam locationex, ey, ez
operational operational setEmitterOff stop jamming
operational operational setDestination set destination todestx, desty, destz
operational engage bombsRemaining > 0 activateWeapon reset timer t:=0

engage operational t > 0 activateWeapon
operational inoperational damageStatus=3 destroyed

5 MODULE 3: TASK EXECUTION 55

5.7 Maneuver specification

A maneuver controllertakes as an input amaneuver specification. Themaneuver specificationtype is basically a
data model which encodes the parameters required by the controller to execute a maneuver.

5.7.1 Base type

The base type defines a data model shared by all maneuver specifications.

Output variables

variable type description
speed number platform speed

accuracy number way-point tracking accuracy
mintime number minimum execution time
maxtime number maximum execution time

typ symbol type of maneuver

5.7.2 Types of maneuvers

There are specializations for each type of maneuver specification. The types of maneuvers available in the current
implementation are:

holding – the UCAV flies a holding pattern. In the current implementation the holding pattern is a rectangle. The
parameters of the maneuver are : 1) length and height of the rectangle; 2) maximum duration.

attack jam – jams and attacks a SAM site with 2 GPS bombs. The attack path presents the minimum radar signature
to a radar co-located with the SAM site. The jammer is activated when the vehicle is within jamming range of the
target. The bombs are released when the target is within weapons range.

goto– go from the current location to a given location.

jam site– go from the current location to a given location and jam another location.

follow path – follow a given path with a certain speed profile.

5.7.3 Example: attackjam

Theattack jam maneuver specificationinherits the data model from the base maneuver specification and adds the
following outputs.

5 MODULE 3: TASK EXECUTION 56

Output variables

variable type description
destx, desty, destz number final destination

ex, ey, ez number location of emitter to be jammed
tx, ty, tz number target location

weaponsRange number weapons release distance
weapon symbol type of weapon

jammingRange number effective jamming radius
target platform platform to be attacked

A mission to attack a target may involve spatial coordination of two or more UAVs. If one UAV reaches its destination
earlier than another, the team controller specification may trigger thehold maneuver.

5.8 Maneuver controller

5.8.1 Base type

The base maneuver controller type defines the data model shared by all maneuver controllers.

Output variables

variable type description
v platform link to platform
vs vehicle supervisor link to vehicle supervisor

Exported events

event description to/from
stop maneuver is done (out) vs

e nobombs platform runs out of weapons (out) vs
init not ok initialization error (out) vs

Discrete states

state description
initialize maneuver initialization procedures
execution normal execution state

error error state
done successful termination procedures
exit state where the component is deleted

Transition

from to condition input event output event action
all exit v:destroyed remove self
all exit vs:abort abort remove self

There are specializations for each type of maneuver controller, one per type of maneuver specification.

5 MODULE 3: TASK EXECUTION 57

5.8.2 Example: attackjam type

Theattack jammaneuver controller type adds discrete states and input messages to the base component, and defines
the discrete and continuous evolution.

Input messages

execute(mspecification)

Output messages

goto(x,y,z)

Discrete states

state description
beginInfil transition state

lowProfileInfil moves to the point where it starts jamming
jammingInfil jams and moves to the point where it releases a GPS bomb

engage waits one time step to release a second bomb
beginExfil transition state

The controller basically sends commands to theplatform. Note that the column ‘action’ refers to actions in theShift
environment.

Transition

from to condition input event output event action
initialize beginInfil true execute(mspecification) v:goto(x,y,z)
beginInfil lowProfileInfil true v:goto(x,y,z)

lowProfileInfil jammingInfil within jamming range v:setEmitterOn
jammingInfil engage within weapons range v:activateWeapon

engage beginExfil v:activateWeapon
beginExfil exit vs:stop remove self

5.9 Vehicle supervisor

Thevehicle supervisorsupervises and controls the UCAV. It accepts commands from either thedispatcheror from
a team controllerwhen the flagacceptis set to 1.

Output variables

variable type description
mc maneuvercontroller link to current maneuver controller
ms vehiclemaneuver link to current maneuver specification

accept number flag to accept abort commands
u UCAV link to the UCAV where it resides
v platform link to platform

5 MODULE 3: TASK EXECUTION 58

Exported events

event description to/from
abort abort command (in) mc

destroyed vehicle destroyed (out) u
done maneuver terminated (out) u

e nobombs run out of bombs (out) u
e maneuverinit fails initialization failed (out) u

Input messages

execute(mspecification)

Discrete states

state description
initialize maneuver initialization procedures
execution normal execution state

idle waiting for commands (transition state)
error error state

Transition

from to condition input event output event action
initialize idle p(u):ready accept:=0

idle execution tc(u)=nil execute(mspecification) create(maneuvercontroller)
idle execution tc(u)/=nil execute(mspecification) create(maneuvercontroller)

execution idle mc:stop done
execution idle mc:enobombs e nobombs
execution idle mc:init not ok e maneuverinit fails
execution idle accept=1 abort

idle execution d(u)=nil and tc(u)=nil create(maneuvercontroller)
all exit p:destroyed destroyed remove self

5.10 Vehicle dispatcher

5.10.1 Mission specification

Thedispatchersupervises the execution of amission. In the current implementation the data model of a mission is
described by the typemissionwhich consists of an array of maneuver specifications:mp = [mspec1, . . . ,mspecn].

Output variables

variable type description
step number number of maneuver specifications

mission array(mspec) array of maneuver specifications

5 MODULE 3: TASK EXECUTION 59

5.10.2 Dispatcher type

Thedispatchermaintains the state of the execution of themission– the index of the last maneuver executed success-
fully – and when it receives thedoneevent from thevehicle supervisorit increments the index by one and commands
thevehicle supervisorto execute the next maneuver specification. This is only possible when theacceptflag is set
to 1.

Input variables

variable type description
mp mission mission plan
vs vehicle supervisor link to vehicle supervisor
m maneuver specification specification of current maneuver

accept number flag to accept commands

Output variables

variable type description
c number index of last maneuver executed
n number number of maneuvers in mission plan

Out messages

execute(mspecification)

Discrete states

state description
initialize maneuver initialization procedures
execution normal execution state

idle waiting for commands (transition state)
error error state

Transition

from to condition input event output event action
initialize idle accept=1 c:=0

idle execution c < n execute(mspecification) c:=c+1
execution idle vs:abort
execution idle vs:done

all error vs:e nobombs

5.11 Task specification

5.11.1 Concepts

Here, we describe the type of task specification generated by the ITP and the configuration and schedule modules.
First, some definitions.

5 MODULE 3: TASK EXECUTION 60

Leg: a specification for a sequence of two maneuvers with two alternative modes of execution. The goal of the first
mode consists of destroying a target by releasing 2 GPS bombs at the end of a sequence of two concatenated paths.
The sequence is designed to minimize risk. The goal of the second mode consists of reaching the end point of the
two paths. The mode of execution of theleg depends on the state of the target. If the target has not been destroyed
then the leg consists of afollow pathmaneuver followed by aattack jammaneuver. The first maneuver consists in
tracking a given path, which is assumed to be safe at the planning stage. The path may be empty. The final point
of this path is the starting point of the second maneuver, which consists of flying a minimum radar signature path
to release weapons at the prescribed target while jamming a radar location. Weapons release takes place when the
target is within a pre-specified range, typically, the weapons’ range. If the target has been destroyed the leg consists
of two consecutivefollow pathmaneuvers. The second one replaces theattack jammaneuver. For example, in
figure20, the paths corresponding to the two parts (or maneuvers) of the leg consist of two straight lines. The first
one is the safe path and the second one is the attack path.

Task: a set of legs together with a partial order for their execution. The task specification encodes the wave structure
plus the configuration and schedule components from the planner specification. The task is organized as a set of
sub-tasks that are to be executed concurrently with execution dependencies.

Sub-task: a sequence of legs satisfying a total order induced by the task partial order.

Formally, aTask specificationis a pair:

task = {(SubtaskList,�), (TeamList, assign)} where:

• SubtaskList = {subtask1, . . . , subtaskn} is a set of sub-tasks, each of which is an array of legs,subtaski =
{legi,1, . . . , legi,in}. There is a partial order� on the legs composing a task. The legs composing a sub-task
satisfy a total order. However, there is a partial among legs on different sub-tasks.

• TeamList = {team1, . . . , teamn}, and{assign : TeamList → SubtaskList} is an assignment (or 1-1
function) of teams to sub-tasks.

5.11.2 Leg type

The leg type describes the data model for leg specification. It consists basically of output variables.

Output variables

variable type description
p attack array(array(number)) safe path segment of the leg
aspeed number attack speed
hold maneuver specification specification for holding maneuver

t platform target for attack phase
r set(leg) preceding legs

5 MODULE 3: TASK EXECUTION 61

5.11.3 Subtask type

Figure21 describes a task specification. It basically consists ofsub-task specificationsand a partial order on the
execution of the constituent legs. The data model of asubtaskis described by the typesubtaskwhich consists
basically of output variables.

Output variables

variable type description
p array(leg) sequence of legs composing the sub-task

steps number number of legs
team set(ucav) team assigned to execute the sub-task

5.12 Team controller

5.12.1 Base type

The base type just outputs a timer and the next maneuver specification to be sent to a vehicle supervisor, and exports
the event ‘abort’.

5.12.2 Task controller

The task controllertype inherits from the typeteam controller. It takes as an input atask specificationand creates
onesubtask controllerfor eachsub-taskin the specification. It maintains one link to eachsub-task controller, a list
of the legs executed so far and its own state of execution (normal or fail).

Input variables

variable type description
t task task specification

task legsdone set(legs) legs executed so far (coordination variable)
fail number fail flag (coordination variables)

Input variables

variable type description
st set(subtask controller) links to all sub-task controllers

Thecoordination variables aretask legsdoneandfail. Eachsubtask controllerreads the first variable to conform
to the execution partial order. In the current implementation, when at least one of thesub-task controllerfails, it sets
thefail variable of thetask controllerto 1 (fail) and allsub-taskcontrollerenter a fail mode where the corresponding
UCAVs are commanded to move to the closest safest point and enter a holding pattern when they arrive there.

5 MODULE 3: TASK EXECUTION 62

5.12.3 Sub-task controller

Thesub-task controllertakes as an input asubtask specificationand controls and coordinates the concurrent opera-
tions of two sets of vehicles:attackers, reserve. To do this, it maintains the state of execution of each set of vehicles,
the state of execution of the sub-task, and keeps two sets of vehicle supervisors,vsaandvsr, for theattackersand
for thereservesets respectively. In the current implementation, the setattackersconsists of just one vehicle, when it
is not empty. The transition structure of thesub-task controllerhybrid automaton is defined on the states of the two
sets of vehicles and on the state of execution of thesub-task. This provides for a high level of abstraction and for a
more compact notation.

The state of each set of vehicles is described by the current leg, the index of the current leg, the constituent vehicles
of the set itself, and the execution state.

State ofattackers:

current leg: current attack leg.

a step: index of thecurrent attack leg in thesub-task.

attackers: set of attackers.

Execution state: (one of the following)

$attack – executingattack jamsegment ofcurrent attack leg.

$path – executingfollow pathsegment ofcurrent attack leg.

$hold – executingholdingmaneuver waiting for some other leg in thetaskto be executed.

$nil – attackershas not been created yet.

State ofreserve:

Current leg: The current reserve leg is maintained by variablecurrent reserveleg.

r step: The index of thecurrent reserveleg in thesubtask.

reserve: Set of reserve vehicles.

Execution state: (one of the following)

$hold end – all of the reserve vehicles are executing holding maneuver at the end ofcurrent reserveleg.

$hold path – all of the reserve vehicles are executing holding maneuver at the end of the first part ofcur-
rent reserveleg.

$path – at least of one reserve vehicle is still executing afollow path – maneuver in the first part ofcur-
rent reserveleg. The others are already executing aholdingmaneuver.

5 MODULE 3: TASK EXECUTION 63

$path attack – at least of one reserve vehicle is still executing afollow pathmaneuver in the final part of
current reserveleg. The others are already executing aholdingmaneuver.

The actions on the transition system consist in one of the following: 1) command maneuver execution to vehicle
supervisors invsaor/and invsr; 2) transfer vehicles from thereserveto theattackersset when the second set becomes
empty; 3) remove a vehicle fromreserveand/orattackerwhen the vehicle is destroyed or it has to leave the team for
some other reason. The setattackersis empty when theattackersvehicle is destroyed or runs out of bombs. In the
last case, the corresponding UCAV leaves the set and the team executing thesubtask.

The control logic is briefly described next. Initially, theattackersset is empty while thereserveset receives the team
of vehicles allocated to the sub-task controller. Execution starts with the first leg of thesubtask. Thereservevehicles
execute afollow pathmaneuver to follow the safe path that composes the first path of this leg. When the end of that
path is reached, one of the reserve vehicles is transferred to theattackersset and the two sets of vehicles start two
concurrent threads of execution until thesubtaskterminates successfully or fails. Theattackersandreserveexecute
each leg differently, as described before.

Theattackersvehicle leads the execution. It executes thesub-task specificationuntil successful termination, or until
it is destroyed or runs out of bombs. Thereserveset stays behind theattackersin terms of the execution of the
subtask. Basically, it advances to the farthest safe point in thesubtasklegs executed so far. This points moves
forward as theattackersdestroy targets. Thereserveteam just follows the paths defined for each leg.

The user may change the execution logic. For example, when theattackersvehicle is destroyed the user may require
thesub-task controllerto enter a fail mode. In this mode, thesub-task controllerthat failed sets thefail flag in the
correspondingtask controller. Then, all thesub-task controllersenter the fail mode. In this mode, thereserveteam
is required to hold in place and theattackersare required to rendezvous with thereserveset only after completion
of the risky parts of thesubtask. In practice, this means that it will keep advancing until it reaches a safe region.
The current implementation accommodates both the case above described and the case where theattackersvehicle
is destroyed and one of the reserve vehicles is allocated to replace it.

TheShiftencoding of this controller follows. We will skip some of the implementation details for the sake of clarity.

Input variables

variable type description
st subtask link to the sub-task specification
tc task controller link to the task controller

The output variables are used ascoordination variablesbetweenattackersandreserve.

5 MODULE 3: TASK EXECUTION 64

Output variables

variable type description
reserve set(UCAV) set of reserve vehicles

reservehold set(UCAV) set of reserve vehicles in holding positions
attackers set(UCAV) set of attack vehicles (one)

currentreserveleg leg leg being executed by reserve vehicles
currentattackleg leg leg being executed by attack vehicles

r step number index of currentreserveleg in thesub-task
a step number index of currentattackleg in thesub-task
vsa set(supervisors(attackers)) set of vehicle supervisors of attackers
vsr set(supervisors(reserve)) set of vehicle supervisors of reserve

attackstage symbol state ofattackersexecution ($attack, $path, $hold)
reservestage symbol state ofreserveexecution ($holdend, $holdpath, $path, $pathattack)

team set(UCAV) team executing this sub-task

Exported events

event description to/from
abort abort command (in) tc

init not ok error event (out) tc

There is basically one stateexecutionwhere the normal operation of the controller takes place. The other states are
either preparation states (initialize, enrouterendezvous) or error or fail states.

Discrete states

state description
initialize transition state for initialization procedures

enrouterendezvous vehicles in the first path of the first leg
execution normal execution state

fail failing mode of execution
error error state

success (transition state to exit)
exit state where the component is deleted

There a partition of the transition structure. The majority of the transitions are self-loops for each discrete state, in
particular for theexecutionstate. The other transitions concern transitions among the discrete states. The self-loops
have guards on the state of execution of each set of vehicles, and have in/out events and in/out commands exchanged
with corresponding sets of vehicle supervisors,vsa, vsr.

Mathematically, this is equivalent to defining the transition structure on a larger set of discrete states. However, this
style is more convenient for programming since the behaviors ofattackersandreservecan be specified independently
(with some coupling resulting from precedence relations on attack and reserve legs) and transitions can be easily
added and deleted without additional changes on the remaining code. This style also allows for a more convenient
abstraction of the coordination structure and can be easily extended to more sets of vehicles, for example vehicles in
charge of battle damage assessment.

The transition structure involving transitions among the different discrete states is briefly described next.

5 MODULE 3: TASK EXECUTION 65

Transition

from to condition input event output event action
initialize error reserve={} or subtask=[] init not ok remove self
initialize enrouterendezvous reserve/={} and subtask=/[] vsr:execute(maneuver)(all)12

enrouterendezvous execution size(reservehold)=size(reserve)-1 vsr:done(one:p)13

execution fail fail(tc)=1
execution fail vsr:destroyed fail(tc):=1
execution success reserve={} and astep = size(p(st)) vsa:done(one:p) remove self

The self-loops concerning theexecutiondiscrete state are briefly described next.

1. When reservestage=$holdingpath andattackers={} allocate onereservevehicle toattackersand start attack
phase of thecurrent a leg.

condition input event output event action
1 1

2. When reservestage=$holdingend andattackers={} is empty and there are no precedences for the next attack
leg allocate onereservevehicle toattackersand start path phase of that leg.

3. Whenattackersfinish executing thefollow pathmaneuver ofcurrent a leg command it to execute theat-
tack jammaneuver of that leg.

4. Whenattackersfinish executing theattack jammaneuver ofcurrent a legcommand it to updatecurrent a leg
to the next leg in thesubtaskand to execute thefollow pathmaneuver of that leg if there are no precedences.

5. Whenattackersfinish executing theattack jammaneuver ofcurrent a leg command it to execute aholding
maneuver if there are leg precedences.

6. When attackstage=$hold finish and leg precedences have been removed updatecurrent a leg to the next leg
in thesubtaskand commandattackersto execute thefollow pathmaneuver of that leg.

7. When reservestage=$movingend and one of thereservevehicles has finished the correspondingfollow path
maneuver andsize(reserve hold/ = size(reserve)) command it to execute aholdingmaneuver to wait for
the otherreserve vehicles.

8. When reservestage=$movingend and the lastreservevehicle has finished the correspondingfollow path
maneuver (size(reserve hold/ = size(reserve) − 1) command it to execute aholdingmaneuver.

9. When reservestage=$holdingend anda stage > r stage and there is one pattack/=[] in the legs between
current r leg andcurrent a leg (it is safe to move forward) then updatecurrent r leg to the next leg in the
subtaskand command thereservevehicles to execute the correspondingfollow pathmaneuver.

10. When reservestage=$movingpath andsize(hold reserve) < size(reserve) − 1 and there is onereserve
vehicle that has just completed thefollow pathmaneuver command it to execute aholdingmaneuver to wait
for the other vehicles.

5 MODULE 3: TASK EXECUTION 66

11. When reservestage=$movingpath andsize(hold reserve) = size(reserve) − 1 and the lastreserveve-
hicle has just completed thefollow pathmaneuver command it to execute aholdingmaneuver and update
reservestage=$holdingpath.

5.12.4 Properties

1. In the case of perfect information thereserveteam always flies a safe path.

2. Theattackersfly a path that minimizes the maximum risk.

5.13 Conclusion

The control architecture and theShift implementation allow for additional layers on the top of the existing ones, and
also for the extension of the libraries of maneuver and team controllers. For example, the implementation of the
following control layers on the top of the existing ones is straightforward:

• Transfer of vehicles among tasks, and between base and tasks.

• Dynamic team re-allocation.

The structure of the task controller encodes a framework for multi-team coordination and control by defining a
transition structure on variables describing the state of each group of vehicles thus providing for a convenient state
aggregation.

The structure of the task specification allows for a compact representation that is interpreted differently according to
the state of execution and to the type of abstraction utilized. For example, the execution of a leg depends on the type
of vehicles engaged in executing it.

The task controller can be extended to accommodate other types of objective functions, for example, to minimize
the time to get to final target while maintaining the properties described above.

5 MODULE 3: TASK EXECUTION 67

PlatformPlatformPlatformPlatform

Vehicle supervisor

Maneuver controller

Sensor
manager

Weapons
manager

Waypoint
manager

Health
manager

Comms
manager

OEP Mirror

OEP

Maneuver
library

Dispatcher

PlanLink table
• Controllers
• Operators
• Service providers
• Vehicles

Service provider

Operator

Information

Comm ands
Messages

Execute
m aneuver

Figure 18: Individual mission execution.

5 MODULE 3: TASK EXECUTION 68

PlatformPlatformPlatformPlatform

Vehicle supervisor

Maneuver controller

Sensor
manager

Weapons
manager

Waypoint
manager

Health
manager

Comms
manager

OEP Mirror

OEP

Maneuver
library

Dispatcher

Link table
• Controllers
• Operators
• Service providers
• Vehicles

Execute
maneuver

PlatformPlatformPlatformPlatform

Vehicle supervisor

Maneuver controller

Sensor
manager

Weapons
manager

Waypoint
manager

Health
manager

Comms
manager

OEP Mirror

OEP

Maneuver
library

Dispatcher

Link table
• Controllers
• Operators
• Service providers
• Vehicles

Execute
maneuver

PlatformPlatformPlatformPlatform

Vehicle supervisor

Maneuver controller

Sensor
manager

Weapons
manager

Waypoint
manager

Health
manager

Comms
manager

OEP Mirror

OEP

Maneuver
library

Dispatcher

Link table
• Controllers
• Operators
• Service providers
• Vehicles

Execute
maneuver

PlatformPlatformPlatformPlatform

Vehicle supervisor

Maneuver controller

Sensor
manager

Weapons
manager

Waypoint
manager

Health
manager

Comms
manager

OEP Mirror

OEP

Maneuver
library

Link table
• Controllers
• Operators
• Service providers
• Vehicles

Team controller

Figure 19: Team control.

5 MODULE 3: TASK EXECUTION 69

Figure 20: Leg example.

5 MODULE 3: TASK EXECUTION 70

type task_simulation
{
output

ucav u1, u2, u3, u4;
leg leg1, leg2, leg3, leg4, leg5, leg6, leg7, leg8;
subtask subtask1, subtask2;
task_controller c_task1;
task t1;
set(ucav) team1:={}, team2:={};

discrete
i1, i2, i3, i4, normal;

transition
i1 -> i2 {} do // create all legs

{
leg1:= create(leg, p_attack:= [[93517.725, 111320.00],

[150000.00, 158235.2],
[151000.00, 158000.00]],
p :=medium_sam12);

leg2:= create(leg, p_attack:= [], p :=long_sam5_trk);
.....
team1:={u1, u2}; // create teams to execute subtasks
team2:={u3, u4};

},

i2 -> i3 {} do // creates subtasks and leg dependencies
{
subtask1:= create(subtask,

p:=[leg1, leg2, leg3, leg4, leg5],
team:= team1);

requires(leg3):={leg6};
subtask2:= create(subtask,

p:=[leg6, leg7, leg8], team:= team2);
},

i3 -> i4 {} do // creates task specification
{
t1:=create(task,s:=[subtask1,subtask2]);

},
i4 -> normal {} do // creates task controller
{
c_task1:= create(task_controller, t:=t1);

};
}

Figure 21: An example task specification: the task comprises subtasks 1 and 2 to which are assigned teams 1 and 2;
each task consists of several legs.

5 MODULE 3: TASK EXECUTION 71

Figure 22: Task controller.

6 MODULE 4: STATE ESTIMATOR 72

6 Module 4: State estimator

From the viewpoint of the Blue forces, the ‘state-of-the-world’ has two components during task execution: the
state of the Blue forces themselves—which we assume is fully known, and the Red forces. The latter is only
partially known and, since we adopt a Bayesian viewpoint, this knowledge is fully described by the threat probability
distribution. This distribution changes as tasks are executed.

In this section we describe a procedure, calledPostthreat, that updates the threat probability distribution following
the destruction of some targets or the acquisition of sensor measurement.

Recall our assumption about the initial threat distribution in section3.1, which is repeated here:

The Red force is distributed over areasA1, · · · , Ak. In areaAj there areNtj targets of typet ∈
TargetTypeswhose locations are independently and uniformly distributed. The random number of tar-
getsNtj are all independent with distributionPtj(N).

This restriction implies that the initial threat distribution has the form

Pthreat(0)(Targets) =
∏
t

k∏
j=1

Ntj∏
i=1

ptj(type= t, (xi, yi))Ptj(Ntj), (32)

in which t ranges overTargetTypes, and

ptj(type= t, (xi, yi)) =
{

|Aj |−1, (xi, yi) ∈ Aj

0, otherwise
. (33)

The procedurePostthreat takes two arguments—the initial threat distributionPthreat(0) and a task list—and calcu-
lates the resulting distribution. We will need to model what it means to execute a task.

We consider two kinds of tasks:strikeandsearch. The former task results in the destruction of some targets with
success probabilitySmin; the latter results in sensor observations that reduce the uncertainty in the distribution. As
we will see, a useful feature of the model (32)-(33) is that the threat distribution following the execution of a task
also has the same form.

Denote the initial distribution by
Pthreat(0) = PA,N . (34)

6.1 Threat distribution after strike

There are two cases to consider.

6 MODULE 4: STATE ESTIMATOR 73

Smin = 1

When the success probability is very high,Smin≈ 1, the procedure is straightforward. The strike task is completed
by the destruction of a certain number of targets of each type in each area. So this task is specified by a set of the
form

strike= {(t, Aj , ntj) | t ∈ TargetTypes; j = 1, · · · , k}. (35)

The successful completion of task (35) reduces the number of targets, so the posterior threat will have the same form
as (34), except that the random variablesNtj will be reduced:

Postthreat(PA,N , strike) = PA,(N−n)+ , (36)

in which (N − n)+ = {max{Ntj − ntj , 0}}.

If TaskListcontainsm strike tasks,
TaskList= {strike1, · · · , strikem},

the posterior threat is evaluated by successively applying formula (36), so

PostThreat(PA,N ,TaskList) = PA,(N−n1−···−nk)+ .

The conditionSmin ≈ 1 is achieved either if there is a very high confidence in the success of a strike, or if a strike
is followed by an accurate damage assessment, which removes any uncertainty in the success of a strike.

Smin < 1

The taskstrike= {(SAM, A, 1)} calls for the destruction of one SAM site in areaA. If initially there areN SAM
sites inA and the task is successful, which happens with probabilitySmin, it will reduce this number to(N − 1)+.
If the task is unsuccessful, this number will remainN . So the posterior threat is

Postthreat(PA,N , strike) = PA,Post(N),

in whichPost(N) is the random number14

Post(N) = (N − 1)+1(success) +N [1− 1(success)],

in whichsuccessis a{0, 1}-valued random variable, independent ofN , with P (success= 1) = Smin.

More generally, if the strike task is given by (35), the posterior threat evaluates to

Postthreat(PA,N , strike) = PA,Post(N), (37)

in which
Post(N) = (N − n)+1(success) +N [1− 1(success)]. (38)

14In the formula below,1(success) = 1 if success = 1, and equals 0, otherwise.

6 MODULE 4: STATE ESTIMATOR 74

If TaskListcontains several strike tasks, the posterior threat is evaluated by successively applying formulas (37)-
(38).15

Equations (35)-(38) summarize the procedurePostthreat(PA,N ,TaskList) for the situations in whichTaskListconsists
of strike tasks.

6.2 Threat distribution after search

We calculatePostthreat(PA,N , search) after the completion of a search task.

To simplify the notation we assume that the search is confined to one area in the listA = {A1, · · · , Ak}. Because
the threats in different areas are independent, the threat distribution will remain the same in all the areas that are not
searched. So we may assume that the list consists of a single area, also denoted byA.

Suppose now that the areaA is divided into two disjoint subareasA1 andA2, and the search is confined to areaA2.
We assume that the search is able to distinguish between targets of different types. So the result of the search is a
list of ‘observations’Y = {Yt | t ∈ TargetTypes}, whereYt is the number of observed targets of typet. Because the
targets of different types in an area are independent, we may calculate the effect of each observationYt separately.

Thus suppose there is only a single type of target and the result of the search is the number of targetsY observed in
areaA2. The observation need not be perfect, i.e., not all targets inA2 may be observed. Rather, we assume that the
probability of detecting a target ispd. Therefore ifN2 is the (random) number of targets inA2, Y is related toN2 by

P (Y = y | N2 = n2) =
{ (n2

y

)
(pd)y(1− pd)n2−y, y ≤ n2

0, y > n2.
(39)

Equation (39) is our model of the search process. Note that it may serve equally as a model of a sensor observation.

Our prior information is simplyPA,N which, becaue we are considering a single area and a single target type, simply
reduces to the probability distributionP (N = n) of the number of targets inA. LetNi be the (random) number of
targets in areaAi, i = 1, 2.

The prior marginal distribution ofNi is

P (Ni = ni) =
∞∑
n=0

P (Ni = ni | N = n)P (N = n), (40)

in which

P (Ni = ni | N = n)
{ (

n
ni

)
(αi)ni(1− αi)n−ni , ni ≤ n

0, ni > n,
(41)

in whichαi = |Ai|/|A| is the fraction of the areaA that is inAi.

After Y = y targets are observed inA2, the threat distribution in areaAi is given byP (Ni = ni | Y = y), which
we want to calculate.

15Note that if the planner believes that the success of the different tasks inTaskListare correlated, the distribution ofPost(N)must take this
correlation into account.

6 MODULE 4: STATE ESTIMATOR 75

Example 5.The calculation is easy in the case of perfect detection,pd = 1. We have

P (N2 = y | Y = y) = 1, and

P (N1 = n1 | Y = y) = P (N = n1 + y | N ≥ y)

=
P (N = n1 + y)∑∞

n=y P (N = n)

In the general case,pd < 1, the posterior distribution ofN2 is given by Bayes’ rule:

P (N2 = n2 | Y = y) =
P (Y = y | N2 = n2)P (N2 = n2)

P (Y = y)

=
P (Y = y | N2 = n2)P (N2 = n2)∑∞
m=0 P (Y = y | N2 = m)P (N2 = m)

. (42)

The terms on the right hand side of (42) are given by (39), (40), 41).

The calculation ofP (N1 = n1 | Y = y) is a bit more complicated. We have

P (N1 = n1 | Y = y) =
∞∑

n2=0

P (N1 = n1 | N2 = n2, Y = y)P (N2 = n2 | Y = y)

=
∞∑

n2=0

P (N1 = n1 | N2 = n2)P (N2 = n2 | Y = y), (43)

becauseN1 andY are conditionally independent giveN2. Also,

P (N1 = n1 | N2 = n2) =
P (N1 = n1, N2 = n2)

P (N1 = n2)
, (44)

and

P (N1 = n1, N2 = n2) =
∞∑
n=0

P (N1 = n1, N2 = n2 | N = n)P (N = n)

P (N1 = n1, N2 = n2 | N = n) =

{
α

n1
1 α

n2
2∑

n1+n2=n α
n1
1 α

n2
2

, if n1 + n2 = n

0, if n1 + n2 �= n
(45)

The distributionP (N1 = n1 | Y = y) is obtained by substituting from (41), (42), (44), (45) into (43).

6.3 Implementation

The procedurePostthreat(PA,N , task) is implemented in a database, as described in section2.4. The database stores
the threat distribution, and updates it following acquisition of information. Crucial to the reduction in memory
requirements and computational complexity, is the representation (32). If there areα areas,τ target types, and at
mostν targets in each area of each type, the distribution (32) can be stored in an array of sizeα× τ × ν.

7 MODULE 5: JAVA INTERFACE TO OEP 76

7 Module 5: Java interface to OEP

A full planning cycle involves these steps:

1. The planner creates a set of paths for attack using the ITP;

2. The set of paths and the threat elimination matrix are used by the task assignment module to create a set of
assignments of teams to tasks and a partial ordering of the tasks;

3. The Shift controller set uses the information from the assignment module to execute the plan with the help of
the java RMI services and the java client to the OEP;

4. Feedback data from the OEP is placed in the database, and when the Shift controller concludes execution, this
data is read into the ITP to run another planning iteration using this updated information.

This section provides an explanation of the functionality of the java RMI services and the java client to the OEP.

7.1 Java client to the OEP

The java client functions as the ‘glue’ between the OEP and the Shift controllers, and also provides the mechanism
for updated sensor readings from the OEP to be stored in the database using the RMI services. During initialization of
the Shift controllers, one instance of the java client is created for each platform in the scenario. This is accomplished
using the Java Native Interface from the Shift runtime. Each instance of the java client is initialized with the current
state of the platform from the OEP. When the java client is initialized, each client object connects to the database
(through JDBC drivers for MySQL) and to the OEP using the CORBA naming service. It also obtains references
to the RMI services using the naming service. Initial values for variables in each client object are set in the Shift
controller, and then updated from the OEP using the OEP events mechanism. Each client object has a get() and set()
method, which is used by the Shift runtime to maintain a mirror of the OEP state within Shift. In the get() method
of each client are included calls to the RMI services to update the database tables.

In the scenario being run in the OEP, we initialize a widebody isr that flies in a holding pattern while reading sensor
data into a queue. Each client object subscribes to events for the platform it corresponds to and for the widebody isr
platform. When the wide body platform receives a sensor reading, the sensor data is added to a queue in the client
object. When the queue reaches a predetermined size, the java client invokes the threat distribution RMI service to
read the updated values from the sensor readings into the database. When the queue is empty of new values, the
risk map update service is called to recalculate the risk map. Barring interruptions for database update, execution
continues for a time interval specified in the client object before new values from the OEP are read into the Shift
runtime.

7.2 RMI Services

The java RMI services provide two basic functions: one service is a database interface that enables the java client
to the OEP to add and remove threat information from the threat distribution table. The other service recalculates

7 MODULE 5: JAVA INTERFACE TO OEP 77

the values in each cell of the risk map by reading updated threat information from the database table and writes the
updated values in the risk map back to the database. The RMI services have to be started before starting execution of
the Shift controllers. Appropriate user interfaces are provided for the user to start the RMI services while specifying
the scenario area, grid size and other necessary parameters. The database tables are initialized according to the
values provided for each of the parameters. Typically, the scenario area is divided into a grid (101 × 101) and the
database contains a threat distribution table and a risk map table that contain a value for each cell in the grid.

8 MODULE 6: ROBUST PATH PLANNING 78

8 Module 6: Robust path planning

Modules 1-5, described the previous sections provide an integrated but incomplete approach to the MICA problem.
Modules 6-8, discussed in this and the two subsequent sections, represent theoretical formulations and preliminary
algorithms that we had planned to integrate with the other modules.

Module 6 considers a formulation of Markov Decision Problems, when there is uncertainty about the various tran-
sition probabilities that model the underlying process. Module 7 is concerned with ‘flexible’ team formation, based
on information about force attritions that is obtained as task execution proceeds. Module 8 presents a path planning
algorithm that deals with multiple criteria.

Optimal solutions to Markov Decision Problems (MDPs) may be very sensitive with respect to the state transition
probabilities. In many practical problems, the estimation of these probabilities is far from accurate. Hence, estima-
tion errors are limiting factors in applying MDPs to real-world problems. We consider the problem of minimizing
the worst-case (maximum) expected cost, where the maximum is taken over all possible time-independent choices
of the transition matrices within prescribed convex sets. We derive a robust counterpart to the classical Bellman
recursion, based on approximating the original problem by one where the uncertain transition matrices are allowed
to be time-dependent. Our main result is that a particular choice of the convex sets used to represent uncertainty,
based on likelihood or entropy bounds, leads to both a statistically meaningful representation of uncertainty, and a
complexity of the robust recursion that is similar to that of the classical recursion. Hence, robustness can be added
at practically no extra computing cost.16

8.1 Introduction

Finite-state and finite-action Markov Decision Processes (MDPs) capture several attractive features that are im-
portant in decision-making under uncertainty: they handle risk in sequential decision-making via a state transition
probability matrix, while taking into account the possibility of information gathering and recourse corresponding to
this information during the multi-stage decision process [29, 31, 32, 39].

Module 6 addresses the issue of uncertainty at a higher level: we consider a Markov decision problem in which
the transition matrix itself is uncertain, and seek a robust decision for it. Our work is motivated by the fact that in
most practical problems, the transition matrix has to be estimated from data, which is often a difficult task, see for
example [49, 39, 56, 58]. It turns out that estimation errors may have a huge impact on the solution, which is often
quite sensitive to changes in the transition probabilities. (We will provide an example of this phenomenon.)

A number of authors have addressed the issue of uncertainty in the transition matrix. A Bayesian approach such as
described by [51] requires a perfect knowledge of the whole prior distribution on the transition matrix, making it
difficult to apply in practice. Other authors have considered the transition matrix to lie in a given set, most typically
a polytope: see [57, 53, 60]. Although our approach allows one to describe the uncertainty on the transition matrix
by a polytope, we will argueagainstchoosing such a model for the uncertainty. First, a polytope is often not a
tractable way to address the robustness problem, as it incurs a significant additional computational effort to handle

16Research on module 6 was conducted by L. El Ghaoui and A. Nilim and was also supported in part by Eurocontrol-014692 and NSF-
ECS-9983874.

8 MODULE 6: ROBUST PATH PLANNING 79

uncertainty. As we will show, an exception is when the uncertainty is described by an interval matrix, intersected by
the constraint that probabilities sum to one, as in [60, 61]. Perhaps more importantly, polytopic models, especially
interval matrices, are very poor representations of statistical uncertainty and lead to very conservative robust policies.
In addition, in [61] the authors proposed relative entropy models and proved the existence of a polynomial time
solution. However, no specific algorithms were proposed.

We propose here an uncertainty model which results in an algorithm that isbothstatistically accurate and numerically
tractable. We develop a formulation in which the concern for robustness can be handled at virtually no additional
computational cost. This means that the method is directly applicable to those problems already amenable to exact
dynamic programming via Bellman recursions.

This section is organized as follows. The problem is set up in section8.2. In sections8.4, we describe the so-
called likelihood model and some variations. Section8.6examines the entropy models, while section8.7deals with
ellipsoidal and “interval matrix” models. Our results are summarized in section8.3. We describe numerical results
in the context of aircraft routing in section8.10.

Notation

P > 0 or P ≥ 0 refers to the strict or non-strict componentwise inequality for matrices or vectors. For a vector
p > 0, log p refers to the componentwise operation.

8.2 Problem Setup

8.2.1 The Bellman recursion

We consider a finite horizon Markov decision process with finite state and finite action sets. The decision horizon
is divided into a finite number of stagesT = {0, 1, 2, . . . , N}, for some1 ≤ N < ∞. At each stage, the system
occupies a statei ∈ X ; n = |X | is finite. At each stage and state, a decision maker is allowed to choose an action
a deterministically from a finite set of allowable actions in statei, Ai. LetA = ∪iAi and letm = |A|. We denote
by P = (P a)a∈A the collection of transition matrices, byπt = (at, at+1, . . . , aN−1) the policy starting from time
t ∈ T , by Πt the strategy space at timet ∈ T , by ct(i, a) the cost corresponding to statei ∈ X and actiona ∈ A
at time t ∈ T , and bycN the cost function at the terminal stage,N . We assume that the cost function is finite
everywhere.

For a given statei ∈ X and actiona ∈ A, we denote bypai the next-state distribution drawn fromP a corresponding
to statei ∈ X ; thuspai is thei-th row of matrixP a. We denote byPa

i the projection of the setPa onto the set of
pai -variables.

Ournominalproblem is to minimize the expected cost over a finite horizon

min
π∈Π

E

(
N−1∑
t=0

ct(it, at) + cN (iN)

)
,

8 MODULE 6: ROBUST PATH PLANNING 80

in whichπ := π0, andΠ0 := Π. When the transition matrices are exactly known, the value function of the system
at statei ∈ X and the staget ∈ T can be computed via the Bellman recursion,

Vt(i) = min
a∈A


ct(i, a) +

n∑
j=1

P a(i, j)Vt+1(j)


 , i ∈ X . (46)

Each step of the Bellman recursion has worst-case complexityO(nm).

8.2.2 Addressing uncertainty in the transition matrices

Now consider the case when for each actiona, the corresponding transition matrixP a is only known to lie in some
given convex and compact subsetPa of T , whereT is the set ofn × n transition matrices (componentwise non-
negative matrices with rows summing to one). Loosely speaking, we can think of the setsPa assets of confidence
for the transition matrices.

Two models for transition matrix uncertainty are possible, leading to two possible forms of robust control problems.
In a first model, referred to as thetime-invariantmodel, the transition matrix for any given action is chosen by nature
once and for all, and remain fixed thereafter. This means that the transition matrix depends only on the action taken
by the controller. In a second model, which we refer to as thetime-varyingmodel, the transition matrices can vary
arbitrarily with time, within their prescribed bounds. In that case, the transition matrix depends not only on the
controller’s action, but also on time.

Let us define our two problems more formally. For a given policyπ ∈ Π, we definenature’s policyasP(π) =
(P a0

0 , . . . , P
aN−1

N−1), which corresponds to the transition matrices chosen by nature in response to a given control
policy π. Define the corresponding set of allowable policies byP(π) = Pa0 ⊗ . . . ⊗ PaN−1 . Finally, define the set
of time-invariant policies by

L(π) =
{
(P a0

0 , . . . , P
aN−1

N−1) ∈ T N : P ai
i = P

aj

j for ai = aj

}
.

The time-invariant model leads to the problem

min
π∈Π

max
P(π)∈P(π)⋂ L(π)

E

(
N−1∑
t=0

ct(it, at) + cN (iN)

)
. (47)

In contrast, the time-varying model leads to a relaxed version of the above:

min
π∈Π

max
P(π)∈P(π)

E

(
N−1∑
t=0

ct(it, at) + cN (iN)

)
. (48)

The first model is attractive for statistical reasons, as it is much easier to develop statistically accurate sets of con-
fidence when the underlying process is time-invariant. Unfortunately, the resulting game (47) seems to be hard to
solve. The second model is attractive as one can solve the corresponding game (48) using a variant of Bellman

8 MODULE 6: ROBUST PATH PLANNING 81

recursion seen below, but we are left with a difficult task, that of estimating a meaningful set of confidence for the
time-varying matricesP a.

In this section, we use the first model of uncertainty, in which the transition matrix is fixed. This allows us to describe
uncertainty in a statistically accurate way using likelihood or entropy functions. To solve the corresponding control
problem (47), we use an approximation that is common in robust control, wherein the time-invariant uncertainty
is replaced by a time-varying one. This means that we solve the second problem (48) as an approximation (upper
bound) to the first, using uncertainty setsPa derived from a time-invariance assumption about the transition matrices.

8.2.3 The robust Bellman recursion

Problem (48) is a two-player stochastic game with non-negative, finite rewards. By standard arguments from stochas-
tic game theory [30], this game can be viewed as a zero sum game. General results from [52, 54] then imply that the
corresponding stochastic game can be solved via the following “robust counterpart” to the Bellman recursion,

Vt(i) = min
a∈A

max
p∈Pa

i


ct(i, a) +

n∑
j=1

p(j)Vt+1(j)


 , i ∈ X , (49)

in whichVt(i) is the worst-case optimal value function in statei at staget. The above result is proved in Appendix
8.16.1.

One step of the robust Bellman recursion thus involves the solution of a convex optimization problem. Obviously, the
complexity of the robust Bellman recursion depends solely on the complexity of the projectionsPa

i for eachi ∈ X
anda ∈ A. Moreover, the setP should be an accurate (non-conservative) description of the statistical uncertainty
on the whole collection of transition matrices.

Note that the effect of uncertainty on agivenstrategyπt = (at, . . . , aN) can be evaluated by the following recursion

V πt
t (i) = max

p∈Pat
i


ct(i, at) +

n∑
j=1

p(j)V πt+1

t+1 (j)


 , i ∈ X , (50)

which provides the worst-case value function for a given strategy.

8.2.4 Main result

We address the problem of efficiently computing the value function via the above recursion. Once the uncertainty
model is chosen, the challenge is to solve the “inner problem” in (49), which reduces to computing values of the
support function of a given convex setU :

φU (v) = max
p∈U

vT p, (51)

in which the variablep corresponds to a particular row of a specific transition matrix,U is the set that describes the
uncertainty on this row, andv is an appropriately defined vector, containing the elements of the value function.

8 MODULE 6: ROBUST PATH PLANNING 82

We consider various representations of uncertainty. All our models involveindependentdescriptions of the uncer-
tainty on each transition matrix; in other words, we postulate thatP is a direct product

⊗
a∈A Pa, in whichPa

describes uncertainty on the transition matrixP a. This assumption is not formally needed, but simplifies the task of
forming the projectionsPa

i required in the robust Bellman recursion (49).

Our main uncertainty model is based on a log-likelihood constraint on each transition matrix. This representation en-
ables one to solve for one step the robust dynamic programming recursion (49) in worst-case time ofO(n log(1/ε))
via a simple bisection algorithm, wheren is the size of the state space, andε specifies the accuracy of the worst-case
value function. This brings the total complexity of one step of the Bellman recursion toO(nm log(1/ε)), wherem is
the cardinality of the action set. At the same time, our model allows an accurate description of statistical uncertainty
on the transition matrix. Hence, non-conservative robustness is obtained at a moderate increase (log(1/ε)) with
respect to the classical Bellman recursion. We also describe models based on relative entropy bounds, and obtain
similar results.

We will also consider perhaps more classical ways to describe uncertainty, among which an interval models based
on componentwise intervals of confidence, and ellipsoidal models that are based on quadratic approximations to the
log-likelihood. We will observe that some of these descriptions give rise to similar low complexity results. However,
these “approximate” models, as argued below, are statistically less accurate.

8.3 Robust algorithm summary

The robust Dynamic Programming algorithm is as follows.

1. Initialize the value functionvt to its terminal valuevN .

2. Repeat untilt = 0:

(a) For all statesi and controlsa, compute the solution to the inner problem

φ(vt) = max
p∈Pa

i

pT vt;

(b) Update the value function by

vt−1(i) = min
a∈A

(ct−1(i, a) + φ(vt)) ;

(c) Replacet by t− 1 and go to2.

8.4 Likelihood Models

Our first model is based on a likelihood constraint to describe uncertainty on each transition matrix. Our uncertainty
model is derived from a controlled experiment starting from statei = 1, 2, . . . , n and the count of the number of
transitions to different states. We denote byF a the matrix of empirical frequencies of transition with controla in

8 MODULE 6: ROBUST PATH PLANNING 83

the experiment; denote byfai its ith row. We haveF a ≥ 0 andF a1 = 1, where1 denotes the vector of ones. For
simplicity, we assume thatF a > 0 for everya.

To simplify the notation, we will drop the superscripta in this section, and refer to a generic transition matrix asP
and to itsith row aspi. The same convention applies to the empirical frequency matrixF a and its rowsfai , as well
as to setsPa andPa

i . When the meaning is clear from context, we will further drop the subscripti.

8.4.1 Model description

The “plug-in” estimateP̂ = F is the solution to the maximum likelihood problem

max
P

L(P) :=
∑
i,j

F (i, j) log P (i, j) : P ≥ 0, P1 = 1

The optimal log-likelihood isβmax =
∑

i,j F (i, j) log F (i, j).

A classical description of uncertainty in a maximum-likelihood setting is via the likelihood region [35, 38]
P ∈ Rn×n : P ≥ 0, P1 = 1,

∑
i,j

F (i, j) log P (i, j) ≥ β


 , (52)

in whichβ < βmax is a chosen number, which represents the designers preferred uncertainty level. In practice, the
designer chose an uncertainty level andβ can be estimated using resampling methods, or a large-sample Gaussian
approximation, so as to ensure that the set above achieves the desired level of confidence (see Appendix8.16.4).

The description above is classical in the sense that log likelihood regions are the starting point for developing ellip-
soidal or interval models of confidence, hence are statistically more accurate [35]; see section8.9for further details.
The set (52) tells us how informative the data is. If this set is elongated along a direction, then the likelihood function
does not vary much in that direction, and the the data is not very informative in that direction. This set has some
interesting features. First, it does not result from a (quadratic) approximation; it is a valid description of uncertainty,
even forβ values that are far belowβmax. Second, this set might not be symmetric around the maximum-likelihood
point, reflecting the fact the statistical uncertainty depends on the direction. Finally, by construction, it excludes
matrices that are not transition matrices; the same cannot be said of the more classical ellipsoidal approximations.

In our problem, we only need to work with the uncertainty on each rowpi, that is, withprojectionsof the set above.
Due to the separable nature of the maximum-likelihood problem, the projection of the set (52 onto thepi variables
of matrixP can be given explicitly as

Pi(βi) :=


p ∈ Rn : p ≥ 0, pT1 = 1,

∑
j

fi(j) log pi(j) ≥ βi


 ,

in which
βi := β +

∑
k �=i

∑
j

F (k, j) log F (k, j).

8 MODULE 6: ROBUST PATH PLANNING 84

8.4.2 The dual problem

We are now ready to attack problem (51) under the premise that the transition matrix is only known to lie in some
likelihood region as defined above. The inner problem is to compute

φ := max
p

pT v : p ≥ 0, pT1 = 1,
∑
j

f(j) log p(j) ≥ β,

in which we have dropped the subscripti in the empirical frequencies vectorfi and in the lower boundβi. In this
sectionβmax denotes the maximal value of the likelihood function appearing in the set above, which isβmax =∑

j f(j) log f(j). We assume thatβ < βmax, which, together withf > 0, ensures that this set has non-empty
interior.

The LagrangianL : Rn × Rn × R×R → R associated with the inner problem can be written as

L(v, ν, µ, λ) = pT v + νT p+ µ(1− pT1) + λ(fT log p− β),

in whichν, µ, andλ are the Lagrange multipliers. The Lagrange dual functiond : Rn×R×R → R is the maximum
value of the Lagrangian overp, i.e., forν ∈ Rn, µ ∈ R, andλ ∈ R,

d(ν, µ, λ) = sup
p

L(v, ν, µ, λ) = sup
p

(pT v + νT p+ µ(1− pT1) + λ(fT log p− β)). (53)

The optimalp∗ = arg supp L(v, ν, µ, λ) is readily obtained by solving∂L∂p = 0, which results in

p∗(i) =
λf(i)

µ− v(i)− ν(i)
.

Plugging the value ofp∗ in the equation ford(ν, µ, λ) yields, with some simplification, the following dual problem:

φ := min
λ,µ,ν

µ− (1 + β)λ + λ
∑
j

f(j) log
λf(j)

µ− v(j) − ν(j)
: λ ≥ 0, ν ≥ 0, ν + v ≤ µ1.

Since this problem is convex, and has a feasible set with non-empty interior, there is no duality gap, that is,φ = φ.
Moreover, by a monotonicity argument, the optimal dual variableν is zero, which reduces the number of variables
to two:

φ = min
λ,µ

h(λ, µ),

in which

h(λ, µ) :=




µ− (1 + β)λ+

λ
∑

j f(j) log
λf(j)

µ− v(j)
if λ > 0, µ > vmax := maxj v(j),

+∞ otherwise.

(54)

For future reference, we note thath is twice differentiable on its domain, and that its gradient is given by

∇h(λ, µ) =



∑

j f(j) log
λf(j)

µ− v(j)
− β

1− λ
∑

j

f(j)
µ− v(j)


 . (55)

8 MODULE 6: ROBUST PATH PLANNING 85

8.4.3 A bisection algorithm

From the expression of the gradient obtained above, the optimal value ofλ for a fixedµ, λ(µ), is given analytically
by

λ(µ) =


∑

j

f(j)
µ− v(j)




−1

, (56)

which further reduces the problem to a one-dimensional problem,

φ = min
µ≥vmax

φ(µ),

in whichvmax = maxj v(j), andφ(µ) = h(λ(µ), µ). By construction, the new functionφ(µ) is convex in its (scalar)
argument, since the functionh defined in (54) is jointly convex in both its arguments (see [40, p.74]). Hence, we
may use bisection to minimizeφ.

To initialize the bisection algorithm, we need upper and lower boundsµ− andµ+ on a minimizer ofφ. When
µ → vmax, φ(µ) → vmax andφ′(µ) → −∞ (see Appendix8.16.2). Thus, we may set the lower bound to
µ− = vmax.

The upper boundµ+ must be chosen such thatφ′(µ+) > 0. We have

φ′(µ) =
∂h

∂µ
(λ(µ), µ) +

∂h

∂λ
(λ(µ), µ)

dλ(µ)
dµ

.

The second term is zero by construction, anddλ(µ)/dµ > 0 for µ > vmax. Hence, we only need a value ofµ for
which

∂h

∂λ
(λ(µ), µ) =

∑
j

f(j) log
λ(µ)f(j)
µ− v(j)

− β > 0. (57)

By convexity of the negative log function, and using the fact thatfT1 = 1, f ≥ 0, we obtain

∂h

∂λ
(λ(µ), µ) = βmax − β +

∑
j f(j) log

λ(µ)
µ− v(j)

≥ βmax − β − log
(∑

j f(j)
µ− v(j)
λ(µ)

)

≥ βmax − β + log
λ(µ)
µ− v̄

,

in which v̄ = fTv denotes the average ofv underf .

The above, combined with the bound onλ(µ): λ(µ) ≥ µ− vmax, yields a sufficient condition for (57) to hold:

µ > µ0+ :=
vmax − eβ−βmax v̄

1− eβ−βmax
. (58)

By construction, the interval[vmax µ+] is guaranteed to contain a global minimizer ofφ over(vmax +∞).

The bisection algorithm goes as follows:

8 MODULE 6: ROBUST PATH PLANNING 86

1. Setµ− = vmax andµ+ = µ0+ as in (58). Let ε > 0 be a small convergence parameter.

2. Whileµ+ − µ− > ε(1 + µ− + µ−), repeat

(a) Setµ = (µ+ + µ−)/2.

(b) Compute the gradient ofφ atµ.

(c) If φ′(µ) > 0, setµ+ = µ; otherwise, setµ− = µ.

(d) go to2a.

Each iteration of the above algorithm has worst-case complexity ofO(n). The number of iterations grows as
log(µ0+ − vmax)/ε), which is independent of problem size. Hence, the worst-case complexity of the algorithm
is O(n), which is the same order as one evaluation of the objective function. Therefore, the extra cost of adding
robustness under the likelihood uncertainty model isO(1), which means that robustness can be added at practically
no extra cost.

In practice, the function to minimize may be very “flat” near the minimum. This means that the bisection algorithm
above may take a long time to converge to the global minimizer. Since we are only interested in the value of the
minimum (and not of the minimizer), we may modify the stopping criterion to

µ+ − µ− ≤ ε(1 + µ− + µ−) or φ′(µ+)− φ′(µ−) ≤ ε.

This second criterion retains the same complexity as the original bisection algorithm. The second condition in the
criterion implies that|φ′((µ+ + µ−)/2)| ≤ ε, which is an approximate condition for global optimality.

8.5 Maximum a posteriori models

We now consider a variation on the likelihood model, the Maximum a posteriori (MAP) model. The MAP estimation
framework provides a way of incorporating prior information in the estimation process. This is particularly useful
for dealing with sparse training data, for which the maximum likelihood approach may provide inaccurate estimates.
The MAP estimator, denoted bypMAP , maximizes the “MAP function”[33]

LMAP(p) = L(p) + log gprior(p),

in whichL(p) is the log-likelihood function, andgprior refers to thea priori density function of the parameter vector
p.

In our case,p is a row of the transition matrix, so a prior distribution has support included in then-dimensional
simplex

{
p : p ≥ 0, pT1 = 1

}
. It is customary to choose the prior to be a Dirichlet distribution [59, 34], the

density of which is of the form
gprior(p) = K ·

∏
i

pαi−1
i ,

in which the vectorα ≥ 1 is given, andK is a normalizing constant. Choosingα = 1 we recover the ‘non-
informative prior’, which is the uniform distribution on then-dimensional simplex. In that case, the MAP estima-
tion converges to the Maximum Likelihood estimation. Hence, MAP estimation is a more general framework and
Maximum Likelihood estimation is a specialization of MAP when prior information is not available.

8 MODULE 6: ROBUST PATH PLANNING 87

The resulting MAP estimation problem takes the form

max
p

(f + α− 1)T log p : pT1 = 1, p ≥ 0.

To this problem we can associate a “MAP” region which describes the uncertainty on the estimate, via a lower bound
β on the functionLMAP(p). The inner problem now takes the form

φ := max
p

pT v : p ≥ 0, pT1 = 1,
∑
j

(f(j) + α(j) − 1) log p(j) ≥ γ,

in which γ depends on the normalizing constantK appearing in the prior density function and on the chosen lower
bound on the MAP function,β. We observe that this problem has exactly the same form as in the case of likelihood
function, provided we replacef by f + α− 1. Therefore, the same results apply to the MAP case.

8.6 Entropy Models

8.6.1 Model description

Here, we describe the uncertainty on each row of the transition matrix via an entropy constraint. Specifically we
consider problem (51), with the uncertainty on thei-th row of the transition matrixP a described via a lower bound
on the entropy function relative to a given distributionq (Kullback-Leibler divergence)

U(β) =


p ∈ Rn : pT1 = 1, p ≥ 0,

∑
j

p(j) log
p(j)
q(j)

≤ β


 .

Hereq > 0 is a given distribution, andβ > 0 is fixed. We can chose the maximum likelihood estimate as the value
of q. Together withq > 0, the conditionβ > 0 ensures thatU has non-empty interior. (As before, we have dropped
the control and row indicesa andi).

We now address the inner problem (51), with U = U(β) given above. We note that the set above actually equals
the whole probability simplex ifβ is too large, specifically ifβ ≥ maxi(− log qi), since the latter quantity is the
maximum of the relative entropy function over the simplex. Thus, ifβ ≥ maxi(− log qi), the worst-case value of
pT v for p ∈ U(β) is equal tovmax.

8.6.2 Dual problem

By standard duality arguments (setU being strictly feasible), the inner problem is equivalent to its dual:

min
λ>0,µ

µ+ βλ+ λ
∑
j

q(j) exp
(
v(j) − µ

λ
− 1

)
.

8 MODULE 6: ROBUST PATH PLANNING 88

Setting the derivative with respect toµ to zero, we obtain the optimality condition

∑
j

q(j) exp
(
v(j) − µ

λ
− 1

)
= 1,

from which we derive

µ = λ log


∑

j

q(j) exp
v(j)
λ


− λ.

The optimal distribution is

p∗ =
q(j) exp v(j)

λ∑
i q(i) exp

v(i)
λ

.

As before, we reduce the problem to a one-dimensional problem:

min
λ>0

φ(λ)

in whichφ is the convex function:

φ(λ) = λ log


∑

j

q(j) exp
v(j)
λ


+ βλ. (59)

Perhaps not surprisingly, the above function is closely linked to the moment generating function of a random variable
v having the discrete distribution with massqi atvi.

8.6.3 A bisection algorithm

As proved in Appendix8.16.3, the convex functionφ in (59) has the following properties:

∀ λ ≥ 0, qT v + βλ ≤ φ(λ) ≤ vmax + βλ, (60)

and
φ(λ) = vmax + (β + logQ(v))λ + o(λ), (61)

in which
Q(v) :=

∑
j : v(j)=vmax

q(j) = Prob{v = vmax}.

Hence,φ(0) = vmax andφ′(0) = β + logQ(v). In addition, at infinity the expansion ofφ is

φ(λ) = qT v + βλ + o(1). (62)

The bisection algorithm can be started with the lower boundλ− = 0. An upper bound can be computed by finding a
solution to the equationsφ(0) = qT v + βλ, which yieldsλ+ = (vmax − qT v)/β. By convexity, a minimizer exists
in the interval[0 λ+].

8 MODULE 6: ROBUST PATH PLANNING 89

Note that ifφ′(0) ≥ 0, thenλ = 0 is optimal and the optimal value ofφ is vmax. This means that ifβ is too
high, that is, ifβ > − logQ(v), enforcing robustness amounts to disregard any prior information on the probability
distribution p. We have observed in8.6.1a similar phenomenon brought about by too large values ofβ, which
resulted in a setU equal to the probability simplex. Here, the limiting value− logQ(v) depends not only onq but
also onv, since we are dealing with the optimization problem (51) and not only with its feasible setU .

8.7 Other Specific Models

8.8 Interval matrix model

The interval matrixmodel is
U =

{
p : p ≤ p ≤ p, pT1 = 1

}
,

in which p± are given componentwise non-negativen-vectors (whose elements do not necessarily sum to one),
with p+ ≥ p−. This model is motivated by statistical estimates of intervals of confidence on thecomponentsof the
transition matrix. Those intervals can be obtained by resampling methods, or by projecting an ellipsoidal uncertainty
model on each component axis (see section8.9). In what follows, we assume thatU is not empty.

Since the inner problem
φ := max

p
vT p : p ≥ 0, pT1 = 1, p ≤ p ≤ p

is a linear, feasible program, it is equivalent to its Lagrange dual, which has the form

φ = min
µ

(p − p)T (µ1− v)+ + vT p+ µ(1− pT1),

in which z+ stands for the positive part of vectorz. The function to be minimized is a convex piecewise linear
function with break pointsv0 = 0, v1, . . . , vn. Since the original problem is feasible, we have1T p ≤ 1, which
implies that the function above goes to infinity whenµ → ∞. Thus, the minimum of the function is attained at one
of the break pointsvi (i = 0, . . . , n). The complexity of this enumerative approach isO(n2), since each evaluation
costsO(n).

In fact one does not need to enumerate the function at all valuesvi; a bisection scheme over the discrete set
{v0, . . . , vn} suffices. This scheme will bring the complexity down toO(n log n).

8.9 Ellipsoidal models

Ellipsoidal models arise when second-order approximations are made to the log-likelihood function arising in the
likelihood model. Specifically, we work with the following set in lieu of (52):

P(β) =
{
P ∈ Rn×n : P ≥ 0, P1 = 1, Q(P) ≥ β

}
, (63)

in whichQ(P) is the second-order approximation to the log-likelihood functionL, around the maximum-likelihood
estimateF :

Q(P) := βmax −
1
2

∑
i,j

(P (i, j) − F (i, j))2

F (i, j)
.

8 MODULE 6: ROBUST PATH PLANNING 90

This set is an ellipsoid intersected by the polytope of transition matrices. Again, the projection on the space ofith

row variables assumes a similar shape, that of an ellipsoid intersected with the probability simplex, specifically

Pi(β) =
{
p : p ≥ 0, pT1 = 1,

∑ (pi(j)− fi(j))2

fi(j)
≤ κ2

}
,

in whichκ2 := 2(βmax − β). We refer to this model as theconstrained ellipsoidal model.

In the constrained likelihood case, the inner problem assumes the form

max
p

vT p : p ≥ 0, pT1 = 1,
∑ (pi(j) − fi(j))2

fi(j)
≤ κ2.

According to [66], this problem has worst-case complexity ofO(n3.5). This brings the complexity of one step of the
robust Bellman recursion toO(n3.5m).

In statistics, it is a standard practice to further simplify the description above, by relaxing the inequality constraints
P ≥ 0 in the definition ofP(β). We thus obtain the (unconstrained)ellipsoidalmodel, which leads to

φ := max
p

vT p : pT1 = 1,
∑ (pi(j)− fi(j))2

fi(j)
≤ κ2.

Taking the dual of the above problem, we obtain the closed-form expression

φ = fTi v + κ

√∑
j

fi(j)(v(j) − fTi v)2,

which hasO(n) complexity. The robust recursion based on the unconstrained ellipsoidal model is thusO(nm), the
same as that of the classical Bellman recursion.

This economical computation comes at an expense, which is the possible conservatism of the worst-case value
function stemming from our neglect of the non-negativity constraints on the transition matrix. Another potential
problem is the fact that the ellipsoid model is symmetric around the maximum-likelihood point, which might not be
realistic . In the maximum-likelihood model, the non-negativity constraints are implicit in the likelihood bound, and
the model yields potentially non-symmetric (hence more realistic) estimates.

Uncertainty on the reference distribution q in entropy models. We may generalize the relative entropy models
to the case when there is uncertainty on the reference distributionq.

If E is a set of reference distributionsq, we can consider the inner problem (51), where the uncertainty setU replaced
by one of the form

U =


p : p ≥ 0, pT1 = 1,

∑
j

p(j) log
p(j)
q(j)

≤ β for someq ∈ E


 .

8 MODULE 6: ROBUST PATH PLANNING 91

Using the same steps as before, the inner problem reduces to

max
q∈E

min
λ>0

λ log


∑

j

q(j) exp
v(j)
λ


+ βλ.

This problem is very easy ifE is a box (hyperrectangle) or an ellipsoid parallel to the coordinate axes. For example,
assume thatE assumes the form we encountered in the case of ellipsoidal models, specificallyE = P, whereP is
given by (63). Then we obtain

min
λ>0

λ log


∑

j

f(j) exp
v(j)
λ

+ κ

√√√√∑
j

f(j)(exp
v(j)
λ

− fT exp
v

λ
)2


+ βλ.

A bisection algorithm similar to the ones described earlier can be applied to this modified problem.

8.10 Example: Robust Aircraft Routing

We consider the problem of routing an aircraft whose path is obstructed by stochastic obstacles, representing storms.
In practice, the stochastic model must be estimated from past weather data. This makes this particular application a
good illustration of our method.

8.11 The nominal problem

In [48], we introduced an MDP representation of the problem, in which the evolution of the storms is modelled as a
perfectlyknown stationary Markov chain. The term nominal here refers to the fact that the transition matrix of the
weather Markov chain is not subject to uncertainty. The goal is to minimize the expected delay (flight time). The
weather process is a fully observable Markov chain: at each decision stage (every15 minutes in our example), we
learn the actual state of the weather.

The airspace is represented as a rectangular grid. The state vector comprises the current position of the aircraft on
the grid, as well as the current states of each storm. The action in the MDP corresponds to the choice of nodes to
fly towards, from any given node. There arek obstacles, represented by a Markov chain with a2k × 2k transition
matrix. The transition matrix for the routing problem is thus of orderN2k, whereN is the number of nodes in the
grid.

We solved the MDP via the Bellman recursion [48]. Our framework avoids the potential “curse of dimensionality”
inherent in generic Bellman recursions, by considerable pruning of the state-space and action sets. This makes the
method effective for up to a few storms, which corresponds to realistic situations. For more details on the nominal
problem and its implementation, we refer the reader to [48].

In the example below, the problem is two-dimensional in the sense that the aircraft evolves at a fixed altitude. In a
coordinate system where each unit is equal to1 Nautical Mile, the aircraft is initially positioned at(0, 0) and the
destination point is at(360, 0). The velocity of the aircraft is fixed at480 n.mi/hour. The airspace is described by a

8 MODULE 6: ROBUST PATH PLANNING 92

rectangular grid withN = 210 nodes, with edge length of24 n.mi. There is a possibility that a storm might obstruct
the flight path. The storm zone is a rectangular space with the corner points at(160, 192), (160,−192), (168, 192)
and(168,−192) (figure23).

Since there is only one potential storm in the area, storm dynamics is described by a2×2 transition matrixPweather.
Together withN = 210 nodes, this results in a state-space of total dimension420. By limiting the angular changes
in the heading of the aircraft, we can prune out the action space and reduce its cardinality at each step tom = 4.
This implies that the transition matrices are very sparse; in fact, they are sparse, affine functions of the transition
matrixPweather. Sparsity implies that the nominal Bellman recursion only involves8 states at each step.

8.12 The robust version

In practice, the transition matrixPweather is estimated from past weather data, and thus it is subject to estimation
errors.

We assume a likelihood model of uncertainty on this transition matrix. This results in a likelihood model of uncer-
tainty on the state transition matrix, which is as sparse as the nominal transition matrix. Thus, the effective state
pruning that takes place in the nominal model can also take place in the robust counterpart. In our example, we
chose the numerical value

Pweather =
(

0.9 0.1
0.1 0.9

)

for the maximum-likelihood estimate ofPweather.

The likelihood model involves a lower boundβ on the likelihood function, which is a measure of the uncertainty
level. Its maximum valueβmax corresponds to the case with no uncertainty, and decreasing values ofβ correspond
to higher uncertainty level. Toβ, we may associate a measure of uncertainty that is perhaps more readable: the
uncertainty level, denotedUL, is defined as a percentage and its complement1 − UL can be interpreted as a prob-
abilistic confidence level in the context of large samples. The one-to-one correspondence ofUL andβ is precisely
described in Appendix8.16.4.

In figure 24, we plotUL against decreasing values of the lower bound on the log-likelihood function (β). We see
thatUL = 0, which refers to a complete certainty of the data, is attained atβ = βmax, the maximum value of the
likelihood function. The value ofUL decreases withβ and reaches the maximum value, which is100%, atβ = −∞
(not drawn in this plot). Point to be noted: the rate of increase ofUL is maximum atβ = βmax and increases withβ.

8.13 Comparing robust and nominal strategies

In figure25, we compare various strategies: we plot the relative delay , which is the relative increase (in percentage)
in flight time with respect to the flight time corresponding to the most direct route (straight line), against the negative
of the lower bound on the likelihood functionβ.

We compare three strategies. Theconservativestrategy is to avoid the storm zone altogether. If we takeβ = βmax,
the uncertainty set becomes a singleton (UL = 0) and hence we obtain the solution computed via the classical

8 MODULE 6: ROBUST PATH PLANNING 93

Bellman recursion; this is referred to as thenominalstrategy. Therobuststrategy corresponds to solving our robust
MDP with the corresponding value ofβ.

The plot in figure25 shows how the various strategies fare, as we decrease the bound on the likelihood function
β. For the nominal and the robust strategies, and a given boundβ, we can compute the worst-case delay using the
recursion (50), which provides the worst-case value function.

The conservative strategy incurs a51.5% delay with respect to the flight time corresponding to the most direct route.
This strategy is independent of the transition matrix, so it appears as a straight line in the plot. If we know the value
of the transition matrix exactly, then the nominal strategy is extremely efficient and results in a delay of8.02% only.
As β deviates fromβmax, the uncertainty set gets bigger. In the nominal strategy, the optimal value is very sensitive
in the range of values ofβ close toβmax: the delay jumps from8% to 25% whenβ changes by7.71% with respect
to βmax (the uncertainty levelUL changes from0% to 5%). In comparison, the relative delay jumps by only6% with
the robust strategy. In both strategies, the slope of the optimal value with respect to the uncertainty is almost infinite
atβ = βmax, which shows the high sensitivity of the value function with respect to the uncertainty.

We observe that the robust solution performs better than the nominal solution as the estimation error increases. The
plot shows an average of19% decrease in delay with respect to the nominal strategy when uncertainty is present.
Further, the nominal strategy very quickly reaches delay values comparable to those obtained with the conservative
strategy, as the uncertainty level increases. In fact, the conservative strategy even outperforms the nominal strategy
atβ = −1.84, which corresponds toUL = 69.59%. In this sense, even for moderate uncertainty levels, the nominal
strategy defeats its purpose. In contrast, the robust strategy outperforms the conservative strategy by15% even if the
data are very uncertain (UL = 85%).

In summary, when there is no error in the estimation, both nominal and robust algorithms provide a strategy that
produces43.3% less delay than the conservative strategy,. However, with the presence of even a moderate estimation
error, the robust strategy performs much better than the conservative strategy, whereas the nominal MDP strategy
cannot produce a much better result.

Nominal and robust strategies have similar computational requirements. In our example, with a simple Matlab
implementation on a standard PC, the running time for the nominal algorithm was about4 seconds, and the robust
version took on average4 more seconds to solve.

8.14 Inaccuracy of uncertainty level

The previous comparison assumes that, in the robust case, we are able to estimate exactly the precise value of the
uncertainty levelUL (or the bound on the likelihood functionβ). In practice, this parameter also has to be estimated.
Hence the question: how sensitive is the robust approach with respect to inaccuracies in the uncertainty levelUL?

To answer this question in our particular example, we assume that a guessU0
L on the uncertainty level is available,

and examined how the corresponding robust solution would behave if it was subject to uncertainty with level above
or below the guess.

In figure26, we compare various strategies. In each strategy, we guess a desired level of accuracy (U0
L) on the data

and calculate a corresponding likelihood boundβ0. We choose the optimal action using our robust MDP algorithm

8 MODULE 6: ROBUST PATH PLANNING 94

applied with this bound. Keeping the resulting policy fixed, we then compute the relative delay with the various
values ofβ. In figure26, we plot the relative delays against−β for the strategies where the uncertainty levels were
guessed as15% and55%.

Not surprisingly, the relative delay of a strategy attains its minimum value whenβ (UL) is accurately predicted. For
values ofβ above or below its guessed value, the delay increases. We note that it is only for very small uncertainty
levels (within .995% of βmax) that the nominal strategy performs better than the robust strategy with imperfect
prediction ofβ (UL).

We defineRUL
as the range of the actualUL in percentage terms where the robust strategy (with imperfect prediction

of UL) performs worse than nominal strategy. In figure27, we showRUL
against the guessed value,U0

L. The plot
clearly shows thatRUL

remains less than1% with varying predictedU0
L.

Our example shows that if we predict the uncertainty level inaccurately in order to obtain a robust strategy, the
nominal strategy will outperform the robust strategy only if the actual uncertainty levelUL is less than1%. For any
higher value of the uncertainty level, the robust strategies outperform the nominal strategy, by an average of13%.
Thus, even if the uncertainty level is not accurately predicted, the robust solution outperforms the nominal solution
significantly.

8.15 Concluding remarks

We have considered uncertainty models on the transition matrix that are statistically accurate and give rise to a very
moderate increase in computational cost. All the models, (except the interval matrix model), considered here give
rise to inner problems with worst-case complexity less thanO(n). With these models, the total cost of one step of
the robust Bellman recursion is thusO(mn) (m is the number of actions). This has the same same complexity as the
classical recursion, which has complexity ofO(mn). In the interval matrix model, the the worst-case complexity is
O(mn log n) .

From the point of view of statistical accuracy, the likelihood or entropy models are certainly preferable to the ellip-
soid or interval models: these models take into account sign constraints, possibly asymmetric uncertainty around the
maximum-likelihood or minimum relative entropy point, in contrast to the ellipsoidal and box uncertainty models
that are possibly crude approximations to the above models.

We have shown in a practical path planning example the benefits of using a robust strategy instead of the classical
optimal strategy; even if the uncertainty level is only crudely guessed, the robust strategy yields a much better
expected flight delay.

Acknowledgments

The authors would like to thank Antar Bandyopadhyay, Giuseppe Calafiore, Ashwin Ganesan, Jianghai Hu, Mikael
Johansson, Rupak Majumdar, Andrew Ng, Stuart Russell, Shankar Sastry, and Pravin Varaiya for interesting discus-
sions and comments. The authors are specially grateful to Dimitri Bertsimas for pointing out an important mistake
in the earlier version of this work.

8 MODULE 6: ROBUST PATH PLANNING 95

8.16 Appendix

8.16.1 Proof of the robust Bellman recursion

In this section, we prove that the stochastic game (48) can be solved using the robust Bellman recursion (49). Our
proof is based on transforming the original problem into a term-based zero-sum game, and applying a result by
Nowak [52] that applies to such games.

We begin by augmenting the state spaceX with states of the form(i, a), wherei ∈ X anda ∈ A. The augmented
state-space is thusX aug := X

⋃
(X × A). We now define a new two-player game on this augmented state-space,

where decisions are taken not only at timet, t ∈ T = {0, 1, . . . , N}, but also at intermediate timest+ 1/2, t ∈ T .

In the first step, fromt to t + 1/2, if the controller action isat, states of the formi make a transition to states of
the form(i, at) with probability one, and all other states stay the same with probability one. Here, the opponent is
idle. The cost incurred by this step is the cost of the original problem,ct(i, at), if we start from statei, and zero
otherwise.

In the second step, fromt + 1/2 to t + 1, the controller stands idle while the opponent acts as follows. The states
of the form(i, a) make a transition to states of the formj with probabilities given by the vectorpai , in which pai is
chosen freely by the opponent in the setPa

i ; all the other states stay the same with probability one. There is no cost
incurred at this stage.

Clearly, starting at timet in statei, and with a controller actionat, we end up in the statej at time(t + 1) with
probabilityP at(i, j). Since incurred costs are the same, our new game is equivalent to the original game. In addition,
the new game is a term-based zero-sum game, since the controller and the opponent act alternatively, in independent
fashion at each time step.

Nowak’s result provides a Bellman-type recursion to solve the problem of minimizing the worst-case (maximum)
expected cost of a term-based zero-sum game, when both players follow randomized policies that are restricted
to given state-dependent convex subsets of the probability simplex. In our new game, the opponent’s choice of a
vectorpai within Pa

i at the second step, can be interpreted as a choice of a randomized policy over the convex, state-
dependent setB((i, a)) := Pa

i . (Here, the deterministic actions of the opponent correspond to the vertices of the
probability simplex ofRn.) Hence, the results due to Nowak [52] apply.

In the case when one player (say, the first) acts deterministically, with state-independent, finite action setA, the
recursion for the optimal value functionV in states can be written as

Vt(s) = min
a∈A

max
b∈B(s)

Eb

(
ct(s, a, b) +

∑
s′

P ab(s, s′)Vt+1(s′)

)
, (64)

in which the notationa, b refers to actions of the minimizing and maximizing player respectively,P ab is the corre-
sponding transition matrix,ct is the cost function,b refers to a particular randomized action that is freely chosen by
the opponent within the state-dependent convex compact setB(s), and Eb is the corresponding expectation operator.

Let us detail how applying the above recursion to our game yields our result.

8 MODULE 6: ROBUST PATH PLANNING 96

Denote byVt(s) the value function of the game at timet in states ∈ X aug. We first update this value function
from time t + 1 to t + 1/2. The controller is idle, but the opponent is allowed to chose a randomized policy from
a state-dependent convex-compact set. If the state is(i, a), this set isB((i, a)) = Pa

i , and the value function is
updated as

Vt+ 1
2
((i, a)) = max

p∈Pa
i


 n∑

j=1

p(j)Vt+1(j)


 , (65)

in which we make use of the fact that incurred costs are zero in this step. To update the value function fromt+ 1/2
to t, we use the fact that the opponent is idle. Fori = 1, . . . , n, the value function is updated as

Vt(i) = min
a∈A

(
ct(i, a) + Vt+ 1

2
((i, a))

)
. (66)

Combining (66) and (65) ends our proof.

8.16.2 Properties of functionφ of section8.4.3

Here, we prove two properties of the functionφ involved in the bisection algorithm of section8.4.3. For simplicity
of notation, we assume that there is an unique indexi∗ achieving the maximum invmax, that is,v(i∗) = vmax.

We first show thatφ(µ) → vmax asµ → vmax. We have

λ(µ) =
µ− v(i∗)
f(i∗)

+ o(µ− v(i∗)).

We then expressφ(µ) as

φ(µ) = µ− λ(µ)


1 + β − βmax + log λ(µ)−

∑
j �=i∗

fj log(µ− vj)




− λ(µ)f(i∗) log(µ− v(i∗)).

The second term (first line) vanishes asµ → vmax, sinceλ(µ) → 0 then. In view of the expression ofλ(µ) above,
the last term (second line) behaves as(µ− v(i∗)) log(µ− v(i∗)), which also vanishes.

Next we prove thatφ′(µ) → −∞ asµ → vmax. We obtain easily

dλ(µ)
dµ

=

∑
j

f(j)
(µ− v(j))2(∑
j

f(j)
µ− v(j)

)2 → 1
f(i∗)

whenµ → v(i∗).

8 MODULE 6: ROBUST PATH PLANNING 97

We then have

∂h

∂λ
(λ(µ), µ) =

∑
j

log
λ(µ)f(j)
µ− v(j)

− β

= log
λ(µ)f(i∗)
µ− v(i∗)

+
∑
j �=i∗

log
λ(µ)f(j)
µ− v(j)

− β

= log(1 + o(1)) + (n− 1) log λ(µ) +
∑
j �=i∗

log
f(j)

µ− v(j)
− β

→ −∞ asµ → v(i∗).

Also, by definition ofλ(µ), we have∂h/∂µ(λ(µ), µ) = 0. The proof is achieved with

φ′(µ) =
∂h

∂µ
(λ(µ), µ) +

∂h

∂λ
(λ(µ), µ)

dλ(µ)
dµ

.

8.16.3 Properties of functionφ of section8.6.3

In this section, we prove that the functionφ defined in (59) obeys properties (60), (61) and (62).

First, we prove (61). If v(j) = vmax for everyj, the result holds, withQ(v) = Q(vmax1) = 1. Assume now that
there existj such thatv(j) < vmax. We have

φ(λ) = λ log
(
evmax/λ

∑
j q(j) exp(

v(j) − vmax

λ
)
)

+ βλ

= vmax + βλ+ λ log


 ∑

j:v(j)=vmax

q(j) +
∑

j:v(j)<vmax

q(j) exp(
v(j) − vmax

λ
)




= vmax + βλ+ λ log
(
Q+O(e−t/λ)

)
= vmax + (β + logQ)λ +O(λe−t/λ),

in which t = vmax − vs > 0, in whichvs is the largestv(j) < vmax. This proves (61).

From the expression ofφ given in the second line above, we immediately obtain the upper bound in (60).

The expansion ofφ at infinity provides

φ(λ) = βλ+ λ log
(∑

j q(j)(1 +
v(j)
λ

+ o(λ))
)

= qT v + βλ + o(1),

which proves (62). The lower bound in (60) is a direct consequence of the concavity of thelog function.

8 MODULE 6: ROBUST PATH PLANNING 98

8.16.4 Calculation ofβ for a Desired Confidence Level

In this section, we describe the one-to-one correspondence between a lower bound on the likelihood function, as used
in section8.4, with a desired level of confidence(1 − UL) on the transition matrix estimates. This correspondence
is valid for asymptotically large samples only but can serve as a guideline to chooseβ.

First, we define a vectorqi = [P (i, 1), . . . , P (i, n− 1)]T ,∀i = 1, . . . , n andθ = [q1, . . . , qn]T ∈ Rn(n−1), in which
P is the transition matrix that we want to estimate. Hence,P (i, j) = θij = θ((n − 1)2i + j) ∀ 1 ≤ i ≤ n, 1 ≤
j ≤ (n − 1). Provided some regularity conditions hold [36], it is possible to make Laplace approximation of the
Likelihood function and we can make the following asymptotic statement about the distribution ofθ: precisely, that
θ is normally distributed with the mean given byθ̂ij := F (i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ (n− 1) and covariance matrix
I(θ) (Fisher Information matrix) given by

I(θ)pq = Eθ

(
− ∂2

∂θp∂θq
l(θ)

)
∀ p, q = 1, . . . , n(n− 1), (67)

in which l(.) = log(L(.)) is the log-likelihood function.

We can approximateI(θ) with the observed information matrix, which is meaningful in the neighborhood ofθ̂. The
equation of the observed information matrix is given by

Io(θ)pq = − ∂2

∂θp∂θq
l(θ) ∀ p, q = 1, . . . , n(n− 1), (68)

in which ∂2

∂θp∂θq
l(θ) can be shown to be

∂2

∂θp∂θq
l(θ) =




−F (p,q)+F (q,n)
F (p,n)F (p,q) , if p, q correspond to the elements in a same row inP andp = q,

− 1
F (p,n) , if p, q correspond to the elements in a same row inP andp �= q,

0, if p andq correspond to the elements in different rows inP .

(69)

This is true for large number of sample [35]. We further define,H := Io(θ). Then the parameterβ is chosen to be
the smallest such that, under the probability distributionN(θ̂, (H)−1), the set,

ξβ = {θ : l̃(θ) ≥ β}, (70)

in which l̃(θ) is the quadratic approximation tol(θ) aroundθ = θ̂, that is,

l̃(θ) = βmax −
1
2
(θ − θ̂)TH(θ − θ̂), (71)

has the probability larger than a threshold(1 − UL), where (say)UL = 15% in order to obtain the85% confidence
level.

It turns out that, we can solve for such aβ explicitly,

(1− UL) = Fχ2
n(n−1)

(2(βmax − β)), (72)

8 MODULE 6: ROBUST PATH PLANNING 99

in whichFχ2
n(n−1)

(.) is the cumulativeχ2 distribution with the degrees of freedomn(n− 1), which can be approxi-

mated by the following equation [37]

Fχ2
n(n−1)

(2(βmax − β)) ≈ Φ(z)−
√

2
3
√
n(n− 1)

(z2 − 1)φ(z) ≈ UL, (73)

in which, z = 2(βmax−β)−n(n−1)√
2n(n−1) , φ(z) = 1√

2π
e−

1
2
z2

and Φ(z) =
∫ z
−∞

1√
2π
e−

1
2
p2
dp is the standard normal

cumulative density function.

8 MODULE 6: ROBUST PATH PLANNING 100

−50 0 50 100 150 200 250 300 350 400
−200

−150

−100

−50

0

50

100

150

200

Nautical Miles

N
au

tic
al

 M
ile

s

Origin Destination

Stochastic Obstacle

Figure 23: Aircraft Path Planning Scenario.

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

10

20

30

40

50

60

70

80

90

−β

U
L

Figure 24:−β (negative lower bound on the log-likelihood function) vsUL (Uncertainty Level (in%) of the Tran-
sition Matrices).

8 MODULE 6: ROBUST PATH PLANNING 101

0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

Robust Strategy

Nominal Strategy

Conservative Strategy

−β

R
el

at
iv

e
D

el
ay

UL=0% UL=80%UL=50%

Figure 25: Optimal value vs. uncertainty level (negative lower bound on the log-likelihood function), for both the
classical Bellman recursion and its robust counterpart.

0.5 1 1.5 2 2.5
0

10

20

30

40

50

60
Nominal Strategy

Robust Strategy (Exact guess)

−β

R
el

at
iv

e
D

el
ay

 (
%

) Robust Strategy (Inexact guess)

Figure 26: Optimal value vs. uncertainty level (negative lower bound on the log-likelihood function), for the classical
Bellman recursion and its robust counterpart (with exact and inexact predictions of the uncertainty levelUL =
15%, 55%).

8 MODULE 6: ROBUST PATH PLANNING 102

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Predicted Uncertainty Level, UL0

R
(U

L)
 (

%
)

Figure 27: Predicted uncertainty levelU0
L vs.RUL

, which is the range of the actual uncertainty levelUL over which
the nominal strategy performs better than a robust strategy computed with the imperfect predictionU0

L.

9 MODULE 7: FLEXIBLE TEAM FORMATION 103

9 Module 7: Flexible team formation

We discuss a strategic planning problem of allocating resources to groups of tasks organized in successive stages.
Each stage is characterized by a set of survival rates whose value is imprecisely known. The goal is to allocate the
resources to the tasks (i.e. to form ‘teams’) by dynamically re-organizing the teams at each stage, while minimizing a
cost objective over the whole stage horizon. A modelling framework is proposed, based on linear programming with
adjustable variables. The resulting ‘uncertain linear program’ is subsequently solved using the sampled scenarios
randomized technique.17

9.1 Problem Statement

We start by describing the basic model. Consider Figure28, and suppose that a total amountC of a single type of
resource is available at an initial stage. These resources should be committed to a series of tasks, which are organized
in successive stages,s = 1, . . . , N . For instance, at the initial stage, a teamx(1) = [x1(1) · · · xm(1)]T is formed,
wherexi(1) denotes the amount of resource allocated for thei-th task in the first stage.18 In general, we denote by
x(s) = [x1(s) · · · xm(s)]T the composition of the team that is allocated for thes-th stage, and we assume that each
stage is composed of a fixed numberm of tasks.

stage 1 stage 2 stage N

1 1 1

2 2 2

m m m

initial stage

Figure 28: Multi-stage resource allocation model.

The composition of the teamx(s+1) (i.e. the team that should go to stages+1) is decided just after the teamx(s)
has engaged and completed thes-th stage. In our basic model, when a team engages a stage, it incurs some losses,
which are described by a matrixR(s) = diag(r(s)) of survival ratesr(s) = [r1(s) · · · rm(s)]T . If we denote by
x(s+) the composition of the teamx(s) just after it completed the engagement with stages, then we have

x(s+) = R(s)x(s).

Based on the outcome of stages, at ‘time’ s+ we have the opportunity of re-adjusting the composition of team, i.e.
we can decide to re-allocate resources from one task to another, before attacking stages + 1. This means that the

17The research reported here was conducted by G. Calafiore, L. El Ghaoui and A. Nilim.
18The “amount” of resource may be constrained to be an integer, as discussed later.

9 MODULE 7: FLEXIBLE TEAM FORMATION 104

composition of the team attacking stages+ 1 is given by

x(s + 1) = R(s)x(s) + u(s), (74)

in whichu(s) = [u1(s) · · · um(s)]T is the decision vector of resource re-allocation at stagess = 0, . . . , N − 1, and
we setx(0) .= 0. Notice thatui(s) > 0 means that more resources are committed for thei-th task, whileui(s) < 0
means that the resources are withdrawn from this task.

Our goal is to determine the allocationsu(s), s = 0, . . . , N − 1, such that a certain cost objective is minimized over
the entire stages horizon, and suitable constraints are satisfied. The problem constraints and objective are specified
in the next section.

9.2 Constraints and optimization objective

Assume first that the stage survival ratesr(s), s = 1, . . . , N are exactly known in advance, and consider the dynam-
ics of the team composition (74),

x(s+ 1) = R(s)x(s) + u(s), x(0) = 0 (75)

whereu(s) ∈ R
m, s = 0, . . . , N − 1 are the decision variables. We must impose the following physical constraints

on the problem.

1. Total resources constraint.
1Tu(0) ≤ C, (76)

in which1 denotes a vector of ones. The initial assignment should not exceed the total availability of resources,
C.

2. Conservation constraints.
1Tu(s) = 0, s = 1, . . . , N − 1. (77)

At each stage (except for the initial ones = 0) the net sum of the exchanged resources must be zero.

3. Team composition constraints.

xL(s) ≤ x(s) ≤ xU (s), s = 1, . . . , N. (78)

At each stage, the resources assigned to each task should remain between a-priori fixed lower limitxL(s) (for
instancexL(s) = 0), and upper limitxU (s). Notice that (78) are linear constraints on the decision variable
U = [uT (0), . . . , uT (N − 1)]T , that can be explicitly expressed in the form

xL(s) ≤ Φ(s)U ≤ xU (s), s = 1, . . . , N, (79)

in which we define, fors = 1, . . . , N,

Φ(s) .=
[
R(s−1,1) R(s−1,2) · · · R(s−1,s−1) Im | 0m,m · · · 0m,m

]
, (80)

R(s−1,i) .= R(s− 1)R(s − 2) · · ·R(i), for i = 1, . . . , s− 1, (81)

(notice that, when formingΦ(s)U , the left part ofΦ(s) multiplies the decision variablesu(0), . . . , u(s − 1),
while the zero part ofΦ(s) multipliesu(s), . . . , u(N − 1)).

9 MODULE 7: FLEXIBLE TEAM FORMATION 105

Optimization objective. When transferring resources from one task to another we incur a ‘transition cost,’ that
we assume to be proportional to the amount of the transferred resources, regardless of the sign. The optimization
objective is to minimize the total transition cost accumulated over the stages horizon.

We assume thatW (s) ∈ R
m,m ≥ 0, s = 0, . . . , N − 1, are given diagonal matrices that weight the transition costs

for the different tasks at the different stages, and therefore the total cost is expressed as

J =
N−1∑
s=0

‖W (s)u(s)‖1 = ‖W̃U‖1, (82)

in which W̃
.= diag(W (0), . . . ,W (N − 1)), and the above norm is the usualH1 vector norm,‖x‖1 =

∑
|x1|.

Notice that minimizingJ subject to certain constraints is equivalent to minimizing a slack variableγ subject to the
original constraints, plus the constraintJ ≤ γ (epigraphic form). In turn, this latter constraint can be expressed as a
set of linear inequalities in the decision variableU , introducing a vectorz ∈ R

Nm of additional slack variables:

‖W̃U‖1 ≤ γ ⇔
{

−z ≤ W̃U ≤ z∑Nm
i=1 zi ≤ γ.

(83)

Remark 1. In the approach above, transitions are penalized irrespective of the source-destination task pair, meaning
that the cost is sensitive to the net resource reallocation to taski, ui(s), but does not take into account from which
of the other tasks these resources are drawn. It could instead be of interest to attribute different transition costs to
different source-destination pairs. This could be taken into account as follows. Denote bydij(s) the resource amount
(positive or negative) to be transferred from taskj to taski, i �= j = 1, . . . ,m, before engaging stages. Then, we
write ui(s) =

∑
j �=i dij(s), or in vector notation

u(s) = D(s)1, (84)

in which [D(s)]ij = dij(s) is a skew-symmetric matrix. Equation (84) represents a breakdown of the total transferred
amountsu(s) into the individual componentsdij(s). We can therefore add the variablesdij(s) to the problem, and
enforce the equality constraints (84), for s = 1, . . . , N − 1. Subsequently, thedij(s) variables are inserted in the
cost, by substituting to each term proportional to|ui(s)| in (82), a term proportional to a positive linear combination
of |di1(s)|, . . . , |dim(s)|.

From the discussion in this section, we conclude that the basic resource allocation problem is expressed as a standard
linear program in the variablesU, ξ, γ which can be solved with great efficiency:

min
U,z,γ

γ subject to:(76), (77), (79), (83). (85)

Remark 2 (Integer solutions). Although in some applications it can be reasonable to allocate fractional resources
to tasks (consider for instance money as a resource, and different assets as the tasks), in some other applications
the resources to be allocated must be integer multiples of a some type of unit. This is for instance the case when
the resources are mobile agents such as robots, UAVs, etc. In this situation, the correct problem formulation would
be in the form of an integer linear program. However, due to computational difficulties in dealing with integer
programs, in this report we do not use this formulation. Instead, when we know in advance that the resulting optimal
solution will need to be approximated by an integer one, we introduce an ‘immunization’ technique that guarantees
the satisfaction of constraints against all possible approximation errors. This technique is discussed in Section9.4.

9 MODULE 7: FLEXIBLE TEAM FORMATION 106

9.3 Multiple resources allocation

We next briefly describe how the basic allocation model previously discussed can be extended to deal with multiple
types of resources. We hence assume hereafter that at stages = 0 we haven different types of resources that
should be allocated to them tasks at stages = 1, and subsequently re-organized dynamically. We denote byCk,
k = 1, . . . , n the total availability of thek-th resource at the initial stage, and we letx(s) ∈ R

mn be the vector
describing the composition of the team that is sent to stages, s = 1, . . . , N . In particular,x(s) is now divided into
m blocks

x(s) .=




x1(s)
...

xm(s)


 ,

in which each blockxi(s) ∈ R
n, i = 1, . . . ,m is of the form

xi(s)
.=




x
(1)
i (s)

...

x
(n)
i (s)


 ,

in whichx
(k)
i (s) denotes the amount of resource of typek that is allocated to thei-th task of stages. The decision

vector of resource re-allocations is partitioned similarly as

u(s) .=




u1(s)
...

um(s)


 ,

where

ui(s)
.=




u
(1)
i (s)

...

u
(n)
i (s)


 ,

andu(k)i (s) denotes the amount of resource of typek that we decide (upon completion of stages) to add or subtract
to thei-th task. With this notation, the team dynamics retain the structure (74)

x(s+ 1) = R(s)x(s) + u(s)

where the survival rate matrixR(s) ∈ R
mn,mn is block-partitioned conformably tox(s), u(s). The total resources

constraint (76) now reads
(1Tm ⊗ eT (n, k))u(0) ≤ Ck, k = 1, . . . , n,

in whicheT (n, k) denotes a vector inRn with all zeros, except for thek-th component, which is set to one. Similarly,
the conservation constraints (77) are now expressed as

(1Tm ⊗ eT (n, k))u(s) = 0, k = 1, . . . , n; s = 1, . . . , N − 1.

Basically, all the rest of the problem model and solution goes through in the same way as described for the basic
problem with a single resource.

9 MODULE 7: FLEXIBLE TEAM FORMATION 107

9.4 Dealing with integer approximations

As discussed in Remark2, in some applications we need to deal with integer quantities in problem (85). In this
situation, both the team compositionx(s) and the re-allocationsu(s) must be integers. This, however, is in contrast
with the dynamic model (75), sinceR(s) is real (its elements are in fact probabilities of survival), and therefore
x(s + 1) will result to be real, even ifx(s), u(s) are integer vectors. One idea is to take into account into the
dynamic model the presence of integer approximation errors. In particular, we assume that a first errorζ(s) is
introduced whenR(s)x(s) is replaced by its integer approximation, and a second errorJ(s) is due to the integer
approximation ofu(s). The dynamic model now becomes

x(s+ 1) = R(s)x(s) + ζ(s) + (u(s) + J(s)), (86)

in which ‖ζ(s)‖∞ ≤ 0.5, ‖J(s)‖∞ ≤ 0.5. We now review the problem constraints, considering the presence of
these errors.

The constraint (76) should now be ‘immunized’ against approximation errors, i.e. it becomes

1Tu(0) + 1TJ(0) ≤ C, ∀J(0) : ‖J(0)‖∞ ≤ 0.5,

which, sinceJ(0) ∈ R
m, becomes

1Tu(0) +
m

2
≤ C. (87)

The conservation constraints (77) are equality constraints, and therefore impose a restriction on the allowable ap-
proximation errorsJ(s), s = 1, . . . , N − 1, which must hence be assumed to belong to the setΞ = {z ∈ R

m :
‖z‖∞ ≤ 0.5, 1T z = 0}. With this position, (77) remain unchanged.

For the team composition constraints (78), notice that setting

J = [JT (0), . . . , JT (N − 1)]T , ζ = [01,m, ζT (1), . . . , ζT (N − 1)]T ,

we have
x(s) = Φ(s) (U + J + ζ) ,

and hence the constraints

xL(s) ≤ Φ(s) (U + J+ ζ) ≤ xU (s), ∀J ∈ Ξ(N), ζ ∈ Z(N); for s = 1, . . . , N, (88)

in which

Ξ(N) .= {[zT1 , zT2]T : ‖z1‖∞ ≤ 0.5, z2 ∈ {Ξ× Ξ× · · · × Ξ},
Z(N) .= {[01,m, zT1 , · · · , zN−1]T : zi ∈ R

m, ‖zi‖∞ ≤ 0.5, i = 1, . . . , N − 1}.

In turn, the constraints (88) are equivalent to

Φ(s)U + sup
0∈Ξ(N),ζ∈Z(N)

Φ(s)(J+ ζ) ≤ xU (s),

Φ(s)U + inf
0∈Ξ(N),ζ∈Z(N)

Φ(s)(J+ ζ) ≥ xL(s).

9 MODULE 7: FLEXIBLE TEAM FORMATION 108

The values ofJ, ζ attaining the previous sup (saȳJ(s), ζ̄(s)), and inf (sayJ(s), ζ(s)) are determined solving two
linear programs, and therefore the composition constraints finally write

Φ(s)(U + J̄(s) + ζ̄(s)) ≤ xU (s), (89)

Φ(s)(U + J(s) + ζ(s)) ≥ xL(s), (90)

for s = 1, . . . , N .

Finally, we notice that the constraints related to the objective can be treated similarly to the previous case. Specifi-
cally, the inequalities (83) now read

W̃U + sup
0∈Ξ(N),ζ∈Z(N)

W̃ (J + ζ) ≤ z,

W̃U + inf
0∈Ξ(N),ζ∈Z(N)

W̃ (J + ζ) ≥ −z,
Nm∑
i=1

zi ≤ γ,

(91)

in which the values ofJ, ζ attaining the extrema can again be computed solving two linear programs.

9.5 Resource Allocation under Uncertainty

The formulation introduced in the previous section hinges on the very unrealistic hypothesis that the values of the
survival ratesr(s) at the various stages are exactly known. In the following, we relax this assumption and consider
the problem of resource allocation under uncertainty. Specifically, we assume that the survival rate vectorsr(s) are
of the form

r(s) = r̄(s) + δ(s), s = 1, . . . , N − 1,

in which r̄(s) is the known nominal value of the rate, andδ(s) ∈ ∆(s) represent unknown ‘fluctuations’ or uncertain-
ties around the nominal value, with∆(s) ⊆ R

m representing the allowable range of variation of the uncertainties.

A first idea in this respect would be to apply a ‘robust optimization’ methodology (see e.g. [25, 27]), and solve a
version of problem (85) where the constraints are enforced for all admissible values of the uncertainty. This approach
is however likely to be very conservative, since it neglects an important feature of the problem at hand, that is, there
exist a stage schedule according to which the decisions have to be taken. To clarify the concept, we observe that
not all the adjustmentsu(s) need to be computed in advance (i.e. at the initial stages = 0). Instead, only the
decisionu(0) need to be taken ats = 0 (here-and-now decision), while before deciding foru(1), we can wait and
see what happens to the teams as they complete stages = 1. In other words, the decision atu(1) can benefit from
the knowledge of the realization of the ‘uncertainty’ ats = 1. More generally, we observe that each decisionu(s),
s = 1, . . . , N − 1 can benefit from a ‘basis of knowledge’ of what happened from the initial stage up tos.

To exploit this information in a manageable way, we suppose that each decision vectoru(s) can be adjusted as a
function of the realization ofr(s), and we explicitly set up an affine dependence of the form

u(s) = ū(s) +H(s)δ(s), (92)

9 MODULE 7: FLEXIBLE TEAM FORMATION 109

in which ū(s) ∈ R
m andH(s) ∈ R

m,m, s = 0, . . . , N − 1 (with H(0) ≡ 0m,m) are the new optimization variables.
In more compact matrix form, we have that

U = Ū + H̄δ̄,

in which Ū
.= [ūT (0) · · · ūT (N − 1)]T andH̄

.= diag(0m,m,H(1), . . . ,H(s − 1)) contain optimization variables,
andδ̄

.= [01,m δT (1) · · · δT (N − 1)]T ∈ D contains the uncertainty terms, whereD .= {[01,m q] : q ∈ ∆(1)× · · · ×
∆(N − 1)}.

We can now write the ‘adjustable robust’ version (see e.g. [24]) of our optimal allocation problem as

min
γ,z,Ū,H̄

γ subject to: (93)

1T ū(0) ≤ C (94)

1T ū(s) = 0; s = 1, . . . , N − 1 (95)

1TH(s) = 01,m; s = 1, . . . , N − 1 (96)

xL(s) ≤ Φ(s, δ̄)
(
Ū + H̄δ̄

)
≤ xU (s), (97)

∀δ̄ ∈ D; s = 1, . . . , N (98)

−z ≤ W̃ (Ū + H̄δ̄) ≤ z, ∀δ̄ ∈ D (99)
Nm∑
i=1

zi ≤ γ. (100)

In this problem, we used the notationΦ(s, δ̄) to underline the fact that the matrixΦ(s) defined in (80) depends on
the survival ratesR(s) = diag(r(s)), s = 1, . . . , N − 1, and hence on the uncertaintyδ̄.

Problem (93)–(100) is a robust linear program, i.e. a linear program having a continuous infinity of constraints,
see [24, 25]. In the mentioned papers, the authors show that in several ‘tractable’ cases the robust linear program
can be convertedexactly into a standard convex program having a finite number of constraints, and hence solved
efficiently via interior point methods. Problem (93)–(100), however, does not fall among the tractable cases, since
the uncertainty is affecting the problem data in a nonlinear way, and the ‘recourse matrix’ (i.e. the matrixΦ(s) that
multiplies the adjustable variables, see [24]) is itself dependent on the uncertainty. Besides this technical difficulty,
another motivation for not pursuing the worst-case approach is that this approach places equal importance on all
possible uncertainty outcomes. In practical applications, one instead typically knows that some outcomes are ‘more
likely’ than others, and may wish to exploit this knowledge when computing a solution.

We next describe a recently developed methodology for solving a probabilistic relaxation of problem (93)–(100).

9.6 Scenario-based optimization

The idea behind scenario-based solutions of robust linear programs is very simple: instead of considering the whole
infinity of constraints of the problem, we consider only a finite numberM of these constraints, selected at random
according to a given probability distribution. Specifically, the constraints in (93)–(100) are parameterized bȳδ ∈ D.
Therefore, assuming a probability measureΠ overD, we first extractM (we shall discuss later ‘how large’M

9 MODULE 7: FLEXIBLE TEAM FORMATION 110

should be) independent and identically distributed samples ofδ̄: δ̄(1), . . . , δ̄(M), which constitute the uncertainty
scenarios upon which we base our design. We remark that the choice of the probability measureΠ now reflects our
additional knowledge on which outcomes of the uncertainty are more likely than others. Subsequently, we solve the
‘scenario counterpart’ of the robust problem (93)–(100), which is defined below.

min
γ,ξ,Ū,H̄

γ subject to: (101)

1T ū(0) ≤ C (102)

1T ū(s) = 0; s = 1, . . . , N − 1 (103)

1TH(s) = 01,m; s = 1, . . . , N − 1 (104)

xL(s) ≤ Φ(s, δ̄(i))
(
Ū + H̄δ̄(i)

)
≤ xU (s), (105)

i = 1, . . . ,M ; s = 1, . . . , N (106)

−ξ ≤ W̃ (Ū + H̄δ̄(i)) ≤ ξ, i = 1, . . . ,M (107)
Nm∑
i=1

ξi ≤ γ. (108)

A first immediate consideration about (101)–(108) is that it is a standard linear program (with a possibly large, but
finite number of constraints), which is easily solvable by LP numerical codes. A fundamental question is however
related to what kind of guarantees of robustness can be provided by a solution that a priori satisfies only a finite
numberM of selected constraints. The good news in this respect is that, if we sample a sufficiently large number
of constraints, then the scenario solution will be ‘approximately feasible’ for the robust problem (93)–(100), i.e. the
probability measure of the set of uncertainties such that the corresponding constraints are violated by the scenario so-
lution goes to zero rapidly asM increases. This result has been recently derived in [26], and it is next contextualized
to the problem at hand.

9.7 Approximate feasibility of scenario solutions

Consider a generic robust LP in the form

min
x

cTx subject toA(ξ)x ≤ b, ∀ξ ∈ X , (109)

whereinx ∈ R
n andX ⊆ R

5 is a closed set, and no restrictions are imposed on the dependence of the data matrixA
on ξ. Assume that (109) is feasible, and suppose that a probability measureΠ is imposed onX . Then, the scenario
counterpart of (109) is the linear program

min
x

cTx subject toA(ξ(i))x ≤ b, i = 1, . . . ,M, (110)

in which ξ(i), i = 1 . . . ,M are iid samples ofξ ∈ X , extracted according to probabilityΠ. Assume further that
(110) has a unique optimal solutionx∗ (this uniqueness assumption is technical and could be removed, see [26]).
Clearly, the scenario solutionx∗ depends on the random sampleξ(i), i = 1 . . . ,M , and it is therefore itself a random
variable. The following theorem highlights the ‘approximate feasibility’ property of this solution.

9 MODULE 7: FLEXIBLE TEAM FORMATION 111

Theorem 1. Fix a probabilistic risk levelε ∈ (0, 1) and a confidence levelβ ∈ (0, 1), and letx∗ be the optimal
solution of the scenario problem (110), computed with

M ≥ n

εβ
− 1. (111)

Then, with probability at least1− β,

Prob{ξ ∈ X : A(ξ)x∗ �≤ b} ≤ ε. (112)

In other words, the probability of the set of uncertainties that violate the inequalityA(ξ)x∗ ≤ b can be made
arbitrarily small by sampling a sufficient number of scenarios, and therefore we say that the scenario solution is
(with high probability1 − β) approximately feasible for the robust problem (109), i.e. it satisfies all but a small set
of the original constraints.

9.8 A posteriori analysis

It is worth noticing that a distinction should be made between the a priori and a posteriori assessments that one
can make regarding the probability of constraint violation for the scenario solution. Indeed,before running the
optimization, it is guaranteed by Theorem1 that if M ≥ n/εβ − 1 samples are considered, the solution of the
scenario problem will beε-approximately feasible, with probability no smaller than1 − β. However, the a priori
parametersε, β are generally chosen not too small, due to technological limitations on the number of constraints that
one specific optimization software can deal with.

On the other hand, once a scenario solution has been computed (and hencex = x∗ is fixed), one can make an
a posteriori assessment of the level of feasibility using Monte-Carlo techniques. In this case, a new batch ofM̃
independent random samples ofξ ∈ X is generated, and theempirical probabilityof constraint violation, say

V̂M̃ (x∗), is computed according to the formulâVM̃ (x∗) = 1
M̃

∑M̃
i=1 1(A(ξ(i))x∗ ≤ b), where1(·) is the indicator

function. If V (x∗) .= Prob{ξ ∈ X : A(ξ)x∗ �≤ b} denotes the true violation probability, the classical Hoeffding’s
inequality [28] states that

Prob{|V̂M̃ (x∗)− V (x∗)| ≤ ε̃} ≥ 1− 2 exp (−2ε̃2M̃),

from which it follows that|V̂M̃ (x∗)− V (x∗)| ≤ ε̃ holds with confidence greater than1− β̃, provided that

Ñ ≥ log 2/β̃
2ε̃2

(113)

test samples are drawn. This latter a posteriori test can be easily performed using a very large sample sizeÑ because
no optimization problem is involved in such an evaluation.

Returning to our resource allocation problem, the solution procedure that we propose is the following one.

1. Select the a priori probabilistic risk levelε and confidenceβ, and compute the number of necessary scenarios
according to (111). We remark that experimental numerical experience showed that the actual probabilis-
tic levels achieved by the scenario solution are usuallymuchbetter than the ones established by means of
Theorem1. This fact suggest in practice not to insist on too small a priori levels.

9 MODULE 7: FLEXIBLE TEAM FORMATION 112

2. Solve the scenario LP (101)–(108), obtaining the optimal variablesγ∗, z∗, Ū∗, H̄∗.

3. Test a posteriori the obtained solution via Monte-Carlo, using a large sample size, to determine a very reliable
estimate of the actual probability of violation of the scenario solution. If this level of probability is acceptable
for the application at hand, we are finished, otherwise we may try another scenario design step, taking into
account a larger set of sampled scenarios, and iterate the procedure.

9.9 Interaction models

In this section, we propose an iterative heuristic for the solution of a modified allocation problem. Consider the
generic robust LP problem formulated in (109). In deriving the scenario counterpart of this problem, we assumed
that afixedprobability distribution was assigned on the uncertain parameterξ. In terms of the actual resource al-
location problem, this assumption means that the survival rates are random variables, and that we know a priori
their probability distributions. However, a more realistic model of the problem should be able to take into account
interactioneffects between the decision variables and the uncertainties. By interaction we here mean that the prob-
ability distribution of the survival rates of a certain stage could be itself dependent on the amount of resources that
we commit for that stage. For instance, the overall chance of surviving a given stage may increase if we send more
resources to that stage.

A way of modeling this interaction in our generic framework (109) is to assume that the probability distribution on
ξ ∈ X depends onx, that is, we assign aconditionaldistributionΠ(ξ|x) on ξ. Clearly, if interaction is present,
we can no longer directly apply the scenario approach, since the correct distribution according to which we need
to sample the scenarios is unknown. We therefore propose the following iterative heuristic to solve the problem in
presence of interaction.

1. Let an initial solutionx(k), k = 0 be available;

2. Draw random scenariosξ(1), . . . , ξ(M) according to probabilityΠ(ξ|x(k)), and solve the resulting scenario
problem. Letk ← k + 1, and denote byx(k) the optimal scenario solution;

3. Repeat 2., until some suitable convergence condition is reached.

The effectiveness of this heuristic needs to be tested on numerical examples.

9.10 Numerical examples

In this section, we address the problem of allocating UAVs (Unmanned Aerial Vehicles) optimally and dynamically
in order to perform various sequential tasks where risk is present due to hostile opponents. In practice, it is often
required to allocate UAVs in teams in order to perform various sequential tasks in a hostile environment in which
their survival rates are uncertain. This makes this particular application a good illustration of our method.

9 MODULE 7: FLEXIBLE TEAM FORMATION 113

9.11 The nominal problem

In this problem, we consider that our opponent has 5 different types of equipment, namely small SAM (surface to
air missile), medium SAM, large SAM and the Early Warning Radars (EWRs). All kinds of SAMs have destructive
capability. However, the EWRs and the Long SAM-fcs(fire control sensor) work as tracking and sensing tools and
don’t have any destructive capability. Their destructive ranges are given in Table1. The enemy equipment with
higher destructive ranges are riskier to destroy than that with lower destructive ranges.

Small SAM Medium SAM Large SAM Long Sam-fcs EWR
Range (km) 25 50 100 0 0

Table 1:Ranges of opponent’s equipments

The controller needs to assign UAVs to teams in order to perform six main tasks, which are destroying 6 enemy
EWRs, namely EWR1, EWR2, EWR3, EWR4, EWR5 and EWR6. However, due to the presence of other enemy
SAMs, it is not possible to destroy all the 6 targets with an acceptable risk level, unless some other enemy SAMs are
destroyed. As a result, in order to perform the main tasks under an acceptable risk level, we need to destroy other
targets first. We define primary targets as the targets which are originally assigned to be destroyed and secondary
targets as the targets that need to be destroyed in order to reduce the risk inherent to the mission to the primary
targets. Hence, the assignment problem becomes a sequential and a dynamic one. We perform the assignment in
‘waves’ (stages): we start the assignment process by forming teams in the first wave in a way that they destroy some
assigned targets that are under a threshold risk level. Once the targets are destroyed at the first stage, the risk for
the targets to be destroyed in the second wave is reduced under the threshold level. At the end of the first wave,
we reassign the team composition among the survived UAVs in order to destroy the targets assigned for the second
wave. We keep reassigning till we destroy all the assigned targets in all the stages. In this experiment, the targets to
be destroyed in various stages are input data, as described in Table2.

According to the input data, we definemp = [7 6 4 6]T ∈ R
N , whereN denotes the total number of stages, and

mp(s) denotes the number of tasks at the stages. In order to be consistent with notations described earlier, we define
m := maxi(mp(i)) and therefore we assignm = 7 tasks at each stage. However, if the number of tasks isl < m
in stages, we add extra slack(m − l) tasks in that stage, such that0 ≤ xi(s) ≤ 0 for all l < i ≤ m. We also
assume that the cost for UAV allocation at the first wave is1 unit and the transaction cost in the later waves isTC
units, whereTC is an experimental variable. The total number of available UAV is 40. The nominal survival rate of
an UAV assigned to destroy medium SAM, long SAM, and EWRs are0.65, 0.5, and1 respectively. Moreover, an
additional constraint is imposed: at any stage, at least one UAV is required to be assigned to each target.

We ran the experiment with different transition costsTC = 0, 0.9, 1, 100, 000 and the resulting team constitutions
are as shown in Table3-6. Later, when we mentionTC = ∞, we actually mean that the experimental run was
performed withtc = 100, 000. Total cost and the total number of UAVs required for the various assignments are
summarized in Table7.

It is clear from Table7 that the total cost and the total number of UAVs required increase with the increase of
transition cost. WhenTC = ∞, the team assignment becomes static and produces higher total cost.

If the survival rates are certain and accurate, the assignments obtained by using our algorithms produce the minimum

9 MODULE 7: FLEXIBLE TEAM FORMATION 114

Threat Name Objective Classification wave
Medium SAM 27 Secondary 1

EWR3 Primary 1
EWR 1 Primary 1

Long SAM-fcs 3 Secondary 1
Medium SAM 5 Secondary 1
Medium SAM 3 Secondary 1
Medium SAM 28 Secondary 1

Long SAM 14 Secondary 2
EWR 2 Primary 2

Long SAM 2 Secondary 2
Medium SAM 9 Secondary 2
Medium SAM 2 Secondary 2
Medium SAM 30 Secondary 2
Long SAM-fcs 4 Secondary 2
Medium SAM 10 Secondary 3

Long SAM 8 Secondary 3
EWR 4 Primary 3

Medium SAM 12 Secondary 3
Long SAM 5 Secondary 4

Medium SAM 13 Secondary 4
Long SAM 7 Secondary 4

Medium SAM 14 Secondary 4
EWR 5 Primary 4
EWR 6 Primary 4

Table 2:Tasks

cost, while using the minimum number of UAVs.

9.12 The Robust counterpart

In the experiment, we assume that the survival rates of UAVs while encountering SAMs are not certain. Instead, the
survival rates are stochastic. We suppose for the purpose of this example that the survival rates while encountering
medium SAMs and long SAMs follow uniform distributionsU[0.45 , 0.55] andU[0.6 , 0.7] respectively. Using the
algorithm discussed in Section9.6, we ran the experiment with variableTC. We randomly picked25 sample points
by using these distributions in order to obtain the constraints. We ran each of the experiment20 times. Although
the algorithm does not always guarantee a team assignment that satisfies all the constraints, it does it in most of the
tested cases. We ran each of the experiment20 times. In each successful run with a fixed TC, our algorithms produce
assignments that yield a total cost and the total number of UAVs required to complete all the tasks. We compute the
averages of these two quantities over all the successful runs. The summary is shown in Table8.

We observe that even with the presence of uncertainty in the survival rate, our algorithm performs well. In most of
the runs, the stochastic algorithm is able to satisfy all the constraints.

9 MODULE 7: FLEXIBLE TEAM FORMATION 115

Stage 1 Stage 2 Stage 3 Stage 4
Team 1 Medium SAM27 (1) Long SAM14 (1) Medium SAM10 (1) Long SAM5(1)
Team 2 EWR3 (3) EWR2 (4) Long SAM8 (1) Medium SAM13(1)
Team 3 EWR1 (3) Long SAM2 (1) EWR4(4) Long SAM7(1)
Team 4 Long SAM-fcs3 (1) Medium SAM9(1) Medium SAM12 (1) Medium SAM14(1)
Team 5 Medium SAM5 (1) Medium SAM30(1) (0) EWR5(1)
Team 6 Medium SAM3 (1) Long SAM-fcs4(1) (0) EWR6(1)
Team 7 Medium SAM29 (1) (0) (0) (0)

Table 3:Task Assignment withTC = 0

Stage 1 Stage 2 Stage 3 Stage 4
Team 1 Medium SAM27 (1) Long SAM14 (1) Medium SAM10 (1) Long SAM5(1)
Team 2 EWR3 (5) EWR2 (5) Long SAM8 (1) Medium SAM13(1)
Team 3 EWR1 (2) Long SAM2 (1) EWR4(4) Long SAM7(1)
Team 4 Long SAM-fcs3 (1) Medium SAM9(1) Medium SAM12 (1) Medium SAM14(1)
Team 5 Medium SAM5 (1) Medium SAM30(1) (0) EWR5(1)
Team 6 Medium SAM3 (1) Long SAM-fcs4(1) (0) EWR6(1)
Team 7 Medium SAM29 (1) (0) (0) (0)

Table 4:Task Assignment withTC = 0.2

Moreover, we ran an experiment where the survival rate is stochastic but the nominal team assignments are used.
We record the percentage of time the nominal assignment produces successful run (satisfies all the constraints) and
compare the results with the robust counterpart. The comparison is shown in Figure29. We observe that robust
algorithm provides successful assignment significantly more often than the nominal counterpart under uncertainty.

We conclude that the robust assignment algorithm based on robust linear program performs very well even if the
survival rate is uncertain.

9.13 Conclusion

We have proposed a strategic planning scheme that allocates resources to groups of tasks organized in successive
stages. Our algorithms allocate the resources to the tasks (i.e. form ‘teams’) by dynamically re-organizing the teams
at each stage, while minimizing a cost objective over the whole stages horizon. Furthermore, we have proposed an
algorithm based on ‘linear programming with adjustable variables,’ that can solve uncertain linear program by means
of the sampled scenarios randomized technique. We have applied our algorithm to a problem of UAVs allocation
in an uncertain and risky environment. We have shown that our model provides an optimal solution to the problem
while satisfying all the constraints in most of the runs.

In the specific context of UAV allocation, many further issues remain open for numerical investigation. First, we
have here considered a fixed statistical model for the survival rates. However, a model that takes into account
‘interactions’ (see Section9.9) or at least a saturation on the survival rates seems better suited for the application
at hand. Also, we would like to add origin-destination dependent transaction costs at each stage in our model, as

9 MODULE 7: FLEXIBLE TEAM FORMATION 116

Stage 1 Stage 2 Stage 3 Stage 4
Team 1 Medium SAM27 (2) Long SAM14 (1) Medium SAM10 (1) Long SAM5(1)
Team 2 EWR3 (4) EWR2 (4) Long SAM8 (4) Medium SAM13(1)
Team 3 EWR1 (5) Long SAM2 (5) EWR4(3) Long SAM7(1)
Team 4 Long SAM-fcs3 (1) Medium SAM9(1) Medium SAM12 (1) Medium SAM14(1)
Team 5 Medium SAM5 (2) Medium SAM30(1) (0) EWR5(1)
Team 6 Medium SAM3 (2) Long SAM-fcs4(1) (0) EWR6(1)
Team 7 Medium SAM29 (1) (0) (0) (0)

Table 5:Task Assignment withTC = 1

Stage 1 Stage 2 Stage 3 Stage 4
Team 1 Medium SAM27 (8) Long SAM14 (5) Medium SAM10 (2) Long SAM5(1)
Team 2 EWR3 (2) EWR2 (2) Long SAM8 (2) Medium SAM13(1)
Team 3 EWR1 (2) Long SAM2 (2) EWR4(2) Long SAM7(1)
Team 4 Long SAM-fcs3 (8) Medium SAM9(4) Medium SAM12 (2) Medium SAM14(1)
Team 5 Medium SAM5 (4) Medium SAM30(2) (1) EWR5(1)
Team 6 Medium SAM3 (4) Long SAM-fcs4(2) (1) EWR6(1)
Team 7 Medium SAM29 (2) (1) (1) (1)

Table 6:Task Assignment withTC = ∞

discussed in Remark1, as well as different types of UAVs.

9 MODULE 7: FLEXIBLE TEAM FORMATION 117

Total Cost Total Number of UAVs
TC = 0 11 11
TC = 0.2 15.02 13
TC = 1 23.98 17
TC = ∞ 30 30

Table 7:Total cost incurred and total number of UAVs required

Average Total Cost Average Total Number of UAVs % Successful run
TC = 0 12.06 12 85%
TC = 0.2 15.56 13 90%
TC = 1 26.20 17 80%
TC = ∞ 37 37 85%

Table 8:Total cost incurred and total number of UAVs required

0

10
20

30

40
50

60

70

80
90

100

0 0.2 1 100,000

TC

(%
)

of
 S

uc
ce

ss
fu

l R
un

s

Nominal Algorithm Robust Algorith,

Figure 29:Percentage of the runs when all the constraints are satisfied.

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 118

10 Module 8: Path planning with multiple constraints

The fast marching algorithm is a very efficient technique for finding least cost paths, in the absence of any constraint.
This module extends the use of this algorithm when there are constraints.19

10.1 Introduction

Few problems are as well studied as the path planning or routing problem; it appears in engineering disciplines that
vary from robotics to wireless communication to matrix factorization. A major challenge in developing solutions
to the problem are the many, sometime subtle, variations it can adopt: the topology of the state space and cost
metrics, the types of acceptable paths, the number of sources and destinations, the acceptable degree of optimality,
etc. While every variant has at least one solution method—enumerate all feasible paths until an acceptably optimal
one is found—the key to developing efficient solution algorithms is to take advantage of the particular properties of
the variant of interest.

In this section we examine the path planning problem in a continuous state space subject to constraints on additive
path integral cost metrics. The original motivation for this work was the planning of fuel constrained flight paths for
unmanned aerial vehicles through enviroments with varying levels of threat. Paths are generated by gradient descent
on a value function (with no local minima), which is the solution of an Eikonal partial differential equation (PDE).20

Path integral costs are evaluated by solving an auxiliary PDE. Both PDEs can be solved quickly for low dimensional
systems, thus yielding a practical algorithm for path planning. Because both PDEs are solved over the entire state
space, paths to any possible destination can be rapidly evaluated.

To handle constraints, we sample the Pareto optimal surface looking for paths with feasible combinations of costs.
The sampling method only reaches the convex hull of the Pareto surface, so for nonconvex problems it may not
always find the optimal feasible path; however, in our experience the degree of nonconvexity has not been enough
to cause significant problems.

The asymptotic cost of the algorithm isO(MdNd logN), whereM is the number of sampled points on the Pareto
optimal surface,d is the state space dimension, andN is the number of grid points in each state space dimension.
To adequately sample the Pareto surface,M will typically be exponential in the number of separate cost functions
k. While these two exponentials are daunting, in practice the algorithms described below are quite practical on the
desktop when the sumk + d is less than around five or six; for example, section10.3 includes a problem in two
dimensions with three cost functions that is solved in less than one minute on the authors’ laptop computer.

Gradient descent on a value function solution of the Eikonal equation has been used previously for unconstrained,
single cost path planning problems. The innovative contribution of this section is the application of auxiliary PDEs
to calculate multiple path integral costs, and the use of those costs to find constrained optimal paths.

In the remainder of this section we formally outline our path planning problem and examine related work. Subse-

19The research reported here was conducted by Ian M. Mitchell and Shankar Sastry and supported by ONR under MURI contract N00014-
02-1-0720. A condensed version of this section appears in the CDC 2003 proceedings.

20Classical applications of the Eikonal PDE are in the fields of optics and seismology. Its solution can be interpreted as a first arrival time
or a cost to go, depending on whether the boundary conditions represent sources or sinks.

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 119

quent sections describe the algorithm, provide several examples, and discuss extensions to more general problems.

We work in a state spaceRd. Unless otherwise specified, norms are Euclidean‖ · ‖ = ‖ · ‖2. Let R
+ = (0,∞) be

the set of strictly positive real numbers.

10.1.1 Problem definition

A pathp : R
+ × R

d → R
d is parameterized by an arclengths ∈ R

+ and a destination locationx ∈ R
d. Assume

that all paths have a singlesource locationxs ∈ R
d (we will relax this assumption later). Thepath cost functions

{ci(x)}ki=1, whereci : R
d → R

+, are continuous, bounded and strictly positive. The cost along a path is additive,
so the total cost of a path can be evaluated by apath integral

Pi(x) =
∫ T

0
ci(p(s, x))ds, where

{
p(0, x) = xs,

p(T, x) = x.
(114)

In words,Pi : R
d → R is the total cost, according to path cost functionci(·), of following the pathp(·, x) from the

source locationxs to the pointx.

As an example, consider planning the flight path of an aircraft from its base atxs to various destinations. The most
obvious path cost function is fuel, which we approximate as a constantcfuel(x) = cfuel. A second path cost function
might be the threat of inclement weathercweather(x). A third might be uncertainty about the enviroment, encoded
ascuncertain(x). The latter two costs are inhomogenous, meaning that their value depends onx. Examples of cost
functions are shown in figures31 and34.

There are two related problems that we might wish to solve starting from the parametersxs and{ci(x)}ki=1 described
above. Given some set ofcost constraints{Ci}ki=1, whereCi ∈ R

+, we might want to find feasible paths such that
Pi(x) ≤ Ci for all i = 1 . . . k. Alternatively, we might try to minimizeP1(x) subject to constraints on the remaining
costsPi(x) ≤ Ci for all i = 2 . . . k. In either case, we will usually be interested in quantitative measures of the
tradeoffs between the various path cost functions; for example, in the second type of problem what relaxation of the
constraintC2 would be required to cut the costP1(x) in half?

10.1.2 Related work

The significance of the most closely related algorithmic work [2, 3, 4] is discussed in section10.2.4. However,
similar problems have been investigated in several other fields.

Path planning is a central endeavor in robotics research [5], so we mention only the most closely related work.
The algorithm discussed in this section could be categorized as a potential field approach [6], in the sense that the
paths are determined by gradient descent on a scalar function defined over the state space. In particular, the value
function constructed in section10.2 is an example of a navigation function [7]—a potential field free of the local
minima that hinder most potential field methods (although in general it will contain saddle points). The specific use
of the Eikonal equation for robot path planning in the single cost case was examined in [8], and is equivalent to the
approach used in [9].

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 120

Independently, the networking community has been solving constrained shortest path planning on discrete graphs [10,
11, 12], primarily for the purpose of network routing. While this research involves problems with multiple costs, it
makes the assumption that the number of distinct cost values possible at any node in the graph is finite and bounded.
The resulting algorithms are pseudo-polynomial time: polynomial in the size of the graph and in the value of any
constraints. If we seek a convergent approximation for the continuous path planning problem, we cannot assume
that the value function can be discretized and thus we cannot use pseudo-polynomial time algorithms. It should be
noted, however, that our method for exploring the Pareto optimal surface of possible path costs by sampling values
of λ (see section10.2.3) is equivalent to the fastest algorithm proposed for finding constrained shortest paths in [12].
The distinction between their algorithm and ours is the underlying shortest path problem: discrete in their case,
continuous in ours.

The related work that is closest mathematically is a tomographic application [13], which uses the Eikonal equa-
tion (115) to calculate travel time and a version of the path integral PDE (117) to determine perturbations of a
linearized form of the Eikonal equation. To our knowledge, the use of (117) for evaluating path integral costs is
original.

10.2 Value function solution

We discuss the value function method for finding the shortest path in the single cost case, and then how to compute
path integrals along value function generated paths. With these tools we can explore the range of paths that might
meet the constraints when multiple cost functions are involved. This section concludes with a discussion of an
efficient algorithm for solving the required differential equations.

10.2.1 Single objective shortest path

Consider the simplest casek = 1 with a single path cost functionc(x) = c1(x) (because it will be used to generate
a value function, we call this costc(x) thevalue cost function). It can be shown that the minimum cost to go from
the sourcexs to any pointx in the state space is the solution of the inhomogenous Eikonal equation

‖∇V (x)‖ = c(x) for x ∈ R
d,

with boundary conditionV (xs) = 0.
(115)

The solutionV : R
d → R of this PDE is called thevalue function. In practiceV is rarely differentiable and there-

fore (115) does not have a solution in the classical sense. The viscosity solution [14] is the appropriate weak solution
for the shortest path problem. In section10.2.4we shall discuss algorithms for computing accurate numerical ap-
proximations of the viscosity solution of (115), but for now the important fact is that efficient schemes exist for
problems of reasonably low dimension.

Given the viscosity solutionV , the optimal pathp∗(·, x) can be determined by gradient descent ofV from a fixed
target locationx. In practical terms, let̂p(s, x) be a path that starts at a particularx and terminates atxs. Thenp̂ is

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 121

the solution to the ordinary differential equation (ODE)

dp̂(s, x)
ds

=
∇V (p̂(s, x))
‖∇V (p̂(s, x))‖ for s ∈ R

+ and fixedx ∈ R
d,

with initial condition p̂(0, x) = x.

(116)

We stop extending the solution at someŝ such that̂p(ŝ, x) = xs. Thenŝ = T is the arclength of the shortest path
from xs to x, and that path is given byp∗(s, x) = p̂(T − s, x). BecauseV (x) is the cost to get tox from xs along
pathp∗, the path integral for this path isP ∗(x) = V (x). The gradient descent (116) cannot get stuck in local minima
becauseV has none.21 In theory, (116) can get stuck at saddle points ofV , but the stable manifolds of such points
are of measure zero in the state space, and are thus unlikely to be a problem in practical implementations subject to
floating point roundoff noise.

10.2.2 Computing path integrals

Throughout the remainder of this section, we consider only paths generated by (116) for some value functionV . In
this section we examine how to compute the path integral when the value cost function is not the same as the path
cost function. To differentiate the two cost functions, we denote the value cost function in (115) by c(x) and the path
cost function in (114) by ci(x). Both must use the same source locationxs.

Starting from the differential form of (114), we formally derive a PDE for the path integralPi(x)

dPi(p(s, x))
ds

= ci(p(s, x)),

∂Pi(p(s, x))
∂p(s, x)

· dp(s, x)
ds

= ci(p(s, x)),

∇Pi(p(s, x)) ·
∇V (p(s, x))
‖∇V (p(s, x))‖ = ci(p(s, x)),

∇Pi(p(s, x)) · ∇V (p(s, x)) = ci(p(s, x))c(p(s, x)),

where (116) is used in the second step and (115) is used in the third. Consequently, for all reachable points in the
state space,

∇Pi(x) · ∇V (x) = ci(x)c(x) for x ∈ R
d,

with boundary conditionPi(xs) = 0.
(117)

Because the cost structure is isotropic (independent of path direction) the system is small time controllable and for
our single source version all states will be reachable. The derivation above assumes that all the functions involved
are differentiable, but as was stated earlier this assumption will fail forV (x) and therefore likely also forPi(x). We
are in the process of developing a robust proof that the viscosity solution of (117) is the path cost integral we seek.

When solving (117), Pi(x) is the unknown whileV (x), ci(x) andc(x) are all known. Not surprisingly, (115) can be
recovered from (117) for the single cost case of the previous section by substitutingci(x) = c(x) andPi(x) = V (x).

21Easily seen ifV is differentiable, since a local minimum would require∇V (x) = 0, butc(x) > 0. A more rigorous argument based on
the positivity ofc can be constructed whenV is a viscosity solution.

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 122

Figure 30: Pareto optimal curve for a particular destination statex. Left: each value ofλ samples a point on the
curve. Right: testing all values ofλ would yield a convex approximation of the Pareto curve.

10.2.3 Exploring potential paths

As discussed in section10.1.1, one of our goals was an algorithm to generate feasible paths subject to a collection
of cost constraints. In the previous two sections we described PDEs whose solutions were a path generating value
functionV in (115) and the path integralsPi for those paths in (117). The remaining missing ingredient is the value
cost functionc(x) in (115). In this section we discuss the results of using convex combinations of the path cost
functions as the value cost function.

We start with the simplest multiobjective case,k = 2. Let

cλ(x) = λc1(x) + (1− λ)c2(x) for someλ ∈ [0, 1].

Then evaluate (115) and (117) for V λ(x), P λ
1 (x) andP λ

2 (x). The first thing to notice is thatλ = 1 calculates paths
optimal inc1 andλ = 0 paths optimal inc2. Therefore, ifP λ=1

1 (x) > C1 or P λ=0
2 (x) > C2 for some pointx, there

cannot be any feasible paths fromxs to x. Intermediate values ofλ will generate paths lying somewhere between
these two extremes.

Testing all possible values ofλ would effectively construct the convex hull of the Pareto optimal tradeoff curve
between the two cost functions. Figure30shows a possible Pareto curve for a single pointx, the points on that curve
determined by several values ofλ, and the convex hull of that curve. A point on the curve is a pair(P λ

1 (x), P λ
2 (x))

and lies where a line of slope λ
(λ−1) is tangent to the Pareto curve. Therefore,λ is a quantitative measure of the

tradeoff between the two cost functions.

In general the Pareto curve is not convex, so this method may fail to detect a feasible path even if one exists.
Nonconvexity in the Pareto curve will manifest itself by jumps in the values of the path integralsP λ

1 (x) andP λ
2 (x)

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 123

for fixedx asλ is varied continuously; for example, consider the jump in path integrals asλ is varied in the range
[λ2 − ε, λ2 + ε] for some smallε > 0 in figure30. However, neighboring values ofλ can be used to bound the error
in the convex approximation and nonconvexity has not been a problem in our experience. It should be pointed out
that the Pareto curve characterised above is for a single pointx in the state space. BecauseV λ andP λ

i are calculated
over the entire state space, the technique actually approximates a separate Pareto curve for all pointsx.

To handle the casek > 2, we simply choose a set{λj}kj=1 such thatλj ∈ [0, 1] for all j and
∑k

j=1 λj = 1. Then

c{λj}(x) =
∑k

j=1 λjcj(x), and we can solve for the corresponding value function and path cost integrals. In this
case it is the convex hull of the Pareto optimal surface that is explored as the set{λj} is varied.

10.2.4 Numerical algorithms

The discussion above would be nothing more than a mathematical diversion if it were not possible to solve (115), (116)
and (117) numerically for some practical problems. In this section we briefly outline an existing efficient algorithm
for solving (115), and modify that algorithm slightly to handle (117) as well. We postpone implementation details
to section10.3.4.

To treat (116), we assume that (115) and (117) can be computed for a variety ofλ values to generateV λ(x) and

{P λ
i (x)}ki=1. Then a particular̂λ is chosen such that any path integral constraints are satisfied (P λ̂

i (x) ≤ Ci). A

path is determined by solving (116) for value functionV λ̂(x) with a standard ODE integration method, such as
Runge-Kutta.

Solving (115) efficiently relies on an algorithm first described in [2], although the explanation that follows is based
on an independently developed equivalent version [3] commonly known as theFast Marching Method(FMM).
This algorithm is basically the Dijkstra algorithm for computing shortest paths in a discrete graph [15], suitably
modified to deal with a continuous state space. For readers interested in alternatives, there are other algorithms for
solving (115); for example, [16, 17].

The value functionV (x) is approximated on a Cartesian grid over the state space withN nodes in each dimension,
for a total ofNd nodes. Direct application of Dijkstra’s algorithm on this discrete Cartesian graph remains a popular
approximation method for this problem; however, the paths generated by such an approximation measure their
cost metrics in a coordinate dependent manner,22 and are visibly segmented at the grid’s resolution. In contrast,
FMM approximations can generate paths with subgrid resolution (see section10.3.1); paths that are reasonably
smooth for practically sized grids. Furthermore, these approximations are theoretically convergent, meaning that the
approximation approaches the true value function solution of (115) asN → ∞ on all of the state space except a
subset of measure zero.

We initialize the FMM by settingV (xs) = 0 andV (xm) = ∞ for all other nodesxm (in practice we choose a
large floating point value for∞). We also placexs into a listH. At each iteration of the FMM we remove the node
xm in H with minimum valueV (xm); this value is now fixed. We updateV (xn) for each neighborxn of xm with

22For example, Dijkstra on a square Cartesian grid measures distance with the Manhattan or 1-norm; in this norm the distance between two
points depends on the alignment of the coordinate axes. While this axis alignment bias can be reduced by adding more edges to the graph,
it will persist unless every possible path is enumerated by making the graph completely dense. The solution of the Eikonal equation (115)
measures distance in the Euclidean or 2-norm, which is independent of axis alignment.

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 124

V (xn) > V (xm). If any of those neighbors were not inH already, we place them inH. We then repeat, taking the
node of next smallest value fromH and updating its neighbors, until no more nodes remain inH. This procedure is
the basis of Dijkstra’s algorithm. Each node is removed fromH only once and has a constant number of neighbors.
As we will see, updating each neighbor takes a constant amount of time. If a heap [18] or something similar is used
to sortH, the smallest node can be determined in logarithmic time, for a total costO(dNd logN).

The only difference between Dijkstra’s method and an FMM lies in the update equation for a nodexn [3]. Instead of
considering each neighbor ofxn separately, we form a first order upwind finite difference approximation of∇V (xn)
using various combinations of the neighborsxp whose valuesV (xp) are less than the current approximation of
V (xn). Plugging these finite difference approximations into (115) yields an implicit quadratic equation for the new
approximation ofV (xn). Detailed update formulas are given in the appendix.

To solve (117), we use an approximation scheme outlined in [4]. The “extension velocity”Fext(x) described in that
paper is computed by solving

∇Fext(x) · ∇V (x) = 0,

which is just (117) with a zero right hand side. In practice, we integrate the computation ofPi(x) into the FMM
computation ofV (x). When each nodexm is removed fromH, we computePi(xm) for eachi. The first order
upwind finite difference approximation of∇V (xm) is already known from the last update ofV (xm), while ci(xm)
and c(xm) can be directly evaluated. Forming a first order upwind finite difference approximation of∇Pi(xm)
using the same neighbor nodes that were used to build the approximation of∇V (xm) yields an implicit linear
equation forPi(xm). Note that the neighborsxp of xm involved with the approximation of∇V (xm) will all have
V (xp) < V (xm), so they will all have been removed fromH beforexm and hence will have known valuesPi(xp).
Again, detailed update formulas are given in the appendix.

10.3 Examples

For our example we consider planning a path for an aircraft flying across the idealized unit square country from
lower left to upper right. The first cost function will be fuel, which we assume is a constantcfuel(x) = cfuel = 1.
Because these are toy examples, we provide no specific units for our cost functions.

The second cost function will represent the threat of weather related problemscweather(x). Note that the intuitive
quantification of weather threat would be the probability of encountering a storm along the flight path. This quantifi-
cation cannot be used as a cost because probabilities are not additive; however, under an independence assumption
they can be transformed into an additive cost by a logarithmic transformation. The figures and tables below as-
sume that this transformation has been performed in generatingcweather(x) from meteorologically determined storm
probabilities.

Ideally, this weather forecast would be an accurate short term estimate of weather threat. When we examine a three
cost example in section10.3.2, we will assume that part of our fictional country is well monitored and can thus
generate accurate short term weather threat estimates, while another part of the country is poorly monitored and in
this region we are forced to resort to long term climatological estimates. Because these long term estimates are less
accurate, we introduce a third cost functioncuncertain(x) which will penalize paths through the poorly instrumented
region of the country.

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 125

Figure 31: Weather threat cost functioncweather(x)

We focus on two dimensional examples primarily because three dimensional paths are very challenging to visualize
on paper. While three dimensions is noticeably more expensive, we demonstrate in section10.3.4that it can still be
done at interactive rates on the desktop.

The gradient descent procedure that generates the paths (explained in section10.3.4) produces a series of waypoints
leading from the source to the destination. In the plots that follow there is a small gap between the source location
and the start of the paths. This gap appears because the source location is not explicitly added to the waypoint list;
the gap is choosen small enough that the aircraft can fly a direct line between the source and the first waypoint (the
beginning of the plotted path).

10.3.1 Two costs in two dimensions

Figure31 shows a simple weather threat cost mapcweather(x). Notice that the lower high threat bar extending from
the left is slightly thinner than the upper high threat bar extending from the right.

Figure32 shows four example paths plotted for various combinations ofcweather(x) andcfuel from the sourcexs =[
0.1 0.1

]T
(marked by a star symbol) to the destinationxd =

[
0.9 0.9

]T
(marked by a plus symbol). The

combinations are described in table9. In searching for paths that satisfy the fuel constraints, the range ofλ was
sampled uniformly. Theλ values shown for the two constrained paths are the largest sampledλ for which the fuel
constraint was satisfied. Notice in particular that the path under tight fuel constraints (the solid line) prefers to cross
the thinner lower bar of the weather cost function rather than the fuel symmetric path that exists crossing the thicker
upper bar.

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 126

line minimize fuel fuel weather
type what cost? constraint cost cost λ

dotted fuel none 1.14 8.81 0.00
solid weather 1.3 1.27 4.55 0.13
dashed weather 1.6 1.58 3.03 0.62
dash dot weather none 2.69 2.71 1.00

Table 9: Properties of paths in figure32.

line minimize fuel weather fuel weather uncertainty
type what cost? constraint constraint cost cost cost
dotted fuel none none 1.14 8.83 1.52
dash dot weather none none 2.74 2.75 5.96
dashed uncertainty none none 1.18 8.42 1.19
solid uncertainty 1.3 6.0 1.25 5.85 1.25

Table 10: Properties of paths in figure35.

Figure 33 shows the points on the Pareto optimal curve of the destination locationxd generated by a uniform
sampling of the spaceλ ∈ [0, 1]. Two explanations exist for those regions where the sample points are well spaced—
either the uniform sampling was too coarse, or the Pareto curve is nonconvex. In the former case, a more intelligent
sampling strategy could fill in the gaps inexpensively. Furthermore, even if the curve is nonconvex the existing
samples provide fairly tight bounds on the degree of possible nonconvexity.

10.3.2 Three costs in two dimensions

The first two cost functions are the same as in section10.3.1: constant fuelcfuel = 1 andcweather(x) from figure31.
For the third cost function, we assume that the upper left corner of our mythical country has few weather stations
and therefore we create the uncertainty cost functioncuncertain(x) shown in figure34.

The resulting paths fromxs to xd are shown in figure35 and described in table10. Because they optimize the same
costs in the same manner, the dotted and dash dotted paths are basically the same as those shown in figure32.23 The
most interesting path is that denoted by the solid line. Notice that the constraints on this path were satisfied by the
tight fuel constrained path (also a solid line) in figure32. In this case, however, we are penalizing paths that travel
in the upper left portion of the map with the uncertainty costcuncertain(x). Therefore, a path that crosses the thick
high cost portion of the upper bar of the weather cost map is chosen; even though the weather cost is higher, it is still
within the specified constraint and the resulting path’s uncertainty cost is nearly as good as the minimum uncertainty
cost path (given by the dashed line).

23The slight differences between their tabulated costs in tables9 and10 is due to the coarser state space grid used in this three constraint
example.

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 127

line minimize fuel fuel weather
type what cost? constraint cost cost
dotted fuel none 1.41 3.54
dashed weather none 1.64 1.64
solid weather 1.55 1.55 2.00

Table 11: Properties of paths in figure36.

10.3.3 Two costs in three dimensions

For a three dimensional problem, we plot a path fromxs =
[
0.1 0.1 0.1

]T
to xd =

[
0.9 0.9 0.9

]T
. The

fuel cost functioncfuel remains a constant, while the weather costcweather(x) has five stormy regions centered at the
points: 

0.1
0.9
0.9





0.5
0.5
0.5





0.9
0.1
0.1





0.9
0.5
0.5





0.1
0.5
0.5




Each stormy region adds a scaled and shifted gaussian tocweather(x). In order to represent the general low level threat
of unforeseen weather disturbances, we setcweather(x) = 1 anywhere that the sum of the storm costs drops below
unity. In order to break the symmetry of the problem, the first stormy region is 50% larger than the remaining four.
A visualization of the weather cost function is shown in figure36 along with three paths fromxs to xd. The three
volumetric shells in the figure represent (from faintest to darkest) the1.1, 2.0 and3.0 isosurfaces ofcweather(x); its
peak value is5.5. The three demonstration paths are described in table11.

10.3.4 The implementation and deExecution times

To compute approximations ofV (x) andPi(x), we have implemented a version of the FMM described in sec-
tion 10.2.4in C++ for Cartesian grids. While the code itself can handle any dimension, in practice the physical
memory limits of desktop machines restrict the dimension to at most five even with very coarse grids. Using a MEX
interface, these PDE solving routines can be called directly from Matlab.

To handle cost constrained paths, the sampling overλ is performed in Matlab. The speed of Matlab’s interpreted
language is not an issue in this case, because the inner loop of theλ sampling process is the compiled C++ but still
relatively time consuming FMM algorithm. In all of the examples shown, the range ofλ is sampled uniformly. If
a particular destination point were known in advance, a directed sampling ofλ could quickly yield more accurate
results; for example, bisection in the two cost case. In fact, if a particular destination point is specified, the FMM
can be run faster in some cases by applying a version of A* search on the listH, rather than just selecting the node
with minimum value ([11] discusses this technique in the discrete graph setting).

We have so far been generating a relatively small number of paths, so this process is handled with Matlab’s extensive
ODE integration facilities. Once âλ has been chosen such that any path constraints are satisfied,V λ̂(x) is used

in (116) to determine the path. Because∇V λ̂ may change direction significantly from one integration step to

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 128

section d k N ∆λ time (min)
10.3.1 2 2 201 0.005 0.5
10.3.2 2 3 101 0.020 1.0
10.3.3 3 2 101 0.010 22.3

Table 12: Run parameters for the examples (d = dimension,k = number of constraints,N = grid size,∆λ =
sample interval of convex combination cost). Time includes generation of the cost functions, PDE and ODE solves,
and plotting all the figures.

time (s)
N perλ ratio
51 0.01
101 0.04 3.24
201 0.13 3.76
401 0.55 4.20
801 2.44 4.41

Table 13: Costs of refining the grid in two dimensions. Time perλ is the time to solve a single instance of the PDEs
for V (x) and two path integral costsP1(x) andP2(x). The ratio column shows the roughly quadratic growth in
execution time asN is increased.

the next, (116) is a moderately stiff ODE. Consequently, we have found a variable stepsize, implicit trapezoidal
integrator to be effective (Matlab’sode23t); however, other variable stepsize integrators—such as the high order
explicit 4-5 Runge-Kutta—could also be used.

We summarize the parameters for the examples of the previous sections in table12. The grid sizes and number of
λ samples were chosen large enough to give decent results and not so large as to overburden the authors’ desktop
computer. These timings and those below are for a 2 GHz, 1 GB Pentium 4 Dell Inspiron 8200 running Windows
XP Professional, Matlab version 6.5 (release 13) and Matlab’s lcc compiler.

Tables13 and14 demonstrate the costs of refining the PDE grid. Both tables assume only two path integral cost
PDEs are solved; however, most of the time in the FMM algorithm is spent solving forV (x), so the increase in
time perλ sample of an additional path integral PDE is only 10%–20%. As mentioned previously, the asymptotic
cost of the algorithm isO(dNd logN) perλ sample. The ratio columns of the two tables show the expected growth
in execution time—slightly above quadratic withN for two dimension, slightly above cubic withN for three—in
all but the coarsest two dimensional grids (where the roughly constant overhead of initialization will be relatively
significant).

The time to solve (116) to generate a particular path is largely independent of the dimension or grid size, and is
completely independent of the number of constraints orλ sampling interval. It will depend on the destination
location (the closer to the source, the shorter the path). In our experience, most paths can be generated in less
than a second, and few take more than three seconds. Using a compiled integrator (rather than Matlab’s interpreted

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 129

time (s)
N perλ ratio
51 1.27
101 12.66 9.99
201 125.46 9.91

Table 14: Costs of refining the grid in three dimensions. Time perλ is the time to solve a single instance of the
PDEs forV (x) and two path integral costsP1(x) andP2(x). The ratio column shows the slightly greater than cubic
growth in execution time asN is increased.

routines) would speed this process up even further.

To demonstrate the effects of refining or coarsening the grid on the quality of the resulting paths, figure37shows the
paths from the example in section10.3.1generated for three different grid resolutions. The paths shown in figure32
correspond to theN = 201 case. While grid refinement does yield visibly better paths, even the coarsest grid gets a
qualitatively correct answer on even the most convoluted path.

10.4 Discussion

We have demonstrated an algorithm for constrained path planning in continuous state spaces for additive cost metrics
and isotropic but inhomogenous and nonconvex cost functions. In those cases with multiple cost functions, a convex
approximation of the Pareto optimal surface is explored; consequently, the algorithm may not find all feasible paths
although in practice this has rarely been a problem. While the asymptotic cost of the algorithm is exponential in the
dimension and in the number of cost functions (assuming uniform sampling of the Pareto optimal surface), it can be
run at interactive rates on the desktop if their sum is five or less, and overnight if their sum is six.

There are several straightforward extensions of this work to more general path planning problems. We can imme-
diately incorporate multiple source locations, by making each source a boundary condition with value zero of the
PDEs (115) and (117). The resulting value function will generate paths from the nearest source to each destination
state. Hard obstacles in the state space can be treated by either making the cost function very large in their interior or
by making the obstacle’s boundary a part of the PDEs’ boundaries with very large value. Creating boundary nodes
with intermediate values (neither zero nor very large) can be interpreted as penalizing those nodes as possible source
locations. We can also swap the meaning of source and destination, in which case the value function can be used to
generate a feedback control.

The basic FMM algorithm described in section10.2.4has been extended to unstructured meshes, and a more accurate
second order approximation scheme has been developed. For more details on FMM and its extensions, we refer the
reader to [19]. We are in the process of developing a version of FMM that runs on an adaptively refined Cartesian
grid, so as to better represent problems with hard obstacles.

The current path planning formulation assumes that the cost of a path is a function only of its current state; this is
equivalent to claiming that the vehicle which will execute the path can travel equally well in any direction from any

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 130

location. This assumption is reasonable when the resolution of the grid is much coarser than the dynamics of the
vehicle; for example, planning aircraft paths across a country. But on shorter time and space scales, it is unrealistic to
assume that an airplane can make a sharp turn. Treating nontrivial vehicle dynamics requires that the cost functions
be anisotropic. Unfortunately, such anisotropy means that the value function will no longer be the viscosity solution
of the eikonal equation (115), but rather a more general static Hamilton-Jacobi PDE. The FMM will not work on
these PDEs; however, several algorithms have been proposed to solve them quickly [16, 20, 21, 22].

The additive path integral cost model used in this section is very common, and includes multiplicative costs through
a logarithmic transformation. Another common cost metric is maximum cost along the path. While maximum cost
can currently be evaluated for a single path during the integration of (116), we are investigating methods capable of
evaluating this metric over the entire state space. We are also examining efficient methods of approximating all of
the Pareto optimal curve for each destination location, rather than just its convex hull.

Acknowledgements: We would like to thank Aniruddha Pant for suggesting the sweeping procedure over convex
combinations of the multiple cost functions, and Professor Pravin Varaiya for the interpretation of this procedure
as a convex approximation of the Pareto optimal surface and for several very useful discussions of value function
properties. Thanks are also due to the Berkeley MICA team for providing the examples which originally motivated
this work.

10.5 Appendix: Update equations for any number of dimensions

Section10.2.4described the basic FMM algorithm used to solve (115) for V (x) and (117) for Pi(x). In this appendix
we give the update equations that form the heart of these algorithms: first forV (x) and then forPi(x). These update
equations are independent of dimensiond, but work only on Cartesian grids. The update algorithm and equation
for V (x) given below is a version of those given in the appendix of [8], modified to treat grids with dimensionally
dependent spacing (wherehj is the grid spacing in dimensionj).

When a nodexm is removed from the listH, any neighborxn with V (xn) > V (xm) may need to be updated.
Consider a specific neighbor node, which we labelx0. This node will have2d neighbors itself: one in each direction
(we will call these directions left and right) in each dimension. Choose a set of neighbor indicesI by picking the
neighbor (either left or right) with lowest value from each dimension (soI hasd elements). If the grid spacing is
equal in all dimensions, the nodesxj for j ∈ I and the nodex0 are the vertices of ad dimensional simplex; otherwise
they form a distorted simplex. The formula derived below calculatesV (x0) as if the characteristic of (115) giving
V (x0) its value came from this simplex.

It is possible that the characteristic in question flows along a lower dimensional face of the simplex rather than
through its interior. Now we identify the subset of indicesJ from which the characteristic arises. First we define the

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 131

following terms, where all of the summations are over the index setJ (excepting the indices explicitly excluded).

T1 =
∑
j


∑

l �=j

h2l


V (xj),

T2 =
∑
j


∑

l �=j

h2l


 c2(x0),

T3 =
∑
j1

∑
j2 �=j1


 ∑

l �=j1,j2

h2l


 [V (xj1)− V (xj2)]

2 ,

T4 =
∑
j

∑
l �=j

h2l .

To find the appropriateJ, start withJ = I . While

T2 < T3, (118)

keep removing the nodexj with largest valueV (xj) in J. OnceT2 ≥ T3, use the remaining nodes inJ to form first
order upwind finite difference approximations of the partial derivatives ofV at x0, and plug these approximations
into the square of (115) to get ∑

j∈J

(
V (xj)− V (x0)

hj

)2

= c2(x0).

We can then use the quadratic equation to solve forV (x0).

V̂ (x0) =
T1 +

(∑
j hj

)√
T2 − T3

T4
. (119)

The reader can verify that condition (118) ensures that the resulting discriminant in (119) is positive. If the resulting
valueV̂ (x0) is less than the existing valueV (x0), thenV̂ (x0) is taken as the new approximation ofV atx0.

Now consider the update ofPi(xm). Letx0 = xm and remember the setJ last used to updateV (x0). Form first order
upwind finite difference approximations for the partial derivatives ofPi andV atx0, and plug these approximations
into (117) to get ∑

j∈J

(
Pi(xj)− Pi(x0)

hj

)(
V (xj)− V (x0)

hj

)
= ci(x0)c(x0).

Rearranging the terms yields the update equation (the sums are again overJ)

Pi(x0) =

(∑
j

[∑
l �=j h

2
l

]
Pi(xj) [V (xj)− V (x0)]

)
− ci(x0)c(x0)

∑
j h

2
j(∑

j

[∑
l �=j h

2
l

]
[V (xj)− V (x0)]

) .

Because this equation is solved only once for eachx0 and eachPi when that nodex0 is removed from listH,
computing the path integral cost functions is much cheaper per cost function than computing the value function.

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 132

Figure 32: Some fuel and weather constrained paths. The properties of each path are explained in table9.

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 133

Figure 33: Sampling the Pareto optimal curve for a particular destination point.

Figure 34: Uncertainty cost functioncuncertain(x)

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 134

Figure 35: Some fuel, weather and uncertainty constrained paths. The properties of each path are explained in
table10.

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 135

Figure 36: Some fuel and weather constrained paths in three dimensions. The properties of each path are explained
in table11.

10 MODULE 8: PATH PLANNING WITH MULTIPLE CONSTRAINTS 136

Figure 37: Comparing the path approximations generated by various grid resolutions. As the grid resolution im-
proves, for almost every destination point the approximation converges to the analytically optimal path.

11 CONCLUSIONS 137

11 Conclusions

We summarize our major contributions relative to the MICA program objectives, which are to

• Develop theory, algorithms, software, and modeling/simulation capabilities for hierarchical bat-
tlespace management and distributed control of semi-autonomous entities

– Cultivate dynamic operational and mission planning for teamed entities
– Develop cooperative path/execution planning
– Address an active, intelligent adversary and threats in an uncertain environment

• Demonstrate multiple vehicle execution of team-based strategies

Following the guidance of the program management, battlespace management comprises the two phases of ‘offline
planning’ and ‘online execution’. We organize the latter in a two-layer hierarchy of ‘team coordination’ and ‘UAV
control’, figure1. To deal with additional information that might arrive during the execution, we introduce a ‘state
estimation’ procedure, described in section6, which can trigger ‘re-planning’, figure2. Our work can be situated
within this structure and compared with the contribution of other contractors.

11.1 Planning

Our most signficant contribution is a formalization of the ‘planning process’. Section3 describes our mathematical
model: it defines the ‘plan design space’ and the risk associated with a plan as a measure of performance, and
presents an algorithm to find ‘optimal plans’.

Importantly, the algorithm (calledInteractive Task Planneror ITP) allows for ‘variable autonomy’, that is, a plan can
be generated in a fully automatic manner, or it may be extensively modified by the planner in light of considerations
that are not reflected in our ‘risk’ performance measure. The ITP offers a visual tool for the planner’s intervention.
The tool may be used by the planner to rapidly evaluate the changes in risks and flight paths resulting from proposed
modifications in the plan. The tool produces a ‘sensitivity table’ that assists the planner in proposing changes.

The rapid evaluation of alternatives is made possible by a ‘fast marching method’ algorithm, which generates risk-
minimizing paths. This assumes that the UAV dyamics are well-modeled by an ‘isotropic’ velocity field, so that the
resulting value function satisfies the eikonal partial differential equation (24).

A very important implication of our model is that the risk in attacking a target depends on which targets have already
been destroyed. As a consequence, one major component of a plan is its precedence relation (section3.2), which
restricts the sequence in which targets must be attacked. In terms of the ITP, this leads to organizing Blue’s attack in
‘waves’, which the planner may modify.

A consequence of the precedence relation is that it leads in a reasonable way to the grouping of sub-tasks into tasks.
In an automatic mode, these tasks are simply precedence ‘chains’ or ‘sub-trees’, as illustrated in the top of figure
14. However, the planner may group sub-tasks differently, as illustrated in the bottom of figure14, based perhaps
on similarity of target types or geographical location. This information is displayed in the ITP window (figure5),
facilitating the planner’s exploration of the plan design space.

11 CONCLUSIONS 138

Once the tasks are defined, the ‘configuration and schedule’ module is invoked to determine the composition of the
teams, one per task, and to refine the nominal path and precedence relation obtained from the ITP.

The composition of a team specifies the number and type of UAVs, and their configuration in terms of sensors and
weapons. The calculation of a team composition relies on a table that gives the range of each weapon and its lethality
(probability of target destruction). We have limited ourselves to the use of GPS bombs. We assume that a 95 percent
probability of destruction is required, which in turn determines the number of weapons needed. Given the GPS
bomb-carrying capacity, this yields the number of UAVs that are needed to execute a task. This number is ‘inflated’
to take into account the possibility that UAVs may themselves be destroyed.

The ‘configuration and schedule’ module further decomposes each sub-task into ‘legs’, refines the sub-task prec-
dence relation to one on legs, and prescribes a path for each UAV in the team assigned to the sub-task. As each
nominal path ends at a target, the path is divided into two legs: a ‘safe’ leg in which UAVs not attacking the target
may stay, and an ‘attack’ leg in which the UAV is within the target’s threat range. The attack leg is designed in such
a way that the attack UAV flies with a heading directed at the target, thereby minimizing its signature.

11.2 Execution

There are two important contributions. The first is the two-level hierarchy of ‘team coordinator’ and ‘UAV con-
troller’. The latter in turn comprises several individual modules to manage way-point navigation, weapons, and
sensors. Controllers at both levels can be expanded, as was discussed in section5. Currently teams only carry out
a strike task. But if other task types, such as search or jamming, are implemented, the team controller can be aug-
mented in a modular fashion to accommodate these. Similarly, the vehicle controller can be augmented to include
other maneuvers or tactics.

From a controller design viewpoint, the use of Shift as the design specificaiton language, in contrast to, say, Simulink,
Matlab, or ‘C’, brings an enormous benefit in terms of conceptual unity and implementation. Being object-oriented,
Shift permits controllers to be instantiated as needed. Shift offers high-level constructs, so that thesameteam
controller can work with teams with a variable number of UAVs, and the team of UAVs can be dynamically re-
allocated during the execution phase. In principle, this can be done in any other programming language, but at a
huge increase in complexity. Furthermore, although a Shift program can only be executed as a simulation, a very
similar program written in commercial Teja language (which provides the same functionality as Shift) can also
generate code for a variety of operating systems including Linux, VRTX, and QNX. Controllers designed in Teja
can be tested in simulation mode, and then used to control hardware.

Lastly, because Shift has a strict semantics in terms of networks of hybrid automata, Shift controllers can, in prin-
ciple, be verified. Although tools for verification cannot today work with general hybrid automata models, they can
verify restricted models. Such verification could be invaluable.

11.3 State estimation

Our most signficant contribution here is a Bayesian model of knowledge about the ‘battlespace’ in terms of the
probability distribution,Pthreat, of the Red force. Since the threat depends on the setTargetsof Red targets, this

11 CONCLUSIONS 139

is the probability distribution of aset-valuedrandom variable. It is impossibly complex to deal in a quantitative
manner with a general distribution of this kind.

By making an independence assumption, (32)-(33), we drastically reduce the memory needed to store the threat
distribution. Moreover, as shown in sections6.1and6.2, this assumption continues to hold after a strike or search task
is completed. This makes it computationally feasible to design an online and recursive state estimation procedure.
The mathematical procedure,Postthreat, is described in section6. It is implemented in a Windows data base.

11.4 Re-planning

A major concern of MICA is to account for uncertainty. We have dealt with uncertainty in two ways. At the planning
level, uncertainty is manifested in lack of full knowledge of the disposition of Red forces, modeled as a probability
distribution,Pthreat. The measure of risk along a path takes this distribution into account, see section3.3.

It is much more difficult to deal adequately with uncertainty that arises during execution. The design of the con-
trollers of teams and individual UAVs is predicated on certain assumptions: For example, an attack UAV expects its
target to be at a certain location, and it expects the ‘safe’ leg to be free of threat.

However, these expectations may be violated. In principle, one may model these ‘dis-expectations’ probabilistically.
Indeed, section2.6describes how uncertain threats might be treated probabilistically. But it is virtually impossible to
anticpate and take into account all possible contingencies in such a probabilistic manner, especially in the execution
phase, when UAVs are flying and time evolves. Moreover, such an approach quickly becomes computationally
intractable (recall the ‘curse of dimensionality’).

Our novel contribution is to buildexceptionsinto the controller structure. The controller declares an exception when
events occur which make it impossible to execute the task in which it is currently engaged. For example, a UAV is
unexpectedly destroyed so that the target which it was attacking now threatens the team. The controller ‘rolls back’
the team to what it considers a safe region, and calls the planner to intervene: in an automated mode the ITP is
re-invoked, based on the new (and unanticipated) event that was encountered.

Lastly, an implicit assumption in the MICA program has been that teams arestatic—they are composed during
the planning phase, and maintain their identity throughout the execution phase. In section2.7, we show within a
simplified model that allowing teams to be re-formed at the end of each wave can reduce the resource requirement.
The resource savings will be larger the greater is the uncertainty in UAV attrition rates.

HICST’s lasting contributions are: (1) a model for optimal plans and procedures to find them; (2) a model for the
‘state of the world’, and a state estimator; (3) a very concise and flexible structure for the team and UAV controllers,
with a provision to generate exceptions. The controller, specified in Shift, can be used to assist in generating real-time
code for hardware implementations. These contributions advance the attainment of MICA’s objectives. Significant
problems remain unsolved. These are discussed next.

12 OPEN PROBLEMS 140

12 Open problems

We discuss open problems using the same structure as in the previous section.

12.1 Planning

The limitations in our approach to planning can be classified in terms of the threat model (discussed in section12.2),
the performance measures, the sub-task structure, the fast marching method, and the treatment of uncertainty.

Threat model

Three limitations of the threat model need to be overcome. First, there is a need to consider mobile targets. This will
require some models of mobility, which makes the state estimator computationally more complex.

Second, and conceptually more difficult, is the need to model ‘integrated’ defenses, in which the threat posed by
targets whose radars function in a coordinated manner, is not the sum of the threats posed by each target, as in (20).

Third, and even more difficult, is the need to consider the threat from an intelligent adversary. The most straight-
forward model relies on game theory, which quickly leads to computationally intractable problems, which could
be addressed by by resorting to approximations, either in terms of exploring Red moves or some higher-level ab-
stractions. The latter is more promising, especially if those abstractions have intuitive meaning in terms of possible
strategies that the adversary may be using.

Multiple performance measures

We have adopted a single measure, namely the risk along a path. However, other measures that reflect resource
consumption, such as fuel, time, and weapons, may need to be included in the definition of the plan design space
and the optimal plans. In principle, one can simply require that feasible plans defined in section3.2 also satisfy
constraints on resource consumed. However, this move complicates the search for an optimal plan, as indicated in
section2.8. Nonetheless, it is clear that the plan design space must explicitly include multiple performance measures.

Sub-task structure

We assumed that all sub-tasks have as their objective the destruction of a target. This is not enough. There are other
important tasks such as ‘search’ that cannot be specified simply in terms of a target. If the objective of a search
is to reduce the uncertainty about the Red force (see section6.2), the consequence of executing a search may be
to re-design the plan. The more significant searches are, the less meaningful it will be to separate ‘planning’ and
‘execution’ as we have done. The MICA structure separating these two phases is reasonable only in the context of
very good prior information.

12 OPEN PROBLEMS 141

Fast marching method

The fast marching method is key to rapidly finding optimal paths. This speed makes it feasible for the planner to use
the ITP as aninteractivetool. However, the fast marching method assumes an isotropic velocity field. This means
that the position of a UAV is only constrained by the inclusion,[

ẋ
ẏ

]
∈ B(x, y),

in whichB(x, y) is a circle of radius that can depend on location. (The ‘circle’ makes it isotropic.)

Extensions of the fast marching method can weaken the isotropic requirement. But taking full-fledged dynamics
into account, such as in the form,

ẋ ∈ Ax+BU ,
in whichU is the control set, will require rather different computational methods.

Treatment of uncertainty

12.2 State estimation

A procedure that estimates the disposition of Red forces is essential. The procedurePostthreat of section6 is
computationally feasible because of the independence assumption. It is easy to construct likely situations in which
the available information makes the independence assumption untenable. A simple example is where the total
number of targets in two areas is known, so that the number of targets in each area cannot be independent. Adding
target mobility obviously complicates state estimation.

However, there are radically different formulations of threat that may be appropriate.

12.3 Execution

The controller architecture and the specific team, task, sub-task, and vehicle controllers presented in section6 is a
great advance over current practice in the specification of controller design. The specification takes advantage of the
object-oriented nature ofShiftand the abstract constructs available inShift. In particular,

• Specification of controllers is separated from their instantiation;

• Controllers are hierarhically organized;

• Structure of multi-vehicle mission controllers is independent of the number of vehicles (because of the set
construct inShift);

• User intervention is explicitly made available at all levels of the hierarchy in terms of a well-defined interface
of command and response messages;

12 OPEN PROBLEMS 142

• Controllers can be extended through specialization (becauseShiftallows inheritance.

As indicated, the controller design has well-specified provision by which a human opertor can intervene in planning
and execution of the automated system. The outstanding open problem is to design rules according to which the
automated system will ‘ask’ for human intervention. In most automated systems this is done through a system of
‘alarms’: the operator is signaled whenever some variables exceed a threshold. In MICA automation is carried to
a much deeper level, and simple alarms are inappropriate. Rather, what is needed is a system of ‘exceptions’ that
indicate the inability of the automated system to continue to fulfil its current tasks. A theory of exceptions needs to
be developed.

12.4 Re-planning

Related to the last point above, is the open problem of designing automatic ‘triggers’ that call for re-planning.

REFERENCES 143

References

[1] SHIFT website: www.path.berkeley.edu/shift

[2] J. N. Tsitsiklis, “Efficient algorithms for globally optimal trajectories,”IEEE Transactions on Automatic Con-
trol, vol. AC-40, no. 9, pp. 1528–1538, 1995.

[3] J. A. Sethian, “A fast marching level set method for monotonically advancing fronts,”Proceedings of the
National Academy of Sciences, USA, vol. 93, no. 4, pp. 1591–1595, 1996.

[4] D. Adalsteinsson and J. A. Sethian, “The fast construction of extension velocities in level set methods,”Journal
of Computational Physics, vol. 148, pp. 2–22, 1999.

[5] J.-C. Latombe,Robot Motion Planning. Boston: Kluwer Academic Publishers, 1991.

[6] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,”International Journal of
Robotics Research, vol. 5, no. 1, pp. 90–98, 1986.

[7] J. Barraquand, B. Langlois, and J. Latombe, “Numerical potential field techniques for robot path planning,”
IEEE Transactions on Systems, Man and Cybernetics, vol. 22, no. 2, pp. 224–241, 1992.

[8] R. Kimmel and J. A. Sethian, “Optimal algorithm for shape from shading and path planning,”Journal of
Mathematical Imaging and Vision, vol. 14, no. 3, pp. 237–244, 2001.

[9] K. Konolige, “A gradient method for realtime robot control,” inInternational Conference on Intelligent Robots
and Systems (IROS), vol. 1, (Takamatsu, Japan), pp. 639–646, 2000.

[10] A. Orda, “Routing with end-to-end QoS guarantees in broadband networks,”IEEE/ACM Transactions on Net-
working, vol. 7, pp. 365–374, June 1999.

[11] G. Liu and K. G. Ramakrishnan, “A*prune: An algorithm for finding k shortest paths subject to multiple
constraints,” inINFOCOM 2001, vol. 2, pp. 743–749, 2001.

[12] A. Puri and S. Tripakis, “Algorithms for routing with multiple constraints,” inAIPS 2002Workshop on Planning
and Scheduling using Multiple Criteria, (Toulouse, France), pp. 7–14, April 2002.

[13] A. Sei and W. W. Symes, “Convergent finite-difference traveltime gradient for tomography,” inProceedings of
65th Society of Exploration Geophysicists Annual Meeting, (Houston, TX), pp. 1258–1261, 1995.

[14] M. G. Crandall, L. C. Evans, and P.-L. Lions, “Some properties of viscosity solutions of Hamilton-Jacobi
equations,”Transactions of the American Mathematical Society, vol. 282, no. 2, pp. 487–502, 1984.

[15] E. W. Dijkstra, “A note on two problems in connection with graphs,”Numerische Mathematik 1, pp. 269–271,
1959.

[16] M. Falcone, “Numerical solution of dynamic programming equations,” inOptimal Control and Viscosity Solu-
tions of Hamilton-Jacobi-Bellman equations, Birkhäuser, 1997. Appendix A of [23].

REFERENCES 144

[17] H.-K. Zhao, “Fast sweeping method for Eikonal equations I: Distance function,” tech. rep., UCI, Department
of Mathematics, University of California, Irvine, CA, 92697-3875, 2002. Under review, SINUM.

[18] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to Algorithms. San Franscisco: McGraw-Hill,
1990.

[19] J. A. Sethian,Level Set Methods and Fast Marching Methods. New York: Cambridge University Press, 1999.

[20] R. Kimmel and J. A. Sethian, “Computing geodesic paths on manifolds,”Proceedings of the National Academy
of Sciences, USA, vol. 95, no. 15, pp. 8431–8435, 1998.

[21] J. A. Sethian and A. Vladimirsky, “Ordered upwind methods for static Hamilton-Jacobi equations: Theory and
algorithms,”SIAM Journal on Numerical Analysis, vol. 41, no. 1, pp. 325–363, 2003.

[22] Y.-H. R. Tsai, L.-T. Cheng, S. Osher, and H.-K. Zhao, “Fast sweeping methods for a class of Hamilton-Jacobi
equations,”SIAM Journal on Numerical Analysis, vol. 41, no. 2, pp. 673–694, 2003.

[23] M. Bardi and I. Capuzzo-Dolcetta,Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman equa-
tions. Boston: Birkhäuser, 1997.

[24] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Adjustable robust solutions of uncertain linear
programs.Minerva Report, http://iew3.technion.ac.il/Labs/Opt/, 2003.

[25] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs.Operations Research Letters,
25(1):1–13, 1999.

[26] G. Calafiore and M.C. Campi. Uncertain convex programs: randomized solutions and confidence levels.To
appear in Mathematical Programming, 2004.

[27] L. El Ghaoui and H. Lebret. Robust solutions to uncertain semidefinite programs.SIAM J. Optim., 9(1):33–52,
1998.

[28] W. Hoeffding. Probability inequalities for sums of bounded random variables.Journal of the American Statis-
tical Association, 58:13–30, 1963.

[29] M. Putterman,Markov Decision Processes: Discrete Stochastic Dynamic Programming. New York: Wiley-
Interscince, 1994.

[30] J. Filler and K. Vrieze,Competitive Markov Decision Processes. New York: Springer, 1996.

[31] D. Berstsekas and J. Tsitsiklis,Neuro-Dynamic Programming. Massachusetts: Athena Scientific, 1996.

[32] H. Mine and S. Osaki,Markov Decision Processes. American Elsevier Publishing Company Inc, 1970.

[33] G. Siouris,Optimal control and estimation theory. New York, USA: Wiley-Interscience, 1995.

[34] S. Wilks,Mathematical Statistics. New York, USA: Wiley-Interscience, 1962.

[35] E. Lehmann and G. Casella,Theory of point estimation. New York, USA: Springer-Verlag, 1998.

REFERENCES 145

[36] E. Lehmann,Testing Statistical Hypothesis. New York, USA: Wiley, 1986.

[37] J. Pitman,Probability. New York, USA: Springer-Verlag, 1993.

[38] H. Poor,An introduction to signal detection and estimation. New York: Springer-Verlag, 1988.

[39] E. Feinberg and A. Shwartz,Handbook of Markov Decision Processes, Methods and Applications. Boston:
Kluwer’s Academic Publishers, 2002.

[40] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge, U.K.: Cambridge University Press, January,
2004.

[41] H. R. Schwarz and J. Waldvogel,Numerical Analysis: A Comprehensive Introduction. New York, USA: John
Wiley and Sons, 1989.

[42] D. D. Farias and B. V. Roy, “The Linear Programming Approach to Approximate Dynamic Programming.”
submitted to Operations Research, 2002.

[43] L. G. Epstein and M. Schneider, “Recursive multiple-priors.” to appear in Journal of Economic Theory, 2003.

[44] L. G. Epstein and M. Schneider, “Learning under ambiguity.” http://www.econ.rochster.edu/Faculty/Epstein.html,
2002.

[45] G. Iyanger, “Robust dynamic programming.” personal communication, 2003.

[46] G. H. Golub and C. F. Van Loan, “An analysis of the total least squares problem,” vol. 17, pp. 883–893, 1980.

[47] A. Ng and M. Jordan, “Pegasus: A policy search method for large MDPs and POMDPs,” inthe proceedings of
the Sixteenth Conference in Uncertainty in Artificial Intelligence, 2000.

[48] A. Nilim, L. E. Ghaoui, M. Hansen, and V. Duong, “Trajectory-based Air Traffic Management (TB-ATM)
under weather uncertainty,” inthe proceeding of the 4th USA/EUROPE ATM R & D Seminar, 2001.

[49] S. Kalyanasundaram, E.Chong, and N. Shroff, “Markov Decision Processes with uncertain Transition Rates:
Sensitivity and robust control,” tech. rep., Department of ECE, Purdue University, West Lafayette, Indiana,
USA, March 2001.

[50] L. El-Ghaoui and A. Nilim, “Robust solution to the markov decision processes with uncertain transition ma-
trices,” Tech. Rep. UCB/ERL M02/31, Department of EECS, University of California, Berkeley, November
2002.

[51] A. Shapiro and A. J. Kleywegt, “Minimax analysis of stochastic problems,”Optimization Methods and Soft-
ware, 2002. to appear.

[52] A. S. Nowak, “On zero sum stochastic games with general state space. i,”Probability and Mathematical Statis-
tics, vol. 4, no. 1, pp. 13–32, 1984.

[53] C. C. White and H. K. Eldeib, “Markov Decision Processes with imprecise transition probabilities,”Operations
Research, vol. 42, no. 4, pp. 739–749, 1994.

REFERENCES 146

[54] E. Altman and A. Hordijk, “Zero-sum markov games and worst-case optimal control of queueing systems,”
QUESTA , a special issue on optimization of queueing systems, vol. 21, pp. 415–447, 1994.

[55] Z. Chen and L. Epstein, “Markov Decision Processes with imprecise transition probabilities,”Econometrica,
vol. 70, pp. 1403–1443, 2002.

[56] M. Abbad and J. A. Filar, “Perturbation and stability theory for Markov control problems,”IEEE Transactions
on Automatic Control, vol. 37, pp. 1415–1420, 1992.

[57] J. K. Satia and R. L. Lave, “Markov Decision Processes with Uncertain Transition Probabilities,”Operations
Research, vol. 21, no. 3, pp. 728–740, 1973.

[58] M. Abbad, J. Filar, and T. Bielecki, “Algorithms for singularly perturbed limiting average Markov control
problems,”IEEE Transactions on Automatic Control, vol. 37, pp. 1421–1425, 1992.

[59] T. Ferguson, “Prior distributions on space of probability measures,”The Annal of Statistics, vol. 2, no. 4,
pp. 615–629, 1974.

[60] R. Givan, S. Leach, and T. Dean, “Bounded parameter Markov Decision Processes,” inFourth European Con-
ference on Planning, pp. 234–246, 1997.

[61] J. Bagnell, A. Ng, and J. Schneider, “Solving uncertain Markov Decision Problems,” Tech. Rep. CMU-RI-TR-
01-25, Robotics Institute, Carnegie Mellon University, August 2001.

[62] A. Varma, “Case studies in joint estimation and optimization,” Master’s thesis, Department of Electrical Engi-
neering and Computer Sciences, University of California, Berkeley, 2001.

[63] J. K. Satia,Markovian Decision Processes with Uncertain transition matrices or/and Probabilistic Observation
of states. PhD thesis, Department of Industrial Engineering , Stanford University, 1968.

[64] S. Boyd, “Convex Optimization,” Tech. Rep. Course Reader, EECS 290N, Department of Electrical Engineer-
ing and Computer Sciences, University of California, Berkeley, Fall 2001.

[65] L. El-Ghaoui, M. Oks, and A. Varma, “Constraint likelihood region of confidence of transition probability
matrices in credit risk analysis,” tech. rep., Department of EECS, University of California, Berkeley, USA,
2001.

[66] Y. Nesterov and A. Nemirovski,Interior point polynomial methods in convex programming: Theory and ap-
plications. Philadelphia, PA: SIAM, 1994.

	Introduction
	Summary
	Module 1: Interactive task planner
	Module 2: Configuration and schedule
	Module 3: Task execution
	Module 4: Database
	Module 5: Java
	Module 6: Robust path planning
	Module 7: Dynamic team formation
	Module 8: Path planning with two constraints

	Module 1: Interactive task planner
	Threat
	Plan design space
	Risk along a path
	Value function calculation
	Risk of a plan with prespecified order of attack
	The ITP procedure and optimal plan
	Refinement of the ITP procedure: mixed initiative

	Module 2: Configuration and schedule
	Task scheduling in the MICA context
	Scheduling model formulation and solutions
	Team composition
	Linear programming formulation
	Goal programming formulation
	Implementations in executable code

	Module 3: Task execution
	Introduction
	An aside on Shift
	Architecture
	Mixed initiative interactions
	UCAV type
	Platform type
	Maneuver specification
	Base type
	Types of maneuvers
	Example: attack_jam

	Maneuver controller
	Base type
	Example: attack_jam type

	Vehicle supervisor
	Vehicle dispatcher
	Mission specification
	Dispatcher type

	Task specification
	Concepts
	Leg type
	Subtask type

	Team controller
	Base type
	Task controller
	Sub-task controller
	Properties

	Conclusion

	Module 4: State estimator
	Threat distribution after strike
	Threat distribution after search
	Implementation

	Module 5: Java interface to OEP
	Java client to the OEP
	RMI Services

	Module 6: Robust path planning
	Introduction
	Problem Setup
	The Bellman recursion
	Addressing uncertainty in the transition matrices
	The robust Bellman recursion
	Main result

	Robust algorithm summary
	Likelihood Models
	Model description
	The dual problem
	A bisection algorithm

	Maximum a posteriori models
	Entropy Models
	Model description
	Dual problem
	A bisection algorithm

	Other Specific Models
	Interval matrix model
	Ellipsoidal models
	Example: Robust Aircraft Routing
	The nominal problem
	The robust version
	Comparing robust and nominal strategies
	Inaccuracy of uncertainty level
	Concluding remarks
	Appendix
	Proof of the robust Bellman recursion
	Properties of function of section 8.4.3
	Properties of function of section 8.6.3
	Calculation of for a Desired Confidence Level

	Module 7: Flexible team formation
	Problem Statement
	Constraints and optimization objective
	Multiple resources allocation
	Dealing with integer approximations
	Resource Allocation under Uncertainty
	Scenario-based optimization
	Approximate feasibility of scenario solutions
	A posteriori analysis
	Interaction models
	Numerical examples
	The nominal problem
	The Robust counterpart
	Conclusion

	Module 8: Path planning with multiple constraints
	Introduction
	Problem definition
	Related work

	Value function solution
	Single objective shortest path
	Computing path integrals
	Exploring potential paths
	Numerical algorithms

	Examples
	Two costs in two dimensions
	Three costs in two dimensions
	Two costs in three dimensions
	The implementation and deExecution times

	Discussion
	Appendix: Update equations for any number of dimensions

	Conclusions
	Planning
	Execution
	State estimation
	Re-planning

	Open problems
	Planning
	State estimation
	Execution
	Re-planning

	References

