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Neural Network Control of a Parallel Hybrid-Electric 
Propulsion System for a Small Unmanned Aerial Vehicle 

Frederick G. Harmon,* Andrew A. Frank/ Jean-Jacques Chattot,1 and Sanjay S. Joshi§ 

University of California-Davis, Davis, CA 95616-5294 

Parallel hybrid-electric propulsion systems would be beneficial for small unmanned 
aerial vehicles (UAVs) used for military, homeland security, and disaster monitoring 
missions involving intelligence, surveillance, or reconnaissance (ISR). The benefits include 
increased time-on-station and range than electric-powered UAVs and stealth modes not 
available with gasoline-powered UAVs. A conceptual design of a small UAV with a parallel 
hybrid-electric propulsion system, an optimization routine for the energy use, the 
application of a neural network to approximate the optimization results, and simulation 
results are provided. The two-point conceptual design includes an internal combustion 
engine sized for cruise and an electric motor and lithium-ion battery pack sized for 
endurance speed. The flexible optimization routine allows relative importance to be assigned 
between the use of gasoline, electricity, and recharging. The Cerebellar Model Arithmetic 
Computer (CMAC) neural network approximates the optimization results and is applied to 
the control of the parallel hybrid-electric propulsion system. The CMAC controller saves on 
the required memory compared to a large look-up table by two orders of magnitude. The 
energy use for the hybrid-electric UAV with the CMAC controller during a one-hour and a 
three-hour ISR mission is 58% and 27% less, respectively, than for a gasoline-powered 
UAV. 

Nomenclature 

AR = aspect ratio 
b = total number of basis functions in the association layers in the CMAC neural network 
CD = total drag coefficient 
CDi0 = zero-lift drag coefficient 
CL = lift coefficient 
Cumax = maximum lift coefficient 
e = Oswald efficiency factor 
E = instantaneous estimate of the mean square output error of the CMAC neural network 
J = objective function to be minimized 
L = generalization factor, number of association layers in the CMAC neural network 
n = number of input dimensions for the CMAC neural network 
N = total number of possible inputs for the CMAC neural network, number of entries in a look-up table 
PEM = electric power consumption for the electric motor, W 
PEM rechai.ge   = power consumption equivalent for the engine to operate the electric motor as a generator to 

recharge the battery pack, W 
PICE = power consumption equivalent for the internal combustion engine, W 
PR = power required, W 
S = wing area, m2 

TR = thrust required, N 
Vcmise = cruise speed, m/s or kts 
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Vfindurance = endurance speed, m/s or kts 
Vstaii = stall speed, m/s or kts 
Vj = number of intervals for an input dimension of the CM AC neural network 
Wj = activated weight in the CMAC neural network 
W = weight of UAV, N or lbs 
WEmpty = empty weight, N or lbs 
WFuei = fuel weight, N or lbs 
W0 = gross take-off weight, N or lbs 
Wpayioad = payload weight, N or lbs 
Wpropuision = propulsion system weight, N or lbs 
YCMAC = output of the CMAC neural network 
YDesired = desired output from the CMAC neural network 
a = weighting factor for electricity use 
ß = weighting factor for recharging the battery pack 
8 = training rate for the CMAC neural network training algorithm 
%roP 

= propeller efficiency 
p = air density, kg/m3 

I.     Introduction 

A hybrid-electric vehicle (HEV) is "a vehicle in which propulsion energy is available from two or more kinds or 
types of energy stores, sources, or converters, and at least one of them can deliver electrical energy." Within the 
automotive industry, HEV technology is leading to vehicles with increased fuel economy and reduced emissions. 
The same technology would have similar benefits if applied to unmanned aerial vehicles (UAVs) used for military, 
homeland security, and disaster monitoring missions. The potential benefits due to the hybrid and electric-only 
modes include increased time-on-station, longer range, and stealth modes. A parallel hybrid-electric propulsion 
system for a small UAV provides increased time-on-station and longer range as compared to an electric-powered 
UAV such as the current Dragon Eye or Desert Hawk.2 The internal combustion engine (ICE) is down-sized for 
steady-state conditions and operated near a constant torque output. The electric motor (EM) provides additional 
power for acceleration or climbing and serves as a generator during charge-sustaining operation or regeneration. 
Electric-only operation provides stealth operation not available with gasoline-powered UAVs by reducing the 
acoustic, smoke, and thermal signatures.3 Also, electric-only operation eliminates exhaust emissions that could 
interfere with chemical-detecting sensors. The battery pack/generator that usually provides power for the avionics, 
flight control system, and payload now also provides propulsion energy during certain flight phases. Due to these 
advantages, a small UAV with a parallel hybrid-electric propulsion system enhances specific types of missions. 

The current military missions for small or tactical UAVs include force protection, surveillance, and 
reconnaissance. The electric-powered Desert Hawk was designed for the Air Force security forces to conduct area 
surveillance, monitor runway approach and departure ends, and patrol base perimeters to increase the security of 
overseas bases.2 Another small electric-powered UAV, the Dragon Eye, was designed to conduct reconnaissance for 
the Marine Corps.2 The tactical Pioneer UAV has been used by the Navy, Army, and Marine Corps for 
reconnaissance and surveillance. Wilson comments that "The Navy's Pioneer, a direct derivative of Israeli 
surveillance and reconnaissance UAVs, played a crucial role as a spotter for U.S. battleships. They were so effective 
that Iraqi troops began to associate the sound of the little aircraft's two-cycle engine with an imminent devastating 
bombardment."4 Additional military missions for the small or tactical UAV include intelligence, communications 
relay, chemical weapons detection, target acquisition, and battle-damage assessment. 

A UAV with a parallel hybrid-electric propulsion system could also be advantageous for homeland security 
missions such as pipeline inspection, seaport surveillance, and large facility security.4 Electric-only operation would 
prevent the intruders from detecting the approaching UAV and would minimize public noise disturbances when the 
UAV is flying over populated areas. The electric-only operation would also not interfere with highly-sensitive 
chemical or biological weapon sensors. 

Another proposed application for the small UAV with a parallel hybrid-electric propulsion system is disaster 
monitoring such as the observation of forest fires. Due to the cost of the surveillance sensors, the electric system 
would provide redundancy for the gasoline engine when the UAV is operating in dense smoke conditions. The 
hybrid-electric system could potentially reduce the risk of losing expensive payloads or the UAV airframe when 
operating in hazardous conditions. Various agencies have begun to realize these benefits and are considering hybrid- 
electric projects for UAV applications. 



The Defense Advanced Research Projects Agency (DARPA), the NASA Glenn Research Center, and other 
agencies are considering hybrid-electric propulsion systems for UAVs. DARPA's Micro Air Vehicle (MAV) project 
is designed to give the Army or Special Operations Forces a UAV with a reconnaissance and surveillance capability. 
The MAV is a vertical take-off and landing vehicle utilizing ducted fan technology. A series hybrid-electric 
propulsion system that includes a diesel engine, generator, electric motor, and batteries has been considered for the 
MAV. DARPA proposed that the electric-only operation could provide a "perch and stare" capability. DARPA also 
gave a contract to Boeing to consider a fuel cell-based hybrid-electric propulsion system for a UAV. This Ultra Leap 
project was proposed to have military as well as civilian applications. An example of a civilian application is Helios, 
NASA's high-altitude, long-endurance UAV built by AeroVironment, designed for telecommunications and 
atmospheric monitoring. These projects illustrate that various organizations are evaluating hybrid-electric propulsion 
for aerospace applications. 

The design of the parallel hybrid-electric propulsion system and the associated controller for a small UAV has 
several objectives: 1) increase the range (i.e. fuel economy) 2) provide adequate time for the UAV to operate in 
stealth (electric-only) mode during the intelligence, surveillance, or reconnaissance (ISR) mission segment and 3) 
provide adequate battery power for the UAVs payload (in the air or on the ground). These objectives are directly 
related to two operational metrics listed in the Office of the Secretary of Defense's UAV roadmap. The parallel 
hybrid-electric propulsion system, depending on the mission, could meet the capability metrics of a "30% increase 
in time-on-station requirement with the same fuel load" and "a UAV inaudible from a 500-1000 ft slant range." The 
first metric can be met depending on the mission and the second is satisfied in electric-only (stealth) mode. 

A conceptual design of a small UAV with a parallel hybrid-electric propulsion system, an optimization routine 
for the energy use of the propulsion system, the application of a neural network to approximate the optimization 
results, and simulation results are provided. The conceptual design results in a two-point design that includes an ICE 
sized for cruise and an EM and battery pack sized for endurance speed. The control of the hybrid-electric propulsion 
system is based on an instantaneous optimization routine that uses a hyper-plane generated from the nonlinear 
efficiency maps for the ICE, EM, and lithium-ion battery pack. The hyper-plane incorporates charge-depletion (CD) 
and charge-sustaining (CS) strategies in addition to ideal operating line (IOL) concepts developed by previous 
researchers.5"7 The optimization routine is flexible and allows the user to assign relative importance between the use 
of gasoline, electricity, and recharging. The Cerebellar Model Arithmetic Computer (CMAC) associative memory 
neural network is applied to the control of the parallel hybrid-electric propulsion system to approximate the 
nonlinear hyper-plane. The CMAC neural network saves on the required memory compared to a large look-up table 
(LUT) by two orders of magnitude. The CMAC controller also prevents the need to compute a hyper-plane or 
complex logic every time step. A Simulink model was created to compare energy use results between the various 
configurations and controllers. 

II.    Hybrid-Electric Vehicle Configurations and Operating Strategies 

The mechanical configuration of a HEV can be classified into two main categories: series and parallel (see Fig. 
I).1'8'9 The ICE in a series configuration acts as an auxiliary power unit to drive a generator that provides power to 
the energy storage system or the EM. Only the EM is connected to the mechanical drive train. The ICE is not 
connected to the mechanical drive path which allows it to be operated in an optimum torque and speed range. 
However, large energy conversion losses exist between the mechanical and electrical system diminishing the overall 
system efficiency.10 Also, the EM has to be sized for the maximum power required.8 The series configuration is 
useful for low-speed, high-torque applications such as buses and aircraft tow tractors. In a parallel configuration, 
each energy source or converter can provide propulsion energy since the ICE and EM are both mechanically 
connected to the drive train. The torque of the EM can supplement the torque of the ICE or additional ICE torque 
can operate the EM as a generator to recharge the battery pack. Because of the mechanical coupling, energy 
converters such as gas turbines with a relatively large turn on/off time cannot be used in a parallel configuration. 
The speed of the drive train is not always the optimum speed for the engine, but the energy conversion losses are 
minimized. The ICE and EM can be sized smaller than in a series configuration and the EM is used as the generator 
so a separate generator is not required. The parallel configuration is used in most FutureTruck competition vehicles 
12-14 and in the Honda Insight and Civic. The parallel and series hybrid configurations are the traditional 
configurations but others have been used such as the series-parallel configuration used in the Toyota Prius and the 
Nissan Tino.15 The different configurations each have their advantages and disadvantages, and the configuration is 
dictated by the application and the type of energy source or converter. 

An estimate was completed between a parallel and series configuration for a small UAV (<50 lbs). The parallel 
configuration is lighter by ~2.5 lbs, or 8%, of the proposed UAVs gross weight of 30 lbs. The extra weight for the 



series configuration is primarily due to the required generator and the larger EM. The series configuration and 
controller are mechanically and electronically simpler, but the disadvantages are the weight penalty and the energy 
conversion losses. Harmats also concluded that the parallel configuration was more effective than the series 
configuration for a hybrid-electric propulsion system (solar power/EM/ICE) for a UAV.16 The parallel configuration 
contains a more complicated controller and clutch/gearing mechanism but weighs less which is a significant 
consideration for the UAV design. The parallel configuration also does not have the significant energy losses 
associated with the generator and battery charging/discharging. During flight, the parallel hybrid-electric propulsion 
system allows the vehicle to be propelled directly with the ICE or the EM. The parallel configuration is used for the 
hybrid-electric UAV due to the advantages of a parallel configuration for analogous applications, the weight 
savings, and because of the parallel HEV experience at the University of California-Davis. 
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Fig. 1 Series and parallel hybrid-electric configurations 

In addition to the two primary HEV configurations, three overarching operating strategies are used for the energy 
management of a HEV: electric-only, charge-sustaining (CS), and charge-depleting (CD).17 The electric-only 
strategy depends on the ICE turn-on speed, the size of the battery pack, and the amount of low-speed operation. The 
electric-only strategy is available if the system is mechanically designed to permit it. The other two strategies are the 
hybrid approaches. The CS hybrid strategy often uses a "thermostat" approach with an attempt to maintain the 
battery state-of-charge (SOC) at a certain level. This approach is often used for series hybrid-electric configurations 
but is also used for parallel HEVs. The thermostat method allows the vehicle to be similar to conventional vehicles. 
If the engine is used to keep the battery at a specified SOC, the battery pack does not require charging from an 
external source and the operator only needs to "fill up the gas tank." In contrast to the CS strategy, the CD strategy 
allows the battery SOC to decrease maximizing the energy use from off-board charging. This requires the operator 
to plug the vehicle into an external outlet to charge the batteries, hence the name "plug-in" HEV. The CD strategy 
can be used in series or parallel HEVs. 

The hybrid-electric UAV uses a mix of the operating strategies depending on the mission and the intent of the 
operator. Due to the weight limitations, a relatively large battery pack cannot be used so a purely CD strategy cannot 
be used. A purely CS strategy will limit the time-on-station and stealth mode duration. Sufficient SOC is required 
for the enemy area or whenever the stealth (electric-only) mode is required. Because of this rationale, a combination 
of the charging strategies is used. 

III.    Conceptual Design of a Parallel Hybrid-Electric Propulsion System 
Many HEVs are conversions from stock vehicles where the original power train is removed and the appropriate 

components for the hybrid-electric power train are installed. Although the design for the hybrid-electric unmanned 
aerial vehicle (HEUAV) could take the same approach by using a large scale model aircraft or a manufacturer's 
UAV, this section steps through a conceptual design process for sizing the wing and the propulsion system 
components. The background provides a fundamental understanding of the requirements and trade-offs for the 
hybrid-electric propulsion system to enable a better control system design. The information in this section was 
presented at the Unmanned Systems North America 2004 Symposium but is included here for completeness.18 

The conceptual design approach for aircraft is well described in Anderson, Raymer, Stinton, and Corke. 
Several software packages exist such as ACSYNT23 and RDS24 for aircraft sizing and design. Key design variables 
such as wing lift coefficient, wing loading, power-to-weight ratio, and aspect ratio are optimized in the conceptual 



design process. The literature reveals that defense contractors and universities have devoted much effort to the 
subj ect of conceptual design. 

Conceptual design is a multidisciplinary endeavor but the focus here is the initial sizing of the wing and the 
hybrid-electric propulsion system components. A MATLAB routine was written to optimize the size of the wing and 
the propulsion system components for a conventional high-wing UAV. The HEUAV sizing problem is a constrained 
optimization formulation. The MATLAB optimization routine uses a sequential quadratic programming method. A 
quasi-Newton updating method is used at each iteration. The solution of a quadratic programming subproblem is 
then computed and used in a line search procedure. 
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Fig. 2 Hybrid-electric propulsion system sizing flowchart 

The basic sizing of the wing and the propulsion system components for the HEUAV can be determined using a 
flowchart as shown in Fig. 2. To begin, the primary mission requirements of the UAV must be determined. Once the 
mission requirements are specified, performance parameters required to satisfy the mission can then be established. 
The size of the wing and the propulsion system components can be estimated based on the performance parameters. 
The result is a conceptual design that would undergo iterations before a detailed design is obtained. 

A typical mission for a small UAV is the intelligence, surveillance, and reconnaissance (ISR) mission. A typical 
flight profile would be to take-off, climb to several thousand feet, cruise for an hour to the location of interest, fly at 
endurance speed in stealth (electric-only) mode while on station for an hour conducting ISR, and then return to base 
and land. The HEUAV is sized for this mission. A descent and climb could also be added before and after the ISR 
segment to get a closer look at the area of interest. The typical mission will be used to illustrate the concepts but the 
sizing process could be easily adapted to other missions. 

A. Performance Requirements for the Hybrid-Electric UAV 
Performance requirements to satisfy the ISR mission are used to size the wing and the propulsion system 

components. The size of the fuel tank, ICE, battery pack, and EM are based on the performance requirements. Table 
1 includes a proposed list of the performance requirements. The hybrid-electric system components are based on the 
following regimes of operation:^25 1) take-off power provided by the ICE or the ICE and EM 2) climbing power 
provided by the ICE or the ICE and EM 3) maximum speed power provided by the ICE and EM 4) cruise power 
provided by the ICE-a margin is needed to recharge the batteries during CS operation 5) endurance power provided 
by the EM for stealth operation and 6) missed approaches and emergency power provided by the ICE and EM. The 
energy density and the mass of the battery pack determine the duration of the stealth mode. The ICE is sized for 
cruise and the EM is sized for the endurance speed. The maximum power from the motor may be needed 
intermittently during take-off, acceleration, maximum speed, and emergencies. These requirements were analyzed in 
the typical ISR mission. 

      Table 1    Performance parameters 
Parameter Value 

Cruise Speed, kts 
Endurance Speed, kts 
Maximum Speed, kts 
Rate-of-Climb, ft/min 
Time for Cruise (Range), hr 
Time at Endurance Speed, hr 
Take-off Distance, ft 
Payload Power, W 
Payload Mass, lbs  

45-55 (23.2-28.3 m/s) 
20-25 (10.3-12.9 m/s) 
60-65 (30.9-33.4 m/s) 

400 (2.0 m/s) 
1.0 
1.0 

80-100 (==24.4-30.5 m) 
75 

3-6 (-1.4-2.7 kg) 



Weight Fractions 
The weight of the UAV can be expressed using weight fractions as:20 
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Since the empty weight includes the propulsion system, Eq. (1) can be modified to separate the propulsion system 
weight: 
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The term, (WEmpty-WpropuiSi0n)/W0, is the glider weight fraction. Equation (2) is used to compare the weight of the 
original configuration (ICE only) to the hybrid-electric configuration. The propulsion system weight fraction for the 
original configuration includes a larger ICE, generator, and the propeller. For the parallel hybrid-electric 
configuration, the propulsion system weight fraction includes the down-sized ICE, clutch, batteries, EM, and the 
propeller. The fuel weight fraction, WFuei/W0, is determined by computing the amount of fuel needed for each 
mission segment using estimates and the well known Breguet equation. 9 For the HEUAV, no fuel is used during the 
endurance mission segment since only electric power is required. The amount of fuel required for the mission is then 
used to size the fuel tank for the original and HEUAV configurations. 

B. Wing and Propulsion System Component Sizing 
The sizing of the wing and the propulsion system components are determined from the performance parameters. 

Due to the potentially large number of variables involved, several were chosen as the key parameters for the sizing 
process such as the wing loading, aspect ratio, maximum lift coefficient, stall speed, and endurance speed. Several 
constraints apply to the optimization formulation and will be discussed. The power required at the endurance speed 
is chosen as the objective function to be minimized. By minimizing the power required at the endurance speed, the 
weight fraction for the batteries will be minimized permitting a feasible payload weight. The logic and concepts 
involved reveal the trade-offs that must be considered to select the correct size of components for the parallel 
hybrid-electric propulsion system. 

Since the focus of the mission is the ISR segment, the EM size and battery weight are first determined to satisfy 
the one hour of endurance while on station in stealth mode. The power required at the endurance speed is the 
objective function for the constrained optimization problem. The power required to fly at the endurance speed is 
given by: 

»-w'.-J*^£-wJi?#-w ,2 
p-S-Cl l(p-S-c3L VP UJ  (3-CD]0-7fe-AR)( 

fW^I 4-C D,o 
\0.75 

(3) 

The power required is minimized with a small wing loading, W/S, and a large aspect ratio if initial estimates for W, 
CD,o and e are available. To minimize the power, the result can be thought of as an aircraft that has a large wing area 
and aspect ratio such as a glider. This type of aircraft would be the most beneficial for sizing the electric system but 
limits other performance parameters such as the maximum speed. A compromise must be made between this 
geometry and a smaller wing and aspect ratio. In order to determine the power required from the batteries, it is noted 
that the power given by Eq. (3) does not include the propeller efficiency, motor efficiency, and the power required 
for the payload, avionics, and flight control system. 

The parameter CL
3/2 /CD in Eq. (3) is referred to as the endurance parameter and is found in the literature as the 

key parameter for solar aircraft or any aircraft with a mission requiring it to fly near or at the endurance speed. 
Since the ISR mission requires the HEUAV to fly near the endurance speed, the endurance parameter is critical. 



Several constraints are required to complete the constrained optimization problem. The aspect ratio expressed in 
terms of the wing loading and the endurance speed gives the first constraint: 

VXR = 
w} 

V a J '3-CDi0.JC-e, Endurance 

(4) 

The second constraint involves the wing loading, stall speed, and the maximum lift coefficient: 

W 
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The stall speed, for this application and low-speed aircraft, determines the desired wing loading.1 The landing 
distance, considered not to be critical for this application, can also determine the wing loading. A safety speed 
margin of =3-5 kts is desired between the stall and endurance speeds to account for wind gusts and other 
disturbances. 

The third constraint determines the size of the gasoline ICE. A margin of=125% provides extra power from the 
ICE to operate the EM as a generator to recharge the batteries and to provide power for the payload, avionics, and 
flight control system. The expression for the power required during cruise can be expressed as: 

PR = PICE-r,P    -0.8 = V, 0.5-p-V, 
2 
cruise s-cD,0 + 

0.5-p-Vc
2
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fW\ 2\ 
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where PR=VcniiseTR at cruise speed. Using S=S-W/W, Eq. (6) becomes: 

PR = PICE • nProp • 0.8 = 0.5 • p • Vc
3
mise • W • CD,0 • — + 

W 
W    0.5-p-Vcraise-7fe-AR {S J 

W^l 
(7) 

For maximum speed, the EM and ICE are both used. The EM can tolerate an over-torque for short durations so 
the expression for the maximum speed is the same as Eq. (7) except PR=PicEnproP

+over_torque-nprop.PEM. Typical 
values for the over-torque factor are 1.5-2.0. 

The objective function and the third constraint form the foundation for a two-point design for the HEUAV. 
The EM and battery pack of the propulsion system are sized based on the endurance speed and the ICE is sized 
based on the cruise power requirements. The optimization routine determines the optimum design between the two 
design points. 

C. Optimization and Conceptual Design Results 
The conceptual design results based on the constrained optimization problem led to the results shown in Table 2 

for an altitude of 5 kft MSL. Limits were placed on the optimized variables and the results show that the 
optimization routine used the lowest wing loading available. The size of the wing is directly related to the wing 
loading. A large wing is desired but other performance parameters must be considered along with the structural, 
weight, and low observable requirements. Limits were placed on the maximum lift coefficient in an attempt to 
obtain results that would permit a standard NACA, Eppler, or Selig airfoil to be used.27'28 Other high lift wings 
could be used such as the low Reynolds number NASA LRN-1-1010 airfoil used in the Navy's low altitude 
unmanned research aircraft (LAURA) project.29 The optimization results either meet or exceed the performance 
requirements listed in Table 1. The endurance speed from the optimization routine is less than the stall speed which 
is physically not realistic but was permitted to obtain realistic values for the power required at endurance speed. The 
power required to fly 3-5 kts above the stall speed instead of precisely at the endurance speed is minimal. The power 
requirements for each mission phase are shown and are used to size the different components. A smaller ICE and 
less fuel can be used for the HEUAV as compared to the original configuration. The HEUAV requires 25% less fuel 
than the original configuration for the same mission but with a reduced payload. 



The hybrid-electric propulsion system is a two-point design with the electric system sized for endurance speed 
and the ICE sized for cruise speed. The two design points are shown in Fig. 3. The endurance speed of =25 kts (12.9 
m/s) occurs near the minimum power required of 85 W (see Fig. 3). The EM and battery pack are sized for this 
speed with additional power for the avionics, payload, and flight control system. The gasoline ICE is sized for a 
cruise speed of 50 kts (25.7 m/s) which requires =500 W not including the inefficiencies of the propulsion system 
and the margin required for CS operation. 

Table 2    30 lb HEUAV optimization and conceptual design results 
Parameter Value 

Optimization Routine Results 
Aspect Ratio 14.6 
Wing Loading, N/m2 90 (30 oz/ft2) 
Max Lift Coefficient, CL>max (finite wing) 1.25 
Oswald Efficiency Factor 0.85 
Zero-lift Drag Coefficient 0.036 
Stall Speed, m/s 11.7 (22.7 kts) 
Endurance Speed, m/s 9.1 (17.7 kts) 
EM Power at Endurance Speed, W 114 
ICE Power Estimate at Cruise Speed, W 837 

Conceptual Design Results 
Wing Area, m 1.48 (15.9 ff) 
Wing Span, m 4.65 (15.3 ft) 
Wing Chord, m 0.32 (12.5 in) 
Endurance Parameter 20.4 
Max L/D Ratio 16.4 
PRforTake-Off,W 503 
PR for Climb", W 356 
PR for Cruise3, W 502 
PR for Endurance3, W 85 
PR for Max Speed3, W 852 
Nominal Propeller Efficiency, % 75 
Original Fuel Mass, kg 2.0 (71 oz) 
HEUAV Fuel Mass, kg 1.5(53oz) 
Original Payload Mass, kg 3.0 (6.6 lbs) 
HEUAV Payload Mass, kg 1.9 (4.2 lbs) 
Original ICE Power Required, W 1230 (1.7 hp) 
HEUAV Battery Massb kg 2.2 (4.9 lbs) 
HEUAV Battery Storageb, Wh 220 

"The PR does not include propulsion system inefficiencies or the PR for the avionics and payload. 
"The battery storage requirement includes the power needed for the avionics and payload. 

The weight fractions required for the original configuration and the HEUAV configuration are shown in Fig. 4. 
The glider weight fraction is statistically estimated from several long endurance UAVs in the same weight class with 
an empty weight of 0.63. The propulsion weight fraction for the original configuration is 0.12 less than the HEUAV 
configuration. The fuel weight fraction is 0.11 for the HEUAV and 0.15 for the original (ICE only) configuration. 
For comparison, the fuel weight fraction can be as large as 0.35 for long-endurance UAVs. The advantages of the 
HEUAV configuration must be weighed against the loss in payload mass for a particular mission. The weight 
fractions for the HEUAV propulsion system components are shown in Fig. 5. Less fuel is required for the HEUAV 
but the battery weight is significant with a weight fraction of 0.16. 

Commercial off-the-shelf components are matched to the optimization simulation results and are shown in Table 
3. Nominal design values based on the results from the optimization routine and the components in Table 3 are used 
for the HEUAV propulsion system simulations. The ICE, EM, and battery pack are slightly larger than required but 
will ensure the power requirements are met for the intended mission. 
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Table 3    Commercial off-the-shelf components for 30 lb HEUAV 
Parameter Value Parameter Value 
Airframe Conventional High- Battery Pack Ultralife UBI-2590 

Wing Aircraft 
13.6 (30 lbs) 

(2 in Parallel) 

Mass, kg Type Li-Ion, Rechargeable 
Oswald Efficiency Factor 0.85 Mass, kg 1.44-2=2.88 (6.3 lbs) 
Zero-lift Drag Coefficient 0.036 Voltage, nominal, V 14.4 

Wing/Airfoil NACA 23012, E214 
S2091,orSD7032 

Voltage Range, V 12.0 to 16.4 

^Umax 1.25 (3-D, Re=150k) Capacity, C/2.5, Ah 10-2=20 
Aspect Ratio 14.6 Energy Density, Wh/kg 100 
Wing Area, m2 1.48 (15.9 ft2) Recommended Discharge 

Current, A 
8-2=16 A 

Wing Span, m 4.65 (15.3 ft) Electric Motor Aveox 2739/3Y 

0.32 (12.5 in) 
(3.7:1 Gearbox) Brushless DC 

Wing Chord, m Mass, kg 0.16 (5.6 oz) 

Payload 
2.9 (6.4 lbs) 

Max Peak Current, A 
Max Continuous Current, A 

30 
Original Payload Mass, kg 22 
HEUAV Payload Mass, kg 1.7 (3.7 lbs) Winding Resistance, Cl 0.0817 
Original Generator/Battery Mass, kg 0.5 No Load Current, A 0.90 
Avionics and Payload Power, W 75 Speed Constant, rpm/V 1134 

Engine (Two-Stroke, Gasoline) First Place Engines Torque Constant, in-oz/A 1.19 

Displacement, cm3 21 (1.3 in3) 
(Original-35) 

Motor Constant, in-oz/sqrt(W) 4.28 

Mass, kg 1.13 (2.5 lb) Maximum Speed, rpm 50,000 

Fuel Tank Mass, oz 54 (Original-74) 
RM Hoffman Co. 

0.25 (0.55 lbs) 

Propeller Maple, 18x10 
Clutch (Electromagnetic) Mass, kg 

Horizontal and Vertical 
0.17 (6 oz) 

Mass, kg NACA 0009 
Stabilizer/Airfoil 



A two-stroke gasoline engine was matched to the optimization results since the fuel is available at military 
installations and because the engines are readily available. A four-stroke gasoline engine is used in the simulations 
in a following section but the more efficient engine is heavier and the payload capacity is decreased. Attempts are 
being made to design small heavy fuel engines for UAVs so that they use similar fuels as other military vehicles 
instead of gasoline. D-Star Engineering has designed and built a 0.07 kW and a larger 1 kW diesel engine intended 
for UAVs.30 For the purposes of the conceptual design, typical performance of a two-stroke gasoline engine was 
used but the conceptual design approach could be easily adapted to other types of engines. 

A conceptual approach to the sizing of the UAV wing and propulsion system components was discussed in this 
section. An optimization problem with constraints was formulated to minimize the power required at or near the 
endurance speed. The weight of the battery pack was minimized with this approach. The optimization and 
conceptual design results were matched to off-the-shelf components which are used in the simulations. The 
background explained in this section gives a more fundamental understanding of the requirements and trade-offs for 
the hybrid-electric propulsion system to enable a better control system design. 

IV.    Control Algorithms for Hybrid-Electric Propulsion Systems 
The hybrid-electric vehicle operating strategies (electric-only, CS, and CD) are overarching approaches. For 

each operating strategy, control algorithms are used to optimize the energy or power use of the propulsion system. In 
addition to rule-based or logic-based strategies, several advanced control approaches have been reported in the 
literature for the control of HEV power trains in automotive applications: 1) optimal control 2) fuzzy logic 3) 
adaptive control 4) nonlinear control and 5) genetic algorithms. A brief overview of each and their application to the 
control of HEV power trains is given by Harmon31. 

The goal of an advanced control system is to use a minimal amount of energy by finding the best combination of 
motor torque and engine torque as a function of rotational speed, battery SOC, torque demand, or other parameters. 
Of the hybrid-electric power train advanced control schemes appearing in the current literature, those based on 
artificial neural networks (ANN) or fuzzy logic appear to be the most promising due to the relatively low 
computational resources needed and because an accurate power train propulsion model is not required (an accurate 
model is required for simulations). These approaches are also useful for nonlinear and multivariable systems, can 
learn, and generalize. Even though results from many of the other control methods such as optimal control are very 
good, the computational requirements are too excessive for the embedded microcontrollers and the majority of the 
theory is for linear models. 

The use of ANNs in HEV applications has been limited and due to the potential benefits, this particular control 
method was selected for the HEUAV application. It is well known that ANNs can approximate nonlinear functions 
so an ANN has tremendous potential if applied to the control of the nonlinear HEUAV propulsion system. A 
specific type of neural network, the Cerebellar Model Arithmetic Computer or Cerebellar Model Articulation 
Controller (CMAC), was chosen for this application due to its rapid training time, practical hardware 
implementation, and low computational cost.32 The CMAC is an alternative to the more common back-propagation 
multilayer network.33 The CMAC ANN, described in the next section, has been successfully applied to industrial 
applications, vibration control, robotic control, and fuel-injection systems.34"37 

V.     Overview of the CMAC Neural Network 
The CMAC is a feed-forward, supervised ANN and is an alternative to the more common back-propagation 

multilayer perceptron network.33 The CMAC was originally developed to adaptively control robots since it can 
handle large input spaces, adapt, learn quickly, generalize, and is stable. Before the advantages of the CMAC are 
discussed in more detail, the disadvantages of the back-propagated multilayer perceptron ANN for a real-time 
application will be discussed. First, the common back-propagated ANN is usually not feasible for on-line learning 
since numerous iterations are needed for the ANN to converge during training. Please note that on-line learning is 
not used for the HEUAV application but could be an area of future research. Second, many calculations are needed 
per training iteration for the back-propagated ANN which can necessitate custom hardware. Third, the commonly 
used training algorithms for back-propagation are based on gradient techniques and the neural network can get 
"stuck" in a relative minimum during training vs. converging to the global minimum on the error surface. Fourth, it 
has been shown that the local learning approaches used in the CMAC ANN and other associative memory networks 
are superior for control applications as compared to those used in the multilayer ANNs.38 Fifth, the computational 
time needed to produce an output from the CMAC ANN is minimal since only a few calculations are needed to 
obtain the output for an input. For these reasons, the CMAC was selected for the HEUAV application instead of the 
back-propagated multilayer ANN. 



The CM AC neural network was originated by James Albus in 1975.39,40 The CM AC is modeled after the method 
that the cerebellum uses to learn and store information and control reflexive movement which is in contrast to a 
traditional neural network that attempts to mimic the interactions between the brain's neurons. The CMAC ANN 
attempts to duplicate the functional properties of the brain instead of the structure of it.40 The CMAC ANN can be 
thought of as an adaptive look-up table (LUT). The CMAC is better suited to real-time control as compared to a 
LUT for two reasons: the CMAC can generalize whereas a LUT cannot and the CMAC requires much less memory 
than a LUT for large input spaces. 

The CMAC is a lattice-based associative memory network that nonlinearly maps the inputs to a hidden 
associative memory. The hidden memory is then linearly mapped to an adaptive weight vector that generates the 
output. The output is the sum of the activated weights. For each input, only a small subset of the network influences 
the instantaneous output which minimizes the computational time which is a significant benefit for an embedded 
controller. Whereas the computational cost for most neural networks is exponentially dependent on the dimensions 
of the input space, the computational cost for a CMAC is linearly dependent on the input space dimensions.41 In 
short, the CMAC takes real-valued vectors and produces real-valued output vectors, can learn locally and generalize, 
can learn nonlinear functions, has a relatively short training time, requires a small number of computations per 
training iteration, and can be implemented in simple software and hardware.32 The number of training iterations is 
orders of magnitude smaller than that of other ANNs.33,42 The CMAC ANN is applied to the control of the HEUAV 
propulsion system to produce commands for the propulsion system components. 

A diagram of a typical CMAC neural network is shown in Fig. 6. Continuous vectors are first transformed into 
quantized input vectors. The maximum and minimum values of the inputs (range) are needed along with the 
quantization width (precision or resolution) of the inputs to determine the size of the input space.35 The input space 
is n-dimensional if more than one input is fed to the CMAC structure. Second, the input space is nonlinearly mapped 
into exactly L locations (generalization factor) in the associative memory satisfying die uniform projection principle. 
Please note that the nonlinear mapping in a CMAC structure occurs in the initial mapping and not in the 
sigmoid/threshold function of a neuron as in other types of ANNs. Each of the association cells (also referred to as 
basis functions with support or receptive fields) within each parallel layer of the memory has a corresponding 
weight. Each association cell has a support area of Ln where n is the dimension of the input space. Third, for each 
possible input, the weights corresponding to the L activated memory locations are then summed to form the output. 
The weights mapped to each memory location determine the output and are adaptively updated. The output is 
linearly dependent on the adaptive weights and therefore allows convergence conditions to be established.41 It is 
emphasized that the nonlinear fixed mapping occurs from the input space to the association layer and the adaptive 
linear mapping occurs from the association layer and the associated weights to the output. 

o   o 
Input2 input 1 

Fig. 6 CMAC neural network structure 



The CMAC structure parameters typically have the following relationship for a controls application: 

n<L<b<N (8) 

The example in Fig. 6 has parameters of n=2, L=3, b=22, and N=36. The total number of basis functions, b, is 
determined by summing the number of basis functions for each association layer. The total number of possible 
inputs, N, is found by multiplying the number of intervals, v;, in each direction as follows: 

N^Vi (9) 
i=l 

where N is the number of entries that would be found in a LUT. The CMAC is considered well defined if 1 < L < 
max(Vi) for 1 < i < n.41 If the CMAC is not well defined, then a basis function will cover a relatively large area of the 
input space. 

The distribution of the association layers is determined by a displacement vector. The original Albus scheme 
offset the layers by one from each other. For example, the displacement vector is (1,1,1), (2,2,2), and (3,3,3) for the 
example in Fig. 6. The original scheme satisfies the uniform projection principle but does not produce results as 
good as other schemes. Parks and Militzer produced tables of displacement vectors as a function of L and n. Their 
displacement vectors are based on the distances between the elements in the association vectors and elements in the 
input space. The placement of the overlays is optimized by directly relating the Hamming distance (absolute value 
of the differences of each component) between the association vectors to the Euclidian distance between the input 
values.33'43 The improved displacement vectors generally produce a smoother approximation to a function. 

Several techniques can be used to update the weights in the CMAC structure. For the results in this paper, the 
CMAC's weights are updated using an instantaneous gradient descent method to minimize the mean square error 
(MSE). The instantaneous estimate of the MSE is described using.35 

1 2 
E=~-(yDesired-YCMAC) (10) 

Taking a partial derivative with respect to an activated weight, WJ: 

~T        = —V y Desired — YcMAC / =     vY Desired — /_, Wi,Activated-' 0 1) 
dWj i=l 

Only local learning occurs since only the activated weights are updated. The resulting first-order update training rule 
using the instantaneous gradient descent method is:41 

W j.updated = W j.previous + T" ' vYDesired — YcMAC ) (12) 

The learning algorithm requires minimal memory and computational cost. 
The CMAC generalizes due to the width and overlap of the association cells in the hidden layers.40 The 

generalization is determined by the initial nonlinear mapping since each basis function or association cell has a pre- 
determined corresponding support or receptive field. The supports each have a volume of Lnor less if on the edge of 
the input space. Therefore, the generalization parameter, L, determines the number of association layers, the number 
of weights contributing to each output, and the size of support for each basis function.41 If two inputs are relatively 
close to each other in the input space, then approximately the same association cells will be activated to produce an 
output. For two inputs that are spaced far apart, entirely different association cells are activated. The CMAC 
generalizes over a small area which minimizes the computations required for each training iteration. However, if L 
is large, the generalization is less local but the memory requirement is less. 



The CMAC neural network approximations will include modeling errors. The initial nonlinear mapping affects 
the modeling capabilities. The generalization parameter and the displacement vector also influence the modeling 
capabilities. As L increases, the generalization is less local and the modeling error typically increases. For a LUT, 
L=l, and there is no error. The flexibility of the CMAC decreases as L increases due to the decreased generalization. 
The advantage is the decreased memory requirement. The instantaneous gradient descent training method also 
introduces errors into the modeling capability. For most applications including the present HEUAV application, the 
modeling error is low even if the CMAC cannot model the function exactly if the appropriate parameters are chosen 
for the number of layers, the learning rate, and the structure of the hidden layers. 

In addition to comparing performance and energy use between the rule-based and the CMAC controller, the 
microprocessor memory requirements are analyzed for the CMAC ANN controller. A typical processor such as the 
Motorola MPC555 has =512 KB of flash memory and if each CMAC weight is assumed to be a float value requiring 
4 bytes (32 bits), the allowable size of the associative memory in the CMAC can be determined. The approximation 
N/L(n_1) gives the number of weights41 To produce an output, the weights stored in L memory locations are summed. 
As can be seen, the CMAC greatly saves on memory and computational requirements as compared to having a 
multidimensional LUT or computing a hyper-plane for every instant in time. 

VI.     Optimization Algorithm and CMAC Approximations 
Using the conceptual design results as a foundation, this section covers the design of the CMAC neural network 

controller and how it is used to approximate a control surface generated from an optimization routine. The 
optimization of the energy use is achieved by minimizing the instantaneous rate of energy consumption (i.e. using 
the total power consumption as the objective function to be minimized). The separate nonlinear efficiency maps for 
the ICE, EM, and battery pack are used in an off-line optimization routine to minimize the power consumption by 
determining the torque split between the ICE and EM during hybrid-electric operation. The optimization results are 
used to generate a control surface for the engine and motor torque commands. A CMAC neural network 
approximates the optimal control surface and is used in the simulations. Two flight profiles are used in the Simulink 
model to compare the CMAC neural network controller results to the rule-based controller results. 

The energy available in the small HEUAV is either from the gasoline or the electrical energy stored in the 
battery pack. To provide power to the propeller, the energy can take one of three paths. For Path 1, energy stored 
within the gasoline is used by the ICE to deliver power directly to the propeller (see Fig. 7). Electrical energy can be 
delivered directly to the propeller via Path 2. Path 3 uses the ICE and EM to recharge the battery pack. The stored 
electrical energy is delivered to the propeller at a later time and for the HEUAV, the electrical energy is assumed to 
be delivered to the propeller at endurance speed (stealth mode). 
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Fig. 7 Energy paths available in the parallel hybrid-electric system 

The nonlinear efficiency maps for the ICE, EM, and battery pack are used in the optimization algorithm. The 
maps are stored in tables and interpolation is used to calculate the efficiency at specific points in the input space (i.e. 
demanded torque, rotational speed, and battery SOC) during the off-line optimization calculations. The ICE 
efficiency maps are derived from estimates and engine manufacturer dynamometer tests. Four-stroke ICE efficiency 
maps are used in the simulations. The efficiency map for the four-stroke engine was derived from literature for the 
Honda GX31, 31 cm3 (1.9 in3), engine. The best fuel consumption is =350 g/kWh or a maximum efficiency of 
=24%. The EM (Aveox 2739/3Y) efficiency map is derived from manufacturer data and has a maximum efficiency 
of =90%. The battery pack used in the simulations consists of two lithium-ion batteries (Ultralife UBI-2590) in 



parallel. Data from the manufacturer and a battery model were used to develop an efficiency map for the battery 
pack. The efficiency of the battery pack decreases with either an increase in discharging or charging current. 

The simple rule-based controller has two inputs: demanded torque and rotational speed. The engine is operated 
on a line of maximum efficiency, referred to as the Ideal Operating Line (IOL), unless the demanded torque is less 
than the IOL torque or if the demanded torque is greater than the combined IOL torque and maximum motor torque. 
Only the ICE generates torque if the demanded torque is less than the IOL torque. If the demanded torque is greater 
than the combined IOL torque and the maximum motor torque, then additional torque from the ICE is provided. The 
rule-based controller logic does not include any recharging so it is considered a CD strategy. If the mission 
requirements cannot be met with CD only, then a CS algorithm is used. The CS algorithm is based on the expected 
length of the mission and the battery SOC. A proportional-derivative (PD) controller, with the SOC as the input, is 
used to determine the amount of recharging required. 

The CMAC controller algorithm uses the battery SOC as an input in addition to the demanded torque and 
rotational speed. The algorithm minimizes the total power consumption of the engine and the motor: 

J = MCE + a ' MM + P ' MM_recharge '13' 

PICE is the power consumption equivalent (33.44 kWh/gallon of gasoline) of the engine to rotate the propeller (Path 
1 in Fig. 7). PEM is the electrical power consumption of the EM (Path 2) whereas PEM_recharge is the power 
consumption equivalent for the engine to operate the electric motor as a generator to recharge the battery pack (Path 
3). The weighting factors, a and ß, penalize the amount of electricity use and the amount of recharging, respectively. 
If the torque of the engine is greater than the demanded torque, the motor is used as a generator to recharge the 
batteries. 

The flowchart for the optimization routine is shown in Fig. 8. The calculations involved such as numerous table 
look-ups and interpolations would be excessive for an embedded microcontroller (see pg. 35 in Ref. 17). For the 
appropriate branches of the flowchart, the objective function is calculated in the off-line optimization by stepping 
the engine torque by 0.02 Nm increments to determine which torque split will minimize the power use. The values 
used for a and ß depend on the type of mission. If the mission is a relatively short mission, values that encourage 
CD are used but if a longer mission is required, different values are used to produce a CS control surface. For both 
cases, more charging can be produced as the battery SOC decreases. 

To implement the CMAC controller, various parameters are chosen such as the inputs, quantization widths, 
generalization parameter, and learning rate (see Table 4). The parameters chosen determine the accuracy of the 
CMAC approximation for the control surface function. Brown and Harris state that "that most reasonable choices 
give acceptable results."41 Simulations using the original configuration (ICE only) were useful for designing the 
input space for the CMAC controller. By determining the range of various parameters such as the propeller speed 
and demanded torque, an efficient structure was developed for the CMAC neural network. 

Table 4    Parameter summary for the CMAC neural network controller 
Parameter CMAC Controller 

Output Commanded Engine Torque 
Inputs Rotational Speed 

Demanded Torque 
Battery State-of-Charge 

Input Ranges Speed: 190-880 rad/s 
Torque: 0-2.5 N-m 

SOC: 2-100% 
Input Resolution Speed: 10 rad/s 

Torque: 0.05 N-m 
SOC: 2% 

Number of Input Cells, N3 70-51-50=178,500 
Generalization Factor, Lb 3,7,9,14,19,25 
Learning Rate, 8 0.05 
Training Iterations 150-200 

"Entries required for a Look-Up Table (LUT) 
'The generalization factors correspond to displacement vectors that 
provide a CMAC structure of good quality. 



The CMAC controller inputs chosen were those that would be measurable with relatively inexpensive 
components. These inputs include rotational speed, demanded torque, and the battery SOC. The torque output of the 
ICE and EM could be useful but experience with hybrid-electric automobiles illustrate that it is reasonable to use 
steady-state performance maps for the propulsion system components. 
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Four-Stroke Engine, Charge-Depletion Approximations: CMAC approximation results for CD operation 
using the four-stroke engine are shown in Table 5. Weighting factors of a=3+l-(l-SOC) and ß=2-SOC were 
determined for CD operation to permit the HEUAV to complete a shorter one-hour mission. The runs for L=3 and 7 
used 200 training iterations and the other runs used 150 iterations. The CMAC approximations for L=14, 19, and 25 
save on at least two orders of magnitude of memory as compared to a LUT generated from the optimization routine. 

Table 5    Summary of the CMAC approximation results, four-stroke engine, charge-depletion 
Generalization 

Parameter 
RMS Error Displacement Vector Weights in 

Associative Memory 
Memory 
Savings8 

3 2.50-10"" (1,1,1) 21,767 8.20 
7 4.42-10" (1,2,3) 4,888 36.5 
9 5.25-10"" (1,2,4) 3,266 54.7 
14 6.53-10" (1,3,5) 1,696 105.2 
19 7.69-10"" (1,3,7) 1,137 157.0 
25 8.82-10"" (1,3,8) 828 215.6 

"Number of entries in a LUT/number of weights for the CMAC associative memory 

The approximation to the original control surface gets worse as the generalization factor increases. As a cell in 
the associative memory covers more of the input space, the approximation gets worse as is shown by the increase in 
the RMS error. An example of the CD control surface for a SOC of 100% is shown in Fig. 9 for L=9. If 
discontinuities exist such as in the control surface for the engine, a smaller generalization factor must be used to 
minimize the RMS error. The CD surfaces for L=3, 7, 9, 14, and 19 produced acceptable results. A generalization 
factor of L=25 allowed the battery SOC to drop to a very low value and since a cell covers half of the input space for 
the third input dimension, L=25 is too high of a generalization factor for this application. 

1000 

Total Detlrad Torque (N-m) 0     0 
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Fig. 9 CMAC approximation (L=9) for engine torque control surface, four-stroke, charge-depletion, 
SOC=100% 

Four-Stroke Engine, Charge-Sustaining Approximations: A summary of the CMAC approximation results for 
the CMAC controller using the four-stroke engine are shown in Table 6. CS weighting factors of a=4+4-(l-SOC) 
and ß=0.3-SOC permit the HEUAV to complete a three-hour ISR mission. The runs for L=3, 7, and 9 used 200 
training iterations and the other two runs used 150 iterations. The CMAC approximation for L=14 and 19 saves on 
at least two orders of magnitude as compared to a LUT. 



Generalization RMS Error Displacement Vector Weights in Memory 
Parameter Associative Memory Savings* 

3 2.23-10"" (1,1,1) 21,767 8.20 
7 3.81-10"2 (1,2,3) 4,888 36.5 
9 4.52-10"2 (1,2,4) 3,266 54.7 
14 5.97-10"2 (1,3,5) 1,696 105.2 
19 7.29- IQ-2 (1,3,7) 1,137 157.0 

"Number of entries in a LUT/number of weights for the CM AC associative memory 

An example for the SOC of 25% is shown in Fig. 10 for L=14. A generalization factor of L=19 did not 
produce acceptable results. The surface approximation was not accurate enough to produce the desired torque 
commands for cruise and CS operation. The battery SOC dropped to zero since not enough recharging was 
generated to complete the three-hour ISR mission. 

Total DMlred Toque (Nm) o(rpm) 

Fig. 10     CMAC approximation (L=14) for engine torque control surface, four-stroke, charge-sustaining, 
SOC=25% 

VII.    Flight Profiles and Simulation Results 

A. Flight Profiles 
The small HEUAV is sized for a typical ISR mission. Two ISR missions are used to demonstrate the capabilities 

of the HEAUV and to compare the results of the various hybrid-electric propulsion system controllers. 
The Simulink model developed for the HEUAV includes an option for the original configuration (ICE only). The 

ICE is sized larger than the engine used in the hybrid-electric version. The results for the HEUAV using the 
different controllers will be compared to the original configuration (ICE only). For the rule-based controller, logic 
must be programmed to determine when CS is allowed. The flexibility in the objective function for the three-input 
controller shows how the CMAC controller can be trained depending on the expected mission length and 
requirements. Separate logic for the three-input controller to enable CS is not needed since it is inherent in the 
optimization routine. 

To show initial results for the various mission segments of a flight profile, a short one-hour ISR mission was 
generated (see Fig. 11). The flight profile consists of a take-off, climb, cruise, endurance speed, high speed dash, 
descent, and landing. The cruise speed is designed to be 50 kts and the endurance speed 25 kts. At endurance speed, 
the hybrid-electric UAV operates in electric-only (stealth) mode. The design altitude is 5 kft mean sea level (MSL) 



and for this flight profile, the UAV takes off from 4 kft MSL. A climb and descent prior to the endurance mission 
segment simulate the flight over an obstacle. 

Fig. 11     One-hour flight profile. 

A three-hour ISR mission was generated to test the various controllers (see Fig 12). The flight profile includes a 
take-off, climb, cruise, endurance speed, high speed dash, descent, and landing. The ISR segment is split into two 
different segments to simulate the observation of two different ground locations. The cruise speed is designed to be 
50 kts and the endurance speed 25 kts. At endurance speed, the hybrid-electric UAV operates in electric-only 
(stealth) mode. The design altitude is 5 kft mean sea level (MSL) and for this flight profile, the UAV takes off from 
3.5 kft MSL. 

Fig. 12     Three-hour flight profile 



B. Simulation Results for One-Hour ISR Mission 
The hybrid-electric propulsion system controllers use a CD strategy for the one-hour ISR mission. The rule- 

based strategy does not use any additional CS logic for this mission. The CMAC controller uses the CD control 
surface. The rule-based controller is the baseline for the hybrid-electric propulsion system controllers and the 
CMAC controller improves on the rule-based controller. The CMAC controller surfaces are generated for sea-level 
operation. First-order approximations are used to adjust the torque output commands for the engine to the 
appropriate altitude. 

The simulation results for the CMAC controllers reveal that they use less electrical energy than the rule-based 
controller. The engine operating points for the CMAC controller (L=19) are shown in Fig. 13. The torque has been 
adjusted to sea level. The commands near the IOL don't fall precisely on the IOL due to the CMAC control surface 
approximation. 

Fig. 13     Engine operating points, one-hour ISR mission, four-stroke, charge-depletion, CMAC controller 
(L=19) 

A summary of the energy use for the one-hour ISR mission is listed in Table 7. Since the flight profile takes 
advantage of the CD logic or controller surfaces, much less energy is used for the hybrid-electric configurations than 
the original (ICE only) configuration. The HEUAV with the rule-based controller uses 54% less energy than the 
original configuration. The HEUAV with the CMAC controller (L=19) uses 58% less energy than the original 
configuration and 8.4% less than the HEUAV with the rule-based controller. The large decrease in energy use is due 
to the CD surfaces since no energy stored in the gasoline is used to maintain the battery charge. 

Table 7 Energy summary for one-hour flight profile, four-stroke 
Energy Type Engine 

Only 
Rule- 
Based 

CMAC Controller, Charge-Depletion 
L=3 L=7       L=9 L=14      L=19 

Fuel (g) 
Fuel (kWh) 

Electricity (kWh) 
Total (kWh) 

192.3 
2.29 
N/A 
2.29 

70.4 
0.844 
0.202 
1.05 

60.5 
0.725 
0.238 
0.963 

60.7      61.0 
0.728     0.732 
0.238     0.238 
0.965     0.969 

61.7        60.3 
0.740      0.723 
0.236      0.239 
0.976      0.962 



C. Simulation Results for Three-Hour ISR Mission 
The rule-based controller provides a baseline for the HEUAV results for the three-hour mission. CS is allowed 

through-out the mission to provide sufficient electrical energy during the two half-hour ISR mission segments. The 
amount of CS is dependent on the battery SOC since a proportional-derivative (PD) controller is used to control the 
amount of extra torque the engine produces for recharging. Due to the PD controller, the rate of charging increases 
as the SOC decreases. The logic keeps the SOC above 15%. The rule-based controller manages the storage of 
electrical energy sufficiently for the hybrid-electric system but the CMAC neural network controller improves on the 
rule-based controller. 

Simulations using the CMAC controller were completed for L=3, 7, 9, 14, and 19. For L=19, the torque 
commands were not sufficient for the HEUAV to complete the mission. The battery SOC for the different 
controllers is shown in Fig. 14. During the cruise mission segment an error in the approximation will cause a 
difference in the amount of recharging. For L=19, the approximation causes insufficient recharging. However, for 
L=3, 7, 9 and 14, the battery SOC follows a similar path as for the optimization (i.e. LUT) results. All of the 
simulations end with a battery SOC near 20%. This permits a relatively accurate comparison to be made between the 
different controllers. 

For the CMAC controller, the recharging is completed at a relatively constant rate as compared to the rule-based 
controller. Since the rule-based controller uses a PD algorithm, the rate increases as the SOC decreases. For the 
CMAC controllers, the rate is relatively constant throughout the SOC range. This keeps the engine running at a more 
continuous power level. Since the CMAC controllers keep the SOC near a constant SOC, most of the recharging is 
used to provide power to the avionics, flight control system, and the payload. 
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Fig. 14     Battery SOC, three-hour ISR mission, four-stroke engine, rule-based and CMAC controllers 

The engine operating points for the CMAC controller (L=14) during the three-hour mission are shown in Fig. 15. 
The torque has been adjusted to sea level. As compared to Fig. 13, the CS control surface keeps the engine operating 
near the IOL much more often to recharge the battery pack. 

The energy use for the three-hour ISR mission using the different controllers is shown in Table 8. The energy 
use shows that the original configuration uses the most energy. The energy use for the HEUAV using the rule-based 
controller is 22% less than the original configuration. The energy use for the HEUAV with the CMAC controller 



(L=14) is 27% less than the original configuration and 5.8% less than the HEUAV with the rule-based controller. 
The CM AC approximations are close to the optimization results and show that a generalization factor up to 14 can 
be used. Values of L=7, 9, or 14 still provide reasonable results and use less energy as compared to the rule-based 
controller. 
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Fig. 15     Engine operating points, three-hour ISR mission, four-stroke, charge-sustaining, CMAC controller 
(L=14) 

Table 8    Energy use summary for three-hour ISR mission, four-stroke engine 
Energy Type Engine 

Only 
Rule- 
Based 

CMAC Controller, Charge-Sustaining 

L=3 L=7 L=9           L=14 

Fuel (g) 
Fuel (kWh) 

Electricity (kWh) 
Total (kWh) 

779.3 
9.27 
N/A 
9.27 

582.1 
6.98 

0.240 
7.22 

548.4 
6.57 

0.244 
6.82 

545.9 
6.54 

0.245 
6.79 

541.9          547.1 
6.50            6.56 

0.265          0.246 
6.76            6.80 

VIII.     Conclusion 
A conceptual design of a small UAV with a parallel hybrid-electric propulsion system, an optimization routine 

for the energy use of the propulsion system, the application of a CMAC neural network to approximate the 
optimization results, and simulation results were provided in this paper. Extensions to this research include 
dynamometer testing, variable-pitch propeller testing, and additional work on the CMAC neural network controller. 

As UAVs are used for more applications, computerized dynamometer test stands will be needed to test more fuel 
efficient ICE and propulsion systems. The commercially available dynamometers are expensive since they need to 
be reliable and accurate with the capability to convert all data to standard day atmosphere to permit comparisons to 
simulation data. The development of an advance dynamometer test stand for UAV propulsion systems would 
provide an excellent research project and extension to this research. 

A fixed-pitch propeller was used in the HEUAV model but as with most propellers, it operates at its peak 
efficiency over a short range of advance ratio. For the HEUAV, the advance ratio was similar at cruise and 
endurance speed. However, at other speeds that may be required for various missions, the propeller may not operate 



near its maximum efficiency. A variable-pitch propeller permits a high efficiency over a wider range of advance 
ratio. The desired pitch could be an output from the hybrid-electric propulsion system controller. 

The CMAC neural network controller developed in this research is trained off-line. The weights for the 
association memory of the CMAC controller can then be directly transferred to the memory of the embedded 
microcontroller. If the torque output of the ICE and EM is measured or estimated, then an adaptive controller could 
be developed to optimize (he energy use in real-time. As the atmospheric conditions change, the torque output of the 
engine could be varied to optimize the energy use in real-time to increase the range of the UAV. 

Depending on the resulting hyper-plane surface, a uniform input space for the CMAC controller may not be 
sufficient. Higher resolution may be needed for the surface in certain areas, especially where discontinuities exist. A 
nonlinear placement strategy can account for the discontinuities in the training data. 
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