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ABSTRACT 
 

Different sensors exploit different regions of the electromagnetic spectrum; 

therefore, a multi-sensor image fusion system can take full advantage of the 

complementary capabilities of individual sensors in the suit; to produce 

information that cannot be obtained by viewing the images separately. In this 

thesis, a framework for the multiresolution fusion of the night vision devices and 

thermal infrared imagery is presented. It encompasses a wavelet-based 

approach that supports both pixel-level and region-based fusion, and aims to 

maximize scene content by incorporating spectral information from both the 

source images. In pixel-level fusion, source images are decomposed into 

different scales, and salient directional features are extracted and selectively 

fused together by comparing the corresponding wavelet coefficients. To increase 

the degree of subject relevance in the fusion process, a region-based approach 

which uses a multiresolution segmentation algorithm to partition the image 

domain at different scales is proposed. The region’s characteristics are then 

determined and used to guide the fusion process. The experimental results 

obtained demonstrate the feasibility of the approach. Potential applications of this 

development include improvements in night piloting (navigation and target 

discrimination), law enforcement etc.   
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I. INTRODUCTION  

 The advent of night vision technology has increased the operational 

capabilities of modern armies by allowing soldiers to operate under the cover of 

darkness and poor visibility conditions [1]. In general, there are two classes of 

night vision technology: Night Vision Devices (NVD) and Thermal infrared (IR) 

systems. NVD enhance the very low levels of natural illumination, e.g. overcast 

star light, under which an unaided human eye would be essentially blind. IR 

sensors, in contrast, use heat emissions to identify objects that cannot otherwise 

be detected using available light sources. These systems support a wide range 

of military operations and have given the users a significant advantage over 

adversaries whose performance is degraded during night operation. 

NVD and IR systems exploit different regions of the electromagnetic  

spectrum. Depending on the atmospheric and environmental conditions, one can 

offer better target information or situational awareness than the other. For 

example, NVD may have better image resolution but the contrast between heat-

emitting objects and their surroundings is better in IR sensors, and therefore they 

offer a better dynamic range in detection. However, the information provided by 

each sensor is often complementary to the other; therefore limitations in each of 

the sensing modalities can sometimes be overcome by combining the input from 

multiple single-banded sources. This technique is known as multisensor fusion. It 

refers to the synergistic combination of different sources of sensory information 

into one representational format that is more suitable for human and machine 

perception or further image processing tasks. The information to be fused could 

come from multiple sensors monitoring over a common period of time or from a 

single sensor monitored over an extended period of time. 

It has been shown that the joint use of imagery and spatial data from 

different imaging, mapping or other spatial sensors has the potential to provide 

significant performance improvements over single sensor detection, 

classification, and situation awareness. As a result, there has been a growing 
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interest in the use of multiple sensors to increase the capabilities of intelligent 

machines and systems, and multisensor fusion has become an area of intense 

research activity in the past few years. 

This thesis seeks to improve the imagery produced by current night vision 

sensors by exploring different image processing techniques to combine the 

source images from NVD and IR sensors, and optimize the information content in 

the fused image. The image processing challenge is to develop an intuitively 

meaningful approach to extract the key features in each source image to facilitate 

the discrimination of objects from background and improve situational 

awareness. 

This thesis is organized as follows: Chapter I covers the key motivations 

for undertaking this project. The next chapter describes the background to night 

vision and a review of the literature on image fusion. It also outlines the thesis 

objective. In Chapter III, wavelet transform theory, its application to image fusion 

and experimental results achieved are presented. Chapter IV introduces region-

based fusion concepts and presents results demonstrating the robustness of the 

approach. Final remarks are provided in Chapter V. 
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II. BACKGROUND  

A. NIGHT VISION 
The human visual system is sensitive to radiation whose wavelength is in 

the 0.4 to 0.7 micrometer range of the electromagnetic spectrum. The visible 

radiation received by the human visual system depends on the amount of light 

present in the scene, or the luminance, and the amount of light reflected by 

object surfaces before reaching our eyes. When the scene illumination becomes 

low, our eyes lose color perception (due to the cone receptors) and objects 

appear in grayscale (scotopic vision). 

Night vision technologies enable the exploitation of the night environment 

by processing the electromagnetic spectrum bands outside the human visual 

spectrum. The two bands exploited by NVD and IR imagers are the visible-near 

infrared band (wavelengths from 0.57 to 0.9 micrometer) and the thermal infrared 

band (wavelengths from 3 to 15 micrometer) respectively, as shown in Figure 1. 

The working principles for each sensor system are summarized in the following 

two sub-sections. 

 

 

 

 

 

 

 
Figure 1.   Spectral response of the eye, NVD and thermal IR sensors (From 

Ref. [2]). 
 

Wavelength (nanometers) 
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1. Night Vision Devices 
NVDs are passive devices that operate in the visible and near-infrared 

regions of the electromagnetic spectrum (Figure 1). Much like the human visual 

system, they depend almost entirely on the reflected energy from the scene 

illumination. Including an image intensifier in the optical system amplifies the very 

low radiance of natural light that is reflected by the scene (target and 

background). Image intensifiers are classified in three categories: first, second 

and third generation, each with different performance characteristics. A typical 

night vision goggle (Generation II or III) assembly consists of an objective lens, 

photocathode, microchannel plate, phosphor screen and combiner eyepiece 

assembly (Figure 2). 

 

 

 

 

 

 

 

Figure 2.   Night vision device with microchannel plate to collimate electron 
flow and increase the light-amplification gain (From Ref. [2]). 

Radiant or reflected optical energy received at this device is focused by 

the objective lens onto the photocathode. The photocathode, which is responsive 

to both visible and near-IR radiation, converts the incident photons into 

photoelectrons. The released electrons are then accelerated by an applied 

electric field through a microchannel plate. Successive secondary electron 

emission occurs in the pores of the microchannel plate leading to multiplication 

by a factor of up to four orders of magnitude. These electrons are further 

accelerated to strike a phosphor screen which in turn coverts the high energy 

     (+)                  (−) Light and Infrared 
Energy  Electrons Light 
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electrons back to light (photons), which corresponds to the distribution of the 

input image radiation but with a flux amplified many times [3].  

Visible and near-infrared night-time imagery is currently provided by the 

third generation of image intensifier tubes. The variants of the Gen III NVGs 

currently used have a gain in the order of magnitude of 30,000 to 70,000. 

2. Thermal Infrared Devices 
Thermal infrared devices detect invisible self-radiating and reflected 

infrared (IR) radiation from objects in the scene and convert this energy into a 

visible image. The infrared range covers all electromagnetic radiation from 0.7 to 

20 micrometer. However, only certain “atmospheric windows” exist (Figure 3). 

This is due to the absorption of the radiation by different gases and water vapour 

in the atmosphere. Therefore, the two bands that are generally employed by 

forward looking infrared sensors (FLIR) are the medium wavelength IR (MWIR - 

3 to 5 micrometer) and long wavelength IR (LWIR - 8 to 12 micrometer).  

 

Figure 3.   IR spectral bands and atmospheric transmittance as a function of 
wavelength. The “atmospheric windows” are the gaps between the 

absorption regions due to different gas and water vapour molecules in the 
atmosphere (From Ref. [4]). 

All objects are composed of continually vibrating atoms. The vibration of 

all charged particles, including the electronic structure of these atoms generates 

electromagnetic waves. The electromagnetic radiation is emitted with a 

wavelength distribution at a rate that depends upon the temperature of the object 

and its spectral emissivity. Emissivity compares the ability of a material to emit IR 
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energy to that of a blackbody at the same temperature. A “Blackbody” is defined 

as the perfect absorber of thermal energy and therefore also a perfect emitter, 

with an efficiency of unity. It is a function of both the type and surface finish of the 

material. Figure 4 shows how the energy emitted increases with temperature [5].  

 

Figure 4.   Planck’s law for spectral emittance (From Ref. [5]). 

The thermal signature of an object is determined by the thermal flux self-

generated or reflected from other heat sources. Humans, animals and objects in 

nature frequently have a high emissivity and therefore, a majority of their 

signature is from self-emission, which at normal temperature tends to peak in the 

LWIR band. Conversely, objects with low emissivity have a corresponding high 

reflectivity and therefore, reflect the thermal energy of their surroundings, e.g. 

solar scattered radiation, which is significant only by day and has a maximum 

emission in the MWIR band. A body with high reflectivity in one wave band may 

have high emissivity in another. 

Modern infrared detectors generally fall into two categories, Photon and 

Thermal detectors. In photon detectors, the radiation is absorbed within the 

material to produce electrons, which can be detected as voltage or current. They 

exhibit both high sensitivity and a very fast response, and the response per unit 

incident radiant power is wavelength dependent. However, photon detectors for 

the thermal IR are generally required to be cooled to very low temperatures, 
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typically 77K during operation, making them bulky and expensive. They are 

usually used in high performance systems.  

Thermal detectors work on the principle that the incident radiation heats 

up the material of the detector and causes a change in some physical property, 

e.g. resistance, which can be detected as an electrical output. They are generally 

wavelength independent and characterized by modest sensitivity and slow 

response. 

3 Comparison Between NVD and Thermal IR Imagery 
Figure 5 and Figure 6 show the image of the same scene captured by a 

NVD and a thermal IR camera. In the NVD image, the low night sky lighting 

reflected in the environment is amplified by the image intensifier to give a low 

contrast image with limited dynamic contrast range. As a result, the night sky and 

the ground terrain, including the track in the lower portion of the image, are 

captured with limited details. Despite the limited contrast range, the treeline can 

be differentiated clearly as the night sky is better illuminated. Two bright artificial 

self-emitting light sources are also captured in the image.  

The thermal IR image, on the other hand, reflects greater details or 

“texture” in the foreground. This is due to greater contrast in emissivity between 

the track and its adjacent terrain. However, the similarity in temperature between 

the night sky and the distant treeline resulted in an almost uniform continuation 

between the two regions. This could be partly attributed to lower resolution of the 

thermal IR camera, which fails to capture the minor temperature variation in the 

far field. Lastly, the two artificial light sources emit radiation in the shorter 

wavelengths which are beyond the bandwidth of the thermal IR camera. 

Therefore, they are not captured in the thermal IR image. 

 The two images presented capture the different details in the scene as 

they operate in different regions of the electromagnetic spectrum. The 

complementary set of images suggests the feasibility of combining the source 

images into a fused image that aims to increase the scene content. 
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Figure 5.   Image captured by NVD (From Naval Research Laboratory). 
 

 

Figure 6.   Image of the same scene captured by a thermal IR camera     
(From Naval Research Laboratory). 
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B. REVIEW OF THE LITERATURE IN SENSOR FUSION 
The objective of image fusion is to generate a hybrid high-resolution multi-

spectral representation that attempts to preserve the radiometric characteristics 

of the original multi-spectral data. Various fusion approaches have been 

proposed for the merging of multi-spectral and high spatial resolution data, 

including “statistical and numerical” and “multiresolution analysis” methods. 

Image fusion by the statistical and numerical approach utilizes methods 

such as Principal Component Analysis (PCA) and Principal Component 

Substitution  to extract key information from the disparate sensor inputs. This 

forms the basis for the fusion process. In the Naval Research Laboratory’s color 

fusion algorithm [6], a red-green color opponency was used to display a dual 

band infrared image (Figure 7). L1 and L2 represent the pixel intensities in LWIR 

and MWIR sensors respectively. They are statistically decomposed using PCA 

into orthogonal components L1’ and L2’, which correspond to the brightness and 

chromatic axis respectively.  The distribution along the brightness axis represents 

a high correlation in intensity distribution between the pixels while the orthogonal 

component L2’ maps to the uncorrelated pixel intensities.  

 

 

 

 

 

 

 

Figure 7.   Principal component direction (brightness) and its orthogonal 
principal component (chromaticity plane) (From Ref. [6]). 

In the fused image, each pixel is assigned a chrominant value (red-cyan) 

and brightness value (black-white), depending to the location of the input pixel 

intensity pair relative to two principal components. Therefore, features that are 

L1’ L2’ 

L1 -  

L2 -  

255 

MWIR 
(CYAN) 

LWIR(RED) 
255 
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present in both the sensors are represented by grayscale intensity as they have 

a corresponding pixel intensity pair that is close to the brightness axis. 

Conversely, features unique to each sensor have pixel intensity pairs that are far 

away from the brightness axis and are distributed along the principal component 

L2’. They are represented in a red-cyan combination.  

Another approach for fusing low-light visible and uncooled thermal infrared 

imager data is proposed in [7]. In the paper, Therrien et al. describe an enhanced 

Peli-Lim algorithm to perform adaptive modification of the local contrast and local 

luminance mean, which is accomplished by separating the source images into 

spatial high-pass (local contrast) and low-pass components (local luminance 

mean). The high-pass components are enhanced by multiplying them by a gain 

factor that depends on the local luminance mean while low-pass components are 

passed through a nonlinear luminance transformation to reduce their dynamic 

range. The local energies of the high-pass components from the input sensors 

are then computed. The images are fused using a weighted combination of the 

source images based on a normalized difference of local energies. The block 

diagram of the enhanced Peli-Lim algorithm is shown in Figure 8. 

 

Figure 8.   Block diagram of the enhanced Peli-Lim algorithm (From Ref. [7]). 
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In [8], Qu et al. noted that the spectral characteristics of the source images 

are not well preserved in color transformation, statistical, and numerical methods 

as they tend to alter the fused image features. Therefore, these methods have 

been replaced by fusion schemes based on multiresolution decomposition. 

Another motivation for pursuing the multiresolution approach lies in the fact that 

real-world scenario contains objects or features of different sizes. As a result, 

performing image analysis at a single scale tends to ignore the features that are 

present at other scales and this may result in the loss of spectral information in 

the fused image. The solution is to adopt a multiresolution approach that 

analyzes the image at different scales. 

One of the earliest multiresolution approaches is the pyramid 

decomposition scheme, first proposed by Burt [9,10]. In a Gaussian pyramid, the 

original image is repeatedly filtered and sub-sampled to generate the sequence 

of reduced resolution sub-images. This approach is equivalent to convolving the 

original image with a set of Gaussian-like weighting functions, followed by sub-

sampling.  In a Laplacian pyramid, the sub-image at each level of the pyramid is 

given by the difference between successive levels of the Gaussian pyramid. In 

image fusion, a pyramid transform is constructed for each input image. The 

pyramid image is then combined using some selection rule to form a composite 

image pyramid. Finally, the fused image is recovered by taking an inverse 

pyramid transform of the composite pyramid.  

In [11], Li et al. noted that pyramid-based techniques result in redundancy 

between different resolutions and merged images contain blocking effects in the 

regions where the input data from different sensors are significantly different. 

Therefore, multiresolution wavelet-based methods have been proposed. 

Wavelets are functions defined over a finite interval. The basic idea is to 

represent an arbitrary function as a linear combination of a set of such wavelets 

or functions. Over the last few years, the wavelet transform has been widely used 

in image fusion applications to fuse multimodal sensor data into a composite 

representation. In many applications, the wavelet-based approach works well in 

preserving the spectral information of the source images. 
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C. OBJECTIVE 
The information provided by different sensors is often complementary, 

therefore improvements are possible with the enhancement and subsequent 

fusion of the images captured into a single representation. Among the different 

fusion schemes, the multiresolution approach based on the wavelet transform 

offers one of the most promising solutions to effectively extract and combine the 

salient features in the source images. By analyzing and fusing the source images 

at different scales, the wavelet-based technique provides a more reliable means 

to preserve the spectral information of the multispectral images.   

Therefore, this thesis seeks to implement a wavelet-based image fusion 

algorithm to fuse images received from dissimilar image sensors, in particular, 

complementary images from thermal and night vision sensor systems. In the 

wavelet domain, many image processing techniques, e.g., denoising, contrast 

enhancement, segmentation, texture analysis and compression can be easily 

performed. In addition, this thesis also explores other pre-processing techniques 

to improve the fusion results.   
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III. WAVELET TRANSFORM FUSION 

A. OVERVIEW 
Image fusion can be defined as the process of combining multimodal 

source images into a single representation, emphasizing the most salient 

features of the surrounding environment. According to [12], an image fusion 

algorithm should preserve as closely as possible all relevant information 

contained in the source images and not introduce any artifacts or inconsistencies 

that could interfere with interpretation. In the fused image, the irrelevant features 

or noise should also be suppressed to a maximum extent.  

The actual fusion process can take place at different levels of information 

representation. These approaches fall into three basic categories, i.e. pixel, 

feature and decision level fusion [13]. At the lowest processing pixel level, the 

sets of pixels in the source images are merged pixel to pixel according to a 

defined decision rule to form the corresponding pixel in the fused image. Fusion 

at this level requires accurate spatial registration of the images from different 

sensors prior to applying the fusion operator. In feature level fusion, the relevant 

features are first abstracted from the data and then fused to form the fused 

feature set. The features can be extracted using segmentation procedures and 

differentiated by characteristics such as size, shape, contrast and texture. As the 

fusion is based on identified features in the sources, the resulting probability of 

detecting useful features in the fused image increases. At the decision level, 

decisions/detections based on the outputs from the individual sensors are fused 

together and used to reinforce common interpretation or resolve any differences. 

Among these three fusion methods, pixel level fusion is the most mature, 

as it has the advantage of directly using the source images that contain the 

original information. In addition, the algorithms used are also typically more time 

efficient. They range from the simple image averaging type to the complex PCA, 

pyramid-based image fusion and wavelet transform fusion.  
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The following section will include: 1) a brief overview of wavelet analysis, 

the discrete wavelet transform and its implementation to serve as a prelude to 

the development of the fusion technique; 2) a description of the image analysis 

using discrete wavelet transform, and 3) the theory and experimental results of 

wavelet transform image fusion using different fusion rules.   

 
B WAVELET TRANSFORM 

The fundamental idea behind the wavelet transform is to analyze a signal 

at different scales or resolutions. The wavelet transform can be interpreted in the 

Fourier domain as set of band-pass filters and the signal is examined in both the 

space and frequency domains. Its transform allows a signal f(t) to be projected 

onto different wavelets or basis functions instead of the sin and cosine basis 

functions that are used in Fourier transform. These basis functions are obtained 

from a single prototype wavelet called the mother wavelet by dilations and 

translations. In the wavelet domain, the larger wavelets give the approximate 

signal representation while the smaller wavelets zoom in to the details or minor 

variations in the signal.  

While sinusoids are useful in analyzing periodic and time-invariant 

phenomena, wavelets are well suited for the analysis of transient, time-varying 

signals. The great interest in the use of wavelets for signal and image analysis 

lies in the ability to efficiently represent functions with localized features. 

Compared to pyramid transforms, discrete wavelet transform is also more 

compact and offers directional information [12]. In image analysis, the 1-

dimensional wavelet transform is extended to the 2-dimensional wavelet 

transform to perform spatial-frequency decomposition of the source image.  

 
1. Continuous Wavelet Transform 
The basic idea of wavelet transform is to represent any arbitrary function 

as a decomposition in terms of the basis functions.  For a one-dimensional signal 

f(t), the continuous wavelet transform  is defined using the relation [14] 
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t bW f a b f t dt
aa

*1( )( , ) ( ) ,ψ ψ
+∞

−∞

−⎛ ⎞= ⎜ ⎟
⎝ ⎠∫                  (3.1)     

where ψ ( )t is the mother wavelet, a is the scaling factor, and b is the shifting 

factor. The wavelet coefficient ψ ( )( , )W f a b provides the information on the signal 

at each location b and for the scale a. Reconstruction can be obtained from the 

wavelet coefficients by using the inverse wavelet transform:  

  t bf t db W f a b db
C aa
1 1( ) ( )( , ) ,ψ
ψ

ψ
+∞ +∞

−∞ −∞

−⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ ∫       (3.2) 

where ψC is a factor that depends on the choice of wavelet and is given by:  

w
C dw

w

2( )
,ψ

+∞

−∞

Ψ
= < ∞∫          (3.3) 

and ( )wΨ is the Fourier transform of t( )ψ .  

 
2. Discrete Wavelet Transform 
Continuous wavelet transform places redundant information on the time-

frequency plane and is computationally expensive. Therefore, the discrete 

wavelet transform (DWT) was developed to analyze a signal using a subset of 

scales and positions.   

According to [14] and [15], the wavelet decomposition of a discrete signal 

f(t) is given as:  

m n mn
m n

f t c t,( ) ( ),ψ= ∑∑          (3.4)  

where m and n are integers and ( )mn tψ is a wavelet basis function. The two-

parameter DWT coefficient mnc  is given by: 

mn mnc f t t dt( ) ( ) .ψ= ∫                         (3.5) 
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The wavelet basis function, ψ ( )jk t  relates to the mother wavelet ( )tψ  by 

the following relation:  

2( ) 2 (2 ),ψ ψ= −
m m

mn t t n          (3.6) 

where n is the translation and m the dilation parameter. Equation (3.6) shows 

that the wavelet basis functions are formed by translating and scaling the mother 

wavelet. An additional set of coefficients, mna  is used to describe the trend or 

approximation of the function f(t) at resolution 2m during a recursive wavelet 

transform. The difference between one approximation and the other at the next 

level is known as “detail”, and is given by the wavelet coefficient mnc .  

Wavelet families have different properties and differ in terms of the basis 

functions compactness, spatial localization, and smoothness; hence they are 

suitable for different applications. The Haar, Daubechies, Symlets and Coiflets 

wavelets are examples of orthogonal wavelet families that remove the correlation 

in the signal between different subspaces, and hence avoid redundancy in the 

decomposed signal representation between different resolutions. Figure 9 shows 

the above four wavelet families. 

 

 

 

 

 

 

Figure 9.   Wavelet families – Haar, Daubechies-2, Symmlet and Coiflet       
(From Ref. [16]). 

The Haar wavelet transform is the simplest transform to implement. It 

allows quick visual inspection of the wavelet levels. However, a major 

disadvantage is its discontinuity, which makes it difficult to represent a 

continuous signal.  

harr 
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Ingrid Daubechies invented the first continuous orthogonal compact 

support wavelet, the Daubechies wavelet. It is suitable for continuous transform 

and has been widely used in signal and image analysis applications. The 

Symmlet and Coiflet have near symmetry properties, which allows the 

corresponding wavelet transform to be implemented using minor boundary 

conditions that can reduce boundary artifacts [16].  

In this thesis, one of the most commonly applied and proven wavelet 

families, Daubechies wavelets, will be used to develop the framework for the 

wavelet-based image fusion scheme. Once the framework is developed, other 

wavelet families, e.g. Symmlet and Coiflet wavelets may be explored to 

determine the optimal wavelet selection for the fusion of NVD and thermal IR 

images. 

 
3. Image Analysis Using Discrete Wavelet Transform 
In general, an image comprises features or objects at different scales. 

Therefore, multiresolution techniques were developed to extract scale-specific 

information from the image, in particular, coarse scale information in high levels 

and fine scale information in low decomposition levels. The DWT provides a 

framework for such multiresolution image analysis. The 1-dimensional DWT can 

be extended to a 2-dimensional DWT to perform spatial-frequency decomposition 

on a source image into a multiresolution pyramid of new images.  

In [17], Mallat introduced a fast discrete 2-dimensional wavelet transform 

algorithm that is based on the use of multiresolution approach for image analysis. 

The transform can be implemented recursively using a set of low-pass finite 

impulse response (FIR) filters hn and related high-pass FIR filters gn to derive the 

approximate ( mna ) and details ( mnc ) coefficients, respectively. The 2-dimensional 

data is separately filtered and downsampled in the horizontal and vertical 

direction to produce four sub-bands at each scale, as illustrated in Figure 10. 
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Figure 10.   2-dimensional wavelet transform using filter operations. The input Io 

is decomposed into four sub-images corresponding to the approximate 
image 

1LLa and detail images 
LH HL HH1 1 1

c , c and c . Subsequent reconstruction 
produces the input image. 

Therefore, given a grayscale input image Io, the 2-D wavelet 

decomposition gives 

o LL LH HL HHI
1 1 1 1

 a   c   c   c ,= + + +         (3.7) 

where the sub-image approximation 
1LLa is the base low frequency image. It 

represents the averaged, lower resolution version of the image Io. The detail sub-

images correspond to the high frequency parts or features of the image. They 

contain information about Io not present in the simplified component
1LLa .  

1LHc  

tends to emphasize the horizontal edges and is referred to as the first horizontal 

fluctuation while 
1HLc is known as the vertical fluctuation as it emphasizes the 

vertical edges. The last detail, 
1HHc  represents the first diagonal fluctuation and 

tends to emphasize the image diagonal features.  

The first approximate sub-image is then decomposed to the next level: 

LL LL LH HL HHa
1 2 2 2 2

 a   c   c   c .= + + +          (3.8) 
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Recursively, by taking successive approximations of the original image at 

increasing scales in the wavelet transform, an image pyramid is formed. At the 

nth level, it will comprise 3n+1 sub-image sequences. Each input image can be 

decomposed up to the maximum decomposition level, which is 2log 1N −  (M by N 

= size of the image, N ≤ M). Figure 11 shows the image sub-bands in the 

decomposition process. Note that by applying inverse wavelet transform, the nth 

level approximate image 
nLLa can be perfectly reconstructed from the (n+1)th level 

coefficients, 
1nLLa

+
,

1nLHc
+

, 
1nHLc

+
 and 

1nHHc
+

by means of backward recursion.   

 

 

 

 

 

 

Figure 11.   Image sub-bands. 

Figure 12 to Figure 15 illustrate the concept of multiresolution wavelet 

decomposition. Downsampled representations consisting of one approximate 

and three detail sub-images are generated at every level of the decomposition. 

The approximate sub-images A1, A2 and A3 represent a lower resolution 

approximation of the original image and they retain some of its properties such 

as the mean intensity or texture information. In the detail sub-images, the 

horizontal, vertical and diagonal fluctuations are picked up by the respective 

detail coefficients at each scale. For example, horizontal roof edge and steps are 

captured in the horizontal detail sub-images while vertical pillars and edges of the 

wall are reflected in the vertical detail sub-images. 
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1HHc

1HLc
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The illustrations show that the finer details are captured in the lower levels 

of decomposition while the coarser scale information is presented in the higher 

levels of decomposition. It also demonstrates that the multiresolution wavelet 

transform is able to identify the salient directional features in an input image. This 

highlights the feasibility of fusing images from different sensors by combining the 

key features identified at each scale. It is further motivated by the fact that the 

human visual system is primarily sensitive to local contrast changes such as 

edges or corners and the improved scene content will aid situation awareness 

and scene recognition. 
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Figure 12.   Original Image – Herrmann Hall, NPS. 
 

 

 

 

 

 

 

 

 

 

 

Figure 13.   Wavelet decomposition at level 1. The approximate sub-image is a 
coarse representation of the original image and the horizontal, diagonal 

and vertical variations are captured in the detail sub-images. 
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Figure 14.   Wavelet decomposition at level 2. The lower resolution sub-images 
A2, H2, D2 and V2 are derived from the level 1 approximate sub-image 

A1. Notice how they capture the salient features in the original image at a 
coarser scale. 

 
 

 

 

 

 

 

 

 

 

Figure 15.   Wavelet decomposition at level 3. The lowest resolution sub-
images are presented at this level. 
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C. WAVELET TRANSFORM FUSION 
The principle of image fusion using wavelet-based decomposition is to 

selectively merge the decomposed “approximation” and “details” coefficients of 

the original images. An inverse transform performed on the fused coefficient 

representation will give the fused composite image. There exist many variations 

in the approach for multiresolution fusion [9,10,11,18].  

The general framework for the multiresolution wavelet transform fusion 

scheme is presented in Figure 16. Application of this framework to a set of 

registered source images will produce the fused output. At each level of 

decomposition, a decision that is governed by a set of fusion rules is made to 

decide how the multiscale representations should be used to construct the fused 

wavelet coefficient map. 

 

 

 

 

 

 

 

Figure 16.   General framework for image fusion using multiresolution wavelet 
transform. Registered source images are decomposed, fused according to 
the fusion rule and reconstructed to produce the fused image (After Ref. 

[11]). 

Pixel-based image fusion requires the source images to be aligned on a 

pixel-by-pixel basis. The techniques for image registration are widely researched 

and discussed in the literature and therefore will not be covered here. It is 

assumed that the images to be combined are registered.  
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1.  Fusion Rules 
Since the salient features are captured by the detail wavelet coefficients, 

the key of successful fusion lies in defining an appropriate feature selection 

fusion rule to select and construct the fused detail wavelet coefficient maps at 

each scale. A more detailed illustration of the framework for the formation of the 

fusion decision map is shown in Figure 17. 

The framework uses an activity and matching measure to define the fusion 

rules, which will then be used to generate the fusion decision map. The output of 

the decision map will govern the actual combination of the coefficients from the 

wavelet decompositions of the source images.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.   Framework for the Formation of the Fusion decision map. 

As the approximate sub-image represents the coarse approximation to the 

original image, the most common approach used to derive the fused approximate 

wavelet coefficient map is by taking the average of the source images’ 

approximate coefficients at each level. 
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The activity-level measurement reflects the salience of a particular pixel in 

the image. It is high if the pixel represents important information in a scene; 

conversely, it is low if the pixel represents some unimportant information. Two 

methods are used to determine this activity level. In general, a pixel is expected 

to be important if it is relatively prominent in the image. Therefore, in the simpler 

case, the larger absolute value of the details wavelet coefficient can be used as a 

generic measure of its salience. It is given by 

n n n nA A B Ba j k c j k a j k c j k( , )= ( , )   and  ( , )= ( , ) ,                           (3.9) 

where ( , )  and  ( , )
n nA Bc j k c j k  represent the nth level wavelet coefficients at 

location (j,k) of input image A and B, respectively. This is known as the pixel-

based method [18].   

The second method considers a neighborhood pattern around the 

sampled pixel. It takes into account that the surrounding pixels would be highly 

correlated to the sampled pixel if it represents a salient feature. Typically, a 3 by 

3 or 5 by 5 window centered at the sampled pixel is used [19]. This method is 

known as the window-based activity measure and can be implemented as: 

n nW A B A B
s S t T

a j k c j s k t( , ) ,
,

( , )=  ( , ),
∈ ∈

+ +∑           (3.10) 

where S and T are sets of horizontal and vertical indexes that describe the 

current window. It measures the activity associated with the nth level pixel 

centered in the window at location (j,k). Increasing the size of the neighborhood 

will add robustness to the fusion system as it will reduce the contribution of 

localized noise at higher computational cost. At lower resolutions of 

decomposition, the window may also exceed the size of the local features. Figure 

18 illustrates the differences between pixel and window-based fusion rules. 
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Figure 18.   Comparison between pixel and window based fusion rules. 

The matching measure is used to determine the degree of resemblance 

between corresponding pixels in the source images and this information will be 

used to determine the mode of combination at each pixel location. It is given by 

the correlation between the corresponding pixels at location (j,k) for the nth level 

coefficients: 

n n

n

n n

A B
F

A B

j k j k
m j k

j k j k
2 2

2c ( , )c ( , )
( , )=  .

c ( , ) + c ( , )
                             (3.11) 

 Several different DWT-based fusion rule schemes have been proposed in 

[18,10,19,etc.]. In this thesis, three fusion rules are implemented. 

Fusion Rule 1 – Selection of the dominant mode 

Using the parameters defined above, the simplest fusion rule is to select 

the coefficient with the larger absolute value at each location in the wavelet 

domain. This coefficient corresponds to the sample with higher activity level as it 

represents the most dominant features at each scale in the source images, such 

as edges, lines and region boundaries. It is defined as: 

 

 ( , )=  
nFc j k                              (3.12) 
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Using the above fusion rule, the dominant features at each scale are 

preserved in the new multiresolution representation. However, this rule assumes 

that only one of the source images provides the relevant information at each 

scale for fusion. This might not be true, especially when multimodal sensors are 

used.  

Fusion Rule 2 – Weighted average of modes (pixel based) 

A second approach based on a weighted combination of the source 

images is proposed in [10]. The matching measure is used to determine the 

respective contribution by the different source images. It is given by: 

 

 ( , )=  
nFc j k                  

 (3.13) 

where w is the weighted value defining the contribution of the selected coefficient 

and T is a pre-defined threshold. The larger weight w is assigned to the input 

image with higher activity level, and can take a range of values from 0.5 to 1.  

The fused coefficient corresponds to a weighted average of the input 

coefficients at each location if the corresponding coefficients in the multimodal 

images are distinctly different ( ( , )
nFm j k  less than a defined threshold T). If they 

are similar ( ( , )
nFm j k  greater than a defined threshold T), the average of the two 

input coefficients will be taken. In the present framework, a value of 0.8 is 

selected. This can be changed by considering the functional relationship between 

the weights, activity measure and salience match measures. 

Fusion Rule 3 – Weighted average of window-based modes 

In the next approach, the scheme takes into account the neighborhood of 

the selected coefficient. In this fusion scheme, the window-based activity 

measure 
( , )( , )

nW A Ba j k  from Equation (10) replaces the activity measure 
, ( , )

nA Ba j k  

in Equation (13). The fusion rule is given as: 

n n n n n

n n n n n
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( , )=  
nFc j k                

(3.14) 

In this section, the framework to develop the wavelet-based fusion is 

presented. First, the source images are decomposed into the corresponding 

approximate and detail wavelet coefficients. Next, different fusion rules are 

implemented to determine the relative contribution of the source images. An 

inverse wavelet transform of the composite wavelet coefficient map produces the 

fused image.   

Other fusion rules and approaches have been proposed using the 

wavelet-based fusion techniques. Similarly, different wavelet basis functions and 

a variation to the number of stages of wavelet decomposition can be explored. It 

is anticipated that some wavelets will be more effective than others and the 

sharpness of the fused image may improve up to a certain optimum level of 

decomposition. In this thesis, Daubechies wavelets and up to three levels of 

decomposition are implemented. It is not possible to consider and implement 

other configurations within the scope of this thesis; therefore the intent is to lay 

down the framework of development so interested parties can follow up with the 

studies. 

The next section presents fused results obtained from different image 

pairs using different fusion rules. It also compares the results achieved when the 

wavelet transform parameters are varied. 

 

2. Experimental Results – Wavelet Transform Fusion 
This section presents the experimental results obtained using wavelet 

transform fusion. In [12], Nikolov et al. noted that the quantitative measurements 

of the fused results determined using computational measures are often 

meaningless or even misleading; therefore the evaluation of the fusion results will  
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be based on a perceptual comparison of the resultant image with the original 

images. The assessment will be based on key criteria such as contrast, edge 

sharpness and scene content.  

Test 4-1 

Test Objectives: To demonstrate image fusion using wavelet transform fusion 
on a pair of out-of-focus images and compare the results 
achieved with the simple averaging method. 

Levels of 
Decomposition: 2 levels 

Wavelet family: Daubechies, db2 

Fusion scheme: Fusion Rule 1 – Selection of the dominant mode 

Figure 19 shows two registered images of the same scene, but with a 

distribution of defocus. Also shown are their wavelet transforms, the fused 

wavelet transform and the resulting fused image. The implemented fusion rule - 

selection of the dominant mode, picks the “detail” coefficients with the largest 

magnitude at each level. This effectively retains the ‘in focus’ regions within the 

image. An inverse wavelet transform is then applied to the combined wavelet 

coefficients to produce the fused image. Figure 19 shows an image retaining the 

focused regions from each of the two source images. 

Figure 20 compares images fused by simple averaging and wavelet 

transform methods with the original image. In the simple averaging method, the 

fused image has a “muddy” appearance. A closer inspection of the images 

shows that the contrast of the features, e.g., roofline, in the fused image is 

reduced by the averaging process. This results in the blurring of the texture 

information. Such effects are undesirable in the fusion of night scene images 

used in applications like night piloting for navigation and target discrimination. 

Conversely, the multiscale fused approach preserves the texture information and 

has very good feature contrast. The reconstructed image closely resembles the 

original image. 
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Figure 19.   Image fusion process using DWT on two registered multifocus 
images. 
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Figure 20.   Comparison between simple averaging method and wavelet 
transform fusion, a) original image, b) fusion using simple averaging and 

c) wavelet transform fusion using fusion rule 1. The high spectral 
information in the roofline is retained using wavelet transform fusion. 

a) 

b) 

c) 
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Test 4-2 

Test Objectives: To implement and evaluate the performance of wavelet 
transform fusion on a pair of NVD and thermal IR images. The 
results achieved using 2 and 3 decomposition levels are also 
compared. 

Levels of 
Decomposition: 2 and 3 levels  

Wavelet family: Daubechies, db2 

Fusion scheme: Fusion rule 1 

 Figure 21 shows a pair of NVD and thermal IR images of the same scene 

that were fused using the wavelet transform approach with fusion rule 1. Note 

that each source image shows certain aspects of the scene that are not visible in 

the other source. In the fused image, the salient features of the source images 

are retained. The treeline which divides the image into the top and bottom 

regions, and the two bright artificial light sources from the NVD image are clearly 

reflected in the fused image. Similarly, the texture in the foreground, including the 

track and its adjacent terrain are filled in correctly with inputs from the thermal IR 

image. The information presented in the fused image is much richer than that 

contained in either source image and would be essential for situation awareness 

and navigation.  

 The fused images obtained using 2 and 3 decomposition levels are 

displayed in Figure 21. The inset in (b) (3 levels) shows greater contrast and 

“graininess” than the corresponding inset in (a), which presents a more pleasing 

picture. With a higher level of decomposition, features found only in the coarser 

scale are also extracted using the dominant mode selection rule. Therefore, the 

result is a fused image that has a slightly better spectral quality. However, it is 

not recommended to go beyond 3 levels of decomposition as the loss of details 

of the approximate sub-image increases with the number of decomposition layers 

and reconstructing the lost details would be difficult [20].   
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a) 

b) 

NVD image Thermal IR image 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21.   Fusion of NVD and thermal IR images with a) 2 levels and b) 3 
levels of decomposition, using fusion rule 1(source images from Naval 

Research Laboratory). 
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 Test 4-3 

Test Objectives: To implement and compare the performance of wavelet 
transform fusion on a pair of NVD and thermal IR images, 
using fusion rule 1 - selection of the dominant mode, fusion 
rule 2 - weighted average of modes (pixel based) and fusion 
rule 3 - weighted average of window-based modes. 

Levels of 
Decomposition: 3 levels  

Wavelet family: Daubechies, db2 

Fusion scheme: Fusion rule 1, 2 and 3 

Figure 22 shows the results achieved using the three different fusion rule 

schemes. In fusion rule 3, a small neighborhood consisting of 3 by 3 arrays of 

samples centered on sample was used to compute its windowed-based activity 

measure. All three cases generate a perceptually similar fused image. The 

feature contrast is well maintained and all the significant features from both 

sources, e.g., the two artificial light sources, night sky and the track, are retained 

in the composite image.  

It is noted during the test that the relative contribution of the source 

images to the fused image can be changed by varying the weighting factor and 

matching threshold. This will alter the spectral contrast of the resulting fused 

image.  

In summary, experimental results show that the wavelet-based approach 

outperforms the simple averaging method and offers significant scene content 

improvement over single sensor detection. Different fusion rule schemes have 

been implemented and they perform well in the fusion of the NVD and thermal IR 

images. The choice of the fusion rule scheme as well as the selection of the 

weighting factor and matching threshold will be application specific and is likely to 

depend on the type of image sensors, scene composition, target types etc. The 

functional relation between the fusion rule scheme, weighting factor, activity 

measure and salience match measures can take many forms and further tests 

and evaluations are needed to determine the optimal configuration.  
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a) 

c) 

b) 

Wavelet Transform Fusion – Fusion rule 1 

Wavelet Transform Fusion – Fusion rule 2 

Wavelet Transform Fusion – Fusion rule 3 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22.   Fusion results achieved with using 3 levels of decomposition a) 
fusion rule 1- selection of the dominant mode, b) fusion rule 2 - weighted 

average of modes (pixel based) and c) fusion rule 3 - weighted average of 
window-based modes. 
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IV. REGION-BASED FUSION 

A. OVERVIEW 
Fusion methods based on relatively simple image processing techniques, 

e.g., the pixel-level averaging method, generally do not take into account the 

subject-relevant information or the features that exist in the source images. If the 

features information is not incorporated in the fusion process, it could lead to 

undesirable effects such as artifacts or inconsistencies and the loss of vital 

information in the fused image. In the previous chapter, a wavelet based pixel-

level fusion method which combines aspects of a feature selection rule was 

implemented. The fusion process is guided by the salient directional features 

identified at the multiscale detail images. This is done by comparing the intensity 

of the corresponding pixels or an arbitrary area around the sampled pixel defined 

by a fixed size window in the corresponding detail images, and selecting one 

deemed more important for the fused pyramid. Experimental results show that 

the algorithm works well in fusing image pairs captured by NVD and thermal IR 

sensors. 

To increase the degree of subject relevance in the fusion process, region-

based fusion schemes have been proposed [18,19,20,21 etc]. They are based on 

segmenting the multimodal source images into regions of interest and 

subsequently using this segmentation to guide the fusion process. Region-based 

image fusion algorithms are known to be more robust and less sensitive to noise 

and misregistration. A number of different region-based schemes have been 

proposed. In [21], a Canny edge detection method was applied to the 

approximate sub-image obtained from the wavelet transform. This edge 

information is then used to obtain the segmentation of the low frequency band. In 

[18], the author proposed a region-based MR fusion scheme using a 

segmentation algorithm based on a generalized pyramid linking method. 
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In this thesis, a segmentation algorithm based on the watershed transform 

is investigated. It is combined with the results derived using the wavelet 

transform in Chapter III to implement a region-based fusion scheme. By 

incorporating the region information, the proposed approach seeks to optimally 

extract the information from different sources and maximize the “scene content” 

in the fused image. The following topics will be covered in this chapter: 1) 

implementation of the watershed transform for image segmentation; 2) an 

investigation of multiscale image segmentation, and 3) the theory and 

experimental results of region-based image fusion.     

B. REGION SEGMENTATION 
The objective of segmentation is to partition an image into a number of 

disjoint regions in each of which the features should have reasonably good 

homogeneity, strong statistical correlation or visual similarities. Image 

segmentation algorithms may be generally classified into discontinuity-based 

methods and similarity based methods [22]. The interface between two 

homogenous regions is usually defined by a discontinuity in gray-level, color or 

texture. Discontinuity based methods therefore partition an image based on the 

detection of such discontinuity (gradient). Segmentation based on the similarity 

method typically works by detecting homogeneity between pixels and regions, 

and the image is segmented according to certain pre-defined criteria or levels. 

Each approach has its own pros and cons in terms of applicability, performance 

and computational cost etc. A good guideline defining segmentation is given in 

[23]. It stated the following requirements: “1) Regions of an image segmentation 

should be uniform and homogeneous with respect to some characteristic such as 

gray tone or texture; 2) Region interiors should be simple and without many small 

holes; 3) Adjacent regions of a segmentation should have significantly different 

values with respect to the characteristics on which they are uniform, and 4) 

Boundaries of each segment should be simple, not ragged and must be spatially 

accurate.”  
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The classic approach to segment an image is to apply a gradient and then 

threshold the resulting gradient image. However, it is difficult to select an 

appropriate value for thresholding. If the threshold value is too low, false edges 

and noise are picked up and lead to inaccurate segmentation. Conversely, edges 

may not be detected if the threshold is too high. As a result, broken gradients 

would form and result in poor segmentation.   

An alternative method based on morphological principles, watershed 

transformation, has evolved and become a well established approach for the 

segmentation of images. Mathematical morphology is a nonlinear image 

processing and analysis tool that describes the basic characteristics of an image, 

namely the geometry and structure relation between the pixel sets in the image 

using a set of integrated concepts and algorithms. It uses a structuring element 

with a certain shape to measure and detect objects with a corresponding shape 

in the image. By marking the location where the structure fits, the structural 

information in the image can be derived [24]. 

Instead of using the image directly, the watershed transform algorithm is 

applied to the morphological gradient of the image to be segmented. 

Implementations of the watershed approach on the test images yielded promising 

results and, therefore, it will be used to identify the key regions in the multimodal 

source images during pre-processing prior to the fusion of images. The following 

section presents the approach adopted and results achieved using the watershed 

transformation. 

1. Watershed Transform 
A grayscale image can be considered as analogous to a topographical 

relief map with the brightness value of each pixel corresponding to a physical 

elevation at that point. If this topography is flooded from below, water will slowly 

rise from each regional minimum at a uniform rate across the entire image. A 

dam is created when water from two different regions meets. The procedure 

results in the partitioning of the image in which the different regions arising from 
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the various regional minima are called the catchment basin [25]. Figure 23 

illustrates the principle of the watershed transform. 

 

 

 

 

 

 

 

 
 

Figure 23.   Principle of watershed transform: a) grayscale image;                    
b) topographical surface; c) flooding in the basins; d) watershed         

(From Ref. [25]). 

The watershed transform is applied to a gradient image so that the 

watersheds correspond to the crest line of the gradient. Therefore, the catchment 

basin maps to the regions in the image. The gradient is created by standard 

morphological operations, namely “Dilation” and “Erosion”. Following reference 

[24], the morphological definitions are given as follows. The erosion of the binary 

image set A by a small set B, representing the structuring element is defined as: 

  A Ө B = { x : Bx ⊂ A } ,         (4.1) 

where ⊂ denotes the subset relation, A the input image, B the structuring 

element and Bx is the translation of B along vector x. A Ө B consists of all points 

of x for which the translation of B by x fits inside of A and represents a filtering on 

the inside. Dilation is the dual operation to erosion and is defined via erosion by 

set complementation. It is defined by: 

A ⊕ B = (Ac Ө B)c ,                    (4.2) 

 

a) b) 

c) d) 
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where  

  B = {−b : b ∈ B }           (4.3) 

is the reflection of B or a 180-deg rotation of B about the origin and Ac denotes 

the set-theoretic complement of A. Dilation represents a filtering on the outside A 

by B.  

The morphological gradient is given by the differences between the 

dilation and erosion and is given by: 

(A ⊕ B) – (A Ө B),          (4.4) 

Figure 24 illustrates boundaries created using a four-connected structuring 

element. Geometrically, in erosion, the structuring element B is moved within the 

image A. The origin of the structure is marked in dark blue and represents the 

eroded image. In dilation, the origin of the structure is moved along the boundary 

of the image A. Pixels overlapped by the 4-connected structuring element are 

combined with the image A to form the dilated image. The morphological gradient 

is given the difference between dilated and eroded image. 

  

 

 

 

 

 

 

 

 

Figure 24.   Boundary creation: a) input image, A and a four-connected 
structuring element, B; b) erosion of A by B, c) dilation of A by B, d) 

morphological gradient (From Ref. [24]). 

c) a) b) d) 
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Direct application of the watershed transform to a gradient usually 

produces excessive over-segmentation (Figure 25). This is undesirable as the 

segmented regions do not offer a good local characterization of the region. 

Therefore, a marker-based watershed segmentation is implemented.  

The marker is a connected component belonging to an image and it 

guides the flooding simulation process, thereby leading to a marked improvement 

in the segmentation results. The number of regions segmented is reduced as the 

marker decreases the number of minima on the surface. A marker-based 

watershed segmentation scheme was implemented†
. Figure 26 presents the 

results achieved. It demonstrates the following advantages in image 

segmentation: a) closed and connected regions are formed, unlike traditional 

edge based techniques that tend to form disconnected boundaries, b) the 

boundaries of the resulting regions correspond well to the contours in the 

images, and c) the union of all the regions forms the entire image region. The 

advantages highlighted are critical to the successful implementation of the fusion 

approach proposed in the next section. 

 

† The morphological functions are implemented using SDC’s Morphology Toolbox for MATLAB  

 (From Ref. [26])  
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Figure 25.   Simple watershed transform – Oversegmentation, showing tile-like 
structure.  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 26.   Marker-based watershed segmentation: a) morphological gradient, 
b) watershed lines overlying the original image and c) identified regions.   

 

a) 

b) 
c) 
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2.  Multiscale Segmentation of Images  
As quoted in [22], “Segmentation of nontrivial images is one of the most 

difficult tasks in image processing.” Clearly, the raw images of scenes captured 

by NVD and thermal IR sensors are nontrivial images, as they generally do not 

have well defined regions that are characterized with good homogeneity or clear 

boundaries. They tend to have low contrast edges and are noisy. Any noise-

induced gray level fluctuations can result in spurious gradient and further 

complicate the segmentation process. Figure 27 shows the outline of the regions 

obtained using marker-based watershed segmentation. A number of smaller 

undesired watersheds are generated and this results in oversegmentation 

despite using a marker-based approach. As segmentation accuracy determines 

the eventual success or failure of the next stage of the fusion process, it is 

necessary that further pre-processing be done to produce a segmentation that 

better identifies the regions in the image.   

 

 

 

 

 

 

Figure 27.    Segmentation using marker-based watershed segmentation on: a) 
NVD image and b) thermal IR image. 

The threshold method used in marker-based watershed segmentation is 

not sufficient to eliminate undesired gradients. Methods using conventional 

filtering methods have been explored and implemented to reduce the small 

details in the image, e.g. gradient caused by noise or other minor structures. 

However, the results are generally less than satisfactory in complex images 

when low contrast edges are involved or in high noise level.   

b) a) 
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In [27], Jung et al. proposed a wavelet-based approach to denoise and to 

enhance the edges of the image. The watershed transform is then applied to the 

gradients of the enhanced image to segment the image. A final post-processing 

is done to remove the regions with small areas and to merge regions with low 

contrast boundaries. Preliminary results show that oversegmentation is reduced 

and broken contours are significantly removed.  

The test images used by Jung et al. consisted of regions of cluttered 

objects that are relatively homogenous. In this thesis, a concept similar to [27] is 

proposed. The new approach combines the multiscale wavelet transform 

introduced in Chapter III with the morphological watershed transform to segment 

the image with the objective of generating a well segmented image that can be 

used to guide the fusion of the multimodal images. It will be applied to images 

captured by NVD and thermal IR sensors and the test will be challenging as they 

tend to have regions of non-uniform homogeneity, low contrast and poorly 

defined boundaries (Refer to Figure 5 and Figure 6). 

In accordance with Equation (3.7) and Figure 11 in Chapter III, a source 

image can be decomposed into an approximation 
1LLa  and three detail 

images,
1LHc ,

1HLc and 
1HHc at every level of decomposition. The approximate sub-

image represents the averaged, lower resolution, version of the base low 

frequency image from the previous level while the details images captures the 

local differences or texture along the horizontal, vertical and diagonal fluctuations 

in that image.  

To improve the performance of the segmentation, the watershed transform 

is applied to the approximate sub-image at every level of decomposition. Since 

the nth level approximate sub-image contains less detail than the (n−j)th level 

approximate sub-image, the reduction in detail would improve the quality of the 

segmentation based on the watershed transform. The idea is similar to the 

application of the wavelet transform for image denoising where the wavelet 

coefficients in the detail images correspond to the high frequency components at 

that scale. Therefore, by applying an appropriate threshold to these coefficients, 
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that is, setting coefficients to zero whose magnitude is less than the threshold 

value, the inverse transform of the thresholded transform reduces the noise level 

of the original source image.  

Using the algorithms generated in Chapter III and the earlier sections in 

Chapter IV, marker-based watershed segmentation is applied to the 

morphological gradient of the approximate image at every level to extract the 

various regions at each scale.  

The above segmentation procedure is applied to the NVD and thermal IR 

image pair (Figure 5 and Figure 6).The morphological gradient operator is first 

applied to the coarse approximates of the NVD and thermal IR images; the 

gradient of the pixel values is then plotted over the source images. In this image, 

uniform regions with large gradient (greater than threshold) are partitioned using 

the marker-based watershed segmentation technique and they show as 

topographical relief features. Results are shown in Figure 28 to Figure 31. 
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a) 

b) 

c) 

a) 

b) 

c) 

 

 

 

 

 

 

 

 

 

 

Figure 28.   Morphological gradient of the approximate NVD image at different 3 
levels of decomposition: a) level 1, b) level 2 and c) level 3. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 29.   Region segmentation of the approximate NVD image at 3 levels of 
decomposition: a) level 1, b) level 2 and c) level 3. 
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a) 

b) 

c) 

a) 

b) 

c) 

 

 

 

 

 

 

 

 

 

 

Figure 30.   Morphological gradient of the approximate thermal IR image at 3 
levels of decomposition: a) level 1, b) level 2 and c) level 3. 

 
 

 

 

 

 

 

 

 

 

 

Figure 31.   Region segmentation of the approximate thermal IR image at 3 
levels of decomposition: a) level 1, b) level 2 and c) level 3. 
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Comparing the above results to Figure 27, it is clear that the regions are 

more accurately segmented without leading to oversegmentation. An interesting 

observation is that the feature edges are preserved in the lower scaled sub-

images. This is to be expected as the responses due to noise tend to be more 

localized and therefore are not likely to be present across the different scales.  

The watershed transform of the approximate images is guided by setting 

the number of regions in the joint region map. Results show the process 

generally produces a good segmentation of the test images by limiting to under 

forty regions. The computation time for the subsequent stages in the fusion 

process increases with the number of regions segmented; therefore limiting the 

number of segmented regions also serves to cap the computation time to an 

acceptable level. 

Further post-processing can be done to remove over-segmented regions 

by merging small watershed regions resulting from weak borders that may still 

exist in the approximate image [27]. The results achieved here are generally 

satisfactory; therefore the post processing algorithm is not implemented. 

However, this step will need to be considered when multi-modal images are 

fused using region-based techniques.   

 

C. REGION-BASED IMAGE FUSION  
 The basic idea behind the proposed region-based image fusion is to 

construct a multiscale segmentation based on the approximate sub-images and 

to use this segmentation to guide the fusion process. The general framework of 

the region-based image fusion scheme proposed in this thesis is an extension of 

that proposed for wavelet transform fusion in Chapter III (Figure 16 and Figure 

17). Figure 32 shows the schematic representation of the process of region-

based fusion using the fusion rules to be discussed in the section following. 
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Figure 32.   Framework for the formation of the fusion decision map for region-

based fusion. It illustrates the process of constructing a “decision map” for 
region-based wavelet transform fusion of images. 

 
 

In addition to using a feature selection fusion rule to construct the detail 

sub-images decision map, a region activity table is generated based on the 

regions identified on the coarse approximation image using the watershed 

transform. The region and feature fusion rule is then applied to the corresponding 

activity table to generate the fusion decision map that will decide how the 

multiscale representations will be used to construct the fused wavelet coefficient 

map. 

 

1. Fusion Rules 

In the previous section, a multiresolution segmentation performed on the 

NVD and thermal IR source images produces two region representations 
nAR and 
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a) 

b) 

c) 

nBR , as shown in Figure 29 and Figure 31. To identify all the regions in the 

source images, the two region representations are overlaid onto each other to 

create a joint region map 
nFR at each level of decomposition [28]. The concept is 

illustrated below in Figure 33. 

 

 

 

 

Figure 33.   Region segmentation: a) region representation of image A;            
b) region representation of image B and c) joint region map, indicating the 

4 identified regions (After Ref. [28]). 
 

Applying this concept to NVD and thermal IR source images, the joint 

region maps obtained at different levels are shown in Figure 34. The disjoint 

regions corresponding to unique features of the two image sets are combined 

together and will be used to guide the computation of  the activity level of each 

region in the decomposed approximate sub-images. 

 

 
 
 

 

 

 

 

 

Figure 34.   Joint region maps for NVD and thermal IR images at different levels 
of decomposition, a) level 1, b) level 2 and c) level 3. 
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2 
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To compute the region activity, the following steps are implemented. 

Step1: The regions identified in the multiscale joint region maps are 

assigned a label,  

k
nR R{ },=            (4.5) 

where Rk
n represents the kth segmentation at level n. This label will be 

used to mark and identify the pixels lying within the boundary of a region.  

Step2: Determine the size of the regions. This is given by the total number 

of pixels within the boundary of the region. The joint region map for the 

NVD and thermal IR images is illustrated in Figure 35. It shows the size of 

the two artificial light sources relative to the foreground terrain and night 

sky background.  
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Figure 35.   Illustration of the computed region size in the joint region map. The 
large elliptical region (red) contains 35867 pixels while the two artificial 

light sources, shown as the small elliptical insets (blue and green) contain 
10 and 11 pixels respectively. 

 

Step3: Overlay the boundaries of the joint region map onto the source 

images. This allows a visual inspection of the region activity level for the 

respective source images in the joint region maps, as shown in Figure 36 

and Figure 37. 
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Figure 36.   Boundaries of the joint region map are plotted over the NVD source 
image, highlighting the outstanding features present in this image, e.g., 

artificial light sources, background night sky and foreground terrain. 
 

 

Figure 37.   Boundaries of the joint region map are plotted over the thermal IR 
source image, highlighting the outstanding features present in this image, 

e.g., track and foreground terrain texture. 
 

a 

b) 

r- 

b) 
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Step4: Compute the activity measure of each region for both the source 

images. The activity level of region x in the image A, is given by:  

n n
i

A A
Si

A x a j k
S
1( )= ( , ),∑          (4.6) 

where ( , )
nAa j k  is given by Equation (3.9) and represents the nth level 

activity measure of the wavelet coefficients at location (j,k), Sj is the size of 

the region determined in Step 2. This step is repeated for image B. 

The above information is then integrated to generate a fusion decision 

map which governs the combination of the coefficients of the transformed 

sources. In the decision process, the following weighted average fusion rule is 

implemented for the approximate sub-image at each n level and for each region 

Rk
n ∈ R.  

 

  ( , )=  
nFc j k                (4.7) 

 

where T is a threshold defined to identify regions of high activity, w is a weighting 

factor, ( , )
nFc j k  represents the composite coefficients, and ( , ) and ( , )

n nA Bc j k c j k  

are the source coefficients of images A and B respectively.  According to the 

above fusion rule, the composite approximation image is formed by a selective 

combination of the source image coefficients which are given a weighting 

corresponding to each region’s activity measure. If the regions exhibit similar 

activity level, the composite coefficients will take the average of the two source 

coefficients.  

 

n n n
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n n
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B A B

A B

wc j k w c j k A x T

wc j k w c j k A x T

c j k c j k

( , ) (1 ) ( , )  if  ( )   

( , ) (1 ) ( , )  if  ( )  

( , ) ( , )
 otherwise,

2

+ − >

+ − >

+



56 

In the last two sections, the concept of image segmentation using the 

watershed transform is discussed. The framework to implement the region-based 

fusion is then presented. First, the source images are decomposed using the 

wavelet transform. Next, a marker-based watershed transform is applied to the 

coarse approximate sub-image to partition it into “regions of interest”. Lastly, the 

region activity measure is derived and used to guide the fusion of the 

approximate wavelet coefficients. An inverse wavelet transform on this composite 

approximate and detail wavelet coefficient map produces the fused image. In the 

next section, the proposed algorithm is tested on different sets of NVD and 

thermal IR image pairs.  

 
2.  Experimental Results – Region Based Fusion 
This section presents the experimental results obtained using the 

proposed region-based fusion algorithm. The fused images will be evaluated 

through visual inspection using the key assessment criteria: contrast, edge 

sharpness and scene content.  

Test 5-1 

Test Objectives: To implement and evaluate the performance of the proposed 
region-based fusion algorithm on a pair of NVD and thermal 
IR images. The results obtained using different fusion 
schemes are compared. 

Levels of 
Decomposition: 2 levels 

Wavelet family: Daubechies, db2 

Fusion scheme: Region-based fusion rule 

Figure 38 shows the fusion of the NVD and thermal IR source images 

using the proposed region-based fusion algorithm. The joint region map obtained 

from the watershed transform is used to derive the decision maps for the 

approximate sub-images.  According to the fusion rule, Equation (4.7), a region 

having an activity level above the defined threshold, is given a higher weighting 

in the fusion process. Therefore, the regions corresponding to the road and the 

two artificial light sources are selected from the thermal IR image and the NVD 
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image respectively. Most of the background is selected by averaging the 

coefficients from the two source images. The fused approximate sub-image is 

shown in Figure 38. Combining with the feature fusion rule, Equation (3.12), for 

the selection of the detail coefficients, the composite wavelet coefficients are 

obtained. An inverse wavelet transform applied to these combined wavelet 

coefficients produces the fused image as shown in Figure 38.  

In addition to retaining the key features and texture information from the 

source images, the fusion process places a greater emphasis on the ‘regions of 

interest’. Compared to pixel level fusion, the fused results obtained using the 

region-based approach better reflects the scene content of the source images. It 

demonstrates the potential of region-based fusion using the proposed algorithm. 

Figure 39 shows the comparison between the different weighting 

schemes. A larger weighting factor increases the emphasis on the high activity 

regions, e.g. track and artificial light sources. For example, the region 

representing the track in the foreground has a much higher region activity 

measure in the thermal IR image than the NVD image. Therefore, the larger 

weighting factor increases the relative contribution of the thermal IR image to the 

fused image, which leads to better retention of the salient features.  

At w = 0.5, the fused approximate wavelet coefficient map is obtained by 

taking the average of the source images’ approximate coefficients and the fused 

results obtained would be the same as that derived using the pixel level wavelet 

transform fusion. 
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b) c) d) 

e) 

a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38.   Test 5-1: a) NVD and thermal IR source images; b) Joint region 
maps achieved using watershed transform; c) level 1 and 2 decision 

maps; d) level 1 and 2 fused approximate sub-images and e) 
reconstructed fused image (source images from Naval Research 

Laboratory). 
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Figure 39.   Comparison between different weighting schemes: a) region-based 
fusion with weighting factor w = 1; b) region-based fusion with weighting 
factor w = 0.8 and c) region-based fusion with weighting factor w = 0.5, 

Wavelet transform fusion (pixel level fusion). 

b) 

a) 

c) 

Region-based wavelet transform fusion – 2 levels and w=1 

Region-based wavelet transform fusion – 2 levels and w=0.8 

Region-based wavelet transform fusion – 2 levels and w=0.5 
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Test 5-2 

Test Objectives: To implement and evaluate the performance of the region-
based fusion algorithm on a different set of NVD and thermal 
IR images. 

Levels of 
Decomposition: 2 levels 

Wavelet family: Daubechies, db2 

Fusion scheme: Region-based fusion rule 

Figure 40 shows the experimental results of the region-based fusion of a 

different set of NVD and thermal IR images. The low luminance, coupled to the 

low reflectivity from the foliage generates a low contrast NVD image that 

captures limited details of the foreground terrain. The moon and the night sky in 

the background are more luminous and therefore can be differentiated against 

the foreground and treeline. The NVD image shows little ‘texture information’. It is 

complemented by the thermal IR image, which captures the surface details due 

to the greater contrast in the emissivity of the foreground terrain. 

Applying the watershed transform to the approximate sub-images, the 

source images are partitioned into distinct identifiable regions as shown in Figure 

40(b). Except for the region representing the moon in the background, most of 

the segmented regions do not have a very high activity measure. Thus, the 

algorithm generates a decision map that emphasizes only the coefficients 

representing the moon and averages the rest of the coefficients, as shown in 

Figure 40(c) and Figure 40(d).The final result is presented in Figure 40(e). It 

shows that the salient features in the respective source images can be 

emphasized by selecting an appropriate parameter in the region fusion rule 

scheme.  
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b) c) d) 

e) 

a) 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40.   Test 5-2: a) NVD and thermal IR source images; b) Joint region 
maps achieved using the watershed transform; c) 1st and 2nd level decision 

maps; d) 1st and 2nd level fused approximate sub-images and e) 
Reconstructed Fused Image (source images from Naval Research 

Laboratory). 
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In summary, the experimental results displayed in both Figure 38 and 

Figure 40 show that the proposed region-based fusion algorithm retains the most 

important features from both the Night Vision and thermal IR sensors. For 

orientation and situation awareness, this is a satisfactory presentation of the 

datasets and it has improved considerably over the simpler wavelet transform 

fusion method. Similar to the wavelet-based implementation, further tests and 

evaluations are needed to determine the optimal settings of the fusion 

parameters. 
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V. DISCUSSION AND CONCLUSIONS 

This thesis presents a general framework for the multiresolution fusion of 

NVD and thermal IR imagery. The objective is to exploit the complementary 

nature of multispectral sensors.  The framework encompasses a wavelet-based 

approach that supports both pixel-level and region-based fusion. The algorithms 

were tested on different sets of images and the results are evaluated based on a 

perceptual comparison with the multimodal source images. 

In the pixel-level fusion method, variants of the algorithm incorporating 

different feature selection rules were implemented. By comparing the intensity of 

the sampled pixels or the activity of a neighborhood (3 by 3 window) around the 

sampled pixel in the corresponding multiscale wavelet coefficient maps, the 

salient directional features in the source images can be extracted and selectively 

combined. The experimental results show that wavelet transform fusion performs 

better than simple non-multiresolution approaches, e.g., the averaging method 

and offers significant scene content improvement over single sensor detection. 

This wavelet-based based approach works well in preserving the key spectral 

information in the NVD and thermal IR images.  

In the wavelet domain, many image processing techniques can easily be 

performed. Therefore, we propose a region-based fusion scheme, which applies 

the concept of the watershed transform to the morphological gradient of the 

decomposed wavelet sub-images. In this approach, the multimodal approximate 

sub-images are segmented into regions of interest and subsequently used to 

guide the fusion process. The objective is to increase the degree of subject 

relevance in the fused image.  

Experimental results show that in most cases, the marker-based 

watershed transform can be used to segment the approximate sub-images into 

distinct identifiable regions. By considering a region’s activity measure in the 

fusion process, a greater emphasis is placed on the ‘regions of interest’ 

representing the salient features in the source images. As a result, the most 
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important features from the Night Vision and thermal IR sensors are well retained 

in the fused representation and this scheme leads to a considerable performance 

improvement over the simpler wavelet transform fusion. 

If the segmented regions show similar activity measures, the fused 

approximate sub-image is obtained by averaging the coefficients of the 

corresponding source images and the results achieved are comparable to the 

pixel-level wavelet fusion methods.  

 Experimental results illustrate the feasibility of the region-based approach 

for image fusion. The implementation is still at a preliminary stage, and further 

investigations are proposed to fine tune the approach and vary parameters to 

improve the fusion performance. 
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VI. RECOMMENDATIONS FOR FURTHER WORK 

Recommended tasks for further research include the following: 

• Explore other configurations to determine the optimal settings for 

both pixel-level and region-based fusion. In this thesis, the 

Daubechies (db2) wavelets and up to three levels of decomposition 

are implemented. 

• Extend beyond the current fusion scheme (absolute value of 

wavelet coefficient) by applying more sophisticated criteria, such as 

a region’s size, texture content, and center of mass etc., to further 

characterize a region’s activity level and better reflect a region’s 

relative importance. These parameters can be extracted by 

examining the magnitude of the wavelet coefficients of each detail 

sub-band or post-processing the outputs of the watershed 

transform. 

• Explore other fusion rules and methods of multiresolution 

segmentation, e.g. segmentation based on a generalized pyramid 

linking [18], hierarchical watershed algorithm from mathematical 

morphology, etc. The fused results can be compared to determine 

the most promising approach. 

• Examine additional multimodal images, made up of different scenes 

and targets of interest. This can be done using the newly acquired 

NVD and thermal cameras acquired in the project. However, 

images captured with different cameras can no longer be assumed 

to be registered. Therefore, further study on the registration of the 

NVD and thermal IR images is necessary. 

• Identify suitable applications so that the fusion rules can be 

automated. 
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APPENDIX A. WAVELET TRANSFORM FUSION RESULTS  

The implemented wavelet transform fusion algorithm is tested on 

additional sets of NVD and thermal IR images (from Naval research Laboratory) 

having different scene information. The fused results are shown in Figure 41 and 

Figure 42. 

 Test A-1 

Test Objectives: To implement and evaluate the performance of wavelet 
transform fusion on a different pair of NVD and thermal IR 
images. 

Levels of 
Decomposition: 2 levels 

Wavelet family: Daubechies, db2 

Fusion scheme: Fusion Rule 1 – Selection of the dominant mode 

 

Test A-2 

Test Objectives: To implement and evaluate the performance of wavelet 
transform fusion on a different pair of NVD and thermal IR 
images. 

Levels of 
Decomposition: 3 levels 

Wavelet family: Daubechies, db2 

Fusion scheme: Fusion Rule 3 – Weighted average of window-based modes 
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Figure 41.   Test A-1 (Wavelet transform fusion results):a) NVD image; b) 
thermal IR image, and c) wavelet transform fusion with 2 levels of 
decomposition (source images from Naval Research Laboratory). 

b) 

a) 

c) 
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Figure 42.   Test A-2 (Wavelet transform fusion results) a) NVD image; b) 
thermal IR image, and c) Wavelet transform fusion with 2 levels of 
decomposition (source images from Naval Research Laboratory). 
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APPENDIX B. REGION FUSION RESULTS 

The implemented region-based fusion algorithm is tested on additional 

sets of NVD and thermal IR images (from Naval research Laboratory) having 

different scene information. Fused results are shown in Figure 43. 

Test B-1 

Test Objectives: To implement and evaluate the performance of the proposed 
region-based fusion algorithm on a different pair of NVD and 
thermal IR images.  

Levels of 
Decomposition: 2 levels 

Wavelet family: Daubechies, db2 

Fusion scheme: Region-based fusion rule 



72 

b) c) d) 
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a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 43.   Test B-1 (Region fusion results): a) NVD and thermal IR source 
images; b) Joint region maps achieved using watershed transform; c) level 

1 and 2 decision maps; d) level 1 and 2 fused approximate sub-images 
and e) reconstructed fused image (source images from Naval Research 

Laboratory). 
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